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Abstract 

Background:  Non-invasive oxygenation strategies have a prominent role in the treatment of acute hypoxemic 
respiratory failure during the coronavirus disease 2019 (COVID-19). While the efficacy of these therapies has been 
studied in hospitalized patients with COVID-19, the clinical outcomes associated with oxygen masks, high-flow oxy‑
gen therapy by nasal cannula and non-invasive mechanical ventilation in critically ill intensive care unit (ICU) patients 
remain unclear.

Methods:  In this retrospective study, we used the best of nine covariate balancing algorithms on all baseline covari‑
ates in critically ill COVID-19 patients supported with > 10 L of supplemental oxygen at one of the 26 participating 
ICUs in Catalonia, Spain, between March 14 and April 15, 2020.

Results:  Of the 1093 non-invasively oxygenated patients at ICU admission treated with one of the three stand-alone 
non-invasive oxygenation strategies, 897 (82%) required endotracheal intubation and 310 (28%) died during the ICU 
stay. High-flow oxygen therapy by nasal cannula (n = 439) and non-invasive mechanical ventilation (n = 101) were 
associated with a lower rate of endotracheal intubation (70% and 88%, respectively) than oxygen masks (n = 553 and 
91% intubated), p < 0.001. Compared to oxygen masks, high-flow oxygen therapy by nasal cannula was associated 
with lower ICU mortality (hazard ratio 0.75 [95% CI 0.58–0.98), and the hazard ratio for ICU mortality was 1.21 [95% CI 
0.80–1.83] for non-invasive mechanical ventilation.

Conclusion:  In critically ill COVID-19 ICU patients and, in the absence of conclusive data, high-flow oxygen therapy 
by nasal cannula may be the approach of choice as the primary non-invasive oxygenation support strategy.
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Background
The coronavirus disease 2019 (COVID-19), caused by 
the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has generated an unprecedented demand 
for intensive care resources to deliver supportive care 
using non-invasive oxygenation support and invasive 
mechanical ventilation [1]. Large studies have provided 
data regarding baseline clinical characteristics of patients 
admitted to intensive care units (ICU), the need for inva-
sive mechanical ventilation, and outcomes of mechani-
cally ventilated patients [2–10].

During the pandemic, patients with acute hypoxemic 
respiratory failure admitted to the ICU and not in need 
of emergent intubation of the trachea have mainly been 
treated with non-invasive oxygenation strategies [1]. 
These methods include standard non-rebreather oxygen 
masks (oxygen mask), high-flow oxygen therapy adminis-
tered through large-bore nasal cannulas (HFT), and non-
invasive positive pressure ventilation (NIV) techniques 
[1, 2, 11]. The choice for using one type of oxygenation 
support over another has likely been based on local rec-
ommendations, personal experience, and availability of 
devices.

The difference of opinions regarding the optimal tech-
nique for non-invasive oxygenation support is ample, 
but the consequences and relevant clinical outcomes of 
the various usual care strategies in critically ill COVID-
19 patients admitted to an ICU remain unclear [12–15]. 
Thus, our main objective was to evaluate the impact of 
three stand-alone non-invasive oxygenation strategies 
on intubation rates and ICU mortality at 90  days after 
admission of critically ill patients with COVID-19-asso-
ciated acute hypoxemic respiratory failure. We hypoth-
esized that the various non-invasive oxygenation support 
strategies had no impact on intubation and ICU mortal-
ity rates.

Methods
We retrospectively analysed a cohort of patients admit-
ted to ICUs in the Spanish autonomous community of 
Catalonia between March 14 and April 15, 2020. The 
official census population of Catalonia at the time was 
7,780,479 inhabitants. At the start of the pandemic, the 
Catalonian public health system had approximately 500 
adult ICU beds in its 26 hospitals, and 13 private hos-
pitals had an additional 100–120 ICUs beds for adults. 
An invitation to participate in the study was sent to the 
head of department at all the intensive care medicine 

departments in Catalonia at the end of April 2020. In 
view of the nature of the study, the ethics committee at 
the coordinating centre (Hospital Universitari de la Santa 
Creu i Sant Pau, Barcelona) approved the study proto-
col (UCIS-CAT 20/151 OBS) and waived the need for 
informed consent. Participating centres complied with all 
local requirements.

Inclusion and exclusion criteria
The inclusion criteria were age 18 years or older, patient 
admitted to an ICU, clinical signs and symptoms com-
patible with COVID-19 pneumonia, a positive real-
time reverse-transcriptase polymerase chain reaction 
test for SARS-CoV-2 obtained from a nasopharyngeal 
swab, bilateral infiltrates in the chest X-ray, need for 
supplemental oxygen to keep arterial oxygen satura-
tion measured with a pulse oximeter (SpO2) above 90%, 
and admission at one of the participating centres’ ICU 
between March 14 and April 15, 2020. All patients were 
candidates for intubation and mechanical ventilation at 
the time of ICU admission. Decisions regarding intuba-
tion of the trachea were based on clinical grounds and 
judgment of the intensivist in charge.

Only patients who had been treated exclusively with a 
single non-invasive oxygenation technique during their 
ICU stay were included in this analysis: oxygen mask at 
a rate of more than 10 L oxygen/minute, HFT adminis-
tered through a heated humidifier at a gas flow rate above 
30 L/minute and a fraction of inspired oxygen (FiO2) of at 
least 0.5, or NIV with a FiO2 of at least 0.5 (irrespective of 
interface, mode and ventilator type used). The choice of 
non-invasive oxygenation technique was at the discretion 
of each participating ICU and was based on local recom-
mendations and availability of devices. The day of ICU 
admission was defined as day 0. Patients were excluded 
from our analysis in three situations: first, they were intu-
bated and mechanically ventilated before ICU admission 
because the context and conditions of intubation were 
unknown; second, they were intubated immediately after 
ICU admission (within 3 h) because the attempt at non-
invasive oxygenation support was considered clinically 
unsuccessful; and third, they received oxygen supple-
mentation either by nasal prongs or by any combination 
of oxygen mask, HFT and NIV (Fig.  1). Patients receiv-
ing a combination of multiple non-invasive oxygenation 
support techniques were not analysed as the order of 
administration and the reasons for change could not be 
precisely elucidated, thus introducing an unquantifiable 
allocation bias into the analysis.
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Data collection
The principal investigator at each centre filled in a stand-
ardized case report form for each patient included in the 
study. Data regarding demographic variables, labora-
tory data at admission, type of non-invasive and invasive 
oxygenation support, variables related to gas exchange 
and respiratory system mechanics obtained shortly after 
endotracheal intubation, and ICU outcome status at 
90  days from ICU admission were processed from the 
independent case report forms and stored in a single 
master file. Patients were followed in the ICU until day 
90 post-admission or until ICU discharge, whichever 
occurred first. This file was reviewed independently by 
three investigators (PDWG, CGI and JM). The principal 
investigators at each centre were contacted to solve any 
errors or missing data. Following this process, the master 
file was closed.

Once intubated, patients who met acute respiratory 
distress syndrome (ARDS) criteria were classified in 
mild, moderate and severe oxygenation phenotypes, 

as described [16]. Driving airway pressure was calcu-
lated as the difference between plateau airway pres-
sure and set positive end-expiratory pressure (PEEP). 
Compliance of the respiratory system was calculated 
as tidal volume divided by driving airway pressure. The 
ventilatory ratio and estimated physiological dead-
space fraction were calculated as previously described 
by Sinha et  al. [17] and Morales-Quinteros et  al. [18], 
respectively.

Missing data
To account for missing data (Additional file 1: Table s1), 
we performed multiple imputations by fully conditional 
specification with predictive mean matching under the 
missing at random assumption [19]. Further details 
regarding the imputation method used are presented in 
Additional file 1: Appendix 1, Additional file 1: Fig. s1, 
Additional file 1: Fig. S2 and Additional file 1: Table s2.

Fig. 1  Study flowchart
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Statistical analysis
To enable causal inference of the average treatment 
effect associated with each oxygenation support strat-
egy, we evaluated the baseline covariate balance at 
ICU admission. Covariate balancing refers to a group 
of statistical methods used to enable exchangeability 
of exposed and unexposed subjects to one or multiple 
treatments in order to minimize confounding. Apply-
ing a weight on each individual subject generates a 
standardized pseudo-population, in which causal 
treatment effect inference is possible. Nine covariate 
balancing methods considering all baseline covariates 
at ICU admission were tested against each other (see 
Additional file 1: Appendix 2). The best covariate bal-
ancing method (standardized mean deviation < 0.1 and 
variance ratio < 2) was used for all subsequent analyses 
[20]. A detailed description on the covariate balanc-
ing method selection is also shown in Additional file 1: 
Appendix 2 and Additional file 1: Figs. s3 and s4.

Univariable and multivariable Cox proportional haz-
ard models coupled to the Kaplan–Meier estimator, 
with and without random frailty terms for between-
centre variability effect, were used to analyse the 
effects of the different oxygenation support strategies 
on the incidence of intubation and ICU mortality. The 
effects are represented by hazard ratios and their 95% 
confidence interval (CI). A time-varying Cox propor-
tional hazards model was used to investigate the effect 
of time between ICU admission and intubation on 
90-day ICU mortality. Patients discharged alive from 
the ICU were considered to be alive at day 90. Survival 
distributions among the various oxygenation support 
strategies were compared using the log-rank test. Pro-
portional hazard assumptions were assessed by inspec-
tion of Schoenfeld residuals.

Ventilator-free survival days were defined as the 
cumulative time in the first 30  days of ICU admis-
sion without the need for invasive mechanical ventila-
tion. Patients who died within the first 30  days were 
assigned 0 ventilator-free days. Population charac-
teristics were compared using analysis of variance 
or the Kruskal–Wallis test, as appropriate, and the 
chi-squared test for categorical variables. Statistical 
analysis was performed through a fully scripted data 
management pathway using the R environment for sta-
tistical computing version 4.1.0. No power calculations 
were performed due to the observational nature of this 
cohort study. A two-sided p < 0.05 was considered sta-
tistically significant. Values are given as medians and 
[interquartile ranges] or counts and percentages as 
appropriate.

Results
Twenty-six centres participated in the study, 20 of the 
26 public health system hospitals in Catalonia and 6 of 
13 private care centres. The study thus reflects the care 
provided to patients in 438 of the 620 adult ICU beds 
available in Catalonia at the beginning of the pandemic, 
370 pertaining to the public system and 68 to the private 
health system (see Additional file 1: Appendix 3).

A total of 1703 critically ill COVID-19 patients were 
admitted to the participating ICUs between March 14 
and April 15, 2020. Figure  1 shows the study flowchart 
and Additional file 1: Table s3 shows the main character-
istics and outcomes for the overall unbalanced popula-
tion. Three-hundred and nine patients were treated with 
combinations of non-invasive respiratory support tech-
niques and were excluded from the analysis to allow a 
clear differentiation between individual therapies. Over-
all, these patients had a 72% intubation rate (222/309) 
and the ICU mortality rate up to day 90 post-admission 
was 27.5% (85/309).

Population analysed and matching analysis
The final analysis included 1093 patients treated with a 
non-invasive oxygenation support strategy during their 
ICU stay: 553 (51%) with oxygen mask, 439 (40%) with 
HFT, and 101 (9%) with NIV. Their main characteristics 
and outcomes are shown in Additional file 1: Table s4.

Among the various balancing algorithms tested, we 
employed the targeted stable balancing weights using the 
optimization algorithm. This algorithm minimized stand-
ard mean deviation (< 0.0001) and variance ratios (≤ 1.7) 
between oxygenation support strategies for all variables 
and presented consistent and moderate weights (1 ± 0.35) 
for all patients (Additional file 1: Fig. s5, Additional file 1: 
Fig. s6, Additional file 1: Fig. s7).

Characteristics of the analysed population
Baseline characteristics across oxygenation support strat-
egies were identical after covariate balancing (Table  1). 
Patients were mainly male (68%) with a median age of 
63 [54–70] years. The median time between hospital and 
ICU admission was 1 day [0–3 days]. The overall intuba-
tion rate was 82% (897/1093). A total of 501 out of 553 
(91%) patients treated with oxygen mask were eventually 
intubated and mechanically ventilated as opposed to 307 
out of 439 (70%) of those treated with HFT and 89 out of 
101 (88%) of those treated with NIV (p < 0.001). The num-
ber of ventilator-free days was higher in the HFT group 
than in the oxygen mask and NIV groups (p < 0.001).

Table 2 shows the characteristics of patients who even-
tually required intubation and mechanical ventilation, 
after covariate balancing. The median time from ICU 
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admission to endotracheal intubation was 0 [0–0] days in 
the oxygen mask group, 0 [0–1] days in the HFT group, 
and 0 [0–1] days in the NIV group (p < 0.001). Among the 
897 intubated patients, 824 (92%) had an ARDS and this 
was moderate-to-severe in 571 (69%).

Figure 2 shows the cumulative proportion of intubation 
over time according to the various non-invasive oxygena-
tion support techniques. As compared to oxygen mask, 
the hazard ratio for intubation in HFT treated patients 
was 0.45 (95% CI 0.39–0.53) and 0.67 (95% CI 0.53–0.85) 
for NIV treated patients.

Mortality
The cumulative proportion of ICU survival, evaluated 
up to 90  days of ICU admission, differed significantly 

according to the initially chosen non-invasive oxygena-
tion strategy (p = 0.02) (Fig. 3a). As compared to patients 
treated with an oxygen mask, the hazard ratio for ICU 
mortality was 0.75 [95% CI 0.58–0.98] for HFT venti-
lated patients, and 1.21 [95% CI 0.8–1.83] for NIV treated 
patients.

In intubated and mechanically ventilated patients, the 
90-day ICU mortality did not differ (p = 0.2) between 
groups (Fig. 3b).

Secondary analyses
The time from ICU  admission to intubation showed 
no influence on static respiratory system compliance, 
driving airway pressure, or PaO2/FiO2 ratio as meas-
ured shortly after intubation (Additional file  1: Fig.  s8, 

Table 1  Demographics, baseline characteristics at intensive care unit admission and overall outcome obtained after covariate 
balancing*

Quantitative data are expressed as median [interquartile range]. p values are given for the difference between respiratory strategies. Standardized mean differences 
(SMD) reflect the maximal mean difference between groups. Variance ratios (VR) reflect the maximal higher-order moments and interactions between groups. 
COPD—chronic obstructive pulmonary disease; CRP—C-reactive protein; ICU—intensive care unit; PCT—Procalcitonin. † Calculated at 30 days post-intensive care 
unit admission; patients deceased were assigned 0 ventilator free days

*By applying a weight on each individual subject, a standardized pseudo-population is generated, which slightly differs from the original population (e-Table 4). 
Causal treatment effect inference is possible in this pseudo-population

**Includes any of the following: arterial hypertension, ischemic heart disease, acute cerebrovascular events

Overall Oxygen mask High-flow oxygen therapy Non-invasive 
ventilation

p SMD VR

n = 1093 n = 553 n = 439 n = 1011

Age (years) 63 [54—70] 64 [54—70] 62 [54—70] 63 [53—69] 0.904  < 0.001 1.11

Sex (female) 354 (32) 179 (32) 142 (32) 33 (32) 1  < 0.001 –

Body mass index (kg·m−2) 28 [26–31] 28 [25-31] 28 [26–31] 28 [26–31] 0.914  < 0.001 1.23

Time from hospital admission 
to ICU admission [days]

1 [0—3] 1 [0—3] 1 [0—3] 2 [1–3] 0.553  < 0.001 1.22

Comorbidities, n (%)

 Cardiovascular 520 (48) 263 (48) 209 (48) 48 (48) 1  < 0.001 –

 Diabetes 226 (21) 114 (21) 91 (21) 21 (21)

 Cancer 80 (7) 41 (7) 32 (7) 7 (7)

 COPD 79 (7) 40 (7) 32 (7) 7 (7)

 Immunosupression 63 (6) 32 (6) 25 (6) 6 (6)

Leucocytes (G/l) 9 [6–12] 9  [6–12] 9  [6–12] 9 [7–12] 0.782  < 0.001 1.25

Lymphocytes (G/l) 0.7 [0.5—1.0] 0.7 [0.5—1.0] 0.8 [0.5—1.0] 0.7 [0.5—1.0] 0.551  < 0.001 1.28

Neutrophil/ lymphocyte ratio 10 [7–17] 11  [6–18] 10 [7–17] 10  [7–18] 0.688  < 0.001 1.46

Procalcitonin (μg/l) 0.3 [0.1—0.6] 0.3 [0.1—0.6] 0.3 [0.1—0.6] 0.2 [0.1—0.5] 0.254  < 0.001 1.7

C-reactive protein (mg/l) 113 [23–222] 118 [30—217] 104 [17—227] 114 [30—227] 0.296  < 0.001 1.42

Lactate (mmol/l) 1.4 [1.1–1.9] 1.3 [1.0—1.9] 1.4 [1.1—1.9] 1.4 [1.2—1.8] 0.052  < 0.001 1.47

Interleukin-6 (ng/l) 129 [50–329] 132 [50—304] 118 [60—332] 130 [43—354] 0.855  < 0.001 1.34

D-dimers (μg/l) 1145 [560–2965] 1262 [611–3058] 1040 [494—2760] 1190 [558—3793] 0.07  < 0.001 1.57

Ferritin (μg/l) 1387 [760–2259] 1325 [779—2254] 1465 [742—2215] 1382 [722—2356] 0.91  < 0.001 1.58

Intubation, n (%) 897 (82) 501 (91) 307 (70) 89 (88)  < 0.001

Length of ICU stay (days) 14  [7–26] 14  [7–26] 13  [7–26] 13 [8–24] 0.958

Ventilator-free survival† (days) 12 [0—24] 8 [0—23] 15 [0—30] 11 [0—24]  < 0.001

ICU mortality, n (%) 310 (28) 167 (30) 106 (24) 37 (36) 0.041
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Additional file 1: Fig. s9, Additional file 1: Fig. s10). How-
ever, it was associated with an elevated ICU risk of mor-
tality in a time-varying Cox regression model (Additional 
file 1: Fig. s11).

The Cox proportional hazards model, in covariate bal-
anced population analysis, showed that highly predictive 
variables for ICU mortality were age, body mass index, 
high levels of C-reactive protein, procalcitonin, ferritin, 
D-dimers, and the presence of chronic obstructive pul-
monary disease (Additional file  1: Fig.  s12). Variables 
that were highly predictive of ICU mortality in patients, 
who required invasive mechanical ventilation, are shown 
in Additional file  1: Fig.  s13. In mechanically ventilated 
patients, high D-dimers were significantly associated 
with mortality independently of the static respiratory sys-
tem compliance (Additional file 1: Fig. s14).

Sensitivity analyses assessing 90-day ICU mortal-
ity risk in the un-balanced population in crude models 
(Additional file 1: Fig. s15, Additional file 1: Table s5) and 
multivariable-adjusted models (Additional file 1: Fig. s16, 

Additional file 1: Fig. s17, Additional file 1: Fig. s18, Addi-
tional file  1: Fig. s19), with and without between-centre 
random effects term, showed the same associations as 
the covariate balanced population analysis.

Discussion
In this retrospective, baseline covariate balanced, mul-
ticentre cohort of 1093 critically ill non-invasively ven-
tilated COVID-19 ICU patients, 897 (82%) eventually 
required endotracheal intubation and 310 (28%) died 
during their ICU stay. The need for endotracheal intuba-
tion and invasive mechanical ventilation was significantly 
lower in patients supported by HFT and NIV than in 
those receiving oxygen mask therapy at ICU admission. 
Additionally, patients supported by means of HFT had a 
lower risk of ICU mortality than patients supported with 
oxygen masks and NIV.

Debate around the optimal choice of non-invasive oxy-
genation support in acute hypoxemic respiratory failure 
has re-emerged within the framework of the COVID-19 

Table 2  Ventilator settings and gas-exchange parameters shortly after intubation and outcome in intubated patients

Quantitative data are expressed as median [interquartile range]. P values are given for the difference between respiratory strategies. ARDS—acute respiratory distress 
syndrome; ICU—intensive care unit; PaO2—partial pressure of arterial oxygen; FiO2—fraction of inspired oxygen; PaCO2—partial pressure of arterial carbon dioxide; 
PEEP—positive end-expiratory pressure; Compliance rs—compliance of the respiratory system
† Mild: 200mHg < PaO2/FiO2 ≤ 300 mmHg; Moderate: 100mHg < PaO2/ FiO2 ≤ 200 mmHg; Severe: PaO2/ FiO2 ≤ 100 mmHg

*Calculated according to Sinha. (17), see formula in Additional file 1: Appendix 4

**Calculated according to Morales-Quinteros et al. (18), see formula in Additional file 1: Appendix 4

Overall n = 897 Oxygen mask  n = 501 High-flow oxygen 
therapy  n = 307

Non-invasive 
ventilation  
n = 89

p

Time from ICU admission to intubation [days] 0 [0–1] 0 [0—0] 0 [0—1] 0 [0—1]  < 0.001

ARDS classification†, n (%)

 No ARDS 73 (8) 48 (9) 18 (6) 7 (8) 0.264

 Mild 253 (28) 151 (30) 84 (27) 18 (20)

 Moderate 451 (50) 238 (48) 159 (52) 54 (61)

 Severe 120 (14) 64 (13) 46 (15) 10 (11)

FiO2 (%) 60 [50—80] 60 [50—80] 60 [50—70] 60 [45—80] 0.444

PaO2 (mmHg) 97 [79—126] 98 [80—131] 98 [78—122] 91 [78—113] 0.19

PaO2/ FiO2 (mmHg) 171 [126—229] 173 [124–238] 174 [127—228] 157 [124—205] 0.487

PaCO2 (mmHg) 46 [40–54] 46 [40–54] 47 [40–54] 46 [38—57] 0.993

pH 7.35 [7.29—7.4] 7.35 [7.28—7.4] 7.35 [7.29—7.41] 7.35 [7.28—7.4] 0.57

Respiratory rate (1/min) 22 [20–25] 22 [20–25] 22 [20–25] 22 [20–26] 0.555

Tidal volume/ideal body weight [ml/kg] 6.7 [6.0—7.5] 6.7 [6.0—7.5] 6.7 [6.1—7.6] 6.7 [5.7—7.3] 0.27

PEEP (cmH2O) 12 [10–14] 12  [10–14] 12  [10–14] 14  [12–15]  < 0.001

Plateau airway pressure (cmH2O) 25 [23–28] 25 [22–28] 25  [23–28] 26  [24–28] 0.13

Driving airway pressure (cmH2O) 12 [10–15] 12  [10–15] 12  [10–15] 12  [10–15] 0.745

Compliance rs (ml/cmH2O) 35 [28–44] 34 [28–42] 35 [27–45] 33 [27–43] 0.591

Ventilatory ratio * 1.9 [1.5–2.3] 1.9 [1.5–2.3] 1.8 [1.5–2.3] 1.8 [1.4–2.3] 0.837

Estimated physiological dead-space fraction (%) ** 54 [42–64] 54 [43–63] 55 [39–64] 51 [43–63] 0.823

Length of mechanical ventilation (days) 14 [7–25] 14 [7–24] 16 [9–26] 12 [7–22] 0.031

Length of ICU stay (days) 17 [10–28] 16 [9–27] 19 [12–31] 15 [9–26] 0.004

ICU mortality, n (%) 297 (33) 164 (33) 96 (31) 37 (41) 0.275
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pandemic [1, 12, 13, 15, 21–23]. The association between 
the use of HFT or NIV and a reduction in endotracheal 
intubation rates compared to oxygen mask has yielded 
ambiguous results [24–26]. The two largest randomized 
trials to date did not find reductions in endotracheal intu-
bation rates benefitted patients supported with HFT or 
NIV compared to those treated with an oxygen mask [27, 
28] These findings may have several explanations: differ-
ent populations and etiologies of acute hypoxemic res-
piratory failure, different inclusion and exclusion criteria, 
non-identical methodological approaches to the use of 

non-invasive techniques, and different criteria to declare 
a failed non-invasive oxygenation attempt. Furthermore, 
the primary outcomes of these studies were not the same.

In SARS-CoV-2-induced hypoxemic respiratory failure, 
however, the use of HFT and NIV was superior to oxy-
gen mask in limiting progression to invasive mechanical 
ventilation, supporting our findings [29, 30]. The reason 
for this efficacy of HFT and NIV is possibly explained 
by their physiological effects in terms of improvements 
in gas exchange, decreases in respiratory muscle effort, 
and a generally ameliorated sensation of dyspnea as 

Fig. 2  Kaplan–Meier plot of the cumulative proportion of intubation. Kaplan–Meier curve of the cumulative proportion of intubation stratified 
according to the initial oxygenation support strategy at ICU admission. Oxygen mask, high-flow oxygen therapy and non-invasive ventilation are 
plotted in red, blue, and green, respectively. p values were calculated by means of the log-rank test. Hazard ratios (HR) were computed using a Cox 
proportional hazard model and the risk of intubation in the high-flow oxygen therapy and non-invasive ventilation groups was assessed using the 
oxygen mask group as reference; 95% confidence intervals (CI) are given in parentheses. Table at the bottom presents the patients at risk per time 
point

Fig. 3  Kaplan–Meier plot of the cumulative survival in the intensive care unit. Kaplan–Meier curve of the cumulative intensive care survival was 
stratified according to the initial oxygenation support strategy at admission to the intensive care unit. Subplot (a) refers to all patients included 
in the analysis. Subplot (b) considers only patients pending probably intubation and invasive mechanical ventilation. Oxygen mask, high-flow 
oxygen therapy and non-invasive ventilation are plotted in red, blue, and green, respectively. p values were calculated by means of the log-rank test. 
Hazard ratios (HR) were computed by means of a Cox proportional hazard model. The risk of intensive care unit mortality in the high-flow oxygen 
therapy and non-invasive ventilation groups was assessed using the oxygen mask group as reference; 95% confidence intervals (CI) are given in 
parentheses. Table at the bottom shows the patients at risk per time point

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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compared to oxygen masks [31–37]. Several mecha-
nisms may explain these beneficial mechanisms. First, 
the increase in end-expiratory lung volume with some 
degree of alveolar recruitment induced by PEEP could 
decrease shunt and consequently improve PaO2 [32–34]. 
Second, as compared to facial oxygen masks, HFT gener-
ates a dead space washout of the upper airways, allowing 
a more homogeneous distribution of tidal volume [32]. 
Third, HFT induces a decrease in respiratory rate with 
less effort per breath with unchanged tidal volumes, thus 
suggesting better lung compliance [32]. These effects may 
help decrease inspiratory muscle effort, reduce the chem-
ical drive to breath and, in turn, decrease the sensation of 
dyspnea [35]. It is of note, however, that we are dealing 
with a single disease (COVID-19) that is typically vascu-
lopathic and accompanied by widespread endothelialitis 
[38, 39]. Such physiopathological derangements may pro-
foundly modify the ventilation/perfusion relationships 
and hypoxic pulmonary vasoconstriction [40]. In addi-
tion, SARS-CoV-2 exerts direct effects on the carotid 
bodies and the central nervous system [39], which may 
alter the central respiratory drive [21].

It is also of interest in our study that we observed lower 
endotracheal intubation rates in HFT and NIV treated 
patients than in oxygen mask treated patients. However, 
only the use of HFT was associated with a reduction in 
mortality rate. This result is consistent with the landmark 
trial of Frat et al. [27] but in contrast with the remaining 
literature [28–30]. Recent data [41] indicate that when 
compared to early intubation, HFT is associated with an 
increase in ventilator-free days and no differences in hos-
pital mortality. The lower mortality in the HFT group in 
our study could directly reflect the lower intubation rate 
in this population.

In our study, we observed a trend towards higher mor-
tality in the NIV group than in the oxygen mask group 
despite the lower intubation rate. It has been hypoth-
esized that early endotracheal intubation and lung-
protective ventilation in patients failing non-invasive 
oxygenation support and eventually requiring invasive 
mechanical intubation is associated with a protective 
effect. In a large series of ADRS patients, Kangelaris et al.
[42] showed that mortality in those who were intubated 
early (on day 1 of ARDS diagnosis) was significantly 
lower than in those intubated later (between 2 and 4 days 
after ARDS diagnosis): the adjusted risk of death was 2.37 
times higher for late intubation than for early intubation. 
Other authors, however, did not observe these effects in 
COVID-19 patients [43, 44]. More than time per se, sev-
eral authors have suggested that what occurs during non-
invasive oxygenation support is relevant. Carteaux [45] 
and Frat [46] showed that rather than the time to intuba-
tion, large tidal volumes—and thus large transpulmonary 

pressure swings—during NIV are associated with worse 
outcomes. Hence, one could argue that the total dose of 
injury (i.e. size of tidal volume and dissipated pressure 
times duration of ventilation) may eventually be harmful.

Our data show a clear association between the time 
from ICU  admission to intubation and an increased 
risk of mortality (see Additional file  1: Fig.  s11), pos-
sibly explaining the trend towards higher mortality in 
intubated patients previously undergoing NIV support. 
Additionally, patient self-inflicted lung injury, through 
the generation of large swings in transpulmonary pres-
sures with excessive tidal volumes and cycling opening 
and alveolar collapse phenomena, has been postulated as 
a primary driver of mortality in NIV supported patients 
[45–47]. In addition, other relevant phenomena occur-
ring in non-intubated spontaneously breathing subjects 
with acute hypoxemic respiratory failure include expira-
tory airway closure [48], pendelluft with regionally large 
swings of transpulmonary pressure [49] and, possibly 
bronchiolotrauma [50]. Finally, the large transpulmonary 
pressure swings during spontaneous breathing, which 
generate high pulmonary transmural vascular pressures, 
also enhance pulmonary oedema [47, 51]. However, in 
our study, shortly after endotracheal intubation and irre-
spectively of the non-invasive oxygenation strategy used, 
we found that respiratory mechanics and gas exchange 
were comparable between groups. This observation sug-
gests that, when used for a relatively short period of time, 
none of these three very different non-invasive oxygena-
tion techniques seem to be worse than the other in terms 
of magnifying the amount of lung injury (as clinically 
assessed in terms of gas exchange and basic respiratory 
system mechanics).

Whether the development of a full-blown patient 
self-inflicted lung injury requires a time-course thresh-
old, as suggested by the increased mortality in patients 
intubated after more than 3  days under non-invasive 
respiratory support (Additional file  1: Fig.  s11), or it is 
governed by another form of time-to-event relationship, 
is unknown [47]. Conversely, patient self-inflicted lung 
injury could primarily be biotraumatic, exacerbating pul-
monary inflammation. And only secondarily, at a later 
stage (i.e. invasive mechanical ventilation acting as a “sec-
ond hit”), would this lead to diffuse alveolar damage and 
alveolar remodelling, and thus impair respiratory system 
mechanics [30, 47, 49, 52].

Our results stand in contrast with those from a recent 
randomized controlled trial that compared HFT and 
NIV as treatment for hypoxemic respiratory failure. The 
authors found that mortality rates were comparable in 
the two groups [53]. Nevertheless, it is of note that the 
patients in Grieco’s study were treated by means of a hel-
met rather than a facemask. Recent evidence suggests 
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that the limitations of NIV in oxygenation support of 
hypoxemic respiratory failure are inherent to the face-
mask interface and that the use of a helmet is associated 
with fewer air leaks, higher and more stable PEEP levels 
during prolonged periods of time, improved oxygenation, 
and reduced inspiratory efforts [31, 54]. Our study has a 
number of limitations. First, the cohort of patients was 
collected retrospectively and lacked any degree of ran-
domization, formally impeding an unbiased treatment 
effect. Nonetheless, the baseline covariate balancing per-
formed enabled mitigation of most objectively assess-
able confounders. Second, the cohort may be subject to 
selection bias as during the pandemic outbreak, patients 
who were treated with the same non-invasive oxygena-
tion techniques but were not admitted into the ICU were 
not included in the study. Third, in the absence of a study 
protocol, the choice of oxygenation support strategy and 
the decision to proceed towards endotracheal intubation 
and mechanical ventilation were likely variable. It is not 
known whether the choice of one technique or another 
was based on clinical decision or equipment availabil-
ity. Nonetheless, the data presented faithfully represent 
usual care practice during the pandemic. Fourth, no data 
on longitudinal inflammatory parameters or pulmonary 
mechanics data were available, preventing investiga-
tion of long-term mechanistic effects associated with 
the choice of non-invasive oxygenation support strategy. 
Fifth, neither gas exchange nor other respiratory variables 
were collected before invasive mechanical ventilation 
was started. Sixth, mortality was available from the ICU 
only, impeding analysis of hospital or absolute survival. 
Nevertheless, the largest proportion of mortality in criti-
cally ill patients occurs in the ICU, and our patients were 
followed for up to 90 days therein. Seventh, no specifica-
tions were available regarding the type of NIV interface 
and settings employed, albeit most probably only face-
masks were used. Eighth, the temporal gap between ICU 
admission and endotracheal intubation was only available 
on a scale of days, thus impeding a more granular analy-
sis. Ninth, the imbalance in group sizes could have led to 
a lack of power to recognize higher mortality in the NIV 
supported group. Tenth, as we do not have data from a 
more contemporaneous cohort, we cannot assess the 
dynamic effects of the pandemic—such as changing care 
practices and new pharmacologic treatments—on the 
reported effects. Finally, the potential role of unmeasured 
confounders cannot be excluded.

Conclusion
In critically ill COVID-19 ICU patients with acute hypox-
emic respiratory failure, the use of HFT was associated 
with lower intubation and ICU mortality rates than those 
in patients supported by means of oxygen mask and NIV. 

Given the inconclusive data in the ICU population, the 
choice of HFT as a primary non-invasive oxygenation 
support strategy seems warranted.
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