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Abstract

To enable safe autonomous driving, a reliable and redundant perception of the environment is

required. In the context of autonomous vehicles, the perception is mainly based on machine learn-

ing models that analyze data from various sensors such as camera, Radio Detection and Rang-

ing (radar), and Light Detection and Ranging (lidar). Since the performance of the models depends

significantly on the training data used, it is necessary to ensure perception even in situations that

are difficult to analyze and deviate from the training dataset. These situations are called corner

cases or anomalies.

Motivated by the need to detect such situations, this thesis presents a new approach for detecting

anomalies in lidar data by combining Supervised (SV) and Self-Supervised (SSV) models. In par-

ticular, inconsistent point-wise predictions between a SV and a SSV part serve as an indication

of anomalies arising from the models used themselves, e.g., due to lack of knowledge. The SV

part is composed of a SV semantic segmentation model and a SV moving object segmentation

model, which together assign a semantic motion class to each point of the point cloud. Based

on the definition of semantic motion classes, a first motion label, denoting whether the point is

static or dynamic, is predicted for each point. The SSV part mainly consists of a SSV scene flow

model and a SSV odometry model and predicts a second motion label for each point. Thereby,

the scene flow model estimates a displacement vector for each point, which, using the odometry

information of the odometry model, represents only a point’s own induced motion. A separate

quantitative analysis of the two parts and a qualitative analysis of the anomaly detection capabili-

ties by combining the two parts are performed. In the qualitative analysis, the frames are classified

into four main categories, namely correctly consistent, incorrectly consistent, anomalies detected

by the SSV part, and anomalies detected by the SV part. In addition, weaknesses were identified

in both the SV part and the SSV part.
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1 Introduction

Critical situations in road traffic occur every day. These situations can be caused by bad weather,

a pedestrian suddenly coming from behind an obstacle, or even a lane change. To establish safe

autonomous driving, it is necessary to detect those situations before they get dangerous. In the

literature, these situations are often referred to as corner cases or anomalies [1]. This thesis, like

other works [1, 2], follows the definition for corner cases of Bolte et al. according to which corner

cases are given “if there is a non-predictable relevant object/class in relevant location” [3]. This

means, only situations that cannot be predicted by the autonomous driving system because the

situations deviate too much from the learned ones and where the ego-vehicle is directly involved

or will be can be understood as corner cases. To cope with these corner cases, they have to be

detected and classified as such. Detected corner cases can serve two main purposes: (1) the online

use case, where the identified anomalies are communicated to the autonomous driving system to

prevent the situations from becoming critical and (2) the offline use case, where machine learning

models can be explicitly trained only on the corner cases found and thus improve the systems’

performance in critical situations in general [3].

Perceiving the movement of other road users and thus distinguishing between dynamic and static

objects is one of many essential tasks of self-driving cars. Especially in urban areas, where pedes-

trians, cyclists, and many other road users participate in road traffic, reliable prediction is nec-

essary. For perception, an autonomous vehicle has different sensors to perceive the environment

so that the disadvantages of one sensor can be compensated by the advantages of the other one.

Cameras provide high-resolution colored images and allow the identification of, for example, road

signs and traffic lights, but fail in low light and visibility conditions [4, 5]. radar sensors use high-

frequency electromagnetic waves to perceive obstacles and are independent of light and weather

conditions. However, the coarse resolutions and the sensibility to target reflectivity are some draw-

backs of radar sensors [4, 5]. lidar sensors create a depth representation through 3D point clouds

by measuring the time it takes for a laser beam to return after being reflected by an obstacle [6].

The laser beam can be disturbed by different weather conditions, and the detection rate decreases

for dark or specular objects. Moreover, the 3D points get sparse for distant objects [6].

Motivated by the need to detect anomalies in road traffic, the goal of this work is to find anoma-

lies in lidar data by testing point-wise motion predictions from SV and SSV models for consis-

tency. Inspired by the use of different sensors for redundant, complementary data in autonomous

vehicles, e.g., by Mobileye [7], this work explores the redundancy and complementarity of results

from two very different types of models on the same data source. Following the above definition

by Bolte et al. [3], in the context of this thesis I refer to an anomaly as an object whose motion
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1 Introduction

label could not be correctly predicted. Inconsistencies between the supervised and self-supervised

models can serve as an indication for an incorrect prediction of one model. For the model that

made the incorrect prediction, the motion label of this object is “non-predictable” and can thereby

show the limits of the respective models.

In summary, my method can be described as follows: on the one hand, I used a SV semantic

segmentation model and a SV motion segmentation model, which assign a class to each point and

infer the motion of the point based on the definition of the class. On the other hand, I used a SSV

scene flow model and a SSV odometry model to obtain a second motion label for each point. This

label is based on the displacement vector predicted by the scene flow model and the ego-motion

estimate of the odometry model. Inconsistencies between these two motion labels serve as the

basis of my method. To the best of my knowledge, this work is the first to use a combination of

SV and SSV models to detect anomalies at the method level in lidar data.

In Chapter 2, I provide an overview of existing work in the field of anomaly detection in lidar

data, formulate my contribution to the existing research gap, and explain the current state-of-the-

art models of components I used. Subsequently, in Chapter 3 I present my method, the individual

components, and their interactions with each other. In Chapter 4, I evaluate my method using

quantitative and qualitative analysis. The quantitative analysis analyzes the individual components,

whereas the qualitative analysis evaluates if anomalies can be found by combining SV and SSV

methods.
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2 Related Work

This chapter provides the context of the presented method. What types of anomalies exist, and

how can they be categorized? What work has been done so far in the field of anomaly detection

on lidar data, and what research gap results from this? Subsequently, the contribution of this work

to the research gap is shown. The method of this thesis consists of two main types of models. The

background of these types of models and recent approaches are given in the last two parts of this

chapter.

2.1 Anomaly Detection

In connection with corner cases, the terms “anomaly”, “novelty”, and “outlier” often occur in lit-

erature and are closely related. A clear distinction between those terms is not possible, because of

overlapping meanings [1] and various applications. An anomaly is a situation where the involved

objects do not behave as expected [3] and is partly being used as a synonym for corner cases [1].

A novelty describes any data, as an object, that differs from the already seen data [3]. An outlier

refers typically to an extreme value [1]. In this thesis, the terms “corner cases” and “anomalies”

are used interchangeably, and thus follow Heidecker et al. [1].

The term corner case is very ambiguous and requires a precise specification to be able to develop

suitable detection methods. There are different sensor-specific corner cases, that can be classified

in different levels [1, 8, 2]. Heidecker et al. distinguish between single-source and multi-source

corner cases. The former refers to anomalies resulting from a single sensor, while the latter de-

scribes anomalies resulting from the fusion of multiple sensors. They categorize the sensor-specific

single-source corner cases into three layers, namely the sensor, content, and temporal layer and

order them based on their detection complexity. The sensor layer refers to any corner case that

arises from the sensor itself and represents the layer with the lowest detection complexity. Within

this layer, Heidecker et al. distinguish between the hardware level, which refers to corner cases

resulting from a faulty setup, and the physical level, which includes any corner case resulting

from specific drawbacks of the sensor used. The content layer can be subdivided into a domain

level, object level, and scene level. The domain level refers to anomalies resulting from a domain

shift, whereas the object level describes anomalies that are associated with a particular object.

Scene-level anomalies address the context of a frame and refer to the behavior within that scene.

Scenario-level anomalies, on the other hand, refer to multiple scenes and the behavior over time.

Therefore, scenario-level anomalies are represented separately at the temporal layer. An overview

of the categorization by Heidecker et al. including specific examples for the different levels can

be found in Figure 2.1. In addition to the sensor-specific corner cases, Heidecker et al. introduce

a method level, which refers to corner cases resulting from the applied method, e.g., due to a lack

3
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of knowledge. According to [1], a clear distinction between a method level anomaly and a single-

source anomaly is difficult, since they can occur together.

Hardware Level

Laser Error

• Broken mirror
• Misaligned actuator

Pixel Error

• Dead pixel
• Broken lense

Impulse Error

• Low voltage
• Low temperature

Physical Level

Beam-Based
Corner Case

• Dirt on lense
• Overexposure

Pixel-Based
Corner Case

• Black cars disappear
• . . .

Impulse-Based
Corner Case

• Interference
• . . .

Domain Level

Domain Shift
on Single Point Cloud

• Location (EU-U.S.A.)
• . . .

Domain Shift
on Single Frame

• Shape of Road
markings

Domain Shift
on Single Point Cloud

• Weather, e.g.,
snow, rain, etc.

Object Level

Single-Point Anomaly
on Single Point Cloud

• Dust cloud
• . . .

Single-Point Anomaly
on Single Frame

• Animal
• . . .

Single-Point Anomaly
on Single Point Cloud

• Lost objects
• . . .

Scene Level

Contextual/Collective
Anomaly on Single

Point Cloud
• Sweeper cleaning

the sidewalk

Contextual/Collective
Anomaly on
Single Frame

• People on a billboard
• . . .

Contextual/Collective
Anomaly on Single

Point Cloud
• Demonstration
• Tree on street

Content LayerSensor Layer Temporal Layer

Camera-based
corner cases

RADAR-based
corner cases

LiDAR-based
corner cases

Scenario Level

Corner Cases
on Multiple
Point Clouds
and Frames

• Person breaks
tra�c rule

• Overtaking a
cyclist

• Car accident
• . . .

TABLE I. Categorization of camera-, LiDAR-, and RADAR-based single-source corner cases. Example situations are given for the individual corner
cases on the sensor layer, content layer, and temporal layer. Method layer corner cases are not shown in this table.

corner cases. These patterns can be observed throughout
an image sequence and further subdivided into anomalous,
novel, and risky scenarios based on their potential for col-
lision and their observability during training. Scene-level
corner cases are observed on single images and describe
known objects in either unseen quantities or locations. On
the object level, unknown objects are observed in single
images, while on the domain level, corner cases arise due to
the inability of the world model to explain its observations,
i.e., a domain shift. The pixel level is the lowest in [1] and
includes corner cases resulting from local and global outliers
in the camera hardware.

In this work, we now extend and modify the vision-
oriented systematization [1] by including other sensors and
introducing the additional notion of a layer, see Table I. For
clarity, the sensor layer, content layer, and temporal layer
are introduced at the top level. The temporal layer includes
corner cases with a temporal context, thereby corresponding
to the scenario level in [1]. On the other hand, the content
layer comprises the domain, object, and scene level from
[1] and thus contains corner cases that result from the data
at a specific point in time. The four levels scenario, scene,
object, and domain are existing in signals from LiDAR and
RADAR sensors as they exist in camera signals, as such
corner cases appear in point clouds and sequences of point
clouds in a similar way. However, it is important to consider
that corner cases of a certain level can only be transferred
from one sensor to another to a limited extent, if at all. A
corner case can therefore exist for one sensor but not for a
different sensor. Finally, the sensor layer describes corner-
cases that can be traced back to hardware errors or physical
properties. This results in the newly introduced hardware
level and physical level.
Corner cases resulting from a single sensor are called single-
source corner cases. We have already discussed the catego-
rization of these corner cases into layers and levels. However,
the fusion of sensor data can cause multi-source corner cases,
which we consider as a separate category. Since they can
appear more or less in any of the levels, we do not highlight
them in Table I.

A. Camera

In the context of highly automated driving, vehicles are
often equipped with many different camera systems. Mono
and fisheye cameras are often used to cover the areas to
the left, to the right, and behind the vehicle. Stereo, or
rarely trifocal cameras, are used mostly to cover the area in
front of the vehicle [10]. Regardless of the camera system,
pixel errors such as dead pixels, a dirty camera lens, or
overexposure can lead to a corner case at hardware level,
or physical level, see Table I. Unique camera properties or
functions, such as calculating the depth image of a stereo
or trifocal camera, can cause corner cases at hardware level.
This group of corner cases can be summarized with corner
cases at the sensor layer.
However, many corner cases are found in the image data
itself and are often system-independent. Image data have
a high information density. This fact is also reflected in
various methods, such as object recognition and classifi-
cation, contour estimation, recognition of the direction of
gaze of a person, gesture recognition, traffic sign recognition,
extraction of weather conditions and many more. On the
other hand, this abundance of information and variability of
image content also results in the most diverse corner cases.
These corner cases can be divided into domain level, e.g.,
different traffic signs in Germany and the U.S.A., object
level, such as animals and never-seen-before objects, and
scene level, where it can be a new situation such as a tree
lying on the road. If the depth image is also available, the
spectrum is extended by the possibility to determine the
position of an object, which results in a further type of scene-
level corner case. However, all these cases belong to the
content layer.
If a camera captures a scene in a video sequence, it consists
of several individual images and the corner case can be rep-
resented by either a single frame, or by several consecutive
frames. A corner case in a particular frame may require a
temporal component as, e.g., in the case of a pedestrian’s
movement prediction, and is therefore a temporal-based
corner case categorized on the scenario level, situated at the
temporal layer.
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Figure 2.1: Categorization of single-source corner cases based on used sensor [1]

In recent years, a lot of research has been published in the field of anomaly detection, especially

regarding images [2, 9, 10, 11, 12, 13]. Research on anomaly detection in radar and lidar data is

not as advanced and still leaves many gaps [13]. Since an anomaly detection approach on lidar

data is presented in this thesis, only related methods based on lidar sensors will be described in the

following. Methods for anomaly detection at the sensor layer, like in [14], are also not considered,

since the focus of this work lies on the detection of external corner cases.

Classical deep learning object detection methods are based on the closed-set assumption. This

means that at test time, the models can only output classes on which they have been trained. As a

result, unknown objects are falsely classified as known during testing. The closed-set assumption

is not viable under real conditions, since the entirety of all possible objects cannot be included in

the training. Unknown objects can thus always appear during testing. Wong et al. [15] and Cen

et al. [16] tackled this problem by publishing an open-set 3D object detector which can classify

both known and unknown classes/objects in lidar data. Since the work of Cen et al. [16] achieves

state-of-the-art performance and outperforms the approach of Wong et al. [15], only their method

is explained in more detail. The presented method is called Metric Learning with Unsupervised

Clustering (MLUC). At first, it finds regions with unknown objects through metric learning. Then

it refines the bounding boxes with an unsupervised clustering algorithm. The method uses Eu-

clidean distance-based probability to define the loss so that the embeddings of unknown objects

are located in the center of the embedding space. This is because the unknown objects do not

resemble any of the predefined prototypes of the known objects. To distinguish between known

and unknown objects, the Euclidean distance sum is calculated. The sum should be smaller for

unknown objects in the center of the embedding space than that of known objects. If a defined

threshold is not reached, the boxes are classified as unknown. Subsequently, the bounding boxes

of the regions containing possible unknown objects are refined with an unsupervised clustering

algorithm.

Motivated by anomaly detection methods for images, Masuda et al. [17] applies a reconstruction-

based method to find anomalies in lidar data. The general idea behind using a Variational Autoen-

coder (VAE) for anomaly detection is that the difference between the input and the reconstructed
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output is relatively small for normal data during training and relatively large for data that devi-

ates from the normal data during testing. Masuda et al. [17] use the Chamfer distance and the

Kullback–Leibler (KL) divergence as metrics for the training loss to compare the input and the

reconstructed point cloud. The network does not work with whole lidar scans, but with single

point clouds of objects from the ShapeNet dataset [18].

Iqbal et al. [19] published a method to detect abnormal motion in point clouds by estimating scene

flows and learning motion features. The term abnormal motion refers to, for example, a pedestrian

crossing the road in front of a car. The points with the estimated scene flows are clustered based

on distance metrics. Subsequently, the closest object with respect to the autonomous vehicle is

selected and converted into a 3D grid structure, called Voxel-Carries-Flows (VoxCF). This VoxCF

is used to extract dynamic features which describe the direction of an object’s motion. The dif-

ference between the dynamic features and the prediction by a Long Short-Term Memory (LSTM)

network serves as an abnormality measurement. The method can detect abnormal motion with an

accuracy of 77.11%.

As already mentioned in Chapter 1, the laser beam of a lidar scanner can be disturbed by different

weather conditions. In the case of rain, there are three interactions that cause degradation of laser

scans: absorption, reflection, and refraction [20, 21, 22]. Zhang et al. [23] address the problem of

lidar degradation quantification in rainy weather by using an anomaly detection model. The lidar

point clouds are transformed into a 2D image. The total number of pixels is the same as the total

number of laser beams per scan emitted from the sensor. Consequently, a change in the laser beam

intensity value due to degradation can be assigned to exactly one pixel. Deep Semi-Supervised

Anomaly Detection (DeepSAD) [24] is used as the anomaly detection model and learns a hyper-

sphere by transforming the input images into a latent space. Non-degraded images are mapped

into this hypersphere and degraded images are mapped away. During testing, the distance between

the hypersphere center and the mapped image serves as a degradation score.

At the moment, there are not many datasets specifically designed for anomaly detection in lidar

data. In contrast, there are many more datasets for anomaly detection in the image domain [25,

26, 27, 28, 29, 30]. To the best of my knowledge [31, 32], only one dataset designed for anomaly

detection in lidar data exists, namely CODA [33]. The entire CODA dataset was published just

before this work was submitted. Therefore, we could no longer consider it during evaluation.

2.2 Research Gap

As stated in [13], all methods described in the previous chapter, except the one by Iqbal et al. [19],

detect anomalies on the domain or object level. The open-set approaches [15, 16] can classify

unknown objects and are able to detect anomalies on the object level. Similarly, the reconstruction

based method by Masuda et al. [17] detects anomalous objects. The domain shift between normal

and rainy weather is addressed by Zhang et al. [23]. Iqbal et al. [19] are working on the scenario

level by finding abnormal motions over time. No work on anomaly detection on lidar data that

deals with the scene level, could be found.

The existing anomaly detectors on the object level are working either with reconstruction-based
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methods [17] or with an embedding space [15, 16]. The reconstruction-based method by Masuda

et al. [17] is not applicable for autonomous driving, since it does not work on entire point clouds

of a scan. The approach by Iqbal et al. [19] only considers the closest object in relation to the

autonomous vehicle to detect abnormal movements. No other objects are considered, which is a

big disadvantage. Compared to anomaly detection on camera data, the lidar area is still far behind

and needs further research so that corner case situations can be detected and safe driving in such

situations can be guaranteed.

The approach in this thesis is not based on reconstructions [17], nor does it work with the em-

bedding space [15, 16] and thus represents a new approach to anomaly detection in lidar data. In

particular, this thesis presents an approach to anomaly detection at the method level by identifying

limitations of applied methods. This is done by comparing point-wise motion labels between SV

and SSV methods and finding inconsistencies. In contrast to the method of Iqbal et al. [19] I am

not interested in abnormal motion, but in the motion of each point itself to decide whether a point

is dynamic or static.

The terms “SV” and “SSV” define the way in which a model is trained. During SV training, the

network learns the mapping between a given pair of input and output data. The supervision is

obtained by the previously labeled data, through comparison with the prediction of the model. A

loss value is calculated based on the found discrepancies. Providing this manually labeled data

can be very labor-intensive. With SSV training, no labeled data is needed, since the supervision is

taken over by the model itself. SSV training is a part of unsupervised training, however, it is used

for similar tasks like SV learning methods. Since no labels are needed, SSV learning requires a

completely different way of training. To obtain their own supervisory signals, SSV methods use

the structure of the underlying data. The potential of SSV models is very high, considering that it

is easy to collect tons of data compared to manual labeling. Tesla alone has a team of 1000 people

taking care of manual labeling [34].

The potential of using the two different training concepts for anomaly detection in lidar data is

demonstrated in this thesis using variously SV and SSV models. The approach of this work can

be divided into a SV and a SSV part. In the SV part, semantic motion labels are predicted for each

point of a point cloud by combining a semantic segmentation model and a motion segmentation

model. In the SSV part, a scene flow model and an odometry model are used to predict a motion

label for each point of a point cloud. Thus, two labels are predicted for each point. Inconsistencies

between the two labels per point serve as the basis for the anomaly detection. The three main

tasks, namely SV semantic segmentation, SSV scene flow, and SSV odometry, are described in

the following chapters.

2.3 Supervised Semantic Segmentation on Lidar

In order for an autonomous vehicle to understand the environment based on the generated data,

infrastructure and traffic objects must be identified. One way to do this is to perform semantic

segmentation. Semantic segmentation assigns a class label, such as car, pedestrian, road, etc., to

each pixel in images or to each point in point clouds. In recent years, many deep learning ap-
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proaches have been published that learn semantic segmentation on images or point clouds [35, 36,

37, 38, 39]. Since lidar “point clouds are relatively sparse, unstructured, and have non-uniform

sampling” [38], four different approaches have evolved to perform semantic segmentation on

lidar data, namely projection-based, discretization-based, point-based and hybrid methods [40].

Projection-based methods first project the point cloud into a temporary 2D image, such as a multi-

view or spherical images. Discretization-based methods project a point cloud into a discrete rep-

resentation, which can either be dense or sparse, like a volumetric or permutohedral lattice. At the

end of these methods, the temporary representation with the predicted labels is projected back to a

raw point cloud. Projection-based methods allow the use of 2D convolutions of the well-developed

field of image based computer vision [41], but lose and alter the 3D geometric structure [42] which

leads to information loss [40]. The sparse representation of discretization-based methods comes

with information loss due to low resolution, while the dense representation strongly depends on

memory capacity and computational power [40, 43]. Point-based methods work directly on the raw

point clouds, without any prior processing steps. Within point-based methods, a distinction can

be made between point-based Multilayer Perceptron (MLP) methods, point-based convolutional

methods, Recurrent Neural Networks (RNN) based methods, and graph-based methods [40]. The

bottleneck of point-based methods is that they partially waste up to 80% of their runtime for struc-

turing the unstructured point clouds [44]. Hybrid methods combine voxel-based, projection-based

and/or point-based approaches [39]. A spherical projection of a 3D point cloud with associated

semantic labels onto a 2D image can be seen in Appendix D.1. A visualized labeled raw point

cloud is shown in Appendix D.2. Each color represents a different class.

In order to evaluate and compare the performance of semantic segmentation models, the mean

Intersection− over−Union(IoU) metric, also called the mean Jaccard Index, is used by almost

all publications [38, 39, 45]:

meanIoU =
1
C

C

∑
c=1

T Pc

T Pc +FPc +FNc
[2.1]

C is the number of classes and T Pc, FPc, and FNc refers to the number of true positive, false

positive and false negative points per class c, respectively [45].

There are several datasets with annotated semantic labels for point clouds [45, 46, 47, 48]. One

of the most popular is the SemanticKITTI dataset [45], where all sequences of the KITTI Vision

Odometry Benchmark [49] are annotated.

In the following, some of the latest approaches are described. As of May 26, 2022, the model

(AF)2-S3Net [39] achieves the state-of-the-art performance on the SemanticKITTI dataset. This

model is an end-to-end encoder-decoder 3D sparse Convolutional Neural Network (CNN), which

especially considers fine details of smaller objects. This is achieved by introducing two attention

blocks, namely Attentive Feature Fusion Module (AF2M) and Adaptive Feature Selection Mod-

ule (AFSM). The former brings local and global features together by combining mutually exclu-

sive learnable masks in a weighted manner. They cover either small, medium, or large instances.

The latter learns the relationship between the feature maps of the AF2M and improves the general-
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izability. Tang et al. [43] argue that point-based methods are wasting most of their time sorting the

unstructured point clouds and voxel-based methods suffer from information loss due to low reso-

lution, which leads to small instances being poorly represented. Because of that, they introduced

a novel lightweight 3D module, called Sparse Point-Voxel Convolution (SPVConv), capable of

recognizing small objects. In addition, they presented 3D Neural Architecture Search (3D-NAS),

an architecture search framework, which automatically finds the best network design, e.g., channel

numbers or network depth, for a predefined search space. The resulting model, named SPVNAS,

is lightweight, accurate, and fast. Zhu et al. [42] found out, that the usual division of point clouds

by 3D voxelization methods using uniform cubes leads to an imbalanced distribution. This has to

do with the fact that nearby areas have a significantly higher density of points than more distant

areas. A cylindrical partitioning results in a more balanced representation in relation to the vary-

ing density. Combining cylindrical partition and asymmetrical 3D convolution networks, Zhu et

al. [42] developed the Cylinder3D model.

Reasoning about the prediction uncertainty of models has gained attention in recent years [9, 50,

51, 52]. The model uncertainty, also called epistemic uncertainty, “describes the uncertainty ex-

perienced by a model when it has a lack of knowledge, such as when it encounters conditions not

represented by the training data” [52]. The data uncertainty, called aleatoric uncertainty, “refers to

uncertainty arising from noise or randomness present in the data” [52]. Cortinhal et al. [38] were

the first to develop an uncertainty-aware semantic segmentation model for lidar point clouds. The

proposed model, named SalsaNext, projects the point cloud onto a spherical surface in order to

get a 2D range view image as input. This allows the use of standard 2D convolutions. In order to

measure the epistemic uncertainty, Monte Carlo (MC) sampling is used during inference. Dropout

layers serve as regulators and are originally used to prevent overfitting during training by ran-

domly dropping neurons [53]. MC dropout, applied during testing, “introduces stochasticity into

the model, and repeated testing of an input yields variations in predictions that represent epistemic

uncertainty” [52]. However, due to the repeated forwarding of the same input, the MC dropout

method is rather slow. To be able to measure the aleatoric uncertainty, Assumed Density Filter-

ing (ADF), introduced by [54] is applied. Here, the activation functions, the input, and the outputs

are replaced by probability distributions, so that the network’s output consists of a prediction µ and

σA as the associated aleatoric uncertainty [38, 54]. Instead of using spherical projection to trans-

Method Mean IoU↑ Code

(AF)2-S3Net [39] 69.7 ✗

SPVNAS [43] 66.4 ✓

Cylinder3D [42] 67.8 ✓

SalsaNext [38] 59.5 ✓

KPRNet [41] 63.1 ✓

Table 2.1: Comparison of SV semantic segmentation models evaluated on SemanticKITTI test set [45]. A ↑
shows that a higher value is better, and the last column indicates whether the code has been published. All
results are taken from the respective research paper.
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form the point clouds into a 2D range image, KPRNet [41] applies the scan unfolding method,

described in [55], which leads to a smoother projection and prevents systematic occlusion. In or-

der to project the 2D image back to a 3D point cloud, Kochanov et al. [41], replaced the typical

k-Nearest-Neighbor (kNN) based technique with a single KPConv layer, introduced by [56]. A

compact overview of the performance of the described methods can be found in Table 2.1, where

the last column indicates whether the code has been published.

2.4 Self-Supervised Scene Flow on Lidar

For self-driving cars, it is essential to recognize and anticipate the movement of other road users in

order to understand the scene and react appropriately. In 3D lidar data, scene flow addresses this

task by predicting the movement for each point between consecutive time frames in the form of a

displacement vector [57]. The counterpart in 2D is called optical flow, where the pixel motion of

adjacent frames is predicted [58].

Formally, scene flow can be described as follows: two point clouds Xt and Yt+1 consist of a

certain number of points pi ∈ R3 and q j ∈ R3, such that each point cloud can be described as

Xt = {p1, ..., pn1} and Yt+1 = {q1, ...,qn2}, where n1 and n2 refer to the number of points for point

cloud Xt and Yt+1, respectively. The goal of scene flow is to estimate a vector fi ∈ R3 for each

point pi ∈ Xt to transfer the point pi from timeframe t to its corresponding position p′i at timeframe

t +1, so that p′i = pi + fi. It needs to be considered that the number of points in Xt does not have

to be equal to the number of points in Yt+1. Additionally, p′i may not be existent in Yt+1, due to

sparsity of the point cloud and occlusion [59, 60]. For a better understanding, an example of 3D

scene flow is given in Figure 2.2.

Figure 2.2: Scene flow between two consecutive point clouds. Point cloud X is shown in red, point cloud Y
in green and the point cloud X predicted with the scene flow is shown in blue [61]

In recent years, a lot of research has been done in the field of scene flow, especially with SSV

approaches [57, 59, 60, 62, 63, 64]. The first work on SSV scene flow has been published in 2019

by Wu et al. [62], where the self-supervision is obtained through the Chamfer distance, smooth-

ness constraints and Laplacian regularization. Following in 2020, Mittal et al. introduced the

nearest neighbor loss in combination with an anchored cycle consistency loss in order to com-

pensate for missing ground truth flow [59]. Even though, state-of-the-art SSV scene flow models

have achieved the accuracy of early SV models, there is still an accuracy gap between these two
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approaches [65]. An additional challenge is a possibility to process raw point clouds, which are

directly generated by a lidar scanner without prior down-sampling [65]. Almost all networks re-

quire down-sampling from about 120,000 points to a maximum of 8,192 points [57]. Training with

more than 8,192 points leads to a significant increase in training time and memory requirements

for most methods. Inference on more than the proposed number of points is possible but leads

to a domain shift, which is reflected in a reduced performance [57]. Additionally, some methods,

like [62], rely on the assumptions of a bijective mapping between point clouds, i.e., every point

in point cloud X has a corresponding point in point cloud Y [57, 66]. This assumption cannot be

used in real-world applications due to, for example, occlusions [66].

Because of the lack of publicly available annotated scene flow datasets, almost all methods are

trained and evaluated based on the same two datasets, the synthetic FlyingThings3D (FT3D)

dataset [67] and the real-world KITTI Scene Flow (KITTI-SF) dataset [68, 69]. FT3D consists

of stereo and RGB-D images with randomly moving 3D models from ShapeNet [18], ground truth

disparity, and optical flow maps [61]. A common pre-processing step is to create point clouds from

the disparity maps and the associated scene flow from the optical ground truth flow [60, 61, 62, 70].

The KITTI-SF dataset is a set of 400 dynamic scenes from the KITTI raw data annotated with pre-

cise 3D CAD models for all moving vehicles [68, 69]. A very usual pre-processing step is to

remove the ground in the point clouds and to only use the points that do not exceed a distance

of 35 meters [57, 59, 60, 62, 71]. This is due to the fact that “the ground is a large flat piece of

geometry with little cue to tell its motion” [61].

In order to evaluate and compare the performance of scene flow models, common metrics are used

by almost all publications [59, 60, 64, 70]:

• EPE3D (m): average end-point-error ∥Fpred −Fgt∥2 with the flow F = { f1, ..., fn1} once

from the prediction (pred) and once from the ground truth (gt)

• Acc3DS: strict version of accuracy, the percentage of points whose EPE3D < 0.05m or

relative error < 5%

• Acc3DR: relaxed version of accuracy, the percentage of points whose EPE3D < 0.1m or

relative error < 10%

• Ouliers3D: percentage of points whose EPE3D < 0.3m or relative error > 10%

The model SLIM by Baur et al. [57] currently appears to be the state-of-the-art among the SSV

scene flow approaches with regard to the metrics just mentioned. SLIM [57] performs scene flow

and motion segmentation together in an end-to-end system. Motion segmentation refers to the task

of classifying each point as either “moving” or “stationary”. The model is characterized by the

fact that it can be trained and evaluated on roughly 64,000 points, without drastically increasing

computation time and memory requirements. The inputs of the network are two point clouds with

removed ground points encoded into a Bird’s-Eye-View (BEV) pseudo-image which is limited to

70∗70 meters. Tishchenko et al. [63] decomposed the scene flow into a non-rigid part, which rep-

resents the motion caused by a moving object, and an ego-motion part, which refers to the motion
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caused by an observer. As described by [57] and as can be seen in Table 2.2, the model suffers

from high outlier rates. FlowStep3D [60] has a recurrent architecture, where the initial flow is

Method Dataset #points EPE3D↓ Acc3DS↑ Acc3DR↑ Outliers3D↓ Code

SLIM [57] KITTI-SF
8192 0.1207 0.5178 0.7956 0.4024

✓
64000 0.0668 0.7695 0.9342 0.2488

Ego-motion &
Non-rigid flow [63]

FT3D
8192

0.1696 0.2532 0.5501 0.8046
✓

KITTI-SF 0.4154 0.2209 0.3721 0.8096

FlowStep3D [60]
FT3D

8192
0.0852 0.5363 0.8262 0.4198

✓
KITTI-SF 0.1021 0.7080 0.8394 0.2456

Occlusion-guided [64]
FT3D

8192
0.3373 0.1232 0.3593 0.9104

✓
KITTI-SF 0.2091 0.2107 0.4904 0.7241

SFGAN [71] KITTI-SF 2048 0.098 0.3022 0.6823 0.5584 ✗

Table 2.2: Evaluation comparison of SSV scene flow models with common evaluation metrics, where ↑
shows that a higher value is better, and ↓ indicates that a lower value is better. The column “#points”
specifies the number of points per point cloud during inference.

refined in each iteration by an iterative refinement process. The approach of Ouyang et al. [64] fo-

cuses on the prediction of scene flow for point clouds with occlusions. “Since the occluded regions

usually produce misleading information for the flow estimation” [64], they calculate an occlusion

probability and use an occlusion-weighted cost volume. The authors of [71] used a Generative

Adversarial Network (GAN) consisting of a generator and a discriminator. The generator gener-

ates scene flow with which fake point clouds are created. The discriminator distinguishes between

the fake and the real point cloud. Adversarial training brings the fake and real point cloud closer

and closer together and increases the accuracy of the scene flow prediction.

For a compact overview of the described SSV scene flow models, see Table 2.2. The column

“Dataset” refers to the data used for evaluation, and the last column indicates whether the code has

been published.

2.5 Self-Supervised Odometry on Lidar

In addition to detecting and predicting the movement of other road users, it is essential for an

autonomous vehicle to know about its own movement and pose. Especially in situations where

external signals, like the Global Navigation Satellite System (GNSS), are too inaccurate or not

available at all, it is necessary to determine the ego-motion and pose in a different way [72]. For

this purpose, different self-contained odometry methods were established which can be categorized

based on the sensor used into wheel, inertial, laser, radar, and visual odometry [73]. Since this work

deals with lidar data, only the field of laser odometry will be discussed in more detail.

Given two consecutive lidar point clouds Xt and Yt+1, the task of an odometry model is to estimate

a 4-by-4 matrix to transform point cloud Yt+1 into the frame of point cloud Xt by estimating relative

changes in ego-motion. The transformation matrix Trt+1
t : Yt+1 → Xt consists of a rotation matrix

R and a translation vector t [72], as shown in Equation 2.2.
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Tr =

[
R t

0 0 0 1

]
[2.2]

Learning odometry from lidar data in an unsupervised or SSV manner is a very new field, pio-

neered in 2019 by Cho et al. with their model DeepLO [74]. The proposed network takes projected

point clouds in the form of 2D vertices and normal maps as input and extracts features from the

maps through two separate feature extractors, called VertexNet and NormalNet. The subsequent

PoseNet combines the features of each frame and estimates the relative motion between the two

frames. For unsupervised training Iterative Closest Point (ICP) and a field of view loss is inte-

grated. The field of view loss stabilizes the training process and serves for regularization.

Similarly, the DeLORA model [75] and the SSLO model [76] both use spherical projection to

create range images as input to their network. One difference between the DeLORA and SSLO

model to the DeepLO model is that the correspondence search during training is not performed

in 2D on the basis of pixels, but in 3D by applying a KD-Tree. Thereby, the nearest neighbor of

the source, transformed with the estimated matrix, and the target is searched. The pairs serve as

input for a combination of geometric losses. The SSLO model weights larger distances between

corresponding points low to give dynamic points and outliers less influence. This incentivizes the

model to consider the static points more.

In contrast to the projection-based models, the SelfVoxeLO model [77] works with 3D convolu-

tions for feature extraction. SelfVoxeLO operates on voxelized point clouds instead of the up-

stream 2D projection, and thus preserves the geometric information in 3D space. Xu et al. intro-

duced a two-stage odometry estimation network with their model RSLO [78]. In the first stage,

high dimensional features are encoded, which serve as a separation into so-called subregions. For

each subregion, the rigid transformation is estimated. In the second stage, the estimated rigid

transformations are used to vote for the ego-motion. This allows the network to focus more on the

regions that are relevant and mitigates the influence of dynamic points.

An overview of the performance of the described SSV odometry models is given in Table 2.3.

Method
Seq 09 Seq 10

Code
trel rrel trel rrel

DeepLO [74] 4.87 1.95 5.02 1.83 ✗

DeLORA [75] 6.05 2.15 6.44 3.00 ✓

SSLO [76] 2.00 0.88 2.27 0.92 ✗

SelfVoxeLO [77] 3.01 1.14 3.48 1.11 ✗

RSLO [78] 2.75 1.01 3.08 1.23 ✓

Table 2.3: Overview of SSV odometry models evaluated on sequences 9 and 10 of the KITTI odometry
dataset [49]. trel and rrel refer to the translational and rotational errors for all possible subsequences between
100 m and 800 m.
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In this chapter, the approach of this thesis is presented. First, a general overview is given and the

purpose of each component and its interaction with other components are explained. Then, the

selected models and their implementations are described in more detail. In the last part of this

chapter, the datasets used for training are presented, followed by the explanation of the training

process of particular models.

3.1 Method Overview

The method of this thesis works on lidar data and combines variously SV and SSV models. The

method consists of five models, of which three are SV and two are SSV. The goal of this method

is to find inconsistencies between the semantic class for a point, predicted on the basis of SV mod-

els, and the motion label of the same point, predicted on the basis of SSV models. A schematic

overview of the approach with its individual components is shown in Figure 3.1.

Clustering

SSV Scene Flow

SSV Odometry

SV Ground 
Segmentation

Self-Supervised Part

SV Semantic 
Segmentation

SV Motion 
Segmentation

Supervised Part

Comparison

Consistent 
Points

Inconsistent 
Points

Anomalies

Motion Labels

Semantic 
Motion Labels

Point Clouds

Figure 3.1: Overview of the approach. In the SV part, a semantic motion class is assigned to each point by
combining a SV semantic segmentation model and a SV motion object segmentation model. By definition,
the class specifies the motion state of the point. In the SSV part, a displacement vector is predicted for
each non-ground point by a SSV scene flow model. By combining with the ego-motion predicted by a SSV
odometry model, another motion label can be predicted for each point. By comparing the two labels per
point, a distinction is made between consistent and inconsistent points. The inconsistent points are clustered
and these clusters serve as an indication for anomalies.

The SV part, marked red in Figure 3.1, contains a SV semantic segmentation model and a SV

motion segmentation model. The SV semantic segmentation model assigns a class label to each

point. In certain cases, it is not possible to draw conclusions about the status of the point’s move-
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ment on the basis of the defined semantic classes, since some classes can occur in both static and

dynamic states. For example, points of the class person can be both static and dynamic. In the

case of a pedestrian crossing the street, the points of a waiting person are initially static. Once

an opportunity presents itself and the person crosses the street, the points are dynamic. A point

assigned to the class building, on the other hand, is static by definition. For semantic classes to be

used to infer the movement of points within that class, the potentially moving classes must be fur-

ther subdivided. For this purpose, a SV motion segmentation model is used, which classifies each

point in the point cloud as either static or dynamic. With these motion labels, the class person, for

example, can be subdivided into moving person and standing person. Semantic classes that are

static by definition remain unchanged. In Figure 3.1 I refer to the unchanged and newly created

classes as semantic motion classes.

The SSV part, marked green in Figure 3.1, contains three models, namely a SV ground seg-

mentation, SSV scene flow, and a SSV odometry model. As already mentioned in Chapter 2.4,

a common pre-processing step of scene flow models is to remove the points that belong to the

ground. The majority of SSV scene flow models remove all points that fall below a certain thresh-

old [57, 60, 63]. The threshold is not learned, but is set once, usually to 0.3 m, and applied in a

general way to all point clouds. This removal by height has the consequence that not only ground

points are removed, but also points from objects that are close to the ground, e.g., car tires. Even

points from small objects, like a soccer ball, could be removed this way. In addition, uneven roads

may result in either incomplete removed ground points or removal of non-ground points. There-

fore, I decided to use a model that learns to classify each point as ground or non-ground, in order

to exclude the classified ground points.

Two consecutive point clouds with removed ground points serve as an input for the SSV scene

flow model, which returns a 3D displacement vector for each point in the first point cloud. By

the use of these vectors, a point cloud at time t can be transformed into time t + 1 and represent

the movement of individual points. To distinguish between static and dynamic points from data

recorded by a moving vehicle, it is necessary to distinguish between the ego-motion of the ob-

served vehicle and the movement by the point itself. The estimated vectors from the scene flow

model do not distinguish between the ego-motion of the observed vehicle and the motion induced

by the point itself. In order to differentiate between these two motions, a SSV odometry model is

applied. This model estimates a relative rigid body transformation, which allows to reason about

the ego-motion between two consecutive point clouds. With this transformation, a point cloud Yt+1

can be transformed into the frame of point cloud Xt by compensating the ego-motion. Together

with the estimated scene flow, the points can be divided into static or dynamic, by taking a point

pi ∈ R3 of point cloud Xt = {p1, ...pn1} and apply the estimated flow fi ∈ R3 resulting in a point

p′i = pi + fi at time t + 1. By using the rigid body transformation Trt+1
t , the resulting point p′′i

adjusted for the ego-motion is in the same frame as the initial point pi, only shifted by the own

induced motion of the point. If the length of the flow vector, compensated by the ego-motion,

exceeds a certain threshold, the point is considered dynamic, otherwise as static.

14



3.2 Method Components

The labels of the two parts are compared point-wise. Inconsistencies occur when the semantic

class is static, but the motion label is dynamic, and vice versa. Since individual inconsistent points

are not indicative of an anomaly, the inconsistent points are clustered. In this way, entire inconsis-

tent objects can be detected, serving as an indication of an anomaly in the context of this work.

3.2 Method Components

In the following chapters, I describe the used models for each component of my method. For this

purpose, I divided the components into SV and SSV components.

3.2.1 Supervised Components

This chapter specifies the selected models for the SV components, i.e., models that learn the map-

ping between a given input and output during training and thus rely on the availability of ground

truth data.

3.2.1.1 Supervised Semantic Segmentation Model

I chose SalsaNext [38], a fast, uncertainty-aware, and projection-based network, as the SV se-

mantic segmentation model. Although SalsaNext has the lowest mean IoU among the models in

Table 2.1, I selected it because of two main reasons. First, SalsaNext comes with an uncertainty

version, which allows to reason about the data uncertainty and how uncertain the model’s predic-

tions are. This uncertainty version can be placed on top of the already trained network and does

not require any additional training. Second, a SV motion object segmentation model based on

SalsaNext [79], see Chapter 3.2.1.2, enables to further divide semantic classes into dynamic and

static, resulting in semantic motion classes. Thereby, semantic classes that can be both static and

dynamic can be subdivided.

SalsaNext builds upon the SalsaNet model [80] and achieves over 14% more accuracy by introduc-

ing a new context module, capturing more spatial features, adding pixel-shuffle layers, applying

central dropout, inserting average pooling, and extending the loss.

SalsaNext takes a 2D range view image as input, allowing the use of 2D convolutions. This is

done by projecting a 3D lidar point (x,y,z) onto a spherical projection, moving the origin to the

top left corner of the image, and scaling the image based on the sensor used [81]. This results in

2D coordinates (u,v), calculated by the following equation(
u

v

)
=

(
1
2

[
1− arctan(y,x)π−1

]
w[

1−
(
arcsin

(
z,r−1

)
+ fdown

)
f−1
]

h

)
[3.1]

with h and w representing the height and width of the image, r the range of each 3D point computed

by r =
√

x2 + y2 + z2, and f the sensor specific vertical field of view corresponding to f = | fdown|+
| fup| [38]. The result of the projection is an [w× h× 5] image, where the lidar coordinates, the

intensity values of the received lasers, and the range of the points are stored as separate channels

in the image. An example of a 2D projection is shown in Figure D.1.
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Figure 3.2: Architecture of the SalsaNext model. The network is divided into blocks, where blocks with
dashed edges do not apply dropout during training. The letters k, d, and bn indicate the kernel size, dilation
rate, and batch normalization [38].

The final output of the network are point-wise classification scores for each pixel of the image.

To cope with information loss during inference by back-projecting the pixel-wise predictions to

point-wise predictions, the authors applied a kNN-based post-processing step, introduced by the

authors of [82]. Milito et al. [82] argue that, without this post-processing step, it is possible that

points, which were stored in the same image pixel, are classified as the same class, leading to

misclassifications, especially of object boundaries. The kNN-algorithm selects neighboring points

for each lidar point by using a window around the corresponding pixel. From this collection of

neighboring points, a certain number of the nearest points are selected to accumulate the votes

from all the labels. Based on the votes, the final labels for the input point cloud are determined.

The absolute difference in the range serves as a proxy for the euclidean distance and is used as the

distant metric for the nearest neighbor search. This way, the algorithm can run in real-time.

The network of SalsaNext is an encoder-decoder architecture, with the encoder encoding spatial

information to some kind of features, and with the decoder up-sampling and reassembling the

features. The architecture of the network is shown in Figure 3.2. The total loss function of the

SalsaNext model is composed of two parts. The first part, is a weighted softmax cross-entropy

term that copes with the imbalanced class problem. Class imbalance occurs due to a non-balanced

representation of all classes in the dataset, e.g., the class car occurs significantly more often than

the class bicycle. This can lead to misclassification, especially for underrepresented classes, as the

network “will typically over-classify the majority group due to its increased prior probability” [83].

For this reason, the authors of SalsaNext use the weighted softmax cross-entropy loss, where the

weights are the inverse square root of the number of points per class. As the second part of the

total loss, they use the Lovász-Softmax loss, presented by the authors of [84], to represent and
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Figure 3.3: Result of a semantic segmentation by SalsaNext of a point cloud into different classes, where
each class is represented by a different color. The point cloud is taken from sequence 12, frame 1019 of the
KITTI odometry dataset [49].

optimize the mean IoU directly. A linear combination of both parts results in the total loss. One

result of a semantic segmentation is shown in Figure 3.3.

In addition to the classical semantic segmentation, where each point is assigned a class, SalsaNext

also has an uncertainty version that can be applied to the already trained model. To obtain the

uncertainty of the prediction of the model, I used MC dropout. When applying MC dropout, the

same input is passed through the network multiple times, while different neurons are randomly

switched off. In the published code [85], the way to get the predictions for the semantic class

for each pixel from the MC samplings is not complete. Therefore, I applied a voting ensemble,

where the predictions for each pixel are summed across the MC samples and the most frequently

occuring label is considered the prediction for that pixel. Due to the non-linear output of the

softmax classifier, the mean cannot be used, and a discrete representation is given with the voting

ensemble. A comparison of the predictions from the voting method with the predictions from the

classical SalsaNext model without MC dropout showed that the same mean IoU is obtained. The

authors of SalsaNext calculate the epistemic uncertainty by taking the average of the variance of

the MC sample results. As a consequence, the uncertainty values do not represent the uncertainty

of the predicted class but the uncertainty over all MC samples, regardless of the prediction made.

To obtain the uncertainty for the predicted class only, I took the variance across all MC samples and

only selected the uncertainty of the pixel-wise predicted class, determined in advance by ensemble
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voting. This gives a value for each point that shows how uncertain the model is with respect to the

predicted class.

3.2.1.2 Supervised Motion Object Segmentation Model

Most of the existing semantic segmentation models assign a class to each point, and it is not pos-

sible to distinguish between moving and static objects based on the defined classes. For example,

the class car does not allow to infer whether the detected car is standing or driving in the case of a

red light. Since the method presented in this thesis is based on inconsistencies between semantic

classes and the motion label predicted by the combination of SSV models, it is important to further

divide the points of potentially moving classes. Otherwise, many anomalies would appear as in-

consistencies due to an insufficient class definition. For this reason, I integrated another SV model

that can distinguish between moving and static objects, resulting in semantic motion classes. An

example where a semantic class was further subdivided based on the motion labels can be seen in

Figure 3.4.

I decided to use the model of Chen et al. [79], as it is based on top of existing range projection-

based lidar semantic segmentation networks, like SalsaNext. The model uses residual images

generated from previous scans as additional channels to the range view image to incorporate tem-

poral information. To decide whether an object is dynamic or static, one must distinguish between

the ego-motion of the observer and the actual movement of the object itself. To compensate for

ego-motion, Chen et al. [79] transformed previous scans into the current local coordinate system

by using odometry data from SemanticKitti [45] that was estimated with a surfel-based SLAM ap-

proach [86]. They use the estimated relative poses between consecutive scans to transform scans

captured at a different time into the current frame. The idea behind this is that dynamic objects

have their own motion in addition to the ego-motion, and transforming them to the same local

coordinate system reveals this motion by compensating for the ego-motion of the vehicle. Subse-

quently, the transformed scans are projected into the current range view image, according to the

Equation 3.1. The residual value for each pixel as the normalized absolute difference between the

ranges of the current and the previous scans is calculated by

dl
k,i =

∣∣ri − rk→l
i

∣∣
ri

[3.2]

with dl
k,i the residual of pixel i between the current local frame l and the transformed scan of frame

k. The range is defined as r =
√

x2 + y2 + z2 where ri represents the range value of point i located

at the pixel coordinates (ui,vi) and rk→l
i the range value of the transformed scan located at the same

image pixel. Together with the already existing channels resulting from the range view image, the

residual images are added as additional channels and serve as an input for the SalsaNext model.

The residual images provide temporal information, while the range view images provide spatial

information to the network.

Chen et al. [79] found that the more previous scans and thus the more residual images are consid-

ered, the better the result. This holds up to a number of 8 images. Each additional image provides
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Figure 3.4: Example sequence, where the semantic class car has been further divided into the classes dy-
namic car and static car. The left image is the result of semantic segmentation and the middle image shows
the result of motion segmentation, with dynamic objects colored red and static objects colored green. In
the right image, the semantic labels are combined with the motion labels, so that the moving car in red now
differs from the parked cars in green. The point cloud is taken from sequence 11 frame 450 of the KITTI
odometry dataset [49].

Figure 3.5: Overview of motion object segmentation model [79]. To generate the residual images, past scans
are needed, as shown on the left side. In the middle at the bottom the additional channels consisting of the
residual images are shown, which are used as input for the CNN, which in my case is SalsaNext.
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only marginal further improvement. The output of the network is a binary mask indicating whether

a point is static or dynamic. An overview of the motion object segmentation model is shown in

Figure 3.5.

3.2.1.3 Ground Segmentation Model

Most SSV scene flow models, including the one I chose, remove ground points during both training

and inference [57, 59, 60, 62, 63, 71]. As mentioned in Chapter 3.1, I decided to use a ground

segmentation model instead of heuristics. I chose to use GndNet [87], as it is a fast ground plane

estimation and ground segmentation model that operates on raw point clouds. In a first step, the

model discretizes the point cloud into a 2D grid, resulting in a set of pillars, introduced by [88].

Then, PointNet [89] learns pillar-wise features and creates a 2D pseudo image. The pseudo-image

serves as input to a convolutional encoder-decoder network [90] that extracts spatial features and

regresses the height of the ground for each cell in the grid. With the elevation of the ground for

each cell, points that are below the elevation can be classified as ground and those that are above

can be classified as non-ground. For training, the authors of GndNet created annotated ground

elevations for the SemanticKitti dataset. The model achieved a mean IoU of 83.6%. For my

approach, I used the publicly available pre-trained model. A prediction of the pre-trained GndNet

for a point cloud from the KITTI-360 dataset is shown in Figure 3.6.

Figure 3.6: Ground segmentation results of sequence 3, frame 134 of the KITTI-360 dataset, where points
that have been classified as ground are colored green and all others are colored red.

3.2.2 Self-Supervised Components

In this chapter, I describe the selected models for the SSV components, i.e., models that do not

depend on the availability of ground truth data and whose supervision is performed by the model

itself.
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3.2.2.1 Self-Supervised Scene Flow Model

Amongst the models listed in Table 2.2, FlowStep3D has the best performance on the KITTI-SF

dataset [68, 69] together with the SLIM model [57]. For this reason, I chose FlowStep3D [60] as

the SSV scene flow model. The model has a significantly lower outlier rate and better accuracy

than the model of Tishchenko et al. [63] and Ouyang et al. [64]. Unlike SLIM, FlowStep3D’s code

had already been published at the time of the decision.

FlowStep3D has a recurrent architecture and works iteratively by refining an initial flow in each

step. This results in a flow sequence {F1, ...,FK}, where F1 is the initial flow and FK the final flow.

A high-level overview of the model architecture can be found in Figure 3.7.
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Figure 3. FlowStep3D high-level overview. At the first iteration, the global correlation unit (Fig. 4) produces the initial flow F1 based on
source’s and target’s global features obtained by deep encoding. In each iteration, the source point cloud is warped toward the target by
adding the predicted flow from the previous iteration Fk�1. It is then locally encoded and fed into a local update unit (Fig. 5) to refine the
flow estimation. The weights of the local update unit and of the encoders are shared across all their appearances.

iterative solution for an energy minimization problem or a
model. A contemporary approach named RAFT [36] sug-
gested model unrolling for 2D optical flow estimation, per-
forming lookups on a 4D all-to-all correlation volume.

We suggest to unroll a single-step flow estimation model.
Inspired by [36], we also adopt the idea of using a gated
recurrent unit for iterative updates. An essential concept of
our method, which is different from [36], is the computation
of new features for the warped scene at every iteration. It
is necessary since all point cloud convolution methods are
not rotation invariant, so the features of the source change
as it is being rotated toward the target. We consider this
process as a critical component to learning differentiators
iteratively.

3. Problem Definition
Scene flow is the 3D motion field of points in a scene.

For a given two sets of points S = {pi 2 R3}n1
i=1 and

T = {qj 2 R3}n2
j=1, sampled from a dynamic scene at two

consecutive time frames, we denote by fi 2 R3 the transla-
tional motion vector of a point pi 2 S from the first frame
toward its new location in the second frame. Our goal is to
estimate the scene flow F = {fi}n1

i=1 that describes the best
non-rigid transformation, which aligns S toward T . Due to
both the sparsity of the 3D data and possible occlusions, a
point p0i may not be presented in T . Therefore, we do not
learn the correspondence between S and T , but a flow rep-
resentation for each point pi 2 S.

In general, every point pi, qj , may have additional infor-
mation such as color or geometric features. The number of
points in the source may differ from the number of points in
the target, i.e., n1 and n2 are not necessarily equal.

4. Architecture
We suggest an iterative system (Fig. 3) that predicts a

flow sequence {F 1, ..., F K}, where F K = F ⇤ is our fi-
nal flow estimation. First, we use a global correlation unit
(Sec. 4.2) to guide the alignment in an all-to-all approach.
Next, we unroll a local update unit (Sec. 4.3), to learn move-
ment refinements. Our local update unit implements a sin-
gle conceptual iteration of an Iterative-Closest-Point (ICP)
algorithm [4, 2], replacing the two phases (a. finding corre-
spondence and b. estimating the best smooth transformation
based on that correspondence) by learned components.

The number of iterations K is a hyper-parameter and can
be larger during inference than during training to handle
more complicated and large deformations, as discussed in
Sec. 6.3.

4.1. Local And Global Features Encoding

Local features of a point encode the geometric features
of its relatively small neighborhood and are useful for local
alignment refinements. On the other hand, global features
capture high-level information regarding the relative posi-
tion of the point in the scene, using a larger receptive field
and deeper encoding. A crucial part of our method is the
distinction between the local and the global features of a
point cloud.

We use the set conv layer suggested by FlowNet3D [21]
as our convolution mechanism and furthest point sampling
method for down-sampling. Our local encoder g✓ :
Rn⇥3 7! Rn0⇥dlocal consists of only two set conv layers,
capturing a relatively small receptive field, so that its output
encodes an input point clouds shallow features of dimension
dlocal, at resolution n0. Local encoding is first applied on

Figure 3.7: High-level overview of the chosen scene flow model, FlowStep3D [60]

In a first step, a local encoder extracts local features of the source point cloud S and the target point

cloud T to preserve geometry features of the immediate neighborhood. The local encoder consists

of two set_conv layers, introduced by the authors of [61]. Then, the local features are further

encoded to obtain global features to capture the relative position in the scene. A global correlation

unit estimates the initial flow F1 by computing the cosine similarity between the feature vectors

of the source and target point cloud and by constructing a coarse all-to-all correlation matrix.

The initial flow is given by the average distance between the coarse points of the down-sampled

source point cloud and all coarse points in the down-sampled target point cloud, weighted by the

correlation matrix and up-sampled by a set of set_up_conv layers.

Starting from the initial flow, the flow is refined in each iteration using local information. The

predicted flow from the previous iteration is used to warp the points of the source point cloud,

which in turn serve as input for the local encoder that extracts new local features. The local update

unit consists of a single conceptual iteration of an ICP provided with learned components. In

the local update unit, the flow_embedding correlation layer, presented by [61], is applied to learn

to correlate the warped source and the target. It generates flow embeddings for the points in the

warped source by aggregating feature similarity and spatial relationships between the local features

from the warped source and the target. To refine the estimated flow from the previous iteration,

a gated activation unit [91] based on a Gated Recurrent Unit (GRU) [92] cell followed by two
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set_up_conv layers estimate the flow refinement ∆Fk. The refined flow at the end of each iteration

is computed as Fk = Fk−1 +∆Fk.

To train their network in a SSV way, the authors of FlowStep3D implemented a Chamfer Loss and

a regularization loss. The Chamfer distance ensures, that the source point cloud is shifted towards

the target point cloud, according to the points that are closest to each other. The regularization loss

controls the convergence of the Chamfer distance to the global minimum and makes sure that the

structure of the objects is preserved during warping.

Figure 3.8: A comparison between the predicted flow of the same scene once on the scene from the KITTI-
SF dataset, upper image, and once on a raw Velodyne scan from the KITTI raw dataset with the mentioned
pre-processing steps, shown in the bottom image. The point cloud at time t + 1 is shown in red, and the
point cloud at time t transformed with the corresponding estimated flow is shown in blue. The scene shown
is the 52nd scene in the KITTI-SF dataset and belongs to frame 107 in sequence 2011_09_26_drive_0018
of the KITTI raw dataset.

For the evaluation of FlowStep3D on the KITTI-SF dataset, the authors removed ground points

with a threshold of 0.3 m and points further away than 35 m. The remaining points were down-

sampled to 8,129 points. To be consistent with the training data, they rotated the x and y axis by

180°. This resulted in two consecutive point clouds in camera coordinates from which ground

points were removed, a depth threshold was applied, and where the x and y axis were flipped by

180°. In addition, only points within the camera’s field of view were considered.

Although FlowStep3D was trained only on synthetic data from the FT3D dataset, it showed great

generalization capabilities on the real-world KITTI-SF dataset [60]. For this reason, I used the

provided pre-trained model for my approach.

A raw scan from a Velodyne HDL-64E scanner provides a 360° view and consists of about 120,000
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points. To apply the pre-trained model of FlowStep3D to Velodyne scans, some pre-processing

steps were necessary. First, I transformed the raw point cloud from the Velodyne coordinate system

to the camera coordinate system, keeping only the points that are in the field of view of the forward-

facing camera. This is done by using the remaining indices when mapping the points to the image.

Second, I rotated the x and y axis by 180°, so that the x axis points to the left, the y axis to the

top, and the z axis points forward. All directions are given from the point of view of the recording

vehicle. Third, points further away than 35 m away and points previously classified as ground by

the ground segmentation model were removed. All these pre-processing steps result in an average

of about 8,000 points remaining from the initial 120,000 points. Figure 3.8 shows an example of

the same scene with the corresponding flow estimated by FlowStep3D, once from the KITTI-SF

dataset (top image), and once from the KITTI raw dataset (bottom image). The point cloud at time

t + 1 is shown in red, and the point cloud at time t predicted into the time t + 1 with the flow in

blue. Based on the overlapping points in the lower image and the similarity with the upper image,

it can be seen that the pre-trained model of FlowStep3D can be well applied to raw Velodyne scans

when the introduced pre-processing steps are performed.

3.2.2.2 Self-Supervised Odometry Model

To determine the ego-motion of the vehicle and to compensate the flow for the ego-motion, I used

DeLORA [75], a SSV odometry model working with lidar data. The architecture of DeLORA is

shown in Figure 3.9. The model takes two consecutive point clouds represented as range view
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Fig. 2. Visualization of the proposed approach. The letters a), b), C. and D. correspond to the identically named subsections in Sec. III. Starting from
the previous and current sensor inputs St�1 and St, two LiDAR range images It�1, It are created which are then fed into the network. The output of
the network is a geometric transformation, which is applied to the source scan and normals Sk, Nk . After finding target correspondences with the aid of
a KD-Tree, a geometric loss is computed, which is then back-propagated to the network during training.

environments and the motion of the robot in the environment,
the relationship between the transformation Tk�1,k and the
scans can be described by the following unknown conditional
probability density function:

p(Tk�1,k|Sk�1, Sk). (1)

In this work, it is assumed that a unique deterministic
map Sk�1, Sk 7! Tk�1,k exists, of which an approxi-
mation T̃k�1,k(✓, Sk�1, Sk) is modeled by a deep neural
network. Here, ✓ 2 RP denotes the weights and biases
of the network, with P being the number of trainable
parameters. During training, the values of ✓ are obtained
by optimizing a geometric loss function L, s.t. ✓⇤ =
argmin

✓
L(T̃k�1,k(✓), Sk�1, Sk, Nk�1, Nk), which will be

discussed in more detail in Sec. III-D.

B. Network Architecture and Data Flow
As this work focuses on general robotic applications, a

priority in the approach’s design is given to achieve real-
time performance on hardware that is commonly deployed
on robots. For this purpose, computationally expensive pre-
processing operations such as calculation of normal vectors,
as e.g. done in [21], are avoided. Furthermore, during infer-
ence the proposed approach only requires raw sensor data
for its operation. An overview of the proposed approach is
presented in Figure 2, with red letters a), b), C., D. providing
references to the following subsections and paragraphs.

a) Data Representation: There are three common tech-
niques to perform neural network operations on point cloud
data: i) mapping the point cloud to an image representation
and applying 2D-techniques and architectures [25, 26], ii)
performing 3D convolutions on voxels [25, 27] and iii) to
perform operations on disordered point cloud scans [28, 29].
Due to PointNet’s [28] invariance to rigid transformations
and the high memory-requirements of 3D voxels for sparse
LiDAR scans, this work utilizes the 2D image represen-
tation of the scan as the input to the network, similar to
DeepLO [24].

To obtain the image representation, a geometric mapping
of the form � : Rn⇥3 ! R4⇥H⇥W is applied, where H and
W denote the height and width of the image, respectively.
Coordinates (u, v) of the image are calculated by discretizing
the azimuth and polar angles in spherical coordinates, while
making sure that only the nearest point is kept at each pixel
location. A natural choice for H is the number of vertical
scan-lines of the sensor, whereas W is typically chosen to
be smaller than the amount of points per ring, in order to
obtain a dense image (cf. a) in Figure. 2). In addition to 3D
point coordinates, range is also added, yielding (x, y, z, r)|

for each valid pixel of the image, given as I = �(S).
b) Network: In order to estimate T̃t�1,t(✓, Ik�1, Ik),

a network architecture consisting of a combination of con-
volutional, adaptive average pooling, and fully connected
layers is deployed, which produces a fixed-size output in-
dependent of the input dimensions of the image. For this
purpose, 8 ResNet [30]-like blocks, which have proven to
work well for image to value/label mappings, constitute
the core of the architecture. In total, the network employs
approximately 107 trainable parameters. After generating a
feature map of (N, 512, H

2 , W
32 ) dimensions, adaptive average

pooling along the height and width of the feature map is
performed to obtain a single value for each channel. The
resulting feature vector is then fed into a single multi-layer
perceptron (MLP), before splitting into two separate MLPs
for predicting translation t 2 R3 and rotation in the form of
a quaternion q 2 R4. Throughout all convolutional layers,
circular padding is applied, in order to achieve the same
behavior as for a true (imaginary) 360° circular image. After
normalizing the quaternion, q̄ = q

|q| , the transformation
matrix T̃k�1,k(q̄(✓, Sk�1, Sk), t(✓, Sk�1, Sk)) is computed.

C. Normals Computation

Learning rotation and translation at once is a difficult
task [20], since both impact the resulting loss independently
and can potentially make the training unstable. However, re-
cent works [21, 24] that have utilized normal vector estimates

Figure 3.9: Architectural overview of the DeLORA model, where a), b), C. and D. refer to the range view
image representation, the network, the normal vectors and the loss, respectively [75].

images as input using the Equation 3.1. Due to the 2D representation of the 3D point cloud,

standard 2D convolutions are applied up to a point where the feature vector is split into two MLPs

that are used to estimate translation and rotation separately. During training, the estimated rigid

body transformation is applied to the source scan. Then, a correspondence search is performed in

3D using a KD-Tree to find pairs between the transformed source scan and the target scan. These

pairs are used along with precomputed normal vectors for the loss, which consists of the point-to-

plane and the plane-to-plane loss. The point-to-plane loss computes the residual of the matched

pairs and projects the residual onto the target plane, while the plane-to-plane loss compares the
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Figure 3.10: Qualitative results of sequences 05 and 09 of the KITTI odometry dataset. Ground truth data
are available for sequence 05 and 09. Sequence 05 was used for training.

surface direction of the pairs [76].

For my approach, I used the pre-trained model trained on sequences 00-08 of the KITTI odometry

dataset [49]. Figure 3.10 shows qualitative results of the DeLORA model with the KITTI odometry

dataset.

3.2.2.3 Motion Labels by Combining Scene Flow and Odometry

To classify each point in the SSV part as dynamic or static, I combined the flow vectors and the

relative transformations from the odometry model. The idea behind the combination of the two

models is that the flow vectors of dynamic objects stands out compared to static objects after com-

pensating for the ego-motion by the rigid body transformation. An example scene for a better

understanding of the individual steps can be seen in Figure 3.11.

In detail, I used the post-processed point clouds that served as input for the scene flow model

and applied the associated predicted scene flow. This results in point cloud X f
t+1 = Xt + ft , where

Xt refers to the original point cloud at time t and ft to the predicted scene flow of point cloud Xt .

Since the estimated odometry information is based on lidar data, I transformed both point clouds

Xt and X f
t+1 back to lidar coordinates. To obtain for each point only the motion induced by itself

and to classify a point as static or dynamic based on this, I mapped the point cloud X f
t+1 at time

t + 1 into time t using the estimated rigid body transformation of the odometry model. The re-

sulting point cloud X f T
t is adjusted for the ego-motion. In the far left image in Figure 3.11, an

example of the result of this transformation is shown. The two point clouds Xt and the point cloud

X f T
t are visualized together in green and red, respectively. Static objects like parked cars overlap

to a large extent, and dynamic objects like the two bicyclist in the center are shifted against each

other as they have their own movements.

By subtracting the point cloud X f T
t with the point cloud Xt , I obtained f T

t as the scene flow com-

pensated for the ego-motion. For the cross-frame and cross-sequence analysis of the flow vectors,

I converted the magnitude of the flow vectors to speed in kmh−1 to obtain a more interpretable
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Figure 3.11: Example scene showing the steps of combining scene flow, odometry data and clustering in
order to perform motion segmentation. In the first image from the left, the transformation of a point cloud
estimated in advance with the flow vector into the next image was transformed back into the original image.
The original point cloud is shown in green and the back-transformed point cloud is shown in red. The
second image from the left shows the result of the first clustering of the points, with the different clusters
represented by different colors. The third image from the left shows the result of the second clustering, this
time based on the flow vectors of the potentially dynamic clusters. Again, different colors indicate belonging
to different clusters. The last image shows the final result of the process, where the points classified as
dynamic are shown in red and the static ones in green. The scene shown is taken from sequence 0, frame
648 of the KITTI odometry dataset.

uniform unit using the timestamps at time t and t +1. As it can be seen in Figure 3.12 it seemed

difficult to find a rule to classify points into static and dynamic only based on the individual flow

vectors. However, Figure 3.13 shows that the normalized standard deviation per instance provides

a first distinction between dynamic and static instances. Thereby, the normalized standard devia-

tion was calculated by the ratio between the standard deviation of the speeds and the mean value

of the speeds per instance. The boxplot shows that the speed of the points of the dynamic instances

has a low standard deviation compared to the mean speed of the instance. For this boxplot, ground

truth instance and semantic labels from SemanticKITTI [45] were used.

To obtain instances that are not based on ground truth data, I spatially clustered the point cloud

Xt by using DBSCAN [93], a density-based clustering algorithm. This allowed me to draw con-

clusions about the distribution of the speed per cluster. For the DBSCAN algorithm, I set ε = 0.6

and the minimum size of clusters to 30 points, as these performed best qualitatively based on a

few selected sequences. In the second image from the left in Figure 3.11, shows an example of the

spatial clustering results, with different clusters represented by different coloring.

Based on the normalized standard deviation of speed per cluster, I selected potentially dynamic

clusters. Accordingly, a cluster was classified as potentially dynamic if the normalized standard

deviation of the cluster was less than 0.12. This value was determined in a grid search from the

values 0.15, 0.17, 0.2, 0.23 as the value with the highest IoU for dynamic points using semantic la-

bels from SemanticKITTI [45]. When calculating the normalized standard deviations per cluster,

points whose speed exceeded 80 kmh−1 were treated as outliers and not included in the calcu-

lation. Because the normalized standard deviation threshold is not fully selective, and because

of noise and inaccuracies in the scene flow model, some static clusters are categorized as poten-

tially dynamic. To cope with these clusters, I only considered the points of potentially moving
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Figure 3.12: Distribution of the magnitudes of the flow vectors of dynamic and static points. All data
exceeding the 99% quantile were not included in the plot and were treated as outliers. For this figure, the
points and their corresponding flow vectors from sequence 9 and 10 of the KITTI odometry dataset were
divided into static and dynamic points using the ground truth semantic labels from SemanticKITTI [45].
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Figure 3.13: This figure shows that the normalized standard deviation of dynamic instances is significantly
lower than the normalized standard deviation of static instances. For this figure, the points of sequence 9
and 10 were split into dynamic and static instances by using the ground truth instance and semantic labels of
SemanticKITTI [45]. Then, for each instance, the normalized standard deviation was calculated by taking
the ratio between the standard deviation of the speeds and the mean of the speeds per instance.
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clusters and clustered them again based on the associated flow vectors f T
t . This means that orig-

inally non-clustered, spatially separated points can now be grouped together based on their flow.

Static clusters whose normalized standard deviation fell below the value of 0.12 and were thus

considered potentially dynamic are now clustered together with other static clusters. Forming new

clusters changes the distribution of flow vectors within those clusters, causing less static clusters

to be misclassified as dynamic. For the second clustering, I used again DBSCAN with an epsilon

of 0.015 and a minimum cluster size of 25 points. The value for epsilon was determined in a grid

search from the values 0.015, 0.017, 0.02, 0.023, 0.0026 as the value with the highest IoU for

dynamic points using semantic labels from SemanticKITTI [45]. In the third image from the left

in Figure 3.11 shows only the potentially dynamic clusters, this time clustered by the correspond-

ing scene flow vectors. As it can be seen from the same coloring, the two bicyclists are clustered

together. In addition, a few points on the left and right edges, which belong to static objects, are

also clustered together, recognizable by the blue coloring. Black points indicate that these points

do not belong to any cluster, as the DBSCAN algorithm treated them as outliers.

When the normalized standard deviation of the newly found clusters is below the value of 0.12

and the median speed of the cluster reaches the threshold value of 4 kmh−1, the cluster points are

labeled as dynamic. All other points are labeled as static. The threshold of 4 kmh−1 was chosen

because this speed could be observed in pedestrian clusters. Furthermore, with a lower threshold,

many static clusters are misclassified as dynamic. The last image in Figure 3.11 displays the result,

with green representing static points and red representing dynamic points. More examples can be

found in the Appendix E.

3.2.3 Comparison and Anomaly Detection

Since my approach is based on finding inconsistencies between the SV models and the SSV mod-

els, I compared the SSV motion labels to the SV semantic motion labels point-per-point.

Since my SV part provides labels for an entire scan of the lidar sensor, i.e. for points within 360°

of the car, I filtered out only those points for which SSV labels were available. Then, the semantic

motion classes were divided into static and dynamic, so that for each point I get a classification

into static or dynamic once from the SV and once from the SSV models. When comparing the two

labels per point, four scenarios can occur, see Table 3.1.

SV Part SSV Part Consistent Color

Scenario 1 static static ✓ green

Scenario 2 dynamic dynamic ✓ blue

Scenario 3 static dynamic ✗ red

Scenario 4 dynamic static ✗ yellow

Table 3.1: All possible scenarios that can occur when comparing the labels between the SV and the SSV
part. The column “Color” indicates which color was used to visualize each scenario during the evaluation.

Inconsistencies occur when scenario 3 or 4 appears. Since individual inconsistent points are of
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less interest, I clustered points from scenarios 3 and 4 separately per point cloud using DBSCAN

with ε = 1 and a minimum cluster size of 30 points.

3.3 Training Dataset

For our methods, we needed a large lidar dataset with semantic labels, motion labels, and odometry

information. Since KITTI-360 [46] meets these requirements, we used it for training. KITTI-360,

considered to be the successor of the KITTI dataset, “is a suburban driving dataset that comprises

richer input modalities, comprehensive semantic instance annotations and accurate localization to

facilitate research at the intersection of vision, graphics and robotics” [46]. The dataset consists

of over 300k images and 80k laser scans, corresponding to a driving distance of 73.7 km. As the

name of the datasets suggests, a 360° view is provided once by the lidar scanner but also by fisheye

cameras.

The annotation tool of KITTI-360 allows to annotate static and dynamic points directly in 3D.

To reduce data loading traffic and memory consumption during annotation, the authors down-

sampled the raw point clouds. For this purpose, the point clouds were sequentially fused and

points closer than 5 cm to the nearest neighbor were removed. As a result, about 9.58 billion raw

points for training are down-sampled to about 835 million points. The authors of KITTI-360, Liao

et al. [46], published raw point clouds and annotated accumulated point clouds, where the accu-

mulated point clouds were further divided into static and dynamic points.

Since semantic labels were only published for the accumulated point clouds, I recovered the labels

for the raw points by performing a nearest neighbor search. To this end, I extended an existing

script that recovers semantic labels based on the static accumulated point clouds by considering

the dynamic accumulated points as well [94]. Since the accumulated points were in world co-

ordinates and the raw point clouds were in Velodyne coordinates, the raw points first had to be

transformed into the world coordinate system. The Velodyne coordinate system differs from the

world coordinate system in that the origin is located at the Velodyne scanner and thus moves with

the vehicle. The world coordinate system has a fixed origin for all scans. Poses are required for

the transformation from the Velodyne coordinate system to the world coordinate system, includ-

ing the transformation from GPU/IMU coordinates to the world coordinate system. KITTI-360

does not provide poses for all scans. The authors only list poses from scans where the distance

between the current and the last valid scan is greater than a threshold. For this reason, poses from

scans recorded at a very low speed were ignored. Of the total 81,106 scans, poses are available for

64,640 scans, so labels could only be recovered for those 64,640 scans.

After both the accumulated and raw point clouds are in world coordinates, the nearest neighbor in

the accumulated point cloud is searched for each raw point. If the distance between the raw point

and the nearest neighbor does not exceed a threshold of 0.5 m, the raw point is given the label

from the nearest neighbor. Otherwise, the raw point is classified as “unlabeled”. By combining the

dynamic and static accumulated points in the nearest neighbor search, labels for the whole scene

could be recovered.

As a result, I obtained annotations for all sequences of raw point clouds for both static and dynamic
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Figure 3.14: The upper image shows the result of semantic label recovery, which was performed only on the
basis of the accumulated static points. The bottom image shows the result of semantic label recovery, where
the accumulated dynamic and static points were considered together. One can see from the black colored
points in the upper image, which refers to unlabeled points, that no labels were recovered for the moving
car in the foreground. In contrast, the points of the moving car are colored red in the lower image.

objects. Of the original 9.58 billion raw points, labels could be recovered for 7.65 billion points.

For the remaining points, labels could not be recovered due to missing poses. Of the 7.65 billion

labels, approximately 9% were classified as “unlabeled”, resulting in 6.95 billion semantic labels.

A qualitative comparison between the results of the existing label recovery script and the extended

script, which considers dynamic points, is shown in Figure3.14.

In addition to semantic labels for training the semantic segmentation model, I needed motion la-

bels for training the motion object segmentation model. Motion labels denote whether a point is

dynamic or static. Since the accumulated points are already divided into static and dynamic points,

I used the motion label instead of the semantic class of the nearest neighbor during the recovery.

In this way, I obtained a dataset of motion labels for each raw point. The accumulated points of

KITTI-360 can be divided into 806 million static points and 29 million dynamic points. After

recovery, 28.7 million raw points are classified as dynamic and 6.9 billion raw points are classified

as static.

I added my changes, including a visualization, to the existing script via a pull request [94].

3.4 Model Training

Of the five models used, the SV semantic segmentation model SalsaNext [38] and the SV motion

object segmentation model [79], based on SalsaNext and extended with the residual images, were

trained on the KITTI-360 dataset [46]. For training, the KITTI-360 data were divided into training

and validation datasets as specified by the authors of KITTI-360. Thus, one part of the data of each

sequence was used for training and the other part for validation. The recovered labels, described

in Chapter 3.3, were used as ground truth data. The training was performed on an NVIDIA RTX

A6000. The hyperparameters were taken from the respective papers [38, 79]. The number of

residual images serving as additional input channels of the motion object segmentation model was

set to 8 since it has been shown by Chen et al. [79] that each additional residual image brings only

a marginal improvement.
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This chapter contains the evaluation of my method. First, I give a brief evaluation of the results of

training the supervised semantic segmentation model and the moving object segmentation model.

This is followed by a separate evaluation of the two parts. Finally, the potential of combining the

two parts for anomaly detection is evaluated.

To evaluate the performance of the SV and SSV components and the detection of anomalies by

combining the two parts, I evaluated the two parts separately in quantitative terms and the com-

bination of the two in qualitative terms. A detailed quantitative analysis of anomaly detection

capabilities of the two parts would be possible if semantic motion labels were available for a large

number of point clouds. In addition, the training dataset and evaluation dataset should be related

to avoid anomalies at the domain level. Based on the conducted qualitative analysis, it was deter-

mined that inconsistencies between the two parts of my method could potentially be interpreted as

indications for an anomaly at the method level.

4.1 Evaluation Training Results

As mentioned in Chapter 3.4, I used the entire KITTI-360 dataset for training. The division of the

data into training and evaluation datasets followed the authors’ division. The semantic segmen-

tation model achieved the best mean IoU across all classes on the validation dataset with 0.516%

and the motion object segmentation model with 0.759%. The motion object segmentation model

achieved an IoU of 0.519% for dynamic points.

4.2 Evaluation Dataset

Since this approach aims at finding anomalies at the method level, the probability that a domain

shift leads to anomalies at the domain level should be kept as small as possible. Besides changing

weather conditions, differences between datasets from various countries can also lead to domain

level anomalies [1]. Because of that, the datasets used to train the models and to evaluate the

anomaly detection capabilities should be closely related. In particular, this includes the environ-

ment in which the data was collected, but also the setup, such as the sensor type.

KITTI-360 [46] and KITTI [49] are two strongly related datasets, both containing 3D point clouds

acquired by a Velodyne HDL-64E scanner and recorded in Karlsruhe, Germany. The individual

components of our method were partially trained on the KITTI-360 and KITTI odometry dataset.

The KITTI odometry dataset is a subset of the KITTI dataset, includes 21 sequences, and was used

to evaluate the anomaly detection capabilities. SemanticKITTI [45] contains semantic motion la-
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bels for sequence 00-10 of the KITTI odometry dataset. SemanticKITTI builds on the KITTI

odometry dataset and has semantic motion labels for sequences 00-10. Since we used the pre-

trained model of DeLORA and GndNet, only sequences 9 and 10 with semantic motion labels

remain, which together contain 2790 frames. Since a detailed quantitative analysis of the anomaly

detection capabilities with only 2790 frames is not reasonable, I decided to perform a qualitative

analysis on the KITTI odometry test set, which includes sequences 11-21 and thus around 20,350

frames. The selected sequences 11-21 cover a variety of situations, such as sequences recorded on

a highway, in suburbs or in a city with many pedestrians and bicyclists. The remaining sequences

9 and 10 of the KITTI odometry dataset, which have ground truth semantic motion labels, were

used to evaluate the two parts separately based on their motion segmentation performance in quan-

titative terms.

The KITTI odometry dataset contains ground truth odometry data for sequences 00-10. Since the

SV motion segmentation model requires poses to compute the residual images, I used the poses

from SemanticKITTI [45]. To annotate the data, the authors of SemanticKITTI needed poses,

which they predicted using a surfel-based SLAM approach [86] and published for all sequences

00-21.

4.3 Quantitative Evaluation of Supervised and Self-Supervised Part

The motion segmentation performance of both parts of my method was evaluated using sequences

09 and 10 of the KITTI odometry dataset. Semantic labels from the SemanticKitti dataset were

used as ground truth data. To obtain motion labels from semantic labels, I followed Chen et

al. [79] and divided the classes into static and dynamic classes. The SV part assigns each point in

a Velodyne scan to a semantic motion class, while the SSV part predicts a motion label only for

points in the camera’s field of view, with the exception of ground points and points farther than 25

m away. For better comparability, only the points for which both parts predicted a motion label

were selected.

The SV part achieved a mean IoU of 0.828, with an IoU for dynamic points of 0.661. In addition,

I analyzed the epistemic uncertainty of SalsaNext using the entire KITTI odometry dataset to see

how uncertain the network is in predicting different semantic classes. For this purpose, I used MC

dropout during inference with a dropout rate of 0.2 and 30 MC samplings. Figure 4.1 compares

the mean model uncertainty per semantic class with the frequency of occurrence of the semantic

class. It can be seen that classes that occur frequently, such as the class car, have comparatively

lower uncertainties than classes that occur less frequently, such as the class bus or train. This plot

suggests that model uncertainty depends on the number of points per class in the training dataset.

Classes such as road, building, car, sidewalk and terrain occur in almost every point cloud of the

KITTI-360 dataset and therefore have a lower uncertainty compared to other less frequent classes.

Another plot of the uncertainties per semantic class, represented as a boxplot, can be found in the

Appendix F.

The SSV part achieved a mean IoU of 0.578, with an IoU of 0.174 for dynamic points. For

comparison, Chen et al. [79] used FlowNet3D [61], a SV scene flow model, to perform motion
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Figure 4.1: SalsaNext’s mean epistemic uncertainty per semantic class compared to the number of points.
The entire KITTI odometry dataset, sequence 00 to 21, was used for this plot. The y-axis is a logarithmic
scale.

segmentation based on the flow of each point using a threshold. By using flow alone, they achieved

an IoU for dynamic points of 0.044 on sequences 11-21 of the KITTI odometry dataset. By

combining this with SV semantic labels, where a point is labeled as dynamic only if both flow and

semantic class indicate a dynamic object, the authors achieved an IoU of 0.287.

4.4 Qualitative Evaluation of Anomaly Detection

For the qualitative analysis, I used sequence 11-21 of the KITTI odometry dataset. The sequences

used contain a total of about 20,350 frames, all of which were reviewed. I mapped the lidar points

of a frame to the corresponding image. The points of the 4 scenarios were colored differently to

directly identify which points were classified as static or dynamic by which part of my method.

The assigned colors are shown in Table 3.1. Figure 4.2 shows the number of points per scenario

and the number of clusters for the two inconsistent scenarios. From the diagram on the left, it

can be seen that the number of points classified as static by both parts is the largest. This is

not surprising, since in general most of the points in KITTI are static. The number of points for

scenario 3 and 4 where the predictions of the two parts do not agree is significantly higher than the

number of points where both parts classify a point as dynamic. During the analysis, I observed a

wide variety of cases that can be divided into 4 main categories. I selected representative images

for these 4 categories.
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Figure 4.2: The left diagram shows the number of points per scenario. The y-scale is logarithmized. The
right diagram shows the number of clusters found for the inconsistent points of the two scenarios 3 and 4.

a) Correctly consistent: In this category, I placed images where both the SV and the SSV parts

correctly match in their classification. In Figure 4.3, points of dynamic objects, such as a

bicyclist, are classified as dynamic by both parts, indicated by the blue coloring. Points of

static objects, such as points of parked cars, are classified as static by both parts, recognizable

by the green coloring. Only a few points of the one bicyclist are correctly classified as dynamic

by the SSV part, shown in red.

Figure 4.3: Examples where the SV and SSV parts are correctly consistent. Dynamic points are classified
as dynamic (blue) and static points as static (green) by both parts.

b) Incorrectly consistent: Here, the two parts are incorrectly consistent, as both parts are wrong.

For example, in the left image of Figure 4.4, the points of two walking pedestrians are classified

as static by both parts. The right image shows a parked car at the bottom left of the image, which

was incorrectly classified as dynamic by both parts.
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Figure 4.4: These two images show points of objects that were misclassified by both parts of my method.
The left image shows two pedestrians classified as static, and the right image shows a parked car classified
as dynamic.

c) Anomalies detected by the SSV part: Here, the predictions of the two parts are inconsistent,

with the SSV part being correct. Example images for this category are shown in Figure 4.5.

In image 1, the moving car and one bicyclist were correctly classified as dynamic by both.

However, another bicyclist was classified as dynamic only by the SSV part, indicated by the

red coloring. In image 2, two walking pedestrians are classified as dynamic only by the SSV

part. Image 3 shows a parked car that was incorrectly classified as dynamic by the SV part. In

image 4, a slow-moving car and in image 5, a reversing car are detected as dynamic only by the

SSV part.

Figure 4.5: Examples of anomalies where the SSV part of my method correctly classified. The anomalies
are shown in red and yellow.

d) Anomalies detected by the SV part: Here, the predictions of the two parts are inconsistent,

while the SV part is correct. The sample images belonging to this category can be found in

Figure 4.6. In the first image, two pedestrians located further back in the image are correctly

detected as dynamic only by the SV part, recognizable by the yellow coloring. Additionally,

points on the right edge are incorrectly labeled as dynamic by the SSV part. Similarly, in image

3, 4, and 5, dynamic objects are labeled as dynamic only by the SV part. In image 2, a parked
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car is incorrectly classified as dynamic by the SSV part.

Figure 4.6: Examples of anomalies where the SV part of my method correctly classified. The anomalies are
shown in yellow and red.

In addition to the four categories, I identified weak points of the two parts. I defined the weak

points of the individual parts as situations that I frequently noticed during evaluation.

Starting with the SSV part, I noticed that there is an above-average number of inconsistencies,

especially when the recording vehicle turns around. This is because the SSV part classifies many

points as dynamic in such situations. An example is given in Figure 4.7, image 1. I observed a

similar behavior when the vehicle drove over a speed bump, see Figure 4.7, image 3. Another

weak point of the SSV part are fast oncoming objects, such as cars on a highway, as can be seen

in Figure 4.7, image 2. A very common weak point are small clusters that are labeled as dynamic

at the right or left edge. An example of this can be seen in Figure 4.7, image 4, where points

belonging to a window were incorrectly classified as dynamic.

Figure 4.7: Identified weak points of the SSV part.

The SV part seems to have a weakness in distinguishing classes into actually moving or static
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in certain situations. As an example, standing cars at traffic lights are very often classified as

dynamic, as can be seen in Figure 4.8, image 1. Similarly, parked cars are sometimes misclassified

as dynamic, see Figure 4.8, image 3. Another example is standing people at bus stops or at street

corners, which are incorrectly classified as dynamic, shown in Figure 4.8, image 2 and 4.

Figure 4.8: Identified weak points of the SV part.

4.5 Evaluation Clustering

In addition to the weaknesses of the SSV models that became apparent when the SSV labels are

combined with the SV labels, I identified another weakness related to the first clustering during

the combination process of scene flow predictions and odometry information, which is described

in Chapter 3.2.2.3. In the first clustering, where points are spatially clustered, dynamic points can

be clustered with static points. This can be the case, for example, when a bicyclist passes very

close to a parked car. Since potential dynamic objects are selected in the next step based on the

normalized standard deviation, such clusters would not be selected. The flow vectors of a dynamic

and a static object would differ too much to fall below the normalized standard deviation threshold

for potential dynamic objects. As a result, the two static and dynamic objects clustered together

will be labeled as static. An example scene is shown in Figure 4.9, where two consecutive frames

are shown in separate columns. On the left side in the upper image, a car and a bicyclist can be

seen in the foreground, which, recognizable by their different colors, belong to different clusters.

Since the two objects were clustered separately and are therefore treated separately, the bicyclist is

correctly classified as dynamic, recognizable by the red coloring in the lower left image. However,

on the right side, the following image shows that the two objects, the car and the bicyclist in the

foreground, have now been clustered together, recognizable by their same colors. As a result, both

objects are treated as one object and the distribution of the associated flow vectors is distorted.

As a result, the bicyclist is now also classified as static, recognizable by the green coloring in the

lower right.
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Figure 4.9: Visualization of the disadvantage of the first clustering. Two consecutive frames are shown (col-
umn left and column right). The top left image shows a situation where a parked car and moving bicyclist
were understood as two separate objects during clustering. Because of that, the bicyclist is classified as dy-
namic, indicated by the green coloring in the bottom left image. The top right image shows the subsequent
frame where the two objects in the foreground have been clustered together, indicated by the same color.
As a result, the moving bicyclist and the parked car are considered as one object and classified as static,
indicated by the green coloring in the bottom right frame.
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In this thesis, the potential of SV and SSV models to detect anomalies is demonstrated. In partic-

ular, we show that a point-wise check for consistency of two labels predicted in different ways can

reveal the limitations of the models used, thereby detecting method level anomalies. The knowl-

edge that a model has made an incorrect prediction has many possible use cases: For example, the

data where the model is wrong with its prediction can be used to re-train the models, resulting in

models that are more robust for similar situations. Another use case would be that the autonomous

driving system place itself into a safe state and request remote assistance in response to the de-

tected incorrect prediction [95].

For the detection of method level anomalies, the point-wise semantic motion labels of a SV part are

compared with the motion labels of a SSV part. The SV part consists of a SV semantic segmen-

tation model and a SV moving object segmentation model, which assign a semantic motion class

to each point. Based on the assigned class, the motion state of the point can be inferred. The SSV

part is composed of a scene flow model that predicts a displacement vector into the next frame for

each point, and an odometry model used to compensate for ego-motion. In a two-step clustering

procedure, each point is classified as dynamic or static based on the flow vectors compensated for

ego-motion.

Comparing the labels of the two parts per point, four scenarios can occur. Both parts are consistent

in that both classify the point as either static or dynamic. Or both parts are inconsistent in that

the point is classified once as dynamic and once as static and vice versa. To obtain inconsistent

objects, the inconsistent points are clustered. The clusters serve as an indication of an anomaly.

For evaluation, both quantitative and qualitative analyses were performed on the KITTI odometry

dataset. In the quantitative evaluation, I analyzed the motion segmentation performance of the SV

and SSV part separately. In addition, the uncertainty of the prediction per class of the semantic

segmentation model was examined in more detail. It was found that the uncertainty per class de-

pends significantly on the distribution of classes in the training data. For the qualitative analysis,

I mapped the point cloud to the corresponding image and colored each scenario differently. The

images could be assigned to four different categories, namely correctly consistent, incorrectly con-

sistent, anomalies detected by the SSV part, and anomalies detected by the SV part. Representative

images were selected for each category. In addition, I identified and analyzed weak points of both

parts of my method.

5.1 Outlook

Since this work is the first to address the detection of anomalies in lidar data by combining SV

and SSV models, there are many more opportunities to exploit the potential of the two different
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training methods.

In a first step, a study of the individual components could be carried out directly after this work.

Based on this study, the causes of the weak points, explained in Chapter 4.4, could be identified.

For example, the cause of the SSV part for the sometimes many misclassified dynamic points dur-

ing a speed bump or when turning could be further investigated. The assumption that the many

misclassified dynamic points in the sudden vertical motion during a speed bump are due to large

displacements and thus to the flow vector could thereby be investigated. In addition, the assump-

tion that sometimes turning is not correctly represented by the odometry model, leading to many

misclassified dynamic points, could be examined. This could be tested, for example, by using

the ground truth odometry data from sequence 9 or 10 of the KITTI odometry dataset instead of

the odometry data predicted by the SSV model. With an otherwise identical setup, the motion

segmentation performance of the SSV part could be compared once with ground truth odometry

and once with estimated odometry data, especially during turning. It would also be interesting to

investigate why fast oncoming cars are not classified as dynamic. It would also be interesting to

explore why fast oncoming cars are not classified as dynamic by the SSV part. Is this due to the

models or to the parameters I set, such as the threshold for the normalized standard deviation?

Regarding the SV part, the SV semantic segmentation model could be directly trained to distin-

guish, for example, between moving and parked cars. For this purpose, semantic motion labels

would need to be available for training. These can be obtained if both the semantic class and the

motion label are determined together for each point during KITTI-360 recovery. Subsequently, a

ground truth dataset with semantic motion labels can be derived.

Another interesting direction would be to determine the part that is wrong during inference. One

possible idea would be to examine the uncertainty of the SV part. For the quantitative analysis, I

examined the uncertainty of the SV semantic segmentation model. If the uncertainty for the seg-

mentation model for moving objects is now also available, it may be possible to derive indications

of erroneous predictions during inference. Alternatively, the predicted semantic motion label with

associated uncertainty values of the re-trained model mentioned in the previous section can be

used during inference.

To detect anomalies at the object layer, one could combine my SSV part with a closed-set ob-

ject detector. An indication of an object-layer anomaly would be if the SSV part finds a dynamic

cluster that was not detected by the object detector.
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3.14 The upper image shows the result of semantic label recovery, which was performed

only on the basis of the accumulated static points. The bottom image shows the

result of semantic label recovery, where the accumulated dynamic and static points

were considered together. One can see from the black colored points in the upper

image, which refers to unlabeled points, that no labels were recovered for the

moving car in the foreground. In contrast, the points of the moving car are colored

red in the lower image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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this plot. The y-axis is a logarithmic scale. . . . . . . . . . . . . . . . . . . . . . 33
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4.9 Visualization of the disadvantage of the first clustering. Two consecutive frames

are shown (column left and column right). The top left image shows a situation

where a parked car and moving bicyclist were understood as two separate objects

during clustering. Because of that, the bicyclist is classified as dynamic, indicated

by the green coloring in the bottom left image. The top right image shows the

subsequent frame where the two objects in the foreground have been clustered

together, indicated by the same color. As a result, the moving bicyclist and the

parked car are considered as one object and classified as static, indicated by the

green coloring in the bottom right frame. . . . . . . . . . . . . . . . . . . . . . . 38
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E.1 Example scene showing the steps of combining scene flow, odometry data and

clustering in order to perform motion segmentation. In the top left image, the

transformation of a point cloud estimated in advance with the flow vector into the

next image was transformed back into the original image. The original point cloud

is shown in green and the back-transformed point cloud is shown in red. The top

right image shows the result of the first clustering of the points, with the different

clusters represented by different colors. The bottom left image shows the result

of the second clustering, this time based on the flow vectors of the potentially

dynamic clusters. Again, different colors indicate belonging to different clusters.

The bottom right image shows the final result of the process, where the points clas-

sified as dynamic are shown in red and the static ones in green.The scene shown is

taken from sequence 0 frame 814 of the KITTI odometry dataset. . . . . . . . . . 59

E.2 Example scene showing the steps of combining scene flow, odometry data and

clustering in order to perform motion segmentation. In the first image from the left,

the transformation of a point cloud estimated in advance with the flow vector into

the next image was transformed back into the original image. The original point

cloud is shown in green and the back-transformed point cloud is shown in red. The

second image from the left shows the result of the first clustering of the points, with

the different clusters represented by different colors. The third image from the left

shows the result of the second clustering, this time based on the flow vectors of

the potentially dynamic clusters. Again, different colors indicate belonging to

different clusters. The last image shows the final result of the process, where the

points classified as dynamic are shown in red and the static ones in green.The scene

shown is taken from sequence 13 frame 23 of the KITTI odometry dataset. . . . . 60

F.1 Boxplots of epistemic uncertainty of SalsaNext per semantic class. The entire
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D Visualizations Semantic Segmentation on Lidar

Figure D.1: Visualization of a 3D point cloud with semantic labels projected onto a 2D range view im-
age [45].

Figure D.2: Visualization of a 3D lidar point cloud with semantic labels [45].
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E Examples for Motion Labels by Combining Scene Flow and
Odometry

Figure E.1: Example scene showing the steps of combining scene flow, odometry data and clustering in
order to perform motion segmentation. In the top left image, the transformation of a point cloud estimated
in advance with the flow vector into the next image was transformed back into the original image. The
original point cloud is shown in green and the back-transformed point cloud is shown in red. The top right
image shows the result of the first clustering of the points, with the different clusters represented by different
colors. The bottom left image shows the result of the second clustering, this time based on the flow vectors
of the potentially dynamic clusters. Again, different colors indicate belonging to different clusters. The
bottom right image shows the final result of the process, where the points classified as dynamic are shown
in red and the static ones in green.The scene shown is taken from sequence 0 frame 814 of the KITTI
odometry dataset.
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Figure E.2: Example scene showing the steps of combining scene flow, odometry data and clustering in
order to perform motion segmentation. In the first image from the left, the transformation of a point cloud
estimated in advance with the flow vector into the next image was transformed back into the original image.
The original point cloud is shown in green and the back-transformed point cloud is shown in red. The
second image from the left shows the result of the first clustering of the points, with the different clusters
represented by different colors. The third image from the left shows the result of the second clustering,
this time based on the flow vectors of the potentially dynamic clusters. Again, different colors indicate
belonging to different clusters. The last image shows the final result of the process, where the points
classified as dynamic are shown in red and the static ones in green.The scene shown is taken from sequence
13 frame 23 of the KITTI odometry dataset.
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F Epistemic Uncertainty
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Figure F.1: Boxplots of epistemic uncertainty of SalsaNext per semantic class. The entire KITTI odometry
dataset, sequence 00 to 21, was used for this plot.
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