
Performance-Detective: Automatic Deduction of
Cheap and Accurate Performance Models

Larissa Schmid
Karlsruhe Institute of Technology,

KASTEL
Germany

Marcin Copik
ETH Zurich, D-INFK

Switzerland

Alexandru Calotoiu
ETH Zurich, D-INFK

Switzerland

Dominik Werle
Karlsruhe Institute of Technology,

KASTEL
Germany

Andreas Reiter
University of Applied Sciences

Karlsruhe, IDM
Germany

Michael Selzer
Karlsruhe Institute of Technology,

IAM-MMS
Germany

Anne Koziolek
Karlsruhe Institute of Technology,

KASTEL
Germany

Torsten Hoefler
ETH Zurich, D-INFK

Switzerland

ABSTRACT
The many configuration options of modern applications
make it difficult for users to select a performance-optimal
configuration. Performance models help users in understand-
ing system performance and choosing a fast configuration.
Existing performance modeling approaches for applications
and configurable systems either require a full-factorial ex-
periment design or a sampling design based on heuristics.
This results in high costs for achieving accurate models. Fur-
thermore, they require repeated execution of experiments
to account for measurement noise. We propose Performance-
Detective, a novel code analysis tool that deduces insights
on the interactions of program parameters. We use the in-
sights to derive the smallest necessary experiment design
and avoiding repetitions of measurements when possible,
significantly lowering the cost of performance modeling. We
evaluate Performance-Detective using two case studies where
we reduce the number of measurements from up to 3125
to only 25, decreasing cost to only 2.9% of the previously

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9281-5/22/06. . . $15.00
https://doi.org/10.1145/3524059.3532391

needed core hours, while maintaining accuracy of the re-
sulting model with 91.5% compared to 93.8% using all 3125
measurements.

CCS CONCEPTS
• Software and its engineering→ Software performance.

KEYWORDS
automatic performance modeling, empirical performance
modeling, experiment design, configurable systems

ACM Reference Format:
Larissa Schmid, Marcin Copik, Alexandru Calotoiu, Dominik Werle,
Andreas Reiter, Michael Selzer, Anne Koziolek, and Torsten Hoefler.
2022. Performance-Detective: Automatic Deduction of Cheap and
Accurate Performance Models. In 2022 International Conference
on Supercomputing (ICS ’22), June 28–30, 2022, Virtual Event, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3524059.
3532391

1 INTRODUCTION
The costs of operating high-performance systems are mil-
lions of euros per year [8, 10]. While computing centers do
their best to design and run clusters economically, developers
must ensure that their applications scale efficiently on com-
puting clusters. Modern software systems are configurable
and allow users to set many parameters according to their
needs. For example, in the Pace3D material simulation [21],
users select algorithm settings and properties to simulate,
impacting performance metrics such as response time and
throughput [40, 50]. Choosing a set of parameters that yields

https://orcid.org/0000-0002-3600-6899
https://orcid.org/0000-0002-7606-5519
https://orcid.org/0000-0001-9095-9108
https://orcid.org/0000-0002-2430-2578
https://orcid.org/0000-0002-9756-646X
https://orcid.org/0000-0002-1593-3394
https://doi.org/10.1145/3524059.3532391
https://doi.org/10.1145/3524059.3532391
https://doi.org/10.1145/3524059.3532391

ICS ’22, June 28–30, 2022, Virtual Event, USA Schmid et al.

Performance-
Detective
[ours]

Full-factorial
[Extra-P]

Sparse Modeling
[Extra-P]

Plackett-
Burman [PIM]

0
20
40
60
80
100

Co
re

ho
ur
s

Sa
m
pl
es

A
cc
ur
ac
y

2.9%

100%

1.5%

44.7%

4%

100%

12.5%

39.2%

91.5%93.8%
74.9%

62.6%

Figure 1: Performance-Detective vs Extra-P [12] and
Performance-Influence Models (PIM) [39]. Cost-
accuracy trade-offs on Pace3D with three parameters.

the best performance is challenging. Developers and users of-
ten do not know how configuration options interact or how a
single configuration option influences performance [19, 39].
An example of such a challenge is understanding application
scalability, i.e., the interaction between problem size and the
number of processes [4].

Performance modeling helps users understand application
behavior by expressing application performance as func-
tions of input parameters [20, 25]. Since the advent of High-
Performance Computing (HPC), performance experts man-
ually identify and model the parts of the application they
consider critical to performance. Due to the high cost of per-
formance experts, HPC developers often intuitively select a
subset of the configuration space for evaluation. Automatic
performancemodeling generates models from empirical mea-
surements that cover all configuration options. Even though
configuration spaces are constrained and smaller than combi-
natorial explosion would suggest [34], the number of options
still makes exhaustive measurements infeasible.
Modeling frameworks for applications with many con-

figuration parameters can be classified into black-box and
white-box approaches. The former suffers from high sam-
pling costs and relies on heuristics to reduce the experiment
design [39], introducing the risk of excluding interactions
between options from the sample set. The likelihood of this
problem can be decreased by usingmore samples – leading to
a hard to quantify trade-off between model accuracy and the
number of samples [17, 27, 36]. White-box approaches can
support modeling of numerical options but do not use known
interactions between options, resulting in an expensive full-
factorial experiment design [13] or using heuristics to reduce
the number of samples [48]. Other white-box procedures con-
centrate on binary and binary-encoded options [45, 46] and
do not consider numerical parameters such as the problem
size or the number of processes.

In this paper, we introduce Performance-Detective, a novel
white-box modeling methodology that significantly lowers
experimentation costs while maintaining the accuracy of
the resulting models (Figure 1). In contrast to previous sam-
pling optimizations that used imprecise heuristics, we use

program information to deduce an optimized, minimal ex-
periment design, removing measurement points that do not
affect known interactions between non-functional parame-
ters. We use parametric performance models obtained from
the taint-based analysis [13] to understand the impact of
parameters on program functions. Through a step-by-step
analysis of parameter interactions, we derive conclusions on
parameter interactions in the program’s control flow. Ap-
plying the deduced conclusions to the experiment design
removes measuring points unnecessary to model parameter
interactions. Thus, Performance-Detective can reduce the di-
mensionality of experiments from exponential to polynomial
while avoiding the risk of excluding parameter dependencies
from the experiment. The experiment design of Performance-
Detective is orthogonal to the modeling approach and can be
used with black-box and white-box performance modeling.

The deduced experiment design makes performance mod-
eling more affordable and is easily applicable alongside mod-
ern performancemodeling systems. To quantify the increased
efficiency and validate model correctness, we empirically
evaluate Performance-Detective using a multi-physics solver
(see Figure 1) and a particle transport application. Performance-
Detective maintains accuracy of 91.4% while reducing the
costs of measurements by a factor of up to 34 times, compared
against both the Extra-P empirical performance modeling
tool [12, 36] and Performance-Influence Models [39].

Contributions:

• Performance-Detective, a white-box measurement
methodology using a novel deductive analysis that uses
the results of performance tainting to derive an opti-
mized minimal subset of required measurements out
of a multi-dimensional configuration space1.

• An extensive evaluation against state-of-the-art mod-
eling workflows, proving high accuracy and reduced
experiment size.

• We identify main loops within applications using our
deductive analysis, and leverage this to reduce the
cost of experiments even further, in essence applying
classical analytical performance modeling techniques
to modern automatic modeling approaches.

• Two case studies of modeling and evaluating applica-
tions extrapolated and interpolated test points.

2 FOUNDATIONS
The deduction process of Performance-Detective is based on
a program’s parametric profile obtained with taint-based per-
formance modeling provided by Perf-Taint (Sec. 2.1).

1Workflow prototype and replication package: https://doi.org/10.5445/IR/
1000146001

https://doi.org/10.5445/IR/1000146001
https://doi.org/10.5445/IR/1000146001

Performance-Detective: Automatic Deduction of Performance Models ICS ’22, June 28–30, 2022, Virtual Event, USA

void important(int x, int* arr) {
for(int i = 0; i < x; ++i)
arr[i] += i;

}
void unimportant(int x, int* arr) {

for(int i = 0; i < 16; ++i)
arr[i] += x;

}

params: [x]
functions: {

important: {
loops: [x],
MPI: None

}
}

LLVM Static
Analysis

Dynamic Taint
Analysis

Figure 2: Perf-Taint: applying the taint-based analysis
produces a JSON-like parametric performance profile.

Performance-Detective overcomes the limitations of exist-
ing performance modeling tools (Sec. 2.2), enabling efficient
and reliable white-box modeling.

2.1 Perf-Taint
Perf-Taint [13, 14] is a hybrid modeling tool that enhances
the black-box and analytical modeling tools with program
information. Perf-Taint applies a sequence of static and dy-
namic analyses to the program to understand how its com-
putational effort is affected by a change in input parameters.
The result of the operation is a parametric profile of a pro-
gram, consisting of a list of performance-relevant functions
and parameters whose values can change the performance.
Perf-Taint is built on top of LLVM [29] and supports dis-
tributed parallel applications implemented in C/C++ with
MPI. Internally, the tool uses static LLVM loop analysis [16]
and DFSan [15], a dataflow taint analysis library extended
with support for control-flow tainting [49].

We present Perf-Taint on an example program with two
functions in Figure 2. The function important is performance-
relevant because its complexity changes with parameter x.
Thus, both the parameter and the function are included in
the performance profile on the right side. On the other hand,
the function unimportant involves only a constant amount
of computation. This information obtained from program
analysis improves the overall modeling workflow by restrict-
ing the modeling to performance-relevant program elements
In practice, many short-running functions are particularly
affected by noise and could otherwise generate false models
that would make the modeling process more difficult and
error-prone. These can be automatically excluded from the
modeling process if Perf-Taint identified them as constant.

2.2 Limitations of modeling frameworks
The state-of-the-art modeling approaches do not allow for
efficient modeling of computing applications with many pa-
rameters and numerical options.
Performance-Influence Models (PIMs) [48] derive perfor-

mance models on the function level, but they do not use pa-
rameter dependencies and require expensive tracing instead
of profiling. White-Box PIMs [45, 46] do not support nu-
merical options. Though numerical options can be encoded
and discretized [46], the approach does not use a learning

method and, therefore, cannot predict inter- or extrapolating
training configurations.

Extra-P [12] relies on the full-factorial experiment design
where all parameter combinations must be considered, lead-
ing to a combinatorial explosion of the number of measure-
ments. Heuristics have been proposed to optimize the ex-
periment design [36], but they introduce a risk of missing
parameter interactions and negatively affecting model qual-
ity. Furthermore, the impact of the noise present in measure-
ments makes modeling with more than three parameters
particularly challenging.

Perf-Taint [13] does not propose a deterministic and effec-
tive methodology for user analysis of the experiment design.
While Perf-Taint detects no function depending on both x1
and x2 in the example in the listing below, it does not use
parameter knowledge to reduce the sampling set.
void f(int x) { void g(int x) {

for(int i : irange(0, x)) for(int i : irange(0, x))
calculate (); calculate ();

} }
f(x1); g(x2);

In the next code example, all functions are called in the main
loop. If the main loop is executed often enough, repetitions
of experiments are not necessary as the repetition of the
calculations already accounts for measurement noise.
for (int i = 0; i < iters; i++) {

f(x1); g(x2);
}

However, Perf-Taint does not make use of this to suggest
fewer experiments. Even though 25 and 5 measurements are
sufficient to model the performance in these examples, Extra-
P and Perf-Taint still require and suggest 125 measurements
in both cases. Even though heuristics for sampling can lower
experiment size, they do so at the cost of reducing model
accuracy. While more samples can increase the accuracy,
there is no strategy for selecting them, leading to a full-
factorial experiment design.

3 APPROACH
Figure 3 depicts the overall workflow of performance model-
ing that we will detail in the following subsections. We start
by analyzing the system to trace the influence of configura-
tion options on single functions (Section 3.1). Performance-
Detective then uses the insights about which parameter in-
fluences the performance of which function to deduce a
minimal experiment design that exploits insights about the
interplay of options (Section 3.2). After executing the ex-
periments (Section 3.3), the performance of single functions
can be modeled using any learning methodology. Finally, we
derive a whole system model by summing up single models.

We assume that the system’s performance varies in func-
tions that contain non-constant loops, i.e., a configuration
option determines how often they are executed and how

ICS ’22, June 28–30, 2022, Virtual Event, USA Schmid et al.

3.3 Instrumented
Experiments

3.2 Experiment
design

3.1 System
analysis

Deterministically
reduced

experiment
design

Instrument
relevant functions

Instrument all
functions

Parametric
profile

Heuristic
sampling

pa
ra

m
2

param1

pa
ra

m
2

param1

Modeling

Performance-
Detective:
White-Box

Performance
Modeling

Extra-P:
Black-Box

Performance
Modeling

Model relevant
functions

Model all
functions

1.3 *
param1

Model: - -

1.3 * param1
+ 10-4 * param2

...

Noise

Sample all, trace
relevant functions

Heuristic
sampling

pa
ra

m
2

param1

Weber et al.:
Performance-

Influence
Modeling

Model all
functions

...

Noise

Expert selects
parameters

Expert selects
parameters

?

Extra-P Weber
 et al.

func2: param2

func3: param1

func4: constant

func1: param1

func2: param2

func3: param1

func4: constant

func1: param1

func4: constant

func1: param1

func2

func3

func4

func1

func2

func3

func4

func1

func2

func3

func4

func1

func2

func3

func4

func1

func1: param1

func4

10-6 * param1

func1: param1

func4 ?

?

Figure 3:Modelingworkflow of Performance-Detective
compared to Extra-P [9, 36] and Weber et al. [48].
Based on the system analysis, Performance-Detective
deterministically reduces the experiment design.

many iterations they include. First, we distinguish between
functional and non-functional configuration options: while
the functional options define the problem to be solved, non-
functional options are free to vary.

Fu
nc

tio
na

l
N
on

-
fu
nc

tio
na

l

Performance-
relevant

Problem size Physical
constant

Number of
processes

Not
Performance-

relevant

Then, we distinguish between con-
figuration options that affect per-
formance and those that do not. In
modeling, we ignore options that af-
fect neither the result nor the perfor-
mance of a program. However, the
exact distinction between functional
and non-functional options is sub-
jective and domain-specific [46].

We will use the example program
in Figure 4 as a running example. It takes the three param-
eters x1, x2, and iters as configuration options and does
calculations based on them.

3.1 System analysis
In the first step, we analyze the system to find out how config-
uration options influence its performance. We do this using
the Perf-Taint approach introduced in Section 2.1. The anal-
ysis of Perf-Taint outputs parameter dependencies for each
performance-relevant function: a function always depends
on variables that determine the loop iteration count in the
function.

void baz(int z) {
 int flag = preCalculate(z);
 for (int i = flag; i < z; i++) {
 //calculate something
 }
}

int preCalculate(int z) {
 if (x2 < 10) return 0;
 return 1;
}

void foo(int y, int z, int iters) {
 for (int i = 0; i < iters; i++) {
 for (int j = 0; j < y; j++) {
 //calculate something
 }
 bar(z);
 baz(z);
 }
}

void bar(int z) {
 for (int i = 0; i < z; i++) {
 //calculate something
 }

time(foo) = f(x1, iters)

time(baz) = f(x2, iters)

time(preCalculate) =
constant

time(bar) = f(x2, iters)

int main(int argc, char ** argv) {
 int x1 = atoi(argv[1]);
 int x2 = atoi(argv[2]);
 int iters = atoi(argv[3]);

 register_variables(x1, x2, iters)

 y = x1 * 5;
 z = x2 / 7;

 foo(y, z, iters);
}

System: Parameters x1, x2, and iters Full Experiment
Design Space

Insight 1: iters
influences
computations
linearly

Deduced Experiment
Design

y depends on x1

z depends on x2

Insight 2: no
function
depending on
both x1 and x2

Figure 4: Running example. The system takes the con-
figuration options x1, x2, and iters.

Example. Figure 4 shows functions’ dependencies in the
colored boxes. Function preCalculate is not influenced by
the configuration options and is identified as constant. foo
is dependent on x1. bar and baz iterate over the parameter z
and depend on x2.We observe that iters has amultiplicative
influence on the runtime of all functions and deduce that it
linearly affects all computations. We do not consider foo to
depend on x2 because we exclusively measure time spent in
functions (cf. Section 3.3).

3.2 Experiment design
Based on the derived dependencies from the system analy-
sis, Performance-Detective deduces the minimal experiment
design. From a black-box view of the system in Figure 4,
Performance-Detective starts with a full-factorial experiment
design of the three parameters x1, x2, and iters. Since
Performance-Detective detects that iters influences the run-
time of foo, bar, and baz linearly, measuring variations of
iters will not provide us additional insights into the sys-
tem’s performance. Therefore, Performance-Detective can
exclude this parameter from the experiment design. While
the linear influence is easy to see in the example, this may
not be the case for more complex real-world programs. To
verify that the influence of the iters parameter is linear in
such a case, we can measure execution times of loop itera-
tions. If the runtime does not change significantly between

Performance-Detective: Automatic Deduction of Performance Models ICS ’22, June 28–30, 2022, Virtual Event, USA

them, i.e., the coefficient of variation is sufficiently small
between iterations, we verify that the influence of the iters
parameter is indeed linear.

Furthermore, we observe that x1 and x2 influence the per-
formance of distinct functions and do not interact with each
other. Therefore, additional samples measuring their inter-
actions will not provide further insights, and Performance-
Detective can exclude them from the experiment design.
In general, we assume that if options influence different
sets of functions, they do not interact with each other, and
Performance-Detective can vary them simultaneously. Also,
we do not consider options linearly influencing system run-
time, such as the number of main loop iterations.
Extra-P requires a full-factorial measurement setup [9]

(Section 2.2). Even the sparse modeling approach with heuris-
tics [36] requires at least five measurements per parame-
ter to capture interactions between parameters. In contrast,
Performance-Detective can detect the lack of interaction and
strike out measurement configurations where only one pa-
rameter is changed, and the others are kept constant. This
improvement reduces the dimensionality of the experiment
compared to a full-factorial setup and provides further sav-
ings when compared to sparse modeling.
In the example above, Performance-Detective determin-

istically reduces the number of measurements from 125 in
a full-factorial experiment design to only five measurement
points without sacrificing accuracy.

3.3 Profiling
We use an instrumentation-based approach to capture the
total time spent in a function during one execution of the
program, summarizing time across all invocations. We mea-
sure time spent in a function exclusively, i.e., not including
time spent in calls to other instrumented functions. We in-
strument functions identified as performance-relevant by
Perf-Taint, i.e., containing loops dependent on configuration
options and the main function. Previous works suggested
repeating each sample five times to account for measurement
noise. However, when Performance-Detective identifies a lin-
ear dependency of parameter on the main calculation, we
can skip the repeated measurements and even halt execution
after gathering at least five iterations of the main calculation
loop. While this approach is common in analytical modeling,
it has been outside the reach of automated modeling due to
the difficulty of identifying configuration parameters that
control the number of executions of the main loop.

Example. In Figure 4, Performance-Detective disregards the
constant function preCalculate for instrumentation. We
instrument foo, bar, and baz, as they depend on annotated
input parameters, and main to capture the total runtime of
the application. In exclusive measurement, the time obtained

for foo does not include the time spent in bar. However, the
time of baz includes the time spent in preCalculate.

3.4 Limitations
If all parameters are intertwined, no pruning of parameter
combinations to measure is possible. Also, we do not re-
gard binary options as switching between them results in
performance jumps. We assume that performance-relevant
behavior is located in computational loops and MPI commu-
nication routines. Modeling of recursion is not supported,
but recursive computations are rare in HPC [13].

4 MODELINGWORKFLOWS
Performance-Detective is orthogonal to the instrumentation
and learning methodology, and it can reduce the costs of ex-
periments in different performance modeling toolchains. We
consider two state-of-the-art modeling workflows: the black-
box, empirical Extra-P performance modeling tool (Sec. 4.1)
and the white-box Performance-Influence Models (Sec. 4.2).

4.1 Extra-P
Extra-P [12] is a performance modeling tool that expresses
the effect of configuration parameters 𝑥𝑖 , 𝑖 ∈ {1, . . . ,𝑚}
on a performance metric 𝑓 (𝑥1, . . . , 𝑥𝑚). The result, such as
𝑡 (𝑛, 𝑝) = 10 ·𝑛 · log(𝑝), is a familiar, human-readable function.

In practice, the configuration parameters most often an-
alyzed are problem size and process count, and the metric
of interest is usually the runtime. This allows developers
to identify performance bottlenecks in their applications,
especially when using it in conjunction with tools such as
Score-P [26] that allows automatic instrumentation and mea-
surement at the granularity of individual function calls.

The core assumption of the methods is that the complexity
of most algorithms can be expressed using a small number of
building blocks, summarized in Equation 1. The Performance
Model Normal Form (PMNF)models a metric as a combination
of polynomial and logarithmic expressions of configuration
parameters. This limits the possible search space sufficiently
to allow for a fast traversal while still being sufficiently flex-
ible to cover the overwhelming majority of applications.

𝑓 (𝑥1, . . . , 𝑥𝑚) =
𝑛∑

𝑘=1
𝑐𝑘 ·

𝑚∏
𝑙=1

𝑥
𝑖𝑘𝑙
𝑙

· log𝑗𝑘𝑙2 (𝑥𝑙) (1)

An issue not addressed in the state-of-the-art approaches
is modeling more than three parameters. In practice, noise
makes detecting parameters with a smaller impact onmetrics
of interest effectively impossible for even four parameters.

ICS ’22, June 28–30, 2022, Virtual Event, USA Schmid et al.

4.2 Performance-Influence Models
Performance-Influence Models (PIMs) [39] describe how con-
figuration options and their interactions influence the perfor-
mance of a system. They support a theoretically unlimited
number of binary and numerical parameters. PIMs can be
created using different sampling and learning techniques.
The models are learned in a black-box manner by providing
the configurations used and measured total system runtime
as inputs. Due to a high number of supported techniques, it is
unclear which combination of methods will provide the best
accuracy. However, there are works [17, 24] investigating
the interplay of sampling and learning techniques and the
influence of the sample size on model accuracy.
To further overcome these trade-offs between measure-

ment effort and accuracy, Velez et al. [45, 46] proposedWhite-
Box Performance-Influence Modeling for binary and binary-
encoded configuration options. They analyze the options’
influence on the system’s execution and help find an optimal
sample set. However, numerical options such as the problem
size are not supported since continuous parameters would
be tedious to encode. Weber et al. [48] present a two-step
white-box process for creating PIMs on the function level.
First, they use samples of the application execution to learn
a PIM for every function. Then, they use tracing to derive
more accurate models for functions that could not be learned
with a specified accuracy. They use the extended Plackett-
Burmann design [47] for sampling the numerical options
and decision trees for learning models.

5 CASE STUDIES
We illustrate the deduction process of Performance-Detective
presented in Section 3 with two case studies: Kripke, a 3D Sn
particle-transport proxy application, and a real-world case
study from Pace3D (Parallel Algorithms for Crystal Evolu-
tion) [21], a multi-physics framework that simulates how a
material reacts to outside influences. For both case studies,
we only consider the execution of the main calculation loops
as this is where most of the work happens.

Pace3D: Pressure calculation with projected conjugate gradi-
ent method. The calculation consists of two steps: First, an
approximate solution is calculated on a coarse grid. This ap-
proximate solution is then used to calculate the real solution
on the fine grid. The grids represent the material, with each
cell corresponding to one cube of the material. The solver
iterates until it reaches a convergence criterion or a given
maximum number of iterations. We consider the number
of processes and the number of coarse grid cubes as non-
functional parameters. We also use the size of the material
to predict how much material each process should get to
achieve the best performance. Additionally, we consider the
maximum number of iterations.

1 for (int i = 0; i < cubes; i++) {

2 // spacing = vol / cubes

3 for (int j = 0; j < spacing; j++) {

4 // complexity = cubes · spacing

5 // complexity = cubes · (vol / cubes)

6 // complexity = vol

7 }

8 }

Listing 1: Program iterating over the spacing

Constant:
12

vol: 20

cubes: 28

procs: 26
cubes and
procs: 4

vol and
procs: 18

(a) Pace3D

Constant:
19 dirsets: 33

procs: 2

(b) Kripke

Figure 5: Number of functions depending on the anno-
tated parameters per case study as Venn diagrams.

Kripke. Angular fluxes are calculated using different num-
bers of directions and groups. Kripke was built to research
how different data layouts, programming paradigms, and
architectures influence performance [1]. We consider the
number of direction sets as well as the number of processes
as parameters. Additionally, we are interested in the number
of iterations.

5.1 System analysis
We analyze the scenarios with Perf-Taint [13]. The only nec-
essary modifications to the source code are annotating and
registering the variables corresponding to the parameters of
interest. We run the analysis on a small problem size using
only a few iterations, assuming that the computations and
analysis results are representative, and validate the results
with larger measurements in Section 6.2.

5.1.1 Pace3D. We annotate variables in the code corre-
sponding to the number of processes (procs), material size
(vol), coarse grid size (cubes), and spacing of the coarse grid
(spacing). Additionally, we annotate the number of iterations
for the fine as well as for the coarse grid. This results in a
total of 21 lines of code added.
The coarse grid spacing is a dependent parameter (not

linearly independent) and is calculated by dividing the mate-
rial size by the coarse grid size (spacing = vol/cubes). Hence,
we can replace the spacing by vol/cubes, substituting it by
the independent parameters it is defined by. Listing 1 shows
an example where we can conclude that the material size
determines the performance of the loops.

From the results, Performance-Detective identifies that the
maximum number of iterations on the fine grid determines

Performance-Detective: Automatic Deduction of Performance Models ICS ’22, June 28–30, 2022, Virtual Event, USA

Insight 1:
iters influences
computations

linearly

Parameters:
vol - total volume
cubes - coarse grid size
procs - number of processes
iters - number of iterations

Full Experiment Design
Space:
3125 experiment executions

Insight 2:
vol and cubes
do not interact

Choose iters >= 5
instead of measurement

repetitions

Full-factorial
Experiment Design
with 3 parameters:

125 experiment
executions

Deterministically
reduced Experiment

Design:
25 experiment

executions

Figure 6: Deducing theminimal experiment design for
Pace3D.

the runtime of the main calculation. To verify that the in-
fluence is linear, we trace the iterations of the loop for one
execution of the program and check whether the runtime of a
single loop iteration changes. To do so, Performance-Detective
calculates the coefficient of variation between them. In our
scenario, the coefficient of variation is 0.05 for 100 loop it-
erations. We conclude that the influence of iters is indeed
linear.
Furthermore, the analysis results show that 12 functions

are constant, and 54 are dependent on the annotated param-
eters. For the 2 functions dependent on the spacing, we can
automatically assess that they in fact depend on the total vol-
ume, using replacement as shown in the example in Listing
1. The results, as shown in Figure 5a, show that the material
size and the coarse grid size influence different functions.

5.1.2 Kripke. To annotate the number of processes (procs)
as well as the number of direction sets (dirsets) and iterations
(iters), we add a total of five lines of code. Using the analysis
results, Performance-Detective analyzes that the number of
iterations determines the runtime of the main calculation. As
before, to verify that the influence is linear, we trace the loop
iterations of one program execution. As the coefficience of
variation between the measured 10 iterations is 0.0067 , we
conclude that the influence of iters is linear. Moreover, the
analysis shows (cf. Figure 5b) that 19 functions are constant
and 35 are dependent on the annotated parameters, with 33
depending on dirsets and 2 on procs. The number of processes
influences different functions than the number of direction
sets.

5.2 Minimal Experiment Design
Figure 6 shows the process of Performance-Detective deduc-
ing the experiment design for Pace3D based on the insights
gained from analyzing the system. From a black-box view
at the system, Performance-Detective starts with four param-
eters and a full-factorial experiment design, leading to 625
measurement points. To account for measurement noise,
each point has to be executed five times, leading to a total of
3125 experiment executions.

As we know that iters linearly influences the runtime of
the main computation, Performance-Detective can exclude
iters from the parameter space (Insight 1). Also, we can skip
repetitions of the execution of measurement points and
choose a sufficiently high value (≥ 5) for iters instead. This
reduces the experiment design to 125 points that need to
be executed only once. We also know that the functions af-
fected by the coarse grid size are distinct from those affected
by the total size. Thus, Performance-Detective can strike out
configurations aiming to find interactions between them
from the experiment design (Insight 2). This means that
Performance-Detective varies 𝑣𝑜𝑙 and 𝑐𝑢𝑏𝑒𝑠 simultaneously
and only the number of processes independently of them. As
procs interacts with vol and cubes according to the analysis,
Performance-Detective includes procs as interacting parame-
ter into the experiment design. Figure 7 (Sec. 6.2) shows the
resulting training data points for Pace3D as crossed circles.

For Kripke, Performance-Detective deduces the experiment
design similarly: As iters has a linear influence on the run-
time of the main computation, it can exclude it from the
parameter space (Insight 1) and we can skip repetitions of ex-
periments. Furthermore, Performance-Detective can remove
configurations aimed at finding interactions between 𝑝𝑟𝑜𝑐𝑠

and𝑑𝑖𝑟𝑠𝑒𝑡𝑠 as they influence distinct sets of functions (Insight
2). Thus, Performance-Detective varies 𝑝𝑟𝑜𝑐𝑠 independently
of 𝑑𝑖𝑟𝑠𝑒𝑡𝑠 , resulting in 5 measuring points with (p, dirsets) =
(8, 8), (16, 16), (32, 24), (64, 32), (128, 64).
Performance-Detective reduced the full experiment design

space of 3125 experiment executions to only 25 executions
needed for Pace3D, and from 625 to 5 for Kripke.

6 EVALUATION
To evaluate Performance-Detective, we assess the accuracy of
the performance models generated for the case studies pre-
sented in Section 5. We evaluate the reduction of repetitions
by inclusion of iterations and variation of independent pa-
rameters individually. Therefore, we formulate the following
research questions:

RQ1 What is the model accuracy when generating it from a
single measurement with a high number of iterations?

RQ2 What is the model accuracy when generating it from
a minimal experiment design by varying independent
parameters simultaneously?

To answer the RQs, we compare our models with mod-
els generated following conventional experiment and sam-
pling designs. The expected outcome of the evaluation is
maintained accuracy while reducing the dimensionality of
experiment design and not repeating experiment executions,
resulting in significantly decreased cost for measurements.

ICS ’22, June 28–30, 2022, Virtual Event, USA Schmid et al.

CPU Intel Xeon Gold 6230 2.1GHz
Cores 40 on 2 sockets
Memory 96 GB
GCC 10.2 (Pace3D), 11.2 (Kripke)
MPI OpenMPI 4.0.5 (Pace3D), OpenMPI 4.1.2 (Kripke)
Software Score-P 7.0 [26] (Pace3D), Score-P 7.1 (Kripke),

Perf-Taint, Extra-P

Table 1: Measurement environment

Modeling
approach

#executions Mean error Pace3D Mean error Kripke

interpolate extrapolate interpolate extrapolate

Extra-P 5 8.31 % 9.31 % 4.56 % 18.32 %
Extra-P 1 8.05 % 8.74 % 4.33 % 15.17 %

Decision Trees 5 21.61 % 60.15 % 21.79 % 25.68 %
Decision Trees 1 22.62 % 62.80 % 22.38 % 25.31 %

Table 2: Mean error of models generated from
Performance-Detective experiment design using a sin-
gle application execution vs five repetitions

6.1 Instrumented Experiments
Table 1 shows the hardware and software systems used for
measuring. We instrument the application using the list of
important functions generated by Perf-Taint and repeat the
measurement of each configuration five times to assess RQ1
and RQ2 separately. The coefficient of variation between
the repetitions of the same configuration is 0.1 or less for
all configurations. We always use the filter file containing
important functions gained from system analysis to instru-
ment only relevant functions to compare the predictions of
all models. Otherwise, the evaluation would be less mean-
ingful because the models generated when instrumenting all
functions cannot predict the actual execution time as they
have more profiling overhead that we cannot remove from
the measurements.

6.2 RQ1: Modeling using a single
measurement

To evaluate whether the inclusion of iterations in the model
can simplify the experiment design, saving us repetitions
of the measurements, we generate a model from a single
execution of each measurement and compare the predictions
of this model with test points. For evaluating the accuracy,
we use the mean time of the five repeated executions of each
test measurement point. To obtain a prediction of the total
execution time, we sum up the predictions for the single
functions and evaluate them against the execution time of
the evaluation configurations.
We use two testing sets, containing either inter- or ex-

trapolated measurement points. Figure 7 shows an overview

105.33 105.94105.64 106.24 106.41

103.9

103.24

103

103.53

104.43

105.51 105.81 106.11 106.33 106.54 106.71

103.41

104.08

103.61

104.73

105.03

103.18

vol

cu
be
s

Figure 7: Overview of training and test points on log-
arithmic scales. Training data Performance-Detective:

, training data full-factorial: and . Test data
interpolated: , test data extrapolated: .

of the test data sets used for Pace3D. For the interpolated
test data of both case studies, we measure configurations in
between the training data points. For Pace3D, we do not in-
terpolate the number of processes as this would not provide
insight into the quality of the minimal experiment design:
We still treat the number of processes as a separate parameter
and vary it separately from vol and cubes, as it interacts with
both according to the analysis. For the respective indepen-
dent parameters, we use points between each value used for
training, as shown in Figure 7. This results in 80 measuring
points for Pace3D and 16 for Kripke with the interpolated
values procs = (12, 24, 48, 96) and dirsets = (12, 20, 28, 48).

For testing how well the model predicts extrapolated con-
figuration points, we extrapolate parameters identified as
independent and measure them together with the respec-
tive other parameter using a value used for the training set.
This means that we measure the extrapolated values 54,000
and 108,000 for cubes together with the extrapolated values
3,456,000 and 5,184,000 for vol as well as with all the val-
ues for vol used for the training set, shown in Figure 7, for
Pace3D. Following this approach results in 119 measuring
points for the extrapolated test data set of Pace3D and 24 for
Kripke, for which we extrapolate procs to 256 and 512 and
dirsets to 96 and 128.
The results in Table 2 show that the accuracy remains

about the same when using only one execution as for the
models generated from the mean times of five repetitions.
This suggests that it is sufficient to execute the measurement
of each configuration point only once if the main calculation
is executed sufficiently often. For Pace3D, we set the number
of iterations of the main calculation to 100, and to 10 for
Kripke. However, even five iterations per application run

Performance-Detective: Automatic Deduction of Performance Models ICS ’22, June 28–30, 2022, Virtual Event, USA

should be enough compared to one iteration per repetition
of the experiment. While the total time measured in the main
calculation stays the same for both variants, we can save the
initialization overhead by executing it more often in only
one execution.

6.3 RQ2: Varying independent parameters
simultaneously

The central question in our evaluation is whether we can
maintain accuracy of the model when generating it from a
minimal experiment design. To answer this, we compare the
accuracy of our Performance-Detective model to models cre-
ated with conventional experiment or sampling designs. For
the Extra-P multi-parameter modeler [9], this means using
a full-factorial setup with 125 measuring points for Pace3D
and 25 for Kripke. For the Extra-P sparse modeler [36], we
use 5 values for each parameter while keeping the others
constant and one interaction point for each parameter com-
bination, resulting in 16 points for Pace3D and 10 for Kripke.
To learn PIMs, we use the extended Plackett-Burman De-
sign [47] with 49 samples (Pace3D) or 10 samples (Kripke)
and five levels, effectively being a subset of the full-factorial
measuring points. We use the script of Weber et al. [48] to
learn PIMs on a function level based on known parameter
dependencies. However, we do not use their two-step process
but only one profiling step using compiler instrumentation.
In contrast to them, we use mean values derived from the
repetitions of the experiment for modeling. They build a
separate model for each repetition of the experiment.

As we showed in Section 6.2 that the accuracy of the mod-
els generated from a single application execution per mea-
surement point is comparable to the accuracy of the model
generated from repeating measurements five times for each
point, we will continue with these models for Performance-
Detective.
Table 3 shows the required number of measurements of

each approach and the cost in total core hours. The cost of
individual samples are not uniform across the configuration
space, as the impact the parameters have on performance can
mean some samples are orders of magnitude more expensive
than others. We therefore consider the total core hours to
be the more important metric. To evaluate the predictions’
accuracy, we use the same test configurations as in Section
6.2, inter- and extrapolating the training data points. Ta-
ble 3 depicts the mean error of the models from the different
approaches.

6.3.1 Interpolated test data. Figure 8 shows the comparison
of prediction error among models learned using Extra-P
(depicted as [Cal16] and [Rit20]) andDecision Trees (depicted
as [Web21]) both with and without the information about

dependencies from Perf-Taint. We compare our approach to
the full-factorial setup and the sparse modeling approach.
One would expect all approaches to be reasonably effec-

tive at predicting configuration options within the range of
measurements already available. In the case of Extra-P, using
the full set of measurements leads to accurate models, with
model errors seldom passing 10%, and the use of Perf-Taint
has a relatively small impact on results. The results of the
sparse modeler are worse overall, but for Pace3D, they are
significantly improved by the use of Perf-Taint. Performance-
Detective achieves results comparable to the full factorial
experiment design of Extra-P, while requiring only a frac-
tion (2.9% and 6.18%, respectively) of the cost.

The performance-influence models, however, show a con-
sistently higher model error rate of over 20%. When using
Performance-Detective, the quality of the models remains ap-
proximately the same, while the cost is reduced by a factor
of 15 for Pace3D and 7 for Kripke.

6.3.2 Extrapolated test data. Figure 8 shows an overview of
the accuracy of the different Extra-P (depicted as [Cal16] and
[Rit20]) and PIM models ([Web21]), both using information
about dependencies from Perf-Taint and without it.

When extrapolating, predicting the runtime is more chal-
lenging as any errors are quickly magnified. Overall, we ob-
serve the same trends as for interpolated evaluation points,
with a couple of differences. For Pace3D, the sampling ap-
proach of Extra-P generates significantly higher errors when
not used in conjunction with Perf-Taint. However, for Kripke,
the errors of the sampling approach are increased when used
together with Pef-Taint. The performance-influence models
show a larger model error rate, this time of over 40% for
Pace3D and over 30% for Kripke when using the Plackett-
Burman sampling design. However, the approach for learn-
ing performance-influence models does not extrapolate, as
we can see in our data: It only predicts the time measured
for the highest training value of the respective extrapolated
parameter.
While providing information about the dependencies de-

rived by Perf-Taint can be beneficial to the accuracy of the
sparse Extra-P modeler, it decreases accuracy for the full-
factorial experiment design. This is because with a full-facto-
rial design, there is a lot of measurement data and Perf-Taint
only removes wrong dependencies that model noise. The
accuracy of the sparse modeler increases because it has less
measurement data and very few information about parame-
ter interplay.

6.3.3 Discussion. For both case studies, we can maintain the
accuracy of the model generated with the experiment design
deduced by Performance-Detective (25 and 5 experiment exe-
cutions) as compared to a full-factorial design (625 and 125
experiment executions) and Plackett-Burman sampling (245

ICS ’22, June 28–30, 2022, Virtual Event, USA Schmid et al.

Experiment Design Modeling approach Perf-Taint? Cost Pace3D Mean error Pace3D Cost Kripke Mean error Kripke

core hours #experiments test set test set core hours #experiments test set test set
interpolated extrapolated interpolated extrapolated

Performance-Detective Extra-P ✓ 10.9 25 8.05 % 8.74 % 5.3 5 4.3 % 15.2 %
Full-factorial Extra-P ✓ 367.55 625 9.5 % 10.7 % 85.9 125 7.3 % 17.0 %
Full-factorial Extra-P – 367.55 625 6.2 % 6.3 % 85.9 125 6.7 % 11.2 %
Sparse Extra-P ✓ 5.54 80 8.9 % 17.7 % 8.8 50 24.6 % 34.2 %
Sparse Extra-P – 5.54 80 15.0 % 31.8 % 8.8 50 7.7 % 16.7 %

Performance-Detective Decision Trees ✓ 10.9 25 22.6 % 47.7 % 5.31 5 22.4 % 25.3 %
Plackett-Burman Decision Trees ✓ 164.37 245 20.1 % 45.4 % 35.66 50 15.8 % 35.1 %
Plackett-Burman Decision Trees – 164.37 245 27.0 % 44.2 % 35.66 50 21.8 % 31.2 %

Table 3: Mean error of different models for interpolated and extrapolated test points.

0
20
40
60
80
100

vol 324000 648000 12960002160000
cubes 12000 12000 12000 12000

(a) 4.41 6.32 9.80 10.92
(b)
(c)

4.78 7.09 10.37 11.04
7.38 6.75 7.00 5.68

(d)
(e)

26.00 19.65 10.71 0.84
6.48 1.00 14.37 31.39

(f) 24.75 28.56 33.25 26.69
(g)
(h)

23.13 25.04 31.21 25.28
34.16 31.52 33.96 24.10

interpolated

M
od

el
er
ro
r[
%]

216000 345600051840005184000

cost

108000 108000 1000 108000

12.11 11.92 7.85 12.11 2.9 %
18.66 16.09 6.47 15.38 100.0 %
4.92 3.58 1.36 3.11 100.0 %
36.61 16.40 30.37 7.10 1.5 %
9.92 18.11 89.37 34.98 1.5 %
74.52 60.64 51.57 67.12 2.9 %
74.65 60.56 51.08 67.05 44.7 %
73.33 57.52 48.40 64.51 44.7 %

extrapolated

0
20
40
60
80
100

procs 12 24 48 96
dirsets 48 28 20 12

(a) 17.93 0.25 0.88 3.04
(b)
(c)

5.27 7.66 5.65 0.32
4.67 8.67 7.88 7.81

(d)
(e)

19.49 28.50 26.87 22.17
9.57 9.78 1.64 1.21

(f) 30.14 23.38 10.83 19.06
(g)
(h)

15.81 10.25 7.78 27.93
25.18 12.91 9.85 45.68

interpolated

M
od

el
er
ro
r[
%]

16 16 256 512

cost

96 128 96 128

6.89 9.90 12.19 15.02 6.2 %
4.04 0.25 24.57 27.71 100.0 %
1.10 3.96 11.95 12.09 100.0 %
28.38 25.81 44.40 47.13 10.2 %
9.28 4.81 27.84 39.44 10.2 %
26.02 41.11 40.12 56.11 6.2 %
37.12 49.95 52.00 64.82 41.5 %
31.77 45.69 45.07 59.74 41.5 %

extrapolated

(a) Performance-Detective (Extra-P)
(b) [Cal16], Perf-Taint

(c) [Cal16]
(d) [Rit20], Perf-Taint

(e) [Rit20]
(f) Performance-Detective (Decision Trees)

(g) [Web21], Perf-Taint
(h) [Web21]

(a) Accuracy of models for the Pace3D case study
for excerpts of the interpolated and extrapolated
data set with 64 processes.

(b) Accuracy of models for the Kripke case study
for excerpts of the interpolated and extrapolated
data set.

Figure 8: Accuracy of different models for evaluation testing points.

and 50 experiment executions). While for Pace3D, the sparse
modeler is even less expensive than Performance-Detective,
it has a lower accuracy than Performance-Detective (mean
accuracy of 85.9% and 74.9% with and without Perf-Taint as
compared to 91.5%) with especially worse predictions for
extrapolated test points (mean accuracy of 17.7% and 31.8%
with and without Perf-Taint compared to 9.3%).

For the PIMs, we observe a generally significant predic-
tion error in both evaluation sets, which does not change
much depending on using our minimal experiment design
or sampling, and usage of Perf-Taint. This indicates that the
learning method decision trees is not well-suited to model
the performance of these applications.
Across evaluation scenarios, we observe that Performance-

Detective always dramatically decreases the cost of experi-
ments, while not meaningfully degrading model quality.

6.4 Threats to validity
A threat to external validity is that we ran the taint analysis
on a small problem size. This was possible for the scenarios
shown because the calculations are the same and still repre-
sentative. However, this is not guaranteed in the general case,
as sometimes different branches can be active depending on
problem size. We can detect this by using control-flow taint-
ing, provided by Perf-Taint. The only impact this scenario
would have is that the taint analysis will have a higher cost.

Regarding internal validity, not inlining functions defined
as inline is a potential issue. Functions are not inlined if we
detect them as being performance-relevant. This could dis-
tort the measurements, as not inlining might incur a perfor-
mance penalty on the applications as a whole. The overhead
introduced by the profiling itself is a further source of dis-
tortion. We mitigate this by only instrumenting functions
detected as performance-relevant, and keep the overhead as
low as possible.

Performance-Detective: Automatic Deduction of Performance Models ICS ’22, June 28–30, 2022, Virtual Event, USA

7 RELATEDWORK
Parametric Performance Models. The difficulty of modeling

modern software systems with many parameters has been
addressed by parametric software performance models [5,
28, 32, 35] and Performance-Influence Models (PIMs) [39].

The parametric software performance modelling approach
Palladio [5, 35] allows the modelling of parametric dependen-
cies. However, automated extraction of these models [28, 32]
assumes that the system consists of software components
with well-defined interfaces, which is usually not the case in
HPC applications.

In white-box PIMs, machine learning and heuristic meth-
ods are used to iteratively learn models representing the
influences and interactions of various application parame-
ters. However, white-box PIMs are either limited to binary-
encoded arguments or require expensive tracemeasurements
(cf. Sections 2.2, 4.2). Other methods of learning efficient per-
formance models for highly configurable systems use Fourier
transformations to reduce the number of samples and pa-
rameter combinations [18, 51].

HPC Performance Modeling. Analytical performance mod-
els can be created manually through source code inspection
and guidance by performance engineers [20, 25]. Unfortu-
nately, such models require significant effort, and excluding
empirical data makes the models prone to underestimate the
effects of hardware congestion and network performance.

Extra-P [12] is the state-of-the-art workflow for empirical
and parametric performance modeling, extended with multi-
parameter modeling [9], validation of high-performance li-
braries [38], prototyping hardware requirements for HPC
applications [11], and with white-box modeling [13, 14]. We
present a wider discussion in Sections 2.1 and 4.1.
PALM [43] constructs performance models from anno-

tated application source code and enhances them with user-
provided insights, program analysis, and measurements. As-
pen [41] is a domain-specific language for the manual speci-
fication of program operations. COMPASS [31] uses Aspen
annotations to generate application models statically, but
it requires user intervention when the kernels cannot be
analyzed automatically. In contrast, Performance-Detective
does not require user input and manual analysis steps.

Online learning improves the accuracy of static and com-
piler-based performance models [6, 7]. Machine learning
methods have been applied successfully to model perfor-
mance [22, 30, 42] and decrease the negative effects of mea-
surement noise [37]. Performance-Detective provides a com-
plete andwhite-boxworkflow that requires neither heuristics
nor approximations to construct performance models, and
we provide validated parametric dependencies of models.

Auto-tuning. Auto-tuning applies an optimization method
to achieve one or more goals, such as minimizing runtime [2]

or floating-point operations per second [44] of an applica-
tion. To find the best configuration among the search space,
global or local search methods are employed [3, 23, 33]. In
contrast to auto-tuning approaches that find the best config-
uration for a given optimization goal, Performance-Detective
enables efficient modeling of the whole configuration space
and interactions among configuration options.

8 CONCLUSION
We have shown that we can significantly lower the cost
of automatic performance modeling of applications with
multiple configuration parameters. We deduce a minimal
experiment design with Performance-Detective by exploiting
automatically derived insights about parameter interplay
and main loops and thus reduce the number and cost of re-
quired measurements while achieving comparable accuracy
to methods costing more than an order of magnitude more
compute hours. With Performance-Detective, we model the
Pace3D real-world multi-physics solver using 25 rather than
3125 measurements, require 34 times fewer core hours and
achieve and still maintain a model accuracy of 91.5% com-
pared to 93.8% and 90.6% when all measurements are used.
Furthermore, we model Kripke, reducing needed measure-
ments from 125 to 5, leading to 16 times fewer core hours
needed, while maintaining an accuracy of 89.2% compared
to 90.6% using all measurements.

ACKNOWLEDGMENTS
Larissa Schmid was supported by the Ministry of
Science, Research and the Arts Baden-Württemberg
(Az: 7712.14-0821-2). This work has received fund-
ing from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 programme (grant agreement
PSAP, No. 101002047), and from the Schweizerische National-
fonds zur Förderung der wissenschaftlichen Forschung (SNF,
Swiss National Science Foundation) through Project 170415.
The authors acknowledge the financial support by the Fed-
eral Ministry for Economic Affairs and Energy of Germany
in the project ProStroM (project number 03ETB026C). This
work was supported by KASTEL Security Research Labs.
The authors acknowledge support by the state of Baden-
Württemberg through bwHPC.

REFERENCES
[1] A. J. Kunen, T. S. Bailey, and P. N. Brown. 2015. Kripke - a mas-

sively parallel transport mini-app. In Joint International Conference
on Mathematics and Computation (M&C), Supercomputing in Nuclear
Applications (SNA) and the Monte Carlo (MC) Method (ANS MC ’15)
(Nashville, Tennessee).

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. OpenTuner: An extensible framework for program autotuning.

ICS ’22, June 28–30, 2022, Virtual Event, USA Schmid et al.

In 2014 23rd International Conference on Parallel Architecture and Com-
pilation Techniques (PACT). 303–315. https://doi.org/10.1145/2628071.
2628092

[3] Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland. 2013.
An Experimental Study of Global and Local Search Algorithms in
Empirical Performance Tuning. In High Performance Computing for
Computational Science - VECPAR 2012, Michel Daydé, Osni Marques,
and Kengo Nakajima (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 261–269.

[4] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves,
Bronis de Supinski, and Martin Schulz. 2008. A Regression-Based
Approach to Scalability Prediction. In Proceedings of the 22nd Annual
International Conference on Supercomputing (Island of Kos, Greece)
(ICS ’08). Association for Computing Machinery, New York, NY, USA,
368–377. https://doi.org/10.1145/1375527.1375580

[5] Steffen Becker, Heiko Koziolek, and Ralf Reussner. 2009. The Palladio
component model for model-driven performance prediction. Journal
of Systems and Software 82, 1 (2009), 3–22. https://doi.org/10.1016/j.
jss.2008.03.066 Special Issue: Software Performance - Modeling and
Analysis.

[6] Arnamoy Bhattacharyya and Torsten Hoefler. 2014. PEMOGEN: Auto-
matic Adaptive Performance Modeling During Program Runtime. In
Proc. of the 23rd International Conference on Parallel Architectures and
Compilation (Edmonton, AB, Canada) (PACT ’14). ACM, New York, NY,
USA, 393–404. https://doi.org/10.1145/2628071.2628100

[7] Arnamoy Bhattacharyya, Grzegorz Kwasniewski, and Torsten Hoefler.
2015. Using Compiler Techniques to Improve Automatic Performance
Modeling. In Proc. of the 24th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT’15) (San Francisco, CA,
USA). San Francisco, CA, USA, 1–12.

[8] Christian Bischof, Dieter an Mey, and Christian Iwainsky. 2012. Brain-
ware for green HPC. 27, 4 (2012), 227–233. https://doi.org/10.1007/
s00450-011-0198-5

[9] Alexandru Calotoiu, David Beckinsale, Christopher W. Earl, Torsten
Hoefler, Ian Karlin, Martin Schulz, and Felix Wolf. 2016. Fast Multi-
parameter Performance Modeling. In 2016 IEEE International Confer-
ence on Cluster Computing (CLUSTER) (Taipei, Taiwan, 2016-09). IEEE,
172–181. https://doi.org/10.1109/CLUSTER.2016.57

[10] Alexandru Calotoiu, Marcin Copik, Torsten Hoefler, Marcus Ritter,
Sergei Shudler, and Felix Wolf. 2020. ExtraPeak: Advanced Au-
tomatic Performance Modeling for HPC Applications. In Software
for Exascale Computing - SPPEXA 2016-2019 (Cham) (Lecture Notes
in Computational Science and Engineering), Hans-Joachim Bungartz,
Severin Reiz, Benjamin Uekermann, Philipp Neumann, and Wolf-
gang E. Nagel (Eds.). Springer International Publishing, 453–482.
https://doi.org/10.1007/978-3-030-47956-5_15

[11] Alexandru Calotoiu, Alexander Graf, Torsten Hoefler, Daniel Lorenz,
Sebastian Rinke, and Felix Wolf. 2018. Lightweight Requirements Engi-
neering for Exascale Co-design. In Proc. of the 2018 IEEE International
Conference on Cluster Computing (CLUSTER), Belfast, UK. IEEE, 1–11.

[12] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf.
2013. Using automated performance modeling to find scalability bugs
in complex codes. In SC ’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis
(2013-11). 1–12. https://doi.org/10.1145/2503210.2503277 ISSN: 2167-
4337.

[13] Marcin Copik, Alexandru Calotoiu, Tobias Grosser, NicolasWicki, Felix
Wolf, and Torsten Hoefler. 2021. Extracting Clean Performance Models
from Tainted Programs. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Virtual
Event, Republic of Korea) (PPoPP ’21). Association for Computing
Machinery, New York, NY, USA, 403–417. https://doi.org/10.1145/

3437801.3441613
[14] Marcin Copik and Torsten Hoefler. 2019. perf-taint: Taint

Analysis for Automatic Many-Parameter Performance Modeling.
ACM Student Research Competition at ACM/IEEE Supercomputing
(2019). https://sc19.supercomputing.org/proceedings/src_poster/src_
poster_pages/spostg110.html

[15] dfsan 2019. Clang 9 Documentation - DataFlowSanitizer. https://clang.
llvm.org/docs/DataFlowSanitizer.html.

[16] Dan Gohman. 2009. ScalarEvolution and Loop Optimization. Talk at
LLVM Developer’s Meeting.

[17] Alexander Grebhahn, Norbert Siegmund, and Sven Apel. 2019. Pre-
dicting Performance of Software Configurations: There is no Silver
Bullet. (2019). arXiv:1911.12643 http://arxiv.org/abs/1911.12643

[18] Huong Ha and Hongyu Zhang. 2019. Performance-Influence Model for
Highly Configurable Software with Fourier Learning and Lasso Regres-
sion. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 470–480. https://doi.org/10.1109/ICSME.2019.00080

[19] Xue Han and Tingting Yu. 2016. An Empirical Study on Performance
Bugs for Highly Configurable Software Systems. In Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (Ciudad Real, Spain) (ESEM ’16). Association
for Computing Machinery, New York, NY, USA, Article 23, 10 pages.
https://doi.org/10.1145/2961111.2962602

[20] Torsten Hoefler, William Gropp, William Kramer, and Marc Snir. 2011.
Performance modeling for systematic performance tuning. In SC’11:
Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 1–12.

[21] J. Hötzer, A. Reiter, H. Hierl, P. Steinmetz, M. Selzer, and Britta
Nestler. 2018. The parallel multi-physics phase-field framework
Pace3D. Journal of Computational Science 26 (2018), 1–12. https:
//doi.org/10.1016/j.jocs.2018.02.011

[22] Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee.
2005. AnApproach to Performance Prediction for Parallel Applications.
In Proceedings of the 11th International Euro-Par Conference on Parallel
Processing (Lisbon, Portugal) (Euro-Par’05). Springer-Verlag, Berlin,
Heidelberg, 196–205.

[23] Herbert Jordan, Peter Thoman, Juan J. Durillo, Simone Pellegrini,
Philipp Gschwandtner, Thomas Fahringer, and Hans Moritsch. 2012.
A multi-objective auto-tuning framework for parallel codes. In SC
’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 1–12. https://doi.org/
10.1109/SC.2012.7

[24] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and
Sven Apel. 2020. The Interplay of Sampling and Machine Learning for
Software Performance Prediction. IEEE Software 37, 4 (2020), 58–66.
https://doi.org/10.1109/MS.2020.2987024

[25] Darren J Kerbyson, Henry J Alme, Adolfy Hoisie, Fabrizio Petrini,
Harvey J Wasserman, and Mike Gittings. 2001. Predictive performance
and scalability modeling of a large-scale application. In Proceedings of
the 2001 ACM/IEEE conference on Supercomputing. 37–37.

[26] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff,
Kai Diethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt,
Daniel Lorenz, Allen Malony, Wolfgang E. Nagel, Yury Oleynik, Pe-
ter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer Shende, Ronny
Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf. 2012. Score-
P: A Joint Performance Measurement Run-Time Infrastructure for
Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel,
and Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 79–91.

[27] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander
Grebhahn, and Sven Apel. 2019. Tradeoffs in modeling performance

https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/1375527.1375580
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1145/2628071.2628100
https://doi.org/10.1007/s00450-011-0198-5
https://doi.org/10.1007/s00450-011-0198-5
https://doi.org/10.1109/CLUSTER.2016.57
https://doi.org/10.1007/978-3-030-47956-5_15
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1145/3437801.3441613
https://doi.org/10.1145/3437801.3441613
https://sc19.supercomputing.org/proceedings/src_poster/src_poster_pages/spostg110.html
https://sc19.supercomputing.org/proceedings/src_poster/src_poster_pages/spostg110.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://arxiv.org/abs/1911.12643
http://arxiv.org/abs/1911.12643
https://doi.org/10.1109/ICSME.2019.00080
https://doi.org/10.1145/2961111.2962602
https://doi.org/10.1016/j.jocs.2018.02.011
https://doi.org/10.1016/j.jocs.2018.02.011
https://doi.org/10.1109/SC.2012.7
https://doi.org/10.1109/SC.2012.7
https://doi.org/10.1109/MS.2020.2987024

Performance-Detective: Automatic Deduction of Performance Models ICS ’22, June 28–30, 2022, Virtual Event, USA

of highly configurable software systems. 18, 3 (2019), 2265–2283.
https://doi.org/10.1007/s10270-018-0662-9

[28] Klaus Krogmann, Michael Kuperberg, and Ralf Reussner. 2010. Using
Genetic Search for Reverse Engineering of Parametric BehaviorModels
for Performance Prediction. IEEE Transactions on Software Engineering
36, 6 (2010), 865–877. https://doi.org/10.1109/TSE.2010.69

[29] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization (Palo Alto, California) (CGO ’04).
IEEE Computer Society, Washington, DC, USA.

[30] Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin
Schulz, Karan Singh, and Sally A. McKee. 2007. Methods of inference
and learning for performance modeling of parallel applications. In
Proc. of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (San Jose, California, USA) ((PPoPP ’07)). ACM,
249–258.

[31] Seyong Lee, Jeremy S Meredith, and Jeffrey S Vetter. 2015. Compass:
A framework for automated performance modeling and prediction. In
Proceedings of the 29th ACM on International Conference on Supercom-
puting. 405–414.

[32] Manar Mazkatli, David Monschein, Johannes Grohmann, and Anne
Koziolek. 2020. Incremental Calibration of Architectural Performance
Models with Parametric Dependencies. In IEEE International Con-
ference on Software Architecture (ICSA 2020). Salvador, Brazil, 23–34.
https://doi.org/10.1109/ICSA47634.2020.00011

[33] Philip Pfaffe,Martin Tillmann, SigmarWalter, andWalter F. Tichy. 2017.
Online-Autotuning in the Presence of Algorithmic Choice. In 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 1379–1388. https://doi.org/10.1109/IPDPSW.2017.28

[34] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and
Adam Porter. 2010. Using symbolic evaluation to understand behavior
in configurable software systems. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - ICSE ’10 (Cape Town,
South Africa), Vol. 1. ACM Press, 445. https://doi.org/10.1145/1806799.
1806864

[35] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne
Koziolek, Heiko Koziolek, Max Kramer, and Klaus Krogmann. 2016.
Modeling and Simulating Software Architectures – The Palladio Ap-
proach. MIT Press, Cambridge, MA. http://mitpress.mit.edu/books/
modeling-and-simulating-software-architectures

[36] Marcus Ritter, Alexandru Calotoiu, Sebastian Rinke, Thorsten Reimann,
Torsten Hoefler, and Felix Wolf. 2020. Learning Cost-Effective Sam-
pling Strategies for Empirical Performance Modeling. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS)
(New Orleans, LA, USA, 2020-05). IEEE, 884–895. https://doi.org/10.
1109/IPDPS47924.2020.00095

[37] Marcus Ritter, Alexander Geiß, Johannes Wehrstein, Alexandru Calo-
toiu, Thorsten Reimann, Torsten Hoefler, and Felix Wolf. 2021. Noise-
Resilient Empirical PerformanceModelingwithDeepNeural Networks.
In 2021 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). 23–34. https://doi.org/10.1109/IPDPS49936.2021.00012

[38] Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, Alexandre Strube,
and Felix Wolf. 2015. Exascaling Your Library: Will Your Implemen-
tation Meet Your Expectations?. In Proceedings of the 29th ACM on
International Conference on Supercomputing (Newport Beach, Califor-
nia, USA) (ICS ’15). Association for Computing Machinery, New York,
NY, USA, 165–175. https://doi.org/10.1145/2751205.2751216

[39] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Kästner. 2015. Performance-influence models for highly configurable
systems. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2015 (Bergamo, Italy). ACM Press,

284–294. https://doi.org/10.1145/2786805.2786845
[40] Connie U. Smith. 1993. Software performance engineering. In Perfor-

mance Evaluation of Computer and Communication Systems, Lorenzo
Donatiello and Randolph Nelson (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 509–536.

[41] K. L. Spafford and J. S. Vetter. 2012. Aspen: ADomain Specific Language
for Performance Modeling. In Proc. of the International Conference on
High Performance Computing, Networking, Storage and Analysis (Salt
Lake City, Utah) (SC ’12). IEEE Computer Society Press, Los Alamitos,
CA, USA, Article 84, 11 pages.

[42] Jingwei Sun, Guangzhong Sun, Shiyan Zhan, Jiepeng Zhang, and Yong
Chen. 2020. Automated Performance Modeling of HPC Applications
Using Machine Learning. IEEE Trans. Comput. 69, 5 (2020), 749–763.
https://doi.org/10.1109/TC.2020.2964767

[43] N. R. Tallent and A. Hoisie. 2014. Palm: Easing the Burden of Analytical
Performance Modeling. In Proc. of the 28th ACM International Confer-
ence on Supercomputing (Munich, Germany) (ICS ’14). ACM, New York,
NY, USA, 221–230. https://doi.org/10.1145/2597652.2597683

[44] Sébastien Varrette, Frédéric Pinel, Emmanuel Kieffer, Grégoire Danoy,
and Pascal Bouvry. 2020. Automatic Software Tuning of Parallel Pro-
grams for Energy-Aware Executions. In Parallel Processing and Applied
Mathematics, RomanWyrzykowski, Ewa Deelman, Jack Dongarra, and
Konrad Karczewski (Eds.). Springer International Publishing, Cham,
144–155.

[45] Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund,
Sven Apel, and Christian Kästner. 2020. ConfigCrusher: Towards
White-Box Performance Analysis for Configurable Systems. Auto-
mated Software Engineering 27, 3 (2020), 265–300. https://doi.org/10.
1007/s10515-020-00273-8

[46] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and
Christian Kästner. 2021. White-box analysis over machine learning:
Modeling performance of configurable systems. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
1072–1084.

[47] JC Wang and CF Jeff Wu. 1995. A hidden projection property of
Plackett-Burman and related designs. Statistica Sinica (1995), 235–250.

[48] Max Weber, Sven Apel, and Norbert Siegmund. 2021. White-Box
Performance-Influence Models: A Profiling and Learning Approach. In
2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE) (Madrid, Spain, 2021-05). IEEE, 1059–1071. https://doi.org/10.
1109/ICSE43902.2021.00099

[49] Nicolas Wicki. 2020. Control Flow Taint Analysis for Performance
Modeling in LLVM. Bachelor’s Thesis.

[50] Murray Woodside, Greg Franks, and Dorina C. Petriu. 2007. The
Future of Software Performance Engineering. In Future of Software
Engineering (FOSE ’07) (Minneapolis, MN, USA, 2007-05). IEEE, 171–
187. https://doi.org/10.1109/FOSE.2007.32

[51] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. 2015. Per-
formance Prediction of Configurable Software Systems by Fourier
Learning (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE) (2015-11). 365–373. https:
//doi.org/10.1109/ASE.2015.15

https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1109/TSE.2010.69
https://doi.org/10.1109/ICSA47634.2020.00011
https://doi.org/10.1109/IPDPSW.2017.28
https://doi.org/10.1145/1806799.1806864
https://doi.org/10.1145/1806799.1806864
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/10.1109/IPDPS47924.2020.00095
https://doi.org/10.1109/IPDPS47924.2020.00095
https://doi.org/10.1109/IPDPS49936.2021.00012
https://doi.org/10.1145/2751205.2751216
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1109/TC.2020.2964767
https://doi.org/10.1145/2597652.2597683
https://doi.org/10.1007/s10515-020-00273-8
https://doi.org/10.1007/s10515-020-00273-8
https://doi.org/10.1109/ICSE43902.2021.00099
https://doi.org/10.1109/ICSE43902.2021.00099
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1109/ASE.2015.15
https://doi.org/10.1109/ASE.2015.15

	Abstract
	1 Introduction
	2 Foundations
	2.1 Perf-Taint
	2.2 Limitations of modeling frameworks

	3 Approach
	3.1 System analysis
	3.2 Experiment design
	3.3 Profiling
	3.4 Limitations

	4 Modeling Workflows
	4.1 Extra-P
	4.2 Performance-Influence Models

	5 Case Studies
	5.1 System analysis
	5.2 Minimal Experiment Design

	6 Evaluation
	6.1 Instrumented Experiments
	6.2 RQ1: Modeling using a single measurement
	6.3 RQ2: Varying independent parameters simultaneously
	6.4 Threats to validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

