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ABSTRACT

Time series forecasting is fundamental for various use cases in different domains such as energy
systems and economics. Creating a forecasting model for a specific use case requires an iterative and
complex design process. The typical design process includes the five sections (1) data pre-processing,
(2) feature engineering, (3) hyperparameter optimization, (4) forecasting method selection, and (5)
forecast ensembling, which are commonly organized in a pipeline structure. One promising approach
to handle the ever-growing demand for time series forecasts is automating this design process. The
present paper, thus, analyzes the existing literature on automated time series forecasting pipelines
to investigate how to automate the design process of forecasting models. Thereby, we consider
both Automated Machine Learning (AutoML) and automated statistical forecasting methods in a
single forecasting pipeline. For this purpose, we firstly present and compare the proposed automation
methods for each pipeline section. Secondly, we analyze the automation methods regarding their
interaction, combination, and coverage of the five pipeline sections. For both, we discuss the literature,
identify problems, give recommendations, and suggest future research. This review reveals that the
majority of papers only cover two or three of the five pipeline sections. We conclude that future
research has to holistically consider the automation of the forecasting pipeline to enable the large-scale
application of time series forecasting.

Keywords Automated Machine Learning · Time Series Forecasting · AutoML · Pipeline · Pre-processing · Feature
Engineering · Hyperparameter Optimization · Forecasting Method Selection · Ensemble
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1 Introduction

One of the most prominent forms of collected data are time series. In a time series, the data is arranged sequentially, and
each value is explicitly time-stamped, with information such as date and time (i. e, value and time stamp constitute an
observation). The progression of a time series over a certain period of time in the future, also known as forecast horizon,
is the subject of time series forecasting. Time series forecasting is applied with various forecast horizons at different
temporal scales and aggregation levels in various domains [1]. Exemplary use cases from different domains are the
following: sales forecasting for inventory optimization (just-in-time supply chain, [2]), forecasting the generation of
renewable energy and the electricity demand in an area to balance the power grid load (smart grids, [3]), and forecasting
the spread of the novel coronavirus COVID-19 (pandemic control, [4]). As the number and importance of use cases
grow, the demand for time series forecasts is increasing steadily.

Designing a time series forecast for a particular use case typically incorporates five sections. The first section of the
design process is the data pre-processing to transform the raw data into a desirable form for the forecasting method [5,
6]. The second section is the feature engineering, which aims to extract hidden characteristics of the considered time
series or to identify useful exogenous information for the forecasting method [7]. Each forecasting method contains
hyperparameters that have to be set by the data scientist. Therefore, the third section, the HyperParameter Optimization
(HPO), intends to improve the forecast accuracy over the default hyperparameter configuration [8]. Apart from the
HPO, selecting the most suitable forecasting method is crucial for the forecast accuracy and is addressed in the fourth
section [9]. The fifth section aims to increase the robustness of the forecast by forecast ensembling [10], i. e., bundling
multiple forecasts of different forecasting models to avoid occasional poor forecasts [11].

The above sections of the design process are commonly organized in a pipeline structure as shown in Figure 1. Manually
tailoring the forecasting pipeline to a specific use case is time-consuming and challenging because selecting appropriate
methods for the pipeline sections is iterative and requires expert knowledge. This expert knowledge is particularly
crucial, as the forecast accuracy is sensitive to various design decisions [8]. It is also foreseeable that the number of
knowledgeable data scientists cannot handle the ever-growing demand for time series forecasts in the future. Therefore,
increasing the efficiency of the design process by automation is required [12].

To automate design decisions and remove the data scientist from the iterative design process, a variety of automation
methods are available for each section of the forecasting pipeline.1 The sequential organization of these automation
methods and the management of the data flow can be realized by creating a pipeline [14, 15]. Running the created
forecasting pipeline trains a forecasting method – e. g. a Linear Regression (LR) – with historical time series data and
results in a parameterized forecasting model. Thereby, the pipeline automates the design process.

Figure 1: The forecasting pipeline systematizes the design process for time series forecasting using five pipeline
sections.

1In addition to automating the design process, automating the operation of forecasts is proposed by [13], which includes
self-monitoring and automatic model adaption as forecast accuracy decreases.
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In this context, the long-term objective towards full automation has motivated numerous researchers and led to promising
research results in the fields related to this review study, shown in Figure 2. Several surveys and review studies analyze
the automation of single forecasting pipeline sections such as pre-processing [5, 6], feature engineering [7], HPO and
forecasting method selection [8, 9], and forecast ensembling [10]. Moreover, rather than focusing on the automated
design of forecasting pipelines, existing studies on time series forecasting only consider the statistical or machine
learning forecasting methods themselves [16–18]. However, a comprehensive review study on the entire automated
time series forecasting pipeline that considers the families of both statistical and machine learning methods is lacking.

Data pre-
processing

Feature
Engineering

HPO &
CASH

Forecast
ensembling

Pipeline
creation

Heidrich et al. (2021)
Löning et al. (2019)

Time series
forecasting

Other task, e.g.
classification,

regression

This
review
study

Hajirahimi &
Khashei
(2019)

Zöller & Huber (2021)
Hutter et al. (2019)

Zebari et
al. (2020)

Pedregosa et al. (2011)

Shaukat et
al. (2021)
Wang &
Wang
(2020)

HPO, HyperParameter Optimization;
CASH, Combined Algorithm Selection and Hyperparameter optimization

Figure 2: Related to this review are the fields of pipeline creation, data pre-processing, feature engineering, HyperPa-
rameter Optimization (HPO) & Combined Algorithm Selection and Hyperparameter optimization (CASH), and forecast
ensembling.

Therefore, the present paper analyzes the literature on automated time series forecasting pipelines to investigate
how to automate the design process of forecasting models. We consider literature from various research directions,
including statistical forecasting, machine learning and deep learning.2 More specifically, we focus on the interaction
and combination of automation methods within the pipeline sections considering both Automated Machine Learning
(AutoML) and automated statistical forecasting methods. For this purpose, we firstly present and systematically compare
existing automation methods used in each pipeline section. Secondly, we analyze the complete automated forecasting
pipeline considering how many pipeline sections are automated in the literature and highlighting the interaction and
dependencies between pipeline sections. For both, we discuss the existing literature, identify potential problems, give
recommendations, and suggest future research.

After describing the methodology in Section 2 and a brief introduction to time series forecasting in Section 3, the paper
is organized by respective sections following the forecasting pipeline shown in Figure 1 and concludes in Section 9.

2In the following, we consider deep learning methods as part of the broader family of machine learning.
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2 Methodology

The methodology of this literature review applies the following fundamental steps suggested by Webster and Watson [19]
for the identification of major contributions, their origin, and evolution.

Literature Search: A search-term-based exploration of research articles considering title, abstract, and keywords is
conducted using Scopus3, resulting in 359 hits.4 Potential predatory journals and publishers, and vanity press
listed in Beall’s List5 are excluded.

Literature Screening: We screen the abstracts for relevance with the following criteria: i) the task type must be time
series forecasting, and ii) at least one iterative element in the forecasting pipeline that previously required
human intervention must be automated.

Backward-Forward Search: We identify additional articles that cite or are cited by the articles passing the screening.
The obtained candidates also undergo the screening procedure defined above. Backward-forward search yield
a pool of 2152 additional papers, which the keyword filtering reduces to 242 articles.4

Review: We present automation methods for each section of the forecasting pipeline and review the articles that pass
the screening and the full text analysis. After the abstract screening, 144 of the 601 papers remain, and 71
after analyzing the full text. If there is similar work from a research group, we cite the article with the greatest
methodological scope and articles that propose improvements, which reduces the included articles from 71 to
63 articles.

Discussion: We discuss the contributions towards design automation individually for each section of the forecasting
pipeline. Afterward, we identify gaps and highlight future research directions by analyzing the coverage of the
forecasting pipeline.

3 Time Series Forecasting

A time series {y [k] ; k = 1, 2 . . . ,K} reflects a set of K ∈ N>0 observations typically measured at equidistant points
in time [20]. A time series forecasting model f(·) estimates future values ŷ for one or more time points – the forecast
horizon H ∈ N>0 – using current and past values [21]. It is defined as

ŷ[k +H] = f(y[k], . . . , y [k −H1] ,

uT [k], . . . ,uT [k −H1] ,

ûT [k], . . . , ûT [k −H1] ,

w); k,H,H1 ∈ N>0; k > H1,

(1)

where H1 ∈ N>0 indicates the horizon for past values k − H1, the vector w contains the model’s parameters, the
vector u> denotes values from exogenous time series, the vector û> indicates that the exogenous values originate from
another forecast, and y represents values of the target time series [21].6

In time series forecasting, the following three families of methods exist: naïve methods, statistical methods, and machine
learning methods. The families and their main representatives are briefly introduced in the following.

Naïve Forecasting Methods The simplest method family of forecasting are naïve methods. Common representatives
are the averaging method, where the forecasts of all future values are equal to the average of historical data, and the
Random Walk (RW) method, where the value of the last observation is used as forecast [1]. For RW, modifications are
available for data with drift (dRW) and seasonality (sRW).

Statistical Forecasting Methods More sophisticated than naïve methods are statistical methods that use statistics
based on historical data to forecast future time series values. The first representatives are AutoRegession (AR) methods.
The AutoRegressive Moving Average (ARMA) method [22] assumes a linear relationship between the lagged inputs
and is applicable if the time series is stationary. If trends and seasonal characteristics are present, the time series is

3https://www.scopus.com/
4 The applied search strings and keywords are documented in the Supporting Information.
5https://beallslist.net/
6The vectors that include past values can be sparse, i. e., only certain time points from k to H1 are included.
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non-stationary, and the requirements for applying ARMA are not fulfilled. To address this problem, the AutoRegressive
Integrated Moving Average (ARIMA) method [22] removes time series trends through differencing and the seasonal
ARIMA (sARIMA) method eliminates the seasonality by seasonal differencing [23].

The second representatives are Exponential Smoothing (ES) methods, where the forecast is determined by a weighted
average of past observations, with the weights decaying exponentially with their age [1]. Simple Exponential Smoothing
(SES) is a valid forecasting method for time series data without a trend or seasonal pattern. For time series with a trend,
SES is adapted to Double Exponential Smoothing (DES), and Triple Exponential Smoothing (TES) is suitable for time
series with seasonality. An extensive discussion of statistical forecasting methods can be found in reference [16].

Machine Learning Forecasting Methods While most statistical forecasting methods are based on assumptions
about the distribution of the time series data, machine learning methods have fewer restrictions in terms of linearity
and stationarity [23]. In addition to statistical forecasting methods, which are specifically developed for time series
forecasting, one can use regression methods based on machine learning to forecast multiple time points ahead using the
following strategies, either solely or in combination [18]:

Recursive strategy: One trains a single regression model f(·) to forecast one time point ahead. In the operation, one
recursively feedbacks the output value to the input for the next time point.

Direct strategy: One trains multiple independent regression models fh(·), h = 1, . . . H , each to forecast the value at
time k + h. The input is similar for each model.

Multiple output strategy: One trains a single regression model to forecast the whole horizonH at once. Consequently,
the output is not a single value but a vector.

Representative machine learning methods are the Support Vector Regression (SVR), Decision Tree (DT)-based methods
like the Gradient Boosting Machine (GBM), and Artificial Neural Networks (ANNs). Reference [17] gives an overview
of machine learning and deep learning techniques applied to time series forecasting.

4 Data Pre-processing

Since most forecasting methods rely on assumptions about data properties, data pre-processing is of crucial importance.
Data pre-processing includes anomaly detection and handling, transforming the time series to make it stationary, and
scaling the time series. In the following sub-sections, automated methods for data pre-processing are introduced, and
their utilization in forecasting pipelines is exemplified with the reviewed literature.

4.1 Anomalies

An anomaly is a value that significantly deviates from the rest of the time series [24]. Anomalies are induced by rare
events or by errors in the data. Apart from anomalous existing values, which we call outliers, anomalies also comprise
missing values in the time series. Both outliers and missing values can degrade the performance of forecasting methods
or cause the training to fail. Therefore, appropriate anomaly detection and handling are necessary. Table 1 shows
the summary of automated anomaly detection and handling methods used in the literature for time series forecasting
pipelines.

Outlier Detection and Handling Automated outlier detection and handling aim to identify abnormal values and
replace them with plausible values without human intervention. Liu et al. [25] define an interval based on the global
mean and the variance of the time series

[mean(y)− αt · var(y), mean(y) + αt · var(y)] , (2)
with the threshold αt and the anomaly detection method considers values outside the interval as outliers. Detected
abnormal values are automatically substituted with the arithmetical averages of the nearest previous and posterior
normal values. However, anomalous values themselves bias the estimation of the mean and the variance, and the method
is only valid for stationary time series. Other authors tackle this weakness by calculating the local median instead of
the global mean. Martínez et al. [26], Yan [27], and Fan et al. [28] consider an observation as outlier if its absolute
value is four times greater than the absolute medians of the three consecutive points before and after the observation.
However, only extreme values above the absolute medians are detected, extreme values below the absolute medians are
not identified. Widodo et al. [29] apply the Hampel method, which automatically replaces any value that deviates from
the median of its neighbors by more than three Median Absolute Deviations (MAD) with that median value. Unlike
previous methods, which use statistical measures, the anomaly detection and handling method of Maravall et al. [30] is
based on a forecasting model. The method fits an ARIMA model, evaluates the MAD of the estimation residuals, and
automatically replaces detected outliers with the forecast of the ARIMA model.

5
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Table 1: Summary of automated anomaly detection and handling methods for data pre-processing in time series
forecasting pipelines.

Ref. Outlier
Detection

Outlier
Handling

Missing Value
Handling

[25] glob. mean-var. thres. average nearest
[26, 27] loc. median thres. average nearest
[28] loc. median thres. average nearest median imput.
[29] loc. median-MAD

thres.
median nearest

[30] ARIMA-MAD thres. ARIMA values
[31] glob. median-robust-

var. thres.
linear interpo-
lation

copy-paste
imput.

glob. global, imput. imputatio, loc. local, thresh. threshold, var. variance

Missing Value Handling Automated missing value handling aims to reconstruct absent observations without human
assistance. The method of Fan et al. [28] automatically replaces missing values in the time series with the median of 12
consecutive points before and after the observation. Yet, this method is prone to larger gaps of missing data. The method
of Züfle and Kounev [31] automatically imputes missing values by multiplying the known value one season before or
after the missing value by the trend factor estimated between the day of the missing values and the day copied. Using
this procedure in chronological order allows the imputed values for the imputation of subsequent missing values. After
the missing value imputation, the authors apply a similar outlier detection method like (2) with αt = 3. Unlike [25],
Züfle and Kounev [31] use the robust standard deviation between the 1st and 99th percentile of the data and replace the
outliers by linearly interpolating between the two nearest non-anomalous values.7

4.2 Stationarity

In a stationary time series y[k], the statistical properties do not depend on the time of observation k, i. e., the distribution
of y[k, . . . , k + s] is independent of k for all s [1]. Therefore, a time series with trends or seasonal patterns is not
stationary because either the mean of the time series, its variance, or both change over time. Since some statistical fore-
casting methods assume a stationary time series, their application to non-stationary time series requires an appropriate
transformation. Stationarity tests help to identify the type of non-stationarity and support the automatic selection of the
appropriate transformation. Table 2 shows the summary of automated stationarity testing and transformation methods
used in the literature for time series forecasting pipelines, introduced in the following.

Autocorrelation and Differencing Transformations A first approach to automatically identify non-stationarities
in time series is proposed by Tran and Reed [32] based on the AutoCorrelation Function (ACF) and the Partial
AutoCorrelation Function (PACF). The ACF and the PACF visualize the correlation of a time series with a delayed copy
of itself. The authors automatically detect decay patterns by calculating the average rate of change in the magnitude
of high frequencies in the ACF and PACF, and consider rates of less than 10 percent as slow decay. The slow decay
patterns indicate trends in the time series. To remove the trends, the time series is differenced by subtracting successive
observations d times. After differencing, the ACF and PACF show significant peaks at regular intervals s, if the
time series is seasonal. To remove the seasonality, the time series is seasonally differenced D times by subtracting
observations separated by s. Note that the ARIMA forecasting method explicitly include differencing as hyperparameter
d in the model structure and the sARIMA method additionally considers seasonal differencing with D and s.

Frequency Filters Apart from the ACF and PACF, methods based on frequency filters are used to identify seasonality.
Bauer et al. [33] use the periodogram to automatically retrieve all frequencies within the time series, iterate over the
found frequencies, and match each frequency with reasonable frequencies (e. g. daily, hourly, and yearly) with tolerance
to determine seasonal frequencies. Kourentzes and Crone [34] propose the Iterative Neural Filter (INF) to automatically
identify seasonal frequencies. The filter distinguishes between stochastic and deterministic components and iteratively
removes seasonalities, trends, and irregularities in the time series.

7The authors disaggregated the time series into the seasonal, trend, and residual components and applied anomaly detection and
handling on the stationary residual.
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Table 2: Summary of automated stationarity testing and transformation methods for data pre-processing in time series
forecasting pipelines.

Ref. Forecasting
Method(s)

Stationarity
Testing

Stationarity
Transformation

[32] sARIMA ACF, PACF
pattern analysis

diff., s. diff.

[33] Telescope periodogram Box-Cox, STL
[34] MLP, TES INF INF
[35] MLP ADF, INF diff., INF
[36] ARIMA KPSS diff.
[37] AR, VAR KPSS diff.
[38] autoARIMA KPSS, Canova-Hansen diff., s. diff.
[39] sARIMA ACF, PACF t-test log, diff., s. diff.
[30] ARMA, sARIMA log-level, Kendall-Ord,

Pierce, Lytras, seasonal
frequency peaks

log, diff., s. diff.

[25] ARIMA ADF, log-level diff., log
[40] sARIMA OSCB, KPSS, correla-

tion, t-test, ADF
diff., s. diff., log

[41] ARIMA, SETARMA KS, KPSS log, Box-Cox
[26] kNN diff., Box-Cox, STL
[42] autoARIMA, Theta,

Damped, RW, sRW,
SES, DES, TES

Cox-Stuart multiplicative
decomposition

[29] MKL additive
decomposition

[27] GRNN heuristic autocorrelation diff., s. diff.
[43] LSTM diff., log, STL

s. seasonal, diff. differencing

Unit Root Tests Statistical unit root tests are used to identify non-stationarities before applying transformation
methods. The unit root tests used in the literature include the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [44]
or the Cox-Stuart test [45] for testing if the time series is stationary around a deterministic trend, the Augmented
Dickey-Fuller (ADF) test [46] for the existence of stochastic trends in the time series, and the Canova-Hansen test [47]
or Osborn–Chui–Smith–Birchenhall (OCSN) test [48] for the existence of seasonal patterns over time. According to
the trends and seasonalities detected in the unit root tests, the time series is automatically differenced or seasonally
differenced, respectively.

Logarithm and Normality Transformations Apart from unit root testing, Maravall et al. [30] and Liu et al. [25]
propose log-level tests to automatically evaluate if a log-transformation of the time series is beneficial. Amin et al. [41]
use the Kolmogorov–Smirnov (KS) test [49] to determine whether a time series is normally distributed – if not, the
log-transformation is applied. Other authors apply the log-transformation without testing to reduce the variance [40,
43] or apply various transformations until critical values are satisfied in t-tests of ACF and PACF [39]. For achieving
normality and stabilizing the variance, the Box-Cox transformation [50] is often applied without preceding testing, like
in references [26, 31, 33, 41].

Time Series Decomposition In addition to transformation operations to achieve stationarity, time series can be
decomposed into the components trend, season, and irregular (i. e. the residual). Afterward, each component can be
handled by an individual forecasting model. Prominent decomposition methods are the Seasonal and Trend decom-
position using Loess (STL) [51] used in the references [26, 33, 43], and the additive or multiplicative decomposition
applied by the authors of references [29, 42].

4.3 Scaling

The scale of the time series influences the performance of many forecasting methods based on machine learning. If the
range of values is large, learning methods based on gradient descent may converge much slower or fail due to instability.
Additionally, in the case of multiple inputs with different scales, the inputs with larger variance dominate the others in
the calculation of many distance measures [52].
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The general formalization for time series scaling is

y′ =
y − a
b

. (3)

Table 3 shows the scaling methods used in the literature on automated forecasting pipelines compared to the family of
the forecasting method. A common approach is min-max scaling, where the time series are scaled in the range [0, 1] with
a = min(y), b = max(y)−min(y). While min-max scaling guarantees that all time series are scaled to the same range
[0, 1], the Z-score normalization scales the time series to zero-mean and unit-variance with a = mean(y), b = var(y).
Both scaling methods are sensitive to outliers and thus require a preceding anomaly detection and handling. Alternatively,
robust scaling methods like scikit-learn’s RobustScaler8 can be used, which removes the median and scales the data
according to the Inter-Quartile Range (IQR).

Table 3: Summary of scaling methods for data pre-processing applied in time series forecasting pipelines.
Min.-max. Zero-mean Z-score

Statistical [37] [25] [53]
Machine
learning

[27, 34, 35,
54–63]

[29, 62, 64–66]

4.4 Discussion

We discuss data pre-processing as the first section of the automated forecasting pipeline, show possible problems, give
recommendations, and suggest future research.

As shown in Table 2, automated stationarity testing and transformation methods are predominantly applied to pipelines
using methods of the statistical forecasting family. In contrast, Table 3 shows that time series scaling is mainly used
in pipelines with methods of the machine learning family. Both forecasting families require methods for automated
anomaly detection and handling, shown in Table 1.

Regardless of their predominant use for automation, both transformation methods – for achieving stationarity and
scaling – can be adversely affected by anomalies. Therefore, it is essential that automated anomaly detection and
handling is performed before time series transformations. In automated outlier detection and handling, the main
concern is that methods applied in the literature on automated forecasting pipelines focus on single outliers, although
methods for consecutive outliers are widely available, e. g., [67]. Due to this focus, these methods may have a limited
performance if several consecutive outliers or abnormal patterns are present. For automated forecasting pipelines, we
thus recommend the first step of pre-processing to be detecting and removing isolated outliers, followed by detecting
consecutive anomalous values – outliers or missing values – and handling them with an appropriate method. Ideally, the
handling also considers domain-specific knowledge (e. g. [68]).
The second step of pre-processing, automated testing for stationarity and time series transformation, is only crucial if
the pipeline uses a forecasting method that assumes a stationary time series. For each condition – deterministic and
stochastic trends, seasonalities, and normality – only one test must be applied because the use of multiple tests may lead
to conflicting answers [1]. For machine learning forecasting methods, however, these transformations are not mandatory.
Yet, a stationary time series may reduce the required complexity of the machine learning method.
In the third step of pre-processing, we recommend using an appropriate time series scaling method to facilitate the
training process of the respective forecasting method.

Given these recommendations, future work on automated forecasting pipelines should also consider domain knowledge
to identify anomalies, e. g., if only positive values are valid or domain-adapted imputation to improve the reconstruction.
Additionally, it should be systematically evaluated whether stationarity transformations improve the forecast accuracy
of machine learning methods if applied in the automated forecasting pipeline.

5 Feature Engineering

A time series feature reflects the observations of an explanatory variable in the process being forecast (i. e. the target
variable). Figure 1 shows feature engineering as a sub-section of the time series forecasting pipeline, consisting of
extraction and selection of features. Table 4 guides the following literature analysis.

8https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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Table 4: Summary of feature engineering methods in automated time series forecasting pipelines.
Ref. Forecasting Data Feature Extraction Feature Selection Feature

Method(s) Domain lag cyc. tran. exo. filter wrapper embedded Aggregation
[69] AR, autoARIMA,

ETS, TBATS
several (5) X - X -

[31] GBM, RF human access X X - X
[33] Telescope several (5) - X X - spec. value
[70] kNN nature X - - - frac. dim.
[58] GRNN economics X - - - PACF
[27] GRNN energy X - - - grid search
[28] ELM several (3) X - - - random search
[71] ANN, AR, RW economics X - - - FS
[26] kNN economics X - - - FS
[72] sARIMA human access - - - X MIQP
[73] SVR energy - - - X PSO
[55, 56] MLP several (5) X - - - EDA, DEA, GA
[59] MLP several (5) X - - - DEA
[74] SVR energy X - - X FS
[57] SVR energy X - - X BE
[65] GBM, LASSO,

MLP, SVR, RF
energy X - X X low var. BO

[29] MKL several (5) X - - - ACF kernel comb.
[34] MLP human access X X - - INF
[66] LASSO economics X - - X FS shrinkage
[75] sARIMA economics - - - X PCA

cyc. cyc; tran. transformation, exo. exogenous, spec. spectral, frac. fractal, dim. dimension, var. variance, comb. combination

5.1 Feature Extraction

The feature space of the training data set contains for each explanatory variable a time series of the same resolution
and length as the target variable.9 Feature extraction aims at automatically enriching the feature space with additional
explanatory variables. In the following, time series features are introduced, and their usage in automated forecasting
pipelines is explored with literature references.

Lag Features In autocorrelated time series, past observations can be valuable explanatory variables to forecast the
target variable. Lag features provide values from prior time points for the forecasting method, i. e., at time point k, the
model also processes values that date back a certain time horizon H1. Lag features are useful if the target variable
has inertia that is significantly reflected in the resolution of the time series or if exogenous influences affect the target
variable in periodic patterns [65].

Table 4 reveals that lag features are the most applied type of features.

Cyclic Features In the training data, the time stamps (e. g. (YYYY-MM-DD hh:mm:ss)) of the target variable are unique
and specify the sequence of the observations. Cyclical patterns that humans can detect in this format, like the hour
of the day, the day of the week, weekday and weekend, or month and year, cannot be processed by machine learning
methods without encoding. Cyclic features provide this cyclic relationship by ordinal, interval, or categorical encoding.
In the following, we exemplify these encodings for the day of the week (see Table 5). Ordinal encoding assigns an
integer numerical value to individual days. For an interval encoding, one may utilize a periodical sine-cosine encoding
to establish similarities between related observations, e. g., for encoding the day of the week, one adds two time series
features that encode each weekday.10 A categorical encoding is achieved through so-called one-hot encoding. In this
example, we create a time series feature for each day of the week, being one on that day and zero otherwise. Since the
last category – the Sunday – is already implicitly represented if each other categorical feature is zero, one may omit an
explicit feature.

In the literature reviewed, cyclic features are not widely applied. Züfle and Kounev [31] apply Random Forest (RF) and
GBM methods, using lag features and the cyclic features hour of the day, day of the week, and the exogenous feature
holiday. However, the encoding of the cyclic features is not described. Sin-cos encoded cyclic features are used by
Kourentzes and Crone [34] as input for a MultiLayer Perceptron (MLP) forecasting method.

9If the features are originally in a different resolution or length, they must be transformed accordingly.
10Two time series are necessary because, otherwise, the encoding would be ambiguous for several days.
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Table 5: Exemplification of cyclical encoding methods for the day of the week of a time series.
Ordinal Sin-cos Interval One-hot Categorical
xdow xsin xcos xmon xtue xwed xthu xfri xsat

Mon 0 1.000 0.000 1 0 0 0 0 0
Tue 1 0.623 0.782 0 1 0 0 0 0
Wed 2 -0.223 0.975 0 0 1 0 0 0
Thu 3 -0.901 0.434 0 0 0 1 0 0
Fri 4 -0.901 -0.434 0 0 0 0 1 0
Sat 5 -0.223 -0.975 0 0 0 0 0 1
Sun 6 0.623 -0.782 0 0 0 0 0 0

Transformation Features Time series transformations are widely used to make time series stationary, and can also
be applied to extract explanatory variables that we term transformation features. These features include calculating
time derivatives, the decomposition into trend, seasonality and residual, moving averages [69], as well as applying
mathematical operations on existing features, e. g., multiplication of exogenous features [65].

Exogenous Features In addition to features that are endogenously derived from the target variable, the forecast can
be improved by using exogenous features if the target variable is subject to exogenous influences. In addition, lag,
cyclical, and transformation features can also be extracted from exogenous features. Whether and which exogenous
influences exist depends on the data domain.11

For example, energy data often depends on exogenous weather measures [57, 65, 73, 74], human access data underlies
the influences of public holidays and weather [31, 72], and sales data often correlates with economic indicators [66,
75].12

5.2 Feature Selection

After automatically extracting several features, they typically undergo a selection to remove features that provide no
additional information value, e. g., because of redundancy. In the following, methods for automated feature selection
are presented, and their application in forecasting pipelines is explored based on the reviewed literature.

Filter Methods Filter methods use metrics to rank single features or feature combinations and automatically select a
promising feature set based on a threshold [78]. Hence, the filters rely on the general characteristics of the training data
and are independent of the forecasting method and other subsequent sections in the forecasting pipeline.

The characteristics used for filtering are manifold. Chakrabarti and Faloutsos [70] propose an automated filtering
method to determine the optimal lag features based on a threshold of the time series’ fractal dimension. Martínez et
al. [58] automatically select features by identifying significant lags in the PACF. Kourentzes and Crone [34] propose the
INF method to identify seasonal frequencies in time series, which automatically selects lag and sin-cos encoded cyclic
features. The method of Bauer et al. [33] automatically filters frequencies of the time series using the periodogram
with the threshold of a spectral value greater than 50 % of the most dominant frequency. Additionally, cyclic features
are extracted by calculating Fourier terms of the dominant frequencies. The most dominant frequency is used to
decompose the time series into trend, season, and residual components by STL. Finally, the cyclic features and the
seasonal component as a transformation feature are used to forecast the de-trended time series.

Wrapper Methods In contrast to filter methods, the wrapper methods assess candidate features based on the
forecasting performance on a validation data set. The best-performing feature set is selected by a search method, which
tailors the feature set to the forecasting method or the entire forecasting pipeline, respectively. The search methods and
performance metrics used in the literature are diverse. Independent from the chosen search method and metric, wrapper
methods commonly take more computing time than filter methods, as training and validation require considerably more
computing effort than calculating statistical measures. However, empirical studies show that the computing effort pays
off in a better performance of the wrapper approach compared to filter methods [78].

11We classify the data domain according to the following categories: economics & finance, energy, nature & demographics, human
access, and other or unknown. The categories are adapted from the references [76, 77] and extended to cover the literature reviewed.

12Authors that apply forecasting methods on data from several domains mainly use univariate time series from forecasting
competitions, where no exogenous time series are provided.
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In the literature reviewed, automated feature selection based on the performance of the forecasting pipeline is addressed
by different methods. The method of Yan [27] and Fan et al. [28] automatically determines the optimal lag features
based on the forecast error by searching over candidate lags. The candidate lags are either predefined individually
(grid search) or drawn randomly between specified boundaries (random search). Balkin and Ord [71] and Martínez et
al. [26] apply Forward Selection (FS) to automatically identify the optimal lag features. Firstly, several forecasting
pipelines are trained for each individual lag feature. Secondly, the FS selects the best-performing lag feature and
repeats the first procedure by adding another lag feature. It retains the combination with the highest improvement and
repeats the procedure until the forecasting performance stops increasing. Besides search heuristics, optimization can be
applied for feature selection. For automatically selecting exogenous features, Lowther et al. [72] adopt a Mixed Integer
Quadratic Programming (MIQP) problem [79] and Son and Kim [73] apply Particle Swarm Optimization (PSO). Three
evolutionary search strategies for automatically selecting the optimal lag features of MLPs are evaluated by Donate
et al. [55, 56], where the Estimation Distribution Algorithm (EDA) yields the best convergence speed and the lowest
forecast error.

Embedded Methods Embedded methods integrate the feature selection into the training process of the forecasting
method [78].13 During the training, the embedded feature selection commonly estimates the feature importance and
weights the features accordingly. Embedded methods require less computing effort than wrapper methods, but more
than filter methods [65].

The embedded methods in the literature are specific to the forecasting method. The approach of Panigrahi and
Behera [59] automatically determines the optimal lag features by a Differential Evolution Algorithm (DEA). Instead of
using gradient-based methods for training an MLP, the authors integrate the weight estimation into the DEA, aiming to
increase the convergence speed. Valente and Maldonado [74] consider the automated selection of lag and exogenous
features by an FS embedded into the SVR training process. The FS is based on a contribution metric that takes
into account lags whose inclusion minimizes the metric. An automated Backward Elimination (BE) for SVR using
embedded kernel penalization is described by Maldonado et al. [57]. Lag and exogenous features that are irrelevant for
the forecasting performance are successively removed during training.

Hybrid Methods Hybrid methods aim to combine the advantages of the above methods.

Rätz et al. [65] evaluate several filter, wrapper, embedded, and hybrid feature selection methods. Based on their
experiments, they propose to use a filter method to automatically remove all features with low variance in the first step.
Afterward, they apply Bayesian Optimization (BO) to assess the remaining feature candidate combinations, consisting
of lag, transformation, and exogenous features based on the forecasting performance. The approach of Widodo et
al. [29] filters significant lags using ACF, associates the remaining lag features with a kernel and automatically assigns
appropriate weights to the kernels during training of the Multiple Kernel Learning (MKL) method. Sagaert et al. [66]
firstly filter candidate lag features using automated FS, similar to the stepwise search for the automated ARIMA design
of Hyndman and Khandakar [38]. Then, the identified set of lag features together with exogenous features are used as
inputs of the embedded Least Absolute Shrinkage and Selection Operator (LASSO) method that automatically selects
features by shrinking the coefficients of irrelevant ones.

5.3 Feature Aggregation

Feature aggregation aims to transform the feature space into a low-dimensional representation while retaining the
primary properties of the time series. The transformation is advantageous in high-dimensional feature spaces to reduce
processing time and avoid the curse of dimensionality.14 The Principal Component Analysis (PCA), e. g., maps the data
to a lower-dimensional space, maximizing the variance in the lower-dimensional representation.15

Dellino et al. [75] pre-whiten the time series data with a PCA, i. e., the PCA aggregates exogenous features and discards
the principal components with a low variance that are assumed as noise.

5.4 Discussion

We discuss feature engineering as the second section of the automated forecasting pipeline, highlight a potential issue,
provide recommendations, and suggest future work.

13Since the embedded feature selection is specifically designed for the training algorithm of the respective forecasting method, the
transfer to other forecasting methods is not straightforward.

14As the dimensionality of the feature space increases, the available training data becomes sparse.
15Since the PCA assumes a normal distribution, anomalies must be identified and handled beforehand and appropriate transforma-

tions need to be performed to obtain a stationary time series [80].
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As shown in Table 4, most automated pipelines that apply forecasting methods based on machine learning rely on lag
features because – unlike statistical forecasting methods – they do not consider time lags implicitly.16 The sparse use of
cyclic and transformation features can be explained because most of the analyzed forecasting pipelines already consider
this information by automatically selecting appropriate lags.

In terms of automation, the majority of the literature combines the extraction of predefined features with an automated
selection. Regarding feature extraction, the primary concerns remain in the human-defined feature extraction since
it requires experience and may be biased. For this reason, extracting a large set of default features – including lag,
cyclical, and transformation features – for the automated forecasting pipeline can be valuable since the subsequent
automated feature selection removes irrelevant ones. Additionally, exogenous features are a powerful opportunity to
integrate domain-specific knowledge into the forecasts.17

In the automated feature selection, all four methods – filter, wrapper, embedded, and hybrid – are useful for removing
irrelevant features. While an embedded method is computationally beneficial by integrating the feature selection in the
training process, it is specifically designed for a forecasting method. Because of its independence from the forecasting
method, we recommend combining a filter with a wrapper method (hybrid) to initially reduce the candidate features
through filtering and then tailoring the feature selection to the forecasting method or pipeline, respectively.
Since aggregated features often correlate with other features and the number of features can be reduced by an automated
feature selection method, we do not consider automated feature aggregation necessary to reach a high forecast accuracy.
Moreover, the aggregation of features limits their interpretability regarding their information value for the forecast.

Based on these challenges, future work towards automated forecasting pipelines should consider the automated
extraction of default endogenous features18, extended by a domain-specific extraction to include exogenous features.

6 Hyperparameter Optimization

Forecasting methods incorporate a wide range of hyperparameters about the forecasting model’s structure, training
regularization, and algorithm setup; parameters whose values are not directly derived from the data and must be selected
by the data scientist. The hyperparameter configuration λ includes all considered hyperparameters and their selected
values [82]. By tailoring λ to the specific problem using HPO, one may improve the model performance over the default
setting of common forecasting libraries [65].

6.1 Performance Metrics and Validation Sample

Most HPO methods assume that the performance of the model is quantifiable. To evaluate the model performance
in time series forecasting, measures from information theory and error measures are used. Information Criteria (IC)
measure the amount of information lost by a statistical model, taking into account the Goodness-Of-Fit (GOF) and
the model complexity. The less information a model loses, the higher the model performance. One IC is the Akaike
Information Criterion (AIC)

AIC = 2w − 2 ln
(
L̂
)

(4)

with the number of estimated parameters w and the model’s maximum value of the likelihood function L̂. It rewards
GOF but penalizes high numbers of model parameters. The penalty is required since adding more parameters may
increase the likelihood without being justified by the data (overfitting). Another popular IC is the Bayesian Information
Criterion (BIC)

BIC = w ln (K)− 2 ln
(
L̂
)

(5)

that additionally considers the number of data points K.

Popular error measures are the Mean Squared Error (MSE)

MSE =
1

N

N∑
n=1

(y[n]− ŷ[n])
2
, (6)

16A well-known exception is Recurrent Neural Networks (RNNs) that feedback input values within the neural structure to capture
sequential relationships.

17For multiple-point-ahead forecasts, future values of the exogenous time series are required if lag, cyclical, and transformation
features are extracted from them; either through simultaneous forecasting or the integration of exogenous forecast results.

18Initial work on the automated extraction of endogenous features exists, e. g., [69, 81].
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and the Mean Average Error (MAE)

MAE =
1

N

N∑
n=1

|y[n]− ŷ[n]| , (7)

where ŷi is the forecast and yi the realized value.19 The smaller the error of the model, the higher the model performance.
Error measures can be calculated in-sample or out-of-sample. In-sample means that the forecast error is determined on
data points that are part of the training data sample, while out-of-sample uses unseen points from the validation data
sample. To increase the robustness, cross-validation can be performed by splitting the data several times into different
training and validation sub-sets and averaging the validation error across the folds. The out-of-sample error validation is
generally considered to be a more trustworthy empirical evidence, as in-sample error validation is prone to overfitting.20

6.2 Optimization Methods

Given validation data and metrics, the hyperparameter configuration of forecasting methods can be optimized using
different optimization methods. Table 6 shows the summary of HPO methods for time series forecasting. In the following
sub-sections, automated HPO methods are introduced that are applied in the literature on forecasting pipelines.

Table 6: Summary of HyperParameter Optimization (HPO) methods in automated time series forecasting pipelines.
Ref. Optimized Forecast-

ing
Optimized Hyper- Performance Validation Sample Optimization Method

Method(s) parameters Metric in-sample out-of-sample

[32] sARIMA p, q - - ACF & PACF
[41] ARIMA, SETARMA p, q - - testing, ACF & PACF,

checking
[37] AR, VAR p, s BIC X - grid search, checking
[83] MA q user-defined X - grid search
[36] ARIMA p, d, q user-defined X - testing, ACF & PACF,

grid-search
[84] ARIMA p, d, q GOF X - grid search, checking
[38] sARIMA p, d, q, P,D,Q, s AIC X - testing, two-stage

grid search
[85] sARIMA p, d, q, P,D,Q user-defined X X testing, grid search,

checking
[86] sARIMA p, d, q, P,D,Q, s AIC X - var. minimization,

two-stage grid search
[72] sARIMA p, d, q, P,D,Q, s user-defined X X two-stage MIQP &

grid search
[53] sARIMA p, d, q, P,D,Q MAE - X BO GP
[87] ETS E, T, S AIC X - grid search
[88] TES α, β, γ, ϕ, p RMSE, MAD X - multiobjective NLP

MAPE
[89] Theta ϕ MAE X - Brent

T, S testing, grid search
[90] UC T, S, I BIC X - grid search
[70] kNN k - - heuristic
[66] LASSO λ MAPE - X grid search
[73] SVR C, γ RMSE - X grid search
[57, 74] SVR C, γ MAPE - X grid search
[29, 62] MKL C, ε sMAPE - X grid search

kernel, γ embedded
[27] GRNN spread - - heuristic
[59] MLP Ni, Nh RMSE X X DEA
[56] MLP Ni, Nh, α,∆max MSE - X EDA
[55] MLP Ni, Nh, α, s MSE - X GA, DEA, EDA
[28] ELM Ni, Nh sMAPE - X random search
[43] LSTM epoch-size, batch-size, MASE - X BO GP

Nh, α, epochs, noise,L2
[60] ANN, DBN, SVR method-dependent MSE - X PSO
[65] GBM, LASSO,

MLP, RF, SVR
method-dependent MAE - X BO TPE

19There are further error measures that are derived from the MSE and the MAE, such as the Root MSE (RMSE), the Mean
Absolute Scaled Error (MASE), the Mean Absolute Percentage Error (MAPE), and the symmetric MAPE (sMAPE). For their
definitions, we refer to reference [1].

20Since ICs try to prevent overfitting implicitly with the penalty term, they are computed in-sample.
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6.2.1 Grid Search and Random Search

The most elementary method for HPO is the exhaustive grid search, where the data scientist defines a finite set of
π = 1, . . . ,Π hyperparameter values to be evaluated, resulting in a full factorial configuration space Λ ∈ RΠ. As the
grid search evaluates the Cartesian product of these sets, the number of computations B grows exponentially with the
dimensionality of RΠ. Hence, increasing the discretization resolution increases the computing effort substantially [82].
The random search [91] is an alternative to the grid search. It irregularly samples the hyperparameter set until a
certain number of computations B is exhausted. The random search may performs better than the grid search if some
hyperparameters are much more important than others.21 Figure 3 shows a comparison of both methods with two
hyperparameters and an equal number of computations B.
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Figure 3: Comparison of a grid search and a random search for minimizing a function with one important and one
unimportant parameter [82, 91].

Hyndman et al. [87] generalize the formulation of ES forecasting methods with the Error Trend Seasonality (ETS)
method and suggest a grid search that automatically selects the hyperparameter configuration with the lowest in-sample
AIC. Utilizing grid search for HPO is also applied to statistical forecasting methods based on AR and Moving Averages
(MAs) averages. Sekma et al. [37] optimize the hyperparameters of an AR (p, s) and a Vector AutoRegression
(VAR) (p, s) method, respectively, using grid search. The hyperparameter configuration resulting in the minimal BIC,
calculated in-sample, is automatically selected. A similar HPO method for MA (q) methods is proposed by Svetunkov
and Petropoulos [83], where the data scientist needs to define the in-sample optimization criterion. An advanced
method, combining pre-processing and HPO of ARIMA (p, d, q) methods is proposed by Alzyout et al. [36]. Firstly,
a stationarity test determines the differencing order d. Secondly, the maximal AR-lag order pmax and the maximal
MA-lag order qmax are determined by automatically evaluating the PACF and the ACF, respectively. Finally, a grid
search from 0 to pmax and 0 to qmax selects the optimal hyperparameter configuration based on in-sample AIC or
BIC. Combining pre-processing and HPO is also proposed by Hyndman and Khandakar [38]. Firstly, the authors
propose to automatically determine the differencing and seasonal differencing order d and D and the seasonal period
s with a stationarity test. Secondly, instead of an exhaustive grid search over the hyperparameters p, q, P , and Q
of the sARIMA (p, d, q)(P,D,Q)s, they propose a two-stage grid search, reducing the number of evaluations. In
the first stage, four candidate hyperparameter configurations are evaluated, whose hyperparameters depend on the
previously determined s. The hyperparameter configuration with the smallest in-sample AIC value proceeds to the
second stage, where p, q, P , and Q are varied ±1. If a configuration with a lower AIC value is found, it becomes the
active configuration of stage two and the variation is repeated until the AIC stops improving. Pedregal et al. [86] adopt
this method except for the pre-processing step. Instead of stationarity tests, the variance of the time series is minimized
to identify the differencing orders d and D.

Grid search is also applied for HPO of forecasting methods based on machine learning. Sagaert et al. [66] determine the
optimal shrinkage factor λ of the LASSO method for embedded feature selection in terms of the mean MAPE of a
10-fold cross-validation (out-of-sample). Several authors apply a grid search to determine the optimal hyperparameter
configuration of an SVR. Son and Kim [73] optimize the hyperparameters C and γ based on the RMSE, Maldonado et
al. [57] and Valente and Maldonado [74] based on the MAPE. The grid search used by Widodo et al. [29, 62] is based
on a 5-fold cross-validation, using the mean sMAPE value across folds as the forecast error measure. They optimize
the hyperparameters C and ε of the SVRs used in a MKL approach with embedded feature selection. Combining
automated feature selection and HPO is also suggested by Fan et al. [28]. The authors identify the optimal lag features
using random search and link the number of hidden neurons Nh to the number of input neurons Ni.

21The greater importance of a few hyperparameters over others applies in many cases, e. g., [65, 91].
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6.2.2 Bayesian Optimization

Rather than evaluating a finite search grid, BO explores and exploits the configuration space Λ = Λ1 × Λ2, . . . ,ΛH of
H hyperparameters Λ. BO uses a probabilistic surrogate model to approximate the objective function Q that maps the
forecasting pipeline’s performance Q on Λ. More specifically, an observation Q(λ) of the objective function reflects
the pipeline’s performance with a particular hyperparameter configuration λ ∈ Λ of the forecasting methods used. In
each iteration, the optimization updates the surrogate model with the new observation and uses an acquisition function
to decide on the next hyperparameter configuration λ ∈ Λ to be explored (see Figure 4). The acquisition function
trades off the exploration against the exploitation of Λ by determining the expected benefit of different hyperparameter
configurations using the probabilistic distribution of the surrogate model [82].

Observation

Acquisition Max

Acquisition Function

New Observation

Objective Function

Posterior Mean
Posterior Uncertainty

Figure 4: Two exemplary iterations of a Bayesian Optimization (BO) on a 1D function. The BO minimizes the predicted
objective function Q̂(λ) (blue line) by maximizing the acquisition function E [I(λ)] (green surface). The acquisition
value is high where the value of Q̂(λ) is low, and its predictive uncertainty (light blue interval) is high [82]. The true
objective function (dashed line) might lie outside of the predicted uncertainty interval.

For surrogate modeling, various approaches exist, ranging from Gaussian Processes (GPs) and their modifications to
machine learning approaches, e. g., RFs or Tree-structured Parzen Estimators (TPEs). Feurer and Hutter [82] recommend
using a GP-based BO for configuration spaces with real-valued hyperparameters and computationally expensive training,
and an RF or TPE-based BO for configuration spaces with categorical hyperparameters and conditions, e. g., the choice
of a forecasting method and its conditional (sub-)configuration space.

Dellino et al. [53] apply a BO based on GP surrogate modeling to optimize the hyperparameters of the
sARIMA (p, d, q)(P,D,Q) using an out-of-sample validation data set and the MAE. They compare the BO to
an exhaustive grid search, where the BO achieves lower forecast errors but requires more computing time. In their
experiment, however, the comparison is unequal as the configuration space of the BO is larger, and the best-performing
model of the BO results in a hyperparameter configuration that the grid search does not evaluate.
Bandara et al. [43] use a BO with a GP surrogate model to optimize the recurrent neural architecture and training
hyperparameters of a Long Short-Term Memory (LSTM). The performance of each hyperparameter configuration is
evaluated out-of-sample based on the MASE. Rätz et al. [65] optimize multiple forecasting methods, combining feature
selection, HPO, and forecasting method selection using a BO based on a TPE surrogate model. The hyperparameter
configurations’ performances are estimated using the mean MAE of a 5-fold out-of-sample cross-validation.
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6.2.3 Non-linear Programming

Mathematical programming can be applied for HPO if calculating the performance metric is solvable in closed-form.
Non-Linear Programming (NLP) solves an optimization problem, where at least one of the objective functions or
constraints is a non-linear function of the decision variables. The objective function may be convex or non-convex,
where non-convex NLP incorporates multiple feasible regions and multiple locally optimal solutions within them [92].
Depending on the formulation of the objective function and its constraints, different solving methods are appropriate.

Bermúdez et al. [88] apply the generalized reduced gradient method to solve a multiobjective NLP. They jointly
minimize the in-sample RMSE, MAPE, and MAD to determine the smoothing parameters α, β, γ, ϕ and the number of
periods of the seasonal cycle p of the TES method. Lowther et al. [72] use MIQP to select suitable exogenous features
for ARIMA. They combine this selection with a grid search over the sparsity parameter k of the MIQP formulation and
the sARIMA hyperparameters p, d, q, P,D,Q.

6.2.4 Heuristics

A heuristic is an informed search technique that systematically explores a configuration space Λ subject to a constant
search rule [93].

Tran and Reed [32] propose heuristics based on the ACF and PACF to determine the AR and MA lag order p and q. A
similar approach is published by Amin et al. [41]. To determine the transformation parameter θ of the Theta forecasting
method, Spiliotis et al. [89] apply the Brent–Dekker method – a root-finding method. They determine the optimal θ for
eight different trend T and season S configurations, and select the configuration that minimizes the in-sample MAE.
Chakrabarti and Faloutsos [70] propose a heuristic to specify the number of nearest neighbors k of the k-Nearest
Neighbors (kNN) forecasting method after selecting the optimal lag features. A training sample-related heuristic for
determining the spread factor of the General Regression Neural Network (GRNN) is introduced by Yan [27].

6.2.5 Metaheuristics

Metaheuristics are strategies for guiding a search according to feedback from the objective function, previous deci-
sions, and prior performance [94], i. e., the searching behavior changes while exploring the configuration space Λ.
Metaheuristics do not require assumptions about the objective function and can solve optimization problems where
gradient-based methods fail.

Evolutionary Optimization Evolutionary Algorithms (EAs) comprise a wide range of population-based metaheuris-
tics inspired by biological evolution [95]. A population of candidate hyperparameter configurations is evaluated using a
fitness function to determine the performance of solutions. Weak solutions drop out, while well-performing solutions
evolve. The mechanisms of selection and evolution differ between algorithms.

Genetic Algorithms (GAs) evolve a population of candidate hyperparameter configurations to explore and exploit the
configuration space Λ. The hyperparameters of a candidate solution are encoded as genes in a chromosome. In each
generation, the fitness of the population is evaluated, and the chromosomes of individual candidates are modified to
create a new generation – the offspring. The modification includes recombination and mutation and depends on an
individual candidate’s fitness. A part of the population is retained and forms with the offspring the next generation.
DEAs differ from GAs in the mechanism of generating the offspring. While in GAs an individual acts as parent to
generate an offspring, the DEA adds the weighted difference between two chromosomes to create a new individual.
In this way, no separate probability distribution is required, making the algorithm self-organizing. In EDAs, the
population is replaced by a probability distribution over the choices available at each position in the chromosome of the
individuals. A new generation is obtained by sampling this distribution, avoiding premature convergence and making
the representation of the population more compact.
Donate et al. [55] evaluate a GA, a DEA, and an EDA for optimizing the hyperparameter configuration of an MLP,
including the number of input and hidden neurons Ni and Nh, as well as the training hyperparameters learning rate α
and the weight initialization seed s. The results of the experiments show that the DEA and the EDA require more than
100 generations to improve significantly over GA. After 200 generations, the EDA achieves the lowest forecast error,
followed by the DEA and the GA. In a later publication [56], the authors adapt the chromosome encoding and replace
s with the hyperparameter ∆max of the used training algorithm. In both publications, the fitness of each individual is
evaluated by calculating the MSE on an out-of-sample validation data set. Panigrahi and Behera [59] apply a DEA to
optimize Ni and Nh of an MLP, combining in-sample and out-of-sample validations. The fitness of each individual
(RMSE) is calculated in-sample, and the DEA is terminated when the RMSE on the validation data set increases22,
indicating the beginning of overfitting.

22This regularization is also called early stopping.
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Particle Swarm Optimization In PSO, a population of hyperparameter candidate configurations – the swarm – is
evaluated. The candidates move through the configuration space Λ, where the movement of the swarm is guided by the
best-performing candidates so far.

Sergio et al. [60] apply PSO to optimize the hyperparameter configuration of multiple forecasting methods, combining
the best hyperparameter configurations afterward to an ensemble.

6.3 Diagnostic Checking

Diagnostic checking evaluates the fitted forecasting model against criteria that indicate an adequate forecasting method
configuration. An adequate forecasting method configuration yields residuals r[k] = y[k] − ŷ[k] with properties of
white noise, i. e., the residuals are not autocorrelated having zero mean and finite variance [1]. For statistical forecasting
methods, the relationship between dependent and independent variables should be statistically significant. That is,
the parameters estimated in the fitting process describing this relationship are significantly different from zero. If the
forecasting method makes assumptions about the time series characteristics (e. g. stationarity), it is advisable to check
whether the assumptions hold [1].

Amin et al. [41] check the randomness of the residuals with a Box-Pierce test and the significance of the parameters of the
ARIMA or Self Exciting Threshold AutoRegressive Moving Average (SETARMA) models with a t-test. Furthermore,
they test the invertibility and the stationarity, i. e., both the sum of the AR parameters and the sum of the MA parameters
have to be smaller than one. Analogously, Hwang et al. [84] verify stationarity and invertibility. For residual diagnostics,
they additionally check the residual’s correlations with the Ljung-Box test. Similar to the above authors, Sekma et
al. [37] test the parameters’ significance and check if the residuals are white noise with the Ljung-Box test [96].

6.4 Discussion

We discuss HPO as the third section of the automated forecasting pipeline, identify a possible problem, give recommen-
dations, and suggest future research.

For HPO, most automated forecasting pipelines apply grid search as shown in Table 6. Directed search methods,
e. g., evolutionary optimization and BO, are, however, used for HPO of forecasting methods with high computational
training complexity, primarily including machine learning methods. After an HPO, diagnostic checking is only applied
sporadically and only for statistical forecasting methods.

With regard to automation, several authors link HPO and the preceding automated steps of pre-processing (Section 4)
and feature engineering (Section 5). One potential problem is the optimization of the differencing orders d and D of the
ARIMA (p, d, q) and sARIMA (p, d, q)(P,D,Q)s methods using IC metrics. The differencing transformation affects
the likelihood in IC metrics, making the metrics between different values of d and D not comparable [1]. Therefore, d
and D should be determined in the pre-processing section. For the subsequent HPO, we assume a straightforward grid
search to be sufficient since the computational training complexity of ARIMA and sARIMA methods is rather low,
and the configuration space is small. In contrast, for HPO of forecasting methods with high computational training
complexity, e. g., ANNs, and large categorical and conditional configuration spaces, we recommend a BO based on
TPE.

Given these recommendations, for automated forecasting pipelines in future work, we suggest that the automated
analysis of residuals is also integrated into the pipeline using machine learning-based forecasting methods.

7 Forecasting Method Selection and Ensembling

Not only optimizing hyperparameters of a forecasting method but also selecting the appropriate method is crucial for
the forecast accuracy. Consequently, the forecasting method selection is often combined with an individual HPO.23

Forecast ensembling aims to bundle the forecasts of several methods, thereby reducing the impact of occasional poor
forecasts – which can even occur with the best-selected and optimally configured forecasting method.

7.1 Forecasting Method Selection

For automatically selecting the best-performing forecasting method, there are several approaches that we divide
into heuristic, empirical, and decision model-based selection. The selection is based on experience, a determined

23Selecting the optimal forecasting method and finding the optimal hyperparameter configuration is also called the Combined
Algorithm Selection and Hyperparameter optimization (CASH) problem.
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Table 7: Summary of method selection and ensembling methods in automated time series forecasting pipelines.
Ref. Forecasting Forecasting Method Selection Basis Forecast Ensembling

Method(s) Selection pool ensemble

[26] kNN - - use all avg.
[97] ANN, MA, sRW heuristic - -
[98] autoARIMA, ETS, LR, RW, sRW,

Theta
heuristic - - use all wgt.

[71] ANN, AR, RW empirical X -
[41] ARIMA, SETARMA empirical X -
[37] AR, VAR empirical X -
[99] ARIMA DES, LR, dRW, SES, TES empirical X -
[31] GBM, RF, Telescope empirical X -
[65] GBM, LASSO, MLP, RF, SVR empirical X -
[42] autoARIMA, Damped, RW, sRW,

SES, DES, TES, Theta
empirical X -

[35] MLP empirical X - k-best avg.
[100] ETS heuristic, empirical X - k-best avg.
[101] autoARIMA, ETS, NNetAR, TBATS empirical X - k-best wgt.
[102] ELM, ENN, FNN, GRNN, MLP,

RBFNN
empirical X - k-best wgt.

[60] DBN, MLP, SVR heuristic, empirical X - dyn. best avg., wgt.
[103] autoARIMA, MA, SES, DES, TES,

Theta
decision model X -

[104] SES, DES, TES decision model X X
[62] autoARIMA, MKL, PR, SVR decision model - X
[105] ANN, autoARIMA, ETS, LC, LL, RW decision model - X
[106] DT, GBM, LR, RF decision model - X
[107] ANN, GP, MARS, PR, RBFNN, SVR decision model - X
[108] autoARIMA, BSTS, ETS, GBM,

Prophet, TBATS, Theta
decision model - X

[54] Telescope: Cubist, Evtree, GBM,
NNetAR, RPaRT, SVR

decision model - X

[43] LSTM decision model - X
[109] AR, autoArima, ETS, NNetAR, RW,

dRW, sRW, TBATS, Theta
decision model - X use all wgt.

[110] autoARIMA, ETS, NNetAR, RW,
dRW, sRW, STL-AR, TBATS, Theta

decision model - X use all wgt.

[64] autoARIMA, ELM, ETS, GBM, LR,
RF, SVR

decision model - X use all wgt.

[63] autoARIMA, ETS, NNetAR, RW decision model - X k-best wgt.
[111] MA, IMA, White Noise decision model X X

avg. averaging, dyn. dynamic, wgt. weighting

performance, or meta-features. The determined performance reflects IC or error measures. Meta-features describe
properties of the time series to be forecast and provide meta-information, including statistical characteristics of the target
time series, such as the skewness, kurtosis, and self-similarity; and domain information, such as physical properties of
the system and environmental characteristics. In the following, methods for automated forecasting method selection are
presented, and their application in forecasting pipelines is examined based on the reviewed literature, guided by the
summary in Table 7.

Heuristic Forecasting Method Selection The heuristic selection of the forecasting method relies on fixed rules. The
basis of these rules is experience and statistical tests that examine the time series for certain characteristics. Therefore,
heuristic selection requires neither a determined performance nor meta-features.

Shcherbakov et al. [97] propose decision rules that consider the amount of available training data. For small amounts
of training data (i. e. less than 672 observations), a naïve method is selected that uses the previous day’s value as the
forecast. For moderate amounts of training data (i. e. 672-2688 observations), a MA method is applied, whereas an
ANN is selected for greater amounts of training data (i. e. more than 2688 observations). Besides the amount of training
data, the availability of calendar information and exogenous time series also determines the chosen forecasting method.

Empirical Forecasting Method Selection The empirical forecasting method selection determines the performance
of several forecasting methods during training (in-sample) or on a validation data set (out-of-sample) and automatically
selects the best-performing forecasting method.24

24For a detailed description of the in-sample and out-of-sample validation, refer to Section 6.
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Balkin and Ord [71] train an AR, an MLP, and a naïve RW method, and select the forecasting method with the smallest
in-sample BIC. Similarly, Sekma et al. [37] decide between AR and VAR forecasting methods based on the smallest
in-sample BIC; Amin et al. [41] use the AIC to choose between ARIMA and SETARMA.
An out-of-sample validation is used by Pereira et al. [99]. They calculate the MAE of six forecasting methods on
a validation data set and select the method with the lowest MAE. A similar selection strategy is used by Züfle and
Kounev [31]. They select the best-performing candidate forecasting method in terms of the R2 score on validation data.
Robustness can be increased by cross-validation. Rätz et al. [65] combine feature selection, HPO, and the selection of
the optimal forecasting method using BO with the mean MAE over five folds.
The effectiveness of in-sample and out-of-sample empirical forecasting method selection is evaluated by Fildes and
Petropoulos [42]. They assess the following four empirical selection methods: i) minimal one-point-ahead in-sample
MSE, ii) minimal one-point-ahead out-of-sample MAPE, iii) minimal h-point-ahead out-of-sample MAPE, and iv)
minimal 1-18-points-ahead out-of-sample MAPE. The latter method proves to be better than the 1-point-ahead validation
and even than adjusting the validation to the corresponding forecast horizon H .

Decision Model-based Forecasting Method Selection Instead of a heuristic or empirical forecasting method se-
lection, one may train a decision model to automatically select the optimal forecasting method. As decision models,
regression, classification, and clustering methods can be used to establish a relationship between performance informa-
tion or meta-features and the optimal forecasting method.

In a decision model, the selection and aggregation of meta-features can improve decision accuracy. The principle of
feature selection and aggregation methods corresponds to the descriptions in Section 5. Similar to the optimization of
forecasts, the decision model can also be improved by HPO. Table 8 gives an overview of meta-feature engineering and
decision models applied in the literature.

Table 8: Summary of meta-feature selection and aggregation methods for decision models to select forecasting methods.
Ref. Forecasting Meta-Feature Decision Model

Method(s) selection aggregation method type HPO

[103] autoARIMA, MA, SES,
DES, TES, Theta

LogR,
SVM, DT

class.

[104] SES, DES, TES grid search MLP class. grid
search

[62] autoARIMA, MKL, PR,
SVR

FS kNN class.

[105] ANN, autoARIMA, ETS,
LC, LL, RW

PCA LDA class.

[106] DT, GBM, LR, RF BE autoencoder MLP, RF class. grid
search

[107] ANN, GP, MARS, PR,
RBFNN, SVR

PCA, Pearson SVD MLP class. grid
search

[108] autoARIMA, BSTS, ETS,
GBM, Prophet, TBATS,
Theta

use all RF class. grid
search

[54] Telescope: Cubist, Evtree,
GBM, NNetAR, RPaRT,
SVR

use all RF reg.,
class.

[43] LSTM use all k-means,
DBSCAN,
Snob

clust. embedded

[109] AR, autoArima, ETS,
NNetAR, RW, dRW, sRW,
TBATS, Theta

use all GBM class. BO

[110] autoARIMA, ETS,
NNetAR, RW, dRW, sRW,
STL-AR, TBATS, Theta

learning GBM class. not de-
scribed

[64] autoARIMA, ELM, ETS,
GBM, LR, RF, SVR

learning CNN,
FCNN

class. grid
search

[63] autoARIMA, ETS,
NNetAR, RW

use all LR reg.

[111] MA, IMA, White Noise grid search SVM class. grid
search

class. classification, clust. clustering, reg. regression

Taghiyeh et al. [103] propose a decision model-based selection method that relies on a classification method. It selects
the optimal forecasting method from a pool of candidates based on their in-sample and out-of-sample MSE. None
of the three classification methods, including Logistic Regression (LogR), DT, and Support Vector Machine (SVM),
outperforms the others. Kück et al. [104] propose a decision model-based selection based on the out-of-sample sMAPE
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and meta-features. They apply an MLP classifier as decision model and select its inputs using a grid search over 127
feature sets that include error measures and meta-features.

The approaches above have the disadvantage that all candidate forecasting methods must be trained on the target data
set to determine the applied error measures. Computing meta-features, in contrast, does not require training. Hence,
relying only on meta-features for decision model-based selection saves computing time. Widodo and Budi [62] propose
a kNN classifier to select the forecasting method for a target time series based on the meta-features introduced in
reference [112]. In the design of the classifier, the authors apply FS for meta-feature selection. Another approach based
on the same meta-features is introduced by Scholz-Reiter et al. [105]. They use a meta-feature aggregation instead
of meta-feature selection, and a Linear Discriminant Analysis (LDA) as classification method to select the optimal
forecasting method. Shahoud et al. [106] introduce statistical meta-features for different aggregation levels of the time
series to extract characteristics at different time scales. They select suitable meta-features by a BE and aggregate them
using an autoencoder. RF and ANN classifiers are compared for decision-making, both optimized with a grid search,
where the ANN classifier achieves better performance in terms of selecting the best forecasting method. In addition to
statistical and time series meta-features, Cui et al. [107] include domain information. The domain-based meta-features
describe physical properties of buildings for which energy consumption is to be forecast. Bauer et al. [54] evaluate
three types of decision models, i. e., classification, regression, and hybrid. In the classification decision model, an RF
is trained to map meta-features to the forecasting method with the lowest forecast error. In the regression decision
model, an RF learns how much worse each forecasting method is compared to the best method (i. e. forecast accuracy
degradation). The hybrid decision model combines this RF regression with an RF classifier that maps the RF regression
prediction to the best method. In the evaluation, the hybrid approach achieves the best performance in terms of forecast
accuracy degradation. Instead of training an individual model for each new time series, Bandara et al. [43] suggest
clustering time series using meta-features and training only one model for each cluster, which is applied to all time
series in the cluster.

7.2 Forecast Ensembling

Forecast ensembling aims to improve the forecast robustness by bundling multiple forecasts of different models. We
differentiate forecast ensembling from ensemble learning methods that build an ensemble of weak models25, such as RF
and GBM. Ensembling the forecasts from a pool of different forecasting models aims to avoid occasional poor forecasts,
rather than outperforming the best individual forecasting model [11]. In the following, methods for ensembling in
automated forecasting pipelines are introduced and exemplified using the reviewed literature, guided by the summary
in Table 7.

The benefit of forecast ensembling is empirically demonstrated in many cases. For example, in the analysis of the
so-called M3 forecasting competition [77], averaging the model output of all submitted forecasting methods performs
better than each individual method itself. Simple forecast ensembling through averaging is used by Martínez et al. [26].
They average the output of three kNN models with k ∈ {3, 5, 7} after the identification of optimal lag features with FS.

To improve averaging, one may weight the forecasting methods according to the expected individual performance. An
ensemble can also be improved by only considering the k-best candidate methods, ranked by a forecasting method
selection beforehand (i. e. heuristic, empirical, and decision model-based methods).

Selecting the candidate methods based on a heuristic forecasting method selection is proposed by Pawlikowski and
Chorowska [98]. They categorize the time series data of the M4 forecasting competition [113] in terms of their
frequency, and the existence of a trend and seasonality. Depending on the category, they select a distinct pool of
candidate forecasting methods. The hyperparameters of the candidate methods are optimized and the weight for each
candidate is determined based on the sMAPE error, validated out-of-sample with a rolling origin evaluation.

The following authors use empirical forecasting method selection to consider only the k-best candidate methods
in the ensemble. Crone and Kourentzes [35] empirically determine the forecasting performance of candidate MLP
architectures in a grid search (Nh, activation) with a rolling origin evaluation (out-of-sample) and average the outputs of
the ten best candidates to reduce the impact of overfitting. Kourentzes et al. [100] propose an FS heuristic to decide
on the number of ranked candidates to be considered for averaging. They calculate the performance metric’s rate of
increase C ′ assigned to each forecast and include all candidates until the first steep increase C ′ > T . To detect the
increase, they use the same approach used for detecting outliers in boxplots, i. e., T = Q3 + 1.5IQR, where Q3 is the
3rd quartile.

25The forecast of a weak model, e. g., a DT, is only slightly superior to a random estimate. Ensemble learning aims to combine
many weak models to achieve a good estimate.
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Instead of averaging the k-best candidates, Shetty and Shobha [101] assign weights to the filtered candidates before
averaging. Candidates with low forecast errors Q receive more weight, i. e.,

wi =

∏k
j=1Qj

Qi

∑k
j=1Qj

,

k∑
i=1

wi = 1. (8)

Wu et al. [102] propose a multi-objective optimization to determine the optimal weights for averaging candidates. They
apply the flower pollination metaheuristic to minimize

min

4∑
i=1

wiQi,

4∑
i=1

wi = 1 (9)

with the error metrics Qi including the MAE, RMSE, and their relative formulations.

In the decision model-based method selection, one can also include weighted averaging directly in the decision model.
Montero-Manso et al. [109] and Li et al. [110] train a GBM classifier with softmax-transformed outputs corresponding
to the weights of the candidates for averaging. Similarly, Ma and Fildes [64] compare a Convolutional Neural Network
(CNN) and a Fully Connected Neural Network (FCNN) classifier using output neurons with softmax activation to
predict the weights for averaging. Instead of softmax outputs, Züfle et al. [63] use an LR as a decision model. Its output
reflects the probability of how well the forecasting method fits the time series and determines the weight for averaging.
For filtering the k-best candidate methods, they post-process the LR output.

Above mentioned forecast ensembling methods with weighted average determine the weights statically, i. e., the weights
do not change as the time series evolves. Sergio et al. [60] propose a dynamic weighting method for the ensembling of
forecasts. For every single forecast, the method searches for the k-nearest patterns in the training data similar to the
given input data. Three ensemble functions – average, median, and softmax – are evaluated on the found similar patterns,
and the method with the best performance is chosen for the forecast. A dynamic decision model-based approach is
also introduced by Villegas et al. [111]. In their work, a binary SVM classifier is trained on performance metrics
and meta-features to predict the best forecasting method from a pool of candidates for each forecast origin. In their
experiment, the dynamic selection achieves the best performance compared to the mean and the median ensembling of
all candidate forecasting methods.

7.3 Discussion

We discuss the automated selection of the optimal forecasting methods as the fourth and forecast ensembling as the
fifth section of the automated forecasting pipeline. For both pipeline sections, we highlight potential problems, give
recommendations, and suggest future work.

The automated selection includes heuristic, empirical, and decision model-based methods. As shown in Table 7, most
empirical selection methods for the forecasting method are based on performance metrics, whereas decision models
base their selection mainly on meta-features. Considering automation, the selection of the forecasting method is often
combined with an individual HPO of the candidate forecasting methods. If multiple forecasting methods are evaluated
in the selection, about half of the reviewed literature combines the selection with forecast ensembling.

In the automated selection, we notice different potential problems. The heuristic forecasting method selection is based
on straightforward decision rules. To strengthen the evidence of the selection, however, we consider that performance
metrics or meta-features are needed. The empirical selection based on performance metrics requires a high computing
effort as every candidate forecasting method needs to be fitted to the data. The selection with a decision model based
on meta-features reduces the computing effort but requires a sufficiently large and diverse data set for training the
decision model. Based on our analysis, a comprehensive benchmark comparing the computing effort and the forecast
accuracy of heuristic, empirical, and decision model-based forecasting method selection is missing, and therefore
no recommendation can be made. Empirical evidence, however, exists for the forecast ensembling. We recommend
combining forecast ensembling with the forecasting method selection by determining the pool of candidate methods
and ensemble weights.

Based on the challenges of automated forecasting method selection, future work could tailor decision models for specific
domains using HPO. Furthermore, the research could analyze if the selection of pre-trained forecasting methods is
beneficial – either for application to the new time series without adaptation or after re-training on the new data.
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8 Automated Forecasting Pipeline

The forecasting pipeline consists of the sections pre-processing, feature engineering, HPO, and forecasting method
selection and ensembling (see Figure 1).

8.1 Status Quo

Table 9 shows that the analyzed literature covers different sections of the forecasting pipeline.26 Clustering the analyzed
papers that cover the same sections of the forecasting pipeline yields 17 clusters. Most of the 63 papers reviewed cover
only two or three sections of the forecasting pipeline. Only two papers cover four sections, and none of the papers
reviewed covers all five sections of the forecasting pipeline.
27 papers consider only statistical forecasting methods, 22 papers only machine learning methods, and 14 papers both.
A majority of the papers that include both families of forecasting methods consider forecasting method selection in
their pipeline (12 of 14 papers).
Of all the papers analyzed, most papers focus on pre-processing (35) and HPO (32), followed by the forecasting method
selection (30). Since statistical methods consider lag features implicitly in the model structure, only 21 papers explicitly
deal with feature engineering. The least attention is paid to the ensembling of forecasting methods, i. e., in only 11
papers.

Table 9: Overview of the forecasting pipeline sections covered in the reviewed literature.
Ref. Pre- Feature HyperparameterForecasting Forecast Covered Cluster

processing Engineering Optimization Method Selection Ensembling Sections
[25, 39, 40, 69] X - - - - • A
[83–88, 90] - - X - - • B
[97, 99, 103–108, 111] - - - X - • C
[33, 34, 58] X X - - - • • D
[30, 32, 36, 38, 53] X - X - - • • E
[42, 61] X - - X - • • F
[70, 72–74] - X X - - • • G
[71] - X - X - • • H
[43, 89] - - X X - • • I
[98, 100–102, 109, 110] - - - X X • • J
[27–29, 55–57, 59, 66, 75] X X X - - • • • K
[37, 41, 62] X - X X - • • • L
[35, 63, 64] X - - X X • • • M
[26] X X - - X • • • N
[31, 54] X X - X - • • • O
[65] X X X X - • • • • P
[60] X - X X X • • • • Q

8.2 Discussion

Based on the analysis of the status quo, we give the following recommendations to holistically automate the complete
forecasting pipeline. The optimization of the hyperparameters should be combined with the automated feature
selection (clusters G, K, and P in Table 9) because it is expected that each feature set candidate requires an individual
hyperparameter configuration. Moreover, combining an HPO and the automated selection of forecasting methods is
advantageous as the best method is selected from a pool of candidates whose hyperparameters, in turn, are already
optimized by an HPO (clusters I, L, P, and Q in Table 9). Also, the forecast ensembling should be combined with the
automated selection of appropriate forecasting methods to eliminate poor candidates (clusters J, M, and Q in Table 9).
Hereby, both statistical and machine learning-based forecasting methods should be considered, as the diversity of
forecasting methods has the potential to increase the robustness of the results.

In addition to these recommendations, we discuss how automated forecasting pipelines are related to two other current
research directions. The first research direction is hybrid modeling, combining well-studied statistical methods with
deep learning in time series forecasting. More specifically, deep neural networks encode time-varying parameters for
non-probabilistic forecasting methods or produce distribution parameters for probabilistic methods [114]. The second

26The scope and complexity with which the analyzed literature addresses the sections of the forecasting pipeline are analyzed in
the previous Sections 4-7 of this paper.
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research direction is End-to-End (E2E) learning. It aims to include all five sections of the forecasting model’s design
process into the training using gradient-based learning, e.g., embedded feature learning in a deep neural network [64].
While hybrid modeling only considers specific sections of the design process using deep learning, E2E learning uses
one deep neural network to address several sections with appropriate layers. As in automated forecasting pipelines, both
hybrid modeling and E2E learning need to consider all five sections of the design process to obtain high-performing
and robust forecasts. Regarding automating the design process, emerging approaches such as neural architecture search
and meta-learning [8] are promising for both research directions in the future.

Finally, we note that manual tailoring of forecasting models is still a common practice in time series forecasting
competitions despite first successful applications of automated forecasting pipelines. For example, in the most recent
M5 forecasting competition [115], Liang and Lu [116] provide evidence that their AutoML pipeline achieves competitive
performance with moderate computing effort. Therefore, we assume that the potential of the automated design is not
fully utilized yet in time series competitions.

9 Conclusions

Time series are collected in many domains, and forecasting their progression over a certain future period is becoming
increasingly important for many use cases. This rapidly growing demand requires making the design process of time
series forecasts more efficient by automation; that is, automating design decisions within each section of the forecasting
pipeline or automatically combining methods across pipeline sections. Although the first aspect of design automation
has already been considered by various researchers, understanding how various automation methods interact within the
pipeline and how they can be combined is a critical open question. Therefore, the present paper considers the automation
of each of the five sections in the time series forecasting pipeline. It also investigates the corresponding literature in
terms of the interaction and combination of automation methods within the five pipeline sections, incorporating both
Automated Machine Learning (AutoML) and automated statistical forecasting methods.

Besides various specific insights related to each pipeline section that we discuss throughout the corresponding sections,
we find on a general level that the majority of the 63 papers only cover two or three of the five forecasting pipeline
sections. Therefore, we conclude that there is a research gap regarding approaches that holistically consider the
automation of the forecasting pipeline, enabling the large-scale application to use cases without manual and time-
consuming tailoring.

Besides the holistic automation, future work should research the adaption of the presented automation methods for
probabilistic time series forecasts. Concurrently, the automated forecasting pipelines should be validated and tailored to
particular use cases as an initial starting point before generalizing them to universal automated forecasting pipelines.
Furthermore, given the insights on the combination and interaction of automation methods in the pipeline, future work
should examine their performance (e. g. in forecasting competitions). This performance evaluation would benefit if
future work on automated forecasting pipelines would be open source – both the implementation of the evaluated
methods and the data sets used for the evaluation. Moreover, open-source publishing should promote the adoption of
automated pipelines for time series forecasting, thus leveraging the great potential of improving the design efficiency
through automation, achieving a high forecasting performance and a robust operation.
Overall, the present paper focuses on the automated design of forecasting pipelines. Therefore, to fully automate the
entire forecasting process, future work should also consider the automated application of the resulting forecasting
models, including performance monitoring during operation and model adaption.27
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ACF AutoCorrelation Function
ADF Augmented Dickey-Fuller
AIC Akaike Information Criterion
ANN Artificial Neural Network
AR AutoRegression
ARMA AutoRegressive Moving Average
ARIMA AutoRegressive Integrated Moving Average
AutoML Automated Machine Learning
BE Backward Elimination
BIC Bayesian Information Criterion
BO Bayesian Optimization
BSTS Bayesian Structural Time Series
CASH Combined Algorithm Selection and Hyperparameter Optimization
CNN Convolutional Neural Network
DBN Deep Belief Network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DEA Differential Evolution Algorithm
DES Double Exponential Smoothing
DT Decision Tree
E2E End-to-End
EA Evolutionary Algorithm
EDA Estimation Distribution Algorithm
ELM Extreme Learning Machine
ENN Elman Neural Network
ES Exponential Smoothing
ETS Error Trend Seasonality
FCNN Fully Connected Neural Network
FNN Fuzzy Neural Network
FS Forward Selection
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GA Genetic Algorithm
GBM Gradient Boosting Machine
GOF Goodness-Of-Fit
GP Gaussian Process
GRNN General Regression Neural Network
HPO HyperParameter Optimization
IC Information Criteria
IMA Integrated Moving Average
INF Iterative Neural Filter
IQR Inter-Quartile Range
kNN k-Nearest Neighbors
KPSS Kwiatkowski–Phillips–Schmidt–Shin
KS Kolmogorov–Smirnov
LASSO Least Absolute Shrinkage and Selection Operator
LC Locally Constant
LDA Linear Discriminant Analysis
LL Locally Linear
LogR Logistic Regression
LR Linear Regression
LSTM Long Short-Term Memory
MA Moving Average
MAD Median Absolute Deviation
MAE Mean Average Error
MAPE Mean Absolute Percentage Error
MARS Multivariate Adaptive Regression Splines
MASE Mean Absolute Scaled Error
MIQP Mixed Integer Quadratic Programming
MKL Multiple Kernel Learning
MLP MultiLayer Perceptron
MSE Mean Squared Error
NLP Non-Linear Programming
NNetAR Neural Network AutoRegression
OSCB Osborn–Chui–Smith–Birchenhall
PACF Partial Auto-Correlation Function
PCA Principal Component Analysis
PR Polynomial Regression
PSO Particle Swarm Optimization
RBFNN Radial Basis Function Neural Network
RF Random Forest
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RPaRT Recursive Partitioning and Regression Trees
RW Random Walk
sARIMA seasonal AutoRegressive Integrated Moving Average
SES Simple Exponential Smoothing
SETARMA Self Exciting Threshold AutoRegressive Moving Average
sMAPE symmetric Mean Absolute Percentage Error
STL Seasonal and Trend decomposition using Loess
SVD Singular Value Decomposition
SVM Support Vector Machine
SVR Support Vector Regression
TBATS Trigonometric Box-Cox transform, ARMA errors & Trend and Seasonal components
TES Triple Exponential Smoothing
TPE Tree Parzen Estimator
UC Unexplored Component
VAR Vector AutoRegression
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Implementations of Forecasting Methods

autoARIMA [R] [Python]
autoTheta [R]
AR, MA, ARMA, (s)ARIMA [R] [Python]
BSTS [R]
ELM [R]
ETS [R] [Python]
GRNN [R]
kNN [R]
MLP INF [R]
NNetAR [R]
Prophet [R] [Python]
RPaRT [R]
RW, dRW, sRW [R] [Python]
SES, DES, TES [R] [Python]
TBATS [R] [Python]
Telescope [R]
Theta [R] [Python]
VAR [R] [Python]
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