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Featured Application: This paper deals with the possibility to enhance the ageing management 
using technologies applied, so far, to the drivers’ safety. So, the main application of the tools and 
methods here presented are related to the industrial and service operations management, when 
this managerial facet is treated with the age variable and its relation to the cognitive fatigue. 

Abstract: The aging issue in the work context is becoming a significant element of the future 
sustainability of service and industrial companies. It is well known that with increasing worker age 
the problem of maintaining the performance and the safety level when fatigue increases is a crucial 
point, and fatigue increases with the age. Due to social and political developments, especially in 
Western countries, the retirement age is increasing and companies operate with a higher workforce 
mean age. Therefore, the problem of recognizing and measuring fatigue has become a key aspect in 
the management of aging. Note that in the scientific engineering field, the problem of fatigue 
evaluation when a worker is performing his/her work activities is an important issue in the 
industrial and service world and especially in the context of the researchers that are investigating 
the human reliability assessment. As it is clear from the literature, the industrial operations 
management are suffering from some misleading concepts that only the medicine scientific context 
can clarify. Therefore, the aim of this paper is to define what are the open issues and the misleading 
concepts present in the classical fatigue evaluation methods, and second to define two experimental 
curves of fatigue that will help the decision makers to minimize the impact of fatigue on the workers, 
thus maximizing the sustainability of the working tasks assigned. This aim is achieved by examining 
the medical literature about the measurement of a particular kind of fatigue related to the circadian 
cycle, i.e., the cognitive one; after that, a survey about the possible technologies for measurements 
is performed. On the basis of technology selection, an experiment on real work activities is 
performed and some remarkable results about the fatigue in the workers observed and the 
technology use and its limitations are defined. 
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1. Introduction 

As reported by Lassus et al. (2015) [1], the aging of the workforce in modern Western economies 
is posing several hard questions to the political and industrial decision-makers, such as which can be 
the right ration of turnover between the aged and not-aged workers to balance the incomes and 
outcomes of the welfare states? How can the aged workers be helped to achieve and to realize their 
working tasks? 

In this general context, a great role is played by the fatigue, in fact especially for the aged workers 
there is a problem about the fatigue management, that modify their capacity to realize their tasks in 
nominal time [2] as designed by the industrial or service planning managers. There exists two types 
of fatigue for the people, one related to the musculoskeletal aspects [3–5] and one related to the 
cognitive aspects [6,7]. 

In this paper, we will focus on the cognitive fatigue and how this kind of fatigue can be 
measured. Before to do so, let us to introduce the importance and the main aspects of the human 
impacts on the industrial and service tasks. One of the main effects of the humans’ behavior on the 
industrial and services systems is related to the compliance or not of the product or service realized, 
i.e., the possibility to make an error or not in their task execution. This facet is strongly related to their 
reliability, known in the engineering context as Human Reliability. 

Unintentional human errors in the workplace, also including mistakes by operators, are the most 
root cause of accidents, significantly contributing to between 30% and 90% of all serious incidents 
across industries [8–10]. Human errors in industrial systems can also seriously reduce the operation’s 
performances, in terms of quality, productivity, and efficiency [11,12]. In fact, human error has a 
direct impact on productivity because errors affect the rate of rejection of the product, thereby 
increasing the cost of production and possibly reduce subsequent sales [13,14]. In the last years, high 
interest on these topics has been aroused, particularly to understand the origin of human error and 
to prevent the possibility to make it in the workplace. 

From engineers and ergonomics literature, the way to deal with the effect of human error in 
systems and industry is to use human reliability analysis (HRA) [8,15–17]. HRA methods have the 
purpose of assessing the likelihood of human error based on models that describe, in a rather 
simplistic way, the complex mechanism that underlies the single human action that is potentially 
subject to error. One of the undisputed assumptions in these methods is that human performance 
depends on the conditions under which the tasks or activities are carried out [18–20]. These 
conditions characterize significant facets of human error, and they are determined by the individual 
characteristics of the human being, the environment, the organization or the activity that enhances or 
decreases human performance and increases or decreases the likelihood of human error. 

One performance factor that influences human reliability and is often a contributing factor in 
human error is fatigue [21]. In fact, the effect of fatigue on human performance has been observed as 
an important factor in many industrial accidents. The research results presented by Mariana et al., 
(2018) [22] displayed very clear links between fatigue and human errors for shift workers in 
petrochemical, oil, and gas plant operations. This has led researchers to believe that the company 
needs to involve a fatigue and human error analysis in its safety and health policy to prevent 
accidents at the workplace, to ensure the continuity of operations and to optimize the utilization of 
workforce to meet the expected operability, safety, health, and productivity. 

However, current HRA methods do not explicitly include this factor. Griffith and Mahadevan 
(2011) [23] discussed the importance of the effects of fatigue on performance and the difficulties 
associated with defining and measuring fatigue, highlighting the need of inclusion of fatigue 
specifically sleep deprivation, in HRA methods. The authors stated that the inclusion of fatigue could 
refine HEP and thereby improve risk assessments. Only Rasmussen and Laumann (2020) [24] 
assessed whether fatigue should be among the PSFs included in Petro-HRA, suggesting four possible 
PSFs based on the causes of are suggested: Sleep deprivation, Shift-length, Non-day shift, and 
Prolonged task performance. 

This gap is mainly due to the difficulty that the definition and measurement of fatigue are not 
easily achievable. Over the past several decades, much research has been conducted on human 
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fatigue prevention, focusing on two main thrusts. The first one is to understand the physiological 
mechanism of human fatigue and how to measure fatigue level [25] and in fact, neurobiological 
studies have provided bio-mathematical models to predict fatigue. The second thrust focuses on 
developing technological devices to detect and monitor human fatigue, as fatigue appears as the 
major cause of accident and error in the working setting. Several ways to measure this parameter are 
present in the scientific and industrial field, but also in real life as the cars’ system for the 
identification of the sleepiness of the driver installed on several cars’ brands [26–29]. 

Starting from the possibility to measure the fatigue of the humans when they are doing their job, 
this paper addresses the possibility to include a neuro-behavioral measure of fatigue to improve the 
possibility to involve this measure in the real system of performance measurement in a working 
activity. For this reason, this paper aims to present a first experimental results set using the algorithm 
for the sleepiness identification through easily available technology and then the fatigue in humans 
involved in work activities. For this purpose, no particular technological implementations were used, 
but only common and available technologies such as small cameras for eyes pointing and the 
interface of these cameras. Note that the knowledge improvement offered by this paper is mainly 
focused on the use of a technology (used in car accident prevention) in a very different context such 
as a workplace and finally to identify a first tentative curve for the fatigue during the normal work 
shifts for a specific category of workers. Finally, the limitations and future possible developments in 
use that these experiments revealed are reported. 

Therefore, starting from the literature and lack of knowledge about the use of fatigue in 
traditional engineering HEP methods, an open issue about the fatigue measurement at work is 
identified and on this basis a technology able to measure its effect is selected. After that, using this 
technology a real experiment on office workers is conducted to understand which is a possible fatigue 
curve during a real work shift for this kind of workers. 

In perspective, the fatigue measurements and their consideration in job assignments to different 
age workers could be of great impact to the improvement of the social sustainability of the companies 
that will consider the new aging accountability in their mission. It is worth to underline that the 
possibility to implement a system able to recognize fatigue, as the one here proposed, can lead the 
workers and their communities to a better life. This improvement in life experience can be given by 
the reduction of injuries caused by fatigue and by the possibility for the workers to achieve their 
objectives minimizing the cognitive effort and maximizing their activity in the communities out of 
the work. 

Moreover, the results of this paper will help designers and decision-makers improve 
workplaces, especially for some specific sectors that suffer from cognitive fatigue. These sectors, 
namely the aeronautical or the truck services, could implement the technological and methodological 
results of this paper to improve the safety conditions of the specific workplace for the pilots and 
drivers respectively. Looking at the impact of this work on the generality of the workplaces, it could 
be possible to rethink the possibility to integrate into the workplaces the video-capture technologies 
needed to understand the fatigue level of the workers. 

The rest of this paper is organized as follows. Section 2 presents a literature background on 
fatigue in working contexts. Section 3 illustrates the proposed approach. Section 4 describes the 
experimental study. Section 5 discusses the results, and Section 6 presents some final remarks for 
future developments. 

2. Fatigue in Working Contexts 

Fatigue is a term widely used throughout government, industry, labor, and the public to indicate 
the effects of working too long or having too little rest and being unable to sustain a certain level of 
performance on a task [30]. These problems overlap with those that relate to sleepiness and its 
performance effects [31], and consequently, for the sake of communication, the terms are often used 
interchangeably. Wakefulness and sleep are regulated by two primary endogenous neurobiological 
forces that shape the time course of subjective activation, performance, and other neurobehavioral 
variables. 
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The first process is the sleep homeostat that try to balance the time spent awake and time spent 
asleep. During periods of wakefulness homeostatic pressure for sleep increase and this pressure is 
dissipated during sleep. The second process is the endogenous circadian rhythm (Figure 1) which is 
driven by biological clock, located in the suprachiasmatic nuclei of the hypothalamus [32]. Within 
and among consecutive 24 h periods, the circadian pacemaker and the drive for sleep interact to 
determine the level of alertness and performance associated with rest-activity patterns [32–38]. The 
alternation of sleep and wakefulness is regulated fairly precisely and humans can voluntarily choose 
to temporarily ignore the homeostatic and circadian signals for sleep [39], altering the normal 
sleep/wake cycle, not without consequences. 

 
Figure 1. Circadian rhythm [32]. 

Some conditions associated with a temporal misalignment of these two endogenous processes 
include shift work, jet lag, and other circadian rhythm sleep disorders. The results are pronounced 
negative effects on sleep, subjective and physiological sleepiness, diminished performance, and 
accident risk [40]. In the same way, acute and chronic partial sleep deprivation produce increasing 
levels of performance impairment similar in nature to alcohol impairment [41], sleepiness, and 
cognitive performance deficit, particularly when sleep debt is allowed to accumulate over extended 
periods with limited opportunity for recovery [39,42,43]. 

According to these models, it is of extreme importance to consider all these aspects in the 
workplace. The modern society with changes in the global economy and working life have increased 
the speed of business, and the rhythm of work has become more intense and faster-paced, mostly 
organized in a 24/7 schedule [44,45]. Often work is required to be done at any time and fatigue, 
psychosocial workload, and insufficient sleep have been recognized as major consequences of 
increased work intensity among working populations [46,47]. 

The possible consequences of fatigue in real-world settings have been widely documented [48–
54]. Fatigue, particularly at work, has been linked to an imbalance between the intensity and duration 
and timing of work with recovery time. This imbalance is often related to working for extended 
periods and subsequent inability to required performance on the task [30]. Moreover, 
fatigue/sleepiness has been documented as a risk factor for performance error and accident in 
occupational settings [30,55–57]. Fatigue/sleepiness is particularly evident in connection with early 
morning and night shift [58,59] and has been identified as a significant risk factor increasing the 
probability of accident and injury [60,61]. 

One way in which sleepiness/fatigue has been implicated in workplace activity includes studies 
of human error as a function of time of day. The two pronounced peaks found are on the night shift 
and during the afternoon [31,62,63], suggesting that sleepiness is probably associated with 
performance error because it is the prime neurobehavioral consequence of the endogenous circadian 
pacemaker [30]. The biological clock, modulates our hour-to-hour waking behavior, as reflected in 
fatigue, alertness, and performance, generating circadian rhythmicity in almost all neurobehavioral 
variables [64]. While circadian pacemaker contributes to the regulation of sleepiness within each day, 
sleep loss of as little as 2-3 h a night can contribute to sleepiness across days, in a cumulative manner 
[65,66]. 
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However, when sleep deprivation is continued for several days, the negative effects of sleep 
drive on alertness and performance continue to increase but the circadian process modulates the 
changes daily and can mitigate some effects of sleep loss during times of circadian peak [67]. This 
process predicts a nonlinearity of neurobehavioral performance, in contrast to the assumption that 
the longer one works the more fatigued one will become [68]. Indeed, several models developed in 
fatigue risk management are based on the amount of sleep obtained and on circadian phase as they 
dynamically interact over time modulating performance capability [49,69]. 

These mathematical models are currently used to predict fatigue and to identify work schedules 
that pose a sleep deprivation risk and to estimate the magnitude of the risk [49]. However, the absence 
of feedback from actual values of neurobehavioral performance to improve the accuracy, is 
recognized as a limited [70]. Moreover, finding a model that predicts a momentary change of 
fatigue/sleepiness is very difficult. As recently suggested by Abe and colleagues (2014) [68], 
integrated use of sleepiness prediction and detection technologies could be used to mitigate accidents 
and the risk of errors more effectively. 

As noted above the neurobehavioral effect of sleep loss and circadian periodicity follow a 
nonlinear time course within and between days, moreover there are individual differences in 
vulnerability to sleep loss and in circadian rhythm. Healthy adults show interindividual differences 
in circadian amplitude [71,72], and circadian phase [71–74], in part due to genetic influences [72]. 

Chronotype defined as morningness–eveningness type, is the most common interindividual 
variation in circadian rhythmicity. Morning and evening types differ in the circadian phase in their 
biological clocks [71,73]. Generally, the morning type wakes up, feels better, and does well in the 
early hours, but feels sleepiness relatively early. Conversely, evening type prefers to wake up late in 
the morning and feel better at the end of the day (evening hours). To define chronotype, a self-report 
questionnaire such as the Horne–Östberg morningness-eveningness questionnaire [75], and the 
Munich ChronoType Questionnaire, [76,77], are used to differentiate timing of activities on workdays 
versus free days. Chronotypes are also affected by age [76,78] particularly, adolescents tend towards 
evening types, they go to bed considerably later in the evening (particularly if they have access to 
television or live in latitudes where summer evenings can be very long) and so tend to be sleep-
deprived on school days, whereas elderly become more of morning, while over 35 years old the most 
frequent chronotype is the morning one. 

What can be stated is that individuals are likely to have problems if they adopt an early lifestyle 
(retiring and rising earlier than average) but have a circadian system that tends to run later than 
average (for whatever reason), or vice versa. Such disparities can be important for those working shift 
systems [79]. Considering this, for example, morning types are expected to be less tolerant of night 
shift work than their evening counterparts [77]. Moreover, the number of older shift workers is 
growing in most developed countries due to the general aging of the working population, finally, 
employees with insufficient coping behaviors who are scheduled to work at times incompatible with 
their chronotype are more vulnerable to psychological problem [80]. However, as reported by some 
studies, coping strategies such as daytime napping before a night or morning shift, can contribute to 
improve alert and performance in shift work [59,81], but few real-life shift work studies are available 
[82–84], and only one assisted the effect of chronotype in shift work [85], finding that morning 
chronotype were more likely to nap before starting night shift. 

Technologies for Human Fatigue Estimation and Detection 

Starting from the fact that the fatigue can be detected and identified in different parts of the day 
for the different chronotypes, the development and validation of technologies for detecting fatigued 
operators on a job is an important area of development [86]. There are different technologies to detect 
sleepiness/fatigue, including both objective and subjective measures, but they not always are 
applicable in a real-world setting. A variety of subjective measures of sleepiness/fatigue and alertness 
are available that request ratings about the near-immediate state of the subject. These include visual 
analogue scales [87], Likert-type rating scales such as the Stanford Sleepiness Scale [88], and the 
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Karolinska Sleepiness Scale [89], and certain fatigue-related subscales of standard adjective checklists 
such as the Activation–Deactivation Adjective Check List [90], and Profile of Mood States [91]. 

Despite structural differences among these scales, all self-reports of sleepiness are highly 
intercorrelated and because they are relative psychometrics, they are subject to several sources of 
variance, including different uses of the scale response range by different subjects [92]. Subjective 
measures are considered vulnerable to numerous confounding factors influences that can “mask” 
their circadian rhythmicity and to be influenced by expectation, mind-sets, and intentional 
manipulation. Although there are considerably less convincing than objective measures, it has certain 
usefulness to be a simple alternative in many studies to detect repeated subjective ratings of 
sleepiness [93]. This is particularly effective in the real-life contexts and in work hours, in which this 
measure need not interrupt other activities for more than 10-15 s, and may be used frequently during 
the day. Moreover, in a recent review, Akerstedt and colleagues, (2014) [93], comparing different 
studies found a diurnal U-shaped pattern of sleepiness, with high KSS value in the morning and late 
evening with great stability across years. Furthermore, the results concerning to relation between of 
both KSS and sleep deprivation, and objective measures and KSS, drive the authors to conclude that 
subjective ratings of sleepiness are as sensitive and valid an indicator of sleepiness as objective 
measures. 

Polysomnographical (PSG) measurement, such as electroencephalografy (EEG) and the multiple 
sleep latency test (MSLT), has been a gold standard objective measures of sleepiness [94]. However, 
these electrophysiological variables are difficult to implement in real-life contexts and require 
equipment. Vigilant attention tasks are among the most sensitive measures of sleep loss and circadian 
periodicity; PVT, in particular, has proven to be very sensitive to all types of sleep loss and to be an 
example of probed performance fitness for duty test [95]. 

Psychomotor vigilance performance can be measured with the psychomotor vigilance task 
(PVT) [96], a portable, easily usable reaction time test with a high stimulus load (visual or auditory) 
that can yield rapid (i.e., in 10 min) and reliable assessments of psychomotor vigilance impairment 
[44,97]. The PVT has been used in the laboratory to precisely measure, at brief intervals (typically 
every 2 h of wakefulness), the changes in psychomotor vigilance performance caused by sleep loss 
and circadian rhythmicity. The standard 10 min-PVT [95], and the briefer 3-min PVT (the brief PVT: 
PVT-B) [98] have been extensively validated to be sensitive to both acute and chronic partial sleep 
deprivation, revealing the temporal dynamics of sleep homeostatic and circadian interactions. The 10 
min PVT version has become the most widely used measure of behavioral alertness and it has also 
been validated as a reliable measure to identify fatigue in occupational settings [99]. However, the 10 
min PVT is often considered impractical for operational settings because of its duration, and the 
shorter version seems to be too short to detect relevant deterioration in vigilant attention in subjects 
with moderate impairment whose performances deteriorate only later during a test, whereas the 
longer versions may be unnecessarily long for other subjects who apparently fully alert or severely 
impaired [98]. Another version of PVT is the adaptive PVT (PVT-A), which is modified PVT with 
duration dependent on the subject’s performance [98], which in contrast with the fixed duration of 
PVT and PVT-B, its duration is variable. In a validation experiment, the test duration of the PVT-A 
averaged less than 6.5 min (SD 2.4) for a training data set and 6.4 min (SD 1.7) for a validation data 
set. Moreover, PVT-A was shown to be highly accurate, sensitive, and specific relative to 10 min PVT 
performance. Future studies are needed to show its feasibility and usefulness in professional 
screeners and operational environment as a fitness for duty test [68]. 

Considering all the aspects cited so far, as emerged in the recent literature the most 
comprehensive way to detect fatigue relative seems to be continuous monitoring of the operator. 
Technologies for predicting and detecting sleepiness/fatigue have the potential to predict and prevent 
operator errors and accidents in safety-sensitive occupations, as well as physiological and mental 
diseases due to inadequate sleep and circadian misalignment. 

Particularly, the validation of measure of slow eyelid closures (slow eye blinks), referred to as 
Percentage of eyelid closure (PERCLOS), proportion of time that the eyes are closed over a certain 
interval, is evaluated in different studies [96,100–102]. In fact, PERCLOS has been found to be the 
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most reliable and valid measure of a person’s alertness level among many drowsiness detection 
measures [27,68]. It measures the percentage of eyelid closure over the pupil over time and reflects 
slow eyelid closures (droops), in order to reflect momentary fluctuations of vigilance. To validate 
PERCLOS, Dinges et al., (1998; 2002) [96,100] systematically evaluated the validity of a number of 
putative sleepiness-detection technologies. These included brain wave (electroencephalogram [EEG]) 
algorithms, eye-blink rate devices, a measure of slow eyelid closures (i.e., PERCLOS), and a head 
position sensor, as well as individuals’ ratings of their sleepiness. In a series of tightly controlled, 
double-blind experiments, they evaluated the extent to which each technology detected the alertness 
of subjects over a 40-h period of wakefulness, as measured by PVT lapses of attention—a well-
validated measure of behavioral alertness. Human-scored PERCLOS proved superior to all other 
detection technologies in blindly predicting when PVT lapses of attention were occurring across the 
42 h awake time each subject underwent. 

Nevertheless, it is important to underline that the PERCLOS method and its technological needs 
in the current configuration is difficult to be implemented in the production workplace. In fact, the 
industrial work operations can represent a research frontier as it is represented that the worker is 
widely variable in anthropometric and psychological conditions, so devices able to fix a specific point 
in the workplace (something like it is done in the cars sleepiness sensors) is not possible since the 
worker moves itself in the workplace and establish a reference on what the fatigue means for a subject 
not necessarily means define an absolute measure valid for all the subjects. Given these preliminary 
considerations a reactive possible solution to this issue is described at the end of this paper where the 
possible future developments are depicted to make applicable this fatigue measurement also to some 
non-static workers as the production or the yard workers. 

3. Proposed Approach 

The analysis of scientific literature highlights that the problem of fatigue can be focused only if 
the sleepiness of the subject is the key to measure fatigue, and a way to measure this factor is the 
evaluation of the PERCLOS. Several ways to measure this parameter are present in the scientific and 
industrial field [101–104], the reader can easily think to the cars’ system [105–108] for the 
identification of the sleepiness of the driver now installed on several car’s brands that are capable to 
control in real-time the sleepiness of the drivers as reported in 2015 by [108]. 

The industrial application can represent a research frontier since the worker is widely variable 
in anthropometric and psychological conditions, so devices able to point a specific point in the 
workplace, as it is done in the cars with sleepiness sensors, is not possible since the worker moves in 
the workplace. PERCLOS method, instead, fixes a method that is useful to go over these specific 
aspects that represent a limitation of the fatigue measure. It is worth to note that nowadays some 
algorithms able to recognize the sleepiness of a human are available and they were developed in an 
open and free source using a C++ code embedded in MATLAB® based on the PERCLOS method. The 
measurement used in the case of the sleepiness detector for the drivers uses the same principle of the 
PERCLOS software available on the internet and that is usable thanks to the MATLAB®, it is possible 
to get at the following link: https://it.mathworks.com/matlabcentral/fileexchange/55152-drowsiness-
detection-using-a-binary-svm-classifier. 

The PERCLOS method is based on the evaluation of the awaking time in a single subject, so the 
software gives a measure of this assessment calculating the number of frames of a record in which 
the subject is recognized as awake and comparing this number to the total number of record frames, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑚𝑚 −𝑁𝑁𝑎𝑎
𝑁𝑁𝑚𝑚

∙ 100 (1) 

where Nm is the total frames number of the record and Na is the number of the frame in which the 
subject is recognized as “awake”, so with the eyes open and without yawing phenomenon. The 
yawing phenomenon is when a man that is engaged in doing an action repeatedly has an increasing 
cognitive fatigue and the sleepiness is growing up, so the brain gives the input to increase the oxygen 
saturation in blood to retard the sleep, so the yawing is a symptom of sleepiness. 
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The problem to use this kind of algorithm is the validation of their use in an industrial context. 
For this reason, this paper aims to present a first experimental results set using the algorithm for the 
sleepiness identification through easily available technologies, such as small cameras for eyes 
pointing and the interface of these cameras. The limitations in use that these experiments revealed 
and a first curve of fatigue characterization for a single subject during an entire time span of the work 
shift are reported. The fatigue measurement method using the PERCLOS is very similar to the one 
used for example in other application fields such as the one of sleepiness definition for the driver of 
a car, in this case, the measurement system works as described in the following Figure 2. 

 
Figure 2. Logical framework of the proposed approach. 

As reported in Figure 2, the system acts through a camera that is pointing at the worker’s eyes 
and the image of her/his face is elaborated trying to capture the eyes movements and the yawing of 
the driver. The recorded videos are then divided into frames in order to allow us the face detection 
and skin segmentation processes. In these steps, the false detections in identifying facial expressions 
are minimized and the positions of the eyes and the mouth are accurately determined. Furthermore, 
through the skin segmentation, the face and non-face images are recognized and then separated. 

The collected data are used for monitoring the eyes and for detecting the possible yawing 
phenomenon, and a software (SVM) elaborates these monitored elements, and when the elaboration 
is done, having an assessment of the sleepiness the SVM gives an alarm or if it does not detect any 
problem, it continues to capture the face of the worker. 

The assessment of the sleepiness is made on the image comparison. In particular, the eyes and 
the mouth are compared to the images present in a database embedded in the software, so the 
software associates the detected image to a specific image present in the database to which it is, 
finally, associated with a sleepiness level. The status and the specific region of the eyes are identified 
in every frame through the correlation coefficient template matching method, and by considering the 
variations to the connected pixels and the similarity ratio to the eye pixels. In Figure 3, it is reported, 
for example, the parameters used for the sleepiness assessment about the eyes. 

 
Figure 3. Example of eye-opening ratio calculation. 
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For detecting the yawning phenomenon, instead, the mouth area is identified used K means 
clustering and tracked using correlation coefficient template matching. In the following figure, we 
represent what it is recognized as sleepiness and not sleepiness when the software evaluates the 
yawing and the eyes closing. We chose to classify the outcomes as follows. 

• Non-Fatigue (NF): the program detects that the subject is not fatigued; both eyes are recognized 
as open while the mouth is closed (there is no yawn). 

• Fatigue (F): the program detects fatigue in the subject, detecting poor opening or closing of the 
eyelids and possibly yawning, both eyes, even if scarcely open, are recognized as closed. 

• Not Detected (ND): the program cannot identify the subject’s face, so it is impossible to extract 
the images related to eyes and mouth; in the console, the outcome of the last survey carried out 
remains visible. 

• False Fatigue (FF): the program recognizes the fatigued subject even when it is not shown by a 
visual check. This happens when the direction of the gaze changes, especially downwards. 

In the condition represented in Figure 4 it is possible to see a redundancy of signals given by the 
yawing and the eyes’ closure in the same instant, this condition, for sure, is identified as very 
dangerous and the software will give the command to start the alarm to avoid any consequence to 
the sleepiness arising. 

 
Figure 4. Face areas identified by the software for an avatar (eyes and mouth). 

This program was selected from the possibilities available, as the Matlab® computing 
environment was considered the most versatile and appropriate to the concepts of Machine Learning. 
It was also found to be the simplest to use without requiring any specific expertise, a feature that can 
be considered interesting for possible future use in production contexts where training for the use of 
these technologies could be expensive. 

As underlined in the introduction to this paper the problem of the fatigue detection in the 
production context is a worth issue to be faced to properly face the issues related to the safety and 
productivity during all the time span of a working shift that can be performed in the morning, in the 
afternoon and the night. As it is not possible to modify the circadian rhythm of each worker that 
could lead to a modification of the fatigue curve, this study wants to cover a lack of the actual HRA 
methods about the fatigue assessment, that are linked, as previously demonstrated to the sleepiness 
of a person, trying to give a measure of the sleepiness. From this measure and other signals, the 
production or the safety manager can decide to act some changes in the production organization to 
avoid any safety or productivity problem. 

4. Experimental Study 

The experimental tests were carried out in two phases: the data acquisition phase and the 
sleepiness evaluation phase, in order to determine any critical issues related to the use of some types 
of technologies and the evaluation program itself. The subjects involved in the tests have patiently 
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accepted to register through the cameras of their Personal Computers during their research and/or 
work activities, which is largely definable “in the office”. This condition was preferred to others 
because it was better suited to a long video recording. 

According to the characteristics of technologies needed to measure the fatigue using the 
PERCLOS method, the office working type (using a laptop or a PC) was chosen because this kind of 
job allows us to easily observe the mouth and the eyes of the observed subject. The kind of task 
performed by the workers is related to normal design and typing activities that assure the possibility 
to have an effect of the cognitive fatigue easily measured by the PERCLOS method. The work shift 
duration goes from 8 am to 5 pm of every day from Monday to Friday. 

The subjects investigated are 30 and they are from 25 to 59 years old and about a third of them 
are female: in this way it was considered to have taken into account the different chrono-types found 
in the literature. The total number of records expected are almost 640, since the request to the subjects 
was to record their work activity for 7 days 3 times per day for 30 min per time. unfortunately almost 
the 8.5% of this expected experiments number was unuseful or not present for several personal 
reasons such as someone was not present at work during the time spans for measurement or had a 
posture not good for the experiment, and at the end, only 585 experiments were available for the 
present study. All the experiments were then divided firstly for chrono-type, then for three-time span 
during the work hours. As anticipated the records took place in three-time span, i.e., mainly in the 
morning (on average between 10.30 and 11), post-lunch break (between 14.30 and 16.00) and in the 
hour before the end of the shift (between 16.30 and 18.00). These records were then evaluated by the 
research team to the objective to detect the erroneous assessments, which as will be seen have been 
of a significant number. The recording time was divided according to the time of issue of the result 
by the program with evaluation, case by case, of its correctness. 

The results were, then, summarized in an average trend, while the results of the observations 
are divided in Fatigue (F), Not-fatigue (NF), Not-detectable (ND), and False Fatigue (FF). These 
results are given accordingly to the PERCLOS algorithm and its MATLAB implementation, so 
evaluating the eyes and mouth shape the software automatically gives us one of the results F, NF or 
ND, while the FF is a result built by us from the analysis of the single state of the software noted as 
F. For the methods criticalities after exposed this phase of control was needed and in fact it identified 
these cases. It is worth to anticipate that at the end of this paper a first possible solution to this kind 
of problem is identified. 

Following we proceed with the presentation of the results, commenting on them from time to 
time and setting out the critical points of the system. 

5. Results and Discussions 

The results from the experimental campaign had as first objective the possibility to confirm or 
not the general expected output of what is commonly accepted as a “normal” behavior of the persons 
that belong to the morning or evening chrono-type circadian, i.e., it could be important to validate 
the use of the previously introduced technology that the experiment confirms what is commonly 
expected by the people in terms of fatigue appearance. To measure the results of the experimental 
campaign in this sense, we decided to count the number of the outcomes for each person of two main 
sets, constituted by the morning and evening circadian chrono-types, and then divide this count for 
the total number of the experiments performed. With this main objective, the experimental set was 
tested as previously introduced and some comforting results were collected. 

First, let us to show the results for the people that belong to the morning circadian chrono-type. 
As it is possible to understand in the international literature about the chrono-types, the morning 
circadian chronotype generally includes subjects over the age of 35; in them, there is a lower level of 
fatigue found in the morning compared to the evening circadian rhythm. In the experiments this 
trend was confirmed having a continuous fatigue increases during all the time span of observation 
from the morning to the evening, so it is possible to say that the experimental campaign results 
confirm what is available in the literature about the fatigue answer by this kind of chrono-types. In 
particular, note that in the recordings made after the lunch break, a level of fatigue almost double 
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compared to the morning, continuing to increase until the afternoon but with less intensity. The 
subjects interviewed following the outcome of the analysis, confirmed an effective perception of 
personal drowsiness was found very accentuated precisely in that time slot (i.e., from 14 to 14.30). 
Most of the non-detected category is due to the frequent distractions in the workplace (such as phone 
calls, social interaction with colleagues) that are quite common for the category of employment 
chosen for the analysis. It is also interesting to note that after such distractions, in most cases the 
evaluation of the program was of Non-Fatigue. Following the results for the morning (Figures 5–7), 
the first period after lunch and the closing hours of the working day are represented and finally, a 
general diagram for the fatigue level in the time horizon of the working day is presented. 

 
Figure 5. Results of the experiments in the morning for the morning circadian chrono-type. 

 
Figure 6. Results of the experiments in the first period after lunch for the morning circadian chrono-
type. 
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Figure 7. Results of the experiments in the afternoon for the morning circadian chrono-type. 

After the presentation of the experimental results for the morning circadian chrono-type, let us 
introduce the results for other main experimental sets, i.e., the evening circadian chrono-type (Figures 
8–10). In this category all subjects under the age of 35 are grouped and the number of subjects 
investigated is homogeneous with the other main set. The subjects, belonging to this kind of chrono-
type are, generally, characterized by showing a slightly higher level of fatigue during the morning. 
They have an almost constant trend even in the post-lunch break time, in fact, the program detects a 
level of fatigue almost equal to the one observed in morning records. In the records carried out in the 
time slots between 4.30 and 5.00 pm there is a noticeable increase in fatigue which, however, is lower 
than the same as in the morning rhythm. Moreover, in this case, the subjects interviewed in the post 
lunchtime slot, do not feel excessive fatigue; it is, however, worth to note that many of them declare 
to consume light lunches, so maybe this chrono-type is also characterized by different habits. 

The trend of the daily fatigue observed is also foreseeable in the scientific literature, so the 
fatigue follows the expected trend. Following the results for the morning, the first period after lunch 
and the closing hours of the working day are represented and finally, a general diagram for the 
fatigue level in the time horizon of the working day is presented. 

 
Figure 8. Results of the experiments in the morning for the evening circadian chrono-type. 
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Figure 9. Results of the experiments in the period after lunch for the evening circadian chrono-type. 

 
Figure 10. Results of the experiments in the afternoon for the evening circadian chrono-type. 

The results obtained through the experiments confirm what it is present in the literature for the 
chrono-types analyzed in this research. All subjects investigated have less sleepiness at the beginning 
of the shift while the maximum level occurs at the end of the shift, following an increasing trend 
differentiated between the two main investigated sets of chrono-types. Subjects considered to belong 
to the morning rhythm have a lower level of fatigue during the morning compared to subjects 
characterized by an evening rhythm, which, however, have a lower level of fatigue at the end of the 
shift. Of particular interest is the very marked increase that occurs in people over the age of 35 in the 
post-lunch break interval: unlike the other category, their fatigue level is double, compared to the 
morning one; in practice, the fatigue appears not reduced by the lunch break. The motivations of this 
phenomenon could be their eating habits, behavioral, or in the different personal management of 
sleepiness. It is worth to note that these last issues will not be faced in this research, as it is focused 
on the technological experimentation for fatigue detection. In all the afternoon records it is possible 
to notice a decrease in the non-detected result related to the lighting that increases due to the lighting 
of the artificial lights. Therefore, it is possible to affirm that the software is very sensitive to these 
environmental factors. 

In the last figure (Figure 11) it is reported a comparison diagram in which it is possible to 
understand the different shape of the curves for the two chrono-types analyzed in this experimental 
study and also the differences in absolute values of fatigue for both of them during the entire time 
span of a working day. 
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Figure 11. Comparison of the variations of the fatigue during the working day for the evening and 
morning circadian chrono-type. 

The FF (the false fatigue results of experiments) result is linked to intrinsic criticalities of the 
software used for the analysis and is common to all registrations; an exhaustive list follows. The 
program used, even though it has many features that could make it usable in productive contexts, 
has several critical issues that have to be fixed for its full application in the production context: 

• One of the most significant critical points is the sensitivity to the rotation of the face and the 
direction of the gaze: when the subject focuses his gaze in a direction different from that of the 
camera, the eyes appear to have a different opening, although this is not associated with any 
state of fatigue. In this case, the program gives the result of “fatigue” as the eye is recognized as 
closed. This criticality was recognized in the experiments and to avoid it, all the experiments 
records were analyzed and when this criticality was recognized the experiment result was 
indicated as “False Fatigue”. The presence of beard in the subject, especially if thick, often results 
in “Fatigue”, recognized through visual verification as False Fatigue, as the mouth is incorrectly 
detected as open, generating the alarm associated with yawning. This criticality is probably due 
to the limited presence of bearded individuals in the database. 

• The ambient lighting was very incisive in the evaluation, especially in the late afternoon 
recordings causing the majority of the non-detected results. Another criticality of the software 
was identified in the difficulties to read the face and eye shape when the subject analyzed has 
glasses. Another improvement of the software when it is applied to the production context could 
be related to the yawing detection that in the driving sleepiness detection could be of interest, 
but in the production context not necessarily. This suggestion is motivated by the fact that the 
software sometimes when the subject yaws give the result of “non-detected” instead of 
“fatigue”, so the yawing detection in production context could be misleading from the sleepiness 
detection. 

Starting from these criticalities, we tried to solve some of them, fixing the camera on a support 
in front of the subject investigated that in the trial was performing a small activity of manual work, 
different from the office activity investigated in our experiment. The results show an overcoming of 
some of the previously introduced criticalities. In particular, the first attempt to improve the 
performance of detection was to use a support usable as an hat on which the camera is mounted 
looking to the worker face; in this way the camera moves accordingly to the face orientation. In the 
following figure the support was simply chosen using a hat visor to mount a small camera that focus 
on worker face. Applying this simple improvement (represented in Figure 12), the following results 
were obtained. 
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Figure 12. Improvement in face parts detection using the new positioning technique for the camera. 

• The problems related to the rotation of the face have almost been solved; those attached to the 
gaze direction remain. 

• Criticalities related to lighting were very attenuated and the results not detected, almost present 
due to sporadic adjustments of the hat by the subject, were almost eliminated. 

• The critical issues attached to the erroneous fatigue warnings due to states of the open mouth 
caused by the presence of thick beard were also attenuated: the greater closeness to the face 
allowed the program a greater definition of the contours. 

The improvement of the image detection is possible to be seen also in the following image. This 
improvement allowed us to think to a possible future development in the definition of worker hat 
support for the cameras. 

The creation of a mechanism to make simultaneous the movement of the face and the camera 
can give reasonable hopes to import this method of face detection also in production context in which 
the worker moves himself and so the face detection could be a constraint in the use of this 
technological solution to identify the fatigue. 

The possible future developments allow to think also to a redefinition of the rest scheduling 
models that could base their results also on the data acquisition from system such the ones here 
presented. 

6. Conclusions 

As recognized in the previous sections a great sustainability issue in the industrial and service 
companies is arising about the management of the workers’ aging due to several social and political 
aspects. To this end, it is crucial to start to analyze one of the main influencing variables, i.e., the 
fatigue. It is recognized that people can have physical or cognitive fatigue and in this paper it is 
evidenced and analyzed the last one, proposing a way to measure it and trying also to have a 
measurement confirmation of what is normally expected by different age workers. The experiments, 
which were conducted using simple cameras and a freeware MATLAB program to analyze the 
images, revealed the effectiveness of this kind of measurement and confirmed what was expected. 

As it was possible to understand, there is a lack in the actual product and service production 
knowledge about the right way to measure a very important variable as fatigue, especially when the 
production or the service system analyzed is a manual one. In this case, it is well known for the 
practitioners the effects of cognitive fatigue on the performances of a worker, but no ways to measure 
this parameter in an industrial context have appeared so far. This paper aimed to identify a method 
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to measure cognitive fatigue measuring one of its effect, which is the sleepiness, using a structured 
method as the PERCLOS method is. 

The application of this method and the use of cameras to record the eye and face feature were 
applied to about 450 practical experiments that revealed some important results. The 450 experiments 
were persons involved in offices work, divided into different age groups, in particular, the youngest 
were from 18 to 35 years old, the middle age was from 36 to 55 years old and the oldest group was 
from 56 to 65. As it was possible to understand the age of the subject has a great influence on the 
circadian rhythm that is one of the main factors in the fatigue arising in the people. On this 
assumption, it was possible to imagine a different answer to the cognitive fatigue related to the age 
set. The expected shapes of the fatigue curves for the two types of chrono-types, divided into the 
different age groups, are confirmed from the experimental survey, even if more points of 
interpolation will reinforce the actual verified shape; therefore, the circadian age effect on the 
cognitive fatigue is confirmed. After this result, it was understood that in some cases that the presence 
of barb or glasses could modify the results of the recording and image elaboration leading to an error 
of measure, but the previous problem could be overcome if the camera is integrated with the face 
orientation of the observed subject. 

The limitations of this work and the possible solutions also depicted here can reinforce the 
possibility to create new detection systems able to improve the decision making of the managers 
about the work shift assignment, the job rotation, and so on about the single worker. The impact of 
the application of these technologies to some specific work types, such as the pilots and the drivers, 
or less sensitive works to the cognitive fatigue can be significant especially in the context of the risk 
reduction and the productivity performance of the workers. 

These results confirm and encourage to go beyond the actual level of knowledge about the 
measure of the fatigue in the real production context, so moving from the service companies (in which 
this experiment was performed) to the industrial ones. Thus, the next work would be oriented to the 
enlargement of the number of observations of the subjects during the working and the change of 
work tasks from the office activities to the assembly ones. This study and the results obtained give 
great hope for the future of aging management, and in particular for the different responses by 
different age workers to fatigue. The paper also revealed the necessity to distinguish between 
different circadian rhythms that generally are associated with different ages of the workers. This 
possibility to manage the assignment of the tasks to the people considering their age in the first phase 
(as the age is strongly related to the circadian rhythm and the cognitive fatigue arising during the 
work shift) and after to change this assignment if the fatigue measurement reveals an increase of 
fatigue can lead to a great improvement in terms of social sustainability of the modern industrial and 
service company. 

Therefore, it is possible to imagine a new way to schedule the activities and tasks, no more 
focused only on the execution time but also on the effective capacity of the worker that is modified 
by the cognitive fatigue. Future works about this topic could be of great interest because this paper 
demonstrates that a quantitative measure of cognitive fatigue is possible and effective, so it is possible 
to imagine a new way to integrate this facet in the HRA models and in the scheduling problems 
related to the human tasks since the fatigue is measurable. When these models will be applicable, it 
would be possible to pursue a real improvement in the social sustainability of the industries and 
service companies. 
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