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Abstract. When reading images, radiologists generate text reports de-
scribing the findings therein. Current state-of-the-art computer-aided di-
agnosis tools utilize a fixed set of predefined categories automatically ex-
tracted from these medical reports for training. This form of supervision
limits the potential usage of models as they are unable to pick up on
anomalies outside of their predefined set, thus, making it a necessity to
retrain the classifier with additional data when faced with novel classes.
In contrast, we investigate direct text supervision to break away from this
closed set assumption. By doing so, we avoid noisy label extraction via
text classifiers and incorporate more contextual information. We employ
a contrastive global-local dual-encoder architecture to learn concepts di-
rectly from unstructured medical reports while maintaining its ability
to perform free form classification. We investigate relevant properties
of open set recognition for radiological data and propose a method to
employ currently weakly annotated data into training. We evaluate our
approach on the large-scale chest X-Ray datasets MIMIC-CXR, CheX-
pert, and ChestX-Ray14 for disease classification. We show that despite
using unstructured medical report supervision, we perform on par with
direct label supervision through a sophisticated inference setting.

1 Introduction

Radiologists interpret a vast amount of imaging data and summarize their in-
sights as medical reports. This documentation accumulates large databases of
radiological imaging and accompanying findings, i.e., millions of collected chest
radiographs annually [I]. Computer-aided-diagnosis (CAD) systems utilize these
databases to streamline the clinical workflow and save time [I7UTTIS]. Modern
CAD tools often rely on deep learning models [I7] using large-scale data sets
such as MIMIC-CXR [23|I0I7/2] for training. Training for such tasks requires
hand-designed supervision, typically by extracting a fixed set of predefined la-
bels from the reports using rule- or deep learning-based models [23[7J20]. Such
training typically requires hand-designed supervision in the form of extracting a
set of labels from the reports using rule- or deep learning-based models [23U7120].
While these tools can deliver acceptable performance on a subset of diseases [25],
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Fig. 1. Illustration of our proposed method. Training on the left, inference on the right.

they lack generalization capabilities for diseases that were not part of the fixed
label-set used for training. To add disease classes requires substantial effort an-
notating the data with extra labels and retraining the system. To circumvent
this, one can approach training in a class-agnostic manner, however, it becomes
unclear how models can still be applied to classify diseases.

Recent methods based on contrastive language-image pre-training [I8[9T626/24]
indicate that by large-scale multi-modal representation learning, object recogni-
tion can be detached from prior fixed-set, hand-designed class definitions. These
models learn joint feature spaces between images and textual descriptions and
utilize text prompts to transform recognition from learned fix-set classification
to a matching task between text and image embeddings. Radiological reports,
in contrast to natural-image captions, have an inherently different structure, as
they encompass multiple distinct sentences such that their entirety describes all
relevant information. This shift makes a direct application of existing methods
non-trivial.

In this work, we see our contributions as the following:

1. We address training through report supervision by considering radiological
reports in one of two ways: The local level, assuming each sentence conveys
a distinct concept relevant for the patient, and secondly, the global report
view, which encodes the entirety of the findings.

2. We propose a novel inference setting that allows us to query any desired find-
ing, and the CAD system generates a binary decision regarding its presence
in the given radiological imagery.
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3. We provide an extensive study on various factors impacting the performance
of multi-modal training and inference.

2 Global-Local Contrastive Learning

We illustrate our method for report-based training of a vision model and infer-
ence protocol specifically designed for disease recognition in Figure[l} To tackle
the complexity of medical reports, we split representations into a sentence- and
report-level from a shared visual and language encoder. We consider embeddings
for both the presence and absence of a pathology for its prediction.

2.1 Model Overview

Contrastive language and image pretraining (CLIP) has shown immense poten-
tial for object recognition in natural images [18] through learning from image-
caption pairs. In contrast to textual descriptions in CLIP-based models, medical
reports typically consists of multiple sentences focusing on different parts in the
image. As each sentence contains specific subset of information, we aim to cap-
ture sentence- (local) and report-level (global) context in our representations.
Thus, our model builds on separate image- and text encoders ¢ and 6, which
embed an image I via z; = ¢(I) and a sentence by z; = (s), respectively.

In training, for a given report R, we capture the local context by splitting the
full report into its sentences R = {s1, ..., s, } and subsequently extract sentence-
level embeddings z,, = 6(s;), s; € R. To generate global embeddings that contain
the full information of the whole report, the sentence-level embeddings are ag-
gregated through attention pooling: zgr = Attn([zs,, ..., 2s 5 ]) [21]. To embed
21, 2s and zg into shared multi-modal representations, we project sentences and
reports via linear transformations p® and p® into two feature spaces. As the
image encoder has access to global image information for report-level prediction
as well as to local image patterns for selective sentence-dependent prediction,
we project z7 twice: into a global representation p®(z;) which shall align with
pf'(2r) and a representation for local patterns p”(z) for alignment with p®(zs).

During training, we are provided with a dataset of image-report pairs (I;, R;) €
(I1,R1),...,(In,Rn). For brevity and clarity in subsequent formulas, we will
write projections, e.g. the global projection of an image I; as piG instead of
p§(0(1;)), for the projection of the k" sentence from report R;, we write p3).

2.2 Training Objectives

Local Contrast: While radiological reports describe the assessment of a pa-
tient’s health, not every sentence is directly linked to specific findings, some
sentences mention clinical procedures or required follow-up examinations. How-
ever, we can assume that all clinically relevant information is present in a subset
of sentences in the report due to the doctors’ obligation to document the findings.
This property is the core of the multiple-instance learning (MIL) assumption.
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Therefore, it might seem natural to choose MILNCE [I4] as the MIL-based ob-
jective for integrate sentences in training, yet, this assumption only holds when
normalizing over sentences, as not every sentence has to match the image. How-
ever, if a sentence fits an image, it should match strictly that image, thus, we
hold the regular formulation when normalizing over images. As such, MILNCE
does not quite fit this use-case and we redesign it by splitting its symmetry:

Son_qexp(o(pk,p3)/mr)
N
> i1 om—r exp(a(pf,p3,,)/71)
n

=3 log exp(o(pf, i)/ Tr)

N b
= o explo(pf,pi) /)

Lr(I;, R;) = —log

with 77, being a learned parameter and o(-, ) denoting the cosine similarity.
Global Contrast: For our batch we assume that an image-report pair is unique
and formulate the following objective leveraging the attention-fused reports via:

Lol Ry) = —1 eXP(U(piGasz)/TG) “lo exp(a(pZ.G,pZR)/q—G)
al ) og Z;v:l exp(o(p¢, p) /7¢) Z;,V:l exp(o(pG, ) /76)

Self-Supervision: CLIP has been established as a data-hungry algorithm [I8/[16].
Several recent methods combine intrinsic supervision signals with the CLIP ob-
jective to make full use of the available data [I2/T5]. As we have access to severely
smaller datasets in the medical domain as compared to the natural image do-
main, we follow Li et al. [I2] and integrate SimSiam [4]. For this, we generate
two augmented versions of the input image A;(I) and As(I) and add a three-
layer encoder-head p¥ and a two-layer prediction-head p? on top of the visual
backbone ¢ to enforce similarity between the two views:

Ls(Ai(I),A2(1)) = —U(pil(f)adetaCh(Pﬁz(z))) - U(Pig(f)vdetaCh(Pil(z))) (3)

Furthermore, we utilize the augmented images used for the self-supervised ob-
jective to mirror our text-image objectives to the augmented samples.

ﬁM(Ii, Ri) = ﬁ(;(Al(Ii)7 Ri) +EL(A1(Ii), Ri) +£G(A2(Ii),Ri) +£L(A2(Ii), f(fz;

Our final objective for report-based contrastive learning amounts to:
L(I;,R;) = M*Lr(Li, Ri)+XoxLa(Li, Ri) +A3xLs(Li, Ri)+XaxLar (L, R;) (5)

with )\1 = )\2 = /\3 = 0.5 and )\4 = 0.25.

2.3 Model Inference

For fixed set classification models, the inference process is straightforward: A
given image I passed through a network with an activation in the final layer,
returning class-wise pseudo probabilities. When model architecture and training
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procedure do not permit a classification layer, methods often resort to zero-
shot-like inference [6II824] where a nearest neighbor search in semantic space
is conducted [5]. In our considered design a text-based query is used to infer
the presence or absence of a given disease. In similar CLIP-like models, the text
embeddings (e.g., of the disease names) can be matched to an image embedding.
The query with the maximum similarity can then be retained as matched.

Such a matching based disease discovery is feasible for detecting single dis-
ease class. The underlying assumption of having exclusively one dominant class
to predict does not hold for chest radiographs as pathologies are not mutually
exclusive. Similarly, modeling co-occurrence as individual classes is also infea-
sible due to the exponentially rising number of possible class combinations. As
such, inference for a multi-label classification needs to be formulated for such
contrastively trained methods.

We perform this, by querying an image with class-related textual prompts
and interpreting their similarity scores as prediction probabilities for the respec-
tive disease class. In practice, we notice that a single query for class presence is
ambiguous since the text embeddings of words and their negations may fall close
to one another in the feature space. Due to this proximity of opposing semantics
a query could be mistaken with the negation of its class.

To overcome this issue, we propose to perform inference over two sets of
queries (g2, ¢") for each class. While the query embedding ¢? indicates the oc-
currence of a class ¢, ¢ indicates its absence, e.g. OPACITIES CONSISTENT WITH
PNEUMONIA for presence as opposed to THE LUNGS ARE CLEAR for its absence.
Then, the cosine similarity between the image and both queries o(p’,¢?) and
o(p!,q") is computed with the final prediction wrt. class ¢ being defined as:

exp(a(p!, q?)/7) (6)

POD = . d@)/m) + exp(aha)/ )

where 7 is the respective learned scaling factor depending on the used projection.

3 Prompt Engineering

Several works on zero-shot classification perform their inference by extracting the
features of the class name through a word embedding model [22]. While sufficient
for most zero-shot applications a lot of context regarding the class is lost. In or-
der to effectively utilize language-vision models it is necessary to align the down-
stream task to the training [18]. As such we model a set of positive and negative
prompts applicable for pathologies to enrich our matching process between visual
and textual projections. While for our basic approach we consider (‘{class}’, ‘No
{class}’) prompts, we found that a more detailed prompt design can overall de-
liver improved performance. As such we consider a set of prompts following the
templates (‘{adverb}{indication_verb} {effect}* {location}* {class_synonym}’,
‘{adverb} {indication_verb} {absence} {class_synonym}’). Hereby, we utilize all
combinations over a small set of categories to gather a variety of different set-
tings. During inference, features of all queries of the same set are averaged.
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Fig. 2. Performance changes based on differences in prompt generation. Class wise
performance on the left. Mean performance to the right. Models trained on MIMIC.

Prompt-based Dataset Extension: Despite medical reports being the more
common resource in the practical field, currently the majority of large-scale
datasets are only publically available with fixed sets of labels. In order to in-
vestigate the effect of additional data in training of our method, we reverse our
proposed prompt engineering to generate synthetic reports for the datasets Pad-
Chest and ChestX-Rayl14 based on their class-labels. Through this procedure,
we are able to sample sentences indicating presence or absence of a class and
generate more than 200k added image-report pairs.

4 Experiments

4.1 Experimental Setup
Datasets:

— MIMIC-CXR: It contains 377,110 chest X-rays taken from 65179 patients
with 14 disease labels and 227,835 reports. We use the splits provided by [10].
Unless further specified all models were trained on this dataset.

— CheXpert: It contains 224,316 chest X-rays taken from 65,240 patients
with 14 disease labels. The labels are shared with MIMIC-CXR. We only
consider the validation split provided by [7].

— ChestX-rayl4: It contains 112,120 frontal-view chest X-rays taken from
30,805 patients with 14 disease labels. We use the splits provided by [19].

— PadChest: It consists 160k chest X-rays of 67k patients with 174 findings.

Inf. MIMIC CheXpert CXR14 Avg. Parts MIMIC CXpert CXR14 Avg.
Local 77.81 78.09 71.72 7587 Lg 75.47 77.24  69.22 73.97
Global 76.24  80.42 71.00 75.88 Lg+LrL 76.20 82.24 69.26 75.90

Max 7685 71.29 7822 75.45 EG“ﬁ:L*ﬁS Zg'ég ;S'gz ;‘113;1 ;gg;
Cat 7729  80.30 71.72 76.43 LGThLtEMm 7T : : :

Mean 77.06 81.08 71.50 76.54 Ours 77.06 81.08 71.50 76.54
Table 1. Left: Impact of chosen scores for inference. Right: Ablation of model parts.
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Fig. 3. Contributions of data scaling for chest radiograph dataset. Performance change
of adding additional chest X-ray datasets with prompt-based captions.

Evaluation Setup: We evaluate the multi-label classification ability of all net-
works via the Area Under the ROC-curve (AUROC) and show the performance
over MIMIC-CXR, CheXpert and ChestX-Rayl4. For all experiments expect
Table [2] we consider validation performance. Labels with value -2 and -1 are
ignored for the calculation of the metric as their state is not certain. For all
ablations, we use the ”basic”-prompting scheme, while for further experiments
the ”detailed”-scheme is used.

Implementation Details: For all experiments we use the same ResNet50 and
Transformer as Redford et al. [I§] as backbones. We optimize with AdamW [I3],
a learning rate of 0.0001 and a cosine schedule. We trained classification models
with a learning rate of 0.0005 as this has shown slightly better performance. Dur-
ing training, we resize the images to the inference size of 320 x 320 and randomly
crop by 288x288. For specific further augmentations, we follow SimSiam [4].

4.2 Results

Ablation - Effect of Heads: We investigate the impact of both prediction
heads during inference. We start by showing the individual head performance
and then go over to different fusion approaches on the left of Tabldl] For feature
fusion we consider the concatenation of local and global features of the same
modality. For score-fusions, we calculate scores as described above and aggregate
the class predictions based on their maximum or average.

We see that for our method both the global and local head show nearly
the same performance. While performing max-score fusion the across-dataset-
performance drops by 0.4%, where mean-score fusion improves by 0.6%.
Ablation - Effect of Losses: On the right of TabldI] we show the impact of the
objective functions. We see that adding local contrast improves the model by 2%.
Adding the self-supervised and mirrored objective worsen performance by 0.45%.
It can be noted that the self-supervised loss achieves the best performance on
ChestX-Ray14 by more than 2%. whereas adding both simultaneously improves
across dataset performance by 0.6%.

Multi-label Inference and Prompt Engineering: We show the impact of
our proposed inference scheme and prompts in Figure 2l We see that perfor-
mance overall improves with significant improvements for some classes such as
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MIMIC-CXR CheXpert ChestX-Ray14

Method (in-domain) (out-of-domain) (out-of-domain)
val  test val val test
Label-Supervised 77.26 77.42 78.90 79.70  76.47
CLIP 73.23 70.25 75.85 68.03 63.34
SLIP 72.45 72.44 78.49 71.45 67.55
MILNCEjocqr  69.30 69.18 74.98 67.56  63.06
LoCo 77.03 78.15 81.71 71.92 68.14
GloCo 75.47 76.58 77.24 69.22  65.86
Ours 78.46 79.40 78.86 75.77  71.23
Ours* 78.30 80.40 83.24 79.90 78.33

Table 2. Classification performance on MIMIC, CheXpert and Chest-XRay14. * indi-
cates that the model was trained with additional PadChest and ChestX-Ray14 data.

fractures which were unable to be categorized just using cosine-similarity. When
the detailed prompt the mean performance further improves.
Data size Impact: We show the impact of using additional prompt-based
reports during training in Figure [3] We see that including artificial training data
for ChestX-Ray14 significantly improves its validation performance. In general
it seems that while for some classes performance seems to worsen, the overall
performance improves when adding additional data.
Comparison with Other Approaches: We compare against the same vision
network trained with label supervision on its respective dataset. All other meth-
ods were trained using the MIMIC-CXR dataset. SLIP [I5] refers to a version
of CLIP, which incorporates self-supervision in form of a SIMCLR-like objec-
tive [3]. MILNCEjycq; refers to our local branch trained with the MILNCE [T4]
objective alone. LoCo and GloCo refer to our method trained with either just the
local or global objective respectively. We evaluate using the ”detailed”-prompt
scheme. We show the results in Table

We see that our formulation of the local contrastive loss outperforms the
MILNCE version across all datasets. Our proposed method outperforms the
considered contrastive language-image pretraining baselines in the form of CLIP
and SLIP and manages to achieve similar performance as the supervised ResNet
for domains similar to MIMIC, however, underperforms for the ChestX-Ray14
dataset. When adding the additional report datasets of PadChest and ChestX-
Ray14 we manage to beat label-supervised performance across all datasets.

5 Conclusion

In this paper, we proposed an approach to make networks less reliant to label
supervision through contrastive language-image pre-training on report level. In
order to still maintain competitive levels of performance we introduced a novel
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way of constructing inference. Doing so we are able to offset issues stemming
from explicit class similarities. We show that despite using unstructured medical
report supervision, we perform on par with explicit label supervision through a
sophisticated inference setting across different datasets.
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