

Coupling of PARCS with the porus-media two-phase flow code TwoPorFlow for the improved analysis of SMR-cores using the ICoCo approach

A. Campos-Muñoz, V. Sanchez-Espinoza, U. Imke

KIT - The Research University in the Helmholtz Association

www.kit.edu

Content

- Introduction to ICoCo
- PARCS ICoCo implementation
- TwoPorFlow code
- TwoPorFlow ICoCo implementation
- PARCS/TPF coupling
- SMART SMR core description
- Transient definition
- Results
- Conclusions and Outlook

Introduction to ICoCo

 Interface for Code Coupling (ICoCo): provides a standard frame for code coupling.

Define methods for:

- Initialization and termination
- Time advance
- Save and restore state
- Getting and setting fields
- Code split in funtional pieces.
- ICoCo framework MED format mesh is compulsory.
- Inherently bound with **MEDCoupling** library.

Introduction to ICoCo

- Methods for initialization and termination:
 - setDataFile()
 - initialize()
 - presentTime()
 - terminate ()
- Methods for time advance:
 - solveSteadyState()
 - computeTimeStep()
 - initTimeStep()
 - solveTimeStep()
 - validateTimeStep()

Methods for getting and setting fields to the code:

- getInputFieldNames()
- getOutputFieldNames()
- setInputMEDField()
- getInputMEDFieldTemplate()
- getOutputMEDField()

PARCS ICoCo implementation

PARCS ICoCo implementation

Spring 2022 CAMP Meeting, May 17th-19th

TwoPorFlow code

- Porus-media forced convection
- Sub-channel fuel assembly simulations
- Steady-state and transient solution
- Two-phase flow (6 equations)
- 3D conservation equations
- 2D heat conduction model for fuel rods
- Coarse Cartesian grids
- Programmed in Fortran95

PARCS/TPF coupling

- External coupling.
- Serial execution.
- Domain overlapping.
- Fields mapping via MEDCoupling library.
- Explicit iterative scheme.
- Node-wise feedback.

X

A. Campos-Muñoz / INR-RPD

Spring 2022 CAMP Meeting, May 17th-19th

SMART SMR core description

Integrated PWR (iPWR)

Parameter	Value
Total power	330 MW _{th}
System pressure	15 MPa
Inlet temperature	296 C
Core flow	2006.4 kg/s

- 9x9 radial nodalization
- 20 axial levels

Spring 2022 CAMP Meeting, May 17th-19th

Transient definition

• Half highest CR worth extraction (0.725 \$) at the hot zero power (HZP) condition.

Parameter	Value
Initial core power	1.0E-4 %
Highest CR worth	1.45 \$
Ejection duration	0.05 s
End of transient simulation	1.0 s
Time step	0.0005 s

Results

Spring 2022 CAMP Meeting, May 17th-19th

Results

Carlsruhe Institute of Technology

Conclusions and Outlook

- Successful coupling of PARCS and TwoPorFlow based on ICoCo.
- PARCS/TPF results were verified with PARCS/SCF.
- Since PARCS post-processing capabilities are not user-friendly:
 - Thanks to the inherent MED mesh format where all the variables are stored, post-processing is easier to do.
- Next steps:
 - Perform different transients where strong feedback and/or non-symetrical flow appears.
 - Analyse a Rod Ejection Accident of a SMR.

Thank you for your attention

Spring 2022 CAMP Meeting, May 17th-19th