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Abstract: Metal parts produced by additive manufacturing often require postprocessing to meet the
specifications of the final product, which can make the process chain long and complex. Laser post-
processes can be a valuable addition to conventional finishing methods. Laser polishing, specifically,
is proving to be a great asset in improving the surface quality of parts in a relatively short time.
For process development, experimental analysis can be extensive and expensive regarding the time
requirement and laboratory facilities, while computational simulations demand the development of
numerical models that, once validated, provide valuable tools for parameter optimization. In this
work, experiments and simulations are performed based on the design of experiments to assess the
effects of the parametric inputs on the resulting surface roughness and heat-affected zone depths.
The data obtained are used to create both linear regression and artificial neural network models
for each variable. The models with the best performance are then used in a multiobjective genetic
algorithm optimization to establish combinations of parameters. The proposed approach successfully
identifies an acceptable range of values for the given input parameters (laser power, focal offset,
axial feed rate, number of repetitions, and scanning speed) to produce satisfactory values of Ra and
HAZ simultaneously.

Keywords: laser polishing; Ti-6Al-4V; AM; surface quality; heat-affected zone; artificial neural
networks; genetic algorithm; multiobjective optimization

1. Introduction

Additive Manufacturing (AM) processes are widely applied in multiple sectors of
industry because of their outstanding characteristics. Along with the design freedom
it provides, its applicability to a broad variety of materials allows great flexibility in
the production of simple or complex geometries with nearly no size restrictions. These
attributes, in addition to shortened production lead times, make the method an attractive
alternative to conventional manufacturing techniques for the aerospace, biomedical, and
electronic industries. Every asset mentioned can be achieved with minimal influence on
the cost and complexity of the manufacturing process [1,2]. This manufacturing process
could play a major role in enabling a sustainable future for the AM industry in terms of
resource consumption, waste management, and pollution control, reducing unwanted
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environmental impact, and it might, eventually, replace some conventional production
methods [3].

Bearing in mind the extensive use of metallic materials in every industry, metal addi-
tive manufacturing (MAM) is currently one of the most relevant AM techniques. Among
the fundamental approaches to building metallic parts, laser-powder bed fusion (LPBF) is
the predominantly used MAM method because of its relative merits. However, despite the
continued expansion of the variety of materials compatible with LPBF, the options are still
constrained to castable and weldable metals and alloys [4]. The layer-by-layer nature of the
fabrication process and the fixation of powder particles on the components’ surface can
cause the formation of significant irregularities, the so-called dross formation [5]. Therefore,
besides the improvement of mechanical behavior, major challenges for this manufacturing
technique are the enhancement of surface quality and the refinement of the homogeneity
of the microstructure. In order to achieve the required characteristics, LPBF parts are
frequently subjected to postprocesses, such as heat treatment for microstructural alter-
ations and shot peening, traditional machining, mechanical polishing, and sandblasting for
surface quality [6–10]. Alternatively, nonconventional processes can be applied.

Considering the numerous systems and technologies available, along with the wide
range of parameters that can be exploited for both AM and laser-polishing (LP) techniques,
their different combinations provide significant versatility. During the laser-polishing
process, the beam melts a thin superficial layer of the component. The consequent liquid
metal flows evenly over the part because of surface tension, mitigating even major asperities.
Therefore, the components’ roughness is diminished prior to the metals’ solidification. An
exceptional characteristic inherent in this procedure is the lack of mechanical stresses, and
this, together with its great efficiency and rapidity, makes it a feasible choice for finishing
and enhancing the properties of AM parts. Moreover, LP is an adequate substitute for
mechanical grinding and polishing [11–14]. However, the process might lead to deep heat-
affected zones (HAZ), changing the material’s microstructure and mechanical properties
because of the elevated temperatures involved [15,16]. For this reason, the HAZ depth
must be carefully considered during the selection of relevant parameters. Furthermore, a
better understanding of the fundamental mechanisms involved and changes in material
properties will assist the decisions made regarding the process.

There are two distinct strategies that can be used to evaluate possible alterations in
the component caused by laser polishing. The first relies on extensive experimentation
with the need to prepare samples for analysis, whilst the second consists in developing a
reliable model, substantially saving on material and time, especially when investigating
a wide range of parameters. Amongst several options, the finite element method (FEM)
is extensively used to provide a good understanding of process behavior. Using FEM, a
numerical model capable of accurately describing the physical aspects of the procedure
can be developed. Several researchers have explored the possibility of enhancing the
performance of laser-polishing models in this way, varying the combination of heat transfer
and fluid flow to predict surface properties, including the asperity of the initial surface
and capillary flow [17–19]. Even though the method can require great computational time
and complex models [20], it is an attractive strategy for the assessment of manufacturing
processes. Moreover, the data obtained from the FEM can be combined with the data
acquired from experimental analysis to develop optimization procedures [21].

From both experimental and simulated data, satisfactory process parameters can be
identified via diverse established methodologies. The first possibility is to apply the popular
“trial and error” approach, which is still extensively used even though it can require a great
deal of time and expense. However, the success rate of the method generally relies on the
personal experience of the machine operator. [22]. A common alternative is the combination
of Design of Experiments (DoE) and statistical analysis to establish a regression model that
describes the interaction between the parameters and how they influence the response.
Compared with the “trial and error” methodology, this optimization procedure demands
less experimentation/simulation to understand the effects of different parameters and
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determine predictions about process behavior. As a result of statistical analysis, an equation
where the dependent variable (output) is stated as a function of the independent variables
(input parameters) is acquired, allowing the estimation of the outcome for different values
of each parameter. Even though the methodology can be employed in several fields, a
particularly interesting application is its usage to optimize laser-based processes, such as
laser cladding, welding, and surface hardening [23–25].

An additional option is to apply machine learning (ML) techniques to obtain similar
models. The use of artificial neural networks (ANN), a fundamental ML method, for
modeling the correlation between the input dataset and the desired outputs is increasing
because of its great capability of adapting and learning from all kinds of data. Many studies
in the literature have confirmed the efficacy of this approach for optimizing a broad variety
of manufacturing processes [26–28].

As the name implies, ANN imitates the learning mechanism that takes place in the
human brain, i.e., the way that the brain analyzes and processes information. Its architecture
consists of input, hidden, and output layers that contain neurons linking the previous and
following layers. Each neuron has a corresponding bias and each connection between
them, also known as synapses, has an associated weight. Those biases and weights are
updated throughout the training process, allowing adjustments until the model achieves a
satisfactory fit to the data. Besides the proven effectiveness, a further benefit is the ability
to receive new input data leading to an improvement in the model performance [29].

Having developed a mathematical model, the parameter optimization process can be
finalized through standard methods. Since the aim of this work is to determine a range
for each input parameter that will result in acceptable values for surface roughness and
HAZ depth simultaneously, the elected approach must be able to solve multiobjective
optimization problems, and the Genetic Algorithms (GA) was the chosen method. GA is
one class of evolutionary algorithms and utilizes a metaheuristic procedure inspired by
the natural selection concepts to find solutions for the optimization problem. Operators
such as selection, crossover, and mutation ensure that the fittest individuals from a generic
population will have their genomes recombined and mutated to create a new generation.
This process is then repeated through the iterations until a satisfactory fitness level for the
population is reached. Such characteristics make the GA a suitable approach to identify
the Pareto front solutions for a multiobjective optimization problem, where the fittest
individuals are determined not only by the fitness value (computed from the objective
function) but also by the capacity to preserve or increase the diversity of the population in
the Pareto frontier [30]. Even though the method does not guarantee a globally optimal
solution, its stochastic nature permits the convergence to a large set of feasible solutions
with less computational effort. Previously, the GA has produced excellent results when
combined with ANN [31–36]. Furthermore, there is still a considerable research gap on
approaches that not only combine GA multiobjective optimization and ANN models but
also include data acquisition through both experiments and computational simulations for
process development of the laser polishing.

In this context, further to some preliminary trials to identify the operating range and
the effect of process parameters, the aim of the current research is to use experiments and
simulations based on the same DoE to assess the effects of varying the laser-polishing
parameters on the resulting surface roughness and HAZ depth. In particular, the approach
presented here includes using the data obtained to create both linear regression and ANN
models for each variable. The models with the best performance are then used in a
multiobjective GA optimization to establish combinations of parameters that result in the
simultaneous production of acceptable values of surface roughness and HAZ depth. The
outcome of this paper is to assist in the understanding of how the parameters governing
laser polishing can influence the final surface quality and how deeply it affects the material’s
microstructure in doing so. This knowledge can lead to an informed decision on whether
to use or not the laser-polishing process and at which step of the process chain to do so.
Furthermore, it will offer an optimization tool for the selection of the appropriate laser-
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polishing process parameters, depending on specific predefined requirements of surface
roughness and material properties.

2. Materials and Methods
2.1. Sample Fabrication

Rectangular blocks of Ti-6Al-4V, with dimensions 55 × 15 × 4 mm3, were manufac-
tured in the upright position via LPBF (Figure 1a) using a DMP Flex 350 with a maximum
laser power of 500 W and wavelength of 1070 nm, operating in an inert, argon atmosphere.
Scanning speed, laser power, and other parameters for the build process were set by the
manufacturers. The resulting vertical surfaces’ (walls) high degree of roughness was due
to powder attachment and dross formation during the layer-by-layer building process, see
Figure 1b, with an initial surface roughness (Ra) of ~7 µm for all parts.
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Figure 1. Ti-6Al-4V AM sample starting conditions: (a) photo of the block and (b) SEM image of the
side surface.

2.2. Laser System and Polishing Process

The laser polishing for surface quality improvement was executed ex situ using a
Trumpf TruLaser Cell 3010 in combination with a TruDisk 3001 laser of wavelength 1064 nm
operating in continuous mode with Argon injected across the face of the test piece to prevent
oxidation. In this case, a lens with a focal length of 15 cm was used to focus the laser beam
onto the sample surface.

To assess the performance of the laser-polishing process by this method, five param-
eters were selected: laser power, beam diameter, the number of repetitions (i.e., the total
number of times the laser beam traverses the surface), axial feed rate, and scanning speed.
Because of the pendulum-like movement of the scanning system (Figure 2a), the aver-
age scanning speed for the laser-polishing process with the given machine is not directly
inputted. Instead, it is calculated based on the pendulum frequency and the adopted am-
plitude of displacement of the pendulum movement in the y-direction. Another governing
parameter not directly inputted in the machine is the beam diameter, which is calculated
based on the Rayleigh length and its dependence on the focal length. The focal offset
(FOP), see Figure 2b, represents the distance between the laser focus and the surface to be
processed. The diameter d0 is 0.1 mm (in focus, FOP = 0) when the disk laser is coupled
with a 100 µm optical fiber [37]. Larger laser spot sizes are obtained with the variation of
the focal position via focal offset (Figure 2b).
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2.3. Surface Metrology System

The methods and procedures specified in EN ISO 4288 [38] were followed when
measuring surface parameters, such as 2-D surface roughness, which necessitated stylus
movement of 1.5 cm, evaluation length of 1.25 cm, length of sample 0.25 cm, and cutoff
length of 0.25 cm. The instrumentation comprised a MarSurf XR 1 surface roughness
measuring system, a MarSurf GD 26 driver, and a Kyocera BFW A 10-45-2/90 roughness
probe. The measure selected as the characteristic to be used in subsequent assessments was
Ra, the mean height of the surface asperities over the sampled length.

2.4. Heat Transfer Model

Although laser polishing has the potential to reduce surface roughness, the heat
it generates could alter the mechanical properties because of changes produced in the
microstructure. The practical investigation of the effects of each set of parameters on the
depth of the HAZ can be an extensive procedure, especially if the experiments are designed
to generate large amounts of data. In this context, simulations of the laser-polishing process
were performed on COMSOL Multiphysics 5.4 by means of a 3D heat transfer model, which
has been presented and validated in a previous study [39].

Figure 3 shows the thermal conditions assumed. The heat source, the scanning laser
beam, is focused on the uppermost surface. Heat is lost from the surfaces of the material to
the surrounding environment via radiation and convection. It is further assumed that no
heat energy enters or leaves the bottom surface.

Equation (1) is the equation governing heat transfer,

ρCp
∂T
∂t

= k∇2T (1)

where k is the effective thermal conductivity, Cp and ρ are the effective specific heat capacity
and density of the material, respectively.
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Radiation and convection heat losses from the top surface and sides can be represented
by Equations (2) and (3).

Qrad = εσ
(

T4
amb − T4

)
(2)

Qconv = h(Tamb − T) (3)

where h the convective heat transfer coefficient, ε is surface emissivity, and σ is the Stefan–
Boltzmann constant.

The generation of heat in the surface layer is represented by the laser acting as a point
source with the heat flow having a Gaussian distribution, Q′′ , see Equation (4).

Q′′ =
2αPw

πR2
w

e
−2(x2+y2)

R2
w (4)

where Rw is the distance from the center of the heat source, α is the laser absorption
coefficient, and Pw is the laser power.

Table 1 shows the values of thermophysical properties of Ti-6Al-4V and simulated
process parameters.

Table 1. Thermophysical properties of Ti-6Al-4V and simulated process parameters, extracted from
[40–42].

Property of Ti-6Al-4V Value

Density (ρ) 4000 kg/m3

Solidus temperature (Ts) 1878 K
Liquidus temperature (Tl) 1928 K

Specific heat capacity, solid-phase (Cps) 543 J/kg K
Specific heat capacity, liquid-phase (Cpl) 770 J/kg K
Thermal conductivity, solid-phase (ks) 13 W/m K
Thermal conductivity, liquid-phase (kl) 80 W/m K

Laser absorption coefficient (α) 0.3

The heat transfer will be greatly influenced by the fluid flow that occurs during melting,
including the maximum temperatures attained [43]. However, to keep the time required for
computation within reasonable limits, we did not consider the fluid flow directly. Instead,
we adapted the thermal conductivity of the liquid in such a way that the melting process
and depth of the HAZ corresponded to experimentally observed behavior.
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2.5. Design of Experiments

Initially, preliminary experimental trials were conducted to identify the working
range of process parameters and their overall effect on the process responses in terms of
generated surface topography and HAZ depth. However, by using DoE techniques, it is
possible to define the individual and interactive effects of several factors that influence the
experimental results. One advantage of adopting DoE is the possibility of identifying a set
of experiments that will provide maximum information [44]. As stated above, five factors
are considered the most important and were selected for the factorial central composite
design to assess surface roughness, Ra; these were: laser power, beam diameter (focal
offset), number of repetitions, axial feed rate, and scanning speed. Table 2 presents the
ranges of the DoE parameter values used for the laser-polishing tests and simulations. Each
factor had five levels, and from these, the DoE defined 52 experiments with 43 alternative
parametric combinations and nine central repetitions.

Table 2. Ranges of values of DoE parameters used for the laser-polishing tests and simulations.

Laser Power
(W)

Focal Offset
(mm)

No. of Repetitions
(No.)

Axial Feed Rate
(m/min)

Scanning Speed
(mm/s)

100 0 1 0.3 400
200 1 2 0.45 800
300 2 3 0.6 1200
400 3 4 0.75 1600
500 4 5 0.9 2000

The same design was adopted for modeling the depth of the HAZ resulting from the
heat-transfer model described in the previous section. Since the model was developed
for the simulation of laser tracks along only one axis, the parameter axial feed rate was
excluded from the design. The final design resulted in 34 simulations and 25 different
parameter combinations with 9 central repetitions. The factor levels were the same as for
the laser-polishing experiments shown in Table 2.

2.5.1. Linear Regression

The experimental Ra data and simulated HAZ data were processed with MATLAB
(R2018b, MathWorks). A statistical model developed a quadratic expression to fit the data,
see Equation (5).

y = b0 + ∑ bixi + ∑ biix2
ii + ∑ bijxixj (5)

where ‘y’ corresponds to the objective function or output variable, ‘b0’,’bi’,’bii’, and ‘bij’ are
the regression coefficients or predictors, ‘n’ is the number of factors, and ‘xi’ is the value of
the ith factor.

Least squares were used to estimate the regression coefficients, and a confidence level
of 95% was chosen as the level of suitability of the proposed model.

2.5.2. Artificial Neural Networks

Besides linear regression, this work also addresses the use of other approaches to
achieve models with better performance for the same datasets. In this context, two individ-
ual architectures of ANN were employed to obtain models for estimating surface finish and
HAZ using the Neural Network Toolbox in MATLAB. The optimal ANN was chosen using
a least mean squares criterion from arrays of the hidden layers. A cascade-forward neural
network composed of two hidden layers, containing 4 and 2 neurons each, respectively,
was adopted for predicting the surface roughness of a given component. However, a much
simpler feedforward structure gave satisfactory predictions for HAZ, with one hidden
layer containing 1 neuron. The distinction between them is that the former connects all
layers amongst them, from input to output, while the latter uses only regular synapses
connecting one layer to the next. Figure 4 displays both architectures.
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Figure 4. ANN architecture for (a) surface roughness and (b) HAZ depth.

Both designs chosen used a sigmoid function (hyperbolic tangent) for the hidden
layers and a linear transfer function for the output layers. A total of 70% of the datasets
were selected on a random basis and then used as data for training; half the remainder
was used for validation purposes, and the other half as data for testing. A damped
least-squares backpropagation algorithm was chosen to train the ANNs. This approach
interpolates between Gauss–Newton and gradient descent methods. When minimizing the
sum of squared error function, the Hessian can be approximated, and this results in faster
convergence with low values of mean square errors [45].

This is a robust method capable of learning from the input data, adjusting the model
to new conditions, and concluding the procedure by predicting the outputs with significant
accuracy. Such adaptation ability is achieved by weights associated with every synapse
and a corresponding bias for each neuron. Those values keep changing throughout the
training stage to obtain the most reliable model for the supplied sample set.

2.6. Optimization

Because laser polishing can result in both improvement of the LPBF surface quality
and also undesired material modifications within the HAZ, the models obtained for surface
roughness and depth of the HAZ are optimized simultaneously for minimum Ra and
minimum HAZ via the built-in multiobjective GA in MATLAB. Besides favoring individuals
with a better fitness value, such as in NSGA-II [46], a controlled elitist GA also favors
individuals that preserve the diversity of the population, despite their fitness value [47].
Consequently, the optimization problem will converge to an optimal Pareto front, which
will provide a set of noninferior solutions (i.e., it is possible to improve one objective only
by degrading another). Thus, a suitable range for the parameters can be determined to
achieve satisfactory values simultaneously for surface roughness and HAZ depth.

3. Results and Discussion
3.1. Initial Experimental Results

In this section, a detailed analysis of the surface topographies after laser polishing is
conducted and qualitatively assessed for the identification of suitable process parameters
working range. The topographies exhibited in Figures 5–7 show that conducting the
investigated process with higher laser power, lower axial feed rate, and with a higher
number of repetitions could make a greater difference on the sample surface.

The higher energy input with the increasing power and number of repetitions caused
more remelting of the material on the surface, which contributed to the smoothing of
the sample surface. In contrast, the processed areas with lower energy input presented
insufficient melting and no apparent improvement in the surface quality. The most evident
cases of this observation are from samples exposed in Figure 5, in which the number of
repetitions could not overcome the low energy input from the lowest laser power of 100 W.
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The resultant surface structure observed in Figure 5, after the remelting, presented
a ripple form. The reason for the ripple formation is related to the rapid cooling rate of
the laser polishing, in which the molten pools solidify rapidly after the irradiation of the
laser spot. During the process, the laser spot continuously moves further to the unpolished
areas and melts the new material. The previously melted material flows to the surrounding
areas and solidifies when the energy input is no longer sufficient to maintain the liquid
phase. In contrast, a small amount of material that absorbed most heat from the laser flows
in a privileged direction because of the surface tension and inclination of the molten pool
induced in the CW laser-polishing process.

It is also observed that the degree of homogeneity was enhanced when the polishing
process with the identical laser parameters was repeated three times in the same area. After
triple repetitions, the number of ripple structures was reduced, which resulted in a more
favorable surface condition. This improvement benefitted from the extra remelting process
during the laser polishing in the second and third repetitions. In addition, indistinct scan
tracks were noticed in Figure 5b.

As shown in Figure 6a, the variations of the feed rate and repetition lead to the same
impacts on the surfaces processed. When comparing the morphological analysis between
the samples treated with 100 and 200 W (Figure 6b), with the only difference in the laser
parameters between them being the laser power, the surface of the sample treated with
higher power presented more homogeneous structures. The ripple form on the surface
was elongated with the increased laser power from 100 W to 200 W. The borderlines of the
scan tracks of the latter are more distinct than those on the former. It indicates that a more
effective fusion occurred between the adjacent melt tracks when irradiated by the laser
spot with a power of 200 W.

Finally, surfaces processed with 300 W were assessed (Figure 7). When the laser beam
is in the focal offset of 0 mm, the ripple form on the surface of the sample could hardly be
identified, and the surface tended to take shape in a groove form (Figure 7a). The distinct
straight seam, related to the groove form, is observed between two adjacent scan tracks.
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The forming of this seam can be attributed to the hatch distance between the tracks during
the laser scanning.

The effects of increasing the focal offset to +3 mm can be seen in Figure 7b. When
comparing the two lowest feed rates, the adoption of a higher focal offset resulted in
shallower grooves, although the straight seams are still evident. This occurs due to the
reduced power density obtained with the defocus of the laser beam. With the highest feed
rate, a particular surface feature was generated. Drop defects and craters are observed
on the surfaces of samples 7 and 8. These defects originate from the insufficient melting
of the surface material and other physical phenomena that occur during laser processing.
Depending on the set of parameters, the lower power density can present beneficial results,
such as the shallower groves, or result in catastrophic defects caused by insufficient heat
input for a specific process.

3.2. DoE Experimental Results

In the present study, the surface roughness Ra data were acquired from experimental
results. Overview images of the experiments can be observed in Figure 8. As seen in the
pictures, varying the parameters in accordance with the DoE adopted led to a significant
diversity of surface topographies with varied quality. Cases of overheating, insufficient
remelting, and surface flattening can be easily noticed. Surface roughness quantitative
results were obtained via the tactile measurement as formerly described in Section 2.3.
The measured values for each of the 52 parameters variations with their correspondent
standard deviation can be found in the supplementary material published with this work.

To vary the average scanning speed according to the experimental design adopted,
the amplitude of displacement was changed accordingly, which resulted in discrepant
processed areas in some cases. Because of the characteristics associated with the varied
combination of parameters, such as material displacement and overheating, different
sizes of the processed areas also occurred when the same amplitude of displacement
was adopted.

Following the validation of the implemented model via single-track experiments [39],
the assessment of the HAZ depth for all 34 sets of parameters established in the DoE
proposed in Section 2.4 is performed. Illustrations of some results obtained are presented
in Figures 9 and 10.

The heat transfer model adopted performs better for lower heat inputs because of the
mesh size and distribution chosen to save computational efforts. This effect is observed in
Figure 6 when the power is increased from 200 W to 400 W. Another evident aspect of using
different sets of parameters that was accurately captured by the heat-transfer model is the
laser–material interaction area and maximum temperatures achieved for different focal
offsets. For 200 W with a +3 mm defocus, the maximum temperature achieved was slightly
above 900 K and the contour delimitating the melted zone could not be identified, which
implies that the intended remelting was not satisfactorily accomplished. For the same laser
power and a lower defocus of +1 mm, the maximum temperatures achieved were above
2200 K, and the HAZ and melting contours are clearly identifiable. When maintaining the
focal offset of +1 mm and increasing the power to 400 W, the HAZ contour presented was
sharper but clearly deeper and broader, although the maximum temperature achieved was
above 2500 K and did not represent a great increase. Finally, with 400 W and +3 mm, the
effect of the defocusing on the laser beam diameter and the laser intensity distribution
can be observed with the increased laser–material interaction area and reduced maximum
temperature and HAZ depth.

As the scanning speed is reduced from 1600 mm/s to 800 mm/s, the parts are subjected
to laser irradiation for a longer period; therefore, they are also subjected to higher heat
inputs and present a higher maximum temperature. In this case, the sharp effects of the
meshes are more common, as can be seen in Figure 10. Still, the overall depth of the HAZ
can be estimated. The other discussed phenomena, such as laser–material interaction
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area, laser intensity distribution, and HAZ depth for different focal offset and laser power,
present similar behaviors when comparing higher and reduced scanning speeds.
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Figure 9. Simulated HAZ (1200 K contour) and melted (1930 K contour) areas of single-tracks laser
polished with 1600 mm/s: (a) 200 W and +1 mm, (b) 200 W and +3 mm, (c) 400 W and +1 mm,
(d) 400 W and +3 mm.
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Figure 10. Simulated HAZ (1200 K contour) and melted (1930 K contour) areas of single-racks laser
polished with 800 mm/s: (a) 200 W and +1 mm, (b) 200 W and +3 mm, (c) 400 W and +1 mm,
(d) 400 W and +3 mm.

3.3. Linear Regression

This section addresses the development of the linear regression models for Ra and
HAZ depth based on the experimental data obtained from the DoEs described above.
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It includes coefficient estimation, parameter interaction, and prediction capability of
each model.

3.3.1. Model Coefficient Estimation

A robust quadratic method was selected to obtain both regression models. Such
a method has great resilience against outliers. Using this procedure, the coefficients in
Equation (5) are established for Ra and HAZ depth. The data points acquired as presented
in Section 3.1 and used as input into the algorithm are displayed in Figure 11.
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In the first iteration, a similar weight is assigned to each data point, allowing the
calculation of the coefficients via a conventional least-square approach. Subsequently, until
the pre-established threshold is achieved, the subsequent iterations keep assigning new
weights to each data point so that the values that are closer to the model’s prediction are
favored with higher weight. Consequently, after convergence, the outcome is a model that
is less sensitive to major alterations in the data than obtained via ordinary least squares.

The resulting models from the regression technique are in the form of quadratic
equations. The first, Equation (6), provides a robust fit for surface roughness (µm), with
initially 21 terms for the five chosen predictors. The final model presents 11 terms, which
are the ones considered relevant.

Ra = 6.4603− 0.014571x1 + 0.4813x2 − 1.2822x3 − 6.0703x4 + 0.028178x2x3
−0.8623x2x4 − 0.38509x3x4 + 0.27358x2

2 + 0.18903x2
3 + 7.58x2

4
(6)

The second equation, Equation (7), is for the HAZ depth (µm) with initially 15 terms
for only four predictors. The final model presents 10 terms, which are the ones considered
relevant.

HAZ depth = 80.617 + 0.70384x1 − 19.5x2 + 7.9916x3 − 0.15053x5 + 0.021119x1x2
+0.068898x1x3 + 2.908x2x3 − 3.6518x2

2 − 3.5854x2
3

(7)
where ‘x1’ is the laser power, ‘x2’ is the focal offset, ‘x3’ is the number of repetitions, ‘x4’ is
the axial feed rate, and ‘x5’ is the scanning speed.

From these equations, it is possible to obtain the interaction between different process
parameters and predict Ra and the HAZ depths of components produced by AM and
submitted for laser polishing using different sets of parameters.

The predicted values for each parameter set are shown in Figure 12, together with the
measured values of Ra and depth of the HAZ.
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Figure 12. Predicted and measured values of (a) surface roughness regression and (b) HAZ
depth regression.

The poor outcomes obtained for the Ra were associated with smaller data sets and the
presence of high outliers; better results were obtained using the same procedure but with
a larger set of input data [48]. The regression model for surface roughness has only the
focal offset and the scanning speed statistically relevant at the 95% confidence level, the
former being slightly more significant than the latter. The confidence levels for the axial
feed rate, the number of repetitions, and the laser power were very low. However, the
previously mentioned study resulted in a much better fit for the surface roughness model
and showed the same order of parameter relevance as observed for the HAZ depth in the
current work [48].

On the other hand, even with fewer input data points, a model giving a good fit was
developed for the depth of the HAZ. Since the estimated heat-affected zone depths were
obtained from a computational simulation without noisy data, the presence of outliers was
not very likely amongst the input data sets.

3.3.2. Parameters Interaction

From the two models developed above, interaction plots were obtained. This was
performed to provide a more detailed comparison between Ra and HAZ depth, respectively,
with pairs of parameters. To maintain the commonality of the Ra and HAZ plots, the same
pairs of parameters were used. The axial feed rate was excluded because it did not appear
in the HAZ results and its contribution to Ra had a very low level of significance.

Figures 13 and 14 show the variations in the adjusted Ra and HAZ depth, respectively,
with pairs of parameters, each pair represented in two adjacent intersectional graphs. Each
plot shows the predicted behavior of one parameter for each of the three levels of the
other. In each plot, the remaining parameters are kept constant. The plots of the dependent
variables plotted on the Y-axis in the following figures show how sensitive is its reaction to
the independent variable plotted on the X-axis. With four separate parameters, there are
twelve possible such combinations.
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Figure 13. Interaction plots of the most significant laser-polishing parameters based on the surface
roughness regression model.

The interaction plots in Figure 13 show the clearest relation was between adjusted
Ra and scanning speed; the lower the speed, the lower the value of the adjusted Ra for all
values of power, the number of repetitions, and focal offset. There is also a clear tendency
for the adjusted Ra to decrease as laser power increases with a broad minimum clearly
visible around 300 W for both scanning speed and the number of repetitions, though the
position of the minimum does tend to increase slightly with speed. However, minimum
adjusted Ra is sensitive to change in focal offset. Minimum Ra occurs at higher values of
the power the greater the value of the focal offset; for example, for the minimum value of
the focal offset (0.0 mm), the minimum adjusted Ra occurs at a laser power of 100 W, but
at the maximum value of the focal offset (+4.0 mm) the minimum adjusted Ra occurs at a
laser power of 425 W.
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Figure 14. Interaction plots of the laser-polishing parameters for the HAZ depth regression model.

In all cases, the plot of the number of repetitions against any one of the other three
parameters was a shallow “U” shaped curve with a minimum value of the adjusted Ra at
the number of repetitions between 3 and 4.

The interaction plots in Figure 14 show that the estimated depth of the HAZ clearly
decreases as laser power decreases and scanning speed increases for all values of focal
offset and laser power and the number of repetitions, with the one exception that at the
minimum power, 100 W, we observe a shallow “U” shaped curve with a minimum at about
1400 mm/s. The depth of the HAZ decreased slightly as focal offset increased but increased
slightly as the number of repetitions increased, except in the case of higher power levels.

In contrast to the predicted behavior of the surface roughness, the general trends
obtained from the HAZ depth model appear to be more generally applicable. The probable
reason is the already mentioned data acquisition from the computational simulation without
noise, which was adopted for HAZ depth estimation.
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The above observations show the complexity of trying to identify the set of parameters
that would deliver optimal values of Ra and HAZ depth simultaneously since most of
the parameters for the two cases present conflicting consequences, i.e., it is only possible
to reach the minimum Ra by degrading the HAZ depth, and vice versa. Therefore, any
particular combination for low Ra and HAZ depth must be selected carefully, taking into
account the specific circumstances.

In general, when using low laser power of 100 W or 200 W, the amount of energy
supplied is insufficient to completely melt the surface asperities, possibly causing balling.
Of course, the lower the laser power, the smaller the heat input to the surface and the less
the depth of the HAZ. Reduced laser power can be compensated by increasing the number
of repetitions or decreasing scanning speed and axial feed rate, which would increase the
processing time and also the depth of the HAZ.

3.3.3. Predictions

From the regression analysis, it is possible to generate slice plots for predicting Ra and
HAZ depth (Figures 15 and 16), in which the curves represent how the dependent variable
changes as a function of the values of the input parameters. The dashed boundaries are the
95% confidence limits for the predicted value of the dependent variable.
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The slice plots allow the assessment of the predicted values of Ra and HAZ depth
for a chosen set of parameters. For example, to obtain a laser polished surface with a Ra
value of around 0.51 µm, the suggested set of parameters are: laser power = 0 (300 W),
focal offset = 0.5 (+3 mm), number of repetitions = 0 (3 repetitions), axial feed rate = 0
(0.6 m/min), and scanning speed = −0.5 (800 mm/s). The same set of parameters would
result in a HAZ depth of around 110 µm.
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Different applications may require a specific value of surface roughness but can accept
a range of HAZ depths; thus, slice plots can be a useful tool to rapidly check the achievable
varieties of surface roughness and HAZ depth in order to facilitate the design of further
experiments since different combinations, besides the one presented above, will provide
reductions in surface roughness and generate different depths of HAZ.

Nevertheless, to predict several sets of parameters that will simultaneously provide
satisfactory values of Ra and HAZ depth using only the slice plots can be time consum-
ing and not always reliable, e.g., when the model is limited by the dataset and predicts
unfeasible results (Figure 15). An alternative lies in building models based on machine
learning techniques that can be improved with the addition of new data, whenever needed
or available, and combined with numerical optimization approaches. The results would be
more consistent models, and a wider range of optimal parameters obtained more quickly.

3.4. Artificial Neural Networks (ANN)

Since the regression model with the adopted DoE did not present satisfactory results
for surface roughness prediction, this section will address the development and assessment
of ANN architectures to model the relationship between input and output based on the
experimental data.

As mentioned in Section 2.5.2, the ANN design for surface roughness is composed of
two hidden layers of four and two neurons, respectively, with a cascade forward network
structure. A simple feedforward network architecture with one hidden layer of one neuron
forms the ANN design for the HAZ depth. The Levenberg–Marquardt backpropagation
algorithm, also described in Section 2.5.2, results in fast convergence with satisfactory
values of MSE. The final models were obtained by learning from the input data, adjusting
the model to new conditions using weights and bias associated with every synapse and
each neuron. Those values were constantly updated during the training stage until the
convergence threshold was accomplished.

The performance results for the training, test, and validation datasets for each model
are presented in Figure 17. The performance is evaluated based on the MSE computed in
every epoch. In most cases, during the training stage, the MSE has a tendency to decrease
with the number of epochs executed. While the same is true for the validation stage, an
increase in the MSE can occur if the network starts overfitting the training data. In order to
avoid overfitting, the MATLAB ANN toolbox stops the training at a specified number of
consecutive increases in the validation MSE; by default, this number is six. Overfitting can
also be detected if the test MSE experiences a significant increase prior to the validation
curve. As seen in Figure 17, for neither model, overfitting was an issue.
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From the regression plots (Figures 18 and 19), the relationship between the predicted
and measured output can be used to verify if the models are a suitable representation of
the experimental data. Each image is divided into four, which are related to the training,
validation, testing, and all data combined. Every subplot contains the distributed data
points, a dashed line that demonstrates the perfect fit (R = 1) between output and targets,
and a solid line that represents the actual fit.
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In the ANN model for surface roughness, the fit for the training data presented an R
value of 0.98603, which indicates an almost perfect linear relationship. When considering
the validation and test data, the R values obtained are 0.79247 and 0.60392, respectively. In
addition to the different amounts of data used for each stage, 70%-15%-15% for training-
validation-testing, the scatter plots lead us to believe that the validation and test datasets
included a few outliers, unlike the training data set. However, the resulting fit for the entire
dataset presents a satisfactory R of 0.90024.

As for the ANN model for HAZ depth, the fit for the training data had an R value
of 0.94100, while the validation and test data presented R values of 0.98054 and 0.89621,
respectively. In this case, the absence of outliers resulted in a better fit for all stages despite
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the reduced amount of data, compared with the surface roughness. The overall R value for
the HAZ depth ANN model for the entire dataset was R = 0.93457.
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To better illustrate the performance of the ANN model, the predicted values of Ra and
HAZ depth are shown in Figure 20, together with the measured values. Table 3 presents the
corresponding Mean Error, Mean Squared Error, and Standard Deviation associated with
each model. In general, the ANN models display a better fit than the models obtained via
quadratic regression. Considering the particular case for the Ra measurements, in contrast
to the linear regression approach, the ANN technique was able to produce a satisfactory
model for surface roughness prediction. For HAZ depth estimation, both methods provided
an adequate match between predicted and measured values.

As can be seen from Figure 20, the model based on the ANN provides a good fit
for the experimental input data, but it is also able to receive new data to improve its
performance, which is not possible with regression analysis. For this reason, the ANN
models were selected as the fitness function for the multiobjective optimization presented
in the next section.
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Table 3. Mean Error, Mean Squared Error, and Standard Deviation associated with the ANN
models adopted.

ANN Model Mean Error MSE Std. Deviation

Ra 0.473481 0.737955 0.723771
HAZ 13.1259 224.302 7.32044
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3.5. Multiobjective Optimization

When facing a multiobjective problem, the goal is not to find a single solution but a
set of acceptable solutions within a specific range. This set of solutions can be graphically
represented in a Pareto front, where a set of points that have noninferior fitness function
values is displayed in the parameter space. Figure 21a exhibits the Pareto front for the two
competing objectives described in our work. However, not all solutions deliver realistic
values for surface roughness and HAZ depth. The suitable solutions are displayed in
Figure 21b, which is a zoom of the previous Pareto front restricted to the region of interest
to this study.
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The sets of parameters obtained to achieve the solutions displayed in the zoomed
Pareto plot above (Figure 21b) are listed in Table 4.

Table 4. Parameter sets to obtain adequate values of surface roughness and HAZ depth combined.

Solution Ra (µm) HAZ (µm) Laser Power (W) Focal Offset (mm) No. of
Repetitions

Axial Feed Rate
(m/min)

Scanning Speed
(mm/s)

1 0.13 113.31 410.16 3.99 2.52 0.65 795.14
2 0.23 97.35 410.84 3.99 2.59 0.64 916.60
3 0.31 90.15 413.47 3.98 2.66 0.66 993.97
4 0.46 75.82 407.15 3.99 2.36 0.66 1022.65
5 0.54 67.41 407.55 3.99 2.71 0.65 1180.17
6 0.80 49.22 436.31 3.99 2.61 0.64 1379.07
7 1.16 30.78 407.68 3.99 1.49 0.68 1159.97
8 1.30 11.92 459.39 3.98 1.47 0.58 1366.02
9 1.42 9.18 422.03 3.99 1.36 0.66 1343.78

10 1.62 3.68 437.22 3.99 1.08 0.68 1286.11

When performing multiobjective optimization, the values for one objective may im-
prove while degrading the others. This is confirmed here. We see the minimum Ra occurs
with the maximum HAZ depth and vice versa. The information obtained through GA
optimization is also aligned with the parameter interaction presented in Section 3.3.2. For
example, it was established in the interaction plots that to achieve minimum Ra and depth
of HAZ, the focal offset should have the highest value of +4.0 mm. As is observed in Table 4
the focal offset is 3.99 mm (~4.0 mm) and is constant for all optimal solutions. On the
other hand, parameters such as laser power, number of repetitions, and scanning speed
present opposing behaviors to achieve minimum Ra and HAZ depth. In this aspect, the
multiobjective optimization developed a balanced solution that consisted in combining
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high scanning speeds and a low number of repetitions, which tend to minimize the HAZ
depth values, with laser power values closer to the optimal range to achieve minimum Ra.

Considering the values of Ra and HAZ depth obtained, a suitable range for most
applications would lie within or between solutions 2 to 9, 0.2 µm ≤ Ra ≤ 1.4 µm, with the
corresponding range for the depth of HAZ being 10 µm ≤ HAZ ≤ 100 µm.

We can conclude that acceptable ranges for each parameter would be:
400 W ≤ laser power ≤ 460 W;
Focal offset = +4.0 mm;
Number of repetitions: 1, 2, or 3;
0.58 m/min ≤ axial feed rate ≤ 0.68 m/min;
916 mm/s ≤ scanning speed ≤ 1380 mm/s.

4. Conclusions

The modeling approach presented here is suitable for multiobjective optimization
of manufacturing processes, notwithstanding the particular variables to be optimized.
The results presented here demonstrate that the adoption of DoE techniques can lead
to the structured acquisition of data to be used in the development of statistical models.
The first approach presented in this work is regression modeling, and it proved to be a
valuable tool for assessing parametric interactions, despite the models developed having
noticeable accuracy limitations. As an alternative and more flexible approach, ANN models
were developed, and these resulted in simulations that were an acceptable fit for both
surface roughness and depth of the HAZ. A particular strength of the ANN model is that
it is capable of subsequently accepting additional data to assist in improving the model’s
predictive capabilities.

Its slightly superior performance made the ANN model the better choice for fitness
function in the GA multiobjective optimization, which provided an acceptable range of
values for the given input parameters (laser power, focal offset, axial feed rate, number
of repetitions, and scanning speed) to produce satisfactory values of Ra and HAZ, si-
multaneously. Given that the data used for training the ANNs were obtained from both
experiments and numerical simulations, the proposed approach is a promising way to
assist the optimization of additive manufacturing postprocesses, saving material, time,
and money.
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variations with their correspondent standard deviation.

Author Contributions: Conceptualization, J.S.S., A.E. and W.P.; methodology, J.S.S., A.E. and W.P.;
software, J.S.S.; validation, J.S.S. and T.W.; formal analysis, J.S.S. and A.E.; investigation, J.S.S. and T.W.;
resources, T.W., H.J.S. and W.P.; data curation, J.S.S. and A.E.; writing—original draft preparation,
J.S.S. and A.E.; writing—review and editing, H.J.S., W.P, S.S., A.E. and T.W.; visualization, J.S.S. and
W.P; supervision, H.J.S. and W.P.; project administration, S.S. and W.P.; funding acquisition, S.S. and
W.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work has received funding from the European Union’s programme PAM2 within
Horizon 2020 under grant agreement No. 721383. We acknowledge support from the KIT-Publication
Fund of the Karlsruhe Institute of Technology.

Acknowledgments: The authors acknowledge the support provided by the Karlsruhe Nano Micro
Facility (KNMFi, http://www.knmf.kit.edu/), a Helmholtz research infrastructure at KIT. Further-
more, the authors thank the support of DTU project team for their assistance in the development of
the heat transfer models and Xuanqing Hong for his assistance during the samples’ metallographic
preparation and optical microscopy.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ma15093323/s1
https://www.mdpi.com/article/10.3390/ma15093323/s1
http://www.knmf.kit.edu/


Materials 2022, 15, 3323 27 of 28

References
1. Guo, N.; Leu, M. Additive manufacturing: Technology, applications and research need. Front. Mech. Eng. 2013, 8, 215–243.

[CrossRef]
2. Chen, L.; He, Y.; Yang, Y.; Niu, S.; Ren, H. The research status and development trend of additive manufacturing technology. Int.

J. Adv. Manuf. Technol. 2017, 89, 3651–3660. [CrossRef]
3. Peng, T.; Kellens, K.; Tang, R.; Chen, C.; Chen, G. Sustainability of additive manufacturing: An overview in its energy demand

and environmental impact. Addit. Manuf. 2018, 21, 694–704. [CrossRef]
4. Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A. Materials for additive manufacturing. CIRP Ann.

Manuf. Technol. 2017, 66, 659–681. [CrossRef]
5. Charles, A.; Elkaseer, A.; Thijs, L.; Hagenmeyer, V.; Scholz, S. Effect of Process Parameters on the Generated Surface Roughness of

Down-Facing Surfaces in Selective Laser Melting. Appl. Sci. 2019, 9, 1256. [CrossRef]
6. Townsend, A.; Senin, N.; Blunt, L.; Leach, R.K.; Taylor, J.S. Surface texture metrology for metal additive manufacturing: A review.

Precis. Eng. 2016, 46, 34–47. [CrossRef]
7. Maamoun, A.H.; Elbestawi, M.A.; Veldhuis, S.C. Influence of Shot Peening on AlSi10Mg Parts Fabricated by Additive Manufac-

turing. J. Manuf. Mater. Process. 2018, 2, 40. [CrossRef]
8. De Baere, D.; Strantza, M.; Hinderdael, M.; Devesse, W.; Guillaume, P. Effective structural health monitoring with additive

manufacturing. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014.
9. Haefele, T.; Schneberger, J.H.; Kaspar, J.; Vielhaber, M.; Griebsch, J. Hybrid Additive Manufacturing—Process Chain Correlations

and Impacts. Procedia CIRP 2019, 84, 328–334. [CrossRef]
10. Zhechao, F.; Hongwei, F. Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results Phys. 2018, 10, 660–664.
11. Gora, W.W.; Tian, Y.; Cabo, A.P.; Ardron, M.; Maier, R.R.J.; Prangnell, P.; Weston, N.J.; Hand, D.P. Enhancing surface finish of

additively manufactured titanium and cobalt chrome elements using laser based finishing. Phys. Procedia 2016, 83, 258–263.
[CrossRef]

12. Bhaduri, D.; Penchev, P.; Batal, A.; Dimov, S.; Soo, S.L.; Sten, S.; Harrysson, U.; Zhang, Z.; Dong, H. Laser polishing of 3D printed
mesoscale components. Appl. Surf. Sci. 2017, 405, 29–46. [CrossRef]

13. Temmler, A.; Willenborg, E.; Wissenbach, K. Laser polishing. In Proceedings of the Procedings SPIE 2012; Laser Applications in
Microelectronic and Optoelectronic Manufacturing XVII, San Francisco, CA, USA, 21–22 January 2012; Volume 8243.

14. Mishra, S.; Yadava, V. Laser beam micromachining(LBMM)—A review. Opt. Lasers Eng. 2015, 73, 89–122. [CrossRef]
15. Wang, W.J.; Yung, K.C.; Choy, H.S.; Xiao, T.Y.; Cai, Z.X. Effects of laser polishing on surface microstructure and corrosion

resistance of additive manufactured CoCr alloys. Appl. Surf. Sci. 2018, 443, 167–175. [CrossRef]
16. Ma, C.P.; Guan, Y.C.; Zhou, W. Laser polishing of additive manufactured Ti alloys. Opt. Lasers Eng. 2017, 93, 171–177. [CrossRef]
17. Marimuthu, S.; Triantaphyllou, A.; Antar, M.; Wimpenny, D.; Morton, H.; Beard, M. Laser polishing of selective laser melted

components. Int. J. Mach. Tools Manuf. 2015, 95, 97–104. [CrossRef]
18. Shao, T.M.; Hua, M.; Tam, H.Y.; Cheung, E.H.M. An approach to modelling of laser polishing of metals. Surf. Coat. Technol. 2005,

197, 77–84. [CrossRef]
19. Wang, Q.; Morrow, J.D.; Ma, C.; Duffie, N.A.; Pfefferkorn, F.E. Surface prediction model for thermocapillary regime pulsed laser

micro polishing of metals. J. Manuf. Processes 2015, 20, 340–348. [CrossRef]
20. Bayat, M.; Mohanty, S.; Hattel, J.H. Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by

multi-track/multi-layer L-PBF. Int. J. Heat Mass Transf. 2019, 139, 95–114. [CrossRef]
21. Jiang, P.; Wang, C.; Zhou, Q.; Shao, X.; Shu, L.; Li, X. Optimization of laser welding process parameters of stainless steel 316L

using FEM, Kriging and NSGA-II. Adv. Eng. Softw. 2016, 99, 147–160. [CrossRef]
22. Muhammad, K.F.; Yusoff, W.A.W. Optimization of laser cutting parameters using variable weight Grey-Taguchi method. Aust. J.

Basic Appl. Sci. 2014, 8, 361–365.
23. Sun, Y.; Hao, M. Statistical analysis and optimization of the process parameters in Ti6Al4V laser cladding using Nd:YAG laser.

Opt. Lasers Eng. 2012, 50, 985–995. [CrossRef]
24. Benyounis, K.Y.; Olabi, A.G. Optimization of different welding processes using statistical and numerical approaches—A reference

guide. Adv. Eng. Softw. 2008, 39, 483–496. [CrossRef]
25. Hamad, A.R.; Abboud, J.H.; Shuaeib, F.M.; Benyounis, K.Y. Surface hardening of commercially pure titanium by laser nitriding:

Response surface analysis. Adv. Eng. Softw. 2010, 41, 674–679. [CrossRef]
26. Casalino, G.; Facchini, F.; Mortello, M.; Mummolo, G. ANN modelling to optimize manufacturing processes: The case of laser

welding. IFAC-Pap. 2016, 49, 378–383. [CrossRef]
27. Boillat, E.; Kolossov, S.; Glardon, R.; Loher, M.; Saladin, D.; Levy, G. Finite element and neural network models for optimization

in selective laser melting. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 607–614. [CrossRef]
28. Filippis, L.A.C.; Serio, L.M.; Facchini, F.; Mummolo, G. ANN modelling to optimize manufacturing processes. Adv. Appl. Artif.

Neural Netw. 2017, 11, 201–225.
29. Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharma-

ceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [CrossRef]
30. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006,

91, 992–1007. [CrossRef]

http://doi.org/10.1007/s11465-013-0248-8
http://doi.org/10.1007/s00170-016-9335-4
http://doi.org/10.1016/j.addma.2018.04.022
http://doi.org/10.1016/j.cirp.2017.05.009
http://doi.org/10.3390/app9061256
http://doi.org/10.1016/j.precisioneng.2016.06.001
http://doi.org/10.3390/jmmp2030040
http://doi.org/10.1016/j.procir.2019.04.220
http://doi.org/10.1016/j.phpro.2016.08.021
http://doi.org/10.1016/j.apsusc.2017.01.211
http://doi.org/10.1016/j.optlaseng.2015.03.017
http://doi.org/10.1016/j.apsusc.2018.02.246
http://doi.org/10.1016/j.optlaseng.2017.02.005
http://doi.org/10.1016/j.ijmachtools.2015.05.002
http://doi.org/10.1016/j.surfcoat.2005.01.010
http://doi.org/10.1016/j.jmapro.2015.05.005
http://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003
http://doi.org/10.1016/j.advengsoft.2016.06.006
http://doi.org/10.1016/j.optlaseng.2012.01.018
http://doi.org/10.1016/j.advengsoft.2007.03.012
http://doi.org/10.1016/j.advengsoft.2009.10.010
http://doi.org/10.1016/j.ifacol.2016.07.634
http://doi.org/10.1243/0954405041167121
http://doi.org/10.1016/S0731-7085(99)00272-1
http://doi.org/10.1016/j.ress.2005.11.018


Materials 2022, 15, 3323 28 of 28

31. Elkaseer, A.; Lambarri, J.; Quintana, I.; Scholz, S. Laser ablation of cobalt-bound tungsten carbide and aluminium oxide ceramic:
Experimental investigation with ANN modelling and GA optimization. Smart Innov. Syst. Technol. 2018, 130, 21–30.

32. Nwobi-Okoye, C.C.; Ochieze, B.Q.; Okiy, S. Multi-objective optimization and modeling of age hardening process using ANN,
ANFIS and genetic algorithm: Results from aluminum alloy A356/cow horn particulate composite. J. Mater. Res. Technol. 2019, 8,
3054–3075. [CrossRef]

33. Nguyen, T.H.; Lin, C.K.; Tung, P.C.; Nguyen-Van, C.; Ro, J.R. Artificial Intelligence-based modeling and optimization of heat
affected zone and magnetic property in pulsed laser cutting of thin nonoriented silicon steel. Int. J. Adv. Manuf. Technol. 2021, 113,
3225–3240. [CrossRef]

34. Ding, H.; Wang, Z.; Guo, Y. Multi-objective optimization of fiber laser cutting based on generalized regression neural network
and non-dominated sorting genetic algorithm. Infrared Phys. Technol. 2020, 108, 103337. [CrossRef]

35. Yadav, D.; Chhabra, D.; Garg, R.K.; Ahlawat, A.; Phogat, A. Optimization of FDM 3D printing process parameters for multi-
material using artificial neural network. Mater. Today: Proc. 2020, 21, 1583–1591. [CrossRef]

36. Sampreet, K.R.; Mahidhar, V.; Narayanan, R.K.; Kannan, D.B. Optimization of process parameters in laser welding of Hastelloy
C-276 using artificial neural network and genetic algorithm. Surf. Rev. Lett. 2021, 28, 2050042. [CrossRef]

37. Gietzelt, T.; Eichhorn, L.; Wunsch, T.; Gerhards, U.; Przeorski, T.; Weiss, H.; Dittmeyer, R. Contribution to the Laser Welding of
Wrought and Spray-Compacted Aluminum Alloys and the Impact of the Alloy Composition on the Welding Microstructure. Adv.
Eng. Mater. 2014, 16, 1052–1065. [CrossRef]

38. ISO 4288 (1996); Geometrical Product Specifications (GPS)—Surface texture: Profile method—Rules and procedures for the
assessment of surface texture. Available online: www.iso.org/standard/2096.html (accessed on 27 February 2022).

39. Solheid, J.S.; Mohanty, S.; Bayat, M.; Wunsch, T.; Weidler, P.G.; Seifert, H.J.; Pfleging, W. Laser polishing of additively manufactured
Ti-6Al-4V—Microstructure evolution and material properties. J. Laser Appl. 2020, 32, 022019. [CrossRef]

40. Yan, W.; Qian, Y.; Wenjun, G.; Lin, S.; Liu, W.K.; Lin, F.; Wagner, G.J. Meso-scale modeling of multiple-layer fabrication process in
selective electro beam melting: Inter-layer/track voids formation. Mater. Des. 2018, 141, 210–219. [CrossRef]

41. Parry, L.; Ashcroft, I.A.; Wildman, R.D. Understanding the effect of laser scan strategy on residual stress in selective laser melting
through thermo-mechanical simulation. Addit. Manuf. 2016, 12, 1–15. [CrossRef]

42. Huang, Y.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Finite element analysis of thermal behaviour of metal powder during selective laser
melting. Int. J. Therm. Sci. 2016, 104, 146–157. [CrossRef]

43. Bayat, M.; Mohanty, S.; Hattel, J.H. A systematic investigation of the effects of process parameters on heat and fluid flow and
metallurgical conditions during laser-based powder bed fusion of Ti6Al4V alloy. Int. J. Heat Mass Transf. 2019, 139, 213–230.
[CrossRef]

44. Santos, C.P.; Rato, T.J.; Reis, M.S. Design of experiments: A comparison study from the non-expert user’s perspective. J. Chemom.
2018, 33, e3087. [CrossRef]

45. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5,
989–993. [CrossRef] [PubMed]

46. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective
Optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI. PPSN 2000; Schoenauer, M., Ed.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1917.

47. Deb, K.; Goel, T. Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. In Multi-Criterion
Optimization. EMO 2001; Zitzler, E., Thiele, L., Deb, K., Coello, C.A., Corne, D., Eds.; Evolutionary Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1993.

48. Solheid, J.S.; Elkaseer, A.; Wunsch, T.; Charles, A.P.; Seifert, H.J.; Pfleging, W. Effect of process parameters on surface texture
generated by laser polishing of additively manufactured Ti-6Al-4V. In Proceedings of the Procedings SPIE 2020, Micro- and
Nanoprocessing XIV, 112680Q. San Francisco, CA, USA, 1–6 February 2020.

http://doi.org/10.1016/j.jmrt.2019.01.031
http://doi.org/10.1007/s00170-021-06847-4
http://doi.org/10.1016/j.infrared.2020.103337
http://doi.org/10.1016/j.matpr.2019.11.225
http://doi.org/10.1142/S0218625X20500420
http://doi.org/10.1002/adem.201300497
www.iso.org/standard/2096.html
http://doi.org/10.2351/7.0000065
http://doi.org/10.1016/j.matdes.2017.12.031
http://doi.org/10.1016/j.addma.2016.05.014
http://doi.org/10.1016/j.ijthermalsci.2016.01.007
http://doi.org/10.1016/j.ijheatmasstransfer.2019.05.017
http://doi.org/10.1002/cem.3087
http://doi.org/10.1109/72.329697
http://www.ncbi.nlm.nih.gov/pubmed/18267874

	Introduction 
	Materials and Methods 
	Sample Fabrication 
	Laser System and Polishing Process 
	Surface Metrology System 
	Heat Transfer Model 
	Design of Experiments 
	Linear Regression 
	Artificial Neural Networks 

	Optimization 

	Results and Discussion 
	Initial Experimental Results 
	DoE Experimental Results 
	Linear Regression 
	Model Coefficient Estimation 
	Parameters Interaction 
	Predictions 

	Artificial Neural Networks (ANN) 
	Multiobjective Optimization 

	Conclusions 
	References

