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Abstract: Cognitive decline affects the clinical course in patients with Parkinson’s disease (PD)
and contributes to a poor prognosis. However, little is known about the underlying network-level
abnormalities associated with each cognitive domain. We aimed to identify the networks related
to each cognitive domain in PD using resting-state functional magnetic resonance imaging (MRI).
Forty patients with PD and 15 normal controls were enrolled. All subjects underwent MRI and the
Mini-Mental State Examination. Furthermore, the cognitive function of patients with PD was assessed
using the Montreal Cognitive Assessment (MoCA). We used independent component analysis of the
resting-state functional MRI for functional segmentation, followed by reconstruction to identify each
domain-related network, to predict scores in PD using multiple regression models. Six networks
were identified, as follows: the visuospatial-executive-domain-related network (R2 = 0.54, p < 0.001),
naming-domain-related network (R2 = 0.39, p < 0.001), attention-domain-related network (R2 = 0.86,
p < 0.001), language-domain-related network (R2 = 0.64, p < 0.001), abstraction-related network
(R2 = 0.10, p < 0.05), and orientation-domain-related network (R2 = 0.64, p < 0.001). Cerebellar
lobule VII was involved in the visuospatial-executive-domain-related and attention-domain-related
networks. These two domains are involved in the first three listed nonamnestic cognitive impairment
in the diagnostic criteria for PD with dementia (PDD). Furthermore, Brodmann area 10 contributed
most frequently to each domain-related network. Collectively, these findings suggest that cerebellar
lobule VII may play a key role in cognitive impairment in nonamnestic types of PDD.

Keywords: Parkinson’s disease; cognition; functional MRI; network; cerebellum

1. Introduction

Traditionally, a focal brain lesion was believed to cause a specific neurological sign
or symptom; however, this notion has recently been challenged [1]. One possible reason
is that the region implicated in a particular function depends on the specific individual.
That is, the size and position of an area related to a particular function are diverse among
individuals; for example, this is clearly demonstrated in aphasia [2] Another reason may be
that systems, rather than regions, are responsible for each function. That is, different lesions
may produce similar neurological signs or symptoms via a common network. Overlapping
lesions within a network were found for several clinical syndromes using lesion network
mapping [1] In line with these findings, network analysis has been extended to study
neurological disorders including epilepsy [3], Parkinson’s disease (PD), [4,5], dementia
with Lewy bodies [4], and Alzheimer’s disease [4] Several different approaches have been
proposed to perform network analysis, such as electroencephalography, functional mag-
netic resonance imaging (fMRI), diffusion tensor imaging, and fluorodeoxyglucose positron
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emission tomography (FDG PET). Of these, fMRI is expected to provide high spatial res-
olution and allow the detection of functionally related regions, which are identified by
their synchronous fluctuations. Independent component analysis (ICA) is a technique for
analysis of resting-state fMRI. This method reveals macro-scale spatiotemporal organiza-
tion, which is reproducibly composed of intrinsic connectivity networks, including the
default mode network (DMN), dorsal and ventral attention networks, salience network,
auditory network, visual network, and cerebellar network [6] These normal networks
were assessed in PD [7–13], and group-level comparisons were mainly performed in a
univariate, voxel-wise manner that had limitation for single-subject measurements of the
network activity as a whole [14] To overcome this issue, resting-state fMRI data have been
quantitated with disease-related network topographies that were used in FDG PET [14,15]

PD is recognized as a neurodegenerative disorder that is characterized by bradykinesia,
rigidity, and resting tremor. Patients with PD also present with a broad spectrum of nonmotor
symptoms, such as cognitive impairment, which affects the clinical course and contributes to
a poor prognosis [16,17] Cognitive impairment is reported to be associated with microtubule-
associated protein tau H1 haplotype [18,19]; apolipoprotein epsilon 4 alleles [20–22] the
glucocerebrosidase gene [23,24]; and cerebrospinal fluid levels of amyloid beta 1–42 [25–31],
alpha-synuclein [30,32], and tau [25,26,33] Network abnormalities may also be associated with
cognitive impairment in PD, and univariate analysis revealed the areas related to cognitive
impairment in PD, as described in the previous paragraph [7,10–13,34] In addition, one
multivariate analysis demonstrated both disease- and verbal-learning-related networks for
PD [14] However, although Montreal Cognitive Assessment (MoCA) is frequently used in
clinical practice and recommended for patients with PD [35], network-level abnormalities
related to each MoCA domain have not yet been elucidated. We therefore functionally
segmented nodes by ICA to reconstruct disease- and domain-related networks beyond the
existing normal networks and tested the hypothesis that a distinct network contributes to
each MoCA domain in PD.

2. Materials and Methods
2.1. Subjects

We studied 40 patients with PD and 15 normal controls in Tokushima University Hospi-
tal between June 2015 and April 2019. Patients were diagnosed with PD according to the UK
Brain Bank criteria [36] All subjects underwent MRI and the Mini-Mental State Examination
(MMSE). The MMSE was used to define the normal controls (Ctr), who had MMSE scores
≥24 and normal activity of daily living. The MRI scan for patients with PD was obtained
during the “off” period. The cognitive function of patients with PD was assessed with the
Japanese version of the MoCA in detail. The levodopa equivalent dose (LED) was based
on the following formula: [37] levodopa/carbidopa × 1 + entacapone × 0.35 + pramipex-
ole × 100 + ropinirole × 20 + rotigotine × 10 + selegiline × 10 + amantadine × 1. The
subjects’ characteristics are summarized in Table 1. Written informed consent was obtained
from all subjects following a detailed explanation of the procedures, and the study proto-
col was approved by the local ethics committee of Tokushima University Hospital. The
characteristics of the subjects are summarized in Table 1.

Table 1. Characteristics of the subjects recruited in this study.

Group Age (Year) Male
(Female)

Handedness
Right (Left)

Disease
Duration (Years) HY MMSE MoCA LED

Ctr 66 ± 13.9 7 (8) 14 (1) NA NA 28.6 ± 1.55 NA NA

PD 69 ± 9.0 22 (18) 36 (4) 5.1 ± 5.84 2.1 ± 0.97 26.5 ± 2.67 22.2 ± 3.56 201 ± 274.7

Abbreviations: Ctr, control; HY, Hoehn–Yahr stage; LED, levodopa equivalent dose; NA, not available; PD, Parkinson’s disease. Mean ± stan-
dard deviation.
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2.2. MRI Acquisition

Image acquisition was completed using a 3.0 T Discovery 750 scanner (GE) at Tokushima
University Hospital. The scan parameters of the resting-state fMRI included field of view
(FOV) = 240 mm, matrix = 64 × 64, TR = 2000 ms, TE = 27.2 ms, flip angle = 77◦, and slice
thickness = 3.0 mm. The parameters of the T1-weighted images included FOV = 240 mm,
matrix 256 × 256, TR = 7.77 ms, TE = 2.98 ms, flip angle = 8◦, and slice thickness = 0.9 mm.
All subjects were instructed to close their eyes without making any movements or thinking
any specific thoughts.

2.3. Voxel-Based Morphometry

Voxel-based morphometry was conducted using SPM12 (http://www.fil.ion.ucl.ac.
uk/spm/ (accessed on 5 June 2021)) with MATLAB version R2016b (MathWorks, Natick,
MA, USA). Using the segmentation function in SPM12, structural images were segmented
into three different classes: gray matter, white matter, and cerebrospinal fluid. A template
was created using Diffeomorphic Anatomical Registration Through Exponentiated Lie
Algebra (DARTEL). A segment of gray matter was warped to the DARTEL template in
Montreal Neurological Institute (MNI) space following an initial affine registration. The
images were modulated to hold information about the volume and were smoothed using a
Gaussian filter with 8 mm full width at half maximum (FWHM). Group differences were
considered significant at a voxel-level threshold of p < 0.001 (uncorrected), with a correction
for cluster extent at p < 0.05. Furthermore, the total gray matter volume was calculated
using a gray matter mask.

2.4. Network Analysis

To improve the study quality before analysis, we excluded any subjects who showed
motion displacement of 3 mm or more, to minimize the effect of motion on MRI. Detailed
methods for the network analysis were described previously [14] A principal component
analysis (PCA) was performed to reduce the dimensions of the data followed by a group
ICA. The number of independent components (ICs) was determined to be 72 according
to the minimum description length criteria [38], and this allowed for functional segmen-
tation [39] The InfoMax algorithm was repeated 100 times using bootstrap resampling
in ICASSO [40] The cluster stability of each IC was estimated using the Iq index [40] ICs
were assessed based on the expectation that reliable networks should present activated
regions in the cortex, nucleus, or both, with time courses dominated by low-frequency
fluctuations [41] Furthermore, we classified ICs into the auditory network, cognitive control
network, DMN, somatomotor network, visual network, cerebellar network, subcortical
network, and non-resting-state network, according to previous reports [6,39,42] ICs were
excluded if their entire volume was <50 voxels when the cut-off for connectivity within each
network was 1.0. Subject-level spatial networks were generated by back reconstruction
through spatial–temporal regression [43] The network expression of a given group-level
network for each subject was calculated as a network score using the scaled subprofile
model (SSM)/PCA [14,44] Network scores were included as independent variables in a
stepwise multiple regression model to predict each domain of the MoCA, and the generated
model was evaluated by R2 values. This type of model-based network was defined as each
domain-related network, which was expressed as a linear combination of the networks
according to the estimated model coefficients.

2.5. Statistics

The two-tailed Student’s t-test was used for comparing continuous variables between
groups, with a significance level set at p < 0.05. All statistical analyses, including the
multiple regression analysis for the model-based network, were performed using SPSS
Statistics version 21 (IBM, Armonk, NY, USA).

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


Diagnostics 2021, 11, 1042 4 of 12

3. Results
3.1. Voxel-Based Morphometry

Using voxelwise analysis, it was found that there were no significant differences
between the normal controls and the patients with PD. In addition, there was no significant
difference in the total gray matter volume between the two groups (Ctr, 603 ± 72.4 mL; PD,
608 ± 65.2 mL; p = 0.77).

3.2. Independent Component Analysis (ICA)

No subjects were excluded because of motion displacement. We identified 72 ICs,
of which 70 had an Iq of at least 0.8. Of these, 18 ICs were excluded because they were
recognized as artifacts (IC2, IC13, IC16, IC19, IC21, IC26, IC27, IC29, IC53, and IC69) or
had <50 voxels (IC32, IC41, IC52, IC55, IC58, IC68, IC70, and IC72). Finally, the ICs were
classified into seven networks: [42] the auditory network (IC42; Figure 1A), cognitive control
network (IC11, IC20, IC22, IC24, IC28, IC31, IC34, IC37–39, IC43–45, IC48–51, IC56, IC57,
IC59, IC61, IC64, IC66, and IC71; Figure 1B), DMN (IC4, IC6, IC8, IC10, IC12, IC15, IC17,
IC18, IC25, IC60, and IC67; Figure 1C), somatomotor network (IC1, IC5, IC7, IC9, IC35, IC40,
and IC42; Figure 1D), visual network (IC14, IC30, IC46, IC54, IC62, and IC63; Figure 1E),
cerebellar network (IC36, IC47, and IC65; Figure 1F), and subcortical network (IC3, and
IC33; Figure 1F). These ICs for further analysis are summarized in Supplementary Table S1.
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Figure 1. Intrinsic connectivity networks. Independent components were classified into seven networks: (A) auditory
network, (B) cognitive control network, (C) default mode network, (D) somatomotor network, (E) visual network, and
(F) cerebellar and subcortical networks. Lt, left; Rt, right.

3.3. Each Domain-Related Network

Each domain-related network was computed from the ICs in a linear model as follows:
visuospatial-executive-domain-related network (R2 = 0.54, p < 0.001; IC31, IC49, IC54,
IC47, and IC56; BA21, BA10, BA37, cerebellar lobule VI/VII/VIII, and BA8; Figure 2A),
naming-domain-related network (R2 = 0.39, p < 0.001; IC25, IC48, and IC14; BA8, BA46, and
BA30; Figure 2B), attention-domain-related network (R2 = 0.86, p < 0.001; IC49, IC71, IC66,
IC36, IC42, IC15, IC1, IC54, IC7, and IC22; BA10, BA38, BA46, cerebellar lobule VII, BA6,
BA11, BA4, BA37, BA3, and BA38; Figure 2C), language-domain-related network (R2 = 0.64,
p < 0.001; IC24, IC3, IC17, IC23, IC62, IC35, and IC48; BA20, caudate nucleus, BA8, BA42,
BA19, BA6, and BA46; Figure 2D), abstraction-domain-related network (R2 = 0.10, p < 0.05;
IC61; BA10; Figure 2E), orientation-domain-related network (R2 = 0.64, p < 0.001; IC49,
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IC4, IC50, IC14, and IC40; BA10, BA32, BA38, BA30, and BA6; Figure 2F). The delayed-
recall-domain-related network was not generated in the present study. Of note, cerebellar
lobule VII was found in the networks related to visuospatial executive or attention function.
These two domains are considered to be core symptoms of dementia in PD [45] Each
domain-related network is summarized in Table 2. Four ICs were found to be associated
with multiple networks and are thus considered to be key hubs linking several networks
(IC14, IC48, IC49, and IC54; BA30, BA46, BA10, and BA37; Figure 3).
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Figure 2. Each domain-related network. Each domain-related network was determined with a
multiple regression model to explain the relationship between brain networks and each domain
score: (A) the visuospatial executive domain, (B) the naming domain, (C) the attention domain, (D)
the language domain, (E) the abstraction domain, or (F) the orientation domain. The cerebellum is
featured in the visuospatial-executive-domain-related and attention-domain-related networks (A,B).
Lt, left; Rt, right.
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Table 2. Multiple regression analysis with each subdomain as dependent variable. 

Dependent Variable R2 Independent Variable BA/Lobule B 95% CI p Value 
visuospatial/executive 0.54 IC31, MTG, CCN 21 0.063 0.024 to 0.101 0.002 

  IC49, MiFG, CCN 10 −0.060 −0.112 to −0.009 0.024 
  IC54, ITG, VIS 37 0.050 0.019 to 0.082 0.003 
  IC47, Cerebellum VI, VII, VIII 0.070 0.009 to 0.132 0.026 
  IC56, SFG, CCN 8 −0.058 −0.112 to −0.005 0.034 

naming 0.39 IC25, SFG, DMN 8 −0.026 −0.043 to −0.010 0.003 
  IC48, MiFG, CCN 46 0.030 0.008 to 0.052 0.008 

Figure 3. Independent components involved in multiple networks. The independent components
that are involved in multiple networks are shown. Note that BA10 contributed most frequently
to each domain-related network. Blue and red indicate negative and positive correlations, respec-
tively, while green indicates either a negative or positive correlation. AT, attention-domain-related
network; BA, Brodmann area; CCN, cognitive control network; IC, independent component; ITG,
inferior temporal gyrus; LA, language-domain-related network; Lt, left; MiFG, middle frontal gyrus;
NA, naming-domain-related network; OR, orientation-domain-related network; VE, visuospatial-
executive-domain-related network, VIS, visual network.



Diagnostics 2021, 11, 1042 6 of 12

Table 2. Multiple regression analysis with each subdomain as dependent variable.

Dependent Variable R2 Independent Variable BA/Lobule B 95% CI p Value

visuospatial/executive 0.54 IC31, MTG, CCN 21 0.063 0.024 to 0.101 0.002

IC49, MiFG, CCN 10 −0.060 −0.112 to −0.009 0.024

IC54, ITG, VIS 37 0.050 0.019 to 0.082 0.003

IC47, Cerebellum VI, VII, VIII 0.070 0.009 to 0.132 0.026

IC56, SFG, CCN 8 −0.058 −0.112 to −0.005 0.034

naming 0.39 IC25, SFG, DMN 8 −0.026 −0.043 to −0.010 0.003

IC48, MiFG, CCN 46 0.030 0.008 to 0.052 0.008

IC14, Cuneus, VIS 30 −0.012 −0.023 to −0.002 0.019

attention 0.86 IC49, MiFG, CCN 10 −0.059 −0.078 to −0.039 <0.001

IC71, STG, CCN 38 0.056 0.036 to 0.075 <0.001

IC66, IFG, CCN 46 0.043 0.026 to 0.059 <0.001

IC36, Cerebellum VII −0.027 −0.043 to −0.011 0.002

IC42, MiFG, SMN 6 0.028 0.016 to 0.040 <0.001

IC15, MeFG, DMN 11 −0.031 −0.042 to −0.020 0.005

IC1, PrG, SMN 4 0.012 0.004 to 0.020 0.005

IC54, ITG, VIS 37 0.020 0.008 to 0.032 0.002

IC7, PoG, SMN 3 −0.025 −0.042 to −0.008 0.005

IC22, STG, CCN 38 −0.017 −0.032 to −0.002 0.029

language 0.64 IC24, Uncus, CCN 20 −0.119 −0.159 to −0.079 <0.001

IC3, CN 0.035 0.017 to 0.054 0.001

IC17, MeFG, DMN 8 −0.046 −0.067 to −0.024 <0.001

IC23, STG, AUD 42 −0.036 −0.057 to −0.015 0.001

IC62, MTG, VIS 19 0.054 0.009 to 0.098 0.020

IC35, MeFG, SMN 6 0.023 0.002 to 0.044 0.034

IC48, MiFG, CCN 46 0.033 0.001 to 0.065 0.043

abstraction 0.10 IC61, MiFG, CCN 10 −0.025 −0.049 to 0.000 0.047

delayed recall NA NA NA NA NA

orientation 0.64 IC49, MiFG, CCN 10 −0.050 −0.068 to −0.031 <0.001

IC4, AC, DMN 32 −0.010 −0.016 to −0.004 0.001

IC50, STG, CCN 38 0.034 0.016 to 0.052 <0.001

IC14, Cuneus, VIS 30 0.011 0.002 to 0.021 0.024

IC40, MeFG, SMN 6 −0.044 −0.083 to −0.005 0.027

Abbreviations: AC, anterior cingulate; AG, angular gyrus; AUD, auditory network; BA, Brodmann area; auditory network; CCN, cognitive
control network; CI, confidence interval; CN, caudate nucleus; DMN, default mode network; HY, Hoehn–Yahr stage; IFG, inferior frontal
gyrus; ITG, inferior temporal gyrus; LED, levodopa equivalent dose; MeFG, medial frontal gyrus; MiFG, middle frontal gyrus; MTG,
middle temporal gyrus; NA, not available; PoG, postcentral gyrus; PrG, precentral gyrus; SCN, subcortical network; SFG, superior frontal
gyrus; SMN, somatomotor network; STG, superior temporal gyrus; VIS, visual network.

3.4. Group Differences

Decreased network scores in the PD group were observed in ICs including the anterior
cingulate (IC4, p = 0.02), cerebellar lobule VII (IC36, p = 0.04), or superior temporal gyrus
(IC50, p < 0.05), while increased network scores in the PD group were observed in ICs
including lobule VI (IC47, p = 0.04) or the inferior frontal gyrus (IC66, p = 0.04). These
results are shown in Supplementary Figure S1.
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4. Discussion
4.1. Each Domain-Related Network without the Cerebellum

Using ICA of resting-state fMRI, we identified the networks associated with each MoCA
cognitive domain such as the visuospatial-executive-domain-related network, naming-
domain-related network, attention-domain-related network, language-domain-related net-
work, abstraction-domain-related network and orientation-domain-related network.

The naming-domain-related network included BA8, BA46, and BA30, and the language-
domain-related network consisted of BA20, the caudate nucleus, BA8, BA42, BA19, BA6,
and BA46. The left BA46 is recognized as part of the left dorsolateral prefrontal cortex
(DLPFC) and is mainly implicated in the language production system [46,47] However, this
was not the case because the region of BA46 in the present study was found on the right
side of the brain. A recent study reported decreased functional connectivity (FC) between
the vermis and the right DLPFC in PD with cognitive impairment [48] Given these findings,
the right DLPFC might therefore be involved in cognitive impairment in PD. The right
DLPFC is pivotal for memory retrieval from voice [49], which might link language-domain
assessments to the right DLPFC; i.e., this domain includes instructions to name something
starting with one kana (Japanese alphabet) or the alphabet and to repeat two sentences
after hearing them. As memory load induces hyperactivity in the right DLPFC in older
people compared to younger people [50], simultaneous memories of features in pictures
of animals might make this region involved in the naming-domain-related network as
well as the language-domain-related network in older patients with PD. Memory load was
also related to the medial frontal gyrus (BA6) [51], and working memory activated the
medial frontal gyrus (BA8) [52] The caudate nucleus was reported to be the most frequently
affected region related to language processing deficits after stroke [53], which supported
our finding that the caudate nucleus participated in the language-domain-related network.
In terms of input processing, the naming-domain-related network required BA30, a part
of the visual network, while the language-domain-related network included BA42, a part
of the auditory network. The former was induced by visual stimuli, while the latter was
induced by auditory stimuli. These findings suggest a strict functional separation between
the assessments. BA30 was also involved in the orientation-domain-related network, in
addition to BA6, BA10, BA32, and BA38. The superior temporal gyrus (BA38) was related
to visual–spatial orienting [54] and the attribution of intention [55], both of which can
contribute to orientation.

4.2. Each Domain-Related Network with the Cerebellum

The visuospatial-executive-domain-related network was characterized by nodes in-
volved in visual processing, including BA37, BA21, and cerebellar lobule VI/VII. BA37, also
involved in the attention-domain-related network, is part of the ventral stream of visual
processing [56,57], which is key for the performance of visuospatial tasks. BA21, activated
by Japanese kana, [58], contributed to this network because kana was used in the visuospa-
tial executive domain of the Japanese version of the MoCA, as a substitute for the alphabet.
Cerebellar lobule VI was reported to functionally connect with the middle temporal visual
area, a part of the dorsal stream, rather than with the ventral stream [59] Cerebellar lobule
VII is widely connected with the frontal cortices [60] and may be associated with BA10,
BA8, or both within this network. BA10 is hypothesized to allow the holding of goals in
the mind during some tasks [61], which is based on working memory, prospective memory,
and the manipulation of information to maintain and execute intended actions. Indeed, the
assessment of these functions has been demonstrated to elicit activation in the BA10 [62–64]
Intentional movement induced corticomuscular coupling in the gamma band detected by
intracerebral stereo electroencephalography in the BA10, in contrast to theta band for imita-
tive movement [65] These findings provide a convincing argument that BA10 plays a crucial
role in the performance of tasks that require several steps, such as visuospatial-executive
or attention tasks. The sensorimotor network appears to be incorporated into the attention-
domain-related network. Attention was reported to be associated with the sensorimotor
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network in traumatic brain injury and PD [66,67] The superior temporal gyrus (BA38)
is related to visual–spatial orienting [54] In addition, BA10, BA37, and cerebellar lobule
VII, the nodes in the attention-domain-related network, overlap with the visuospatial-
executive-domain-related network. Of these, the cerebellum is the most fascinating region
as previous studies have demonstrated changes in cerebellar activity and connectivity
measured by fMRI [14,68–70] FDG PET [71], and N-isopropyl-p−123-I-iodoamphetamine
single-photon emission computed tomography [72] and alpha-synuclein inclusions in
the cerebellum [73] Kawabata and his colleagues classified nondemented patients with
PD into two types: PD with amnestic cognitive deficit (PD-A) and PD with nonamnestic
cognitive deficit (PD-NA) [12] Patients with PD-NA tend to have Lewy body pathology in
contrast to PD-A, because Alzheimer’s disease pathology is reportedly associated with a
reduced likelihood of visual hallucinations or attentional fluctuations in dementia with
Lewy bodies [74–77] FC in cerebellar lobule VII is reduced in PD-NA. Collectively, non-
amnestic symptoms, visual hallucinations and attentional fluctuations, are implicated in
Lewy body pathology and aberrant FC in cerebellar lobule VII, which appears to be in
good agreement with our findings that cerebellar lobule VII was involved in both the
visuospatial-executive-domain-related network and the attention-domain-related network.
These two domains are listed as the first three nonamnestic cognitive impairments in the
diagnostic criteria for PD with dementia (PDD) [45] and may be a suitable biomarker for
PDD. In this line, a combination of the visuospatial-executive-domain-related network
and the attention-domain-related network might be an objective biomarker for PDD with
predominant Lewy body pathology.

4.3. Basic-Network-Level Abnormalities

Network-level alterations for the DMN and the dorsal attention network were found
in PD, PD with mild cognitive impairment (MCI), and PDD, but the results were heteroge-
neous among studies [7–13] The DMN is thought to be decreased in patients with PD and
is positively correlated with cognitive scores. Indeed, whereas FC in one part of the DMN
was positively correlated with verbal/visual memory and visuospatial scores [7,13,34], FC
in another part of the DMN was negatively correlated with visuospatial/visuoperceptive
scores as reported in the present study [10] These findings might indicate that the relation-
ship between FC of the DMN and cognitive function was dependent on the DMN region.
The part of the other networks, including the dorsal attention network, visual network,
frontoparietal network, and cerebellum–brainstem network, was reportedly reduced in
patients with PD [9–12] In contrast, the DMN, frontal pole network, left frontoparietal
network, and cerebellar network were found to be in part increased in patients with
PD [10,11] The result would be different even within the same network for the same disease
if the node was different. Group ICA-based functional segmentation allows for node-level
analysis [39], which revealed the presence of the following in PD: decreased FC in the
anterior cingulate cortex within the DMN, in the cerebellum within the cerebellar network,
and in the superior temporal gyrus within the cognitive control network; increased FC in
the cerebellum within the cerebellar network and in the inferior frontal gyrus within the
cognitive control network. Furthermore, this method provides the flexible integration of
each node according to the hypothesis, using network scores and models.

4.4. Limitations

The main limitation of this study was the lack of a validation group due to the paucity
of subjects. A relatively large number of subjects is required to conduct functional segmen-
tation. For the same reason, we were unable to perform subgroup analyses (e.g., PDD) or
adjust for confounding factors. The MoCA is a screening test, and a full neuropsychologi-
cal evaluation may be preferable for detecting networks related to accurately separated
domains. Furthermore, our enrolled subjects were diagnosed not by pathology, but by
clinical examination. In this sense, other diseases might be included in this study.
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5. Conclusions

The cerebellar lobule VII was identified as a common hub between the visuospatial-
executive-domain-related network and the attention-domain-related network. These do-
mains are associated with PD with nonamnestic dementia/MCI, and thus the cerebellar
lobule VII might have a key role in cognitive impairment of a nonamnestic type. In contrast,
amyloid beta and tau burden may contribute to a reduced likelihood of visual hallucina-
tions and attentional fluctuations. Altogether, the two networks including cerebellar lobule
VII may allow us to evaluate the predominance of Lewy body pathology over Alzheimer
pathology in each patient with PD; however, the networks that include cerebellar lobule
VII need to be validated in individuals who are classified by autopsy or amyloid/tau
PET examination.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11061042/s1, Figure S1: Group differences in network scores, Table S1: Summary
of the independent components.

Author Contributions: W.S. designed the study. T.A., Y.M. and M.H. acquired the MRI data. Cogni-
tive assessments were performed by K.N. Detailed clinical information was obtained by W.S., Y.O.,
S.H. and Y.I. The data preprocessing and statistical analysis were performed by W.S. and S.H. Subject
recruitment was performed by W.S., Y.O., S.H. and Y.I. W.S. wrote the original draft of the manuscript.
W.S. and Y.I. supervised the conduct of the research. All authors provided significant input into the
final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by Takeda Science Foundation.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the ethics committee of Tokushima University Hospital (2160-4).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to restrictions due to privacy issues.

Acknowledgments: We would like to thank all the subjects for joining this study and Takeda Science
Foundation for supporting the present study.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Boes, A.D.; Prasad, S.; Liu, H.; Liu, Q.; Pascual-Leone, A.; Caviness, V.S., Jr.; Fox, M.D. Network localization of neurological

symptoms from focal brain lesions. Brain A J. Neurol. 2015, 138, 3061–3075. [CrossRef]
2. Tremblay, P.; Dick, A.S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang.

2016, 162, 60–71. [CrossRef]
3. Bear, J.J.; Chapman, K.E.; Tregellas, J.R. The epileptic network and cognition: What functional connectivity is teaching us about

the childhood epilepsies. Epilepsia 2019, 60, 1491–1507. [CrossRef] [PubMed]
4. Hohenfeld, C.; Werner, C.J.; Reetz, K. Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging

biomarker? Neuroimage. Clin. 2018, 18, 849–870. [CrossRef] [PubMed]
5. Wolters, A.F.; van de Weijer, S.C.F.; Leentjens, A.F.G.; Duits, A.A.; Jacobs, H.I.L.; Kuijf, M.L. Resting-state fMRI in Parkinson’s

disease patients with cognitive impairment: A meta-analysis. Parkinsonism Relat. Disord. 2019, 62, 16–27. [CrossRef] [PubMed]
6. Laird, A.R.; Fox, P.M.; Eickhoff, S.B.; Turner, J.A.; Ray, K.L.; McKay, D.R.; Glahn, D.C.; Beckmann, C.F.; Smith, S.M.; Fox, P.T.

Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 2011, 23, 4022–4037. [CrossRef]
7. Tessitore, A.; Esposito, F.; Vitale, C.; Santangelo, G.; Amboni, M.; Russo, A.; Corbo, D.; Cirillo, G.; Barone, P.; Tedeschi, G.

Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 2012, 79, 2226–2232.
[CrossRef]

8. Yao, N.; Shek-Kwan Chang, R.; Cheung, C.; Pang, S.; Lau, K.K.; Suckling, J.; Rowe, J.B.; Yu, K.; Ka-Fung Mak, H.; Chua, S.E.; et al.
The default mode network is disrupted in Parkinson’s disease with visual hallucinations. Hum. Brain Mapp. 2014, 35, 5658–5666.
[CrossRef]

9. Amboni, M.; Tessitore, A.; Esposito, F.; Santangelo, G.; Picillo, M.; Vitale, C.; Giordano, A.; Erro, R.; de Micco, R.; Corbo, D.; et al.
Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease. J. Neurol. 2015, 262,
425–434. [CrossRef]

https://www.mdpi.com/article/10.3390/diagnostics11061042/s1
https://www.mdpi.com/article/10.3390/diagnostics11061042/s1
http://doi.org/10.1093/brain/awv228
http://doi.org/10.1016/j.bandl.2016.08.004
http://doi.org/10.1111/epi.16098
http://www.ncbi.nlm.nih.gov/pubmed/31247129
http://doi.org/10.1016/j.nicl.2018.03.013
http://www.ncbi.nlm.nih.gov/pubmed/29876270
http://doi.org/10.1016/j.parkreldis.2018.12.016
http://www.ncbi.nlm.nih.gov/pubmed/30580907
http://doi.org/10.1162/jocn_a_00077
http://doi.org/10.1212/WNL.0b013e31827689d6
http://doi.org/10.1002/hbm.22577
http://doi.org/10.1007/s00415-014-7591-5


Diagnostics 2021, 11, 1042 10 of 12

10. Baggio, H.C.; Segura, B.; Sala-Llonch, R.; Marti, M.J.; Valldeoriola, F.; Compta, Y.; Tolosa, E.; Junqué, C. Cognitive impairment
and resting-state network connectivity in Parkinson’s disease. Hum. Brain Mapp. 2015, 36, 199–212. [CrossRef] [PubMed]

11. Peraza, L.R.; Nesbitt, D.; Lawson, R.A.; Duncan, G.W.; Yarnall, A.J.; Khoo, T.K.; Kaiser, M.; Firbank, M.J.; O’Brien, J.T.; Barker,
R.A.; et al. Intra- and inter-network functional alterations in Parkinson’s disease with mild cognitive impairment. Hum. Brain
Mapp. 2017, 38, 1702–1715. [CrossRef]

12. Kawabata, K.; Watanabe, H.; Hara, K.; Bagarinao, E.; Yoneyama, N.; Ogura, A.; Imai, K.; Masuda, M.; Yokoi, T.; Ohdake, R.; et al.
Distinct manifestation of cognitive deficits associate with different resting-state network disruptions in non-demented patients
with Parkinson’s disease. J. Neurol. 2018, 265, 688–700. [CrossRef]

13. Hou, Y.; Yang, J.; Luo, C.; Ou, R.; Zou, Y.; Song, W.; Gong, Q.; Shang, H. Resting-state network connectivity in cognitively
unimpaired drug-naïve patients with rigidity-dominant Parkinson’s disease. J. Neurol. Sci. 2018, 395, 147–152. [CrossRef]
[PubMed]

14. Vo, A.; Sako, W.; Fujita, K.; Peng, S.; Mattis, P.J.; Skidmore, F.M.; Ma, Y.; Uluğ, A.M.; Eidelberg, D. Parkinson’s disease-related
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