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Simple Summary: Despite huge efforts in breast cancer care programs, patient’s survival rates
greatly vary. Differences in response to therapy still represent the major challenge for clinicians and
biologists. Define new anticancer mechanisms and innovative predictors for resistance could be a valid
strategy to permanently defeat breast cancer. Here we propose the epigenetic based reprogramming
of breast cancer, which leverages on the crosstalk between miR-181a-5p and Estrogen Receptor o.
This simultaneously approach allows to induce miR-181a-5p and reduce the receptor expression,
blocking the estrogen-dependent proliferative pathway underlying breast cancer progression. Since
the epigenetic approach insists on transcriptional regulation, it is mostly independent of the acquired
resistance mechanisms typically induced by prolonged endocrine therapy and therefore can be used as
a sensitizer, neoadjuvant, or in combination with the standard in care treatments against breast cancer.

Abstract: The efficacy and side effects of endocrine therapy in breast cancer (BC) depend largely on
estrogen receptor alpha (ER«x) expression, the specific drug administered, and treatment scheduling.
Although the benefits of endocrine therapy outweigh any adverse effects in the initial stages of
BC, later- or advanced-stage tumors acquire resistance to treatments. The mechanisms underlying
tumor resistance to therapy are still not well understood, posing a major challenge for BC patient
care. Epigenetic regulation and miRNA expression may be involved in the switch from a treatment-
sensitive to a treatment-resistant state and could provide a valid therapeutic strategy for ERx
negative BC. Here, a hybrid lysine-specific histone demethylase inhibitor, MC3324, displaying
selective estrogen receptor down-regulator-like activities in BC, was used to highlight the interplay
between epigenetic and ER« signaling. MC3324 anticancer action is mediated by microRNA (miRNA)
expression regulation, indicating an innovative function for this molecule. Integrated analysis
suggests a crosstalk between estrogen signaling, ER«x interactors, miRNAs, and their putative targets.
Specifically, miR-181a-5p expression is regulated by MC3324 and has an impact on cellular levels of
ERa. A comparison of breast tumor versus healthy mammary tissues confirmed the important role
of miR-181a-5p in ER« regulation and points to its putative predictive function in BC therapy.
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1. Introduction

Based on the 2018 GLOBOCAN report, the incidence of cancer is growing, and in the
next years one out of five men and one out of six women will receive a cancer diagnosis, and
one out of eight men and one out of ten women will die from the disease [1]. Breast cancer
(BC) is the most commonly occurring cancer in women and the second most common
cancer overall. There were over two million new cases of BC in 2018 [2] and according
to incidence forecasts, BC will substantially increase over the next ten years [3]. Despite
ongoing efforts to improve detection and treatment of BC for women worldwide, affected
patients continue to experience an alarmingly high mortality rate, particularly in tumors
exhibiting “ab initio” or acquired resistance to treatments [4]. Studies confirm that more
than 70% of all BCs are estrogen receptor (ER)o-positive, meaning that cancer cells grow in
response to the estrogen hormone [5]. These cancer types are typically treated with drugs
such as tamoxifen (known as endocrine therapy or ER-targeted therapy) and aromatase
inhibitors (Al), that either lower levels of the hormone or inhibit ERs in order to prevent
the tumor from spreading [6]. However, around 35% of patients treated with endocrine
therapy develop resistance, which negatively impacts overall survival [7]. The mechanisms
underlying tumor resistance to therapy are not well understood and treatment resistance
currently poses a major challenge. Epigenetic regulation and microRNA (miRNA) rebalance
have been shown to be two key factors responsible for endocrine therapy resistance [8-10].
miRNAs regulate several cellular and signaling pathways, ranging from development
and differentiation to cell proliferation and apoptosis [11]. In BC, dysregulation of a
single miRNA or a small subset can therefore significantly impact cellular outcomes,
possibly leading to the development of refractory forms of tumors [12]. miRNA profiling
studies have identified deregulated miRNAs and their correlation with functions and
molecular BC subtypes [13-15]. As miRNAs exert their effects at the translational level,
they constitute an important link between coding genes and various cellular processes,
taking part in the regulation of ~30% of all proteins [16]. In BC, this large regulatory
mechanism is orchestrated by Era, which regulates the expression of several miRNAs,
potentially contributing to sustain the proliferation and pathological features of cancer cells,
providing a specific signature for ERo-positive and ERx-negative BCs [17-19]. For this,
miRNAs are promising biomarkers for endocrine therapy resistance prediction and patient
stratification. On top of this, miRNA expression could be epigenetically regulated to block
or reduce BC progression [20], providing an additional tool for therapeutic intervention. In
this study, we describe an innovative mechanism that simultaneously modulates miRNA
expression and ER« pathological function in BC cell lines and ex vivo patient samples. The
gatekeeper mechanism here is modulation of the histone code, obtained using the lysine-
specific histone demethylase (KDM) inhibitor MC3324, recently found by our group [21]
to act as an “epigenetic” selective estrogen receptor down-regulator (SERD), showing
anticancer activity in both in vitro and in vivo BC models [22].Via inhibition of LSD1
and UTX, MC3324 induces an epigenetic rebalance, which in turn has a major effect on
mRNA, miRNA, and proteins. The extensive alterations in miRNA levels induced by
M(C3324 treatment play a key role in ERx functions and highlight the importance of
miRNA expression in anti-estrogen resistance in BC. Our results show that interfering with
regulation of the epigenetic code by blocking LSD1 and/or UTX has an immediate impact
on the molecular fingerprint of BC, leading to down-regulation of estrogen-mediated
pathways and cell death. Here, we describe the role of miRNA181-a-5p as a link between
histone methylation changes and ERx-mediated survival pathways in BC.

2. Results
2.1. Inhibition of LSD1 and UTX Affects miRNA Profile

We previously demonstrated that MC3324 is a dual LSD1 and UTX inhibitor that
negatively regulates ERx signaling and promotes activation of programmed cell death
pathways in BC both sensitive and resistant to endocrine therapies [21]. Through the
epigenetic and transcriptional reprogramming of BC cells, MC3324 acts as a SERD-like
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molecule. While carrying out a detailed investigation of the molecular mechanisms under-
lying BC efficacy, we found that one of the epigenetic modifications induced by MC3324
is associated with the expression of miRNAs. Based on this observation, we hypothe-
sized that the miRNA regulatory network is dysregulated in BC hormonal signaling and
might be rebalanced via epigenetic interventions. Comprehensive miRNA expression
profiling was performed in the ERx-positive BC MCF-7 cell line, following the treatment
with MC3324. miRNome profiling identified a subset of miRNAs modulated by LSD1 and
UTX inhibition in BC (16 < cycle threshold (CT) < 37; 274A¢T > 42). A total of 448 com-
monly expressed miRNAs were found in treated and untreated MCE-7 cells, as shown in
Figure 1A. Of these, 96 miRNAs were only expressed in the control condition, as shown
in Table S1, while 26 miRINAs were enriched after treatment with MC3324, as shown in
Table S2. We identified a cluster of 185 differentially expressed miRNAs, as shown in
Figure 1B. Among these common miRNAs, 153 were down-regulated and 32 were up-
regulated after MC3324 treatment, as shown in Table S3. Predicted common target genes of
the 448 differentially regulated miRNAs were identified using the miRSystem database,
which integrates seven well-known miRNA target gene prediction tools: DIANA [23],
miRanda [24], miRBridge [25], PicTar [26], PITA [27], rna22 [28], and TargetScan [29].
Furthermore, all predicted targets were matched with genes differentially regulated by
M(C3324 identified using the whole transcriptome (RNAseq: GSE130067), as shown in
Figure 1B [21]. Specifically, down-regulated genes (1763 /2933) were compared with the pre-
dicted targets of up-regulated miRNAs (1451/3640), and up-regulated genes (1173/2933)
with predicted targets of down-regulated miRNAs (3195/3640). The results are summa-
rized in Figure 1C,D; 200 predicted target genes were confirmed as down-regulated and
282 predicted target genes as up-regulated, as shown in Tables S4 and S5. Functional anno-
tation enrichment of the target gene subset was performed using the Molecular Signatures
Database (MSigDB) in Gene Set Enrichment Analysis (GSEA, San Diego, CA, USA) v2.2.2
software. Gene Ontology terms enrichment indicated the crucial role of miRNA patterns
in the complex regulation of key biological processes, such as transcription, cell death,
differentiation, and response to hormone signaling, including ERx pathways, as shown in
Figure 1E.

2.2. Integrative Analysis of Multi-Omics Data: miRNome, mRNA Transcriptome, and Interactome

The dynamic interplay between estrogen signaling cascade and miRNAs was obtained
by the integration of transcriptome, ERx and LSD1 proteomic interactome, and miRNA
expression profiling data. Differentially expressed miRNAs and related target genes were
compared with MS/MS results (PXD012781).The lists of LSD1 and ER« interactors under-
and over-represented after MC3324 induction for 6 and 24 h obtained by immunoprecipita-
tion and MS/MS analysis were compared with: (i) 200 commonly predicted and validated
(RNAseq transcriptome analysis) down-regulated genes; (ii) 282 commonly predicted and
validated (RNAseq transcriptome analysis) up-regulated genes. We observed a correlative
trend between miRNAs, target genes, and protein interactors after MC3324 treatment, as
shown in Table 1 and Figure 2A. “Bona fide” down-regulated ERo interactors were ENAH,
STRBP, TBC1D9, USP32, PKP4, OSBPLS, and TBL1XR1, while up-regulated interactors
were SCD, RSBN1, and ARHGAP17, as shown in Figure 2A. Down-regulated LSD1 interac-
tors were ANKRD50, CCDC6, DCLK1, TANC2, TBC1D1, and USP32, while up-regulated
LSD1 ones were MAP2K7, MYH10, NAP1L1, and TFRC, as shown in Figure 2B. Some of
these ERx and LSD1 interactors are involved in different cellular processes such as protein
assembly and modification (e.g., USP32, NAP1L1), vesicular transport and remodeling (e.g.,
ENAH, STRBP), cytoskeleton organization (e.g., CCD6, DCLK1, TANC2, MYH10) [21], and
intracellular protein transport (e.g., TBC1D1, TBC1D9, ANKRD50) [30]. The relative ex-
pression of miRNA targeting validated ERx and LSD1 interactors is provided in Figure 2C.
Some of these ERx and LSD1 interactors were also validated in an MCF-7 cell line by qPCR,
as shown in Figure S1A.
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Figure 1. LSD1 and UTX inhibition regulates miRNome profile in breast cancer (BC). (A) Venn diagram and (B) heat
map showing the 448 commonly expressed miRNAs in MC3324-treated and untreated MCF-7 cells. (C,D) Venn diagrams
showing the predicted target genes of up- and down-regulated miRNAs validated by RNAseq analysis. (E) Gene Ontology

enrichment analysis of up- and down-regulated target genes.
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Figure 2. Integrative analysis of multi-omics data. (A) Average Log10 intensity of ERx and LSD1 interactors targeted by
miRNAs. (B) Correlative trend between miRNAs, target genes, and protein interactors after MC3324 treatment. Log2 fold
change (RNAseq) of MCE-7 cells untreated or treated with MC3324 for 24 h. (C) Relative expression levels of miRNAs

targeting the validated ERo and LSD1 interactors.
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Table 1. Correlative trends between miRNAs, target genes, and ERx and LSD1 protein interactors in MCF-7 cells after

MC3324 treatment.
Gene Target miRNA
ESR1 (ER«) miR-181¢-5p miR-185-3p
ENAH miR-181a-5p miR-181c-5p
STRBP miR-181a-5p
ER_3324 DOWN PROTEIN TBC1D9 miR-181a-5p miR-181c-5p miR-451
INTERACTORS P et 75
PKP4 miR-193a-3p
OSBPLS8 miR-181a-5p miR-181c-5p
TBL1XR1 miR-181a-5p miR-181c-5p miR-193a-3p
ANKRD50 miR-181a-5p miR-181c-5p
CCDC6 miR-181a-5p miR-181c-5p
LSD1_3324 DOWN PROTEIN DCLK1 miR-181a-5p miR-181c-5p
INTERACTORS TANC2 miR-146a-5p miR-181a-5p miR-181c-5
TBC1D1 miR-181a-5p miR-181c-5p
USP32 let-7f-5p
SCD let-7d-5p
ER_3324 UP PROTEIN RSBN1 miR-20b-5p miR-31-5p miR-520d-3p miR-520e
INTERACTORS
ARHGAP17 miR-101-3p
MAP2K7 miR-142-5p
LSD1_3324 UP PROTEIN MYH10 miR-300
INTERACTORS NAPIL1 let-7d-5p miR-101-3p miR-148a-3p
TFRC miR-144-3p miR-148a-3p miR-31-5p miR-758-3p

2.3. ERa-Mediated miRNA Signature

Interestingly, we picked out that TBC1D9, USP32, and TBC1D1 are shared ERx and
LSD1 interactors and are negatively regulated by the same miRNAs (miR-181a-5p, miR-
181c-5p, and let-7f-5p) following MC3324 treatment, as shown in Table 1. This finding
prompted us to focus on these three specific miRNAs, despite the huge effect on miRNome,
as shown in Figure 1A-E. Moreover, a substantial number of differentially regulated
miRNAs (13 down, 4 up) were associated with ER« signaling (direct targeting), and
activation cascade, as shown in Figure 3A. Subsequently, we matched the data from Table 1
with miRNAs reported in Figure 3A, and we further restricted the number of miRNAs to
be investigated to solely miR-181a-5p. The role of miR-181a-5p in BC is contradictory [31].
Several studies report that miR-181a-5p exerts anti-BC action, preventing tumor invasion
and metastasis, reducing mammosphere formation, promoting cancer cell death, and
favoring drug sensitivity [32-34], suggesting its oncogenic function. Other studies describe
a down-regulation of miR-181a-5p in more aggressive or late-stage BC, indicating its role
as a tumor suppressor gene [35]. To provide comprehensive evidence that LSD1 and
UTX inhibition by MC3324 modulates the ER« signaling pathway and its interactome
via functional activity of miR-181a-5p, we compared data in ERx-positive (MCF-7) and
ERa-negative (MDA-MB-231) BC models, as shown in Figure 3B,C. Although expression
levels of TBC1D1, TBC1D9, and USP32 genes decreased in MDA-MB-231 cells, as in MCF-7
cells, the confidence interval in the data is lower, as shown in Figure 3B. In MDA-MB-231,
it is inconceivable to disregard the compensatory role played by ERf3, which is reported
to be expressed independently of ER«x [14,36]. Since ER«x is a predicted target of miR-
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181a-5p, we investigated whether miR-181a-5p expression could be dependent on ERx
expression or vice versa. ERx was absent in MDA-MB-231 cells and decreased in MCF-7
cells during MC3324 treatment in a time-dependent manner, as shown in Figure 3B. The
basal expression level of miR-181a-5p quantified by qPCR was higher in triple negative
BC (TNBC) MDA-MB-231 cells than in MCEF-7 cells, as shown in Figure 4A. Following
M(C3324 induction, miR-181a-5p was up-regulated in MCF-7 cells while no significant
differences were observed in MDA-MB-231 cells, as shown in Figure 4B,C. These findings
suggest an important regulatory role for miR-181a-5p in the ER pathway. The functional
dependence between ERx and miR-181a-5p was further highlighted by comparison with
BC models resistant and sensitive to endocrine therapy, as shown in Figure S2A-C. In
MCEF7/TamR1, the ERx-miR-181a-5p pair is regulated in the opposite way to the MCF7
parental line, as well as the behavior of the ER-regulated genes (e.g., PS2/TFF1). To
assess whether ERx and its interactors can be regulated by miR-181a-5p, a miR-181a-
5p mimic and inhibitor were transiently overexpressed in HeLa cells. qPCR analysis
revealed an 8-fold increase in miR-181a-5p expression and ~70% of its down-regulation
using the miRNA inhibitor compared to both miR-scramble and carrier controls, as shown
in Figure 5A. miR-1 and let-7c were used as positive controls for miRNA mimic and
inhibition approaches, respectively. qPCR analysis detected a 7-fold increase in mimic
miR-1 expression and a 60% reduction in let-7c levels, as shown in Figure 5A. For both
controls, we evaluated the expression of their known target genes, HMGA?2 for let-7c and
PTKO for miR-1, as shown in Figure S1B, confirming HMGA2 up-regulation via inhibition
of let-7c and PTK9 down-regulation upon miR-1 overexpression. At 48 h after transfection,
the expression of ERx and its well-known regulated gene PS2/TFF1 were strongly reduced
upon overexpression of miR-181a-5p, as shown in Figure 5B and Figure S3. The inverse
correlation between miR-181a-5p and ERx was further corroborated by up-regulation of
target genes after inhibitor action, as shown in Figure 5B. We also evaluated the expression
of USP32, TBC1D1, and TBC1D9 upon transfection of the miR-181a-5p mimic and inhibitor.
TBC1D1, USP32, and TBC1D9 were down-regulated upon miR-181a-5p overexpression
compared to miR-scramble and carrier controls, as shown in Figure 5B. Conversely, their
expression levels significantly increased following miR-181a-5p inhibition, as shown in
Figure 5B. These findings suggest that these genes are targets of miR-181a-5p. Both ERx
and TBC1D9 expression levels were correlated and pathway analysis software provided
additional evidence of gene/protein interactions [37]. TBC1D9 overexpression was also
found increased in carcinomas of males compared to those of females and may therefore
represent a novel molecular target for development of gender-specific therapeutics and
companion diagnostics [38]. Out of gene regulatory networks analysis, TBC1D1 is part
of special nodes in the basal B BC subtype together with miR-181d, one of four highly
conserved mature family members (miR-181a, miR-181b, miR-181c, miR-181d) [31,39].
USP32 was also found overexpressed in BC cell lines and primary breast tumors [40],
suggesting its role as a therapeutic and prognostic target in ERx-positive BC [41]. Further,
stable silencing of USP32 expression reduced proliferation and migration in the ERx-
positive MCF-7 cell line [40]. Our experimental model demonstrates USP32, TBC1D9,
TBC1D1, and ERx down-regulation and the impairment of their interactors in the context
of BC.
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2.4. miR-181a-5p as a Potential Hallmark of BC

To validate the correlation between ERx and miR-181a-5p, 18ex vivo BC samples
and their paired healthy tissues were analyzed. miR-181a-5p baseline expression pro-
file was evaluated by qPCR, comparing tumor (n = 18 samples) vs. normal adjacent
(n = 18 samples) breast counterparts. The results revealed a strong and significant miR-
181a-5p down-regulation in 15 BC samples compared with healthy counterparts, while
miR-181a-5p was up-regulated in only three tumor samples, as shown in Figure 6A. To as-
sess whether miR-181a-5p expression levels change upon ERx down-regulation, single-cell
suspensions from BC and healthy tissues were freshly prepared and treated with MC3324
for 24 h. Following M(C3324 induction, miR-181a-5p was weakly/mildly up-regulated in
9/18 samples of healthy breast tissues, was unchanged in 5/18 samples, and was down-
regulated in 4/18 samples, as shown in Figure 6B. In contrast, qPCR analysis in primary BC
tissues confirmed miR-181a-5p induction in almost all primary tumor samples, corroborat-
ing the data obtained in MCF-7 cells, as shown in Figure 1C. Together, these data suggest a
prominent role for miR-181a-5p in BC after MC3324 treatment and validate miR-181a-5p as
a possible hallmark for breast cancer via ER« signaling. We also investigated a possible
correlation with clinical and biological parameters of 18 primary BC tissues, as shown
in Table 2. Ki-67, ER«-, progesterone (PR)- positivity in nuclei, and HER2 status were
measured by immunohistochemistry (IHC) analysis on BC patient-derived samples. The
percentages of ERx-positive and Ki-67-positive cells in all patient samples are reported in
Figure 7A,B, respectively, and representative images of IHC staining for both proteins in
three different primary BC tissues are shown in Figure 7C. Dividing the cohort of patients
into two clusters of ERa-positive patients (pt #1-3, 5, 6, 9-12, 15-18) and ERx-negative
patients (INBC and tumors with at least positivity for PR and/or HER2; pt #4, 7, 8, 13,
14) revealed that, following treatment with MC3324, the fold variation of miR-181a-5p
was lower when ERa-dependent signaling was impeded, as shown in Figure 8. In BC
tissues, we detected a 73% increase in response in ERo-positive compared to ERo-negative
patients. In contrast, in the panel of healthy tissues expressing ERo at physiological levels,
an increase in miR-181a-5p was also observed in counterparts of ERx-negative tumors.
The differential ratio showed an increase of about 38%, indicating that an epigenetic as-
pect/memory may be able to influence the response of healthy cells. These observations
are in line with the clinical significance of BC subtypes. Together, these findings suggest
that epigenetic regulation of miR-181a-5p is part of a regulatory feedback loop in which
ERo protein plays an essential role. miR-181a-5p can be efficiently modulated when ER« is
present and active inside BC cells. In TNBC (e.g., MDA-MB-231) or in ERx-negative ex vivo
tumors, the inhibition of KDMs is less effective at inducing overexpression of miR-181a-5p.
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Figure 6. miR-181a-5p relative expression levels in 18 primary BC and healthy tissues.(A) miR-181a-5p relative expression
levels in BC vs. healthy counterpart tissues. (B) miR-181a-5p relative expression levels after MC3324 treatment (25 uM, 24 h)
in healthy breast and (C) BC tissues. The results are represented as the mean =+ SD.
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Figure 7. Inmunohistochemistry of Ki-67 and ER« in 18 primary BC tissues. (A) Percentage of ERx-positive and (B) Ki-67-
positive cells in 18 primary BC tissues. (C) Representative images of immunohistochemistry (IHC) staining for Ki-67 and
ER«x proteins in BC primary tissues (pt #7, 9, 12).
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(MC3324 vs CTRL-24h)
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Figure 8. Average miR-181a-5p relative expression levels in 18 BC and healthy primary tissues
(MC3324 vs. CTRL; 24 h). Grouping ERx-positive patients (pt #1-3, 5, 6, 9-12, 15-18) and ER«-
negative patients (TNBC and tumors with at least positivity for progesterone (PR) and/or HER2; pt

#4,7,8,13, 14).

Table 2. Clinical and biological features of 18 primary BC tissues.

C?Zst;)ilf?f::i;:)ln IHC Classification Grade Staging PR (%) HER2
PT#1 Invasive carcinoma of no special type (NST) G2 pTINO 70 3+
PT#2 Invasive carcinoma of no special type (NST) G2 pTINO 70 0
PT#3 Invasive carcinoma of no special type (NST) G3 pT2N2 60 1+
PT#4 Invasive carcinoma of no special type (NST) G3 pT4bNO 0 3+
PT#5 Invasive carcinoma of no special type (NST) G2 pT1N1la 0.8 1+
PT#6 Invasive carcinoma of no special type (NST) G3 pT4bN2a 0.65 1+
PT#7 Invasive carcinoma of no special type (NST) G2 pI2Nla 0 0
PT#8 Invasive apocrine carcinoma (IAC) G3 pT2N1la 0 3+
PT#9 cs Invasive mucinous carcinoma (IMC) G2 pT1cNO 0.7 0
PT#10 Invasive Ductal Carcinoma (IDC) Gl pT2NO 0.03 0
PT#11 Invasive carcinoma of no special type (NST) G2 pT2N1 0.9 1+
PT#12 Invasive Ductal Carcinoma (IDC) G3 pT2NO 0.7 1+
PT#13 Invasive Ductal Carcinoma (IDC) G2 pT1cNO 0 0
PT#14 Invasive Ductal Carcinoma (IDC) G3 pT1bNla 0 2+
PT#15 Invasive Ductal Carcinoma (IDC) G2 pT2N2 <5 1+
PT#16 Invasive Ductal Carcinoma (IDC) G2 pT1cNO 0.8 1+
PT#17 Invasive Ductal Carcinoma (IDC) G2 pT1cNO 0.6 0
PT#18 Invasive Ductal Carcinoma (IDC) G2 pT2N1M1 (bone) 0.7 0

3. Discussion

Our results corroborate and strengthen the fact that the modulation of KDM enzymes,
obtained via MC3324 inhibition, directly regulates ERx in BC, as also previously reported
in [21]. ER«x activity controls the synthesis, maturation, and steady-state levels of a large
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number of miRNAs in BC cells. Reducing the activity of KDMs has an immediate impact
on ER«x expression and down-regulation, which, in turn, has an effect on miRNome and
hormone signaling in BC cells. Specifically, miR-181a-5p seems to be one of the key
regulators of ERx and its interactors. This is underlined by the evidence that the expression
level of miR-181a-5p is dependent on KDM and ER« activity axes in BC. miR-181a-5p is one
of the members of the miR-181s family, together with miR-181b, ¢, and d [42]. Published
data identified alteration of intracellular and circulating miR-181a expression in tissue
and in serum of BC patients [43]. The down-regulation of miR-181a-5p is also seen in
multidrug resistant forms of MCF?7 cells and in aggressive or late-stage BC [34]. Thus, on
one hand, miR-181a-5p might play as a tumor suppressor gene, reducing mammosphere
formation, inducing cancer cell death, and enhancing drug sensitivity. On the other hand,
oncogenic activities have been reported when miR-181a-5p is up-regulated in BC (e.g.,
high miR-181a levels were associated with poor survival rates after treatment) [44]. This
contradictory role will certainly need deeper analyses to be further clarified. Identifying
the intracellular crosstalk between ERoc and miR-181a-5p (and its predicted and validated
targets) could provide new interventional points to decipher the pleiotropic actions of
ER«x and its role as an onco-promoter in breast carcinogenesis and tumor progression.
Moreover, the correlation between miR-181a-5p expression in cancer and healthy breast
tissues, coupled with BC histological classification, might represent a path to determine the
tumor suppressing or tumor promoting action of miR-181a-5p. As reported in Figures 1-3,
miR-181a appears to directly target multiple genes involved in BC. Investigation of these
interactions is required to determine the miR-181a targets and networks to advance into
therapeutic strategies. The direct comparison between tumor and healthy tissue of each
breast cancer patient provided in our study is certainly a strong point to address further
investigations. A future rise in the number of samples may indeed help strengthen the
correlation between miR-181a, Er«, and the clinical outcome of BC patients. Likewise, it is
reasonable to conceive that targets and expression levels of miR-181a-5p could be used as
molecular markers for prognosis of primary BC, for prediction of disease responsiveness to
endocrine treatment over time, and/or for stratification of patients who may benefit from a
future epigenetic approach as adjuvant therapy.

4. Materials and Methods
4.1. Cell Culture and Treatment

MCEF-7 and MDA-MB-231 and MCF7/TamR1 cells (ATCC, Milan, Italy) were grown
in supplemented Dulbecco’s modified Eagle medium (DMEM; EuroClone, Milan, Italy).
Primary cells isolated by BC tissue biopsy were cultured in DMEM/F12 + 10% inactivated
fetal bovine serum (FBS) (Sigma-Aldrich, St Louis, MO, USA). Culture protocols are
reported in [21]. MC3324, synthesized by Professor Mai’s group (“Sapienza” University
of Rome), was dissolved in dimethyl sulfoxide (Sigma-Aldrich, St Louis, MO, USA) and
used at a final concentration of 25 uM. Tamoxifen (Sigma-Aldrich, St Louis, MO, USA) was
dissolved in ethanol and used at 1 uM for 24 and 48 h.

4.2. miRNome Profiling

miRNAs were profiled by q-PCR using a miRCURY LNA™ Universal RT microRNA
PCR System (Qiagen, Milan, Italy) according to the manufacturer’s instructions. Real-time
PCR reactions were carried out on a 7900HT thermocycler (Applied Biosystems, Foster
City, CA, USA) using the thermal cycling parameters suggested by the manufacturer’s
protocol. Raw Ct values were calculated using RQ manager software v1.2.1 (ABI, Waltham,
MA, USA) with manual settings for threshold and baseline. All data were analyzed using
a ARn threshold of 60 and baseline subtraction using cycles 1-16. miRNA profiles were
determined using the —AACt method.
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4.3. RNA Isolation and miRNA Expression Validation

Total miRNA-enriched RNA was purified and miRNA expression levels were mea-
sured by real-time PCR as previously reported [45]. Briefly, cells were centrifuged and
resuspended in 1 mL of TRIzol reagent (Invitrogen, Monza and Brianza, Italy), vortexed,
and stored overnight at —20 °C. Then, 100 uL of 2-bromo-3-chloro propane (Sigma Aldrich)
were added to the samples, gently shaken, and incubated for 15 min at room temperature
RT. After centrifugation at 12,000 rpm for 15 min at 4 °C, the supernatants were collected
in fresh tubes supplemented with 500 pL of cold isopropyl alcohol. The total RNA was
precipitated for 30 min at —80 °C followed by a centrifugation of 30 min at 12,000 rpm at
4 °C. The samples were resuspended in 1 mL of cold 70% ethanol and then centrifuged for
10 min at 7500 rpm at 4 °C. The RNA pellets were dried at 42 °C for a few minutes and
resuspended in DEPC-treated H20. The RNA samples were quantified using Nanodrop
1000 and their quality was checked using an Agilent RNA 6000 Nano Assay.

The miRNA fraction was converted into cDNA using miScript Reverse Transcription
Kit (Qiagen), following the supplier’s instructions. miRNA Real-Time PCR was performed
with QuantiTect SYBR Green PCR Kit (Qiagen) using 75 ng of cDNA in presence of 1x
QuantiTect SYBR Green PCR Master Mix, miScript Universal Primer and primer specific
for miR-181a-5p (Qiagen), let7-c (Qiagen), and miR-1 (Qiagen). RNU6b (Qiagen) specific
primer was used to normalize data.

4.4. Gene Expression Analysis by gPCR Quantitative Real-Time PCR

Real-time RT-PCR was performed to examine mRNA expression levels using the VILO
cDNA Synthesis Kit (Invitrogen, Monza and Brianza, Italy) to convert RNA into cDNA. A
1X SYBR Green PCR Master Mix (Bio-Rad, Segrate, Milan, Italy) was used according to the
manufacturer’s instructions, using 50 ng of cDNA. Primers used are listed in Table S6.

4.5. Pre-miR Precursor and Inhibitor of miR-181a-5p Reverse Transfection

Pre-miR precursor and inhibitor reverse transfection was performed in HeLa cells
(4.6 x 10° cells for each experimental point) with siPORT Amine Transfection Reagent (Am-
bion, Waltham, MA, USA), following the manufacturer’s instructions. Reverse transfection
was performed with 100 nM of miR-181a-5p Pre-miR precursor or inhibitor; 100 nM mimic
miR-scramble and 100 nM inhibitor miR-scramble were used as negative controls.

4.6. Computational Prediction and Gene Enrichment Analysis of miRNA Target Genes

Target gene prediction of differentially expressed miRNAs was performed using the
miRSystem database. All miRNA entries are annotated according to the latest miRBase
(release 22) (http://mirbase.org/). Inclusion criteria were: common target genes in at
least four tools (including validated genes), HIT > 4, and observed/expected ratio >2.
Gene Ontology terms were analyzed using the MSigDBv6.2 in Gene Set Enrichment Analy-
sis (GSEA) software (http:/ /software.broadinstitute.org/gsea/msigdb) for Annotation,
Visualization, and Integrated Discovery.

4.7. Data Collection and Sampling of Primary BC Tissue

Ex vivo breast samples were obtained from the University of Campania “Luigi Van-
vitelli” Hospital Department of Surgery in collaboration with Dr. Iovino. The Ethics
Committee of the University of Campania “Luigi Vanvitelli” Hospital ap-proved the study
(Prot. number: 24713). Data collection and sampling was performed for 18 primary BC
tissues. Ex vivo cells from BC biopsies before and after MC3324 treatment (25 pM, 24 h)
were isolated according to the protocol reported in [21].

4.8. Western Blot Analysis

Treated and untreated cell pellets were suspended in lysis buffer (50 mmol/L Tris-HC],
pH 7.4, 150 mmol/L NaCl, 1% NP40, 10 mmol/L NaF, 1 mmol/L PMSF, and protease
inhibitor cocktail). The lysis reaction was carried out for 15 min at 4 °C. The samples were
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then centrifuged at 13,000 rpm for 30 min at 4 °C and protein concentration quantified
by Bradford assay (Bio-Rad). After centrifugation, 50 ug of each sample were loaded on
10% of polyacrylamide gels and electroblotting on nitrocellulose membrane. Immunoreac-
tive signals were detected with a horseradish peroxidase-conjugated secondary antibody
(Bio-Rad). All the antibodies were used according to the manufacturer’s protocol. Anti-
bodies used were: ER (sc-543), USP32 (sc-374465), TBC1D1 (ab229504), TBC1D9 (Bethyl
A301-027A), and GAPDH (sc-365062). Semi-quantitative analysis was performed using
Image] software.

4.9. IHC Evaluation

IHC primary antibodies used were: ERx (clone SP1, Ventana), PR (clone 1E2, Ventana),
Ki67 (Clone 30-9, Ventana), Her2 (clone 4B5, Ventana). Tumors were considered positive
for ER and PR when at least 1% of tumor cells showed unequivocal nuclear staining
according to American Society of Clinical Oncology/College of American Pathologists
(ASCO/CAP) guidelines. PR expression was considered high in the presence of nuclear
staining in 20% or more cells. We set a cut-off point to distinguish low versus high Ki67
expression at 20%. The original HER2 /neu immunostained glass slides were concurrently
reviewed by pathologists at a multiheaded microscope, and the consensus HER2 /neu
immunoreactivity was manually scored by conventional microscopy as 0, 1+, 2+, or 3+
according to the proposed HER/neu scoring system for breast cancer. According to the
percentage of stained malignant cells, criteria for HER2 /neu score assignment were: 0, no
staining or staining in <10% of cells; 1, faint staining in >10% of cells; 2, moderate staining
in >10% of cells; and 3, strong staining in >10% of cells. Tumors classified as 0, 1+, and 2+
were considered “negative” and those scored as 3+ were classified as “positive”.

5. Conclusions

In breast cancer, the function of miRNAs as targets or biomarkers of response to anti-
cancer activity has long been investigated. An even more important role is played by ERx
in breast cancer, whose expression, according to other ancillary parameters, determines the
choice and the therapeutic regimen for patients. In this study, we highlight the existence of
a functional correlation between miR-181a-5p and ER«. This balance can be epigenetically
regulated, through the use of a modulator of the KDM enzyme class. The study, therefore,
hypothesizes in the future to use epigenetic modulation as an additional level of therapeu-
tic intervention or as neoadjuvant therapy, able to limit and/or overcome the resistance
mechanisms that often accompany the prolonged use of endocrine modulators.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com /2072-669
4/13/3/543/s1, Supplementary Figure S1: (A) Relative expression levels of selected miRNA targets
as well as ERa and LSD1 protein interactors in MCE-7 cells after MC3324 treatment. (B) Relative
expression levels of HMGA?2 and PTK9 targets of miR-1 and let-7c positive controls, respectively,
for miRNA mimic and inhibition approaches. Supplementary Figure S2: (A) ERx andPS2/TFF1
relative expression levels determined by qPCR after time dependent 4-OH-Tamoxifen treatment
in MCF7 and MCF7/TamR1 cell lines. GAPDH was used for data normalization. (B) miR181a-5p
relative expression level in MCF7 and MCF7/tamR1 cell lines following 24 and 48 h of 4-OH-
Tamoxifen treatment. RNU6B was used for data normalization of miRNA expression. The results
of three independent experiments each performed in triplicate are represented as the mean + SD.
** p < 0.01; *** p < 0.001. Supplementary Figure S3: PS2/TFF1 relative expression levels determined
by qPCR after transfection with synthetic mimic and inhibitor of miR-181a-5p and controls at a
concentration of 100 nM for 48 h. GAPDH was used for data normalization. The results of three
independent experiments each performed in triplicate are represented as the mean + SD. ** p < 0.01;
*** p < 0.001.Table S1: List of 96 miRNAs exclusively expressed in untreated MCF-7 cells. Table S2:
List of 26 miRNAs exclusively expressed in MC3324-treated MCF-7 cells. Table S3: List of 185 miRNAs
differentially regulated in MC3324-treated vs. untreated MCF-7 cells. Table S4: List of 282 commonly
up-regulated target genes of 153 down-regulated miRNAs (from Venn RNAseq gene UP vs. predicted
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target). Table S5: List of 200 commonly down-regulated target genes of 32 overexpressed miRNAs
(from Venn RNAseq gene DOWN vs. predicted target). Table S6: List of primers used for gPCR.
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