

H2020 McSAFER: High-Performance Advanced Methods and Experimental Investigations for the Safety Evaluation of Generic Small Modular Reactors 20. IAEA TWG FPT Meeting (EVT2105273)

V. H. Sanchez-Espinoza

H. Suikkanen, V. Valtavirta, M. Bencik, S. Kliem, C. Queral, A. Farda, P. Smith, P. Van Uffelen, M. Seidl, Ch. Schneidesch, D. Grishchenko, H. Lestani

Vienna, April 6th. 2022

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

- Goals and scientific approach
- Partners, budget

Content

- Work packages
- Selected SMR-designs
- Challenges and solution approach
- Education & Training, Dissemination

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

Technical Goals & scientific approach

Technical goals:

- <u>Advance</u> the safety research for water cooled SMR
 - Perform key experiments relevant for SMR-safety (core, helical HX) at EU-facilities (COSMOS-H, MOTEL, HWAT)
 - <u>Develop</u>, improve, validate simulation tools for safety evaluations of SMRs
 - <u>Demonstrate</u> advantages of advanced (multiphysics /multiscale) tools compared to legacy ones
- Apply simulation tools to four SMR-designs (F-SMR, CAREM, NuScale, SMART)

Scientific approach:

- Combine experimental investigations with numerical tools for safety
- Consider different SMR-designs:
 - Natural circulation: CAREM, NuScale
 - Forced convection: F-SMR, SMART
 - Core design: square (F-SMR, SMART, NuScale) and hexagonal (CAREM) fuel assemblies
 - Etc.

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063

Partners and Budget

Partners: 13

KIT, KTH

Industry: Jacobs, TRACTEBEL, PEL

R&D: CEA, VTT, HZDR, UJV, JRC KA, CNEA

Universities: LUT, UPM,

Budget:

In-Kind: 5 %

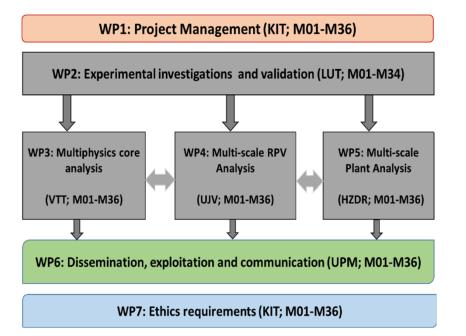
Total: 4 045 133.75 €

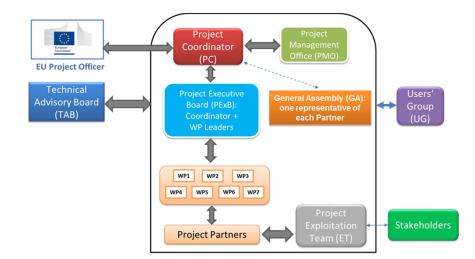
EC-contribution: 95 %

(3 995 982.50 €)

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

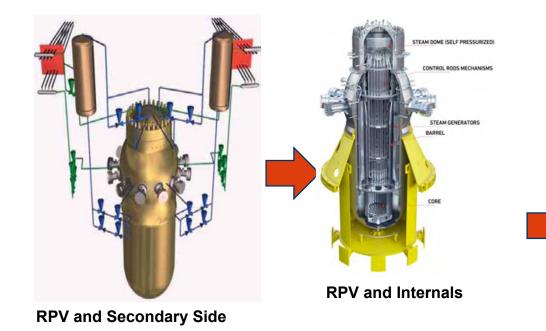
20. IAEA TWG FPT Meeting. April, 5-6. 2022





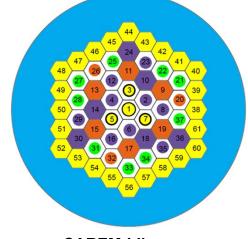
4

McSAFER: Work Packages, Interactions


McSAFER: Management Structure

McSAFER: Work Package Structure

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.



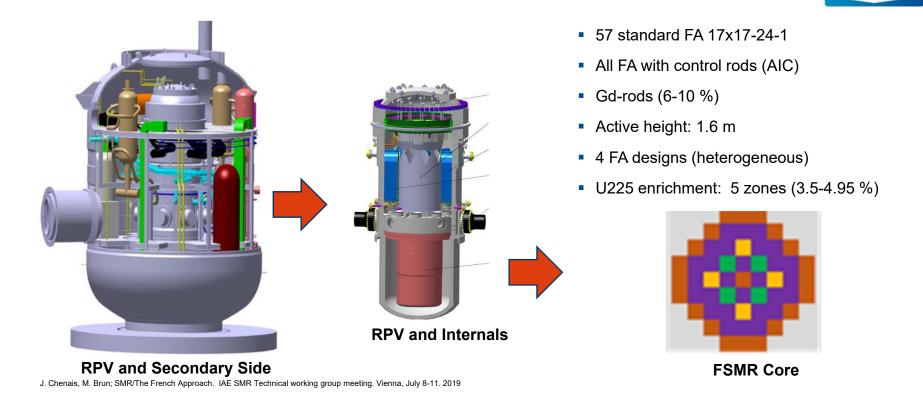
SMR-Designs under investigations: CAREM

- 61 FA @163 pins (1.4 m)
- Some FA with BP (6-12)
- 25 control FA
- U-235 enrichment: 1.8 to 3.1 %

CAREM-Like core

Information System (ARIS)

IAEA-2012: Status of Small and Medium sized Reactor Designs. A supplement to the IAEA Advanced Reactor

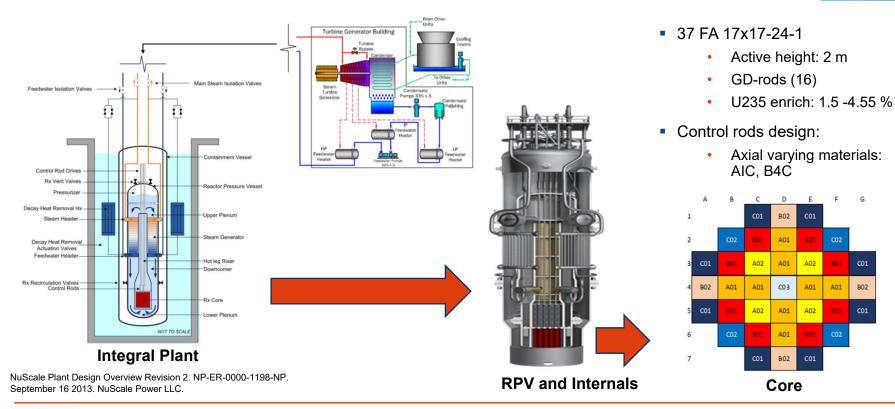

> This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

Ch. Marcel; CAREM-25: A safetr innovative Small

Nuclear Power Plant. Nuclear Revista Espanha 1,

Enero 2017.

SMR-Designs under investigations: FSMR

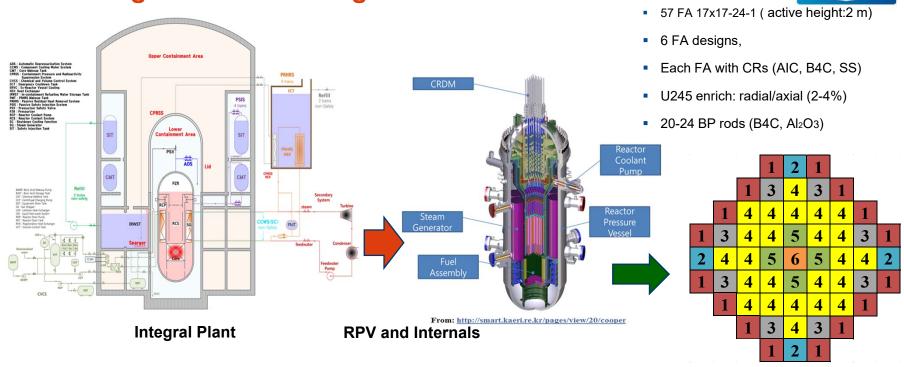

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

20. IAEA TWG FPT Meeting. April, 5-6. 2022

MCSAFER

SMR-Designs under Investigation: NuScale

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.



20. IAEA TWG FPT Meeting. April, 5-6. 2022

MCSAFER

G

B02

SMR-Designs under Investigation: SMART

Source: BAE, KYOO HWAN "Safety Analysis for the Major DBAs in Passive PWR SMART", 28-29 June 2018

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

20. IAEA TWG FPT Meeting. April, 5-6. 2022

KIT KSMOR-Core

MCSAFER

Challenges I: Safety relevant TH Phenomena

- Experimental data exist but proprietary (SMR developers)
- Public SMR-specific data for research community needed e.g.
 - Cross flow in the core
 - Helical HX
 - Transition from
 - Forced to natural convection
 - Natural to forced convection
 - Safety parameters like
 - ► CHF
 - 3D flow inside the RPV
 - Effectiveness of PRHRS
 - Stability of natural convection flow
- Data need for code validation

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

McSAFER Solution Approach:

- COSMOS-H experimental program:
 - Fundamental HT, boiling, CHF
- HWAT experimental program`:
 - System behavior under natural circulation
 - Transition to forced convection
 - Transition to natural convection
- MOTEL experimental program:
 - Helical HX heat transfer, pressure drop
 - Cross flow in the core

20. IAEA TWG FPT Meeting. April, 5-6. 2022

10

WP2: Key Experimental Investigations & Validation

- Fundamental heat transfer tests for SMR at KIT COSMOS-H facility
 - Investigation of boiling under forced convection up to CHF in rod geometries

COSMOS-H test Facility (KIT)

- SMR thermal hydraulic experiments at LUT MOTEL facility
 - with natural circulation and equipped with a helical steam generator

Representing iPWR SMR operating

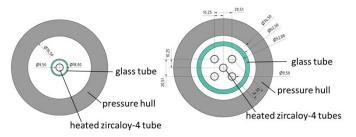
- Tests at the KTH HWAT facility for SMR
 - Forced/natural circulation test, investigation of heat transfer including CHF in condition relevant for SMRs

HWAT Multisensor Probe Unit (KTH)

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.


MOTEL Facility (LUT)

COSMOS-H Facility (KIT): Experiments and Status



- Two test series: single rod, 5 rod bundle
- Test matrices defined based on review of various SMRs
- Stepwise power increase up to CHF
- Optical access (LDA, high-speed camera)
- Facility commissioning and first tests approaching

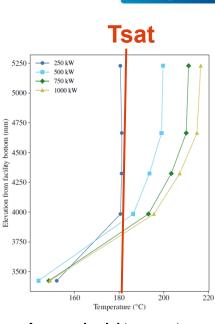
Parameter	Value				
Working fluid	Demineralized water				
Max system pressure / temperature test loop	17 MPa @ 370°C				
Range of mass flow rate	0.5 – 10 m³/h				
Thermal power facility	~ 2 MW				
Thermal power for test section	600 kW DC				
Required time for load shedding	0.15 s				
Heated length	1 m				

Key data of the test facility

Cross-sectional view of the two planned test arrangements

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

MOTEL Test Facility (LUT): Experiments and Status


I wo test series: SG	performance,	core	cross	tlow
	-			

- <u>SG tests completed</u>, total of 8 steady state steps
- Core cross flow tests with <u>uneven radial power</u> distributions under planning

CHARACTERISTICS	MOTEL					
Fotal height [m]	7.4					
Dutside diameter of main vessel [mm]	711					
Maximum primary/secondary pressure [bar]	40					
Maximum primary/secondary temperature [°C]	250					
Number of helical coil steam generator tubes	16					
Maximum core heating power [kW]	990					
Number of heater rods	132					
Heated length of heater rods [mm]	1830					
Diameter of heater and measurement rods [mm]		19.05				
CHARACTERISTICS		HELICAL COIL STEAM GENERATOR				
Number of tubes / tube bundles	1	6/4				
Tube outer diameter / wall thickness [mm]	1	5/1.0				
Tube lengths [m]	e lengths [m] 20.0 / 21.7 / 23.4 /					
Helical coil loop diameters [mm] 515 / 560 / 605 / 650						
Total heat transfer area [m ²] 17.0						

MOTEL Core: Heater Segments

MCSAFER

Averaged axial temperature profiles of all steam generator tubes with different core power levels

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

HWAT Test Facility (KTH): Experiments and Status

• forced circulation steady state,

transition from forced to natural circulation transients

- Movable multi-sensor probe equipped with optical void fraction sensor and local velocity sensor
- First test series being completed, planning for series 2 initiated

Parameter	Value
Maximal power, MWth	1
Maximal mass flow rate, Kg/s	1
Maximal pressure, MPa	25
Maximal coolant temp, °C	350
Effective loop height, m	8.8

Key Test Parameters

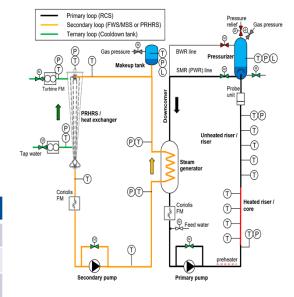
HWAT Test Loop

1 Primary pump

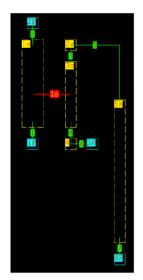
2 Steam generator 3 Pressuriser

4 Secondary pump

7 RHEDNIK RHM12L_0020 8 Copper clamp


ssunizer sec side

Heated r


5 Condenser

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

HWAT experimental setup for transient tests under natural circulation

HWAT: GOTHIC Representation (Pre- und posttest analysis)

Validation of Thermal Hydraulic Codes using McSAFER-Data

- CFD-Codes
 - ANSYS CFX (KIT)
 - OpenFOAM (LUT)
 - FLUENT (UJV)

- Subchannel Codes
 - Subchanflow (KIT)
 - VIPRE (UJV)
 - COBRA-TF (TRACTEBEL)
- System Thermal hydraulic Codes
 - TRACE (KIT, UPM, KTH)

CSAF

- APROS (LUT)
- RELAP5-3D (UJV)
- GOTHIC (KTH)

- McSAFER Experimental facilities:
 - COSMOS-H (KIT)

MOTEL (LUT)

HWAT (KTH)

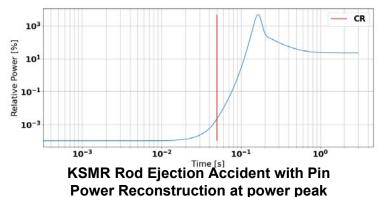
Codes	COSMOS-H				Codes	MOTEL			Codes		HWAT											
00000					oouoo	KIT	LUT	UJV	UPM	TBL			KTH	UPM								
	KIT	LUT	UJV			NII	LUT	010	UFIN	IDL		CFD	OpenFOAM									
					CFD	CFX		FLUENT				CFD	OpenFOAM									
CFD	CFX	OpenFOAM	I CFX	CFX	CFX		010	OFX		LOLIN				SubCH								
SubCH	SCF		VIPRE		SubCH			VIPRE		COBRA-TF		SysTH	GOTHIC/TRACE	TRACE								
												Syste	GUTHIC/TRACE	INAGE								
SysTH	TRACE		RELAP3D		SysTH		APROS		TRACE													

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

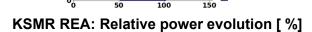
Challenges II: Core Physics

- Small size (H, D), heterogeneity
- Harder spectrum
- Increased role of reflector design
- Increased leakage from core
- Boron free cores:
 - Need innovative control rod design
 - Optimized shutdown reactivity
 - Reduced reactivity swing over the cycle
 - Etc.
- Innovations needed to improve economics and keep high safety

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

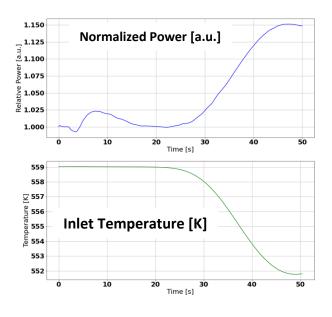

McSAFER Solution Approach:

- Industrial use:
 - Point Kinetics + 3D nodal diffusion e.g. ANTS/SCF, PANTHER/TRACE, SIMULATE/S3K, PUMA/SCF, DYN3D/ATHLET
- Advanced research tools:
 - Transport deterministic solvers e.g. PARCS-SP3/SCF, APOLLO3/FLICA WIMS/ARTHUR, DYN3D-SP3/SCF
- High-fidelity MC-based tools
 - Coupled MC / subchannel codes e.g. Serpent2/SCF



KSMR and CAREM Transient Analysis with PARCS/SCF

Normalized Pin Power 140 3.5 3.0^[a.n.] 120 100 2.5 2.0 uid 80 1.5 g 60 40 1.0 8


20 0

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

150

0.5

CAREM Cold Water Transient: Power and core inlet temperature evolution

Challenges III: 3D Thermal hydraulic phenomena in RPV

Challenges:

- Many components located inside the RPV
 - Pumps: e.g. SMART (8)
 - Helical HX e.g. SMART(8), CAREM (12)
 - PZR
- Additional structures to enhance mixing inside RPV (get uniform thermal hydraulic conditions at core inlet, relevant in case of SLB-accidents)
 - SMART design

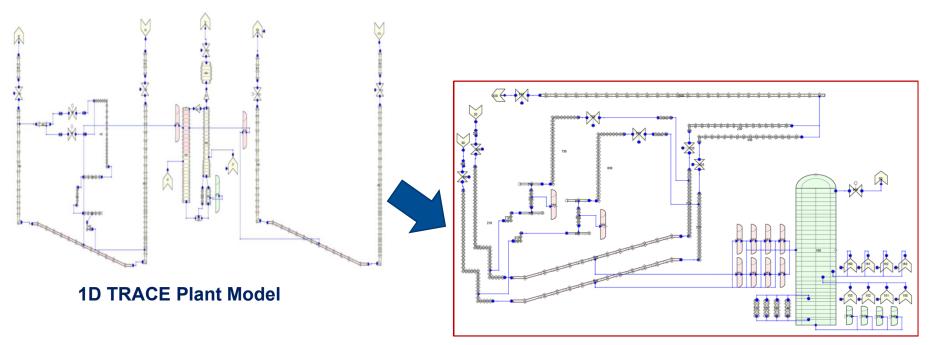
Consequences:

- Flow patterns inside RPV perturbed by structures
- Mixed convection flow
- 3D flow conditions
- ➔ 1D thermal hydraulic codes are not able to properly describe these conditions

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

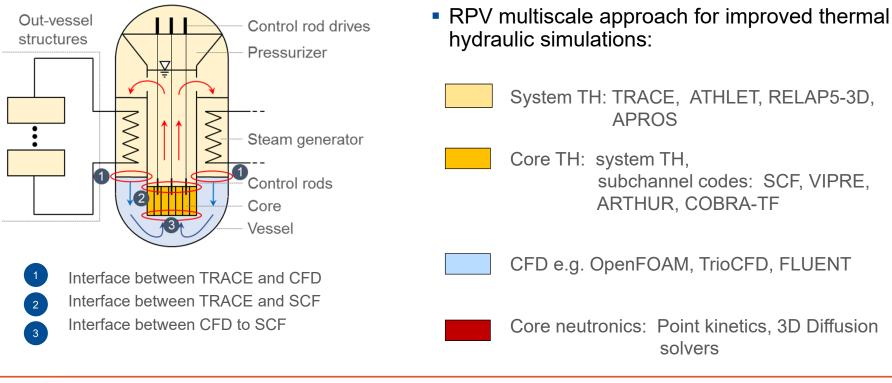
McSAFER Solution Approach:

- Industrial tools:
 - 1D / 3D coarse mesh TH codes
- Research tools:
 - Multiscale coupling of system TH with subchannel-codes
 - Multiscale coupling of system TH with CFD-codes



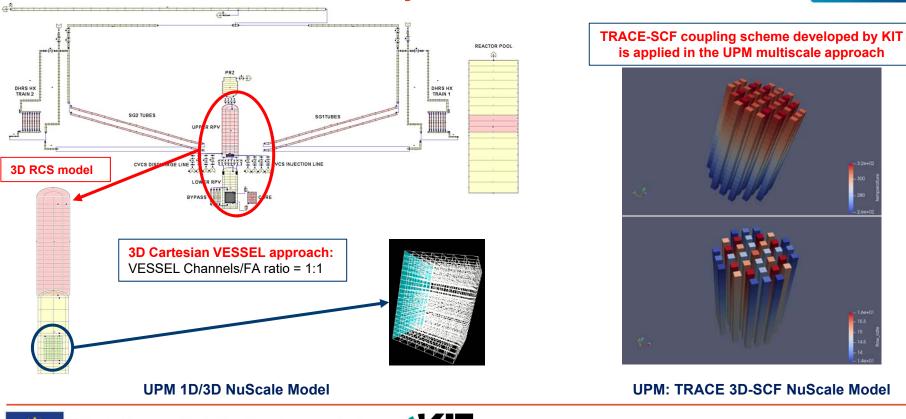
JRC: NuScale from 1D to 3D Thermal Hydraulics (TRACE)

1D/3D TRACE Plant Model



This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

McSAFER Multicale/Multiphysics Tools: RPV and Plant Analysis

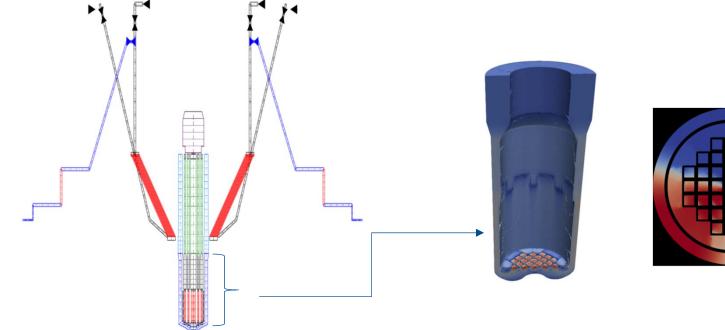


This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

UPM: NuScale Multiscale TH by TRACE/Subchanflow

10

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.



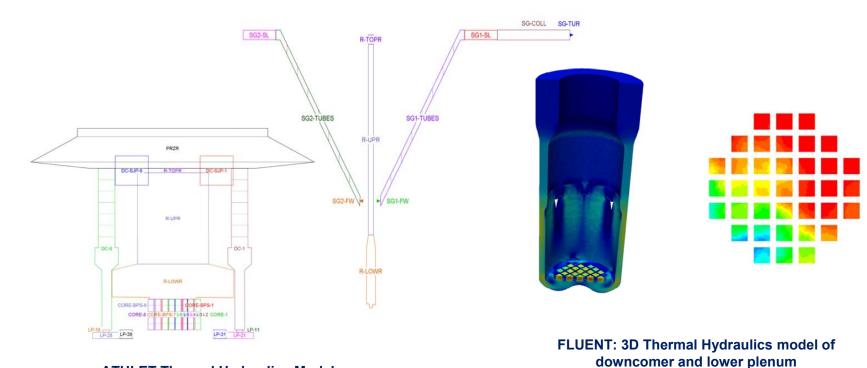
20. IAEA TWG FPT Meeting. April, 5-6. 2022

MCSAFER

HZDR: NuScale Multiscale TH: ATHLET/TrioCFD

TrioCFD Model of Downcomer and lower plenum

NuScale SMR: 1D/3D Thermal Hydraulics Model



This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

UJV: NuScale Multiscale Thermal Hydraulic Model

ATHLET Thermal Hydraulics Model

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

Challenges IV: Integral Plant Analysis under postulated DBA

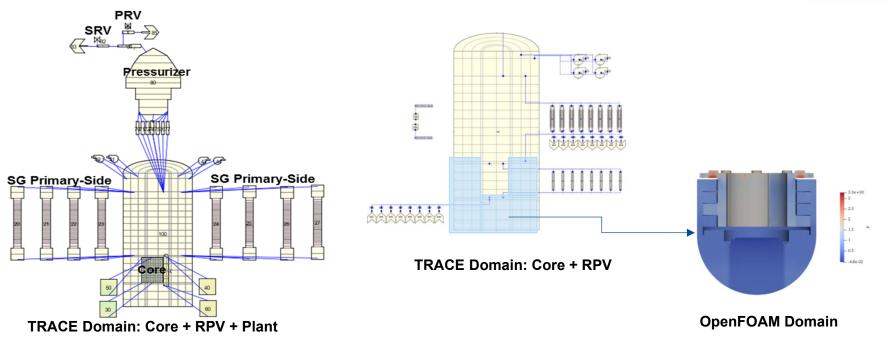
Challenges:

- Many components located inside the RPV
 - Pumps: e.g. SMART (8)
 - Helical HX e.g. SMART(8), CAREM (12)
 - PZR
- Additional structures to enhance mixing inside RPV (get uniform thermal hydraulic conditions at core inlet, relevant in case of SLB-accidents)
 - SMART design

Consequences:

- Flow patterns inside RPV perturbed by structures
- Mixed convection flow
- 3D flow conditions
- ➔ 1D thermal hydraulic codes are not able to properly describe these conditions

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.


McSAFER Solution Approach:

Industrial tools:

- 1D / 3D coarse mesh TH codes
- Multiphysics / multiscale approach:
 - Coupling of systemTH/Subchannel and 3D Diffusion solvers e.g. TRACE/PARCS/SCF
 - SystemTH/Subchannel and 3D Diffusion solvers e.g.
 - TRACE/PARCS/OpenFOAM
 - ATHLET/DYN3D/TrioCFD
 - TRACE/ANTS/OpenOFAM
 - ATHLET/DYN3D/FLUENT

KIT Analysis Approach: TRACE/PARCS/OpenFOAM

ICoCo-based TRACE-OpenFOAM and PARCS/TRACE coupling

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

McSAFER Education & Training, Dissemination

- Training courses:
 - First training course on SMR Technologies: January 25-27.2021: UPM
 - Participants: 194
 - Second training course on SMR neutronics and thermal hydraulics: March 22-24, 2022: LUT
 - Lectures on simulation methods, Demonstration of Kraken Multiphysics framework, TH laboratory activities
 - Participants:
 - 17 students at LUT,
 - total 44 incl. lecturers and online participants (first day was streamed)
 - MOOC course on Multiphysics simulations applied to SMR (march 2023): UPM
- Mobility program
 - 9 fellowships to be assigned for mobility of young researchers
 - See: https://mcsafer-h2020.eu/news-and-events/
 - Still SEVEN fellowships available!

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

McSAFER Coordinator

Visit website: www.mcsafer-h2020.eu

This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945063.

20. IAEA TWG FPT Meeting. April, 5-6. 2022

MCSAFER