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Abstract. 	Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent 
models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological 
traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear 
transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically 
modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-
consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like 
effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 
(CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene 
editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors 
enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has 
progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an 
overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, 
as well as the limitations, of gene editing in pigs.
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Introduction

Genetically modified animals, especially rodents, are widely 
used as biomodels to elucidate animal physiology and disease 
mechanisms, including human traits and diseases. However, for 
efficient translational and preclinical studies, additional insights 
from non-rodent animal models are important [1]. Pigs are similar to 
humans in several respects, particularly in anatomy and physiology. 
Additionally, they breed year-round with large litter sizes. As pigs are 
considered an excellent animal model, gene modification is expected 
to improve the value of pig resources for biomedical research. The first 
transgenic pig, reported in 1985 [2], was produced by microinjection 
of exogenous DNA into the pronuclei of porcine zygotes through a 
fine glass needle. Subsequently, pronuclear injection has been used 
to establish genetically modified pig lines [3, 4]. This technique 
is simple but requires technical proficiency. Furthermore, the low 
efficiency of generating founder pigs carrying mutations and the 
random integration of injected DNA into the genome without control 
of the copy number result in unstable phenotypes, gene silencing, 
and unpredictable gene expression, thereby limiting the application 

of such mutant pigs.
In mice, the establishment of embryonic stem cells (ESCs) 

promoted the development of genetically modified animals owing 
to the production of chimeras with germline transmission, which 
represents a significant advance in biomedical research. However, 
for pigs, stem cell lines, including ESCs, which contribute to the 
germline, are not available [5]. Since somatic cell nuclear transfer 
(SCNT) has been established in pigs [6–8], SCNT using genetically 
modified somatic cells as nuclear donors has been widely chosen 
as a method for the generation of genetically modified pigs. The 
correct use of somatic cells carrying the desired mutation, including 
multiple gene modifications, as nuclear donors virtually ensures that 
pigs will carry the desired mutations and the appropriate number 
of copies of the transgene. Furthermore, direct gene editing during 
embryogenesis often induces genetic mosaicism, which complicates 
the phenotypic analysis of founders, whereas SCNT can ensure 
non-mosaic genotypes in the resulting pigs. These characteristics, 
which have significant advantages, show that SCNT can be used as 
a primary method for the generation of genetically modified pigs.
SCNT overcomes the low efficiency and random transmission of 

gene modifications in delivered piglets that characterize pronuclear 
microinjection. However, site-specific gene insertion in porcine cells 
is limited by the low efficiency of homologous recombination (HR) 
and the sophisticated selection processes within cells following gene 
modification procedures, necessitating laborious and time-consuming 
processes [9]. Recently developed precise nuclease-mediated gene 
editing systems have dramatically improved gene modification in 
pigs. This review describes the production of genetically modified 
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pigs using gene editors, provides an overview of approaches for the 
generation of genetically modified pigs using various types of gene 
editors, and highlights current trends, including the establishment 
of disease models and research on pig-to-human transplantation, as 
well as the limitations of gene editing in pigs.

Gene Editors:  
Improvements in Engineered Endonucleases

Engineered endonucleases, including artificial nucleases, such as 
zinc finger nucleases (ZFNs) [10, 11] and transcription activator-
like effector nucleases (TALENs) [12], as well as RNA-guided 
endonucleases, such as the clustered regularly interspaced short 
palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/
Cas) system [13, 14], are major innovations for gene modifica-
tion in somatic cells, stem cells, and zygotes/embryos of various 
animal species. These nucleases have precise DNA-binding ability 
and generate double-strand breaks (DSBs) at the desired genomic 
locus. DSBs trigger endogenous DNA repair via non-homologous 
end-joining (NHEJ) or homology-directed repair (HDR) pathways 
[15]. NHEJ occurs when the ends of a DSB are rejoined without any 
DNA template to guide this repair. Successfully repaired targeted 
sequences are repeatedly cut by gene editors, resulting in the frequent 
introduction of short DNA insertions/deletions (indels). These indels 
create targeted gene knockouts by inducing a frameshift in the codons, 
which is followed by the formation of a premature termination codon 
[12]. HDR relies on donor DNA with homologous arms from sister 
chromatids, homologous chromosomes, exogenous DNA templates, 
or single-strand donor oligonucleotides (ssODNs), and enables 
gene knock-in and the introduction of the desired point mutation. 
In general, the frequency of HDR is lower than that of NHEJ in 
most cell types [16].
ZFNs are gene editors composed of DNA-binding domains (zinc 

finger proteins) and a DNA-cutting domain (the chimeric restriction 
nuclease FokI) acting as a heterodimer. Zinc finger domains recognize 
specific sequences in genomic DNA, after which FokI nuclease and 
the zinc finger protein induce DSBs at the targeted position. However, 
the practical use of ZFNs in laboratories is hindered by high costs 
and technical difficulties [17]. TALENs are conceptually similar to 
ZFNs. Transcription activator-like effectors (TALEs) are naturally 
occurring proteins found in the plant pathogenic bacterial genus 
Xanthomonas. TALENs have a TALE as the DNA-binding domain 
and FokI as the cleavage domain. The preparation of TALENs is 
simpler than that of ZFNs; therefore, they are preferred in laboratory 
settings for gene editing.
ZFNs and TALENs are artificial nucleases. In contrast, CRISPR/

Cas9 is an RNA-guided endonuclease that is derived from an adaptive 
bacterial immune system component [13, 14, 18]. The CRISPR/Cas9 
system comprises a guide RNA (gRNA) and Cas9 nuclease. Since the 
first practical demonstration of gene editing using the CRISPR/Cas9 
system in 2013, the system has been dramatically improved. Various 
gRNA/Cas9-related expression plasmids, Cas9 proteins, tools for 
gRNA design, and subsequent gRNA order/purchase systems are now 
available [19]. The system does not require specialized methodology 
or equipment; this has contributed to its recent widespread use.
Off-target effects, which are unexpected DNA cleavages caused by 

the binding of gene editors to unintended genomic sites, are of major 
concern in gene editing, especially using the CRISPR/Cas9 system; 
these have limited the research and clinical applications of gene 
editors [20, 21]. Carey et al. highlighted the frequency of off-target 
events induced by cytoplasmic microinjection of CRISPR/Cas9 during 
embryogenesis [22]; they detected off-target cleavage, but concluded 
that the frequency was low. Zhou et al. also detected off-target events 
induced by cytoplasmic microinjection of CRISPR/Cas9 [23]. Other 
off-target events were observed during SCNT-mediated production 
of gene-edited pigs using a ZFN [24] and CRISPR/Cas9 [25, 26], 
but mutations were only observed in non-coding regions in two out 
of the three studies [24, 26]. To the best of our knowledge, off-target 
events in gene-edited offspring have not been detected in any other 
study. Choi et al. showed that there was no off-target cleavage in 
offspring when using whole-genome sequencing [27]. To date, 
off-target events have not produced any critical problems in gene-
edited porcine offspring. Various approaches have been developed 
to minimize these off-target effects, such as off-target detection by 
algorithmically designed software and genome-wide assays, the use 
of cytosine or adenine base editors, prime editing, and the chemical 
modification of gRNA [19, 28]. Furthermore, Cas9 variants such as 
Cas9 nickase [29], which cleaves only the target strand (by double 
nicking), and catalytically dead Cas9 combined with FokI nuclease 
(FokI-dCas9) [30, 31], reduce off-target events. Variants suggested 
by structural studies of Cas9, such as Cas9-HF1 [32], evo-Cas9 
[33], eSpCas9 [34], and Hypa-Cas9 [35], also improve gene editing 
efficiency and discrimination against off-target events. The careful 
design of binding modules or gRNAs and improved application 
methods will minimize off-target effects in founder generations and 
reduce the labor required to analyze off-target candidates.

Methods for Generation of Genetically Modified Pigs 
Using Gene Editors

The ZFN, TALEN, and CRISPR/Cas9 systems enable efficient 
gene targeting and the introduction of multiallelic modifications 
into somatic cells, simplifying the preparation of donor cells for 
SCNT in pigs. Furthermore, gene editors have enabled the direct 
modification of genomic DNA in zygotes/embryos using cytoplasmic 
microinjection and electroporation (Fig. 1).

SCNT using gene-edited somatic cells
Gene editors enable the one-step knockout of genes in somatic cells 

without any marker or exogenous DNA fragments. Such gene-edited 
cells have accelerated SCNT-mediated production of genetically 
modified pigs. Gene editors also facilitate multiple gene editing and 
knock-in of exogenous genes; hence, double- [36–38], triple- [39–41], 
and quadruple-gene-edited pigs [42] and knock-in pigs [43, 44] have 
been generated using the SCNT technique. Following appropriate 
selection of donor cells after gene editing, the delivered piglets 
carry the desired genotypes. Furthermore, SCNT does not result in 
mosaicism, which is observed in gene-editor-mediated direct gene 
modification during embryogenesis, and thus aids in the phenotypic 
analysis of founder pigs. SCNT is the primary method for generating 
gene-edited pigs. However, offspring derived from reconstructed 
embryos often show abnormalities, such as birth defects, abortions, 
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and early postnatal death; this is a limitation of SCNT [45].

Direct introduction of gene editors during embryogenesis
Microinjection of gene editors into zygotes/embryos: The direct 

introduction of gene editors into the cytoplasm, an alternative to SCNT, 
simplifies the genetic modification of fertilized zygotes/embryos. 
Porcine oocytes have high lipid contents; therefore, centrifugation 
is required to visualize the pronuclei for successful pronuclear 
injection at the zygote stage. However, gene editors are generally 
supplied with nuclear localization signals, making the centrifugation 
procedure and maneuvering of the glass needle toward the pronuclei 
unnecessary. Cytoplasmic microinjection-mediated gene-edited pigs 
have been produced using gene editors in the early stages of their 
development [46–48]. Microinjection also enables the introduction 
of large molecules; therefore, microinjection-mediated knock-in pigs 
can be established [49]. An advantage of microinjection-mediated 
gene editing is the high viability of the manipulated zygotes/embryos. 
After the transfer of microinjected zygotes/embryos, the litters 
obtained from manipulated embryos tend to be larger than those 
from embryos generated by SCNT [50]. Although the results of 
embryo transfer depend on the condition of the recipient surrogates 
and operator skill in embryonic manipulation, the high viability of 
the zygotes/embryos and resulting piglets reduces labor.
Delivery of CRISPR/Cas9 system via electroporation dur-

ing embryogenesis: Electroporation-mediated gene editing is a 
micromanipulation-free method in which large numbers of gene-edited 
zygotes/embryos can be prepared by introducing gene editors into 
zygotes. In mice, electroporation is widely used to introduce gene 

editors [51]. Gene editing via electroporation has also been applied to 
porcine zygotes [52], with successful gene modification (knockout) 
[52–55]. Electroporation-mediated gene editing requires no special-
ized equipment and benefits from a simple process and high zygote 
viability. However, the introduction of large molecules, including 
transgenes for knock-in, by electroporation alone is difficult in pigs. 
Generally, the molecular uptake into cells via electroporation is 
proportional to the field strength, pulse length, and number of pulses 
used. Porcine in vitro-fertilized zygotes/embryos are sensitive to 
electricity, and high voltages are harmful, unlike in mice [52, 56]. 
Hence, a knock-in system for large transgenes via electroporation has 
not been established. Further research focusing on electroporation-
mediated gene editing and the proper choice of electroporation and 
cytoplasmic microinjection techniques (depending on the study 
purpose and type of mutation) is needed.

Recent Trends in Gene Editing in Pigs

Gene editors have been used to generate genetically modified 
pigs. In 2011, fifteen years after the initial report of the concept of 
ZFNs [10], genetically edited pigs were generated using them [24, 
57, 58]. TALEN and the CRISPR/Cas9 system were also applied to 
generate genetically modified pigs soon after practical gene editing 
in mammalian cells was demonstrated. The low-density lipoprotein 
receptor (LDLR)-knockout pigs reported in 2012 were the first to be 
generated using a TALEN [59]. Using the CRISPR/Cas9 system, 
Whitworth et al. generated CD163- and CD1D-modified pigs using 
SCNT and cytoplasmic microinjection to confer disease resistance 
against porcine reproductive and respiratory syndrome [47]. Recently, 
gene editors have been utilized extensively for the rapid establishment 
of valuable engineered pig lines that can be used in human medicine, 
e.g., as disease models and organ donors.

Disease models
Pigs are among the best animals for disease models in medical 

research, which has implications for translational and preclinical 
research, as they are intermediate between mice and humans in 
terms of their physiological and anatomical relationships. Selection 
of the appropriate pig breed or strain, and age is important for the 
application of surgical and non-surgical procedures typically used in 
human medicine (e.g., catheterization, heart surgery, and endoscopy). 
These clinical procedures are particularly difficult or impossible to 
perform in many other animal models, including rodents, owing to 
the small size of the species. Various types of gene-edited pigs have 
been generated to establish models for intractable diseases (Table 1). 
Gene editing is expected to accelerate the application of pig lines 
as disease models.

Tissue/organ donors for pig-to-human transplantation
Pigs are ideal tissue/organ donors for humans owing to the high 

similarity of their organs, especially in terms of size and structure. 
Pig-to-human xenotransplantation is a solution to the shortage of 
organs for human transplantation. However, xenoantigens cause 
hyperacute rejection and limit the success of interspecific xenografts. 
Therefore, genes involved in xenoantigen biosynthesis, such as 
GGTA1, CMAH, and B4GALNT2, are key targets for improving the 

Fig. 1.	 Schematic of major methods for generating genetically modified 
pigs using gene editors.
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outcomes of xenotransplantation. GGTA1 is a major target gene, 
and its inactivation has been demonstrated using ZFNs [57, 60, 61], 
TALENs [62–64], and CRISPR/Cas9 [55, 65, 66]. However, for 
successful xenotransplantation, all major xenoantigens expressed 
in porcine tissues should be removed. To this end, GGTA1/CMAH 
double-knockout [37, 67–69] and GGTA1/CMAH/B4GALNT2 triple-
knockout pigs [39, 70, 71] have also been generated using SCNT 
and gene editing. Paris et al. demonstrated that organs derived from 
ASGR1-deficient pigs exhibit decreased human platelet uptake, 
which may prevent xenotransplantation-induced thrombocytopenia 
[72]. Gene editors enable various approaches to regulating immune 
rejection.
Additional major hurdles for successful xenotransplantation are 

organ size and the elimination of porcine endogenous retrovirus 
(PERV). Xeno-organs donated by genetically modified pigs car-

rying the genetic background of domestic pigs can grow rapidly; 
this can generate incompatibility with recipients and impair their 
long-term function after transplantation. Growth hormone receptor 
(GHR)-deficient pigs with reduced organ size [73, 74] and subsequent 
GHR/GGTA1 double-knockout pigs expressing the human cluster of 
differentiation (hCD46) and human thrombomodulin (hTHBD) [75] 
have been generated by gene editing. This approach will improve 
the implementation of xenotransplantation. Furthermore, the risk of 
PERV transmission to humans after xenotransplantation is a concern 
[76, 77]. PERVs constitute an integral part of the porcine genome and 
can be expressed as infectious virus particles. Infection by PERVs 
in human cells has been observed using in vitro co-culture assays, 
which demonstrated the possibility of a new epidemic infectious 
disease induced by xenotransplantation. PERVs are present in various 
proportions in the whole porcine genome, depending on the pig breed 

Table 1.	 Gene-edited pigs to establish models for intractable diseases

Disease Gene targeted Method Editor Reference
Cancer DAZL, APC CT TALEN, CRISPR Tan et al. (2013) [125]

RUNX3 SCNT CRISPR Kang et al. (2016) [126]
TP53 SCNT TALEN Shen et al. (2017) [127]
TP53 EP CRISPR Tanihara et al. (2018) [53]

Cardiomyopathy MYH7 SCNT TALEN Montag et al. (2018) [114]
SGCD SCNT TALEN Matsunari et al. (2020) [128]

Cryopyrin-associated periodic syndrome NLRP3 SCNT CRISPR Li et al. (2020) [116]
Diabetes INS SCNT CRISPR Cho et al. (2018) [129]

IAPP SCNT CRISPR Zou et al. (2019) [107]
PDX1 EP CRISPR Tanihara et al. (2020) [54]

Duchenne muscular dystrophy DMD CMI CRISPR Yu et al. (2016) [130]
Familial hypercholesterolemia LDLR SCNT TALEN Carlson et al. (2012) [59]

ApoE, LDLR SCNT CRISPR Huang et al. (2017) [131]
Human Waardenburg syndrome MITF SCNT, CMI CRISPR Wang et al. (2015) [132]

MITF CMI CRISPR Hai et al. (2017) [133]
Hemophilia B F9 SCNT CRISPR Chen et al. (2020) [134]
Huntington’s disease HTT SCNT CRISPR Yan et al. (2018) [109]
Hutchinson–Gilford progeria syndrome NLRP3 SCNT CRISPR Dorado et al. (2019) [108]
Leigh syndrome SURF1 SCNT TALEN, CRISPR Quadalti et al. (2018) [135]
Marfan syndrome FBN1 SCNT ZFN Umeyama et al. (2016) [136]
Ornithine transcarbamylase deficiency OTC SCNT TALEN Matsunari et al. (2018) [137]
Parkinson’s disease GGTA1, Parkin, DJ-1 SCNT TALEN Yao et al. (2014) [138]

TYR, PINK1, PARK2 SCNT CRISPR Zhou et al. (2015) [139]
Parkin, DJ-1, PINK1 CMI CRISPR Wang et al. (2016) [101]
SCNA SCNT CRISPR Zhu et al. (2018) [115]

Phenylketonuria PAH CMI CRISPR Koppes et al. (2020) [140]
Polycystic kidney disease PKD1 SCNT ZFN He et al. (2015) [141]
von Willebrand disease vWF CMI CRISPR Hai et al. (2014) [48]
X-linked severe combined immunodeficiency IL2RG SCNT ZFN Watanabe et al. (2013) [142]

IL2RG SCNT, CMI CRISPR Kang et al. (2016) [143]
IL2RG CMI CRISPR Chen et al. (2019) [144]
IL2RG SCNT CRISPR Ren et al. (2020) [145]

CT, chromatin transfer; SCNT, somatic cell nuclear transfer; CMI, cytoplasmic microinjection; EP, electroporation.
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and tissue type, making the inactivation of PERVs a difficult task; 
however, genome-wide gene editing has the potential to eliminate 
PERVs from porcine tissues. Gene editing targeting PERVs has been 
demonstrated using CRISPR/Cas9 [78, 79], and PERV-inactivated 
pigs have also been generated using SCNT [80]. These hurdles have 
thus been partially overcome using various gene editing techniques in 
pigs, improving the feasibility of pig-to-human xenotransplantation.
An alternative strategy for producing functional and transplantable 

tissues or organs is to build interspecies chimeras at the embryonic 
level by blastocyst complementation, which involves the injection of 
human ESCs or human induced pluripotent stem cells into genetically 
modified porcine embryos lacking the ability to generate specific 
organs. Missing organs (empty niches) are expected to develop 
from these injected stem cells, resulting in the generation of organs 
derived from human cells. A proof-of-concept has been established 
via the generation of functional pancreases in mouse-rat interspecific 
chimeras [81]. Matsunari et al. demonstrated the compensation of 
disabled organogenesis by allogenic blastocyst complementation in 
pigs by injecting donor blastomeres into gene-edited host embryos 
[82]. However, at present, the utilization of stem cells for interspecies 
chimerism is quite limited with respect to pigs [83, 84]. Therefore, 
further investigations are required.

Current Status and Future Prospects of  
Gene-edited Pigs

Figure 2 summarizes recent trends in the number of articles report-
ing the generation of genetically modified pigs using gene editors 

available via PubMed. The search terms used were “pig,” “ZFN,” 
“TALEN,” and “CRISPR”; these picked up studies demonstrating 
the production of gene-edited pigs/fetuses. The gene editors (ZFN, 
TALEN, and/or CRISPR-related systems) and methods for generat-
ing gene-edited pigs (SCNT, cytoplasmic microinjection, and/or 
electroporation) used in the studies were investigated. Although the 
introduction of gene editors during embryogenesis using microinjec-
tion or electroporation has an advantage over SCNT with respect to 
the simplicity of the procedure, the use of SCNT is more common. 
In this section, we discuss the limitations and future prospects of 
direct gene editing during embryogenesis.

Mosaicism
Genetic mosaicism, in which a single individual carries multiple 

genotypes, contributes to the inability to generate mutant pigs via 
direct gene editing during embryogenesis [85]. In founder animals, 
both the direct injection and electroporation-mediated introduction 
of gene editors into the cytoplasm often induce mosaicism due to 
the delayed expression of mRNA-related gene editors or remnant 
activity of the gene editors throughout the cell division process 
[85–89]. Mosaicism complicates the phenotypic analyses of founders, 
which require the F1 generation. Owing to the long gestation period 
and time to reach sexual maturity in pigs, production of the F1 
generation involves a tremendous amount of time and cost, seriously 
limiting research progress. Mosaicism is detected by genotyping 
(e.g., by the detection of multiple alleles, typically three alleles or 
more, or extreme deviations in allele frequencies). We investigated 
previous examples of gene modification during embryogenesis by 

Fig. 2.	 Trends in recent reports on generating genetically modified pigs using gene editors. Number of PubMed articles reporting the generation of 
genetically modified pigs using gene editors over the last 10 years (2011–2020; search terms: “pig,” “ZFN,” “TALEN,” and “CRISPR”). (A) Total 
number of articles. (B) Changes in the number of articles per year, including information on gene editors and the method used to generate mutant 
pigs. SCNT, somatic cell nuclear transfer; CMI, cytoplasmic microinjection into zygotes/embryos; EP, electroporation into zygotes/embryos; 
CRISPR, clustered regularly interspaced short palindromic repeats; Cas, CRISPR-associated protein; TALEN, transcription activator-like effector 
nuclease; ZFN, zinc finger nuclease. Studies using multiple gene editors or multiple methods used to generate mutant pigs were classified into 
each relevant category and were therefore double-counted. Studies using CRISPR/Cas-related methods (e.g., Cas9 nickase and FokI-dCas9) were 
classified under “CRISPR.”
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cytoplasmic microinjection or electroporation using gene editors, 
including TALENs and ZFNs, and found that mosaicism in gene-edited 
offspring was reported in 18 out of 23 studies (Table 2). Mosaicism 
occurs at various frequencies [85], and the type of gene editor and 
modification [90, 91], introduction method, animal species, and 
introduced component of gene editors (e.g., expression plasmid, 
mRNA, and protein/nuclease) seem to be potential factors.
Appropriate timing of the introduction of gene editors during 

embryogenesis is considered a key factor in reducing mosaicism 
[87]. Microinjection of the CRISPR/Cas9 system into the cytoplasm 
of germinal vesicle-stage oocytes successfully generated non-mosaic 
genome-edited porcine embryos [92]. Onuma et al. demonstrated 
that microinjection of the CRISPR/Cas9 system during meiotic 
maturation preferentially induces heterozygous mutations without 
mosaicism after germinal vesicle breakdown and chromosome 

condensation [93]. Conversely, electroporation-mediated gene editing 
in mature oocytes has demonstrated that the type of egg may influence 
development after electroporation treatment and the mutation rate in 
the resulting blastocyst; however, mosaicism is not controlled [94]. 
A simple approach, the optimization of CRISPR/Cas9 component 
concentrations, is effective in increasing gene editing efficiency 
in cytoplasmic microinjection [95] and electroporation [96]. Such 
strategies will improve gene editing efficiency during embryogenesis. 
Further optimization of the methods for the application of gene 
editors in pigs is required.

Multiple gene editing
Currently, the generation of multiple-gene-edited pigs is an im-

portant research goal aimed at a better understanding of complex 
biological processes and the management of redundancies and 

Table 2.	 Gene editing efficiency and mosaicism of resulting offspring/fetuses in studies using cytoplasmic microinjection- or electroporation-
mediated gene editing

Reference Method Gene targeted Introduced components
Gene-edited/
total offspring 
and fetuses (%)

Mosaic/gene-edited 
(%)

ZFN
Lillico et al. (2013) [46] CMI RELA mRNA 1/9 (11.1) 0/1 (0)

TALEN
Lillico et al. (2013) [46] CMI RELA mRNA 8/39 (20.5) 2/8 (25.0)
Wang et al. (2016) [146] CMI B2M mRNA 6/7 (85.7) 3/6 (50.0)

CRISPR
Hai et al. (2014) [48] CMI vWF Cas9 mRNA and gRNA 11/16 (68.8) 2 or more/11 ( - )
Whitworth et al. (2014) [47] CMI CD163 Cas9 mRNA and gRNA 4/4 (100) 0/4 (0)

CD1D Cas9 mRNA and gRNA 4/4 (100) 1/4 (25.0)
Wang et al. (2015) [132] CMI MITF Cas9 mRNA and gRNA 2/2 (100) 0/2 (0)
Zhou et al. (2016) [23] CMI Sox10 (point mutation) Cas9 mRNA and gRNA 12/12 (100) 8/12 (66.7)
Peng et al. (2015) [49] CMI recombinant human serum 

albumin (knock-in)
Cas9 mRNA and gRNA 16/16 (100) 1/16 (6.25)

Wang et al. (2016) [101] CMI Parkin, DJ-1, PINK1 Cas9 mRNA and gRNA 2/2 (100) 0/2 (0)
Petersen et al. (2016) [66] CMI GGTA1 Plasmid 11/12 (91.7) 4/11 (36.4)
Yu et al. (2016) [130] CMI DMD Cas9 mRNA and gRNA 1/2 (50.0) 1/1 (100)
Kang et al. (2016) [143] CMI IL2RG Cas9 mRNA and gRNA 4/6 (66.7) 0/4 (0)
Park et al. (2017) [147] CMI NANOS2 Cas9 mRNA and gRNA 18/18 (100) 5/18 (27.8)
Wu et al. (2017) [148] CMI PDX1 Cas9 mRNA and gRNA 3/9 (33.3) 2/3 (66.7)
Hai et al. (2017) [133] CMI MITF Cas9 mRNA and gRNA 2/2 (100) 0/2 (0)
Hinrichs et al. (2018) [73] CMI GHR Cas9 mRNA and gRNA 3/8 (37.5) 0/3 (0)
Xiang et al. (2018) [149] CMI IGF2 Nickase mRNA and gRNA 6/6 (100) 3/6 (50.0)
Whitworth et al. (2019) [150] CMI ANPEP Cas9 mRNA and gRNA 13/18 (72.2) 3/13 (23.1)
Tu et al. (2019) [151] CMI CMP-N-glycolylneuraminic 

acid hydroxylase
Cas9 mRNA and gRNA 5/6 (83.3) 3/5 (60.0)

Chen et al. (2019) [144] CMI TYR, IL2RG, RAG1 Cas9 mRNA and gRNA 15/16 (93.8) 5/15 (33.3)
Tanihara et al. (2016) [52] EP MSTN Cas9 protein and gRNA 9/10 (90.0) 4/9 (44.4)
Tanihara et al. (2018) [53] EP TP53 Cas9 protein and gRNA 6/9 (66.7) 4/6 (66.7)
Tanihara et al. (2020) [54] EP PDX Cas9 protein and gRNA 9/10 (90.0) 4/9 (44.4)
Tanihara et al. (2020) [55] EP GGTA1 Cas9 protein and gRNA 5/6 (83.3) 2/5 (40.0)

CMI, cytoplasmic microinjection; EP, electroporation. In this table, offspring/fetuses carrying three alleles or more, or extreme deviations in 
allele frequencies are denoted as mosaic.
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compensatory changes in signaling pathways. Gene editors can 
induce mutations in multiple targeting sites, enabling the one-step 
generation of double- and triple-knockout pigs via direct introduction 
into zygotes/embryos. Multiple-gene-edited animals have been 
generated by cytoplasmic microinjection of CRISPR/Cas9 in mice 
[97, 98], rats [99], and monkeys [100]. In pigs, the SCNT technique 
is the primary method, as described above, and there are few reports 
of one-step generation of multiple-gene-edited pigs by microinjec-
tion or electroporation [101]. As the number of simultaneously 
targeted genes increases, the risk of insufficient gene knockout, 
including mosaicism, will also increase. The investigation of in 
vitro electroporation-mediated multiple-gene editing has progressed 
[102, 103]. The reductions in mosaicism and the optimization of 
multiple-gene editing efficiency in zygotes/embryos achieved to date 
are inadequate; highly efficient direct gene modification is expected 
to be achieved in the near future.

Knock-in during embryogenesis
Knock-in of transgene(s) is a crucial approach for the genera-

tion of valuable pigs for experimental research, such as those with 
knock-in of human complement regulatory proteins (CD46, CD55, 
CD59, etc.) to reduce complement activity in xenotransplantation 
[41]. Although most knock-in pigs have been generated by SCNT 
using gene-edited somatic cells carrying transgenes as donor cells 
[31, 43, 44, 104–109], cytoplasmic microinjection of gene editors 
can also be used to successfully generate knock-in pigs [49, 110]. 
However, knock-in pigs have not been successfully generated by 
electroporation-mediated methods, because the introduction of large 
transgenes for knock-in is difficult using electroporation alone in 
pigs, as described above. Direct knock-in during embryogenesis 
using gene editors has a wide range of applications. Although HDR 
followed by DSBs induced by a gene editor facilitates the generation 
of knock-in animals, the HDR efficiency and the resulting rate of 
knock-in events are low [16], in contrast to the high efficiency of 
Cas9 cleavage. Accordingly, the system needs to be optimized for 
practical use.
Various issues need to be resolved to achieve electroporation-

mediated knock-in of transgenes into zygotes/embryos. Owing 
to the greater sensitivity of in vitro-fertilized porcine zygotes to 
electricity compared with that of in vivo-derived mouse embryos 
[52, 56], the size of molecules that can be introduced into zygotes/
embryos is limited. To efficiently deliver knock-in donor DNA 
into zygotes without mechanical injury, an adeno-associated viral 
(AAV) vector has been applied in mice [111] and rats [112] without 
removing the zona pellucida. Although AAV vector-mediated gene 
modification in porcine cells has been adapted to generate mutant 
pigs by combining it with SCNT techniques [113], the investigation 
of gene modification during embryogenesis via an AAV vector is 
insufficient. The development of new and efficient techniques for 
delivering large molecules into zygotes and embryos is crucial.

Introduction of point mutations during embryogenesis
A large number of disease-causing single-nucleotide polymorphisms 

have been identified in humans. Although post-DSB gene corrections 
by gene editors often induce random insertions and deletions at 
the target locus, the co-introduction of an ssODN as a template 

enables the introduction of point mutations in precise positions via 
the HDR pathway. In the use of gene editors, challenges related to 
the establishment of human disease models originating from point 
mutations [23, 114–116] and humanized pigs expressing human 
insulin [117] have been reported. However, the SCNT technique was 
used in almost all of these studies [114–117]. Inhibition of NHEJ or 
enhancement of HDR is crucial for achieving targeted gene knock-ins 
or point mutations at precise positions during embryogenesis [118]. 
At present, the low frequency of HDRs in porcine zygotes/embryos 
limits the utilization of this methodology. Despite progress in trials 
aimed at enhancing HDR using an NHEJ inhibitor or HDR enhancer 
in cell lines and mouse/rabbit embryos [119], studies using porcine 
zygotes/embryos are required.
The CRISPR/Cas-mediated base editor system, another approach 

for the introduction of a point mutation at a precise position without 
dependence on HDR, generates mutations at a single-base level [120, 
121]. Cytosine base editors convert targeted C–G base pairs to T–A 
pairs, and adenine base editors convert targeted A–T pairs into G–C 
pairs without causing DSBs. Wang et al. demonstrated base editing 
in porcine fetal fibroblast cells using a modified base editor system 
[122], and Xie et al. generated base-edited pigs via cytoplasmic 
microinjection and SCNT [123]. These studies further support the 
feasibility of using pigs as human disease models. Although there are 
some technical limitations, such as insufficient specificity, protospacer 
adjacent motif (PAM) compatibility concerns, and a narrow active 
window [124], this technology has the potential to revolutionize 
gene therapy for genetic diseases and enable the efficient generation 
of animal models of diseases.

Conclusion

Owing to the development of gene-editing technologies, the 
generation of genetically modified pigs has dramatically expanded. 
However, some limitations remain. SCNT using gene-edited somatic 
cells ensures the generation of desired mutations in the resulting 
pigs, but requires sophisticated techniques. Microinjection- and 
electroporation-mediated gene editing are simple but limited by 
insecure knockout/knock-in efficiencies and mosaicism. However, 
various types of gene editors and their related technologies can be 
effectively applied to pigs using optimized and appropriate methods 
for introduction. In the future, gene editors will enable the on-demand 
preparation of pigs carrying desired mutations, including precise 
knock-ins.
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