
Received April 14, 2022, accepted May 6, 2022, date of publication May 10, 2022, date of current version May 19, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3174121

A Probabilistic Approach for Spatio-Temporal
Phase Unwrapping in Multi-Frequency
Phase-Shift Coding
DAVID UHLIG AND MICHAEL HEIZMANN
Institute of Industrial Information Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Corresponding author: David Uhlig (david.uhlig@kit.edu)

This work was supported by the KIT-Publication Fund of the Karlsruhe Institute of Technology.

ABSTRACT Multi-frequency techniques with temporally encoded pattern sequences are used in
phase-measuring methods of 3D optical metrology to suppress phase noise but lead to ambiguities that
can only be resolved by phase unwrapping. However, classical phase unwrapping methods do not use all
the information to unwrap all measurements simultaneously and do not consider the periodicity of the
phase, which can lead to errors. We present an approach that optimally reconstructs the phase on a pixel-by-
pixel basis using a probabilistic modeling approach. The individual phase measurements are modeled using
circular probability densities. Maximizing the compound density of all measurements yields the optimal
decoding. Since the entire information of all phase measurements is simultaneously used and the wrapping
of the phases is implicitly compensated, the reliability can be greatly increased. In addition, a spatio-temporal
phase unwrapping is introduced by a probabilistic modeling of the local pixel neighborhoods. This leads to
even higher robustness against noise than the conventional methods and thus to better measurement results.

INDEX TERMS Phase-shifting, temporal phase unwrapping, circular statistics, von Mises distribution,
structured illumination, deflectometry, profilometry.

I. INTRODUCTION
Optical metrology systems are used for high-precision
surface measurement and the dense 3D reconstruction of
complexly formed objects. One or more cameras thereby
often observe the measurement space. In this context,
depending on the measuring principle, it is necessary to carry
out an optical position encoding to be able to reconstruct the
surface through triangulation. The most prominent examples
of such systems are the so-called structured light systems,
in which the surface under test is optically encoded by means
of a structured illumination [1]. For example, profilometric
measurement techniques use a projector as a reference
system to project one or more known reference patterns
onto the target object and triangulate the surface using
the pre-calibrated measurement setup [2]–[5]. Related to
profilometry is deflectometry, which is used to reconstruct
specular surfaces [6]–[10]. Here, an optical encoding is
applied not to the target surface itself, but to a reference
structure outside the measurement space, e. g., an LCD
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monitor that is observed indirectly as a reflection in the
specular surface. The objective of the structured illumination
in these cases is to determine an imaging function that
allows direct mapping of camera pixels to points in the
pixel plane of the reference system. With the help of this
pixel-to-pixel registration, local defects in the surface under
test can be detected or the surface can be reconstructed
globally. Apart from optical metrology, optical encoding
techniques are also used more and more in the field of camera
calibration. Several works indicate that using reference
features displayed by an active target drastically decrease the
calibration error as compared to when standard checkerboard
features are used [11]–[14]. To ensure the most precise
measurement, the registrationmust therefore be as accurate as
possible.

There are many possibilities for such an encoding.
A local encoding of the reference pixels can be done, e. g.,
by displaying statistical patterns where each position within
this pattern is identified by the local pixel neighborhood [1].
While this method allows a very fast measurement, since
only one pattern has to be displayed, it is only of limited
use for the measurement of more complex scenes. Since the
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surface distorts the reference pattern, the encoding of the local
neighborhood can thus often no longer be recognized. For
high-accuracy structured illumination techniques, a temporal
encoding of each pixel is thus more suitable. Here, instead of
a single pattern, a sequence of patterns is now displayed by
the reference. The sequence of intensity values measured in
the camera subsequently allows the decoding of the reference
pixels and thus yields the determination of the imaging
function. A popular temporal coding method is the coding
of the reference pixels utilizing a gray code [15]. Here,
a binary pattern sequence is displayed to uniquely encode
the individual pixels. However, a major disadvantage of the
gray-code method is that it uses only binary intensity values.
As a result, the displayed signal with its sharp edges has
very high frequency components. Because most of the time
the camera and the surface as well provide a blurred image
of the reference pattern, these edges become blurred and
the decoding becomes more difficult. Another disadvantage
is that only discrete pixels can be encoded, and hence,
no subpixel information can be extracted [15].

Because of these disadvantages, phase-shift coding meth-
ods have become widely accepted in structured illumination
applications. Here, a sequence of sinusoidal signals is
displayed by the reference, where the encoding of the pixel
coordinate is contained in the phase of the sinusoidal signal.
The great advantage of these methods is that they are
robust to a variation in the ambient illumination, to noise,
to a low-pass filtering due to a defocusing effect of the
camera, and that they allow an estimation of the phase
uncertainty [16]. At the same time, these methods allow
a subpixel-accurate encoding if the reference pixels are
slightly out of focus. In order to further increase the
accuracy of the measurement, additionally multi-frequency
methods are used, where sinusoidal pattern sequences with
different frequencies are displayed. While this increases
the accuracy of the measurement, the periodicity of the
sinusoidal pattern sequence leads to an ambiguous position
encoding in the entire measurement range with just a single
phase measurement. The uniqueness range of the phase
measurement initially extends only over one period of the
underlying sinusoidal pattern. This leads to a modulo-2π
phase wrapping, which can only be compensated using phase
unwrapping methods.

Apart from phase-shift coding, these phase wrapping
effects also appear in other fields of optical metrology, e. g.,
interferometry [17]–[19], SAR imaging [20], [21], or even
time of flight imaging [22], [23]. Thus, the phase unwrapping
problem influences many applications. For applications
where several phase measurements can be performed,
the so-called temporal multi-frequency phase unwrapping
methods have proven to be the best choice, since they allow
a pixel-individual unwrapping. These temporal methods are
generally categorized into four groups: hierarchical methods
[24]–[29], heterodynemethods [17]–[19], [30]–[37], number-
theoretical methods [38]–[46], and optimization-based
methods [47]–[53]. They differ in the way the unwrapping

is performed, in which frequency configurations can be
used, and in how large the resulting uniqueness range of
the unwrapping is. However, a disadvantage of the classical
methods is that generally not all phase measurements are
unwrapped at the same time. Moreover, they often do
not take into account the inherent periodic structure of
the phase, which leads to erroneous results. In addition,
and more importantly, the estimation of the phase uncer-
tainty is completely neglected in the whole unwrapping
procedure.

To overcome these deficiencies, we present in this
paper a new probabilistic approach for phase unwrap-
ping, which uses circular statistics to describe the multi-
frequency phase-shift coding to optimally reconstruct the
phase. With this we respect the periodicity of the phase,
we implicitly unwrap all phase measurements simultaneously
by finding the underlying optimal position encoding that
caused the phase measurement, we allow for an easy
frequency selection with a maximum uniqueness range of the
unwrapping, and we additionally include the estimation of
the phase uncertainty into the overall unwrapping process.
Furthermore, we propose to not only perform a temporal
unwrapping but to additionally incorporate the information
of the local pixel neighborhood in the modeling and thus
obtain a probabilistic approach for spatio-temporal phase
unwrapping.

The structure of this paper is as follows. In section II we
first discuss the general principle of phase-shift coding and
show how the phase and also the phase uncertainty can be
reconstructed from the sinusoidal pattern sequence. Further,
section III describes the concept of phase unwrapping and
introduces the state of the art in multi-frequency temporal
phase unwrapping. In section IV we present a new method
for temporal phase unwrapping that solves the problem by
probabilistically modeling the phase measurement. For this,
we find in section IV-A a proper mathematical formulation
for the probability density function of the phase-shift
coding. In section IV-B we derive an algorithm to unwrap
the phase in terms of a maximum-likelihood estimation
from the probability density of the multi-frequency phase
measurement. And at last, in section IV-D we extend our
probabilistic framework to include spatial information of the
observed scene to further improve the phase unwrapping,
thus providing an ideal phase reconstruction that serves as
the basis of any structured illumination system. Eventually,
in section V the presented methods are extensively analyzed
and compared to the state of the art. And finally, a summary
and conclusion are given in section VI.

II. PHASE-SHIFT CODING
In optical metrology applications such as deflectometry or
profilometry, phase-shift coding is used to encode the pixels
of a reference system using an image pattern series. The
absolute coordinates of the reference pixels can then be
further used for triangulation or defect detection [3], [9].
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The basic principle of phase-shift coding is to assign an
individual phase of sinusoidal signals to each reference pixel:

x =
ϕx(x, y)
2π f

, y =
ϕy(x, y)
2π f

, (1)

where the coordinates of the pixels are interpreted as relative
coordinates x, y ∈ [0,L) with L = 1 for the rest of this paper.
Phase-shift coding must be performed independently in

both the horizontal and vertical directions, which is why only
the encoding in the x direction is considered in the following.
The encoding in the y direction is done analogously. Further,
the argument of the phase is also simplified by omitting the
coordinate y, since the phase in x direction will take the same
value for each y. In other words, in the following ϕ(x) :=
ϕx(x, y) holds without loss of generality.
To encode a normalized monitor coordinate x ∈ [0, 1),

a signal sequence of M sinusoidal patterns with frequency f
and shifted by 9m is generated and displayed on a monitor
screen, whereby the coordinate is contained in the phase
ϕ(x) = 2π fx of the signal sequence

Im(x) =
Imax

2
(1+ cos (ϕ(x)+9m)). (2)

Here Imax represents the maximum displayable brightness
value, and for the so-called symmetricM -step algorithms the
phase offset has equidistant steps [54], [55]:

9m =
2πm
M

, m ∈ [1, 2, . . . ,M ]. (3)

The signal Im displayed on the reference illuminates the
scene, which is to be examined and is then mapped onto the
camera sensor. Thus, the camera records for every camera
pixel u = (u, v)T a signal sequence

Ĩm(u) = A(u)+ B(u) cos (ϕ(u)+9m) . (4)

Here A(u) is a constant background illumination, B(u) is
the modulation of the signal and ϕ(u) is the the phase that
contains the information about the encoded screen pixels
x(u). Because each camera pixel u can be considered inde-
pendently, the coordinates u are neglected in the following
for clarity.

To determine the unknown quantities from the recorded
signal sequence, at least M ≥ 3 phase shifts are needed. The
solutions for the modulation B and phase ϕ are then given by

B =
2
M

√√√√√( M∑
m=1

Ĩm sin(9m)

)2

+

(
M∑
m=1

Ĩm cos(9m)

)2

, (5)

ϕ = arctan2

(
−

M∑
m=1

Ĩm sin(9m),
M∑
m=1

Ĩm cos(9m)

)
, (6)

where arctan2(a, b) ∈ [−π, π) is used, which correctly
assigns the arguments of the arctangent to the four quadrants.
For sake of simplicity, in the remainder of this paper, the
domain of the phase is shifted to positive values

ϕ ≡ ϕ mod 2π ∈ [0, 2π ). (7)

FIGURE 1. Top: Displayed sinus pattern with 9 = 0. Bottom:
Corresponding phase maps. The phase is wrapped for f > 1.

A. PHASE UNCERTAINTY
The accuracy of the phase measurement is influenced by
external systematic influences of the entire measurement
set-up as well as by stochastic errors. External systematic
influences may change the brightness and contrast of the
pattern sequence, which can lead to an increase in uncertainty.
For example, the camera optics can image the sinusoidal
patterns out of focus, which leads to a decrease in contrast.
Since most of the time, the surface is part of the structured
illumination system, the shape, roughness, and color of the
surface also influence the quality of the estimation. Due to
these system-related influences, the uncertainty of the phase
estimation can be different for each pixel. Furthermore, the
phase measurement is influenced by stochastic errors. Every
camera image is accompanied by image noise. Therefore, it is
obvious that this noise also affects the phase estimation and
influences the uncertainty of the measurement. In general, the
sensor noise shows up as noise in the pixel values and can
be regarded in a good approximation as normally distributed
noise with variance σ 2

I and zero mean [56]. For symmetrical
M -step methods, the phase noise has zero mean and the
uncertainty (standard deviation) can be specified [5]:

σϕ =

√
2
M
σI

B
. (8)

While M and the modulation B are directly defined
by the phase-shift coding or can be estimated, the sensor
noise is initially unknown. To be able to describe the
phase noise absolutely, Fischer et al. [16] introduced a
quantitative noise model, which combines the phase noise
with the parameters of the EMVA 1288 standard for camera
systems [56]. This makes it possible to predict the phase
uncertainty very precisely by estimating only the modulation
B from the pattern sequence.

To further reduce the uncertainty, it is beneficial to use
sinusoidal pattern sequences with a frequency f > 1. This
effectively reduces the phase noise induced by the camera
sensor noise. Aswill be explained inmore detail in section III,
phase jumps occur in the reconstructed phase when the
frequency of the sinusoidal pattern sequence is chosen to
be f > 1. The phase would take values ϕ > 2π , but is
only defined on the periodic interval [0, 2π ). Thus, the real
line R is wrapped to the smaller interval [0, 2π ), see Fig. 1.
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To unwrap the phase again, an integer multiple of 2π must be
added at corresponding places. The unwrapped phase finally
results in

8f = ϕ + 2πk + εϕ, (9)

where ϕ ∈ [0, 2π ) represents the wrapped phase, εϕ ∈
[0, 2π ) represents the phase noise with uncertainty σϕ , and
k ∈ Z is the so-called period-order number or unwrapping
factor. Since the domain of the unwrapped phase has been
increased to 8f ∈ [0, 2π f ), it has to be scaled back to the
original range. The final phase measurement therefore results
in

8 =
8f

f
=
ϕ + 2πk

f
+
εϕ

f
, (10)

with 8 ∈ [0, 2π ). By increasing the frequency and then
scaling back, the phase information is not changed, but the
noise is reduced by the factor 1/f . The uncertainty of the
unwrapped phase is then be given by

σϕ,f =
1
f
σϕ =

1
f

√
2
M
σI

B
. (11)

In summary, with the phase-shift coding one obtains not
only a pure position encoding, but additionally also the
associated uncertainty, where the complete information is
encoded in the phase ϕ and the phase uncertainty σϕ .

III. PRINCIPLES OF PHASE UNWRAPPING
If the frequency of the phase-shift pattern sequence is chosen
to f > 1, jumps occur in the reconstructed phase. Resolving
these jumps is the goal of phase unwrapping. Since the
wrapping of the phase strongly depends on the chosen
frequency, the optimal choice of the unwrapping factor k
is also frequency-dependent. Thus, for a coordinate x and
frequency fi, eq. (9) can be rewritten:

8i(x) = ϕi(x)+ 2πki(x), ki ∈ [0, 1, . . . , dfie − 1] . (12)

The task of phase unwrapping is now to find the correct
ki for each phase measurement. Since for each pixel an
individual unwrapping factor exists, problem (12) is initially
under-determined. To get a solution anyway, additional
information has to be used. In principle, there are two
approaches to solve the problem: spatial and temporal phase
unwrapping.

Spatial phase unwrapping algorithms are useful when it
cannot be guaranteed that the phase remains constant over
time or when repeated measurements would be too costly.
With spatial algorithms, phase unwrapping is performed
using only a single phase measurement. The information
necessary for the unwrapping is then obtained from the
2D pixel neighborhood. For example, in region growing-
based approaches, starting from an initial pixel, the phase
is unwrapped aiming to achieve a continuous phase profile
where neighboring pixels have a similar value [57]–[59].
However, spatial unwrapping is very susceptible to noise,
and phase discontinuities can make the unwrapping difficult

or cause errors. For example, a step in the phase cannot
be reconstructed without ambiguity, since the algorithm is
unable to determine the height of the step, which may have a
multiple of 2π as an offset. The main disadvantage of spatial
unwrappingmethods, however, is that they can generally only
obtain a relative phase instead of an absolute one, which is not
useful for 3D reconstruction problems.

Hence, if the requirements for spatial phase unwrapping
are not satisfied or an absolute phase estimate is needed,
temporal phase unwrapping must be used.

A. TEMPORAL PHASE UNWRAPPING
Temporal phase unwrapping methods in general do not
use the spatial information in the phase map. They can
therefore handle each pixel individually, which means that
discontinuities in the phase do not cause any problems. On the
other hand, they rely on additional information obtained
by additional measurements, e. g., additional patterns or
geometric constraints. A rough overview of absolute phase
unwrapping methods is provided by [60], [61].

In this work, however, we are interested in a specific class
of unwrapping methods: Temporal multi-frequency phase
unwrapping. These methods use multiple phase-shift pattern
sequences with different frequencies fi to obtain for each
measurement a phase ϕi ∈ [0, 2π ), all of which are based
on the same coordinate encoding. Since we assume that the
unwrapped phase does not change over time, the multiple
phase measurements generate the equation system (12).
Because all phase measurements are based on the same
coordinate x, if certain requirements are met, a unique
solution exists

x ≡
8i

2π fi
=

ϕi

2π fi
+
ki
fi
. (13)

The unwrapping of the phase is then obtained by solving this
equation system, for which various methods exist.

1) HIERARCHICAL UNWRAPPING
The hierarchical methods are among the most intuitive
approaches. They use a series of phase measurements,
in which the frequency of the underlying sinusoidal signals
is increased in each step. To obtain an unambiguous
unwrapping of all phase measurements, the frequency of the
first measurement is chosen in such a way that the measured
phase is not subject to ambiguities. Thus, f0 = 1 and 80 =

ϕ0. Each subsequent measurement is then unwrapped using
the previous unwrapped phase associated with the lower
frequency as a reference 8ref = 8i−1, fref = fi−1. The
unwrapping factor can hereby be determined using a simple
rounding operation

ki = Round

[ fi
fref
8ref − ϕi

2π

]
. (14)

There are many variations of hierarchical unwrapping
algorithms in the literature, which differ mainly in the
choice of the frequency sequence, e. g., linearly increasing
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frequencies [24], [26], exponentially increasing frequen-
cies [28], [29], reversed sequences [26], [27] or generalized
approaches [25]. Usually, after unwrapping the individual
phase maps, the phase corresponding to the highest frequency
is used or all phase maps are averaged.

2) HETERODYNE UNWRAPPING
The two-wavelength heterodyne methods were originally
developed for interferometry [17]–[19], but are also appli-
cable to phase-shifting 3D-measurement systems [35]–[37].
Unlike before, the heterodyne method can be used directly at
high frequencies. The approach of heterodyne phase unwrap-
ping consists in extending the unambiguous measurement
range of a synthetic wavelength at the beat frequency of
two comparatively closely neighboringwavelengths. Usually,
only two wavelengths λ1 and λ2 are used. The phase
measurements associated with the two wavelengths are
subtracted, and the wavelength of the synthetic phase can be
obtained

ϕ12 = ϕ1 − ϕ2 mod 2π, (15)

λ12 =
λ1λ2

|λ1 − λ2|
=

1
|f1 − f2|

=
1
f12
, (16)

where f12 represents the beat frequency. If λ1 and λ2 are
close enough and well-chosen, the uniqueness range of the
phase unwrapping can be increased enough to resolve the
ambiguity [33]. With the normalized reference size L = 1 we
use in this paper, f12 = |f1 − f2| ≤ 1 must hold in order to
allow an unambiguous phase reconstruction.

Since the phase noise of ϕ1 and ϕ2 is accumulated during
the formation of the synthetic phase, the signal-to-noise ratio
deteriorates. For this reason, the synthetic phase is generally
used only to unwrap the underlying measurements ϕ1 and ϕ2.
The unwrapping factors k1 and k2 are hereby calculated using
(14) with fref = f12, 8ref = ϕ12.
The extension to more than two wavelengths is described

in [30], [31] and allows increasing the unambiguousmeasure-
ment range even further. For this, several approaches exist
that optimize the choice of the wavelengths to obtain a robust
unwrapping result [32]–[34].

3) NUMBER-THEORETICAL UNWRAPPING
The number-theoretical unwrapping methods are based on
number theory, relative primes, and the divisibility properties
of integers. They were originally proposed by [38]. They
were then further improved to reduce the susceptibility
to phase errors [2], [39]–[41]. In its basic form, the
method uses the Chinese-remainder theorem to calculate
a simultaneous solution to the unwrapping problem. Fol-
lowing the theorem, a system of simultaneous equations of
congruence

X ≡ bi (mod mi), for i = 1, . . . , n (17)

has a unique solution X ∈ Z, if bi ∈ Z and mi ∈
Z are known integers, and if the set of mi are pairwise
co-prime numbers, i. e., for their greatest common divisor

applies gcd(mi,mj) = 1,∀i, j [38]. The theorem can be
applied to phase unwrapping, by comparing (13) to (17) and
substituting

X := xL ≡
8iL
2π fi

, bi := Round
(
ϕiL
2π fi

)
, mi :=

L
fi
. (18)

The phase ambiguity can then be resolved, if the condition
lcm(m1,m2, . . . ) ≥ L for the least common multiple is
fulfilled [62]. Hereby, of course, an appropriate scaling factor
L needs to be chosen to obtain meaningful integer values
and co-prime mi. E. g., in the case of structured illumination
applications, it can be set to the size of the reference pattern
generator measured in pixels.

Further improvements to the algorithm can be achieved by
precalculating a look-up table to speed up the computation
time [42]–[46], by including geometric constraints in the
unwrapping [63], or by removing the restriction of having co-
prime wavelengths [64] .

4) OPTIMIZATION-BASED UNWRAPPING
The previous methods have relatively high restrictions on
the choice of frequencies. Thus, newer approaches try to
circumvent these restrictions by posing the phase unwrapping
as an optimization problem. Pribanić et al. [43] extend the
two-wavelengths number-theoretical method by removing
the restriction of having co-prime wavelengths. From the
combination of all possible unwrapping factors, they search
for the one that minimizes the distance between the two
respective unwrapped phases.

The excess fraction methods can be regarded as a
multi-wavelength extension of the heterodyne methods
[50]–[53]. They define an excess fraction as the difference
between an ideal continuous unwrapping factor and its integer
analogon. The unwrapping factors are then determined
individually by minimizing the respective excess fraction,
where each excess fraction is influenced by all phase
measurements.

More recent approaches try to perform the unwrap-
ping of all phase measurements simultaneously to find
an ideal solution for all unwrapping factors at the same
time. For this purpose, the vector of ideal unwrapping
factors k = (k1, k2, . . . ) is sought, which minimizes
the distance of the individual unwrapped phases to the
mean value of all unwrapped phase measurements. Here,
the distance measure can be defined by an orthogonal
projection of the wrapped phases onto a subspace [47],
or it can be written down directly as a sum of distances
between the unwrapped phases to the averaged unwrapped
phase [48], [49]. It is hence titled projection distance

minimization (PDM). With 8Mean =

∑
j fj8j∑
j f

2
j

and by

minimizing the projection distance

k = argmin
k

∑
i

(8i − fi8Mean)
2 , (19)

the unwrapping factors, and thus, the simultaneous unwrap-
ping of all phase measurements can be obtained. The optimal
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unwrapping factors are thereby found by an excessive trial
and error of all possible combinations. To speed up the
optimization, Petković et al. [47] suggest ignoring impossible
combinations, and Zuo et al. [48] use the geometry of the
measurement setup of a profilometry system to exclude
unreasonable combinations.

5) REMARKS
The classical phase unwrapping algorithms from the previous
sections do not use all of the information to unwrap the phase
measurements, and far more importantly, they generally do
not take into account the inherently periodic structure of the
phase, which can lead to incorrect unwrapping.

For example, the simple hierarchical unwrapping method
only uses the previous phase measurement with a lower
frequency to unwrap the current phase. However, measure-
ments with higher frequency could also contain information
to unwrap the phase measurements with lower frequency.
In addition, the periodic structure of the phase is not
taken into account, so unwrapping errors often occur near
the 2π -discontinuities. Also, to achieve good accuracy
for 3D reconstruction, phase maps corresponding to high
frequencies are needed. But then, the number of necessary
measurements is high, because the sequence always starts at
f = 1.

The heterodyne method does not have to start at low
frequencies, but can directly select high ones, allowing
it to achieve an overall smaller mean uncertainty with
the same number of measurements [34]. However, it is
disadvantageous that the unambiguous measurement range
of the unwrapping is determined by the beat frequency
and thus, there are frequency configurations that do not
yield an unambiguous solution, but which could be solved
unambiguously with other methods [47]. Additionally, the
method is not straightforwardly extendable to a multi-
frequency approach.

The number-theoretical unwrapping methods perform a
simultaneous unwrapping of all phase measurements and
also consider the periodicity of the phase. Nevertheless,
the restriction to pairwise co-prime wavelengths makes the
selection more difficult, and due to the integer arithmetic and
rounding operations, these methods are relatively susceptible
to noise [39]. Even more, for the method to work, the
frequencies must be chosen very precisely proportional
to the integer co-prime wavelengths, which is especially
problematic for applications where the wavelengths cannot
be chosen freely, e. g., interferometry [65].

The optimization-based methods, on the other hand, per-
form a simultaneous unwrapping of all phase measurements
without having to apply rounding operations. In their current
form, however, they are still not perfect. They do not take
into account the periodic structure of the phase so that
unwrapping errors occur frequently near the boundaries of
the coding interval. Also, it is a very expensive procedure
due to testing all possible combinations of unwrapping
factors ki.

Additionally, all methods have in common that the phase
unwrapping does not consider the estimated phase uncer-
tainty at all, although it could help to compensate for an unfa-
vorable measurement. Therefore, in the following, we present
an unwrapping method that respects the periodicity of the
phase, which does not rely on integer arithmetic, which
implicitly unwraps all phase measurements simultaneously
by finding the underlying encoding that caused the phase
measurement, and which additionally includes the estimation
of the phase uncertainty into the process.

IV. PROBABILISTIC APPROACH FOR TEMPORAL PHASE
UNWRAPPING
In the field of phase unwrapping, probabilistic approaches
have already been used in the spatial domain. Car-
ballo et al. [66] and Koetter et al. [67] use a probabilistic
approach to model the probability of a phase discontinuity
in interferometric synthetic aperture radar (InSAR) images,
to use them as weight factors for a spatial phase unwrapping
procedure. Droeschel et al. [22] uses a similar approach for
time-of-flight imaging. Baselice et al. [68] use an Extended
Kalman Filter that includes probabilistic data to perform
phase unwrapping and phase noise reduction of InSAR
data.

In contrast, we propose to use a probabilistic model for
temporal phase unwrapping. To solve the phase unwrapping
problem optimally, we attempt to find the coordinate that has
the highest probability of having caused the corresponding
phase measurements. To formulate the unwrapping as a
probability problem, we model the phase measurement as
an appropriate stochastic process. With this we determine
the probability density of the encoded coordinate, find the
optimal decoding by a maximum-likelihood approach, and
thus implicitly compensate for the wrapping of all phase
measurements.

A. PROBABILITY DENSITY FUNCTION OF PHASE-SHIFT
CODING
As indicated in section II-A, the variance of the image
noise can be propagated through the phase-shifting algorithm.
Thus, every measurement provides not only an estimate of
the phase ϕ but also the uncertainty σϕ of this estimation.
The probability density function of the true phase is therefore
centered around the respective measurement. The question
now arises, however, which probability distribution the
phase has. In principle, several distribution functions are
possible. Since the image noise has a normal distribution,
the first assumption is that the phase noise is also normally
distributed. However, because the phase has a periodic
structure and is only defined on the interval [0, 2π ), the
probability density must be searched in the field of circular
statistics [69].

1) WRAPPED NORMAL DISTRIBUTION
Arguably the most intuitive approach to obtain a probability
distribution of the phase is to assume it to be a normal
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distribution θ ∼ N
(
µ, σ 2

)
and to allow its values to be

spread on the entire set of real numbers θ ∈ R. By folding
the density function around the unit circle

ϕ = θ mod 2π, (20)

the range of values is then forced to the interval [0, 2π ). The
density function of the folded random variable is then the
wrapped normal distribution [69]

pWN(ϕ) =
∞∑

k=−∞

N
(
ϕ − µ+ 2πk, σ 2

)
=

1
√
2πσ

∞∑
k=−∞

e
−(ϕ−µ−2πk)2

2σ2 , (21)

with the parametersµ ∈ [0, 2π ) und σ 2. The density function
is symmetric and centered around the mean µ, whereas the
width of the function is affected by the parameter σ . Since in
practice the infinite sum must be terminated at some point,
more efficient representations of the distribution exist

pWN(ϕ) =
1
2π

1+ 2
∞∑
p=1

e
−σ2p2

2 cos (p(ϕ − µ))

 , (22)

where, depending on the choice of σ 2, the sum can be aborted
after only a few terms [70].

2) von Mises DISTRIBUTION
A major disadvantage of the wrapped normal distribution is
that it is quite intractable due to the infinite sum. Furthermore,
it is not certain that a real phase measurement results from the
folding of a linear normal distribution around the unit circle,
and hence, one must not forcefully assume that (20) is the
correct description of the phase-shift coding.

If we approach the problem with minimal knowledge,
we can find an alternative probability density function for the
phase. The knowledgewe have is: themean of the distribution
corresponds to a phase measurement µ, we have a measure
of the second central moment σϕ , and we know that the
phase should be defined on the periodic interval [0, 2π ).
The circular probability density function which maximizes
the entropy under the given conditions and thus represents
the ideal choice under these circumstances is the von Mises
distribution [69]

pvM(ϕ) =
eκ cos(ϕ−µ)

2π I0(κ)
, (23)

where I0(κ) is the modified Bessel function of the first kind
and order zero

I0(κ) =
1
2π

∫ 2π

0
eκ cos(θ)dθ =

∞∑
r=0

(κ
2

)2r ( 1
r !

)2

. (24)

The parameterµ represents themean value and κ corresponds
to a concentration measure which is analogous to the inverse
of the variance 1/σ 2 in the normal distribution.

Because of its mathematical simplicity, the von Mises
distribution is one of the most commonly used distributions
in circular statistics. And due to its great importance, it is also
often referred to as the circular normal distribution [69].

3) PHASE NOISE MODEL OF PHASE-SHIFT CODING
A more precise way to describe the probability density
of the phase is to analyze the phase-shift coding directly.
Rathjen [71] examines the random phase error arising from
the normally distributed image noise of the sinusoidal pattern
sequence. The two arguments of the arctan2 function from (6)
are described using a bivariate normal distribution, where the
parameters of the distribution are computed from the normal
distribution of the image noise of the underlying pattern
sequence. Finally, the distribution of the phase is calculated
from this bivariate normal distribution, which applies to any
phase-shift coding method.

Depending on the algorithm, different distributions are
obtained, which do not necessarily have to be symmetrical
and which may also depend on the absolute value of the
phase. For the symmetricM -step methods used in this work,
the arguments of the arctan2-function are uncorrelated and
have the same variance, leading to a symmetric distribution
function for the phase which is independent of the absolute
phase value [71]. The probability distribution function of the
phase ϕ for symmetricM -step algorithms is then given by

pPM(ϕ) =
e−SNR

2π

{
1+
√
πSNR cos (ϕ − µ)

· eSNR cos(ϕ−µ)2
(
1

+ erf
(√

SNR cos(ϕ − µ)
))}

, (25)

where µ ∈ [0, 2π ) represents the mean, the signal-to-noise
ratio SNR = 1

2σ 2ϕ
determines the width of the distribution,

and erf(x) = 2
√
π

∫ x
0 e
−t2dt is the Gaussian error function.

4) COMPARISON
To identify which of the presented distributions is best suited
for the problem, a Monte Carlo simulation of the phase
measurement is performed. For this, the coordinate x = 0 is
encoded using phase-shift coding and then the phase ϕ is
measured. The simulation is performed 107 times, each time
adding image noise corresponding to a phase uncertainty of
σϕ =

π
2 . The probability density of the phase noise can then

be approximated using histogram analysis.
Fig. 2 shows the histogram of the measured phases and

the different density functions whose parameters can be
calculated from the phase-shift-coding. As expected, the
phase noise can best be described by the noise model of
Rathjen [71]. However, the von Mises distribution also shows
a reasonably good fit to the histogram. Whereas the wrapped
normal distribution is too low on the hills and too high in other
areas of the histogram.

Fig. 3 shows the Jensen-Shannon distance (JSD) [72]
between the histogram and each of the distributions over
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FIGURE 2. Histogram of the phase noise with µ = 0 and σϕ = π
2 and the

three analyzed probability density functions.

FIGURE 3. Jensen-Shannon distance to the histogram for different values
of the phase uncertainty. Maximum similarity with JSD = 0, minimum
similarity with JSD = ln(2) ≈ 0.69.

different phase uncertainty values as a similarity measure,
i. e., a small JSD value corresponds to a high similarity. It can
be seen, that the model of Rathjen has a high similarity
to the histogram for all uncertainty values. The von Mises
distribution is also very close to the histogram and hence,
represents the phase-shift coding sufficiently good, although
the similarity is not constant for all noise values. Finally,
compared to those two distributions, the wrapped normal
distribution has a greater distance to the histogram. For small
noise values, all distributions converge into one another [69],
so that they are almost equivalent, and for very large noise
values everything converges to the uniform distribution on the
interval [0, 2π ).

B. COMPOUND PROBABILITY DENSITY FUNCTION
Because the individual phase measurement is affected by
phase noise, the probability density of the true phase is hence
centered around the respective measured value. To consider
all phase measurements simultaneously in the unwrap-
ping, depending on their respective uncertainty, we look
for the phase that caused the individual measurements
with maximum probability. However, since the phase has
a periodic structure, it must be modeled using circular
statistics.

Since the von Mises distribution is mathematically easy
to handle, since it approximates the true distribution of the
phase noise quite well, and since a maximum-likelihood
estimation can be performed in a numerically stable way
(see the next section IV-C), it will be used as the basis for
modeling the phase measurement in the following without
loss of generality. Amodeling using the other densities would
work analogously.

The density function of the true phase ϕ ∈ [0, 2π) as a
function of the measurement is therefore given by

p(ϕ|ϕi, κi) =
eκi cos(ϕ−ϕi)

2π I0(κi)
. (26)

Here ϕi represents the measured phase and κi = 1/σ 2
ϕi

models the knowledge about the uncertainty of the phase
measurement and thus describes the concentration of the
distribution. Depending on the frequency of the pattern
sequence, the distribution function of the encoded coordinate
x can now be derived from this. With ϕi(x) = 2π fix and
with the known frequency fi, the multi-modal von Mises
distribution on the periodic interval x ∈ [0, 1) is obtained:

p(x|ϕi, κi, fi) =
eκi cos(2π fix−ϕi)

I0(κi)
, (27)

where now, due to the multi-modal character of the
distribution, the ambiguity of the phase measurement
becomes illustratively visible in the density functions, see
Fig. 4.

Since the acquisition of the sinusoidal pattern sequence
using phase-shift coding is performed independently for each
image and identical acquisition conditions are assumed, each
image has in principle the same standard deviation σI of
the image noise. Therefore, the strength of the phase noise
σϕ remains the same in each measurement. Nevertheless,
the variable substitution ϕi(x) = 2π fix reduces the width
of the distribution locally by 1/fi. This leads to a reduction
of the uncertainty which in turn is bought by an fi-fold
ambiguity.

While the image noise generally remains the same
for all images, the estimated phase uncertainty can vary
significantly for different situations. For example, if impulse
noise appears in images, it is detected by the phase-shift
coding as a reduction in the modulation B, which leads
to an increase in the estimated uncertainty σϕi for the
respective pixels. On the other hand, if the sinusoidal pattern
is blurred due to the imaging system, the local contrast
of the pattern sequence decreases. Again, the modulation
B is affected and the uncertainty increases for the whole
phase measurement. Of course, this is strongly influenced by
the used pattern frequencies. The uncertainty estimate thus
contains knowledge about the system and can therefore be
efficiently integrated into the probabilistic modeling of the
phase estimate.

Depending on the chosen frequency of the sinusoidal
pattern sequence, each phase measurement ϕi corresponds
to an individual probability distribution p(x|ϕi, κi, fi). Since
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each phase measurement ϕi is measured independently and
all have the same underlying coordinate, the compound
density of x for given frequencies f = [f1, . . . , fN ],
phase measurements ϕ = [ϕ1, . . . , ϕN ] and estimated
concentration parameters κ = [κ1, . . . , κN ] can be directly
expressed:

p(x|ϕ, κ, f ) =
∏
i

p(x|ϕi, κi, fi) =
e
∑

i κi cos(2π fix−ϕi)∏
i I0(κi)

. (28)

C. MAXIMUM-LIKELIHOOD PHASE UNWRAPPING
Having described the probability density function of the
multi-frequency phase-shift coding, this can now be used to
find the most likely coordinate that caused the phase mea-
surements. The optimal coordinate and thus the simultaneous
unwrapping of all phase measurements can be found with a
maximum likelihood estimator. As a result, maximizing the
density function yields the sought coordinate

x̂ML = argmax
x

p(x|ϕ, κ, f ) (29)

= argmax
x

log (p(x|ϕ, κ, f )) (30)

= argmax
x

∑
i

κi cos (2π fix − ϕi)− log I0(κi)

(31)

= argmax
x

∑
i

κi cos (2π fix − ϕi) , (32)

where the monotonicity of the logarithm helps to simplify
the equations and removes the potentially more numerically
unstable exponential function.

1) UNIQUENESS
To be able to identify a unique maximum, constraints
must be applied to the selected frequencies. As with other
unwrapping methods from the literature, uniqueness can be
achieved if the frequencies are relatively prime [47], [48].
However, while for classical number-theoretical approaches
all the frequencies need to be pairwise co-prime integers
with gcd

(
fi, fj

)
= 1,∀i 6= j, we have a less restrictive

condition. For our approach, uniqueness is obtained with
gcd (f ) = gcd (f1, f2, . . . ) ≤ 1, whereas the frequencies do
not necessarily need to be integer valued. For frequencies
fi ∈ Q, the extension of the gcd to rational numbers can be
used to check uniqueness. For frequencies that are irrational
numbers, the maximum of (32) is theoretically always unique
if ∃fi 6= fj with i 6= j. Though, in this case, when the
frequencies are poorly chosen the unwrapping might be more
susceptible to noise. Fig. 4a and Fig. 4b demonstrate the
uniqueness constraint illustratively. In Fig. 4a the frequencies
are set to f = (2, 3, 6), thus gcd (f ) = 1. Even though
with gcd(2, 6) = 2 and gcd(3, 6) = 3, the frequencies
are not pairwise co-prime, a unique maximum of the
compound probability density can still be found. In Fig. 4b
the frequencies are set to f = (2, 4, 6), thus gcd (f ) = 2.
Here the maximum has a two-fold ambiguity. The compound
density is only unique in the range x ∈ [0, 0.5) and repeats

itself in x ∈ [0.5, 1). Thus, in this case, the phase cannot be
recovered uniquely.

2) FINDING THE MAXIMUM
Although (32) appears simple, no analytical solution can
be given for the global maximum because of the many
local extrema. Therefore, the problem must be solved
numerically. However, no global optimizer (e. g., simulated
annealing, differential evolution) can be used because it
could get stuck in a local maximum. To ensure that the
maximum of the probability density is found every time
and to avoid unwrapping errors, we solve the optimization
problem on subintervals. To define the subintervals, (32)must
be interpreted as a signal g(x) =

∑
i κi cos (2π fix − ϕi).

Since it is a summation of sinusoidal signals, the maximum
frequency of the signal g(x) is equivalent to the maximum
used frequency fmax = max(fi) in the phase-shift coding.
From sampling theory, it is known that a discrete signal
can be reconstructed from its sampling points only if the
signal does not change significantly between said points [73].
Consequently, the sampling frequency must be respected.
Given the maximum frequency fmax and using the sampling
theorem, we therefore obtain a minimum required number of
intervals Imin = d2fmaxe, in which the global maximum must
uniquely lie as a single extremum. A simple 1D line search
procedure (see [74]) is now used to find the local maximum
in each of those subintervals. A comparison of the intervals
finally yields the global maximum.

Purely illustrative it would be sufficient to reduce the
interval number to Imin = dfmaxe, since only the local maxima
are required and not the minima. Empirical investigations
showed, however, that in rare cases nearly saddle point-like
shapes appear in the signal. In these cases, two local
maxima can lie very close to each other, and thus, with the
reduced number of intervals, only one can be identified as a
local maximum in the optimization. Nonetheless, the global
maximum could always be found unambiguously in billions
of simulations, since the signal changes very strongly in
the vicinity of the global maximum, and thus, only a single
solution exists in the interval under investigation.

As a remark, it remains to say that the presented
maximum-likelihood optimization can in principle also be
carried out with the other distributions from section IV-A.
Though, since the log-likelihood function of the correspond-
ing densities cannot be represented as a simple sum of cosine
functions, the spectrum of these log-likelihood functions
also has components at higher frequencies. Nevertheless,
empirical investigations showed that higher frequencies are
attenuated so strongly that the sampling theorem is almost
fulfilled and hence a maximum could still be found every
time. However, this could only be observed, when all Imin =

d2fmaxe subintervals were searched. Thus, the other density
functions need twice the computation time as compared to
the von Mises distribution.

In summary, with the presentedmethod, the wrapping of all
phases is compensated simultaneously and all measurements
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FIGURE 4. Multi-modal von Mises distributions, compound probability density function and corresponding log-density.

are fused to an optimal solution so that finally the most likely
value of the coordinate x can be found.

D. SPATIO-TEMPORAL PHASE UNWRAPPING
Temporal phase unwrapping has the great advantage that
each pixel can be individually unwrapped and an absolute
phase is obtained. This is especially useful when only
a little information about the surface to be examined is
known and when 2D unwrapping methods would lead
to erroneous results. In many tasks of optical metrology,
where structured illumination is used, one often examines
continuous surfaces. For example, in deflectometry, i. e.,
the inspection of specular objects, one often works with
lacquered body parts from the automotive industry, with
lenses or parabolic mirrors, which can be described for the
most part by continuous surfaces with only a few regions
deviating from this continuity due to sharp edges [8]. Also
in time-of-flight imaging and many areas of profilometry,
i. e., fringe projection, piecewise continuous objects are
often inspected [4], [23]. This piecewise continuity has the
consequence that neighboring camera pixels will observe
similar phase values on the surface. It is therefore reasonable
to use this additional information as help for the phase
unwrapping to suppress phase errors.

Hence, we want to integrate the assumption of local
continuity into the probabilistic framework from the previous
section. This allows performing not only an unwrapping in
the temporal dimension but a 3D phase unwrapping, while
implicitly smoothing the probability density functions over
the spatial dimensions. To do this, the probability density
of each camera pixel is modeled as a superposition of the
probability densities of the local neighborhood.

The probability density for each individual pixel u was
already derived in the previous section and can be considered

as a conditional density

p(x(u)|ϕ(u), κ(u), f ) =
∏
i

p(x(u)|ϕi(u), κi(u), fi). (33)

If neighboring pixels can no longer be considered indepen-
dently of each other, then each pixel u results from aweighted
superposition of individual densities

p(x(u)) :=
∑

û∈U (u)

p(u|û)p(x(û)|ϕ(û), κ(û), f ), (34)

where U(u) represents a set of relevant neighborhood pixels.
Sincemore distant pixels have less influence andwe approach
the modeling with minimal knowledge about the observed
surface, we model the transition probabilities using a 2D
normal distribution

p(u|û) = N
(
u− û, σ 2

NI
)
=

1

2πσ 2
N

e
−
‖u−û‖2

2σ2N . (35)

The compound density, consisting of spatial modeling
employing normal distributions and temporal modeling using
von Mises distributions, finally results in

p(x(u))

=

∑
û∈U (u)

1

2πσ 2
N

e
−
‖u−û‖2

2σ2N
e
∑

i κi(û) cos(2π fix−ϕi(û))∏
i I0(κi(û))

. (36)

Although this probability density appears more compli-
cated than (28) from the previous section, it can bemaximized
using the samemethods for finding the optimal solution of the
coordinate: x̂ML(u) = argmax p(x(u)).
However, it must be considered that this approach only

leads to meaningful results if the local continuity assumption
is not violated. To ensure that the given model is only applied
in continuous areas, discontinuities have to be detected.
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1) DETECTION OF DISCONTINUITIES
Depending on the application, discontinuities in a surface
transform themselves into discontinuities in the phase map.
In the case of profilometry, a step in the surface results
in a step in the phase map, whereas a step in the surface
gradient does not necessarily destroy the continuity of
the phase map. However, for example, in the case of a
deflectometric measurement of specular surfaces, even a
step in the surface gradient may result in a step in the
phase map. Consequently, this means that we do not intend
to detect edges on the surface, but only jumps in the
phase.

For edge detection, a simple detector operating directly
on the wrapped phase estimates is suitable for this purpose.
But, since the 2π-discontinuities contained in the phase
maps do not represent a property of the surface, they must
not be falsely detected (see Fig. 12). Thus, we need a
2π -invariant detector. Typically, gradient-based operators are
used to detect edges in images. For this, the Laplace operator
1ϕ(u) = ∂ϕ(u)2

∂u2
+

∂ϕ(u)2

∂v2
is often used. However, for a

2π -phase jump in the wrapped phase, the operator will
yield a multiple of 2π even when the correctly unwrapped
phase would have only a small continuous change. To have
this property ignored, we define a 2π-invariant Laplace
operator

12πϕ(u) := 1ϕ(u) mod 2π (37)

which is only sensitive to phase discontinuities in the
unwrapped phase caused by the surface, whereas disconti-
nuities that are caused by the ambiguity of a wrapped phase
are ignored. To reduce the effect of noise in edge detection,
a Laplacian of Gaussian may be used. Eq. (37) can take
values within the periodic interval [0, 2π ). However, since
the strength of an edge is defined as the distance to 0, it is
necessary to calculate the circular distance for an appropriate
edge quality measure. Hence, for every phase measurement
ϕi(u) we can calculate an energy measure

Ei(u) = 1−

∣∣∣∣1− |12πϕi(u)|
π

∣∣∣∣ , (38)

in which themaximum possible circular distance is equal to 1,
which would correspond to a strong edge feature. Further,
an appropriate averaging over all phase maps improves the
edge estimate

E(u) =

∑
i σ
−2
ϕi

(u)Ei(u)∑
i σ
−2
ϕi (u)

, (39)

where the uncertainty of the phase estimate can be taken into
account. Hence, the application of the modified Laplacian
operator ultimately provides an energy measure for an edge,
which is insensitive towards 2π-discontinuities. And finally,
subsequent thresholding on this energy measure results in
a feature map containing edge areas and non-edge areas,
see Fig. 12. In places where an edge has been detected,
the temporal modeling according to section IV-B must be

used, whereas everywhere else the modeling according to
section IV-D may be used to improve the phase unwrapping
by utilizing the spatial neighborhood information.

V. EVALUATION
In this section, the methods presented in this paper are
evaluated, analyzed, and compared with the state of the
art. Sinusoidal pattern sequences with different frequencies
are simulated and the respective phase is estimated using
phase-shift coding, where the number of steps is chosen
to be M = 8. The following methods are examined: the
hierarchical unwrapping ofHuntley et al. [24], the heterodyne
unwrapping of Lai et al. [30], the number-theoretical
unwrapping of Towers et al. [40], the optimization-based
unwrapping of Zuo et al. [48], the proposed probabilistic
temporal method, and the proposed probabilistic spatio-
temporal method. For the proposed probabilistic methods,
the von Mises probability density is used, unless specified
otherwise. For the spatio-temporal method a spatial neigh-
borhood U(u) of 3 × 3 pixels is used. To investigate the
robustness of the presented phase unwrapping algorithms,
the influence of Gaussian image noise and impulse noise is
examined.

A. QUALITATIVE COMPARISON
The resolution of the reference pattern generator was chosen
to be (2003, 2003). For the first simulation three phase
measurements with frequencies f ≈ (1, 3, 5)were generated.
Because for the numer-theoretical method pairwise co-prime
wavelengths must be used, we quantize the wavelength as
λ = (2003, 668, 401). This corresponds to frequencies
f ≈ (1, 2.999, 4.995). Nevertheless, since no methods are
restricted to integer frequencies, this does not result in any
major disadvantages. The phase uncertainty was chosen to
be σϕ = 0.25 rad = 14.3◦. Using (8), Gaussian noise with
variance σ 2

I = σ 2
ϕB

2M
2 was added to the sinusoidal pattern

sequence. It is important to note that the noise is not added
to the wrapped phase measurements, as it is often done in
the literature, but to the camera images Im, otherwise no
realistic statements about phase-shift coding can be made.
The heterodyne method calculates a phase difference to
obtain a unique reference phase. Since ϕ1 is already unique,
it does not make sense to evaluate the heterodyne method
for this frequency configuration. The coordinate x ∈ [0, 1)
was sampled in 2003 steps and each value was simulated
2003 times. Fig. 5 shows the phase measurements and the
coordinates estimated with the different unwrapping meth-
ods. Here, stronger colors represent a higher point density.
The upper three plots show the noisy phase measurements
ϕi over the true coordinate x. The lower plots show the
corresponding estimated coordinates x̂.
The hierarchical unwrapping shows a strip of correctly

unwrapped estimates in the middle section. At the boundaries
of the coding interval, however, large errors appear because
the periodicity of the phase is not implicitly modeled
for this method. For these reasons, the effective coding
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FIGURE 5. Top: Phase measurements ϕi with frequencies f ≈ (1,3,5)
influenced by Gaussian noise with σϕ = 0.25 rad. Bottom: Estimated
coordinate x̂ for different methods.

interval is often reduced in practical applications. This
avoids unwrapping errors, but the effectively used frequency
decreases, which increases the overall phase uncertainty.
In addition to the boundary errors, the hierarchical method
shows unwrapping errors that are represented by parallel lines
to the middle line. In these cases, the phase was incorrectly
unwrapped once or even twice. Since the hierarchical
method always refers back to the unwrapped previous phase,
unwrapping errors propagate from top to bottom and can
no longer be compensated once they occurred. The number-
theoretical unwrapping shows no errors at the boundary of the
coding interval since the Chinese remainder theorem is based
on a modulo arithmetic. Also, only a few unwrapping errors
occur in the middle of the coding interval. Two lines of faulty
estimations appear near the boundary, where noisy estimates
x > 1 and x < 0 are folded back into the used interval
[0, 1). Overall, however, the method is more susceptible to
noise, which results in a coordinate estimation with greater
uncertainty. The optimization-based unwrapping is much
better. Almost all pixels in the middle of the coding interval
are correctly unwrapped and only at the boundaries do errors
occur again, which are caused by the lack of modeling
of the periodicity of the phase. The proposed probabilistic
temporal method can compensate well for the boundary
errors since the periodicity is well described using circular
statistics and it performs well in other areas as well. Finally,
the spatio-temporal method yields even better results. Here

FIGURE 6. Top: Phase measurements ϕi with frequencies f ≈ (1,3,5)
influenced by impulse noise in 7.5% of the pixels. Bottom: Estimated
coordinate x̂ for different methods.

almost all values are correctly unwrapped and the uncertainty
of the estimation is very small, as can be seen by the overall
thinner line. In other words, it makes a lot of sense to include
spatial information.

In a second simulation, the sinusoidal pattern sequence
is now overlaid with impulse noise, where the probability
of an impulse is set to pI = 0.075. An impulse in the
image appears as either a black pixel or a completely
white pixel, i. e., it acts like salt and pepper noise. Again,
of course, the noise must be added to the sinusoidal
pattern sequence Im and not to the wrapped phase maps.
Hence, although 7.5% of the pixels show an impulse,
the same amount of phase estimates may not necessarily
be affected. Fig. 6 shows the phase measurements and
the coordinates estimated with the different unwrapping
methods. An impulse in the pattern sequence causes the
respective phase to be distorted to a greater or lesser extent,
depending on how far the impulse is from the correct intensity
value.

Again, the hierarchical method shows similar effects as
before, which are, however, more prominent here. The
number-theoretical method can still provide a good unwrap-
ping performance. However, due to the generally higher
noise level, the accuracy decreases. For the optimization-
based method, erroneous estimations are now also apparent,
comparable to the hierarchical method. Opposed to this,
the two probabilistic methods can still give very good
results. This can be explained by considering that a phase
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FIGURE 7. Top: Phase measurements ϕi with frequencies f ≈ (6,9,11)
influenced by Gaussian noise with σϕ = 0.15 rad. Bottom: Estimated
coordinate x̂ for different methods.

measurement with an impulse in the pattern sequence has a
smaller modulation B. This also increases the corresponding
estimate of the phase uncertainty. This estimate can be
used directly in the proposed methods to compensate for
poor phase measurements. Thus, better phase measurements
have more influence on the optimization. For the spatio-
temporal method, this means that a distortion of the phase
has an effect only if a large number of the pixels in
the respective 3 × 3 × 3 cube are disturbed. Since the
probability of this is quite low, the method yields almost no
errors.

In order to evaluate the heterodyne method, phase mea-
surements with frequencies f ≈ (6, 9, 11) are generated. For
the same reasons as before, the wavelengths were quantized
as λ = (331, 223, 181). This corresponds to frequencies
f ≈ (6.051, 8.982, 11.066). Image noise is superimposed
on the sinusoidal pattern sequence, corresponding to a phase
uncertainty of σϕ = 0.15 rad = 8.6◦. Since the hierarchical
method can uniquely unwrap the phases only up to the first
period, it is not considered in this comparison. Fig. 7 shows
the phase measurements and the coordinates estimated with
the different methods.

It can be seen that even with smaller noise than before,
the heterodyne method delivers only mediocre results.
A large part of the pixels is correctly unwrapped, but
many lines of incorrect values appear parallel to the true
line. This is because the phase noise is summed up when

FIGURE 8. Top: Phase measurements ϕi with frequencies f ≈ (6,9,11)
influenced by impulse noise in 3% of the pixels. Bottom: Estimated
coordinate x̂ for different methods.

calculating the phase difference. To get a unique solution, first
ϕ12 = ϕ1 − ϕ2 with f12 = f2 − f1 ≈ 2.93 and ϕ23
with f23 = 2.08 are calculated. A unique phase can then
be calculated with ϕ123 = ϕ23 − ϕ12 with f123 = f12 −
f23 = 0.85. This is then used to unwrap the individual
phase measurements. However, since the noise is summed
up in each step, the reference phase is of poor quality,
resulting in a poor overall unwrapping result. Surprisingly,
the number-theoretical method fails completely. The integer
arithmetic of the method cannot work even at a very small
noise level. The optimization-based method can unwrap the
phase very well, as before. Errors are still found at the
boundary and in parts in the center. As before, the presented
probabilistic methods provide very good results, whereas
the spatio-temporal approach yields almost only correct
estimates.

For a final evaluation, the sinusoidal pattern sequence was
now again overlaid with impulse noise, with the probability
of an impulse set to pI = 0.03. Fig. 8 shows the
phase measurements and the coordinates estimated with
the different methods. Although the noise is very small, the
heterodyne method again shows many unwrapping errors.
The number-theoretical method delivers bad values too.
Here we see that almost only pixels without distortion are
unwrapped correctly, visible by the somewhat stronger line
in the center. The optimization-based method gives very
good results, with only a few boundary errors and two
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FIGURE 9. Evaluation of phase error εx and success rate sx for different phase unwrapping methods, with f ≈ (1,3,5).

clusters of erroneous estimates. The presented probabilistic
methods show almost perfect results, which is explainable by
the incorporation of the estimated phase uncertainty in the
unwrapping process.

B. ROBUSTNESS AGAINST NOISE
Themethods presented are now to be evaluated quantitatively.
For this purpose, the robustness of the methods against
Gaussian noise and impulse noise will be investigated.
To compare all methods, sinusoidal pattern sequences with
M = 8 phase shifts were simulated. Subsequently,
various noise factors were superimposed on the images,
the phase was estimated using phase-shift coding, and
finally, the phases were unwrapped using the presented
methods.

1) ERROR METRICS
In order to make quantitative statements about the methods,
suitable error metrics have to be defined beforehand. As a
first error measure, the absolute distance of the estimated
coordinate x to the true coordinate xtrue is required

εx = |x − xtrue|. (40)

The second error metric evaluates the quality of phase
unwrapping and describes the success rate, representing

whether a pixel was correctly unwrapped:

sx =
1
N

N−1∑
i=0

Ci, (41)

where Ci indicates whether the phase measurement associ-
ated with the frequency fi has been correctly unwrapped

Ci =

{
1, |ki,true − ki| = 0
0, otherwise

, (42)

=

{
1, 1

2fi
> |xtrue − 1

2π8i|

0, otherwise
. (43)

Because our proposed methods do not directly unwrap the
individual phase measurements but return a global solution,
(43) is used with Ci = Cimax and imax = argimax fi. Hence,
any phase value that is farther away from the true solution
than 1

2fmax
is therefore classified as an unwrapping error.

2) ERROR EVALUATION
For a first analysis, the frequencies of the sinusoidal pattern
sequence were again chosen to be f ≈ (1, 2.999, 4.995) in
order to create integer wavelengths λ = (2003, 668, 401)
to ensure that the number-theoretical method can be used.
The robustness towards Gaussian image noise was analyzed
by increasing the phase uncertainty incrementally from
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FIGURE 10. Evaluation of phase error εx and success rate sx for different phase unwrapping methods, with f ≈ (6,9,11).

σϕ = 0 to σϕ = 0.5 rad ≈ 28.6◦ in 100 steps. For the
analysis of robustness to impulse noise, the probability of an
impulse was increased stepwise from pI = 0 to pI = 20% in
100 steps. Fig. 9 shows the results of the analysis as a plot of
the mean estimation error εx and mean success rate sx .
The evaluation of the unwrapping error metrics yields

similar results as the evaluation of the quantitative results
from the previous section, for both Gaussian noise and
impulse noise. The number-theoretical method consistently
yields the worst results with the largest estimation error.
The success rate is also consistently the lowest, mainly
caused by the erroneous unwrapping at the boundaries of
the coding interval. Interestingly, the hierarchical method
and the optimization-based method show almost identical
behavior up to about σϕ ≈ 0.2. Only for higher noise levels,
the advantage of the optimization-based method becomes
apparent. The proposed probabilistic methods provide the
best results with the smallest estimation error and highest
success rate, where even for very large noise levels the
spatio-temporal method can still correctly unwrap more than
99.9% of the pixels.

For the second analysis, the frequencies of the sinu-
soidal pattern sequence were again chosen to be f ≈
(6.051, 8.982, 11.066) to create integer wavelengths λ =
(331, 223, 181) suitable for the number-theoretical method.

The noise was parameterized in the same way as before.
Fig. 10 shows the results of the analysis as a plot of the mean
estimation error and mean success rate. While analyzing
the influence of Gaussian noise, it can be clearly seen that
the number-theoretical method is extremely susceptible to
noise. It can only deliver correct values for very small noise
values. Starting from a noise of σϕ ≈ 0.02 it has already
reached the maximum possible mean error. For small noise
levels, the heterodyne method still shows very good results
and can keep up with the other methods. Only for larger
noise do significant deficiencies become apparent. For the
investigated frequency configuration, the optimization-based
method and the proposed probabilistic temporal unwrapping
method show very similar behavior in the success rate.
The proposed method is slightly better for low noise levels
resulting in a smaller estimation error. For large noise
levels, both yield almost the same result. The spatio-temporal
method, on the other hand, can still give very good results
for large noise levels even when a phase-shift configuration
is used consisting of high frequencies, where in general the
success rate is more susceptible to noise.

The analysis of the impulse noise emphasizes again the
advantages of the proposed methods. The heterodyne method
and the number-theoretical method are very susceptible to
impulse noise. Even small amounts of noise cause the
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TABLE 1. Evaluation and comparison of phase error εx and success rate sx for different phase unwrapping methods.

success rate to drop steeply and the estimation error to rise
significantly. The optimization-based method and the prob-
abilistic temporal method show similar behavior, with the
proposed temporal method being slightly better. Interestingly,
the spatio-temporal method shows exceptionally good results
here. Even with pI = 20% impulse noise, the success rate is
still greater than 99.99%. This can be explained by the fact
that a coordinate estimation is only disturbed when enough
phase measurements are influenced by an impulse. Since the
spatio-temporal method combines 27 probability densities for
each coordinate estimate, the probability that a large part of
these densities is disturbed is very small. To obtain a correct
estimate, at least one pixel of the 3× 3 spatial neighborhood
must be correct for only two of the three phasemeasurements,
since the corresponding frequencies are pairwise co-prime
and effectively two phase measurements are sufficient to get
a unique result. The probability of an unwrapping error at
pI = 20% impulse noise with a spatial neighborhood of
S = 9 pixels, N = 3 frequencies, and pairwise co-prime
frequencies is therefore approximately(

pSI
)N
+ NpSI

(
1− pSI

)N−1
= 0.227 + 3 · 0.29

(
1− 0.29

)2
≈ 2.8 · 10−6. (44)

The probability may in fact be even lower since not every
impulse necessarily causes an erroneous measurement.

As final comparison, Table 1 shows the evaluation of the
error metrics for all unwrapping methods and both frequency
configurations for certain noise levels. Here again, it can be
seen, that the proposed spatio-temporal phase unwrapping
outperforms all other methods.

C. COMPARISON OF DIFFERENT PHASE NOISE MODELS
To confirm the choice of the vonMises distribution as a repre-
sentative for the probability density of the phase, we will now
also compare the different densities. For this, we examine the
error metrics of the probabilistic temporal phase unwrapping.
Table 2 shows the estimation error and the success rate for
Gaussian noise with σϕ = 0.3 and impulse noise with
pI = 0.03. For reference, the optimization-based method is
also shown. As expected, the phase-shift model according to
Rathjen [71] gives the best results for the Gaussian noise and

TABLE 2. Comparison of phase noise models.

the vonMises distribution is the second-best result. Compared
to the optimization-based method, however, the probabilistic
methods differ only minimally. Interestingly, for impulse
noise, the wrapped normal distribution performs better than
the model of Rathjen. Again, the von Mises distribution
provides the second-best results, which is only insignificantly
worse than the wrapped normal distribution. Apart from the
other advantages of the von Mises distribution, it turns out to
also be a good compromise to be robust against Gaussian and
impulse noise.

D. PHASE MAP RECONSTRUCTION
In this section, we show how phase maps are reconstructed
using the presented unwrapping methods. For this purpose,
we generate two phase maps (512× 512 pixels), see Fig. 11.
Phasemap 1 shows a continuous surfacewith hills and valleys
whereas phase map 2 represents a discontinuous surface that
has sharp edges. We generate the corresponding sinusoidal
pattern sequence with wavelengths λ = (331, 223, 181),
corresponding to frequencies f ≈ (6.051, 8.982, 11.066),
and superimpose the pattern images with Gaussian noise
corresponding to σϕ = 0.15. Fig. 11 shows the generated
phase-shift image data and the wrapped phase maps that are
calculated using phase-shift coding.

1) EDGE DETECTION EXAMPLE
Because our presented spatio-temporal method may not be
used across discontinuities, edges in the phase map must be
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FIGURE 11. (a) & (d) show the true phase maps. (b) & (e) show the noisy
sinusoidal patterns for phase offset 9 = 0 for the frequencies
f ≈ (6,9,11)T, from left to right respectively. (c) & (f) show the
corresponding noisy phase maps with phase noise σϕ = 0.15 (can be
seen best in the PDF-version).

detected first. The application of edge-detection to the phase
maps is shown in Fig. 12. Fig. 12a and Fig. 12c each show the
application of the presented 2π-invariant edge detector to the
wrapped phase maps. Fig. 12b and Fig. 12d show the output
of a standard edge detector that uses a standard Laplacian
and a standard absolute distance to obtain the edge. It can
be clearly seen that the standard detector not only detects
the edges in the phase map but also the phase jumps caused
by the wrapping of the phase values. The presented detector,
on the other hand, detects only the real edges in the phase
map. Since phase map 1 is continuous, no edge is detected.
Only a few individual pixels are detected as edges since the
edge detector is of course also influenced by the noise. The
spiral shape of phase map 2 can be detected very well and in
addition, only a few individual pixels are incorrectly detected
as an edge. An optimization of the thresholding parameter
in the edge detection could resolve those wrongly detected
pixels. However, even a wrongly detected edge may not cause
a faulty phase unwrapping, since edge pixels are then ‘‘just’’
unwrapped using the probabilistic temporal method instead
of the spatio-temporal method which still performs very
well.

2) PHASE RECONSTRUCTION
The results of the unwrapping of phase map 1 are shown
in Fig. 13 for the heterodyne unwrapping, the optimization-
based unwrapping, the proposed temporal unwrapping, and
the proposed spatio-temporal unwrapping, respectively. The
top row shows the reconstruction as a 3D plot, with the
linearly increasing phase ramp subtracted for better visibility.
The middle row shows the reconstructed phase and the
bottom row shows the respective error.

FIGURE 12. Edge detection in phase maps: (a) & (c) show the proposed
edge detection for phase maps 1 and 2, respectively. (b) & (d) show the
results of a standard edge detection.

It can be clearly seen that the heterodyne method
works only suboptimally. The total error is quite high and
only 78.19% of the pixels are correctly unwrapped. The
reconstructed phase map looks very noisy. The optimization-
based method, on the other hand, yields 99.89% correct
pixels and thus provides a far smoother phase reconstruction.
Single unwrapping errors occur for phase values close to
0 and 2π , e. g., near the large hill and the deep valley.
In addition, some unwrapping errors occur in the center
of the phase map near lines where the wrapped phases
show 2π-discontinuities. We cannot directly explain these
errors. However, as indicated by Petković et al. [47],
their optimization-based method performs worse for non-
integer frequencies, which therefore could be the cause. The
proposed probabilistic temporal method can correctly unwrap
99.99% of the pixels. Similar to the optimization-based
method, isolated errors occur for values near the boundaries
of the coding interval. The errors along the 2π-discontinuities
of the wrapped phases do not occur here and show that the
proposed method also works properly for rational frequen-
cies. The proposed probabilistic spatio-temporal method can
correctly unwrap all pixels. At the same time, the general
accuracy is higher, as can be seen in the error map by the
overall darker green color. Thus, the local information used
in the maximum-likelihood estimation not only improves the
success rate of the unwrapping but also acts as a denoising
filter and therefore leads to lower uncertainty in the estimated
coordinate.

Fig. 14 shows the results of the unwrapping of phasemap 2,
again, for the heterodyne unwrapping, the optimization-based
unwrapping, the presented temporal and spatio-temporal
unwrapping, respectively. Here again, the heterodyne method
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FIGURE 13. Reconstruction of phase map 1 influenced by Gaussian noise with σϕ = 0.15 rad. The top row shows the phase reconstruction as 3D
plot, where the linear phase ramp is removed. The middle row shows the reconstructed phase. The bottom row shows the phase error.
(a) Heterodyne: εx = 0.399, sx = 78.19%. (b) Optimization-based: εx = 0.011, sx = 99.89%. (c) Probabilistic temporal: εx = 0.008, sx = 99.99%.
(d) Probabilistic spatio-temporal: εx = 0.003, sx = 100%.

FIGURE 14. Reconstruction of phase map 2 influenced by Gaussian noise with σϕ = 0.15 rad. The top row shows the phase reconstruction as 3D
plot. The middle row shows the reconstructed phase. The bottom row shows the phase error. (a) Heterodyne: εx = 0.418, sx = 78.35%.
(b) Optimization-based: εx = 0.031, sx = 99.24%. (c) Probabilistic temporal: εx = 0.014, sx = 99.90%. (d) Probabilistic spatio-temporal:
εx = 0.005, sx = 99.97%.
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performs significantly worse than the other methods. Only
78.35% of the pixels can be correctly unwrapped and the esti-
mation error is very high. As before, the optimization-based
method shows errors at the boundaries of the coding interval,
that is, at the right edge of the spiral and the right side
of the phase map. Also, in addition, unwrapping errors
occur near the 2π-discontinuities of the wrapped phases,
which could be caused by the non-integer frequencies. The
probabilistic temporal method again shows smaller errors at
the boundaries of the coding interval and faulty lines as in
the optimization-based method do not appear. The spatio-
temporal method again shows an overall smaller error and can
correctly unwrap almost all pixels. The error map shows that
the pixels along the edge of the spiral have a larger error. This
can be explained by the fact that for these pixels the continuity
assumption of the surface is violated and these pixels were
detected as an edge, see Fig. 12c. Wherever an edge is
detected, the temporal method is used, everywhere else the
spatio-temporal method helps to improve the estimation.
Further, the spatio-temporal method is clearly more robust
against unwrapping errors, which can also be seen in the error
map at the right edge of the spiral. Here, only unwrapping
errors occur exactly on the edge. The pixels away from the
edge can be correctly unwrapped.

VI. CONCLUSION
In this work, we presented a new probabilistic approach for
phase unwrapping which uses circular statistics to describe
the phase-shift coding. The presented method unwraps all
phase measurements simultaneously by finding the coordi-
nate that had the maximum probability to cause the phase
measurements. Using circular statistics, both the periodicity
of the phase is taken into account and the estimation of the
phase uncertainty can be included in the unwrapping process,
thus automatically compensating for individual erroneous
phase measurements. We achieve this by expressing the
individual phase measurements as appropriate stochastic
variables, and we investigated different distributions to
describe them. We further determined the probability density
of the encoded coordinate, found the optimal decoding by a
maximum likelihood approach, and thus can implicitly and
simultaneously compensate for the wrapping of all phase
measurements. Furthermore, we can extend the presented
probabilistic method to a spatio-temporal approach by
integrating a local surface continuity assumption into the
framework and modeling the local pixel neighborhood. This
results in an implicit smoothing of the probability densities
over the spatial dimensions. To ensure the assumptions are
not violated, we detect discontinuities in the surface using a
modified edge detector and exclude them from this spatial
modeling.

In simulations, we compared our methods with state-of-
the-art temporal phase unwrapping algorithms and investi-
gated the effect of different noise types. The results show
that the proposed methods are noticeably more robust against
noise. This provides the ability to increase the acquisition

speed of a structured illumination system by using phase-shift
coding with fewer shifts, where the noise level is generally
higher. It was also shown that the proposed methods allow
a relatively free range in the choice of frequencies of the
sinusoidal pattern sequence so that even rational frequencies
yield good results. At the same time, it is demonstrated that by
modeling the periodicity using circular probability densities,
the unwrapping errors at the boundary of the coding interval
can be significantly reduced. In addition, the inclusion of
the phase uncertainty allows to automatically compensate
for too noisy phase measurements, making the presented
methods very robust against impulse noise. Although the
von Mises distribution does not ideally describe the phase
noise, it is better able to handle impulse distortions and
thus proves to be a suitable compromise to compensate
well for both Gaussian noise and impulse noise at the same
time. Finally, the extension of the temporal approach to
a spatio-temporal approach can considerably increase the
robustness of the method even further, eventually leading to
improved performance of optical metrology applications.
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