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Abstract

Bulletproofs [5] are a popular proof system in the discrete logarithm setting. They can be used
to enable confidential transactions on blockchains. The central component of Bulletproofs is
the Inner Product Argument. It proves that two vectors, which have been committed to, result
in a certain inner product, using a logarithmic amount of communication rounds in the size of
the vectors.
To prove knowledge soundness of those protocols, the emulator first builds up a tree of

transcripts and then uses this tree to extract the witness. Since the proof system is based on
the discrete logarithm assumption, extraction has to either yield a discrete logarithm relation
or vectors the commitments can be opened to.

Hoffmann, Klooß, and Rupp [8] noticed that this extraction process never uses the whole tree
of transcripts. In the case of a successful vector extraction, only a linear amount of transcripts
is needed; in the case of a discrete logarithm relation being found the amount is quasi-linear in
the size of the proof. This is an improvement compared to the quadratic amount required in [5].
To make use of this observation, dynamic access to the tree is required with new transcripts
generated on demand. This has been left as an open problem for further research.

This thesis outlines how such a dynamic access to the tree of transcripts may look like: First
an abstraction for the sampling behaviour of such an extractor is formalized, based on which
it is explained why the commonly used proof technique does not work in this case. Then,
the Inner Product Argument and its extraction are described and proven. Finally, a formal
framework describing dynamic extraction is specified and important properties are proven.
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Zusammenfassung

Bulletproofs [5] sind ein beliebtes auf der diskreten Logarithmus-Annahme basierendes Be-
weissystem. Dieses kann unter anderem verwendet werden, um vertrauliche Transaktionen auf
Blockchains zu ermöglichen. Die Hauptkomponente davon ist das sogenannte Inner Product
Argument, bei welchem für zwei Vektoren, auf welche Commitments bekannt sind, bewiesen
wird, dass diese ein bestimmtes Skalarprodukt besitzen. Dabei wird nur eine logarithmische
Rundenanzahl in der Länge der Vektoren benötigt mit einer geringen, konstanten Anzahl an
zu sendenden Elementen.

Um Knowledge Soundness für diese Protokolle zu beweisen, muss ein Emulator angegeben
werden. Dieser baut gewöhnlicherweise zuerst einen Transkriptbaum auf und nutzt diesen
dann, um die Vektoren als Zeugen zu extrahieren. Da das Beweissystem auf der diskreten
Logarithmus-Annahme basiert, liefert die Extraktion also entweder einen diskreten Logarithmus
oder Vektoren, die die Commitments öffnen.

Hoffmann, Klooß und Rupp [8] haben bemerkt, dass beim Extraktionsprozess nie der gesam-
te Transkriptbaum benötigt wird. Im Falle einer erfolgreichen Vektorextraktion werden nur
eine lineare Anzahl an Transkripten in der Größe des Zeugen verwendet; wenn ein diskreter
Logarithmus gefunden wurde, benötigt man eine quasi-lineare Anzahl. Dies ist deutlich besser
als die quadratische Anzahl an Transkripten aus dem Bulletproof-Papier [5]. Um diese Beob-
achtung nutzen zu können, wird ein dynamischer Zugriff auf den Transkriptbaum benötigt.
Dieses Problem haben die Autoren für weitere Forschung offen gelassen.
Diese Masterarbeit beschäftigt sich damit, wie ein solcher dynamischer Zugriff auf den

Transkriptbaum aussehen könnte: Zuerst wird eine Abstraktion des Transkriptanfrageverhal-
tens des Extraktors formuliert, anhand derer dann die Grenzen der bisherigen Beweisstrategie
aufgezeigt werden. Außerdem werden das Inner Product Argument und dessen Extraktion
konkretisiert und bewiesen. ZumAbschluss wird ein formelles Framework für die Beschreibung
der dynamischen Extraktion und des dynamischen Transkriptbaumaufbaus aufgezeigt und
wichtige Eigenschaften desselben bewiesen.
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1. Introduction

Bulletproofs [5] are a proof system based on the discrete logarithm assumption. One important
application are range proofs. Those proofs can be used to convince other parties that a value
hidden inside a commitment is within a certain range without revealing the value. No additional
information except for the value being within the range can be extracted from the proof, so that
they are zero knowledge. On blockchains they can be used to enable confidential transactions.

The central component of Bulletproofs is their Inner Product Argument. This thesis will be
about this part of the proof system.

Inner Product Argument The statement to be proven in the Inner Product Argument is that
a Pedersen multi-commitment [2] can be opened to two vectors w′ and w′′ and their inner
product C = 〈w′,w′′〉. The latter inner product C is also known as a part of the statement. The
Inner Product Argument itself is not zero knowledge. This is not needed for the embedding
protocols to be zero knowledge. Hoffmann, Klooß, and Rupp [8] described a way to make the
component itself zero knowledge.
An argument of knowledge like the Bulletproof Inner Product Argument is a protocol

between two programs, the prover P and the verifier V. The objective of the prover P is to
convince the verifier V that a certain statement holds and that P has knowledge of a witness
for this statement. The conversation between the two parties consists of multiple messaging
rounds, where the verifier V sends random challenges and the prover P responds. At the end
of the interaction the verifier V decides whether they believe that the statement holds. The
security of the Inner Product Argument is based on the discrete logarithm assumption.

The idea of the Inner Product Argument is to recursively downsize the statement: In every
step, the verifier sends a random challenge. The prover P then splits the witness and the com-
mitment key in half and folds them together weighted by the challenge. Then the information
required to calculate the new downsized statement is sent to the verifier V. Now both parties
have agreed on a statement of half the size for which this protocol can be repeated. After a
logarithmic amount of rounds we have a witness of constant size, which can be sent directly.
We want an argument of knowledge to have two security properties: When a protocol is

perfectly complete, the verifier is always convinced by an honest prover. In this thesis we are
more interested in the second property: For knowledge soundness, intuitively, every prover
able to convince the verifier has to have knowledge about the witness.

Knowledge Soundness To formalize this notion, we consider a possibly dishonest prover
P∗. We construct an emulator E able to rewind P∗, which outputs transcripts of the protocol
between V from the protocol and P∗ that are indistinguishable from real transcripts. If the
generated transcript is accepting, this extractor also outputs additional witness for the relation
with a high probability.

The construction of such an emulator for the Bulletproof Inner Product Argument is split
into two steps: Using rewind access to the prover P∗, first a tree of transcripts is generated.

1



1. Introduction

The nodes in the tree correspond to messages by the prover P∗; the edges correspond to the
challenges sent by the verifier V. In the tree a path from the root to a leaf corresponds to an
accepting transcript. On a layer of the tree every node has the same branching factor. The
different children correspond to different continuations of the protocol with different challenges
by the verifier.
In a second step an extractor receives this tree of transcript as a static input. The extractor

works its way up from the leaves recovering the witness for the statement at every round, until
it reaches the root. Afterwards the calculated witness is output. Protocols for which we know
an extractor converting a static tree of transcript into a witness are called special sound.

Forking Lemma The Forking Lemma [4] states that knowledge soundness follows from special
soundness. In the proof a tree builder is constructed and analyzed, which combined with the
extractor gives us an emulator as needed for knowledge soundness.
It is important for the theoretically sound choice of parameters how efficient extraction

can be done, i.e. how many transcripts and how much runtime of the emulator are needed.
Intuitively, this efficiency is a measure of how well the information about the witness can
be hidden in a possibly dishonest prover. With the usual approach, the extractor requires an
quadratic amount of transcript in the size of the witness.

Extraction for the Inner Product Argument has to either yield the vectors w′ and w′′ behind
the commitment or a discrete logarithm relation. Hoffmann, Klooß, and Rupp [8] observed
that fewer transcripts have to be used in case no discrete logarithm relation is found. If regular
extraction fails, more different challenges are required to find a discrete logarithm relation,
but then extraction can be stopped after the current subtree. The problem here is that both
outcomes require different parts of the tree, and a lot of the transcripts remain unused for
extraction. Because we don’t know before extraction which of the two outcomes occurs, we
can not take advantage of this observation if we use the static tree finder.

This thesis formalizes a dynamic tree finder and therefore a dynamic version of the Forking
Lemma, which makes it possible to construct more efficient extractors for protocols like the
Inner Product Argument.

1.1. RelatedWork

The following section will be separated into different parts, based on the topic the authors
made progress in:

1.1.1. Protocols

The Bulletproof Inner Product Argument was first introduced by Bootle et al. [4]. Using this
protocol the inner product relation discussed previously can be proven in an logarithmic
amount of communication rounds. Compared to later iterations of the protocol, it featured two
distinct Pedersen multi-commitments to the secret vectors w′ and w′′, making the protocol
less communication efficient. Additionally, a protocol for range proofs and one for proving
satisfiability of arithmetic circuits using the Inner Product Argument was given.
The Inner Product Argument in the Bulletproof paper [5] followed the same objective, but

merged the two commitments into one decreasing the size of the proof. Additionally, two
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1. Introduction

protocols for range proofs and arithmetic circuit satisfiability built upon the Inner Product
Argument were given.

Hoffmann, Klooß, and Rupp [8] made minor changes to the Inner Product Argument and
observed design patterns used in those protocols. Additionally, they discovered a way to extract
the witness using fewer transcripts, which will be discussed in more details in Subsection 1.1.3.

1.1.2. Forking Lemma and Knowledge Error

While the Forking Lemma from [4] has a relatively large knowledge error of O(poly(^)/ 3√?) with
? being the size of the challenge space, Jaeger and Tessaro [9] improved the analysis of the
extractor to poly(^)/ 2√?. Instead of only analyzing asymptotic behaviour, [9] provided a concrete
analysis of the security, which allows for a theoretically sound choice of parameters. We will
adapt this extractor to the dynamic setting and modify their analysis accordingly.
By choosing the challenges without replacement instead of bounding the probability of

collisions, Attema, Cramer, and Kohl [1] achieved an optimal knowledge error of poly(^)/? by
using a modified extractor.
Along with their improved analysis of the extractor, Jaeger and Tessaro [9] provided a

generalization of witness-extended emulation to predicate extended emulation: Instead of
requiring the extractor to find a witness fulfilling a certain relation, now predicates are realized
on auxiliary output at different steps of the extraction process. Those predicates check if
the auxiliary output is a witness to the given statement as before, or verify properties of
intermediary outputs like the tree of transcripts. This framework allows for describing the
algorithm and its properties in a more precise way and specifying the capabilities of an extractor
by stating the predicates required on the input and those promised on the output. Those concepts
and frameworks will be extended in this thesis.

When converting public-coin interactive proofs like Bulletproofs into non-interactive ones
using the Fiat-Shamir transform, the security loss for 2` + 1-round protocols for an attacker
with & random oracle queries is generally &` . Attema, Fehr, and Klooß [2] showed by a more
careful analysis that for (:1, . . . , :`)-special sound protocols the knowledge error degrades
linearly in & .

1.1.3. Size of the Tree of Transcripts

The extractors described so far [4, 5, 1] all require a tree of transcripts of quadratic size, making
the loss in security of the protocol quadratic. Hoffmann, Klooß, and Rupp [8] showed that
either a linear- or a quasi-linear sub-tree is enough if the transcripts are generated on demand.
This thesis will build upon this observation and attempt to achieve linear extraction.
Ghoshal and Tessaro [7] achieved a linear amount of required transcripts along with a

knowledge error of poly(^)/? by using the Algebraic Group Model. In this model, adversaries like
the malicious prover have to provide a representation using previously known group elements
for every new group element sent. Instead of showing extraction for the interactive version
of the protocol, extraction was shown for the non-interactive proof obtained by using the
Fiat-Shamir Transformation.

3



1. Introduction

1.2. Contribution

This thesis paves the way towards a linear extraction of the Bulletproof Inner Product Argument:
A game specifying the sampling behaviour required for quick extraction is defined, whichmakes
it simpler to prove a bound on the expected amount of transcripts required when sampling. A
conjecture for such a bound is given, along with some observations on problems and a possible
structure for its proof.
The Bulletproof Inner Product Argument and its extraction are described in detail. Here, a

focus is set on the faster extraction technique. The idea of dynamic requests for transcripts is
formalized, and a notational framework for dynamic extractors is defined. Using this framework,
a dynamic version of the Forking Lemma is proven.
Finally, a theorem is proven, that combines the dynamic extraction framework, its Forking

Lemma, the extractor and possible observations about the sampling behaviour to demonstrate
linear extraction in the size of the witness.

4



2. Preliminaries

The definitions in the following chapter follow the ones by [9, Section 6], [1, Section 2] and [8,
Section 2].
We call a function 5 : N → R>0 negligible if for all 2 ∈ N, there exists a ^0 ∈ N such

that 5 (^) ≤ 1/̂ 2 for all ^ ≥ ^0. In short, we write negl(^) to denote a negligible function
negl : N→ R>0. Polynomially bounded functions in the security parameter ^ are denoted by
poly(^), i.e. if there exist 2, ^0 ∈ N such that poly(^) ≤ ^2 for all ^ ≥ ^0.
We will denote the input of algorithms by small letters like G , and sometimes instead of

explicitly parametrizing the security parameter ^ we implicitly parameterize it by input length
|G |.
If ( is a set, G←$ ( stands for sampling an uniformly random element. For a probabilistic

algorithm Alg, G←$ Alg(· · · ) assigns the result of the execution to the variable G .

2.1. Mathematical Foundations

The integer ? ∈ N will always denote a prime number in this thesis. It is used to parameterize
the field F? = Z/?Z. The group G is a cyclic abelian group of order ? , for which we will be using
additive implicit notation. Elements of this group are written within brackets, for example
[&] ∈ G. [1] ∈ G denotes the generator of the group, which together with the group order ? is
implicitly given along with the description of the group G.
In mathematical contexts, we will write matrices and vectors in bold font, for example

w ∈ F? , and single elements like [&] ∈ G in regular font. Elements of a matrix can be indexed
by a subscript letter like F8 ∈ F? for the 8th element of w ∈ F=? (where F1 is the first) if they
are just regular single elements, they will be denoted in regular font.

2.1.1. Discrete Logarithm Assumption

The Bulletproof proof system is built upon the discrete logarithm assumption, for which the
following definition is from [8, Defintion 2.1] and [5, Defintion 1]:

Definition 1 (Discrete Logarithm Relation / Assumption). For g ∈ G=, a vector v ∈ F=? is a
discrete logarithm relation if v ∈ Ker( [g]), i.e. [g] v = 0. If additionally v ≠ 0, we call v a
non-trivial discrete logarithm relation.

Let GrpGen(1^) be a group generator. The discrete logarithm assumption holds for G if

Pr [G←$GrpGen(1^); [g] ←$G<; v←$A(1^,G, [g]) : [g] v = 0 ∧ v ≠ 0] ≤ negl(^)

Note that finding a non-trivial discrete logarithm relation generalizes the discrete logarithm
assumption: A non-trivial kernel element for [ ℎ 1 ] ∈ G2 directly yields the discrete logarithm
of [ℎ].

5



2. Preliminaries

2.1.2. Pedersen Commitments

We will use Pedersen-Commitments [13] to “hide” the vectors we want to prove statements
about. For a given commitment key ck = [g] ∈ G=, we can commit to a vector w ∈ F=? by
calculating and sending Comck(w) = [2] = [g]w ∈ G. The commitment can then be unveiled
by publishing w.
This form of the Pedersen-Commitment is binding, because from two different openings a

discrete logarithm relation can easily be calculated. To make the commitment hiding, it would
have to be extended by an additional blinding factor Aw←$F? so that [2] = [g]w + [ℎ] Aw with
[ℎ] ∈ G; when unveiling, the Aw would have to be revealed along with w.

2.2. Interactive Proofs

The following definitions of proof systems and their extraction follow [2] and are adapted to
match the ones by [9, Section 6].

Definition 2 (Interactive Proof System). A `-round Interactive Proof System PS is a quintuple
PS = (S,R, P, V, `) consisting of the following:

• A setup algorithm S generating the public parameters ?? .
• A relation R, for which membership and knowledge of a witness is proven.
• An interactive, polynomially bounded Prover Turing-machine P and
• an interactive, polynomially bounded Verifier Turing-machine V,
• as well as the number of communication rounds ` ∈ N.

At the start of the execution of the protocol
〈
P?? (D,F),V?? (D)

〉
, which can found written

down as pseudo-code in Figure 5.2, both verifier V and prover P receive the statement D
and the prover is additionally given the secret witness F . After the prover has sent its first
message<0, there are ` rounds of communication with the messages<28−1 from the verifier
and <28 from the prover for 8 ∈ {1, . . . , `}. The messages are collected in the transcript
tr =

(
<0,<1 . . . ,<2`−1,<2`

)
. As the output 3 of the protocol, V either accepts (3 = 1) or rejects

(3 = 0) the prover’s claim of knowing aF such that (D;F) ∈ R?? . If the verifier V accepts after
the protocol, the corresponding transcript tr is called an accepting transcript. Otherwise, it is
called an rejecting transcript.

When considering prover and verifier as algorithms or Turing-machines, we denote them as
P and V if they are seen as parties of the mathematical description of the protocol, they are
denoted by P and V .

2.2.1. Properties of Interactive Proofs Systems

Two properties are required for a proof system to be useful: An honest prover has to be able to
convince the verifier that it has indeed knowledge of the witness, which is called completeness
of the protocol, and a prover P∗ that manages to convince the verifier V from the protocol, has
knowledge of the witness — which is called knowledge soundness. Defining completeness is
simple:

6



2. Preliminaries

Definition 3 (Perfect Completeness). Perfect Completeness requires that for all ?? and (D,F) ∈
R?? :

Pr
[
3 = 1

��(·, 3) ←$
〈
P?? (D,F) , V?? (D)

〉 ]
= 1.

The other property required is knowledge soundness, which was initially introduced by
Bellare and Goldreich [3] as validity. The updated definition by Attema, Cramer, and Kohl [1]
is presented in the following.

Definition 4 (Knowledge Soundness). Let PS = (S,R, P, V, `) be an interactive proof system
for relation R. Let ^ : N→ [0, 1) be a function.

A proof system PS is knowledge sound with knowledge error ^ if there exists a polynomial
@ : N→ N and an algorithm E called knowledge extractor with the following properties: E given
input D and rewindable oracle access to a (potentially dishonest) prover P∗, runs in an expected
polynomial number of steps in the size of the statement and, whenever 〈P∗?? (D, B) , V?? (D)〉
outputs an accepting transcript with probability n (D) ≥ ^ ( |D |), it successfully outputs a witness
F with (D;F) ∈ R with probability at least (n (D)−^ ( |D |))/@( |D |).

A proof system with both of those properties is called a proof or argument of knowledge.

Definition 5 (Proof of Knowledge (or Argument of Knowledge)). A proof system PS, which is
perfectly complete and knowledge sound with knowledge error ^ is called a proof of knowledge.
An argument of knowledge identical to the one of a proof of knowledge, but knowledge

soundness only holds under certain computational assumptions.

If the challenges sent are just the randomness drawn by the verifier, the protocol is called
public coin:

Definition 6 (Public Coin Protocol). A proof system PS is public coin if the messages by the
verifier<28−1 are set equal to V’s random coins.

In this case, we let V?? (D, tr) ∈ {0, 1} denote V’s decision on whether tr is accepting.

2.2.2. Special Soundness

Extraction for protocols like the Bulletproof inner product argument [5] is separated into
two steps: First, the possibly cheating prover P∗ is run and rewound to build up the tree of
transcripts. Later, this tree of transcripts is used to calculate a witness. The following definition
of a tree of transcripts is taken from [1, Definition 9], which is not to be mistaken for the
abstraction of a tree of 1-entries introduced in Section 3.1.

Definition 7 (Tree of Transcripts). Let (:1, . . . , :`) ∈ N` . A (:1, . . . , :`)-tree of transcripts
for a (2` + 1)-move public coin protocol is a set of  =

∏`

8=1 :8 transcripts arranged in the
following tree structure: The nodes in this tree correspond to the prover’s messages and the
edges correspond to the verfier’s challenges. Every node at depth 8 has precisely :8 children
corresponding to the verifier’s challenges. Every transcript corresponds to exactly one path
from the root node to a leaf node.

An extractor using an k = (:1, . . . , :`)-tree of transcripts to find a witness makes a proof
system k-special sound:
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Definition 8 ((:1, . . . , :`)-Special Soundness). Let (:1, . . . , :`) ∈ N` . A (2` + 1)-move public
coin protocol is (:1, . . . , :`)-special sound if there exists an efficient algorithm that on input a
(:1, . . . , :`)-tree of accepting transcripts outputs a witnessF such that (D;F) ∈ R.

As shown by Bünz et al. [5], Attema, Cramer, and Kohl [1], and Jaeger and Tessaro [9] in
their forking lemma, from special soundness of a proof system PS we can infer knowledge
soundness by combining the tree extractor with a suitable tree finder.

2.3. Quick- & Short-Circuit-Extraction

For extraction of the Bulletproof protocol, not all  =
∏`

8=1 :8 transcripts are required. To
analyze protocols with those properties, Hoffmann, Klooß, and Rupp [8] introduced short-
circuit- and quick-extraction: Let R1 and R2 be two relations, where a statement D belongs to
the relation if there exits a witnessF such that (D;F) ∈ R8 for 8 = 1, 2. We compose those two
relations into R = OR(R1,R2), so that a combined statement (D1, D2) belongs to the relation
R if a witness for one of the two statements can be found, i.e.

{((D1, D2), (F1,F2)) | (D8,F8) ∈ R8 for 8 = 1 or 8 = 2 } .
Let (:1, . . . , :`) ∈ N` and (:̂1, . . . , :̂`) ∈ N` , such that :8 ≤ :̂8 . If there exists quick- and

short-circuit extraction of a protocol, two different cases can be distinguished: In the first, a
smaller (:1, . . . , :`)-subtree suffices for extraction, and a witness for the first relation R1 is
found. We call this quick-extraction. If on a layer 8 of the tree quick-extraction fails, the extractor
requests :̂8 children. After having explored all of those children, a witness for relation R2 is
found and extraction for the rest of the tree is aborted. This behaviour is called short-circuit
extraction.
In the following Chapter 3.1, the abstract (:̂1, . . . , :̂`)-burst (:1, . . . , :`)-sampling game is

considered.
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3. Burst Extraction

In the following sections, we will define the (:̂1, . . . , :̂`)-burst (:1, . . . , :`)-collision game. This
game is an abstraction of the sampling process used by our extractor in the following chapters,
and will allow for a simpler analysis of the extraction process.

3.1. Burst Collision Game

Instead of explicitly considering running themalicious prover P∗, wewill assume that we have all
outcomes for all possible challenge choices 21, . . . , 2` ∈ {1, . . . , # } by V and all possible prover-
randomnesses 0 ∈ {1, . . . , '} encoded in a (` + 1)-dimensional matrix � ∈ {0, 1}'×#×···×# . We
can access elements of the matrix by �

[
0, 21, . . . , 2`

]
, and �

[
0, 21, . . . , 2`

]
= 1 signifies that the

corresponding transcript of the corresponding run of the protocol is accepted by the verifier.
A sub-matrix � (0, 21, . . . , 2<) ∈ {0, 1}`−< for< ∈ {1, . . . `}, 0 ∈ {1, . . . , '} and 21, . . . , 2< ∈
{1, . . . , # } is the (` −<)-dimensional sub-matrix, which contains all entries whose first (< + 1)-
dimensions are equal to (0, 21, . . . , 2<).(
:1, . . . , :`

)
-trees As in [1]we define

(
:1, . . . , :`

)
-trees of 1-entries in� withk =

(
:1, . . . , :`

)
∈

N` recursively as follows: For ` = 0, a tree of 1-entries is simply a 1-entry in � . For arbitrary
`, a

(
:1, . . . , :`

)
-tree of 1-entries is the union of :1

(
:2, . . . , :`

)
-trees of 1-entries in � (0, 21)

up to �
(
0, 2:1

)
respectively with fixed 0 and pairwise distinct 28 . In Figure 3.1 one can find a

sketch of such a tree.
As a result, by this definition we have that a

(
:1, . . . , :`

)
-tree of 1-entries in matrix � is a

tuple of  =
∏`

8=1 :8 1-entries identified by a tuple of challenges {1, . . . , '} × {1, . . . # }` that
are in a

(
:1, . . . , :`

)
-tree structure. A

(
:"+1, . . . , :`

)
-subtree of a

(
:1, . . . , :`

)
-tree of 1-entries

is a
(
1, . . . , 1, :"+1, . . . , :`

)
-tree of 1-entries in � , which corresponds to a

(
:"+1, . . . , :`

)
in

� (0, 21, . . . , 2" ) with additional entries in the tuples for (0, 21, . . . 2" ).

(:̂1, . . . , :̂`)-burst (:1, . . . , :`)-collisiongame The (:̂1, . . . , :̂`)-burst (:1, . . . , :`)-collision game
is a model for the quick- and short-circuit extraction process suggested by Hoffmann, Klooß,
and Rupp [8, Definition 2.19]: Extraction of a witness on layer< for the corresponding sub-
tree is usually possible with :<+1 successful extractions on the layer below, which they call
quick-extraction. If quick-extraction fails, we know that we will find a break of the discrete
logarithm assumption if we manage to find :̂8 ≥ :8 successfully extracted children of the node
– after which we can then stop expansion for the entire tree.

We define a predicate V , which is run on a (:<+1, . . . , :`)-subtree for< ∈ {0, . . . , `} once
it is fully built up. If V evaluates to 0, we consider extraction successful, and just return the
found subtree and continue with the rest of the tree. If V evaluates to 1, we say that this subtree
bursts, and attempt to find :̂<+1 instead of :<+1 children of the root. Instead of continuing
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3. Burst Extraction

0

� [0, 21, . . . , 21,...,1,1 ] = 1

21,...,1,1

� [0, 21, . . . , 21,...,1,:` ] = 1

21,...,1,:`

21,1

...

21,:2

21
2:1

...

2:1,1

� [0, 2:1 , . . . , 2:1,...,:`−1,1 ] = 1

2:1,...,:`−1,1

� [0, 2:1 , . . . , 2:1,...,:` ] = 1

2:1,...,:`−1,:`

2:1,:2

2:1

· · · · · ·· · ·

· · · · · ·· · ·

· · ·

Figure 3.1.:
(
:1, . . . , :`

)
-tree of transcripts of a (2` + 1)-move public-coin interactive proof following [1]

with the rest of the tree, we then just return the resulting (:̂<+1, :<+2, . . . , :`)-subtree and stop
building up the full tree of transcripts.
We require :̂1, . . . , :̂`, :1, . . . , :` ∈ N× with :8 ≤ :̂` for all 8 ∈ {1, . . . , `}. The predicate V

maps for all< ∈ {0, . . . , ` − 1} a
(
:<+1, . . . , :`

)
-subtree of 1-entries in � to {0, 1}.

The objective of the (:̂1, . . . , :̂`)-burst (:1, . . . , :`)-collision game is to either

• find a
(
:1, . . . , :`

)
-tree of 1-entries in � , of which no subtree is marked by V or

• find a (:̂<+1, :<+2, . . . , :`)-subtree g of 1-entries in � , of which only the entire tree is
marked by V , but none of the subtrees.

Our procedure to play the (:̂1, . . . , :̂`)-burst (:1, . . . , :`)-collision game is described in Figure
3.2. Possible traversed trees by BurstTree can be found in Figure 3.3. The subtree returned is
painted in black, the rest of the tree is greyed out.

3.2. Random Variables for the Extraction Process

In the remainder of this section, we will analyse the execution of the
(
:̂1, . . . , :̂`

)
-burst(

:1, . . . , :`
)
-game. For a formal description, we now introduce random variables that indicate

some properties of the run of the algorithm. Those random variables are indexed by the call
parameters E = (0, 21, . . . , 2<) used for the recursive call BurstTree< (0, 21, . . . , 2<) that is
being contemplated. The letter E is chosen for the parameters, because they also identify the
vertex in the tree of transcript generated by this function call if this function call was successful.

Counting the visited Lookups The first random variables introduced are one binary and two
integer variables concerned with the sampling behaviour of BurstTree:

�E ∈ N0 : This random variable counts the amount of lookups to � that happened during
the call to BurstTree< (0, 21, . . . , 2<) summed over all subcalls.
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3. Burst Extraction

BurstTree< (0, 21, . . . , 2<) with parameters 0 ∈ {1, . . . , '} and 21, . . . , 2< ∈ {1, . . . # }:

< = ` : If �
[
0, 21, . . . , 2`

]
= 1, then return the tree just consisting of node(

0, 21, . . . , 2`
)
, otherwise abort.

0 ≤ < < ` : – Sample 2<+1←$ {1, . . . , # }.
– Run BurstTree<+1 (0, 21, . . . , 2<, 2<+1). If this run aborts, abort. If it
returns a burst-subtree, immediately return this subtree.

– Repeat until :<+1
(
:<+2, . . . , :`

)
-subtrees have been found:

∗ Sample another 2<+1←$ {1, . . . , # } uniformly with replacement.
∗ Run BurstTree<+1 (0, 21, . . . , 2<, 2<+1). If this run aborts, continue
with this loop. If it returns a burst-subtree, immediately return this
subtree.

– For the subtree g that has been generated up to now, test whether V (g) =
0. If so, this subtree is complete and return g . Otherwise, continue
sampling as before until :̂<+1 children have been found.

– Return the resulting
(
:̂<+1, :<+2, . . . , :`

)
-subtree.

The (:̂1, . . . , :̂<+1)-burst (:1, . . . , :`)-collision game samples 0 ∈ {1, . . . '} and runs
BurstTree0 (0). If BurstTree0 (0) =⊥ it aborts, otherwise it outputs either the (:1, . . . , :`)-
tree of 1-entries in � (0) found or the (:̂=, :<+1, . . . , :`)-tree of 1-entries in � (0) in case of a
burst.

Figure 3.2.: Definition of the (:̂1, . . . , :`)-burst
(
:1, . . . , :`

)
-sampling-game
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3. Burst Extraction

(a) A tree without a burst. (b) A tree with one burst in the second subtree of layer 1.

(c)Multiple consecutive bursts in one tree. (d) The minimal burst tree that BurstTree can generate.

(e) The maximal burst tree that BurstTree can generate.

Figure 3.3.: Five examples of possible found trees of transcripts by the (4, 4, 4)-burst (2, 2, 2)-game. A filled node
stands for a node for whose subtree V returns 1. All leaves printed here correspond to accepting
transcripts, but BurstTree only outputs the black part of the tree, i.e. the last burst subtree.

�E ∈ {0, 1} : We say that a node E = (0, 21, . . . , 2<) was entered if for the first challenge
2<+1 sampled the call to BurstTree< (0, 21, . . . , 2<, 2<+1) was successful, and
therefore the attempt to find :<+1 child trees was started.

 E ∈ N0 : This is the amount of children BurstTree< (0, 21, . . . , 2<) tries to get, e.g.  E =
:<+1 in case of a regular extraction without a burst.

We are especially interested in the expected value of the random variable � = �Eroot for the
“root node” Eroot = ().

Successof Extraction The following random variables are connected to the process of sampling
challenges:

$E ∈ N : This is the amount of challenges 2<+1 ∈ {1, . . . , # } forwhich BurstTree<+1
was called during the execution of BurstTree< (0, 21, . . . , 2<) excluding
the first one. This counts both successful and failed recursive calls.

%E ∈ {1, . . . # }∗ : This is the tuple that contains all challenges 2<+1 ∈ {1, . . . , # } which were
tried in the run of BurstTree and for which BurstTree<+1 (. . . , 2<+1) ≠⊥
did not abort.

)E ∈ {1, . . . # }∗ : )E is just %E , but seen as a set, i.e. the order the challenges were tried in is
omitted.

Bursts For the analysis of burst events, we introduce the following random variables:

�E ∈ {0, 1} : This binary random variable is 1 if V (g) = 1 for the subtree generated
in BurstTree< (0, 21, . . . , 2<) after successfully sampling the first :<+1
nodes.

�E ∈ {0, 1} : For one of the possible subsequent challenges 2<+1 occurred a burst in
BurstTree<+1 (0, . . . , 2<, 2<+1).
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3. Burst Extraction

'E ∈ {0, 1} : 'E is defined as �E ∨�E , i.e. within g with root E there exists a subtree g′
with corresponding root E′ with V (g′) = 1.

!E ∈ {1, . . . , # }∗ : The children in whose subtrees a node was marked by V are collected in
the random variable !E = {F ∈ children (E) |'F = 1 }.

3.3. Bounding the Worst-Case Amount of Leaves

Before starting with our proof for the expected amount of lookups in � , we recall [8, Corollary
2.20] where an upper bound for the nodes in the resulting tree of transcripts is given:

Lemma 9. The maximal amount - of leaves in the full tree output by BurstTree in the(
:̂1, . . . , :̂`

)
-burst

(
:1, . . . , :`

)
-collision game with :8, :̂8 ∈ N and :8 ≤ :̂8 can be bounded above

by

- ≤
∑̀
<=1

(
:̂< − 1

) ∏̀
8=<+1

:8 ≤
(∑̀
<=1

:̂<

) (∏̀
8=1

:8

)
. (3.1)

Note that the first inequality in Equation (3.1) is tight and can be achieved by a burst on
every level on the last child as shown in Figure 3.3e. This Lemma is different from Conjecture
10 in the next section, where the amount of lookups in � is counted instead of the leaves in
the resulting tree.

Proof. We introduce the variable =burst (<) which counts the maximal amount of leafs in a
subtree starting on level<, in which V marked a subtree. =¬burst (<) is the amount of leaves
BurstTree< creates if no burst occurs. In total, we have

- ≤ max {=burst (0) , =¬burst (0)} .
A node in a subtree without a burst event on layer < has at most :<+1 children – and

therefore, by induction, is ancestor of =¬burst (<) ≤
∏`

8=<+1 :8 leaves. When considering =burst,
in worst case, we have regular extraction for the first :<+1 − 1 subtrees. This is followed by
one subtree with a burst:

=burst (<) ≤
(
:̂<+1 − 1

)
· =¬burst (< + 1) + =burst (< + 1)

≤
(
:̂<+1 − 1

) ( ∏̀
8=<+2

:8

)
+ =burst (< + 1)

Setting =burst (`) = 0 and running an induction from< = ` down to< = 0, we can collect
the summands of the sum

=burst (0) ≤
`−1∑
<=0

(
:̂<+1 − 1

) ( ∏̀
8=<+2

:8

)
=

∑̀
<=1

(
:̂< − 1

) ( ∏̀
8=<+1

:8

)
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3. Burst Extraction

This is our result, since we have - = =burst (0) ≥ =¬burst. The second inequality of Equa-
tion (3.1) can be proven by bounding

∏`

9=8+1 :̂ 9 above by
∏`

9=1 :̂ 9 in every term and using
distributivity of sums.

As discussed by Hoffmann, Klooß, and Rupp [8], this promises already a more efficient ex-
traction than the one given in [5]: In the Bulletproof Inner Product Argument, statements about
vectors of length = are to be shown in a ` = log (=)-round protocol. The standard parameters
correspond to a (4, . . . , 4)-burst (2, . . . , 2)-collision game. Without dynamic extraction, we can
only build up a (:̂1, . . . , :̂`)-tree, which corresponds to 4` ∈ O

(
=2

)
lookups in � . The worst

case analysis from this Lemma 9 promises (4`) 2` ∈ O (= log (=)) � -lookups. In the following
section, we discuss how we can achieve 2 · 2` ∈ O (=) in expectation by a more precise analysis.

3.4. Bounding the Expected Amount of Lookups in the Table

The following Conjecture estimates an upper bound for the expected amount of lookups in �
when playing the

(
:1, . . . , :`

)
-burst (:̂1, . . . , :̂`)-collision game:

Conjecture 10 (Transcripts Generated by BurstTree). Let � ∈ {0, 1}'×#×···×# be a (` + 1)-
dimensional matrix and let n denote the fraction of 1-entries in � . Consider the (:̂1, . . . , :̂`)-burst
(:1, . . . , :`)-sampling-game as defined in Figure 3.2 with 2 ≤ :< ≤ :̂< for all< ∈ {1, . . . , # } :
and set

U = max
<∈{1,...,`}

:̂<

:<
(3.2)

Then the amount � of accesses to � by BurstTree is bounded in expectation by

E [�] ≤ U
(∏̀
8=1

:8

)
A proof idea to this conjecture is given in Appendix A.1. I still assume that Conjecture 10 or

something similar holds. The following remark gives an overview of the assumptions made for
this proof as well as the problems that occurred with different attempts. This suggests that it
might be necessary to apply different proof techniques than used in [4, Lemma 1] or [1, Lemma
5].

Remark 11. The technique used to bound the expected amount of transcripts required for
extraction as introduced by Bootle et al. [4] works as follows:

In the setting of [4], for every node the amount of nodes required for short-circuit extraction
is fetched. This can be modelled as burst extraction with :8 = :̂8 and no bursts, i.e. V ≡ 0
To estimate the expected amount of lookups within a call to BurstTree< (0, 21, . . . , 2<) with
E = (0, 21, . . . , 2<), the expected amount of calls to BurstTree<+1(0, 21, . . . , 2<, ·) is determined.
For this, two different elements have to be considered: The probability to enter a certain node
E is Pr[�E ] = n = n (0, 21, . . . , 2<). The probability for a fixed challenge 2<+1 is defined as
n (0, 21, . . . , 2<, 2<+1). Therefore the probability of extraction to fail for a uniformly random
challenge - is
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3. Burst Extraction

n = n (0, 21, . . . , 2<) =
∑

2<+1∈C
Pr[- = 2<+1] n (0, 21, . . . , 2<, 2<+1)

When : nodes are required by the extractor, the expected number of times BurstTree<
runs BurstTree<+1 is 1 + n · (:−1)/n = : .
When restricting V to V ≡ 0 there are two different results from BurstTree<+1: Either,

regular extraction was successful, or extraction failed and only one lookup was required. With
bursts, we have a third possible option: A burst occurred, and therefore more children have to
be extracted, but extraction can be stopped at this point.

The burst is modelled by a predicate V that receives the whole extracted subtree as an input,
and decides on this basis if the subtree is marked as burst. As a consequence of this modelling,
nothing else about the burst is known. This makes this third possible result difficult to handle.

The proof sketch for Conjecture 10 was based on the following idea: As in [4], the amount of
lookups in � is bounded for subtrees with their root in certain layers. For leaves this amount
can be determined easily, so that we can inductively calculate the amount for larger subtrees. In
this setting a third type of result has to be handled: The extraction algorithm may find a burst
subtree. At some points of the proof idea, different cases with burst events at varying locations
are considered, which then have to be weighted. Whenever there are two different expected
bounds for the expected lookups in � for different situations, that have to be weighted by the
probability of a burst event, this proof used the maximum of expected values.
Instead of only one induction for the expected amount of lookups in � , an induction was

done for two different functions: =¬burst(<) tracks an upper bound for the expected amount
of lookups to � for subtrees g with its root in layer< of the tree if no bursts occurred in the
extraction of g . The other function =burst(<) denotes an upper bound on the expected amount
of looks to � if a burst has occurred within that subtree.

This distinction is necessary for linear extraction because a subtree with successful extraction
is cheaper than one with a burst in expectation, and we would get results in terms of :̂8 instead
of :8 as in Conjecture 10 otherwise.

E

�E}

Figure 3.4.: �E

One problem arises when looking at nodes of the tree E = (0, 21, . . . , 2<) where �E = 1.
This random variable �E signals that in one of the child subtrees of E there must have been
a burst as illustrated in Figure 3.4. As before, we have a
probability of entering the node is n = n (0, 21, . . . , 2<). When
distinguishing =burst(<) and =¬burst(<) we may have differ-
ent probabilities of the extraction succeeding, say nburst and
n¬burst. Because of this there is no easy cancellation of n as
before. This suggests that functions for a bound on the expected number of lookups in � that
are only dependent on the layer of the node like =burst can not be used here.
This suggests that an approach very different from [4, Lemma 1] or [1, Lemma 5] has to be

used.

In the following section, the Bulletproof Inner Product Argument will be introduced. The
sampling pattern required for its extraction matches burst extraction introduced in this chapter.
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4. Inner Product Argument

In the following chapter a modified version of the Bulletproof Inner Product Argument [5] with
changes by Hoffmann, Klooß, and Rupp [8] is introduced. The purpose of the Inner Product
Argument Protocol is to convince the Verifier V that the prover P has knowledge of two
vectors that have been committed to, and that those two vectors have a certain inner product.
We will focus on the extraction, especially on quick extraction, which allows us to use fewer
transcript if extraction is successful.
To facilitate the understanding of the protocol, we first introduce a Vector Knowledge

Argument VKA, which can be seen as a component of the Inner Product Argument and already
contains many ideas and techniques used. Afterwards, this protocol is extended to the Inner
Product Argument by Bünz et al. [5] with the improvements by Hoffmann, Klooß, and Rupp
[8]. Afterwards, the connection between the version of IPA presented here, Bünz et al. [5]
and Hoffmann, Klooß, and Rupp [8] is illustrated. As a last step, we show how to do quick
extraction for the Range Proof and the Arithmetic Circuit Satisfiability Proof introduced in the
Bulletproof Paper [5] and thereby use fewer transcripts for extraction.

4.1. Notation

In the following protocols, we will use an abelian group G, for which the Discrete Logarithm
Relation Assumption holds. We denote the group additively with coefficients from the field
F? = Z/Z? , as was already explained in 2.1.

A special notation that will be useful when describing the “folding” of vectors in the recursive
steps of the protocols is ®w: Here, a vectorw ∈ F=? (or g ∈ G1×=) is split into : parts of equal size
F
=/:
? (orG1×=/: , respectively). We denote those parts by ®w1, . . . , ®w: ∈ F

=/:
? and ®g1, . . . , ®g: ∈ G1×=/: .

Those parts can be reassembled to a vector of vectors ®w, which contain the same entries as w:

®w =


®w1
...

®w:

 ∈
(
F
=/:
?

):
®g =

[
®g1 · · · ®g:

]
∈

(
G1×=/:

)1×:
(4.1)

Note that because the entries ®w8 of ®w are vectors themselves, the indexed entries are bold as
well, whereas for an x ∈ F:? the entries are denoted by G8 ∈ F? .

4.2. Vector Knowledge Argument

Instead of beginning with the complete Inner Product Argument, we start off with a simpler
Vector Knowledge Argument, which will later be used as a part of the complete protocol: Given

16



4. Inner Product Argument

a vector w ∈ F=? in possession of prover P that has been “committed” to (using Pedersen
Commitments without the blinding factor, which thereby loose their Hiding-Property) in
[2] ∈ G. For those “commitments”, we have a vector known to both the verifier V and the
prover P called g ∈ G= . The commitment [2] is calculated by [2] = [g]w. We can denote the
statement to be shown as the relation RVKA, with [2] being the statement and w the witness
for membership in this relation.

( [2] ;w) ∈ RVKA ⇔ [2] ∈ G ∧w ∈ F=? ∧ [2] = [g]w

The trivial protocol to prove membership in this relation is the prover P just sending w to
the verifier V , which then checks if [2] = [g]w. One problem of this solution is that it requires
sending = elements of F=? to V , whereas we would prefer communication to be in O (log (=)).
To achieve this goal, we use the following ideas:

4.2.1. Recursively Shrinking the Statement

For a given reduction factor : ≥ 2, we “fold” the statement of initial size = = :3 for some
3 ∈ N× to a smaller statement of size =̂ = :3−1. Starting off with [2] = w [g] with w ∈ F=? , we
want to output a [2̂] = ŵ [ĝ] with a matching ŵ ∈ F=/:? .

One strategy to reduce the statement size is to batchmultiple equations into one by combining
the single equations with random factors and adding those up afterwards. This technique can
not be applied here, because

∑:
8=1

[
®g8

]
®w8 = [2] is a single equation with [2] ∈ G. Therefore,

we need to embed our problem into a larger one to make batching possible:

4.2.2. Embedding the Problem

For this, we introduce the variables
[
D8, 9

]
=

[
®g8

]
®w 9 , which can be assembled as a matrix

[U] =
[
D8, 9

]
8, 9∈{1,...:}:

[
®g1 · · · ®g:

]
·
©«
®w1
...

®w:

ª®®¬ =


®g1 ®w1 ®g2 ®w1 · · · ®g: ®w1

®g1 ®w2 ®g2 ®w2 · · · ®g: ®w2
...

...
. . .

...

®g1 ®w: ®g2 ®w: · · · ®g: ®w:


= [U] ∈ G:×: (4.2)

In this larger problem, the original statement [2] is the trace of the matrix tr ( [U]) =∑:
8=1

[
®g8

]
®w8 = [2]. This larger problem can now be batched as follows: A random challenge

b←$F? is chosen, and the different equations are added up with different powers of b . As the
coefficients, we will use the vectors

x =

©«
1
b

b2

...

ª®®®®¬
y =

©«
1
b−1

b−2

...

ª®®®®¬
17



4. Inner Product Argument

The vectors w and g can then be split into : parts as in ®w and ®g. Then, they are folded by
multiplying each component ®w8 with the respective coefficient ~8 and added up, which can
be described by the vector multiplication ŵ = yT · ®w. For g we proceed analogously with
ĝ = xT · ®g, which gives us the new, reduced statement

yT
©«
©«
®w1
...

®w:

ª®®¬ ·
[
®g1 · · · ®g:

]ª®®¬x =
©«yT

©«
®w1
...

®w:

ª®®¬
ª®®¬︸      ︷︷      ︸

=
∑:

8=1 ~8w8=ŵ

·
( [®g1 · · · ®g: ] x)︸                ︷︷                ︸

=
∑:

8=1 G8 ®g8=ĝ

~w

~g

u

~g1~w1 ~g2~w1 ~g3~w1 ~g4~w1

~g1~w2 ~g2~w2 ~g3~w2 ~g4~w2

~g1~w3 ~g2~w3 ~g3~w3 ~g4~w3

~g1~w4 ~g2~w4 ~g3~w4 ~g4~w4

u0

u1

u2

u3

u−1

u−2

u−3

Figure 4.1.: Relation between g, w and u

To convince the verifier that the folding was done
correctly, the prover P then calculates all

[
D8, 9

]
=

w8

[
g8

]
for 8, 9 ∈ {1, . . . , :}, sends them to the veri-

fier and receives a random challenge b from the ver-
ifier. Both verifier and prover can now calculate the
new statement [2̂] = [gx] yTw =

∑:
8=1

∑:
9=1 G8~ 9

[
D8, 9

]
along with the shrunken witness ŵ = yT ®w and the
new vector of group elements [ĝ] =

[
®g
]
x.

Using this technique, we can reduce the size of the
statement to constant size in 3 = log: (=) rounds, but
:2 elements need to be sent in every step. This factor
can be reduced as follows:

4.2.3. Sending the Diagonals

When considering the coefficients of the
[
D8, 9

]
, we no-

tice that for
[
D8, 9

]
with identical difference of the com-

ponents ℓ = 8 − 9 , we have identical exponents of b :

[2̂] =
:∑
8=1

:∑
9=1

G8~ 9
[
D8, 9

]
=

:∑
8=1

:∑
9=1

b8−1b− 9+1
[
D8, 9

]
=

:∑
8=1

:∑
9=1

b8− 9
[
D8, 9

]
=

:−1∑
ℓ=−:+1

b−ℓ
∑
ℓ= 9−8

[
D8, 9

]
Therefore, the prover P can reduce the amount of communication by summing up the

[
D8, 9

]
to [Dℓ] =

∑
8− 9=ℓ D8, 9 for ℓ ∈ {−: + 1, . . . , : − 1}. For a vector notation of this folding, we collect

the Dℓ in the vector u =
[
D−:+1 · · · D:−1

]
∈ G1×(2:−1) , and write down the coefficients in z

defined by I 9−8 = G8~ 9 = b−ℓ :

z =
(
b:−1 . . . b−:+1

)
(4.3)

The different D8 correspond to the different second-diagonals from the matrix ®w®g from
Equation (4.2), the relationship between those is visualized in Figure 4.1. Note that now also
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4. Inner Product Argument

[D0] = [2] doesn’t have to be sent, since it is already known as the statement. For convenience,
we will index the entries of [u] ∈ G1×(2:−1) and z ∈ F2:−1? with 8 ∈ {−: + 1, . . . , : − 1}. Instead
of sending :2 elements, we are now down to 2: − 2 group elements to be sent in every iteration
of the recursion.

4.2.4. Vector Knowledge Argument Protocol

Combining the techniques presented in the previous sections, we can now state the Vector
Knowledge Argument VKA, which corresponds to Hoffmann, Klooß, and Rupp [8, Protocol
3.9]:

Protocol 12 (Vector Knowledge Argument).
Recursive Step. Suppose = = :3 with 3 ≥ 1:

P : Compute [uℓ] =
∑
9−8=ℓ

[
g8

]
F 9 .

P → V : Send [u] ∈ G1×2:−1.
Note that only 2: − 2 elements have to be sent, because [D0] = [2] is already
known.

V →P : Pick and send the challenges b←$F=? \ {0}.

P,V : Calculate the coefficients x =
©«

1
b

b2

...

ª®¬, y =
©«

1
b−1

b−2

...

ª®¬ and z =

(
b:−1

...
b−:+1

)
.

Compute [ĝ] = xT
[
®g
]
and [2̂] = [u] z.

P : Compute ŵ = yT ®w.
P,V :: Set [w] = [ŵ], [g] := [ĝ] and [2] := [2̂] — and repeat the recursive step for

= := =/:
Invariant. [2] = [g]w
Base Case.

P → V : Send w.
V : Verify that [g]w ?

= [2] and accept if verification was successful.

In this protocol, the number of group elements required amounts to (2: − 2) log: (=). To
minimize the amount of group elements sent, the protocol is optimal for : = 2, because
(2: − 2) log: (=) = 2:−2/log2 (:) · log2 (=) with 2:−2/log2 (:) being minimal for smallest possible
value : = 2.

The protocol is complete, because the invariant [g]w = [2] is maintained by the recursive
folding step as the following calculation proves:

[2̂] = [D−:+1, . . . , D:−1] z =
:−1∑

ℓ=−:+1

(
Iℓ

∑
8− 9=ℓ

[
®g8

]
®w 9

)
=

:−1∑
ℓ=−:+1

( ∑
8− 9=ℓ

[
G8®g8

]
~ 9 ®w 9

)
=

(
:∑
8=1

G8
[
®g8

] ) (
:∑
9=1

~ 9 ®w 9

)
= [ĝ] ŵ (4.4)
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4. Inner Product Argument

Vector Knowledge Protocol (Protocol 12)

Common Input: [g]
Prover P Verifier V
Input: w Input: [2]

Recursive Step. Suppose = = :3 with 3 ≥ 1
[Dℓ] =

∑
9−8=ℓ

[
g8

]
F 9

for ℓ ∈ {−: + 1, . . . , : − 1}

[u]
−−−−−−−−−−−−−−−−−−−−−−−→

b ← F? \ {0}

and therefore x =
©«

1
b

b2

...

ª®¬, y =
©«

1
b−1

b−2

...

ª®¬ and z =

(
b:−1

...
b−:+1

)
b

←−−−−−−−−−−−−−−−−−−−−−−−
[g] = xT

[
®g
]

[ĝ] = xT
[
®g
]

[2] = zT [u] [2̂] = zT [u]
w = yT ®w
= = =/: = = =/:

Start next recursion iteration.
Base Case. Suppose = = 1

w−−−−−−−−−−−−−−−−−−−−−−−→
return [g]w ?

= [2]
Table 4.1.: Vector Knowledge Argument Protocol VKA, resembling [8, Protocol 3.9]
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4. Inner Product Argument

The knowledge soundness can be derived from the following analysis of the recursion step,
whose proof and statement closely resemble [8, Lemma 3.10]:

Lemma 13 (Recursive Extraction). Using the variables and setting as defined in Protocol 12, the
following statements hold for one recursive step of the protocol:

1. Given a non-trivial discrete logarithm relation Ê of [ĝ] folded using x, we efficiently find a
non-trivial discrete logarithm relation E within [g].

2. (Unconditional Extraction) Given 2: − 1 distinct challenges b (1), . . . , b (2:−1) with accepting
transcripts, one can extract unconditionally a witness w such that [2] = [g] w.

3. (Short-Circuit Extraction) Given 2: distinct challenges b (1), . . . , b (2:) with accepting tran-
scripts if the witness from above does not fit w.r.t. the [Dℓ], i.e. if an honest prover would
send different [Dℓ] for w, then we find (additionally) a non-trivial discrete logarithm relation
v, i.e. 0 = [g] v with v ≠ 0.

4. (Quick Extraction) From : distinct challenges b (1), . . . , b (:) with accepting transcripts, one
can compute a candidate witness w for quick extraction. If

∑
9−8=ℓ

[
g8

]
w 9 ≠ [Dℓ] for some

ℓ , then we are guaranteed to find a non-trivial discrete logarithm relation from 2: distinct
challenges.

.

Proof. For the first statement, we consider a non-trivial kernel element v̂ ≠ 0 with 0 = [ĝ] v̂.
To see how to extend v̂, we make the following calculation:

0 = [ĝ] v̂ =

:∑
8=1

G8
[
®g8

]
v̂ =

:∑
8=1

[
®g8

]
(G8 · v̂) =

[
®g
] ©«
G1v̂
G2v̂
...

G: v̂

ª®®®®¬︸︷︷︸
x⊗v̂

=
[
®g
]
(x ⊗ v̂) (4.5)

x ⊗ v̂ ∈
(
F=/:

):
is the tensor product of x and v̂ and by Equation (4.5) lies within x ⊗ v̂ ∈

Ker
( [
®g
] )
, proving the first statement.

For the Unconditional Extraction, we use the equation for calculating the next [2̂] in the
verifier V and — analogous to Equation (4.5) — use the following statement:

[u] z(8) =
[
D−:+1 · · · D:−1

]
z(8) = [ĝ] ŵ =

(
:∑
8=1

G8
[
®g8

] )
ŵ =

[
®g
]
(x ⊗ ŵ) (4.6)

To combine multiple challenges into one equation, we define the matrices Ŵ and Z as
follows:

Ŵ =


...

...

x(1) ⊗ ŵ(1) · · · x(2:−1) ⊗ ŵ(2:−1)
...

...

 Z =


...

...

z(1) · · · z(2:−1)
...

...
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4. Inner Product Argument

So using Ŵ to combine Equation (4.6) for all 2: − 1 challenges as each a column into one
matrix equation gives us:

[
D−:+1 · · · D:−1

]
· Z = [g] Ŵ⇔

[
D−:+1 · · · D:−1

]
= [g] Ŵ · Z−1︸   ︷︷   ︸

W

= [g]W (4.7)

Note that inverting Z is possible, because Z is the Vandermonde matrix for the distinct chal-
lenges b (1) , b (2) , …, b (:) , which has been scaled in every row by (b (8))−:+1 and then transposed.
Because of the structure of Ŵ, withW we have again a matrix of matrices:

W ∈
(
F
=/:
?

):×(2:−1)
We name the columns of W = ( w(−:+1) ··· w(0) ··· w(:−1) ) and therefore have vectors of dimen-

sion (F=/:? ): with each of the columns being in w(8) ∈ (F=/:? ): . When omitting all the columns
except the one with index 0 from the equation, we have [2] = [D0] =

[
®g
]
w(0) , giving us

unconditional extraction with ®w = w(0) . This concludes the proof of the second statement.
For the Short-Circuit Extraction, we want to show that for a givenw that fulfils the equation

from the relation [2] = [g]w, we either have [Dℓ] =
∑
9−8=ℓ

[
g8

]
w 9 or find a non-trivial discrete

logarithm relation for [g]. For this, we prove that W has a fixed structure using the equations
applied by the verifier, and then infer that this also implies a correctly calculated [u]. First we
derive one equation about the columns w(8) ofW by finding two different ways to rephrase
[u] z:
From Equation (4.7) derived from [u] z = [ĝ] ŵ in the proof for the second statement, we

have that [u] = [g]W, and therefore that [u] z(8) = [g]Wz(8) . From the invariant of the
protocol and the re-calculation of [2̂] we also have that [ĝ] ŵ = [2̂] = [u] z. Combining those
two equations, we see that

W =

w(0)

Figure 4.2.: The structure of,

[g]Wz(8) = [g]
(
x(8) ⊗ ŵ(8)

)
.

Therefore, either the next equation holds, or we have
found a non-trivial kernel of [g]:

Wz(8) =
:−1∑

ℓ=−:+1
I
(8)
ℓ
w(ℓ) = x(8) ⊗ ŵ(8)

We now look at the components 9 ∈ {1, . . . , :} of the previous equation:
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4. Inner Product Argument

:−1∑
ℓ=−:+1

I
(8)
ℓ
w(ℓ)
9

= G
(8)
9
ŵ(8) ⇔

:−1∑
ℓ=−:+1

(
I
(8)
ℓ
·
(
G
(8)
9

)−1)
w(ℓ)
9

= ŵ(8) ⇔

:−1∑
ℓ=−:+1

((
b (8)

)−ℓ ((
b (8)

) 9−1)−1)
w(ℓ)
9

=

:−1∑
ℓ=−:+1

(
b (8)

)−ℓ− 9+1
w(ℓ)
9

= ŵ(8) ⇔

:−1∑
ℓ=−:+1

~
(8)
9+ℓ ·w

(ℓ)
9

= ŵ(8)

Recall that we extended y with ~8 = b−8+1 outside its definition radius as well. Comparing
two adjacent rows of vectors 9 and 9 + 1 for 9 ∈ {1, . . . , : − 1}, we get:

:−1∑
ℓ=−:+1

~
(8)
9+ℓ ·w

(ℓ)
9

=

:−1∑
ℓ=−:+1

~
(8)
9+1+ℓ ·w

(ℓ)
9+1 =

:∑
ℓ=−:+2

~
(8)
9+ℓ ·w

(ℓ−1)
9+1

We have 2: different entries of y(8) . So that we can recover the coefficients:

∀9 ∈ {1, . . . , : − 1} : w(−:+1)
9+1 = 0 = w(:−1)

9

∀9 ∈ {1, . . . , : − 1} ∀ℓ ∈ {−: + 2, . . . , : − 1} : w(ℓ−1)
9+1 = w(ℓ)

9

By induction, we prove that all entries ofW are either 0 or parts of w(0) :

w(8)
9

=

{
w(0)
9+8 0 < 9 + 8 ≤ :

0 otherwise

Those relations are also represented graphically in Figure 4.2. Defining w(0)
9

= 0 for 9 ∉
{1, . . . , :}, we can derive:

:−1∑
ℓ=−:+1

y(8)
9+ℓ ·w

(ℓ)
9

=

:−1∑
ℓ=−:+1

y(8)
9+ℓ ·w

(0)
9+ℓ = ŵ(8)

Now we recall that according to Equation (4.7), we have that [u] = [g]W — so the [Dℓ] are
fixed by the choice of w if we have not found a non-trivial discrete logarithm relation along
the way. This conlcudes the third part of the proof.
To prove quick extraction, we show how to recover ®w using only : challenges: For this,

we recall how ŵ is calculated by an honest prover in the protocol: ŵ = ®wTy. Combining this
equation for : different challenges b (8) and therefore : different y(8) , we get:

23



4. Inner Product Argument

(
ŵ(1) ŵ(2) · · · ŵ(:)

)
= ®wT (

y(1) y(2) · · · y(:)
)︸                       ︷︷                       ︸

=Y(
ŵ(1) ŵ(2) · · · ŵ(:)

)
· Y−1 = ®wT (4.8)

Afterwards we verify that we have recovered a valid witness w by [2] ?
= [g]w. When

calculating ŵ as described in Protocol 14, equation (4.8) holds as well — and since multiplication
by Y is bijective, both vectors have to be identical. If not, the [Dℓ] sent by the prover P must
have been chosen in a different way, yielding a break of the discrete logarithm assumption by
the previous statement.

Now that we have understood the Vector Knowledge Argument-Protocol, we can use it in the
following section to assemble the Inner Product Protocol, which form part of the Bulletproof
Proof System [5].

4.3. Inner Product Argument

Instead of proving knowledge of one vector as in the Vector Knowledge Argument-Protocol,
we now want to do so for two vectors with a certain inner product. Because of this, we now
need two vectors of group elements [g′] , [g′′] ∈ G= along with an additional element [&] ∈ G,
so in total we have the “commitment key” [g′, g′′, &] ∈ G2=+1.
Our commitment [2] now contains, in addition to w′ and w′′, the supposed inner product

C = 〈w′,w′′〉 as [2] = [g′]w′ + [g′′]w′′ + C [&]. As before, we can also state this as a relation
RIPA:

( [2] , C ;w′,w′′) ∈ RIPA ⇔ [2] ∈ G ∧w′,w′′ ∈ F=? ∧ C ∈ F?∧ (4.9)
[2] = [g′]w′ + [g′′]w′′ + C [&] ∧ 〈w′,w′′〉 = C

So [2] can be seen as three merged Pedersen Commitments to w′, w′′ and C without the
blinding factors. As before, one could successfully prove membership in RIPA by just handing
over the w′ and w′′, and verifying that both the calculation of [2] and the scalar product C are
correct. As before, we would like to reduce communication for this procedure:

4.3.1. Combination of Protocols

First, we focus on constructing the Vector Knowledge Argument for both vectors. As a first
idea, we could just run two instances of the Vector Knowledge Argument VKA (Protocol 12) in
parallel, both recursively shrinkingw′ andw′′. This would double the amount of group elements
sent compared to VKA, which can be done better: For their explanation of the Inner Product
Argument, Hoffmann, Klooß, and Rupp [8] observed that Pedersen Commitments keep their
binding property when batched together – so we just add up the commitments for both vectors,
resulting in [2] = [g′]w′ + [g′′]w′′. The protocol can then by adapted by updating w′, g′, w′′

and g′′ as before, and expanding [Dℓ] to include both vectors [Dℓ] =
∑
8− 9=ℓ

( [
g8

]
w 9 +

[
g 9

]
w8

)
.
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4. Inner Product Argument

4.3.2. Adding the Inner Product

To also track the inner product, we add another commitment using the group element [&]
multiplied with C = 〈w′,w′′〉 to [2], which we then update accordingly when shrinking w′ and
w′′ — so that we are now using [2] = [g′]w′ + [g′′]w′′ + C [&].

Within a step of the recursion when folding ŵ′ = yTw′ and ŵ′′ = xTw′′, we want the old
C = 〈w′,w′′〉 preserved in [g]w = [D0] as already seen for [g]w in the Vector Knowledge
Protocol.

When just using the same x to fold both vectors, we get:

〈ŵ′, ŵ′′〉 =
:∑
8=1

:∑
9=1

〈
b8−1 ®w8, b

9−1 ®w 9

〉
=

2:∑
ℓ=2

b ℓ−2
∑
9+8=ℓ

〈
®w′8, ®w

′′
9

〉
This does not contain 〈w′,w′′〉 = ∑

9−8=0
〈
®w′8, ®w

′′
9

〉
, so we have to modify the protocol:

4.3.3. Swapping x and y

One solution is to swap the roles x and y for w′′ and update the vectors using the formulas
ŵ′′ = xTw′′ and

[
ĝ′′

]
= yT [g′′]. This results in

〈ŵ′, ŵ′′〉 =
:∑
8=1

:∑
9=1

〈
b8−1 ®w8, b

− 9+1 ®w 9

〉
=

:−1∑
ℓ=−:+1

b−ℓ
∑
9−8=ℓ

〈
®w′8, ®w

′′
9

〉
This equation contains 〈w′,w′′〉 = ∑

9−8=0
〈
®w′8, ®w

′′
9

〉
with coefficient b0 = 1 as wanted.

4.3.4. Preprocessing: Fixing C

The last problem we have to solve before assembling the protocol is to ensure that the C used
as an coefficient for [&] inside [2] is indeed the C from the relation. This will be ensured with a
preprocessing-step:

Denote by [&old] the group element [&] used in the recursive step before preprocessing, and
by [&] the group element after preprocessing [&] = U · [&old]. So, before running the protocol,
we have [2] = · · · + C [&old]. In the preprocessing step, we scale [&] := U−1 [&old] and update
the commitment [2] := ( [2old] − UC [&]) + C [&]; which yields a regular “commitment” to C after
preprocessing [2] = · · · + C [&] = · · · + C · U−1 [&old] if [2] was constructed in the correct way.

4.3.5. Inner Product Argument

Using the ideas collected over the previous subsections, we can now complete the Inner Product
Argument as described in [8] or for fixed : = 2 in [5].

Protocol 14 (Inner Product Argument IPA).
Preprocessing.

V →P : Pick and send U←$F=? \ {0}
P,V : Both set [&] := U−1 [&], followed by [2] := ( [2] − UC [&]) + C [&].

25



4. Inner Product Argument

Recursive Step. Suppose = = :3 with 3 ≥ 1:

P : Calculate [Dℓ] =
∑
8− 9=ℓ

( [
g′8

]
w′9 +

[
g′′9

]
w′′8 +

〈
w′8,w

′′
9

〉
[&]

)
.

P → V : Send [D] ∈ G1×2:−1. ([2] = [D0] already known, so 2: − 2 elements sent.)
V →P : Sample and transmit b←$F=? \ {0}.

P,V : Set x =
©«

1
b

b2

...

ª®¬, y =
©«

1
b−1

b−2

...

ª®¬ and z =

(
b:−1

...
b−:+1

)
.

Calculate
[
ĝ′

]
= xT

[
®g′

]
,
[
ĝ′′

]
= yT

[
®g′′

]
and [2̂] = [u] z.

P : Set ŵ = yT ®w, ŵ′′ = xT ®w′′.
P,V : Update w′ = ŵ′, w′′ = ŵ′′, [g′] :=

[
ĝ′′

]
, [g′′] :=

[
ĝ′′

]
and [2] := [2̂]; and

repeat the recursive step for = := =/:.

Invariant. [2] = [g′]w′ + [g′′]w′′ + C [&]
Base Case.

P → V : Send w′,w′′.
V : Verify that [g′]w′ + [g′′]w′′ + C [&] ?

= [2] and that 〈w′,w′′〉 = C .

As before, the protocol requires sending (2: − 2) log: (=) group elements in every step,
and the invariant is [2] = [g′]w′ + [g′′]w′′ + C [&] again. The protocol is correct, because
the invariant is maintained in every step of the recursion, as can be seen in the following
calculation:

[2̂] = [D−:+1, . . . , D:−1] z(8) =
:−1∑

ℓ=−:+1

(
Iℓ

∑
8− 9=ℓ

( [
®g′8

]
®w′9 +

[
®g′′9

]
®w′′8 +

〈
®w′8, ®w

′′
9

〉
[&]

))
=

:−1∑
ℓ=−:+1

( ∑
8− 9=ℓ

[
G8®g′8

]
~ 9 ®w′9 +

[
~ 9 ®g′′9

]
G8 ®w′′8 +

〈
G8 ®w′8, ~8 ®w

′′
9

〉
[&]

)
=

(
:∑
8=1

G8
[
®g′8

] ) (
:∑
9=1

~ 9 ®w′9

)
+

(
:∑
9=1

~ 9

[
®g′′9

] ) (
:∑
8=1

G8 ®w′′8

)
+

〈
:∑
8=1

G8 ®w′8,
:∑
9=1

~ 9 ®w′′9

〉
[&]

= [ĝ] ŵ (4.10)

Lemma 15. Using the variables and setting as defined in Protocol 14, the following statements
hold for one recursive step:

1. Given a non-trivial discrete logarithm relation v̂ for
[
ĝ′, ĝ′′, &

]
folded using x, y and z, we

can efficiently find a non-trivial discrete logarithm relation v for [g′, g′′, &].
2. (Unconditional Extraction) Given 2: − 1 distinct challenges b (1), . . . , b (2:−1) with accepting

transcripts, one can extract unconditionally a witness w′, w′′ such that [g′] w′ + [g′′] w′′ +
〈w′,w′′〉 [&] = [2].
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4. Inner Product Argument

Inner Product Argument (Protocol 14)

Common Input: [g]
Prover P Verifier V
Input: w Input: [2]

Preprocessing.
U←$F? \ {0}

U←−−−−−−−−−−−−−−−−−−−−−−−
[&] := U−1 [&] [&] := U−1 [&]
[2] := ( [2] − UC [&]) + C [&] [2] := ( [2] − UC [&]) + C [&]

Recursive Step. Suppose = = :3 with 3 ≥ 1

[Dℓ] =
∑
8− 9=ℓ

( [
®g8

]
®w 9 +

[
®g 9

]
®w8 +

〈
®w′8, ®w

′′
9

〉)
for ℓ ∈ {−: + 1, . . . , : − 1}

[u]
−−−−−−−−−−−−−−−−−−−−−−−→

b ← F? \ {0}

and therefore x =
©«

1
b

b2

...

ª®¬, y =
©«

1
b−1

b−2

...

ª®¬ and z =

(
b:−1

...
b−:+1

)
b

←−−−−−−−−−−−−−−−−−−−−−−−
[g′] = xT

[
®g′

]
, [g′′] = xT

[
®g′′

]
[g′] = xT

[
®g′

]
, [g′′] = xT

[
®g′′

]
[2] = zT [u] [2̂] = [u] z
w′ = yT ®w′, w′′ = yT ®w′′
= = =/: = = =/:

Start next recursion iteration.
Base Case. Suppose = = 1

w′,w′′−−−−−−−−−−−−−−−−−−−−−−−→
return [g′]w′ + [g′′]w′′ + C [&] ?

= [2]
Table 4.2.: Inner Product Argument Protocol IPA [8, Protocol 4.1]
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4. Inner Product Argument

3. (Short-Circuit Extraction) Given 2: distinct challenges b (1), . . . , b (2:) with accepting tran-
scripts if the witness from above does not fit w.r.t. the [Dℓ], i.e. if an honest prover would
send different [Dℓ] for w′ and w′′, then we find (additionally) a non-trivial kernel element v,
i.e. [g′, g′′, &] v = 0.

4. (Quick Extraction) From : distinct challenges b (1), . . . , b (:) , one can compute a candidate
witness w′, w′′ for quick extraction. If

∑
8− 9=ℓ ( [g8]w′9 + [g 9 ]w′′8 + 〈w′8,w′′9 〉 [&]) ≠ [Dℓ]

for some ℓ , then we are guaranteed to find a non-trivial kernel relation from 2: distinct
challenges.

The following proof works analogously to Lemma 13, but with some steps being more
complicated because of the combined commitments.

Proof. For the first statement, we assume that we have a kernel element v̂ = (v̂′, v̂′′, 0̂), i.e.[
ĝ′

]
v̂′ +

[
ĝ′′

]
v̂′′ + 0̂ [&] = 0. Analogously to the proof of Lemma 13, we can derive the discrete

logarithm relation for the original “commitment key” by

0 =

[
:∑
8=1

x8g′8

]
v̂′ +

[
:∑
8=1

y8g
′′
8

]
v̂′′ + 0 [&]

=

:∑
8=1

[
g′8

]
x8 v̂′ +

:∑
8=1

[
g′′8

]
y8 v̂
′′ + 0 [&]

= [g′] (x ⊗ v̂′) + [g′′] (y ⊗ v̂′′) + 0 [&]

To prove the second statement, we recall the calculation of [2̂] in the recursion step of the
protocol:

u · z(8) =
[
ĝ′

]
ŵ′ +

[
ĝ′′

]
ŵ′′ + Ĉ [&]

=

(
:∑
9=1

x(8)
9

[
®g′9

] )
ŵ′(8) +

(
:∑
9=1

y(8)
9

[
®g′′9

] )
ŵ′′(8) + Ĉ [&]

=
[
®g′

] (
x(8) ⊗ ŵ′(8)

)
+

[
®g′′

] (
y(8) ⊗ ŵ′′(8)

)
+ Ĉ [&]

Defining Ŵ′ and Ŵ′′ analogously to Lemma 13, and setting T̂ = ( C (1) ··· C (2:−1) ), we can
combine the different sample for 8 ∈ {1, . . . , 2: − 1} to:

u · Z = [g′] Ŵ′ + [g′′] Ŵ′′ + T [&]
⇔ u = [g′] Ŵ′ · Z−1︸    ︷︷    ︸

W′

+ [g′′] Ŵ′′ · Z−1︸     ︷︷     ︸
W′′

+ T̂ · Z−1︸  ︷︷  ︸
T

[Q]

= [g′]W′ + [g′′]W′′ + T [&]

As before, we have unconditionally extracted a witness w′(0) as the mid column of W′
and w′′(0) as the mid column of W′′ and t(0) from T, satisfying the relation RIPA, because
[2] = [u0] = [g′]w′(0) + [g′′]w′′(0) + t(0) [&].
For the third statement, as in Lemma 13, we find two different alternative formulations of
[u] z:
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4. Inner Product Argument

[
®g′

]
W′z(8) +

[
®g′′

]
W′′z(8) + Tz(8) [&]

= uz(8) =
[
®g′

] (
x(8) ⊗ ŵ′(8)

)
+

[
®g′′

] (
y(8) ⊗ ŵ′′(8)

)
+ Ĉ (8) [&]

Then we split those equations by the different parts of the vectors of group elements [g′],
[g′′] and [&]. If the following equations don’t hold, we found a non-trivial discrete logarithm
relation.

W′ · z(8) =
(
x(8) ⊗ ŵ′(8)

)
W′′ · z(8) =

(
y(8) ⊗ ŵ′′(8)

)
T · z(8) = Ĉ (8) (4.11)

Following exactly the steps for determining ŵ in Lemma 13, we find out for ŵ′ and ŵ′′:

:∑
9=1

y(8)
9
·w′(0)

9
= ŵ′(8)

:∑
9=1

x(8)
9
·w′′(0)

9
= ŵ′′(8) (4.12)

Note that as in Lemma 13, this is where we need the 2: different challenges to compare the
coefficients to determine the structure ofW′ andW′′. If now C (0) =

〈
w′(0),w′′(0)

〉
, extraction

was successful and we have successfully found a matching witness for the relation. For the
following formula, we split ) = ( C (−:+1) ··· C (:−1) ) ∈ F1×2:−1? :

:−1∑
ℓ=−:+1

b−ℓC (ℓ) =
:−1∑

ℓ=−:+1
zℓC (ℓ) = Tz

1
= Ĉ

2
= 〈ŵ′, ŵ′′〉

3
=

〈
xTw′, yTw′′

〉
=

:−1∑
ℓ=−:+1

zℓ
∑
ℓ=8− 9

〈
w′8,w

′′
9

〉
=

:−1∑
ℓ=−:+1

b−ℓ
∑
ℓ=8− 9

〈
w′8,w

′′
9

〉
Equality 1 was already proven in Equation (4.11) and for 2 , we know that this statement

is a part of the definition of [2̂] and therefore has to be true or a non-trivial discrete logarithm
relation has been found. 3 holds because of Equation (4.12).
This equation with 2: − 1 powers of b is valid for 2: − 1 distinct challenges, so that the

coefficients of the G−ℓ have to be identical. This implies that C (0) = 〈w′,w′′〉 and therefore that
our extraction must have been successful. Having determined the structure of W′, W′′ and T,
we now know that [u] = [g′]W′ + [g′′]W′′ + T [&] and therefore [u] is fixed.

Quick Extraction and therefore the last statement can be proven analogous to Lemma 13:
With : different challenges b (8) and therefore : different x and y, we can derive from the update
equations in the protocol ŵ′ = yT ®w′ and ŵ′′ = xT ®w′′ that:
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4. Inner Product Argument

(
ŵ′(1) ŵ′(2) · · · ŵ′(:)

)
= ®w′T

(
y(1) y(2) · · · y(:)

)︸                       ︷︷                       ︸
=Y(

ŵ′(1) ŵ′(2) · · · ŵ′(:)
)
· Y−1 = ®w′T(

ŵ′′(1) ŵ′′(2) · · · ŵ′′(:)
)
· X−1 = ®w′′T

Using this approach, we have extracted candidate solutions w′ and w′′. If the equation from
the relation for [2] doesn’t hold for the recovered w′ and w′′, we have fulfilled the conditions
of the third statement and therefore found a non-trivial discrete logarithm relation.

Using the Lemma just proven for extraction of the recursive step, we can derive the following
Corollary about protocol 14.

Corollary 16. Protocol IPA is special (2, 2:, . . . , 2:)-sound for finding a valid witness (w′,w′′)
or a non-trivial element in the kernel of [g′, g′′, &]. It has (1, :, . . . , :) short-circuit extraction.

Proof. Since extraction for the recursive step has already been shown in Lemma 15, we only
have to consider the preprocessing step here. Assume we are given two transcripts with
challenges U (1) , U (2) and extracted witnesses w′(8) , w′′(8) and B (8) :=

〈
w′(8),w′′(8)

〉
for 8 ∈ {1, 2}.

We will consider two different cases here:
In the first case, at least one of the following equations does not hold: w′(1) = w′(2) , w′′(1) =

w′′(2) or B (1) = B (2) . In this case, we have found two different openings for
[
2 (1)

]
=

[
2 (2)

]
, and

therefore a non-trivial discrete logarithm relation.
In the second case, those values are all identical. Over the whole extraction procedure we

have found w′ and w′′ such that

[2] = [g′]w′ + [g′′]w′′ + 〈w′,w′′〉︸    ︷︷    ︸
=B

[&] = [g′]w′ + [g′′]w′′ + U · B [&old]

According to the statement and the description of the protocol, [2] has to have the form

[2] = [g′]w′ + [g′′]w′′ + C [&old] − C [&old] + U · C [&old]
= [2] = [g′]w′ + [g′′]w′′ + U · C [&old]

Comparing the coefficients of [&old], we find out that U ·C = U ·B and, since U ≠ 0, this implies
B − C = 0 and therefore C = 〈w′,w′′〉, giving us unconditional extraction with 2 transcripts.
For quick extraction just verify if the witness fits for the unmodified relation with [2old] using
[&old], which only requires 1 transcript.
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4. Inner Product Argument

Protocol 1 from [5] Protocol 14 Protocol 1 from [5] Protocol 14

a w′ g [g′]
b w′′ h [g′′]
a′ ŵ′ g′

[
ĝ′

]
2 C u [&]
aL w′(−1) L [u−1]
aP w′(0) P [u0] = [2]
aR w′(1) R [u1]

C [2]
analogous for b→ w′′, 2 → C G8 b (8)

Table 4.3.: Translation between the variable names here and in Bünz et al. [5]

4.3.6. Comparison to other versions of the Inner Product Arguments

The protocols presented here are based on the modifications by Hoffmann, Klooß, and Rupp
[8] to the original Bulletproof Inner Product Argument [5]. Instead of generalizing to testing
distributions, we fixed x, y and z. The Protocol VKA corresponds to LMPAnoZK (Protocol 3.9)
from the paper, and was simplified by only allowing matrices with< = 1 columns and renaming
A to g and C to 2 to match the notation in the Inner Product Argument. IPA corresponds to
IPAnoZK (Protocol 4.1) and is similar, but consistently uses a variable : instead of fixing : = 2
to minimize the amount of group elements sent.
Compared to the Bulletproof Paper by Bünz et al. [5], more modifications have been made:

The notation of the group G was changed from the multiplicative style to the additive style,
allowing for vector notations and therefore simplifying the transformations. To denote group
elements, additional parenthesis are used, for example to denote [&]. As in its predecessor by
Bootle et al. [4], this paper generalizes to : ∈ N. Almost all variables have been renamed to
match [8], the translation between the different protocols has been summarized in Table 4.3.
Additionally, the coefficients used for folding w′ and w′′ have been simplified. In case of : = 2,
they changed from x = ( b−1 b )T to x = ( 1 b )T, because this way multiplications with 1 are free.
In the notation used in this paper or by [8], the coefficients by Bünz et al. [5] are:

x =

(
b−1

b

)
y =

(
b

b−1

)
z = ©«

b2

1
b−2

ª®¬
The preprocessing in [5, Protocol 2] has been merged into Protocol 14; instead of fixing the

inner product by adding it to the statement, as in [8] the statement is modified to ensure that
the correct C was used.

The predecessor to the Bulletproof Inner Product Argument [4, Section 4] doesn’t merge the
commitments and therefore runs two distinct instances of the vector knowledge protocol with

31



4. Inner Product Argument

challenges

x =

©«
b−1

b−2

...

b−:

ª®®®®¬
y =

©«
b

b2

...

b:

ª®®®®¬
z =

©«
b:−1

...

b−:+1

ª®®¬
The commitment [2] to the vectors is split into � and �; and the value of the inner product C is
called I. Otherwise, the notation resembles the one used in [5]. Instead of fixing : = 2, the
version of the protocol by Bootle et al. [4] is defined for general : .
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5. Dynamic Extraction Framework

In the following chapter, the framework of predicate-extended emulation introduced by Jaeger
and Tessaro [9] is adapted to the dynamic setting required for extractors with quick-extraction
as seen for Protocol 14. Then we rephrase the Forking Lemma for this new setting, which allows
us to combine a dynamic extractor with a dynamic tree finder to construct an emulator for
knowledge soundness. The results from this chapter can then be used together with statements
as suggested in Conjecture 10 in the next Chapter 6 to prove the linear amount of required
transcripts for the Bulletproof Inner Product Argument.

5.1. Extraction Framework

For a proof system PS, the Forking Lemma [4] proves that given an algorithm to extract a
witness from a tree of transcripts of a certain size as introduced in Section 2.2.2, we have
knowledge soundness. So the extraction process is split into two steps by the formulation of
the lemma: First, a tree is constructed by rewinding the prover P∗; then this tree of transcripts
is given to an extractor to calculate the witness. Burst-extraction as introduced in Chapter 3
can be used to model the sampling behaviour for the quick-extraction of the Inner Product
Argument (Protocol 14). We have seen that many transcripts of the static tree have not been
looked at in the extraction process and therefore were not necessary. This is why in this section
a dynamic version of the extraction framework will be presented, where only the transcripts
that are required for extraction are generated on demand.

For the following section, recall the syntax and security of proof systems introduced in the
Preliminaries Section 2.2.

5.1.1. Predicate-Extended Emulation

For a proof system PS to be knowledge sound with knowledge error ^ ( |D |), according to Defini-
tion 4 we need an emulator E, with rewind access to a possibly dishonest prover P∗. Whenever
a regular execution of the protocol with the prover P∗ for a statement D is accepting with
probability n (D), the emulator E extracts a witness with a probability of at least (n (D)−^ ( |D |))/@( |D |),
where @ is a polynomial.

Here, we will “split” emulation soundness into two game-based security properties, from
which together knowledge soundness follows directly: emulation security demands that the
transcripts generated by E are indistinguishable from those generated by a regular protocol ex-
ecution with P∗. And predicate extension, which is parametrized by some predicate Π evaluated
on the statement, the public parameters and the output of the extractor, is fulfilled if whenever
E produces an accepting transcript, the auxiliary outputF evaluates Π to be true.
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5. Dynamic Extraction Framework

Game Hemu
PS,E,1 (P

∗,A)
1 : global 8 ← 0

2 : (S, ·, ·, V, `) ← PS

3 : ??←$ S

4 : (D, B, fA) ←$A (??)

5 : (tr1, ·) ←$

〈
P∗?? (D, B), V?? (D)

〉
6 : (tr0, ·) ←$ ENext,Rewind(??,D)
7 : 1 ′←$A(tr1, fA)

8 : return 1 ′ ?
= 1

Game Hpredext
PS,E,Π (P

∗,A)
1 : global 8 ← 0

2 : (S, ·, ·V, `) ← PS

3 : ??←$ S

4 : (D, B, ·) ←$A(??)
5 : (tr,F) ←$ ENext,Rewind(??,D)
6 : return (V?? (D, tr) ∧ ¬Π(??,D,F))

Game Hpred
S,Π (A)

1 : ??←$ S

2 : F←$A(??)
3 : return Π (??, n,F)

Figure 5.1.: Games defining the Security Properties of Proof Systems

Note that 8 is a global variable which denotes the round of the protocol and therefore the
corresponding layer of the tree the extraction process is currently in. It is used in the oracles
Next() and Rewind() defined in Figure 5.2. The empty value filling unused parameters is denoted
by n .

In the following paragraphs, we will have a closer look at those two properties:

Emulation Security The game Hemu
PS,E,1 (P

∗,A), which can be found as pseudo-code in Figure 5.1,
is parametrized by a public coin proof system PS, an emulator E and a bit 1. The adversaries
considered here are a possibly cheating prover P∗ and a distinguisher A. This distinguisher A
chooses the statement to be proven and tries to find out whether the transcript that is given
was generated by a regular protocol execution or the emulator. In the game, public parameters
are sampled from the setup algorithm S, which are then handed to A to choose the statement
D along with the secret information B for the prover P specified by the protocol. Then the
emulator E and the regular protocol 〈P∗?? (D, B) , V?? (D)〉 are run to obtain two transcripts tr0
and tr1. The transcript tr1 determined by the bit 1 from the specification of the game is then
given to A, which then attempts to guess the bit 1 correctly.
We define the advantage function for this game as Advemu

PS,E (P∗,A) = Pr[Hemu
PS,E,1 (P

∗,A)] −
Pr[Hemu

PS,E,0 (P
∗,A)]. Here in this thesis, the advantage will always be Advemu

PS,E (P∗,A) = 0.
Specifying an emulator with this property alone is not difficult, because we can just run the
protocol with P∗ by calling Next ` + 1 times. In combination with the next security definition
of Predicate Extension, this notion becomes useful.

Predicate Extension Hpredext
PS,E,Π (P

∗,A), which as Hemu can be found as pseudo-code in Figure
5.1, is won by the adversary A and the possibly dishonest prover P∗ if the transcript output by
the emulator for a statement generated by the attacker A is accepting, but the predicate is not
fulfilled on the witness extracted.
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The advantage function is AdvpredextPS,E,Π (P
∗,A) = Pr[Hpredext

PS,E,Π (P
∗,A) = 1]. Again, it is easy to

construct an emulator with AdvpredextPS,E,Π (P
∗,A) = 0: If every transcript output is rejecting, the

adversary will never win. This would prohibit emulation soundness.

Witness-Extended Emulation The special case of witness-extended emulation can be described
by using the predicate Πwit, which checks ifF is a witness for D, i.e. Πwit(??,D,F) = ((D,F) ∈
R??). A proof system with negligible advantages for all provers P∗ and all attackers A in both
Predicate Extension for Πwit and Emulation Security also fulfills Witness Extended Emulation
as described in [5, Definition 10].

Hard Predicates When working with arguments of knowledge like the Bulletproof Inner
Product Argument, we need to formalize solutions for the underlying hard problem about
the public parameter ?? : A witness-independent predicate is one where Π(??,D,F) does not
depend on the second input D.
For example for the Bulletproof Inner Product Argument from Protocol 14, this could be a

predicate verifying whether the witnessF = v is a non-trivial discrete logarithm relation for
[ g′ g′′ & ]. We can formalize this using a setup algorithm S denoted by S=

G
. The setup algorithm

generates a vector [g] of group elements of length <, and with the witness-independent
predicate ΠG,<dl (?? = [g] , D,F). The predicate checks ifF = v specifies a non-trivial discrete
logarithm relation, i.e. [g] v = 0 and v ≠ 0.

Hardness of a Predicate To quantify the hardness of a predicate, we introduce one last
game Hpred, where an attacker A is given public parameters ?? generated by S, and then
checks on the results whether the predicate is fulfilled. The advantage of A is defined as
Advpred

(,Π (A) = Pr
[
Hpred
S,Π (A)

]
.

For our predicate ΠG,<dl , the advantage against the discrete logarithm relation assumption is
captured by Advpred

S<
G
,ΠG,<dl

(A) = Advdl-rel
G,=
(A).

We can use logical operators like ∧ or ¬ to modify and combine predicates. For example
Π1 ∨ Π2 evaluates to true if either Π1 or Π2 evaluate to true for a given input.

Tree of Transcripts Trees of Transcripts have already been introduced in Definition 7 or in a
variant for 1-entries in the matrix � from the Burst Collision Game introduced in Section 3.1,
so here we only describe the encoding used in this section. A tree node is described as a tuple
(<28−1,<28, ℓ), with ℓ being a list of the children of this node. For leaves, we have ℓ = ∅.
In the static setting used in [9], we first construct a full tree for certain branching factors

k = (:1, . . . , :`). Then the extractor is started with this tree as an input. In the dynamic setting
used here those two steps are merged: At the beginning, only one accepting transcript is
generated, and then the extractor X requests new accepting transcripts from the tree finder T
on demand.
The following sections will define the behaviour of the tree finder and the interface of an

extractor.

5.1.2. Oracles

To describe a regular run of the protocol, we define
〈
P?? (D,F), V?? (D)

〉
. In the corresponding

pseudo-code displayed at the left side of Figure 5.2, first the states of the prover fP and the
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〈
P?? (D,F),V?? (D)

〉
1 : fP ←⊥;fV ←⊥;<−1 ←⊥
2 : (<0, fP) ←$P?? (D,F,<−1, fP)
3 : for 8 = 1, . . . , ` do

4 : (<28−1, fV) ←$V?? (D,<28−2, fV)
5 : (<28 , fP) ←$P?? (D,F,<28−2, fP)
6 : CA ← (<−1,<0,<1, . . . ,<2`)
7 : 3 ← V?? (<2`, D, fV)
8 : return (CA, 3)

Next()
1 : require 8 ≤ `
2 : if 8 = 0 then

3 : f0P ←⊥;f1V ←⊥;<−1 ←⊥
4 : (D,<0, f

1
P) ←$P∗?? (D, B,<−1, f0P)

5 : else

6 : (<28−1, f
8+1
V ) ←$V?? (D,<28−2, f

8
V)

7 : (<28 , f
8+1
P ) ←$P∗?? (D, B,<28−1, f

8
P)

8 : 8 ← 8 + 1
9 : return (<28−1,<28)

Rewind()
1 : require 8 > 0

2 : 8 ← 8 − 1
3 : return n

Figure 5.2.: Oracles giving access to the protocol for the tree finder

verifier V are initialized empty. Also, the message<−1 is set to ⊥ as the first message of the
transcript — this message is only a placeholder and is not sent by the verifier V, but allows
for easier indexing in line 1. Afterwards, both the prover P and the verifier V are called in an
alternating way, their state is updated and the sent messages< 9 are saved. Those messages are
then assembled into a transcript tr in line 6, and are returned along with the bit 3 indicating
whether the transcript was accepted by the verifier.

The complete run of a protocol as defined in
〈
P?? (D,F), V?? (D)

〉
can also be split into ` + 1

calls to Next (): In the first call to Next () when 8 = 0, as for the complete run, the different state
variables are initialized. To allow for rewinding, the states of the prover and the verifier are
indexed with f8P, where 8 − 1 is the round where this version of the state was output — so that
in can be used as the input for round 8 . Otherwise, if 0 < 8 ≤ `, first the verifier is called to
generate a new challenge, followed by a call to the prover. The messages and the states after
this round are then saved after every step, the round counter is increased in line 8 and the new
messages<28−1 by the verifier V and<28 by the prover P are returned in line 9.

To allow for fetching multiple challenges at a certain step of the transcript, we introduce the
Rewind ()-function, which decreases the protocol round counter 8 − 1, so that the next call of
Next () works with the fP and fV from the earlier round 8 − 1.

5.1.3. Emulator and Tree Finding Process

The next component of the framework considered is the Tree Finder T: T has rewind access to
the prover P∗ by using Next() and Rewind(), and dynamically attempts to find new accepting
transcripts on requests from the extractor X.
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E (X)Next,Rewind (??,D)
1 : global C ← ∅
2 : (tr,F, ·) ← TNext,Rewind,X0 (??,D, n,D)
3 : return (tr,F)

TNext,Rewind,X` (??,D, tr(`−1), a (`−1))
1 : (<2`−1,<2`) ← Next()
2 : tr(`) ← (tr(`−1) .<−1, . . . , tr(`−1) .<2`−2,<2`−1,<2`)
3 : if <2`−1 ∈ C then return (tr(8+1) ,⊥collision, n)
4 : C ← C ∪

{
<2`−1

}
5 : if V?? (D (`) , tr(`) ) = 1 then

6 : (F (`) , fX) ← X` .leaf((<2`−1,<2`), a (`−1) )
7 : elseF (`) ←⊥T, fX ← n

8 : Rewind()
9 : return (tr,F (`) , aux(`) = fX)

TNext,Rewind,X
8

(??,D, tr(8−1), a (8−1)) // 0 ≤ 8 < `

1 : (<28−1,<28) ← Next()
2 : tr(8) ← (tr(8−1) .<−1, . . . , tr(8−1) .<28−2,<28−1,<28)
3 : (fX, a (8) ) ← X(8)

8
.enter((<28−1,<28), a (8−1) )

4 : (tr,F (8+1) , aux(8+1) ) ←$ TNext,Rewind
8+1 (??,D, tr(8) , a (8) )

5 : if <28−1 ∈ C then return (tr,⊥collision, n)
6 : C ← C ∪

{
<2`−1

}
7 : if F (8+1) ∈ {⊥T,⊥collision} then return (tr(8+1) ,F (8+1) , n)
8 : (done,F (8) , fX) ← X8 .add(fX,F (8+1) , aux(8+1) )
9 : while ¬done do
10 : (tr(8+1) ,F (8+1) , aux(8+1) ) ←$ TNext,Rewind

8+1 (??,D, tr(8) , a (8) )
11 : if F (8+1) =⊥T then continue
12 : elseif F (8+1) =⊥collision then return (tr(8+1) ,⊥collision, n)
13 : (done,F (8) , fX) ← X8 .add(fX,F (8+1) , aux(8+1) )
14 : Rewind()
15 : return (tr,F (8) , aux(8) = fX)

Figure 5.3.: The Tree-Finder T

Instead of explicitly building up a tree of transcripts of a certain size, here the tree is built
up dynamically as follows: First, one initial transcript is generated, which corresponds to just
a path with ` + 1 nodes. If this transcript is rejected by the verifier V, the extraction process
is stopped and the resulting transcript tr is returned — if it was accepted, extraction begins.
The implicit tree of transcripts is traversed in the depth first order, i.e. we can always either
generate a transcript branching off at the current message and enter extraction for the resulting
new child node, or rewind the prover and ascend one level towards the root. If the tree finder
and therefore the extractor enter a node outside a generated subtree, this subtree will not be
entered again. The pseudo-code for the tree-finder can be found in Figure 5.3.

The starting point for the Tree Finder is the emulator E (X)Next,Rewind, which has oracle access
to the extractor X and to the rewindable protocol instance using Next() and Rewind(). The call
arguments of the emulator are the public parameters ?? generated by the setup procedure S,
as well as the statement D the proof has to be emulated for. In line 1, the global variable C is
initialized as an empty set, which will contain the challenges used by the verifier and therefore
allows the tree finder to notice collisions in one run. Afterwards, the tree finder is started on
the root layer 8 = 0, and its returned witness and transcript are passed through to the caller.
The tree finder TNext,Rewind,X

8
(??,D, tr(8−1), a (8−1)) itself has oracle access to the rewindable

protocol using Next and Rewind and to the extractor X as well. T8 is parametrized by the layer
8 ∈ {0, . . . , `} of the tree corresponding to the round of the protocol Next() is currently in.
As call arguments, in addition to the public parameters ?? and the statement D, it receives
the transcript generated up to this point tr along with the updated statement a . The updated
statement a has been introduced, because in every recursive step of protocols like the Inner
Product Argument (Protocol 14), the statement is shrunk and therefore altered. a is updated in
a way, so that the predicate Π(??, a (8),F (8)) holds with the extracted witness for every node of
the tree.
In the pseudo-code of the tree finder, two different error symbols can be found: ⊥collision is

returned if a collision between two challenges was noticed. When the event occurs, this value
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is always propagated upwards, the exploration of new transcripts is stopped, and the error
value is returned by the emulator along with the first transcript generated. ⊥T is returned if the
first attempt to generate a new transcript for this node has failed. If this occurred for the first
transcript generated, no further expansion attempts are started and the error is propagated
upwards. If the first extraction was successful and extraction for an additional child returns
the error symbol ⊥T, the result from the failed extraction is ignored and other child extraction
is started.
We define the predicate Πcollision to evaluate to true if the given extraction result is the

collision error symbol ⊥collision, i.e. Πcollision(??,D,F) = 1⇔ F =⊥collision.
Where to add new transcripts is determined by the extractor, which will be considered more

closely in the following subsection.

5.1.4. Interface of the Extractor

The extractor has three different methods: When the last message of a transcript, i.e. a leaf on
layer 8 = ` of the implicit tree of transcripts, is entered, the method X` .leaf((<2`−1,<2`), a (`−1))
is called. This method receives the last two messages of the transcript<2`−1 and<2` along
with the updated statement a (`−1) , and returns the witness for layer ` denoted byF (`) as well
as some internal extractor state fX.
For inner nodes of the tree, there are two functions: X8 .enter, which is called when a node

is entered by the tree finder T. As for entering leaves, parameters are the last two messages
<28−1 and<28 as well as the updated state for this node a (8−1) . The values returned here are the
internal extractor state fX and a new updated statement a (8)X . The last function X8 .add consumes
the result of the extraction of a child tree of a current node, and decides whether more children
are needed: As parameters, the internal state fX initially generated in X8 .enter on this layer is
used, as well as the witnessF (8+1) and the internal state aux(8+1) from the successful extraction
on the layer below. As a result, a bit done ∈ {0, 1} requesting another child with “done = 0” and
signaling that extraction has been finished with “done = 1” is returned, along with a witness
F (8) to be propagated upwards if “done = 1” and the internal state fX.

5.1.5. Functionality of the Tree Finder

The tree finder itself proceeds as follows: When T` called for a leaf, i.e. a full transcript, as
formalized in 5.3, the tree finder completes the run of the protocol by calling Next() in line 1
and compiling the full transcript in line 2. Then it checks whether the challenge was already
used in this extraction, and if so, returns a special error symbol ⊥collision as the witness. This
indicates that a collision has been found and will stop the entire extraction in line 3. In line
4, the set of used challenges C is updated by adding the new challenge<28−1. If the verifier
accepts the current transcript, which is checked with V?? (D (`), tr(`)) = 1, then the extractor
is called for this leaf and the corresponding witness F (`) and internal state fX are saved to
be returned later. Otherwise, as the witnessF (8) another special error symbol ⊥T is returned,
which indicates that no extraction was started by the tree finder T because the corresponding
transcript has not been accepted. Afterwards, the protocol instance is rewound using Rewind();
and the transcript tr(`) , the witnessF (`) and the internal state aux(`) = fX are returned.
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When called for an inner node, i.e. with 8 ∈ {0, . . . , ` − 1}, the procedure T8 in Figure 5.3 is
used. As for the leaves, the protocol is run for one round using Next() and the new messages are
appended to the transcript tr. Before checking for collisions and updating C in lines 5 – 6, first
the extractor is called for the new messages, and the initial extractor state fX and the updated
statement a (8) are generated. Then in line 4, the tree finder is called to complete the current
transcript and additionally extract the witness for the corresponding subtree. The outcome
of the extraction is checked in line 7, and if either a collision was found or the first transcript
generated in this subtree was rejected, the error is propagated upwards. Otherwise, the result
of the first extraction is handed to the extractor using X8 .add(). Now, the additionally requested
subtrees are generated: Until the extractor returns done = 1, the tree finder TNext,Rewind

8+1 is called
for the next level in line 10. Next, possible error values are taken care of: If the first transcript
generated was not accepting indicated byF (8+1) =⊥T, another attempt is started by jumping
back to the start of the loop using continue in line 11. If a collision signalled byF (8+1) =⊥collision
was found, the collision is propagated upwards. If no error occurred, the procedure of the
extractor X8 .add() is called with the extracted witness F (8+1) and the internal state aux(8+1) ,
and returns an updated state fX along with “done” indicating whether additional subtrees are
needed (done = 0). When the extractor X has indicated that additional children are required
for this node with “done = 0”, the protocol instance is rewound using Rewind() in line 14. The
complete transcript tr(8) along with the extracted witnessF (8) and the state of the extractor as
an auxiliary value aux are returned.

5.1.6. Tree-Extractor

As an example on how an extractor may look like, in Figure 5.4 the tree builder Xk−tree is
presented. Recall that a node of the tree of transcripts is denoted by (<28−1,<28, ℓ), where ℓ
is the list of the child nodes. The tree building extractor is parametrized with the branching
factors k =

(
:1, . . . , :`

)
∈ N` . When asked to visit a leaf, the tree builder returns a tree just

consisting of the root labelled with messages<2`−1 and<2` , i.e. F (`) = (<2`−1,<2`, ℓ = ∅).
When entering an inner node on layer 8 with Xk−tree8 .enter(), as the state the two new message
(<28−1,<28, ℓ) along with an empty list of children is saved. To this list ℓ , X.add() then adds
the extracted child trees until :8 children have been found.

Xk−tree` .leaf((<2`−1,<2`), a (`−1))
1 : ℓ ← ()
2 : F (`) ← (<2`−1,<2`, ℓ)
3 : return (F (`) , fX = n)

Xk−tree8 .enter((<28−1,<28), a (8−1))
1 : fX ← (<28−1,<28 , ℓ = ())
2 : return (fX, a (8) = n)

Xk−tree8 .add(fX,F (8+1), aux(8+1))
1 : parse (<28−1,<28 , ℓ) ← fX

2 : ℓ .add(F (8+1) )
3 : fX ← (<28−1,<28 , ℓ)
4 : if |ℓ | = :8 then
5 : return (done = 1,F (8) = fX, fX)
6 : return (done = 0,F (8) = n, fX)

Figure 5.4.: The Tree-Builder Xk−tree
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5.2. Point-Wise Proximity

For our dynamic version of the Forking Lemma, we need a way to bound the probability of a
collision occurring. This is the only way our extraction process would fail, because an accepting
transcript is returned without an usable result. One solution is to bound the probability by
applying the PRP-PRF-switching lemma [11, Lemma 4.5.12], which gives a bound of @2/2# with
@ being maximal amount of oracle queries, and # the amount of possible values. This version
of the switching lemma can not be applied here, because we only know the expected amount
instead of a bound on the amount of oracle queries — therefore we need another approach.

In the following section, the indistinguishability framework used by Jaeger and Tessaro [9] is
introduced. Additionally, a theorem giving a bound for the advantage of an arbitrary attacker
with a known expected amount of oracle accesses is stated and proven. Then, this theorem will
be used to state an expected-time version of the PRF-PRP-switching lemma by adapting the
proof by Chang and Nandi [6].

5.2.1. Indistinguishability Framework

As Jaeger and Tessaro [9], we will follow the random systems abstraction by Maurer [10]. In
this abstraction, there is a distinguisher � which has to find out whether it is interacting with
the game � or � . To distinguish, � may send an element from the set X to the game, and
receives an element of Y as an answer. This may continue over multiple rounds, until � stops
the conversation.

Instead of providing algorithms for defining a game � and the distinguisher� , their behaviour
is defined by families of probability functions like {?�8 }8∈N>0 returning the probability of a
response given a certain prior “conversation”. For the game � , we have the probability function
?�8 : X8 × Y8−1 × Y → [0, 1] for each 8 , which states a probability for a ~ ∈ Y being returned
after a communication of G ∈ X8 by � and ~8−1 ∈ Y8−1 by � , so the probability for every
possible ~ ∈ Y returned is

∑
~∈Y ?

�
8

(
G8, ~8−1, ~

)
= 1. For the distinguisher � , analogously there

is a family of functions ?�8 : X8−1 ×Y8−1 ×X → [0, 1] for each 8 , where for messages G ∈ X8−1
by � and ~8−1 ∈ Y8−1 by � the probability for a next G ∈ X sent by � is assigned such that∑
G∈X ?

�
8

(
G8, ~8−1, G

)
= 1.

Because we don’t know an upper bound on the requests by � , instead of only defining 8 for
a fixed 8 ∈ {1, . . . , @}, we have now a special value Fin ∈ X such that G8 = Fin marks �’s final
query and therefore ends the transcript. For a transcript g =

(
G1, ~1, . . . , G@, ~@

)
we define the

length of the transcript |g | = @. Denote by T the set of complete transcripts g , where the last
query G |g | = Fin.
To calculate the probability of a certain transcript g , we first specify the probability of one

participant acting like in the transcript: For a game like � , we have ?� (g) = ∏@

8=1 ?
�
8

(
G8, ~8−1, ~8

)
and for the distinguisher � , we have ?� (g) = ∏@

8=1 ?
�
8

(
G8−1, ~8−1, G8

)
. Here, an index in the

superscript G8 is the tuple of all messages up to the 8th message G8 of the transcript g , i.e.
G8 = (G1, . . . , G8).

In the formulation of the statement, we will consider the random variable over all possible
transcripts in T . The probability for every g ∈ T is defined by Pr

[
)�
�

= g
]
= ?� (g) · ?� (g).

Analogously to the length of the transcript g , we define the random variable
��)�
�

�� to be the
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amount of oracle queries made by � when interacting with � . Consequently, E
[��)�

�

��] is the
expected number of oracle queries made by � .

Up to now, we have not given an obvious way for the distinguisher � to state whether they
think they were interacting with � or� . We achieve this by adding a very last message to every
transcript g =

(
G1, ~1, . . . , G@, ~@

)
. We define the accepting probability as ?�

@+1 (G
@, ~@, 1) with

1 ∈ {0, 1}, such that ?�
@+1 (G

@, ~@, 0) + ?�
@+1 (G

@, ~@, 1) = 1. We denote by � ()�
�
) a shorthand for

the random variable of this final decision.
Using this notation, we can now define the advantage of � when distinguishing � and � :

Advdist
�,�
(�) = Pr

[
�

(
)�
�

)
= 1

]
− Pr

[
�

(
)�
�

)
= 1

]
.

When � and � are clear from the context, we define a partition of T = - + ¤∪-− ¤∪-=:

- + =
{
g ∈ T : ?� (g) > ?� (g)

}
-− =

{
g ∈ T : ?� (g) < ?� (g)

}
-= =

{
g ∈ T : ?� (g) = ?� (g)

}
Here, for every transcript g ∈ - + the probability of g being produced from interaction with

� is higher than being produced from interaction with � .

5.2.2. Point-Wise Proximity

In this section, we define Point-Wise Proximity, which is a special case of the � -coefficient
technique. The� -coefficient technique [12] is a framework for obtaining a bound on Advdist

�,�
(�)

from a worst-case bound @ on the number of oracle queries that the distinguisher � makes.
For this, - + is partitioned into two sets, Good and Bad, such that - + = Good ¤∪Bad. Then, it is

proven that 1 − ?� (g)/?� (g) ≤ n (@) for all g ∈ Good with |g | = @ and that Pr
[
)�
�
∈ Bad

]
≤ X (@).

Having shown those facts, simple calculations yield that Advdist
�,�
(�) ≤ n (@) + X (@) for any

distinguisher � making @ queries and that Pr
[
)�
�
∈ Bad

]
≤ X (@).

Pointwise Proximity is the special case of the � -coefficient technique, where Bad = ∅ and
therefore - + = Good. Hence, X (@) = 0 satisfies Pr

[
)�
�
∈ Bad

]
≤ X (@), and we have proven

that Advdist
�,�
(�) ≤ n (@) by just showing that 1 − ?� (g)/?� (g) ≤ n ( |g |) for any � making at most

@ queries.
Theorem 17 was proven by Jaeger and Tessaro [9, Theorem 2] and expands the notion of

Point-Wise Proximity to distinguishers whose amount of requests is not bounded, but their
expected amount of requests is known. We define two games � and � to be n-restricted if
1 − ?� (g)/?� (g) ≤ n ( |g |) for all g ∈ - +. Here, we will consider the special case of n (@) =

(
Δ·@3

)
/?

for some Δ, 3 and ? . Since the expected runtime may vary between � and � , we make those
two games interchangeable by renaming them to � and �̄ .

Theorem 17. Let n (@) = (Δ·@3 )/# for Δ, 3, # ∈ N>0 satisfying # ≥ Δ · 63 . Let (�,�) be an
n-restricted pair of games. Let � ∈ {�,�} and �̄ ∈ {�,�} \ {� }. Then for any �,

Advdist
�,�̄
(�) ≤ 5

3

√
Δ · E

[��) �
�

��]3
#

= 5 3

√
n
(
E

[��) �
�

��] ) .
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In the following section, we apply this theorem to prove an expected-time version of the
PRP-PRF-switching Lemma.

5.2.3. Expected Time RP/RF Switching Lemma

Consider two games: The first game, ', returns a uniformly random G←$ {1, . . . # } sampled
with replacement on every distinct, new request. Game Π in contrast returns uniformly random
G←$ {1, . . . # } sampled without replacement. The PRP-PRF-switching lemma gives us a bound
for the success of an attacker A succeeding in distinguishing those two games Advdist

',Π (A).
WhenA makes at most @ oracle queries, we can apply the bounded version of the switching

lemma [11, Lemma 4.5.12] and prove that Advdist
',Π (A) ≤ @2/2# . For the expected amount, we

can apply Theorem 17 to the proof by Chang and Nandi [6] for the bounded version of the
switching lemma. The following theorem is based on the considerations by Jaeger and Tessaro
[9, Section 4.3, Switching Lemma].

Corollary 18 (Expected Time Switching Lemma). Let A be an attacker that in expectation
makes E

[��)AΠ ��] queries to either a random function ' or a random permutation Π with domains
{1, . . . , # }, where 18 ≤ # ∈ N. Then

Advsl# (A) ≤ 5

√
E

[��)AΠ ��]2
2#

.

In the following proof, we first show that ' and Π are n-bounded as done by Chang and
Nandi [6], and then apply Theorem 17.

Proof. Consider as Good the set of transcripts g =
(
G1, ~1, . . . , G@, ~@

)
, where the G8 are distinct

and the ~8 are distinct, which is also the set of transcripts that are likelier to be seen when
interacting with random permutations � = Π than with random functions � = '. Therefore
we have - + = Good and Bad = ∅ and have the special case of Pointwise Proximity. Next, we
show n-boundedness:
For a fixed g' that could have been seen when interacting with the random function ' and

gΠ seen when interacting with the random permutation Π, for a g ∈ Good we have a probability
that

Pr [g' = g] = 1

#@

Pr [gΠ = g] = 1

#
· 1

# − 1 · · · · ·
1

# − @ + 1

= # −@ · 1

1 − 1
#

· 1

1 − 2
#

· · · · · 1

1 − @−1
#

≤ # −@ · 1

1 − 1+2+···+(@−1)
#

= # −@ · 1

1 − @(@−1)
2#

Therefore we can deduce that
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Set n =
@ (@ − 1)

2#

⇒ 1 − @ (@ − 1)
2#

≥ 1 − n

⇒ 1

#@
≥ (1 − n) · # −@ · 1

1 − @(@−1)
2#

⇒ Pr [g' = g] ≥ (1 − n) · Pr [gΠ = g]

Since we have proven that the games Π and ' are n-restricted with n (@) = @2/2# , we can
now apply Theorem 17 with Δ = 1

2 and # ≥ Δ · 63 = 18, from which the statement directly
follows.

5.3. Forking Lemma

Adversary BE(X) (??)
1 : 8 ← 0

2 : (D, B, ·) ←$A(??)
3 : (·,F) ←$ E (X)Next,Rewind (??,D)
4 : returnF

Figure 5.5.: Attacker BE(X) against Π∗.

Using the framework by Jaeger and Tessaro [9] introduced in Section 5.1 and the Expected
Time Switching Lemma proven in Corollary 18, we can now state a dynamic version of the
Forking Lemma [4] with the improvements by Jaeger and Tessaro [9]:

Theorem 19 (Dynamic Forking Lemma). Let PS = (S,R, P,V, `) be a public coin proof system.
Suppose V’s challenges are uniformly drawn from ( × Z? for some set ( and ? ∈ N. Let P∗ be a
cheating prover andA be an adversary. Let X be a Πwit∨Π∗-extractor, which generates at most"
transcripts in expectation when combined with T. Define E = E(X)Next,Rewind as shown in Figure
5.3.

1. Advemu
PS,E (P∗,A) = 0

2. The expected number of queries that Emakes to Next is less than `" +1. Exactly one of these
queries is made while 8 = 1 in Next, therefore there are at most `" challenges in expectation
generated by V.

3. AdvpredextPS,E,¬Πcollision
(P∗,A) ≤ 5`"/√2?

4. AdvpredextPS,E,Πwit
(P∗,A) ≤ AdvpredPS,Π∗

(
BE(X)

)
+ 5`"/√2?

5. The expected runtime of BE is approximately )A +&E ·)P∗ +)E where )G is the worst-case
runtime of G ∈ {A, P∗, E} and &E < `# + 1 is the expected number of queries that E makes
to Next in Hpredext

PS,E,Π∗ (P
∗,A).
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Proof. For the first point, we recall how the transcript tr is generated: In Figure 5.3, we can
see that in E (X), the tree finder is called on level 0 in line 2 and the corresponding transcript
is being returned. On every layer until the end of the protocol with 8 = `, Next() is called
in every case, the two new messages are appended and a recursion for the next step of the
protocol is started. This results in just ` + 1 calls to Next(), which corresponds exactly to
the behaviour of generating the protocol directly using

〈
P?? (D,F),V?? (D)

〉
. Therefore, the

transcripts are exactly identically distributed, so that an attacker can’t have any advantage.
This proves Advemu

PS,E (P∗,A) = 0.
For the second statement, we know that in expectation on layer `, at most " transcripts

are being generated and therefore there are at most" calls to Next() in expectation on layer
`. On every layer above, by construction of the extractor, there must have been fewer calls
to Next(). Therefore a conservative bound for layers 1 to ` is `" . The extractor is only called
once on layer 0 and invokes Next() once there, so in total we have at most `" + 1 function
calls in expectation which concludes this part of the proof.

Since the verifier V is public coin, we know that the challenges 2 have been uniformly drawn
from ( × Z? . The goal is to bound the probability of a collision occurring by 5`"/√2? with ?
being the size of the integer component of the challenges, and" being the expected amount
of calls to the verifier. This will be achieved by applying the switching lemma to the integer
component from Z? ; if those are distinct, the whole challenge is.
For this, we consider the sampling of the random challenges during the execution of

E(X)Next,Rewind(??,D) (Figure 5.3) in the context of being called by Game Hpredext
PS,E,Π (P

∗,A) as an
interaction with a random function. This interaction can be seen as communication with the
game ' from Corollary 18 (with incrementing inputs, so that no value is entered twice), and
the rest of the game as the distinguisher � . We know that there will be at most `" queries in
expectation to V as shown in the previous point. The distinguishing advantage between the
random function ' and the random permutation Π being used to generate V’s challenges can
be bounded above by

Advsl" (A) ≤ 5

√
E

[��)AΠ ��]2
2"

with E
[��)AΠ ��] = `".

Because no value is used twice, in the “switched” game there is no collision because of a
random permutation being used.
Therefore, the probability of a collision is AdvpredextPS,E[X],¬Πcollision

(P∗,A) ≤ 5`"/√2? which con-
cludes the third part of the proof.
To prove the third inequality, we first prove some auxiliary equations. This first equation

was part of [9, Lemma 9]:
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5. Dynamic Extraction Framework

AdvpredextPS,E,Π1
(P∗,A)

= Pr
[
V?? (D, tr) ∧ ¬Π1(??,D,F) in Hpredext]

= Pr
[
V?? (D, tr) ∧ ¬Π1(??,D,F) ∧ (¬Π2(??,D,F) ∨ Π2(??,D,F)) in Hpredext]

= Pr
[
V?? (D, tr) ∧ ¬(Π1(??,D,F) ∨ Π2(??,D,F)) in Hpredext]

+ Pr
[
V?? (D, tr) ∧ ¬Π1(??,D,F) ∧ Π2(??,D,F) in Hpredext]

≤ Pr
[
V?? (D, tr) ∧ ¬(Π1(??,D,F) ∨ Π2(??,D,F)) in Hpredext]

+ Pr
[
V?? (D, tr) ∧ ¬(¬Π2(??,D,F)) in Hpredext]

≤ AdvpredextPS,E,Π1∨Π2
(P∗,A) + AdvpredextPS,E,¬Π2

(P∗,A) (5.1)

Since the only reason for the Hpredext to fail is that a collision has occurred, we can additionally
note that

AdvpredextPS,E,Π¬⊥collision
(P∗,A) = AdvpredextPS,E,Πwit∨Π∗ (P

∗,A) . (5.2)

The next equation uses BE(X) defined in Figure 5.5 to “harvest” the success probability from
the predicate-extension game:

AdvpredextPS,E,¬Π∗ (Π
∗,A) = Pr

[
V?? (D, tr) ∧ ¬(¬Π∗(??,D,F)) in Hpredext]

≤ Pr
[
Π∗(??,D,F) in Hpredext]

= Pr
[
Π∗(??, n,F) in Hpred] = AdvpredS,Π∗ (BE(X)) . (5.3)

Using those equalities, we are now prepared to prove the fourth statement:

AdvpredextPS,E,Πwit
(P∗,A)

1

≤ AdvpredextPS,E,Πwit∨Π∗ (P
∗,A) + AdvpredextPS,E,¬Π∗ (P

∗,A)
2

≤ AdvpredextPS,E,Π¬⊥collision
(P∗,A) + AdvpredPS,Π∗ (BE(X))

3
= 5`#/√2? + AdvpredPS,Π∗ (BE(X))

In 1 , we used Equation (5.1), in 2 Equations (5.2) and (5.3) and in 3 the result from the
second statement.

For the fifth point, we can easily read the runtime from Figure 5.5, because the view of E(X)
is distributed identically to its view in Hpredext keeping the expected amount of queries to Next()
unaltered.

In the following chapter, an extractor for the Inner Product Argument from Protocol 14
will be given; which is an important step towards proving extraction using a linear amount of
transcripts in the size of the witness.
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We have introduced the Inner Product Argument and its extraction process in Chapter 4, a
dynamic extraction framework in Chapter 5 and an abstraction of sampling behaviour with a
conjecture on the bound of transcripts required in the sampling process in Chapter 3. Now those
results can be combined to construct an emulator E for the Bulletproof Inner Product Argument.
We conjecture that this emulator requires only an expected linear amount of transcripts for
successful extraction.

6.1. Procedures used during Extraction

This section will provide another view on the extraction process described in Lemma 15: Here,
the mathematical procedures used in the extraction process will be described. Those will later
be utilized in the pseudo-code of the extractor to recursively recover the witness.
The first function is quick-extract, which takes : transcripts and a folded witness ŵ′ and

ŵ′′ in F=/:? , and returns the recovered witnesses w′ and w′′. As described in Lemma 15, this
procedure may fail, which then guarantees a non-trivial discrete logarithm relation with 2:
successfully extracted subtrees. The input and output parameters of this functions are:

quick-extract
(
( [g′] , [g′′] , [&]) , [2] , (w′,w′′, (x, y, ·))8∈{1,...,:}

)
→ OR

((
w′ ∈ F=@,w′′ ∈ F=@

)
,⊥

)
In this function, we use the challenges to assemble the matrices X = [ x(1) ··· x(:) ] and

Y = [ y(1) ··· y(:) ]. Then we can recover the original witness by calculating F ′ = Y−1F̂ ′ and
F ′′ = X−1F̂ ′′. Afterwards, we verify that extraction was successful by checking [2] = [g′]w′ +
[g′′]w′′ + C [&], and if true, we return (w′,w′′) otherwise we return ⊥. The next function we
use is short-circuit, which can be called if quick-extraction failed:

short-circuit
(
( [g′] , [g′′] , [&]) , (w′,w′′, (·, ·, z))8∈{1,...,2:}

)
→ (a ∈ Ker ( [ g′ g′′ & ]))

As a pre-condition for this function to work, quick-extract must have failed on the first :
witnesses provided. First in this function, we calculate the result from quick-extraction, and
additionally use the 2: transcripts to unconditionally extract a witness. If those two witnesses
do not match, then [u] sent by P∗ in the transcript must have been calculated in a different way
to the specification in the protocol. We can extract the witnesses by calculatingW′,W′′ and
T, and comparing those as in Equation (4.11). There has to be a non-trivial discrete logarithm
assumption [ v′ v′′ � ] ∈ Ker ( [ g′ g′′ & ]) we can recover, because otherwise we can prove that
extraction must have been successful and must coincide with the result from quick-extraction.
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6. Short Circuit IPA Extractor

The function unfold-dlog-break() takes a folded non-trivial discrete logarithm relation and
expands it as described in the first part of the proof of Lemma 15. For this, it calculates
for a [ v̂′ v̂′′ � ] ∈ Ker( [ ĝ′ ĝ′′ & ]) the “unfolded” discrete logarithm relation [ x⊗v̂′ y⊗v̂′′ & ] ∈
Ker ( [ g′ g′′ & ]):

unfold-dlog-break ( [ v̂′ v̂′′ � ] ∈ Ker ( [ ĝ′ ĝ′′ & ]) , (x, y, ·)) → ([ v′ v′′ � ] ∈ Ker ( [ g′ g′′ & ]))
(6.1)

We need one last function to shrink the statement for the next layer of the tree downwards:

fold-statement (( [g′] , [g′′] , [&] , [2]) , [u] , (x, y, z)) →
( [
ĝ′

]
,
[
ĝ′′

]
, [&] , [2̂]

)
Here, we calculate the folded

[
ĝ′

]
,
[
ĝ′′

]
and [&] as in Protocol 14, by setting

[
ĝ′

]
= [g′] y[

ĝ′′
]
= [g′′] x and [2̂] = [u] z.

6.2. Witness-Extractor

In the following section, an extractor Xwit extracting the witness of the Inner Product Argument
in Protocol 14 in the notation of the framework defined in the previous chapter is given. We
only consider the recursive step of Protocol 14 and omit the preprocessing. The results by this
extractor satisfy Πdlog ∨ Πwitness if no collision occurs.

Xwit` .leaf((<2`−1,<2`), a (`−1))
1 : (x, y, z) ← parse<2`−1

2 : (w′,w′′) ← parse<2`

3 : return (F (`) = (w′,w′′), aux(`) = (n, (x, y, z)))

Xwit8 .enter((<28−1,<28), a (8−1) = ( [g′] , [g′′] , [&] , [2]))
1 : (x, y, z) ← parse<28−1

2 : ( [u]) ← parse<28

3 : fX ← (a (8−1) , ℓ = (), ( [u] , (x, y, z)))
4 : a (8) = (

[
ĝ′

]
,
[
ĝ′′

]
, [&] , [2̂]) ← fold-statement(a (8−1) , [u] , (x, y, z))

5 : return (fX, a (8) )

Xwit8 .add(fX,F (8+1), aux(8+1))
1 : (a (8−1) , ℓ, ( [u] , (x, y, z))) ← fX

2 : if F (8+1) is a short-circuit witness then

3 : F (8) ← unfold-dlog-break(F (8+1) , aux(8+1) )
4 : return (done = 1,F (8) )
5 : ℓ .add((F (8+1) , aux(8+1) ))
6 : if ℓ = : then

7 : if (w′,w′′) ← quick-extract(a (8−1) , ℓ) then
8 : return (done = 1,F (8) = (w′,w′′), aux(8) = ( [u] , (x, y, z)))
9 : elseif ℓ = 2: then

10 : F (8) ← short-circuit(a (8−1) , ℓ)
11 : return (done = 1,F (8) , aux(8) = ( [u] , (x, y, z)))
12 : fX ← (a (8−1) , ( [u] , (x, y, z)))
13 : return (done = 0,F (8) = n, fX)

Figure 6.1.: The HKR-Witness-Extractor Xwit

Using the state variables This paragraph is about the use of the different variables of the
extraction framework. From the odd messages<28−1 sent by the verifier V, we can derive b and
therefore the folding coefficients (x, y, z). The even messages<28 for 8 ∈ {0, . . . , ` − 1} contain
the [u] needed for unconditional extraction. The final message<2` by the prover contains ŵ′

and ŵ′′, which are the witness for the folded statement up to that point.
The variable F (8) returned by the extractor Xwit when “done = 1” as the second output, or

as the first output when visiting leaf nodes, contains either the two witness vectors (w′,w′′)
satisfying Πwit(c, a (8),F), or a non-trivial discrete logarithm relation a ∈ Ker ( [ g′ g′′ & ]).
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6. Short Circuit IPA Extractor

The additional information aux(8) returned along withF (8) contains the ( [u] , (x, y, z)), which
corresponds to the information of the verifier’s messages sent from this round with the folding
coefficients (x, y, z) and the [u].
In this formalization, the statement D = a (0) as well as the updated statements a (8) consist

of a (8) = ( [ĝ′], [ĝ′′], [&], [2̂]). [g′], [g′′] and [&] form the commitment key and [2] is the
commitment.
The internal state used by an extractor to collect the information about all children on a

node fX = (a (8), ℓ, ( [u] , (x, y, z))) contains the updated statement a (8) , the list of the extracted
(F (8+1), aux(8+1)) from the children, and the content of the messages needed for extraction in
the parent step that is returned as aux(8) in line 8 and 11.

Note that while in this listingw′ andw′′ correspond to the same entities as in the description
of the Inner Product Argument in Protocol 14,F (8) is the returned witness variable from the
pseudo-code in Figure 5.3.

Behaviour of the Extractor When visiting a leaf node with Xwit` .leaf((<2`−1,<2`), a (`−1)), the
extractor just saves the content of the messages in its returned values.
On entering a node Xwit8 .enter((<28−1,<28), a (8−1)), the new messages are parsed and stored

in the state. Then, the updated statement a (8) is calculated from a (8−1) . The state fX is initialized
with the statement for this layer a (8) , the empty list ℓ and the information that will later be
used on the parent layer for extraction ( [u] , (x, y, z)). Then, the statement a (8) and the state
fX are returned.

In Xwit8 .add(fX,F (8+1), aux(8+1)), the extractor receives the witness F (8+1) and the auxiliary
input aux(8+1) required for extraction, which are collected in the state fX in the list ℓ . If the added
witness was a non-trivial discrete logarithm relation, the relation is expanded and extraction
for the subtree (and therefore recursively the whole tree) is stopped with done = 1 in line 4.
As soon as : transcripts have been reached, quick extraction is attempted in line 7, and if it
was successful, the extracted witness is returned and extraction for this subtree is stopped.
If 2: subtrees have been added to the extractor, the non-trivial discrete logarithm relation is
calculated and then returned. Otherwise, the extractor signals with done = 0 in line 13 that
more subtree extractions are required.

6.3. Required Amount of Transcripts

When merging the tree finder T with the extractor Xwit, we get identical sampling behaviour
as in the (2:, . . . , 2:)-burst (:, . . . , :)-sampling game defined in Figure 3.2. The following
statement can be proven, assuming that Conjecture 10 holds.

Theorem 20. Suppose Conjecture 10 is true. Then the Inner Product Argument in Protocol 14 is
knowledge sound with knowledge error ^ (=) = 10`=/√2?, with = being the size of the witnesses
w′ ∈ F=? and w′′ ∈ F=? .

The corresponding extractor expected polynomial-time extractor E runs P∗ at most 2= times in a
complete protocol.

Proof. We instantiate the protocol with : = 2. First, we recall that E [X] has identical sampling
behaviour to the algorithm BurstTree in Figure 3.2. To observe this, we define V to be the
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6. Short Circuit IPA Extractor

predicate evaluating to true when quick-extract fails to extract a witness using : successfully
extracted child nodes in line 7 of Xwitness8 .add(). The execution of quick-extract only depends on
the corresponding subtree, so that the decision to expand to :̂8 = 2: = 4 children instead of
:8 = : = 2 can be rephrased as a predicate only depending on the subtree.

Therefore, we can apply Conjecture 10 to receive an upper bound ofU
∏`

8=1 :8 withU = 4/2 = 2.
Thus, at most 2`+1 transcripts are required in expectation. Because ` = log2 (=) by the choice
of ` in Protocol 14, we have at most 2= required transcripts in expectation.

Theorem 19 now gives us the error probability of the extractor with # = 2=, whereas Lemma
15 proves the mathematical correctness of the extraction process.
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7. Conclusion

The overall objective of this thesis was to provide an overview over quick- and short-circuit
extraction in protocols like the Bulletproof Inner Product Argument, and to prepare the ground
for proving linear extraction. For this, the Inner Product Argument along with the techniques
used were explained and defined, and a precise proof for extraction was given. A special focus
was put on quick- and short-circuit extraction. A dynamic extraction framework along with
a tree finder necessary for linear extraction was proposed, and the existing proofs for static
extractors were adapted to the dynamic setting.

The sampling behaviour required for quick-extraction was formalized into a simple sampling
game, which can be used as a basis for a proof for the linear amount of required transcripts.
A formulation of the theorem was conjectured, and a possible structure of such a proof was
sketched. Additionally, an explanation of why proving this statement using known techniques
might be difficult was given.
A proof for Conjecture 10 would directly yield a linear extractor for the Bulletproof Inner

Product Argument. The proof itself remains an open problem for further research.
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A. Appendix

A.1. Proof Attempt for Conjecture 10

The following proof idea contains some questionable steps, which have been marked by Remark
21 and Remark 22. An overview is given in Remark 11. It still provides the structure and some
ideas a proof to this problem may need; and helps to understand the problems when applying
the techniques by [4, Lemma 1] or [1, Lemma 5].
When trying to calculate an exact value for E [�], we require the probability of a burst,

which we don’t know. The basic idea of this proof idea is to always take the maximum of the
amount of expected lookups in � over all possible locations of bursts instead of weighting
them by probability of the burst.

Note that Conjecture 10 can also be applied to protocols with :8 = 1, because every protocol
with a :8 = 1 can also be seen as one with :8 = 2, where the additional transcript is not used
at “runtime”. When extending the amount of transcripts required, the value of :8 has to be
increased when used in every part of Conjecture 10, i.e. also when determining E [�].

Proof Idea. As described previously, we take the maximum of the expected value of those two
cases instead of weighting them by their probability, because the probability of a burst subtree
is unknown.

E [�E ] ≤ max {E [�E |'E ] ,E [�E |¬'E ]}
To have a nicer handle for those two expectation values during the rest of our proof, we define

two new functions: We define =burst (<) ≥ E [�E |'E ], which denotes an upper bound for the
expected amount of lookups to � in a subtree generated by a call to BurstTree< (0, 21, . . . , 2<)
on layer < with parameters 0, 21, . . . , 2<+1, where some subtree was marked by V as burst.
Note, that =burst is an upper bound for layer< and therefore independent of the specific call
parameters. The second one, =¬burst (<) ≥ E [�E |'E ], is the corresponding value, but without
any node being marked by V . Since in every call to BurstTree` by definition there is one
lookup to � , we have =¬burst (`) = 1; and since there is no call to V in BurstTree` , we will
never have bursts for leaves and therefore =burst (`) = 0.

¬�E
¬�E

}

Figure A.1.: ¬�E ∧ ¬�E

In the first part of the proof, we want to determine =¬burst (<), i.e. the amount of lookups
to � if V always returned 0 (as shown in Figure A.1), and prove that for< ∈ {0, . . . , `}:

=¬burst (<) =
∏̀
8=<+1

:8 (A.1)

We will use an induction over< starting from< = ` going
down towards< = 0 to prove this equation. As the induction
hypothesis, we use Equation (A.1). For the base case< = `, we observe that by definition
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=¬burst (<) = 1 =
∏̀
8=`+1

:8

For the induction step, we consider an execution of BurstTree< (0, 21, . . . , 2<) with arbitrary
but fixed 0 ∈ {1, . . . , '} and 21, . . . , 2< ∈ {1, . . . , # }. We now know that Equation (A.1) holds
for< + 1, i.e. for all calls to BurstTree< (0, 21, . . . , 2<) with arbitrary 2<+1 ∈ {1, . . . , # }, and
want to show that it holds for< as well.

To determine the amount of calls to BurstTree<+1, we first note that the requested amount
of transcripts must have been  E = :<+1 because we are conditioned on V not marking any
subtree.
Denote by n (0, 21, . . . , 2<) the fraction of 1-entries within the submatrix � (0, 21, . . . , 2<).

Since the criterion to enter BurstTree< (0, 21, . . . , 2<, 2<+1) for the challenge 2<+1, is whether
the first transcript generated from there is accepting, we have for this sequence of challenges
E = (0, 21, . . . , 2<) that the probability to continue extraction Pr [�E ] = n (0, 21, . . . , 2<).

Now we also assume that �E = 1, i.e. the first call to BurstTree<+1 was accepting, and we
want to find the amount of calls to BurstTree<+1 for the :<+1− 1 remaining successful runs of
BurstTree<+1. For this, we first note that for the experiment of first choosing a 2<+1 uniformly
random from {1, . . . , # } and then running BurstTree<+1 (0, 21, . . . , 2<+1) and testing if it was
successful is

1

#

(
#∑
8=1

n (0, 21, . . . , 2<, 2<+1)
)
= n (0, 21, . . . , 2<) .

Therefore, we know that E [$E |�E = 1 ∧  E = :<+1 ] is distributed according to the negative
binomial distribution with success probability of n = n (0, 21, . . . , 2<) ∈ [0, 1]:

E [$E |�E = 1 ∧  E = :<+1 ] =
(:<+1 − 1) · (1 − n)

n
≤ :<+1 − 1

n

Combining those results, we get

E [$E | E = :<+1 ] =
#∑
ℓ=0

Pr [�E = 1 | E = :<+1 ] · E [$E |�E = 1 ∧  E = :<+1 ]

1
=

#∑
ℓ=0

Pr [�E = 1] · E [$E |�E = 1 ∧  E = :<+1 ] ≤ n ·
:<+1 − 1

n
= :<+1 − 1

Remark 21. This equation is the first of the questionable statements found during the finalization
of the thesis. Here, in 1 , the following equality was used:

Pr [�E = 1 | E = :<+1 ] = Pr [�E = 1]
It was assumed here that the probability of entering the node �E because the first transcript

generated was accepting is independent from the amount of children  E visited if the node was
entered. This assumption cannot be made in general, because the nodes in which a burst would
occur ( E = :̂8 ) might have a smaller ratio of accepting transcripts than those with regular
extraction and therefore might be more difficult to enter.
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This also makes the basic technique of [4, Lemma 1] harder to apply, which was having
the probability n = n (0, 21, . . . , 2<) of entering a node cancelling itself out with the increased
difficulty to find accepting transcripts starting from this node (:<+1−1)/n. Instead we would now
have to consider two types of children — those, that would result in a burst if entered, and
those that would not.

The basic idea of this proof was omitting the unknown probabilities of burst events by instead
using a maximum of the probabilities. With those two different “classes” of results when calling
BurstTree<+1 with different challenges, we have two probabilities for those calls on the next
level to be successful, say nburst and n¬burst, for which the achieving such an cancellation of the
factor is not obvious.

Along with the additional first successful call to BurstTree<+1, we have :<+1 calls to
BurstTree<+1 and therefore lookups in � in total. So by multiplying this value with the
expected amount of lookups in � provided by the induction hypothesis, we get

=¬burst (<) ≤ :<+1 · =¬burst (< + 1) ≤ :<+1 ·
( ∏̀
8=<+2

:8

)
=

∏̀
8=<+1

:8

E

¬�E
�E

}

Figure A.2.: �E ∧ ¬�E

This concludes the induction for =¬burst. Next, we turn to =burst: Here, we will consider
a subcall to BurstTree< again with prover randomness 0
and 21, . . . , 2< as challenges, which we denote by the implicit
node E = (0, 21, . . . , 2<). Because =burst (<) = E [�E |'E ], we
are now conditioned on some subtree being marked by V . We
recall that 'E = �E∨�E , which allows us to split up E [�E |'E ]
into:

E [�E |'E ] ≤ max {E [�E |�E ∧ ¬�E ] ,E [�E |¬�E ∧�E ] ,E [�E |�E ∧�E ]}
We will now consider all three cases: E [�E |�E ∧ ¬�E ] as shown in Figure A.2 is conditioned

on V only having marked the full tree (�E ), but none of the subtrees (¬�E ). An example for this
case can be found in Figure A.2. Because of this, BurstTree< will now call BurstTree<+1
exactly  E = :̂<+1 times and perform a regular extraction without any burst for all children,
which again by the argument used for =¬burst requires E

[
$E | E = :̂<+1

]
= :̂<+1 − 1 additional

calls to BurstTree<+1 in expectation. Therefore we have, together with the first call to
BurstTree<+1:

E

�E

�E
}

Figure A.3.: �E ∧�E

E [�E |�E ∧ ¬�E ] ≤ :̂<+1·=¬burst (< + 1) = :̂<+1·=¬burst (< + 1)

E [�E |�E ∧�E ] (Figure A.3) is conditioned on V marking
the full tree and at least an additional subtree. Denote by
E1, . . . , E: the children of E , and recall that�E = 'E1∨· · ·∨'E: .
The children in whose subtrees a node was marked by V are
collected in the random variable !E = {F ∈ children (E) |'F = 1 }. Since 'E = 1, we know that
|!E | ≥ 1.
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When considering the sampling of 2"+1←$ {1, . . . , # } together with the following call to the
function BurstTree<+1 (0, 21, . . . , 2<+1) as one procedure, all of the executions (and therefore
all executions, where the first subcall doesn’t abort) have identical starting conditions and
don’t interfere with each other, so that the probability of a burst is equal for every call.

We now know, that there were at most :̂<+1 successful runs of BurstTree<+1, and because
of�E = 1 that among those there was one burst event. To simplify the analysis, we first assume
that there was exactly one burst event and therefore |!E | = 1, and then show that this yields
the highest expected amount of calls. In this case, the position of the call to BurstTree<+1
with the burst is uniformly distributed in

{
1, . . . , :̂<+1

}
, which yields an expected amount of(

1+:̂<+1
)
/2 subcalls to reach the burst.

If there were more than one subcalls with burst events, this value is lower and therefore this
case doesn’t need to be considered for our upper bound because of the following argument:
Assume there were 1 ≤ G = |!E | ≤ :̂<+1 subtrees found with burst events. Then we can consider
their positions of uniformly sampled G-element subsets of

{
1, . . . , :̂<+1

}
; and we are interested

in the minimum of the subset sampled. We can sample this G-subset by first choosing uniformly
random a value from

{
1, . . . , :̂<+1

}
and removing it from the set, and continuing with this

procedure until G elements have been removed. Since the first sampling step is identical to the
case where we only have G = 1, we will only get a smaller minimum when continuing with
this procedure.

So, on average, conditioned on one child out of the :̂<+1 has a child marked by V , we need to
traverse ≤

(
:̂<+1+1

)
/2 child subtrees until we have found the one where a child was marked by

V . In the call to BurstTree< , along with the argument used for =¬burst, to find the ≤
(
:̂<+1+1

)
/2

additional children we need
(
:̂<+1−1

)
/2 additional calls to BurstTree<+1. Taking into account

the first call to BurstTree<+1, we get :̂<+1−1/2 regular extractions followed by one extraction
with a burst in expectation, which totals to

E [�E |�E ∧�E ] ≤
:̂<+1 − 1

2
· =¬burst (< + 1) + =burst (< + 1) (A.2)

Remark 22. In Equation A.2, another problem was found: Here, the value =burst(<) = E [�E |'E ]
for a node E on layer< was used. This is the expected amount of transcripts requested for a
subcall to BurstTree<+1, independent of whether extraction was successful or not. Using this
value is not correct here, because we would have required the probability of an extraction with
a burst being successful at this point.
Fixing this problem does not seem to be trivial, and has been explained in further detail in

Remark 11.

E [�E |¬�E ∧�E ] as displayed in Figure A.4 can be bounded with the same argument as
E [�E |�E ∧�E ], but with a lower upper bound of :<+1 ≤ :̂<+1 on the amount of successful
calls to BurstTree<+1 required. Because we want to find the maximum of all cases in Equation
(A.2), and E [�E |¬�E ∧�E ] ≤ E [�E |�E ∧�E ], we don’t need this case for our analysis.

In the previous paragraphs, we have shown that Equation (A.2) can be written as:
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=burst (<) ≤ max

{
:̂<+1 − 1

2
· =¬burst (< + 1) + =burst (< + 1) , :̂<+1 · =¬burst (< + 1)

}
(A.3)

The last step of the proof is now to bound this expression for ∀< ∈ {0, . . . , `} by

=burst (<) ≤ U ·
∏̀
8=<+1

:8 (A.4)

E

�E

¬�E
}

Figure A.4.: ¬�E ∧�E

Equation (A.4) serves as the induction hypothesis here, again; and the base case < = `

corresponding to the leaves of the tree of 1-entries is

=burst (`) = 0 ≤ U ·
∏̀
8=<+1

:8 = U

For the induction step, we have that Equation (A.4) holds for
< + 1 and want to prove that this is also the case for<. Recall our choice of U where

U = max
<∈{1,...,`}

{
:̂<

:<

}
(A.5)

This guarantees us, that
∀< ∈ {1, . . . , `} : :̂< ≤ U · :< (A.6)

and that

∀< ∈ {1, . . . , `} :
(
:̂< − 1

2
+ U

)
=

(
:̂< − 1

2
+ :̂<
:<

)
2

≤ :̂< −
1

2

3

≤ U · :< . (A.7)

In 2 , we used that by the statement of the conjecture, we have that :< ≥ 2, and in 3 , we
applied equation (A.6).

Now we can bound the first element of the maximum in Equation (A.3) by

=burst (<) ≤
:̂<+1 − 1

2
· =¬burst (< + 1) + =burst (< + 1)

=
:̂<+1 − 1

2
·

∏̀
8=<+2

:8 + =burst (< + 1)

4

≤ :̂<+1 − 1
2

·
∏̀
8=<+2

:8 + U ·
∏̀
8=<+2

:8

=

(
:̂<+1 − 1

2
+ U

)
·

∏̀
8=<+2

:8
5
= U ·

∏̀
8=<+1

:8

For 4 , we applied the induction hypothesis, and for 5 , we used the definition of U from
Equation (A.7). The bound for the second element of the maximum in Equation (A.3) can be
verified using

57



A. Appendix

=burst (<) ≤ :̂<+1 · =¬burst (< + 1)
6

≤ U · :<+1 ·
( ∏̀
8=<+2

:8

)
7
= U ·

∏̀
8=<+1

:8

Here, the induction hypothesis was applied in step 6 , and in 7 , we used the definition of
U from Equation (A.5). This concludes this second proof by induction.

Summarizing the whole proof, we have now seen that in total the amount of lookups of
� -entries in the burst collision game is

E [�] ≤ max {=burst (0) , =¬burst (0)} ≤ max

{
U

(∏̀
8=1

:8

)
,
∏̀
8=1

:8

}
≤ U

(∏̀
8=1

:8

)
.
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A.2. Quick-Extraction for the Bulletproof Range Proof

In the Bulletproof Range Proof, the prover attempts to convince the verifier that the given
commitment [+ ] ∈ G hides a number E ∈ F? in a certain range.
The range proof was originally introduced in [5, Section 4]. The description of the pro-

tocol used here is analogous to [5], but the additive group notation was used instead of the
multiplicative. The number = corresponds to the bit length of the upper bound of the range
{0, . . . , 2= − 1} we want to prove membership in.
We directly include the modifications from Section 4.2 and 4.3 of the original Bulletproof

paper. Therefore the version for< batched range proofs is presented here. Set< = 1 for the
version without the batching introduced in Section 4.1 of [5].

For a fixed integer 8 ∈ F? , we denote by i= the vector of the first = exponentiations of =, i.e.
i= = ( 8 82 ··· 8= )T ∈ F=? . The vector i−= corresponds to j= with 9 = −8 . The common reference
string, which will be used to form the commitment keys, is [ g h 6 ℎ ] ∈ G2=<+2. Note, that
[g] ∈ G=< and [6] ∈ G are two distinct variables.
As before, we can also phrase the statement as a relation RRP:

( [V] ; v,WWW) ∈ RRP ⇔ [V] ∈ G< ∧ v,WWW ∈ F<? ∧ (A.8)
∀8 ∈ {1, . . . ,<} : [V8] = E8 [6] + W8 [ℎ] ∧ E8 ∈ {0, . . . , 2= − 1}

For an intuition of the protocol, we refer to [5, Section 4.1]. The function X (~, I) =
(
I − I2

)
·

〈1=·<, y=·<〉−∑<
9=1

(
I 9+2 · 〈1=, 2=〉

)
only depends on the challenges~ and I used in the definition

of the protocol, and not on any secret value.

Protocol 23 (Bulletproof Range Proof RP).
Preprocessing.

P Pick (a!)8 ∈ {0, 1}= such that 〈(a!)8, 2=〉 = E . Combine them to a! ∈
{0, 1}=< ⊆ F=<? . Set a' = a! − 1= .
Commit to a! and a' with [�] = a! [g] + a' [h] + U [ℎ] using the blinding
coefficient U←$F? .
Sample the hiding vectors s!, s'←$F=·<? and commit to them with [(] =
s! [g] + s' [h] + d [ℎ] using the blinding coefficient d←$F? .

P → V : Send [�] and [(].

Step 1.

V →P Sample and send ~, I←$F? .
P Define the polynomials l (- ) = (a! − I · 1=·<) + s! ·- ∈ F=·<? [- ] and r (- ) =

y= ◦ (a' + I · 1=·< + s' · - ) +
(
I2 · z=

)
⊗ 2= ∈ F=·<? [- ].

Extract the coefficients C0, C1 and C2 from C (- ) = 〈l (- ) , r (- )〉 = C0 + C1 ·- +
C2 · - ∈ F? [- ].
Commit to C1 and C2 with [)8] = C8 [6] + g8 [ℎ] for 8 ∈ {1, 2} using blinding
coefficients g1, g2←$F? .
Set Γ =

〈
I2 · z<,WWW

〉
.
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P → V Send the commitments [)1] and [)2].

Step 2.

V →P Sample and send G←$F? .
P Evaluate the polynomials l = l (G) ∈ F=? and r = r (G) ∈ F=? .

Calculate the combined blinding factor for the C8 by gG = g2 ·G2+g1 ·G +Γ ∈ F? .
P → V Send ` = U + d · G , Ĉ = 〈l, r〉 and gG .

Verification.

P , V Set [h′] = y−= ◦ [h] =
[
ℎ1 ℎ

~−1
2 ℎ

~−2
3 ... ℎ

~−=+1
=

]
∈ G= .

Set [%] = [�] + G [(] − I [g] +
(
I · y=·< + I2 · 2=

)
[h′] ∈ G.

V Verify that the polynomial t has been calculated correctly by checking Ĉ [6] +
gG [ℎ]

?
=

(
I2 · z<

)
[V] + X (~, I) [6] + G [)1] + G2 [)2].

P ↔ V We want to verify, that [%] ?
= l [g] + r [h′] + ` [ℎ] is a commitment to two

vectors l and r with Ĉ = 〈l, r〉 and known blinding coefficient ` [ℎ].
This can be achieved by sending l and r directly using linear communication.
Alternatively, we can use Inner Product Argument from Protocol 14 with
w′ = l, w′′ = r and [2] = [%] − ` [ℎ] + Ĉ [ℎ] and the public common reference
string [g′] = [g], [g′′] = [h] and [&] = [ℎ].

In the following, quick extraction for the range proof will be sketched. Theorem 3 from
[5] gives us unconditional extraction — and therefore also short-circuit extraction — for a
(< +2, =<, 3)-tree of transcripts, i.e. < +2 different challenges for I, =< different challenges for
~ and 3 different challenges for G . This section of the appendix now explains quick-extraction
using a (<, 1, 3)-tree of transcripts.
First, we reverse the calculations of Step 2: In this extraction step, the extractor knows the

fixed ~ and I and has three different challenges G (1) , G (2) and G (3) .
To recover the polynomials l (- ) and r (- ), we need the evaluations l(G (8)) and r(G (8)) from

two transcripts.

l
(
G (8)

)
= (a! − I · 1=·<) + s! · G (8)

r
(
G (8)

)
=y=·< ◦

(
a' + I · 1=·< + s' · G (8)

)
+

((
I2 · z<

)
⊗ 2=

)
Therefore we can calculate

s! =
l (G1) − l (G2)
G1 − G2

s' =
r (G1) − r (G2)

G1 − G2
◦ y−=

a! = l (G1) − s! · G8 + I · 1=·<

a' =

(
A (G1) −

((
I2 · z<

)
⊗ 2=

))
◦ y−= − I · 1=·< − s' · G8
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With those values extracted, we have also found the polynomials l(- ) and r(- ). Slicing a!
into< vectors of length = also allows us to calculate the E8 using their binary representation.

Two different challenges G (1) and G (2) also allows us to find U and d :[
1 G (1)

1 G (2)

]
·
[
U

d

]
=

[
` (1)

` (2)

]
All matrices in this section can be inverted, because they are (sometimes scaled) Vandermonde

matrices for distinct challenges. The weighted sum of the blinding factors Γ, which we defined
by Γ =

∑<
9=1 I

9+1 · W 9 , can also be extracted using three distinct challenges:
1 G (1) (G (1))2
1 G (2) (G (2))2
1 G (3) (G (3))2

 ·

Γ
g1
g2

 =


Ĉ (1)

Ĉ (2)

Ĉ (3)


This concludes extraction for Step 2. For Step 1, we only need to calculate from< different

extracted Γ (8) the blinding factors WWW :
(I (1))2 · · · (I (1))<+1
...

...

(I (<))2 · · · (I (<))<+1

 ·

W1
...

W<

 =


b (1)

...

b (<)


This concludes quick extraction, because both v andWWW have been recovered. The extractor now

checks whether the extracted values match the commitment. If so, extraction was successful,
otherwise a non-trivial discrete logarithm relation has been found.
Because of the transcripts used were successful, the verification equations hold for the

extracted values. The unconditionally extracted values from the proof of [5, Theorem 3] also
have to fulfill those equations. Therefore we have found a second opening for either [�], [(],
[+ ] or one of the [)8], which corresponds to a discrete logarithm-relation.

61


	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Protocols
	Forking Lemma and Knowledge Error
	Size of the Tree of Transcripts

	Contribution

	Preliminaries
	Mathematical Foundations
	Discrete Logarithm Assumption
	Pedersen Commitments

	Interactive Proofs
	Properties of Interactive Proofs Systems
	Special Soundness

	Quick- & Short-Circuit-Extraction

	Burst Extraction
	Burst Collision Game
	Random Variables for the Extraction Process
	Bounding the Worst-Case Amount of Leaves
	Bounding the Expected Amount of Lookups in the Table

	Inner Product Argument
	Notation
	Vector Knowledge Argument
	Recursively Shrinking the Statement
	Embedding the Problem
	Sending the Diagonals
	Vector Knowledge Argument Protocol

	Inner Product Argument
	Combination of Protocols
	Adding the Inner Product
	Swapping  x  and  y 
	Preprocessing: Fixing  t 
	Inner Product Argument
	Comparison to other versions of the Inner Product Arguments


	Dynamic Extraction Framework
	Extraction Framework
	Predicate-Extended Emulation
	Oracles
	Emulator and Tree Finding Process
	Interface of the Extractor
	Functionality of the Tree Finder
	Tree-Extractor

	Point-Wise Proximity
	Indistinguishability Framework
	Point-Wise Proximity
	Expected Time RP/RF Switching Lemma

	Forking Lemma

	Short Circuit IPA Extractor
	Procedures used during Extraction
	Witness-Extractor
	Required Amount of Transcripts

	Conclusion
	Bibliography
	Appendix
	Proof Attempt for Conjecture 10
	Quick-Extraction for the Bulletproof Range Proof


