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ABSTRACT

In this paper, we present the analysis of an interpenetrating metal ceramic

composite structure. We introduce a new generation algorithm for the modeling

of interpenetrating composite microstructures with connected, spherical cavities

embedded into an open-porous foam structure. The method uses a geometric

ansatz and is designed to create structures of special topology, as the investi-

gated metal ceramic composite structures consisting of a connected AlSi10Mg

phase showing spherical shapes embedded into an Al2O3 preform. Based on the

introduced enhanced random sequential absorption approach, the generated

microstructures yield numerical insights into the material that are not accessible

by experimental techniques. The generated microstructures are compared to

structures reconstructed from experimental CT scan data considering

microstructural features and mechanical behavior. We show that the proposed

method is able to generate statistically equivalent microstructures by using only

a small number of statistical descriptors. The numerical formulation is validated

using compression tests including plastic yielding in the aluminum and damage

progression in the ceramic phase. Both the composite material and the pure

ceramic preform are considered in this analysis, and good agreement is found

between reconstructed and generated microstructures. Furthermore, the obser-

vations reveal the importance of the local geometrical sphere arrangement with

respect to the mechanical behavior. A validation with experimental results is

presented and it is shown that the model predicts microstructural properties

and gives meaningful insights into the structural and material interplay. Finally,

we discuss the potential of the method for the investigation of failure

mechanisms.
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Introduction

The properties of a materials strongly depend on the

fundamental mechanisms and features of its inner,

often hierarchical structure [1]. Microstructural fea-

tures may originate from the manufacturing and

processing of the material (e.g., grain structure,

internal domains, voids) or are part of its design (e.g.,

composite structures). These features can be of any

size from the atomic (nanometer) scale up to the

macroscopic (millimeter) scale and they have an

influence on the material behavior from the chosen

scale upwards [2]. Understanding the relationships

between structure and properties is one of the key

objectives in materials science in order to understand

the materials internal processes, predict important

material characteristics and design materials

addressing property and performance requirements

as pointed out by [3, 4].

Theoretically, closed form homogenization tech-

niques as presented by [5–7] are able to predict the

elastic properties of different porous and non-porous

microstructures. This has been shown, e.g., by

Roberts and Garboczi [8] for porous structures, by

Kari [9] for particle reinforced composites and by

Feng [10] and Horny et al. [11] for interpenetrating

composite materials.

However, as microstructural features might change

due to the mechanical or thermal loading going

beyond the elastic range, in situ investigations are

necessary to get profound understanding of the

material behavior and its link to the underlying

microstructure. Here, modeling approaches can give

insights into internal processes of a material that are

difficult-sometimes impossible-to gain with experi-

mental methods. Therefore, many advancements in

structure-property relations nowadays include com-

putational materials science, especially multiscale

materials modeling and computational homogeniza-

tion [3, 12].

For brittle materials, going beyond the elastic range

is associated with damage of the material. Various

different computational approaches exist to model

the fracture and damage in brittle or quasi-brittle

materials in a discrete or a regularized continuum, as

summarized by Rabczuk [13]. Finite element-based

methods such as regularized continuum damage

models [14, 15], interelement-separation methods

[16, 17], techniques based on the Extended Finite

Element Method (XFEM) [18], or variational concepts

including phase fields [19, 20] are well suited to

model discrete cracks in a consistent manner.

In order to model the damage of complex material

with these methods, a proper digital representation

of the microstructure is essential. In consequence, a

lot of effort is made to either transfer the real

microstructure of the investigated material into a

computational model [11, 21–24] or to generate rep-

resentative model microstructures [9, 25–30].

In this context, the term reconstruction is used with

varying definitions depending on the respective

community or the objective of the investigations as,

e.g., shown in [2, 31, 32]. In the present paper,

microstructure reconstruction is defined as the

transfer of a real, physical material structure into a 3D

numerical model by means of 2D imaging techniques

such as X-ray computer tomography (CT) or focused

ion beam combined with scanning electron micro-

scopy (FIB-SEM), whereas the generation of repre-

sentative model volumes is referred to as

microstructure generation.

Especially X-ray CT has improved rapidly over the

past years and is a commonly accepted tool in

materials science for 3D tomography reconstruction

to characterize the microstruture of a material. It can

be used as a starting point for numerical modeling

[32] and is well suited for materials with structural

characteristics in the lm range [33]. As a high mate-

rial contrast facilitates the distinction between dif-

ferent phases, it is preferably used for reconstructing

porous or cellular materials such as foams, see, e.g.,

[11, 34], and different composite materials, like tex-

tiles [23], or fibre reinforced polymers, [22].

An advantage of the non-destructive X-ray CT

technique is that it allows to investigate the same

sample experimentally and simulatively. Wang et al.

[21] and Li et al. [35] used this approach to model the

damage behavior of interpenetrating SiC/Al com-

posites under dynamic compression with volume

fractions of 80% SiC and 20% Al. Advanced X-ray CT

techniques even allow for in situ experiments as

shown by Schukraft et al. [36] who investigated

damage mechanisms in an Al2O3/AlSi10Mg inter-

penetrating composite with approx. 25 vol-% Al2O3.

Further, these experimental techniques can be cou-

pled with numerical investigations of the same

specimen to get deeper insights into the ongoing

material processes and to identify and understand
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the relevant mechanism as shown by Hanhan et al.

[37] for a short fibre-reinforced composite.

Although microstructure reconstructions yield the

most realistic geometrical description of a composite

structure, they can be cumbersome due to time-con-

suming reconstruction and post-processing proce-

dures as well as the fact that the structure has to

physically exist. A much faster and more versatile

approach is to generate microstructures and mimic

the real structure as good as possible in a solely

computational model. This can be done by either

simulating the physical process chain that leads to

the formation of the microstructure, see, e.g., [38], or

by geometry-based methods that focus on the math-

ematical representation of the final morphology, see,

e.g., [39]. A detailed review of the manifold of gen-

eration techniques is given by Bargmann et al. [2].

Geometrical generation algorithms are based on

statistical descriptions and the main challenge is to

meaningfully represent the geometries and distribu-

tions of all constituents (particles, pores, etc.) as well

as the interfaces between them. Correlation functions,

e.g., according to Torquato [25], can be used in pixel-

or voxel-based approaches to create statistically

equivalent representations of the real microsturcture.

These structures are then used to simulate the

mechanical behavior of the microstructure as shown

in [26, 27]. Another approach is to describe at least

one of the constituents with well-defined geometries

like spheres [28], spheroids [29], or cylinders [30] and

only use a reduced set of statistical descriptors such

as volume fractions, size distributions, aspect ratios,

and number of inclusions as an input for the gener-

ation process. This approach can lead to simple and

robust algorithms, which only use closed form

equations. A detailed reconstruction of the parent

structure is not essentially necessary and the gener-

ation is possible even if only a small number of sta-

tistical descriptors of the desired microstructure is

known. Periodicity of the structures can be incorpo-

rated easily if it is computationally favorable, e.g., for

asymptotic homogenization, as shown in [29]. Fur-

ther, the macroscopic mechanical behavior, as well as

the damage mechanisms on the microscale, can be

predicted well by geometrically generated

microstructures as shown by Huang et al. [28] for

cenosphere epoxy syntactic foams.

A widely used geometrical generation algorithm is

the random sequential absorption (RSA) method [40]

which successively places new inclusions in a pre-

defined volume until a desired target fraction is

reached. It classically includes a constraint avoiding

an overlap of the inclusions. Thus, a continuous

matrix with isolated reinforcements is generated. As

a consequence of the randomized placement proce-

dure, only relatively small volume fractions can be

represented, i.e., up to about 38% for monodisperse

spheres [41]. The generation of higher volume frac-

tions of inclusions is time consuming if not

impossible.

In this paper, we present an extension of the RSA

method to generate interpenetrating composite

microstructures with connected, spherical inclusions.

A key feature is the high volume fraction of the

inclusion phase that can be considered by a formu-

lation constraining the fully randomized sphere

placement. The algorithm allows for obtaining

numerical 3D models of interpenetrating

microstructures without the need of an elaborated

reconstruction process. It uses closed form equations

and only needs basic information about the

microstructure (volume fractions, size distributions)

which is accessible by experimental measurements.

Thus, it enables an easy and accelerated procedure

for the numerical analysis of the considered example

material, i.e., an Al2O3/AlSi10Mg composite. Based

on the introduced method, we compare generated

microstructures with reconstructed structures. The

mechanical behavior of both the ceramic foam and

the composite is studied in FEM simulations. The

results are discussed in comparison with experi-

mental investigations of the given material based on

[11, 36, 42].

Microstructure reconstruction

Based on computer tomography (CT) data, we

reconstruct the material microstructure to prepare it

for a numerical analysis by choosing an region of

interest (ROI) and subsequent segmentation, interface

smoothing and meshing as described in the

following.

In [11], X-ray CT scans on the ceramic preform

ceramic preform cube with an edge length of 5mm

were conducted. Based on these CT scan images, we

reconstruct and prepare the material microstructures

for the numerical analysis of both the ceramic Al2O3

preform and as the interpenetrating Al2O3/AlSi10Mg

composite.
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The raw CT scan data consist of a stack of grayscale

images, where the grayscale values depend on the

density of the constituents. Beam artifacts occuring at

the edge of the scanned volume are cut off by

defining a region of interest (ROI) with an edge

length of approx. 1:9mm in the center of the scan.

The ROI is chosen in a way that it represents the

overall volume fractions and pore size distribution as

characteristic features of the microstructure.

Then, the ROI grayscale images are segmented and

transferred to a 3D array of black and white voxels

representing the two components of the microstruc-

ture. Common challenges during the segmentation

process as capturing different features with a low

material contrast and detecting features that are close

to the resolution limit are addressed by binarizing,

segmenting and cleaning the images from segmen-

tation errors according to the segmentation routine

presented in [11]. The ready segmented 3D voxel

reconstruction of the cubic ROI is shown in Fig. 1.

As numerical investigations of the whole ROI vol-

ume are too expensive, cubic subvolumes have been

chosen randomly within the segmented ROI with the

precondition to match the same volume fraction as

the overall ceramic volume fraction of 30%. Pre-

studies have been conducted to evaluate the mini-

mum size of an RVE based on the correct represen-

tation of microstructural geometry and volume

fractions. A volume element with an edge length of

133 lm is chosen as RVE edge length found to be a

good compromise to minimize the trade-off between

accuracy and computational cost. This complements

the findings based on investigations on the effective

elastic properties in [11]. An arbitrary example for

such an RVE cutout is shown in Fig. 2. Here, only the

ceramic foam is displayed to get a better insight into

the interpenetrating structure and the reconstruction

process.

For the composite, the porous volumes are filled

with the aluminum alloy. To reduce artificial stress

concentrations caused by the sharp edges of the voxel

discretized microstructure in the simulation, the

interface between the Al2O3 and the porous volume

(or AlSi10Mg for the composite) is triangulated and

smoothened. Therefore, the first-order Laplacian

algorithm implemented in the Materialise 3-matic

14.0 software [43] is applied. Subsequently, the cera-

mic and the metal volume are meshed by tetrahedral

finite elements for subsequent numerical investiga-

tion of the ceramic foam, as well as the Al2O3/

AlSi10Mg composite. This is exemplarily shown in

Fig. 2 for the ceramic foam containing a total of

731, 673 tetrahedral elements.

It is remarked that the CT scan was performed on

the ceramic preform prior to the AlSi10Mg infiltration

due to the higher material contrast between Al2O3

and the pores compared to the aluminum alloy. The

1.
76

 m
m

1.89 mm 1.94 mm

Figure 1 Reconstructued 3D microstructure ROI from binarized

micro-CT scan images of the Al2O3 foam (white = ceramic, black

= pore), see [11].

Figure 2 Process of reconstruction from binarized 2D images to

smooth 3D FEM mesh.

J Mater Sci



composite is subsequently modeled with the

assumption of a perfectly infiltrated ceramic foam,

not taking into account possible residual pores within

the aluminum or at the interface. Due to the CT scan

resolution with voxels of a size around 2:63 lm3 also

smaller pores within the delicate ceramic rods might

be present but cannot be resolved. Potential pre-

cracks in the Al2O3 phase that might have been

introduced through the infiltration process are

neglected in the present study.

Microstructure generation

In addition to the reconstruction, the generation of

microstructures plays a significant role in analyzing

microstructural behavior and in identifying funda-

mental mechanisms. The generation based on math-

ematical formulations allows for the investigation of

a broad range of structural variations. This gives

further insights into the behavior and the impact of

individual material or geometry parameters.

For the composite material considered in this

paper, the microstructure generation comprises sev-

eral challenges: It consists of two components (Al2O3

and AlSi10Mg) with an interpenetrating (also called

bi-continuous) structure, meaning that both phases

are topologically interconnected throughout the

whole volume. Here, the predominant shape of the

aluminum phase results from connected spherical

objects as described in detail in [11]. Even though the

microstructure behaves homogeneously on a macro-

scopic scale, it is not ordered and shows randomness

and heterogeneity on the microscale.

In the following, we propose a formulation for the

microstructure generation that includes all function-

alities and parameters to address these challenges.

Microstructure generation algorithm

Our approach is based on the random sequential

absorption (RSA) method introduced by Widom [40].

We consider the pores of the ceramic foam to be

perfectly spherical and create the final microstructure

by sequentially adding spheres to a hexahedral vol-

ume cell. In the classical RSA algorithm, a non-

overlapping condition is imposed resulting in a

composite with isolated inclusions. However, to cre-

ate an interpenetrating microstructure, the RSA

formulation is modified with respect to the sphere

placement.

The basic idea is to constrain the fully randomized

sphere placement and restrict the positions for

potential new spheres to certain volume areas to

ensure an interconnection between both the spheres

and the remaining volume. In the following, the

extended RSA algorithm is described in detail.

First, an empty cell with the dimensions Lx; Ly; Lz is

initialized. The radius r1 of the first sphere (like for

any subsequent sphere) is chosen according to the

defined probability density function of the sphere

size distribution pdf. Characterizing the reconstructed

CT data of the preform of the material considered in

this paper, a generalized extreme value distribution

(GEV) was found to best describe the distribution of

the spherical pores, see [11], which is defined by the

parameters c, loc, and scale as a function of a:

pdfðb; cÞ ¼ 1

scale

exp � expð�bÞð Þ expð�bÞ ; for c ¼ 0

exp �ð1� cbÞ
1
c

� �
ð1� cbÞ

1
c�1 ; for b� 1

c
; c [ 0

8<
:

with b ¼ a� loc

scale

ð1Þ

Sphere 1 is placed at a random position p1 within a

cuboid of Lx=2� Ly=2� Lz=2 at the center of the cell

to incite a homogeneous sphere distribution

throughout the whole volume.

The second sphere is placed randomly within a

certain distance range dmin. . .dmax around sphere 1 as

shown in Fig. 3a (grey area). The position p2 of sphere

2 can be calculated by making use of polar coordi-

nates and randomly choosing the two angles h and /
as well as the distance d:

p2 ¼ p1 þ d

sin h cos/

sin h sin/

cos h

2
64

3
75 ;with

d 2 ½dmin; dmax�
h 2 ½0; 2 p�
/ 2 ½0; p�

ð2Þ

The distances dmin and dmax depend on the radii r1 and

r2 of the spheres involved and the overlap parameters

ovlmin and ovlmax in order to ensure the interpene-

trating character of the microstructure but avoiding

small spheres to be placed fully within large sphere:

dmin ¼ maxfr1; r2g þ ð1� ovlmaxÞ �minfr1; r2g

dmax ¼ maxfr1; r2g þ ð1� ovlminÞ �minfr1; r2g
ð3Þ

Starting from sphere 3, the sphere placement strategy

is defined by the parameters nmin 2 f1; 2; 3g and bias

(Boolean). Before adding the new sphere, one of the
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already existing old spheres within the spherelist is

randomly chosen. In the most simple case of nmin ¼ 1,

the new sphere is placed randomly around the old

sphere as given in Eq. (2). This is shown exemplary in

Fig. 3b for a third sphere which might be placed in

the gray marked areas around sphere 1 (p03) or sphere

2 (p003) depending on which of the two spheres have

been chosen initially.

Using nmin ¼ 2, one random neighbor of the picked

old sphere is additionally taken into account and the

new sphere can only be placed in the (blue marked)

areas where it overlaps with both of them (e.g., p0003 ).

Similarly, a new placed sphere overlaps with three

existing spheres if nmin ¼ 3 (this can not be visualized

in the simplified 2D scheme).

With bias ¼ True, the number of random picks for

each sphere is tracked and used as a bias for subse-

quent picks. The probability of choosing a specific

sphere correlates with the inverse of this number in

order to get a spatially homogeneous distribution of

spheres.

Admissibility checks are performed once the new

position of the (i-th) sphere is defined. The distance

dij to all of the other spheres is calculated and the

acceptable distance range dmin\dij\dmax is checked

according to Eq. (3) by replacing the indices r1 �! ri (i

= index of new sphere), r2 �! rj (j = index of sphere

from spherelist) and iterating over all j. Note that, the

distance calculation differs for periodic and non-pe-

riodic microstructures (see Appendix A).

It is prescribed that a minimum distance for non-

overlapping spheres

dnon�ovl �ð1þ distminÞðri þ rjÞ ð4Þ

must be maintained in order to avoid very delicate

geometries and to reduce subsequent meshing diffi-

culties. For the same reason, an overlap check of the

spheres with the cell boundaries is conducted.

Spheres cannot be positioned at a defined distance

range to the cell borders which avoid very small

spherical cap cutoffs. Therefore, pi ¼ ½pxi ; p
y
i ; p

z
i �
T can

be anywhere inside the cell, except for

ð1� ovlcellÞ ri£pki£ri

Lk � ð1� ovlcellÞ rilpkilLk � ri
; for each k 2 fx; y; zg

ð5Þ

with the cell overlap parameter ovlcell and the cell

dimensions L ¼ ½Lx; Ly; Lz�T. In the case of non-pe-

riodic microstructures, (periodic ¼¼ False) also sphere

position pi outside of the cell are allowed:

�ð1� ovlcellÞ ri � pki � 0

Lk þ ð1� ovlcellÞ ri � pki � Lk
; for each k 2 fx; y; zg

ð6Þ

If any of the admissibility checks from Eqs. (4), (5) (6)

is not passed, the sphere gets rejected and a new

(a) (b)

Figure 3 Simplified 2D scheme of the modified random

sequential absorption (RSA) algorithm with spheres of constant

radius. a The fist sphere with radius r1 is placed at position p1 in

the center quarter of the cell. The second can be placed at a certain

distance range dmin. . .dmin around sphere 1 (marked in gray). b A

third sphere can either intersect with the first ot the second sphere

(p03, p
00
3) when placed in the gray marked area or with both of them

(p0003 ) if placed in the blue area. The probabilities of p03, p
00
3 and p0003

can be specified.
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sphere placement is initialized. Otherwise, the vol-

ume of the sphere, that is added to the cell, has to be

calculated.

While this volume can be easily determined for a

sphere without overlaps placed fully inside the cell

Vsphere ¼ 3
4 pr

3, we further have to consider the inter-

section volume with other spheres. In the case of non-

periodic microstructures, additionally, the volume

cut off by the cell boundaries must be taken into

account making the evaluation more difficult than for

periodic ones. Sphere overlap and cell boundary

overlap calculations are based on the volume of a

spherical cap which results from a cut of the sphere

with a plane

Vcap ¼
p
3
h2 3r� hð Þ : ð7Þ

Here, h is the height of the cap according to [44]. For

the intersection of a sphere with a (plain) cell

boundary, the determination of h is straightforward,

but also the overlap volume of two intersecting

spheres i and j can be expressed analytically. Here,

the cap height hi of sphere i which is located at a

distance d to sphere j can be described with

hiði; jÞ ¼ rj �
ðr2j � r2i þ d2Þ

2d
: ð8Þ

Subsequently, the intersection volume of the two

spheres is the sum of the respective spherical caps

combining Eqs. (7) and (8). Summing over all

neighbor spheres j ¼ 1. . . n that intersect with sphere

i yields the intersection volume

Vi; intersect ¼
Xn

j¼1

Vi; cap þ Vj; cap

¼
Xn

j¼1

p
3
h2i 3ri � hið Þ þ p

3
h2j 3rj � hj
� �

:

ð9Þ

This is the volume already occupied by other spheres,

when placing the new sphere i at position pi. For

periodic microstructures, this volume is subtracted

from the total sphere volume to get the newly added

volume Vi;add ¼ Vi;sphere � Vi;intersect.

For non-periodic structures, the cutoffs at the cell

boundaries have to be taken into account as well.

First, we have to determine with which of the six cell

faces the sphere is in contact with, i.e., where the

distance of the sphere to the cell boundary is smaller

than its radius. Overlaps are tracked in an simple

boolean array (xmin; xmax; ymin; ymax; zmin; zmaxÞ

where the entry values are equal 1 if the sphere

intersects with the respective cell boundary and 0

otherwise. For each intersection, we have to compute

the height of the overlap d and further distinguish

between the different overlap cases depending on

total number of sphere/cell face overlaps nd ð� 3Þ in
order to compute the volume of the sphere remaining

inside of the cell [45]. The following cases are

considered:

nd ¼ 0: no cell overlaps

In this case, the sphere volume inside the cell is

equal to the total sphere volume Vin ¼ Vsphere ¼ 3
4 pr.

nd ¼ 1: overlap with a single face

The volume of the cutoff by the cell face VfaceðdÞ can
be calculated with the formula for the spherical cap

according to Eq. (7), with a cap height h ¼ d. An

alternative, dimensionless form to calculate Vface is

given in the Appendix B. The volume of the sphere

remaining inside the cell Vin is given as

Vin ¼ Vsphere � Vface : ð10Þ

nd ¼ 2: overlap with two faces

Two face volumes Vfaceðd1Þ, Vfaceðd2Þ and an edge

volume Vedgeðd1 d2Þ depending on the distances to the

two cell faces d1, d2 and the sphere radius r need to be

considered. See Appendix B for the mathematical

expression of Vedge. The sphere volume in the cell can

then be calculated as

Vin ¼ Vsphere �
X

Vface þ Vedge : ð11Þ

nd ¼ 3: overlap with three faces

In this case, three face volumes Vfaceðd1Þ, Vfaceðd2Þ,
Vfaceðd3Þ, three edge volumes Vedgeðd1; d2Þ,
Vedgeðd1; d3Þ, Vedgeðd2; d3Þ and the corner volume

Vcornerðd1; d2; d3Þ have to be determined in order to

calculate Vin. The equation to determine Vcorner is

given in Appendix B.

Vin ¼ Vsphere �
X

Vface þ
X

Vedge � Vcorner : ð12Þ

With the volume Vi;in of sphere i inside the cell, that is

calculated in Eqs. (10), (11), (12) (depending on the

position pi and radius ri) and the intersection volume

Vi;intersect from Eq. (9), the volume added to the cell in

the non-periodic case can be determined with

Vi; add ¼ Vi; in � Vi; intersect : ð13Þ
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Subsequently, an estimate of the volume fraction

including the new sphere i using estimate ¼ fractionþ
Vi;add=Vcell is calculated. If the estimate volume fraction

exceeds the target fraction plus tolerance, the sphere

is rejected and a new sphere placement in initialized.

Otherwise, the sphere is added to the spherelist and

the current fraction is updated by the value of estimate.

The procedure is repeated until the targeted volume

fraction has been reached within defined tolerances.

For a better visualization, the described overall

algorithm is illustrated in Algorithm 1. The involved

parameters are listed and described in Table 1.

Finite element modeling

To investigate and compare the reconstructed and

generated microstructures numerically with respect

to the mechanical behavior, FE-models of the struc-

tures were set up. The transfer of CT-scan recon-

structions to a FE-meshes has been described in

Sect. 2. For the generated microstructures, the infor-

mation about the cell dimensions and the sphere

arrangement stored in the spherelist output of Algo-

rithm 1 was used together with the constructive solid

geometry and meshing capabilities of Abaqus/CAE

[46] software in order to create the model geometry.

Constitutive models

Al2O3 ceramic

We want to analyze the mechanical response of the

foam and the composite under compressive load.

With respect to material damage modeling, a main

challenge is, that we do not know where damage

initiates and propagates in advance. Thus, interele-

ment-separation techniques are not suited for the

problem. As the mesh of the complex microstructures

already contains about one million elements (and

more) and XFEM and variational approaches would

need further mesh refinement along the crack paths,

this is challenging for the considered microstructure.

Therefore, we optimize between accuracy and com-

putational efficiency and incorporate a regularized

continuum damage model following the ficticious

crack model of Hillerborg et al. [14] and the crack

band model of Bažant and Oh [15].

A multi-directional fixed smeared cracking

assumption according to [47] accounts for the brittle

damage behavior of the Al2O3. Up to failure, linear

elasticity is assumed.

The constitutive model for the ceramic phase is

given as follows. First, the total strain rate de is

decomposed by

de ¼ deel þ deck ð14Þ

into elastic deel and cracking strain rates deck in order

to correctly represent the state of the damaged solid.

Table 1 Input parameters for the modified RSA algorithm

Parameter Value Description

Lx; Ly; Lz 133 Cell dimensions

target 0.7 Target sphere volume fraction

Dtarget 0.01 Target fraction tolerance

pdf GEV Type of sphere size distribution

c �0:413 GEV shape parameter

loc 8.993 GEVlocation shift parameter

scale 5.087 GEV scale shift parameter

periodic False (non-)periodic microstructure

ovlcell 0.3 Minimum overlap at cell borders

ovlmin 0.05 Minimum overlap of two spheres

ovlmax 0.05 Maximum overlap of two spheres

distmin 0.05 Min dist. of non-intersecting spheres

nmin 2 Min. neighbors at sphere placement

bias True Place where neighbor density is low
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In the elastic regime, before the initiation of damage,

eck ¼ 0 is assumed.

To detect the onset of cracking, a simple yet effec-

tive stress-based Rankine crack initiation criterion is

chosen (see Fig. 4). Once the maximum principle

tensile stress r1 exceeds the tensile strength of the

material rIt , the first crack has formed. A local

orthonormal coordinate system (1, 2, 3) is introduced

that aligns with the crack, i.e., the local 1-axis is the

crack plane normal and the local 2- and 3-axis lie in

the crack plane. The global strains e ðx; y; zÞ can be

transformed into the local coordinate system by a

transformation matrix T reading

e ðx; y; zÞ ¼ T � ð1; 2; 3Þ. The same transformation

holds for the global and local stresses r and s,

respectively.

The local coordinate system and the transformation

matrix T are fixed at the time when the first crack

occurs (see Appendix C for an example of T). Sub-

sequent cracks can only form orthogonal to the first

one leading to a maximum of three cracks per

material point in a 3D configuration. The cracking

condition can be written as

sii � rIt �ckii
� �

¼ 0 and sij � rIIs �ckij ; �
ck
ii ; �

ck
jj

� �
¼ 0

ð15Þ

for Mode I and Mode II opening, respectively. No

Einstein summation for the indices i and j is applied

in Eq. (15)

The relations between local stresses and local

strains are given in incremental form by

ds ¼ D d�ck ð16Þ
with the diagonal cracking or damage matrix D

containing the secant stiffness (or damaged elasticity)

values for tensile and shear components. Using the

elasticity condition dr ¼ C de with the elsatic stiffness

matrix C and Eq. (14), this can be re-written in the

incremental stress-strain relation

dr ¼ C � CT Dþ TTCT
� ��1

TTC
h i

de: ð17Þ

Following the idea of Hillerborg et al. [14], the frac-

ture energy GI
f required to from a unit crack area is a

material property and can be calculated from the

crack opening dui according to

GI
f ¼

Z
rIt dui : ð18Þ

Regularizing the crack strain by a characteristic

length lc reading ucki ¼ eckii lc allows us to rewrite the

tension softening rItð�ckii Þ in Eq. (15) as a stress-dis-

placement relationship in order to use the fracture

energy GI
f as a physical input parameter. Here, a

linear softening as shown in Fig. 5a is assumed. The

displacement, at which the materials shows no

residual stiffness ui;0, depends on the fracture energy

and the tensile strength of the alumina. To avoid non-

physical element distortions due to the applied

compressive loads, elements are deleted after reach-

ing zero stiffness at a relative displacement of ui;0.

The Mode II shear-softening behavior shown in

Eq. (15) depends on both the local shear strain �ckij and

the amount of crack opening in the normal directions

uckii and uckjj . In this case, the relation between local

stresses and local strain is

sij ¼ Dij uckii ; u
ck
jj

� �
�ckij : ð19Þ

(a) (b)

Figure 4 Rankine failure criterion a and coordinate system

transformation after crack initiation b.

(a) (b)

Figure 5 Post-failure Mode I stress-displacement behavior a and

Mode II shear retention b.
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The damaged stiffness Dij can be expressed in form of

a fraction of the shear modulus G as

Dij ¼ aðuckii ; uckjj ÞG. The factor a ! 1 before crack ini-

tiation and a ! 0 in case of the fully damaged case.

Fig. 5b shows the bilinear shear-retention model used

in this study. Here, q represents the shear retention

factor q ¼ a=ð1þ aÞ.
A summary of the material input parameters for

the alumina constitutive model is given in Table 2.

AlSi10Mg aluminum alloy

The AlSi10Mg aluminum alloy is modeled using an

elasto-plastic material behavior with J2 plasticity and

isotropic hardening. The yield surface

fðr; kÞ ¼ r� k ¼ 0 ð20Þ

is defined by the equivalent stress r ¼
ffiffiffiffiffiffiffi
3 J2

p
and the

yield stress k with the second invariant of the stress

tensor J2 ¼ ðr0 : r0Þ=2 and the stress deviator

r0 ¼ r� tr ðrÞ=3. The associated flow with a rate

independent Swift hardening law [48] is given by

kðeplÞ ¼ A epl � e0
� �n

: ð21Þ

It describes the yield stress k as a function of the

equivalent plastic strain epl and the hardening

parameters fA; e0; ng. All involved constitutive

parameters are summarized in Table 2. It is remarked

that no damage model is considered for the alu-

minum alloy.

Boundary conditions

We model compression tests of the ceramic foam, as

well as the interpenetrating composite material by

meshing the considered structures as described in

Sect. 2. With the algorithm proposed in Sect. 3, peri-

odic, as well a s non-periodic, structures can be

generated. The consideration of periodic structures

can be advantageous, e.g., for asymptotic homoge-

nization matters in conjunction with periodic

boundary conditions. However, in this study, we

choose non-periodic structures and boundary condi-

tions as reconstructed microstructures do not show a

periodic geometry. Further, the damage of the com-

plex microstructure is not considered to occur in an

periodic manner.

As shown in Fig. 6, we apply a compressive load

by rigid plates on top (moving) and on the bottom

(fixed). This mimics the experimental test conditions

described in [36] and [42]. We assume that the friction

between the plates and the material is negligible

(friction coefficient l ¼ 0) and that the alumina and

aluminum phases are perfectly tied at the interface.

The latter simplifying assumption is based on the

experimental results in [11] that show the excellent

infiltration quality accomplished for the given com-

posite with almost no residual porosity, especially at

the alumina/aluminum interface. Investigations on

Table 2 Material input parameter. Tensile strength rIt and yield

strength ry are uniquely defined for the Al2O3 and the AlSi10Mg,

respectively. Yield strength ry corresponds to yield stress at zero

plastic strain kðepl ¼ 0Þ

Parameter Unit Al2O3 AlSi10Mg

Elastic modulus E GPa 350 70

Poisson ratio m - 0.23 0.32

Tensile/yield strength rIt=ry MPa 450 201.22

Fracture energy GI
f Jm�2 50

Hardening parameter A MPa 442.67

e0 - 0.001

n - 0.112

Figure 6 Compression simulation boundary conditions.

Frictionless contact l ¼ 0 was assumed between the

investigated structure and the rigid plates on top (moving) and

on the bottom (fixed). Same boundary conditions have been used

for the ceramic foam and the MMC.
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the load transfer in similar structures showed

firmly/materially bonded interfaces as presented,

e.g., in [49, 50]. Analogously to other studies, e.g.,

[21, 51], we therefore assume a perfectly bonded

interface knowing that we probably overestimate the

stiffness or strength of the composite. The volume

elements are compressed under displacement control

in y-direction up to a total nominal strain of 6%. The

applied strain rate is approximately 1:2� 10�1. This

is higher than in the experiments [36, 42], but, since

only rate-independent constitutive models have been

used, this has no influence on the comparability of

the results. The simulations are performed with the

Abaqus/Explicit solver [46] using an explicit central

difference time integration scheme .

Results

Microstructure generation

The CT-scan reconstruction of the ROI shown in

Fig. 1 has been analyzed regarding the sphere size

distribution of the interpenetrating microstructure

according to the procedure shown in [11]. The

resuling sphere size distribution is given in Fig. 7. A

probability density function can be derived according

to Eq. (1) for the probability function of the sphere

sizes.

The analysis shows that a general extreme value

(GEV) distribution with the parameters c ¼ �0:413,

loc ¼ 7:993, scale ¼ 5:087 is best suited to describe the

sphere distribution of the microstructure. These

parameters were then chosen as input for the

generation algorithm as shown in Table 1. In order to

determine the minimum size of a statistically equiv-

alent volume element, microstructures with cell edge

lengths varying between 50and290 lm have been

studied considering steps of 30 lm in the cell edge

length. The input y and output ŷ probability density

functions have been compared and the error 1� R2

between the functions over the edge length of the

volume element (VE) as well as the number of

spheres nspheres is shown in Fig. 8.

In this context, R2 is the coefficient of determina-

tion defined by

R2ðy; ŷÞ ¼ 1�
Pm

i¼1 yi � ŷi
� �2

Pm
i¼1 yi � �yð Þ2

: ð22Þ

Here, R2 ¼ 1 means that the input and output prob-

ability density function are identical, yi is the i-th

value of the input function and ŷi is the i-th value of

the output distribution. The mean input value is

given by the normalized sum of m discrete values of

the input distribution reading �y ¼ 1
m

Pm
i¼1 yi.

We evaluate the coefficient of determination by

comparing the continuous input and output distri-

bution functions at a total of m ¼ 1000 discrete values

which are regularly distributed over the input and

output distributions, respectively. The residual sum

of squares
Pm

i¼1ðyi � ŷiÞ
2 is then divided by the total

sum of squares
Pm

i¼1ðyi � �yÞ2 as shown in Eq. (22)

We choose 1� R2 as a measure to quantify the

error between the input and output distribution

functions rather than the accordance R2 between

them. Thus, a value equal zero indicates the best

possible match. It can be observed that a the error

Figure 7 Sphere size distribution in the CT-scan ROI of the

microstructure as described in [11]. The distribution function is

used as an input for the microstructure generation algorithm.

Figure 8 Comparison of the 1� R2 error between input and

output pore size distribution depending on the edge length of the

volume element (left) as well as depending on the number of

spheres nspheres placed in the volumen element (right).
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1� R2 and the scattering reduces for increasing vol-

ume elements. For VEs larger than 120 lm, the input

and output distributions are in good accordance

showing an error of 1� R2\2%. For VEs with an

edge length � 260 lm, the error reduces below 1%.

The data points given in Fig. 8 (left) are displayed

again in Fig. 8 (right) related to the number of placed

spheres nspheres. Here, the markers show the size of the

respective volume element. Naturally, nspheres corre-

lates with the edge length of the volume element, as a

higher number of spheres can be placed in a larger

volume element. As the choice of the sphere radius

from the distribution function of possible sphere radii

and the placement is randomized, it shows a more

contiuous distribution of values along the x-axis. The

error R2 � 1 shows values of \2% for nspheres [ 150

and converges to zero for a number of spheres

nspheres [ 500.

A qualitative comparison of a generated

microstructure with a given edge length of 2903 lm3

of the volume element with a reconstructed volume

element of the same size is given in Fig. 9. For a better

insight into the 3D-interpenetrating structure, only

the ceramic phase is displayed.

Isotropy is another key feature of the investigated

material that should be covered by the generation

algorithm. Therefore, generated microstructures have

been investigated with statistical correlation

descriptors according to Torquato [25] and exem-

plary results are shown in Appendix D. As shown in

Fig. 13, isotropy can be assumed for the generated

microstructures considering volume elements with

an edge length of 133 lm used in the compression

simulations.

Local arrangement of spheres

Stress concentrations in the ceramic are significant for

the onset of damage. As they originate from the local

geometrical composition of the microstructure, not

only the overall distribution of spheres within the

volume but also the local arrangement of spheres

might be of importance. Analyzing the the correlation

of sphere size to the size of their neighboring pores in

the microstructures leads to the results shown in

Fig. 10. Here, the median neighbor sphere sizes are

plotted over the sphere size (mean value of the bin)

for both the reconstructed and generated

microstructures. For each sphere, we first determine

all spheres that are in direct contact or overlap with

Figure 9 Reconstructed (left)

and generated (right) volume

elements with an edge length

of 290 lm. Only the ceramic

part is displayed.

Figure 10 Median neighboring sphere size versus sphere radius

of the reconstructed and the generated microstructures. The

figure shows the median neighbor sphere radius for each of the 10

equally sized bins extracted from the global size distribution. The

different marker types represent three example volume elements

investigated for reconstructed and generated microstructures,

respectively.
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it, further called neighbor spheres. Then, we divide

the spheres into 10 equally sized bins according to

their radius. For each bin, we calculate the median

size of all neighbor spheres related to the bin as an

indicator for the neighborhood of a certain sphere

size group.

In the case of the reconstructed microstructures,

three randomly chosen sub-volumes with an edge

length of 532 lm are chosen for the analysis. This size

of the volume has to ensure the statistical equivalence

of the sphere size distribution compared to the whole

ROI volume. Furthermore, boundary effects shall be

minimized, as sphere sizes are underestimated if the

sphere is cut by the boundary. For all investigated

sub-volumes, a clear correlation between median

neighboring radius and sphere radius can be

observed as the median neighbor radius decreases

with increasing pores size.

Regarding the generated microstructures, four

different volume elements with an edge length of 200

lm are analyzed. Based on the results in Fig. 8, here,

this volume size is chosen as optimum of computa-

tion time and smallest statistical error in the analysis.

It can be observed that-in contrast to the recon-

structed microstructures-no correlation between

median neighboring radius and sphere radius occurs

in the generated structures. For the generated

microstructures, the median neighboring sphere size

varies randomly with the sphere size itself.

Compression simulations

Compression simulations have been performed on

both reconstructed and generated composite

microstructures as well as the ceramic foams. Based

on the boundary conditions and constitutive models

described in ‘‘Finite element modeling’’ section, sim-

ulations of cubic VEs with an edge length of 133 lm
were chosen for the investigations. Pre-studies on the

compression behavior have shown that the minimum

representative size is mainly connected to the correct

representaion of microstructural characteristics, i.e.,

geometries and volume fractions. Therefore, only

microstructures with the same volume fractions have

been investigated in the analyses. Studies on volume

elements with double the size showed similar quali-

tative results with a slight tendency of smaller com-

pressive strengths. Although the statistical

investigations on the volume size suggest a slightly

larger volume element as optimum, the measured

error between input and output sphere distribution

functions with \2% is decently small for VEs [ 120

lm, cp. Fig. 8. This is also supported by findings of a

previous study of the authors given in [11], which

shows good results for the determination of the

effective elastic properties of a representative volume

element using an edge length of at least 133 lm.

Despite the fact that RVE sizes for elastic and damage

modeling usually do not coincide (i.e.,

RVE ðelasticÞ\RVE ðdamageÞ [52, 53], the considered

system size is chosen to optimize the trade-off

between accuracy and simulation time. In order to

show the capabilities of the generation algorithm, a

smaller VE size is considered reasonable.

For the reconstructed VEs, we again randomly

choose the volumes within the CT-scan avoiding the

boundary regions of the ROI. The ceramic fraction of

the VEs is restricted to 30% as according to [11] the

correct volume fractions are an essential feature to

meet the RVE conditions. In order to capture the

variety of geometrical configurations that might

occur in larger volumes, we displayed five different

simulation results representing a statistical range for

both reconstructed and generated microstructures.

Simulation results for both the ceramic foam struc-

ture and the composite material are shown in Figs. 11

and 12, respectively. For both reconstructed and

generated structures, five simulations results are

displayed showing the statistical range for both

structure types.

As it can be observed in Fig. 11a, the ceramic foam

shows a linear followed by nonlinear behaviour in

the stress-strain curves for strains up to the point of

global failure. This behavior is observed for the

generated, as well as the reconstructed, microstruc-

tures. Only one of the generated microstructures

shows an almost linear behavior up to the compres-

sion strength and macroscopic failure. The elastic

elastic moduli of 18� 35GPa for generated and

21� 30GPa for reconstructed microstructures are in

good agreement with experimental fingings, where

the stiffnes varies within 23� 28GPa.

Generated structures show compressive strengths

of 45� 69MPa with failure strains of e ¼ 0:2� 0:35%.

The compressive strength of reconstructed structures

varies between 50and70MPa occuring at strains of

e ¼ 0:25� 0:35%. Both structure types are within the

boundaries of experiments where a compressive
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strength between 30MPa and 70MPa for the foam is

found.

Contour plots of the maximum principal stress

r1 [ 150MPa within example microstructures at a

total strain of eyy ¼ 0:1% and at a strain just after the

macrosopic failure of the material are depicted in

Fig. 11b. Stress concentrations can be observed

preferably on top and on bottom of the spherical

pores, especially in thin ceramic rods. These locations

can also be identified for the initiation of damage

causing the final failure of the foam structure. The

final damage pattern for the reconstructed and the

generated microstructures is shown in Fig. 11b

(bottom) for strains higher than the maximum com-

pression strength, i.e., eyy [ 0:3%.

For the interpenetrating composite, the results are

shown in Fig. 12. The simulated stress-strain curves

of five generated and reconstructed microstructures

are displayed together with experimental data

according to [36, 42] in Fig. 12a. Compared to the

ceramic foam, the compressive stresses are a factor 10

higher and the strains at the compressive strength is

4-5 times larger. For the simulated structures, a linear

elastic regime can be observed with that is followed

by a nonlinear behavior. After reaching the

(a)

(b)

Figure 12 a Compressive stress-strain behavior of the

reconstructed (red solid) and the generated microstructures (blue

dashed) compared to experimental results (gray area) of the Al2O3

/ AlSi10Mg interpenetrating composite. b Maximum principal

stress r1 [ 150 MPa within the Al2O3 phase at a compressive

strain of eyy ¼ 0:3% and plastic equivalent strain �epl [ 5 %

within the AlSi10Mg phase at a compressive strain of eyy ¼ 3:5%

for reconstructed (left) and the generated (right) examplary

microstructures, respectively.

(a)

(b)

Figure 11 a Compressive stress-strain behavior of the

reconstructed (red solid) and the generated microstructures (blue

dashed) compared to experimental results (gray area) of the Al2O3

foam. bMaximum principal stress r1 [ 150 MPa at a

compressive strain of eyy ¼ 0:1% and damaged Al2O3 foams at

a of strain of eyy � 0:3 for reconstructed (left) and the generated

(right) examplary microstructures, respectively.
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compression strength, the stress drops and runs out

into a plateau of residual strength. Comparing the

different simulation results, the effective elastic

properties with a elastic modulus of approx. 120GPa

are almost identical for all structures. Deviations

between the different volume elements start at the

end of the linear range at a macroscopic stress of

approx. 270MPa. For both reconstructed and gener-

ated microstructures, the compression strength is

reached at a strain of approx. 1% and varies between

400 and 580MPa.

In the softening regime, slight differences between

the individual VEs can be observed as some struc-

tures show a smooth asymptotic stress decrease

whereas others reveal multiple, more pronounced

drops followed by intermediate plateaus. Nonethe-

less, all structures tend to a level of residual strength

between 250 and 350 MPa. Both reconstructed and

generated composite microsturctures show results

comparable to experimental findings, however, they

exhibit an increased compression strength.

The contour plots of the maximum principal stress

distributions with r1 [ 150MPa within the ceramic

phase of two example microstructures at a total strain

of eyy ¼ 0:3% as well as the equivalent plastic strain

�epl [ 5% in the AlSi10Mg phase at a total strain of

eyy ¼ 3:5% are shown in Fig. 12b. It can be observed

that the principal stresses in the Al2O3 phase of the

composite are distributed along the interface to the

aluminum. No characteristic locations of stress con-

centrations can be determined. Considering a strain

of eyy ¼ 3:5%, the overall behavior depends mainly

on the metal phase. Here, the reconstructed as well as

the generated microstructure shows an accumulation

of plastic strain in a 45� angle to the compression

direction.

Discussion

We introduced a formulation for the generation of 3D

foam structures as well as interpenetrating compos-

ites. The generated microstructures have been com-

pared with reconstructed microstructures and

evaluated in comparison with experimental results. It

has been found that the proposed generation algo-

rithm is able to create interpenetrating foam and

composite structures with high volume fractions up

to 70% using an purely geometrical ansatz. Real

microstuctures can be reproduced successfully

regarding volume fractions and sphere size distri-

bution starting from VEs with an edge length of

about 120� 140 lm showing an error of less than 2%

(see Fig. 8). This result emphasizes previous investi-

gations on an Al2O3-foam and Al2O3/AlSi10Mg

composite RVEs for effective elastic properties shown

in [11] and indicates that a sufficiently large CT-scan

ROI has been chosen for this analysis.

Based on these investigations, compression simu-

lations have been performed on reconstructed as well

as generated microstructures with volume elements

of 133 lm edge length. This coincides with 50 voxels

of the CT-scan reconstructions. For the FEM model,

linear elasticity with a Rankine damage criterion and

linear softening behavior is applied to the ceramic.

For the aluminum, an elasto-plastic behavior with

isotropic Swift hardening parametrized by experi-

mental investigations is used. It is found that the

overall stress-strain behavior agrees well with

experimental findings for both the reconstructed and

the generated microstructures as shown in Figs. 11 a

and 12 a. This indicates that the generation algorithm

can compensate for the time-consuming reconstruc-

tion process and enables a meaningful modeling

process.

Considering the foam stuctures, a scattering of the

elastic modulus between 18 and 35GPa for generated

and 21 and 30 GPa for reconstructed microstructres

can be observed (cf. Fig. 11a). For the composite

structures, the scattering which vanishes to a negli-

gible amount and all simulations show a stiffness of

approx. 120GPa (cf. Fig. 12a). It can be observed that

the maximum stresses within the ceramic phase are

much more localized in the foam structure (see

Fig. 11b) compared to the composite (see Fig. 12b). In

the composite, the AlSi10Mg phase blocks lateral

straining of the ceramic skeleton and helps to dis-

tribute the stresses more equally in the Al2O3. In

more detailed investigations of the 3D structures, it

can be observed that the aluminum phase prevents

strong bending and buckling of the ceramic rods.

Consequently, the foam structure elastic properties

depend much more on the geometrical configuration

of the ceramic as the composite. For the composites,

the analysis of the elastic behavior shows that pre-

dominantly the volume fractions are decisive which

is in good agreement with [11].

However, different stress-strain behavior of the

composite structures is observed beyond the linear
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elastic range when damage and plasticity occur. Both

mechanisms start to evolve in areas of high stress

concentration and therefore are dependent of the

local geometry. Since, the generated microstructures

are statistically equivalent considering the overall

fractions and sphere size distribution but still show a

wider range of compressive and residual strengths

compared to the reconstructions, the local sphere

arrangement has been investigated.

As shown in Fig. 10, a clear correlation between

spheres and their neighbors for the reconstructed

microstructures can be observed as the neighbor

sphere size decreases with increasing size of the

considered sphere. However, this trend is not given

for generated structures. They exhibit smaller

neighbor sphere sizes for small spheres and higher

scattering of median neighbor size increases for large

spheres compared to the reconstructions. Although

microstructures might be eqiuvalent considering the

sphere size distribution, this difference in the local

neighborhood can influence the local stress concen-

tration and subsequently the mechanical behavior.

For the generated microstructures, much more

randomized local geometical arrangements are pos-

sible, as shown in Fig. 10. This can lead to more of

both thick and delicate ceramic rods and might

explain the stronger scattering of the stress-strain

behavior under compression in generated structures

(cf. Figs. 11a and 12a). If the ceramic skeleton con-

tains, e.g., a thick and continuous wall structure in

compressing direction, this will increase the stiffness

of the foam considerably and is an explanation for the

topmost stress-strain curve shown in Fig. 11a. This

indicates that additional sphere placement restric-

tions have to be implemented in the algorithm to

account for the statistical equivalent description of

neighbor sphere sizes.

The mechanical behavior of the composite struc-

tures can be explained on the same basis. The onset as

well as the evolution of damage and plasticity that

characterizes the stress-strain behavior of the mate-

rial is mainly influenced by local geometrical fea-

tures. Again, a solid, continuous ceramic wall leads to

a delayed damage initiation and higher compression

strengths. The connectivity of the aluminum phase (=

spheres) is a characteristic quantity for how easily the

VE can be sheared at higher strains when the

mechanical properties are dominated by the metal

phase (see Fig. 12).

Another reason for the difference between the

reconstructed and generated microstructures might

be the nature of the surfaces. Generated composites

show a decreased stress concentration at the top and

the bottom of the perfectly spherical aluminum-filled

cavities due to the perfectly smooth surface, whereas

reconstructions have a more jagged interface between

the ceramic and the aluminum phase. However, the

edges of the windows connecting two neighboring

spheres are sharp in the generated structures,

whereas they are smooth for reconstructions. These

sharp edges can lead to stress peaks at these win-

dows and to a premature damage initiation com-

pared to compared to reconstructions. Nontheless,

the generated mictrostructures can represent the

results of reconstructed structures and experiments

very well for both the foam and the composite.

However, the scattering of the local sphere arrange-

ment can lead to larger variations in the mechanical

behavior compared to reconstructions. Despite of the

different local sphere arrangement, the generated

structures are isotropic as shown in Appendix D.

The simulation of the composite as shown in

Figs. 11 and 12 shows higher stresses than experi-

mental tests of the material. This seems plausible

regarding the fact that no initial flaws in the ceramic

and aluminum were considered in the model. This

would decrease the stiffness, as well as the com-

pression and residual strength. Further, the interface

between the Al2O3 and the AlSi10Mg was considered

to be perfectly tied, i.e., no debonding effects were

modeled that further could reduce the strength of the

material.

As the experimental results can be reproduced

well, the generation algorithm can be used for con-

trolled modifications of desired structural character-

istics in the future. As it is based on closed form

equations and only needs fundamental information

of the desired microstructure, it is a fast and versatile

alternative to the reconstruction procedure. This

enables the optimization and tailoring of the desired

material properties and might help to speed up the

process of material development. If the algorithm

needs to be applied for different microstructures

containing non-spherical shapes, it can easily be

extended to these other geometrical forms.
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Conclusion

We introduced a microstructure generation algorithm

based on a purely geometrical ansatz that is able to

generate interpenetrating microstructures. The pre-

sented algorithm is based on the RSA approach but

involves an extended formulation for the random

sphere placement in order to achieve high sphere

volume fractions and ensure the interpenetrating

morphology of the microstructure. To mesh the

microstructures for FEM simulations, additional

conditions and parameters are introduced to avoid

geometrically challenging areas. As all equations

(sphere placement, determination of volumes, etc.)

are analytical, the process of microstructures gener-

ation can be realized in reasonable time (seconds on a

desktop PC) without exceptional computing power.

The generation algorithm minimizes the amount of

basic information about the microstructure. So, as

volume fractions and sphere size distribution is

known, the algorithm can well reproduce

microstructures in a statistical sense.

For the exemplary distribution function used

within this paper, a minimum statistically equivalent

volume element with an edge length of approxi-

mately 130 lm has been determined. Compression

simulations including damage modeling in the cera-

mic and elastic-plastic behavior in the metal phase

show that the mechanical response of the generated

and reconstructed microstructures are in good

accordance. Further, the numerical results are at the

upper end of experimentally determined compres-

sion behavior of the composite material.

Consequently, the generation algorithm is well

suited for further studies on interpenetrating com-

posite materials to investigate the mechanical

behavior depending on microstructural characteris-

tics. The simulations can give insights into material

microstructures that are not or only with high effort

accessible by experimental investigations and allow

to study controlled modifications that enable the

optimization and tailoring of desired material

properties.

Acknowledgements

The financial support for this work in the context of

the DFG research project SCHU 3074/1, as well as the

support by the European Social Fund and the State
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Institute of Materials Resource Management at

Augsburg University for performing the 3D com-

puter tomography scans of the material and the

experimental compression tests.

Author contributions

DH contributed to conceptualization, methodology,

software, validation, formal analysis, investigation,

data curation, writing-original draft, visualization.

KS contributed to conceptualization, methodology,

writing-review & editing

Funding

Open Access funding enabled and organized by

Projekt DEAL.

Data availability

The raw/processed data and the code required to

reproduce these findings cannot be shared at this

time as the data also form part of an ongoing study.

Declarations

Conflict of interest The authors declare that they

have no known competing financial interest or per-

sonal relationships that could have appeared to

influence the work reported in this paper.

Ethical approval Not applicable.

Open Access This article is licensed under a Crea-

tive Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long

as you give appropriate credit to the original

author(s) and the source, provide a link to the Crea-

tive Commons licence, and indicate if changes were

made. The images or other third party material in this

article are included in the article’s Creative Commons

licence, unless indicated otherwise in a credit line to

J Mater Sci



the material. If material is not included in the article’s

Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of

this licence, visit http://creativecommons.org/licen

ses/by/4.0/.

Appendix A: Distance calculation

The periodic distance dp between two spheres with

positions p1 and p2 is given by

dp ¼ ðp1 � p2Þ � a	 L

where 	 represents the Hadamard product (= ele-

ment-wise mutliplication), L ¼ ½Lx; Ly; Lz�T is the

vector of cell dimensions and a ¼ ½ax; ay; az�T is a

vector with values 2 f�1; 0; 1g according to

ak ¼
�1 if pk1 � pk2\� Lk=2

0 if j pk1 � pk2 j � Lk=2

1 if pk1 � pk2 [ Lk=2

8><
>:

:

Choosing a ¼ 0 we get the regular, non-periodic

distance vector dr ¼ p1 � p2. The distance between

the spheres in euclidean space is simply the 2-norm

of the respective distance vector

d ¼ kdr ^ dpk2 :

Appendix B: Overlap calculation

The calculation of sphere overlaps with one, two or

three cell boundaries is performed depending on the

relative overlap between sphere and cell d=r in a

dimensionless form according to [45], where r is the

sphere radius and d is the overlap.

For the overlap with one cell face (nd ¼ 1), the

volume cut off by the cell (spherical cap) is calculated

with

Vface ¼
1

3
pr3 3

d
r

� �2

� d
r

� �3
" #

For the overlap with two cell faces (nd ¼ 2), a case

distinction is needed in calculating Vedge as the sphere

can either intersect with the two faces independently

or is additionally cut by the edge of the cell. The

general form for Vedge is

Vedge ¼
4

3
pr3 fedge

d1
r
;
d2
r

� �

and the case distinction is made within the function

fedge given by Eq. (B1)

fedge
d1
r
;
d2
r

� �

¼
1

4p

2âb̂x̂�ð3â� â3Þtan�1 x̂

b̂

� �
�ð3b̂� b̂3Þtan�1 x̂

â

� �

þ2tan�1 x̂
â

b̂

� �
þ2tan�1

8>>><
>>>:

9>>>=
>>>;

for x̂2[0

0 forx̂2�0

8>>>>>><
>>>>>>:

ðB1Þ

where

â ¼ 1� d1
r
, b̂ ¼ 1� d2

r
and x̂2 ¼ 1� â2 � b̂2 :

and the edge intersects the sphere for x̂2 [ 0.

Similar to nd ¼ 2, a case distinction for three over-

laps (nd ¼ 3) has to be made to account for a potential

overlap of the sphere with the cell corner. The vol-

ume of the corner Vcorner can be expressed in a general

way with

Vcorner ¼
4

3
pr3 fcorner

d1
r
;
d2
r
;
d3
r

� �

where the function fcorner is given by Eq. (B2)

fcorner
d1
r
;
d2
r
;
d3
r

� �

¼

1

2
fedge

d1
r
;
d2
r

� �

� 1

8p

6âb̂x̂�2âÂĉ�2b̂B̂ĉ�ð3â� â3Þtan�1 ĉ

Â

� �

�ð3b̂� b̂3Þtan�1 ĉ

B̂

� �
þ3ðĉ� ĉ3Þ tan�1 Â

â

 !"

�tan�1 B̂

b̂

 !#
þ2 tan�1 ĉ

â

Â

� �	
þ tan�1 ĉ

b̂

B̂

 !#

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

for â2þ b̂2þ ĉ2[1

0 for â2þ b̂2þ ĉ2�1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ðB2Þ

with the relations

ĉ ¼ 1� d3
r
, Â ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2 � ĉ2

p
and B̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b̂2 � ĉ2

p
:

and the sphere intersects with the corner if

â2 þ b̂2 þ ĉ2\1.

A more detailed explanation of the formula and

their derivation is given by Freireich et al. [45].
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Appendix C: Transformation matrix

The transformation matrix T reflects the orientation

of the crack and relates global and local quantities

such as strains and stresses. As the first crack nucle-

ates in the direction of maximum principle stress

(local 1-direction) the corresponding transformation

matrix to relate, i.e., the global crack strain eck ¼
½exx; eyy; ezz; exy; eyz; ezx�T to the relevant local crack

strain �ck ¼ ½�11; �12; �13�T reads

T ¼

v21;x v1;xv2;x v3;xv1;x

v21;y v1;yv2;y v3;yv1;y

v21;z v1;zv2;z v3;zv1;z

2v1;xv1;y v1;xv2;y þ v2;xv1;y v3;xv1;y þ v1;xv3;y

2v1;yv1;z v1;yv2;z þ v2;yv1;z v3;yv1;z þ v1;yv3;z

2v1;zv1;x v1;zv2;x þ v2;zv1;x v3;zv1;x þ v1;zv3;x

2
6666666664

3
7777777775

with the vectors vi ¼ ½vi;x; vi;y; vi;z�T indicating the

direction cosines of the local i-axis expressed in glo-

bal coordinates (x, y, z) [47].

Appendix D: Isotropy of generated
microstructures

The investigated, reconstructed microstructures

exhibit profound isotropy as shown in [11]. In the

microstructure generation algorithm introduced in

Sect. 3, the outcome of an isotropic structure is forced

by the initial sphere placement in the center and the

constrained placement method using the bias

parameter. However, isotropy is not necessarily

guaranteed.

To prove the isotropy of the generated structures,

lineal path functions according to [25] have been

evaluated for different volume sizes. No remarkable

difference between the statistical functions for each

orthogonal direction (x,y,z) has been found for sam-

ple sizes of an edge length of 133 lm and larger. Two

exemplary results are displayed in Fig. 13 for volume

element sizes of 1333 lm3 (left) and 2903 lm3 (rigth).

The findings lead to the conclusion that isotropy can

be assumed for the considered microstructures.
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