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The active human immunodeficiency virus reservoir

during antiretroviral therapy: emerging players in

viral persistence

Antonio Astorga-Gamaza and Maria J. Buzon

Purpose of review

To discuss the role of CD4" T cells with active Human immunodeficiency virus (HIV), meaning infected cells
with transcriptional and/or translational viral activity during antiretroviral therapy (ART), focusing on new
technologies for its defection, potential cell markers for its characterization, and evidences on the
contribution of the active HIV reservoir to long-term viral persistence.

Recent findings

HIV-infected cells expressing viral ribonucleic acid are systematically detected in subjects on long-term ART.
In recent years, powerful new tools have provided significant insights info the nature, quantification, and
identification of cells with active HIV, including the identification of new cell markers, and the presence of
viral activity in specific cell populations located in different cellular and anatomical compartments.
Moreover, studies on viral sequence integrity have identified cell clones with intact viral genomes and
active viral transcription that could potentially persist for years. Together, new investigations support the
notion that the active reservoir could represent a relevant fraction of long-term infected cells, and therefore,
the study of its cell sources and mechanisms of maintenance could represent a significant advance in our
understanding of viral persistence and the development of new curative strategies.

Summary

The presence of HIV-infected cells with viral expression during ART has been traditionally overlooked for years.
Based on recent investigations, this active viral reservoir could play an important role in HIV persistence.
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INTRODUCTION

Human immunodeficiency virus (HIV) establishes a
persistent infection for which nowadays there is not
an available cure. Combined antiretroviral therapy
(ART) strongly inhibits viral replication and stops
disease progression but is unable to fully eliminate
the virus, which accumulates and persists long-term
in cell reservoirs [1]. The classical view of the HIV
reservoir consists of resting memory CD4" T cells
harboring replication-competent virus, located in
different cellular and anatomical compartments,
that could reignite systemic infection when therapy
is interrupted [2,3]. The frequency of such cells is
very low; first approximations estimated that only
~1 out of a million infected CD4" T cells contain
replicative viral forms [4,5]. Initially, this low pro-
portion of cells was considered one of the main
obstacles to cure the infection, but soon after it
was recognized that this number, most likely,
underestimated the real frequency of cells with
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potential to produce infectious virus [6,7]. Addition-
ally, a bigger fraction of cells, roughly 2—-18% of all
infected cells have been detected to transcribe HIV
and produce viral proteins during ART [8%%,9,10].
Transcriptionally and translationally competent
HIV-infected cells are considered the active viral
reservoir. Importantly, the extent to which some
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HIV reservoir

KEY POINTS

e The HIV reservoir during antiretroviral therapy is
comprised of infected cells containing virus in a silent
or transcriptionally active stafe.

o New methods have allowed us to identify markers of
the active HIV reservoir and its localization in
anatomical compartments.

o Cells expressing viral RNA could contain intact HIV
sequences, persist long-ferm, and contribute to
residual viremia.

e Targeting the active viral reservoir might significantly
impact HIV persistence.

of these cells contribute to long-term HIV persis-
tence has been poorly defined. In the past, cells with
HIV proviral activity were systematically excluded
from reservoir studies. This fact was due to several
assumptions; (i) activated cells, usually linked to
HIV expression, are thought to be short-lived and
therefore, will not represent a long-term reservoir
for HIV, and (ii) transcriptionally active cells pro-
ducing viral particles will be eliminated by viral
cytotoxicity and/or immune recognition [11]. How-
ever, investigations indicate that cells with resting
phenotypes can also transcribe HIV [12,13], that
transcriptionally active HIV-infected cell clones
can be maintained for years [8*%,9,14,15"%,16], and
that active reservoirs might be the source of residual
viremia [14]. These studies uncover the active reser-
voir as an important component of the long-term
reservoir, and therefore, convene the study of this
particular cell reservoir for comprehensive
approaches directed to target viral persistence. Here,
we will review new technological advances that
have been instrumental to study the active HIV
reservoir, the cell sources and markers of active
HIV-infected cells, and the potential role of the
active reservoir in long-term viral persistence.

IDENTIFICATION OF ACTIVE HUMAN
IMMUNODEFICIENCY VIRUS-INFECTED
CELLS
A detailed review of methods used to quantify the
different forms of the HIV reservoir can be found
elsewhere [17]. In this review, we will focus on
approaches used for the identification and character-
ization of the active HIV reservoir, meaning cells with
transcriptionally and/or translationally active HIV.
The understanding of the composition and loca-
tion of active viral reservoirs during ART has been
possible by the development of more specific and
sensitive novel assays [9,18-21]. The traditional
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polymerase chain reaction (PCR)-based assay, and
more recently the droplet digital PCR approach,
allow quantifying different cell-associated HIV viral
transcripts, including spliced and unspliced ribonu-
cleic acid (RNA) molecules, in bulk cell populations.
This methodology can be combined with the quan-
tification of total viral HIV deoxyribonucleic acid
(DNA) to obtain a relative measure of the transcrip-
tional activity of HIV in infected cells [22-24]. This
method per se does not allow the identification of
cells producing HIV-RNA neither the quantification
of the transcriptional activity in individual cells;
however, it could be used to assess the transcriptional
activity of specific cell subpopulations after cell iso-
lation. Notably, in recent years, novel in situ hybrid-
ization (ISH)-based techniques have allowed the
detection of intracellular HIV RNA molecules at the
single-cell level with high sensitivity and specificity.
The Prime Flow RNA assay (fluorescence in situ
hybridization-flow) and the HIV-RNA scope ISH tech-
nologies have permitted the identification of differ-
ent subpopulations carrying transcriptionally active
provirus in blood and tissue specimens in patients on
ART [19,25™,26]. Additionally, these techniques
have been used to measure the frequency of cells
with active HIV upon exogenous cell stimulation
or addition of latency reversal agents
[20,25%,27,28]. Of relevance, these approaches have
also provided valuable insights into the variable
response of different cell subpopulations to drugs
intended to stimulate HIV expression [20,27,28].
Other induction-based viral RNA reactivation assays,
including the tat/rev induced limiting dilution assay
[29,30], have been used to quantify cells that can
reactivate HIV transcription upon cell stimulation.
However, recent efforts have been directed to develop
new methodologies to provide information on the
proviral sequences in cells with transcriptional viral
activity. In this sense, the cell-associated HIV RNA
and DNA single-genome sequencing method was
developed to investigate the fraction of proviral
expression [9]. This method revealed that identical
HIV RNA from infected cell clones could arise from
multiple single cells and across multiple times. Cur-
rently, new approaches comprising technological
advances and aimed at assessing the intactness of
proviral DNA, integration sites, viral expression, and
the biology of cells harboring HIV at the single-cell
level, are being developed [16,31,32%] and will cer-
tainly provide relevant information about the nature
and significance of the active HIV reservoir.

CELL RESERVOIRS FOR ACTIVE HUMAN
IMMUNODEFICIENCY VIRUS

Curing HIV most likely will require the elimination
of all infected cells with potential to initiate new
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rounds of infection, thus the identification and
characterization of reservoir cells in patients on
ART have represented an important goal during
the last decade. The main cell type supporting
long-term HIV persistence are CD4" T cells;
although macrophages containing integrated HIV
DNA, RNA, viral proteins, and intact virions in virus-
containing compartment-like structures have also
been described in tissues [33]. Resting memory phe-
notypes have been the most studied subpopulations
due to their higher intrinsic capacity to harbor silent
HIV and therefore, their likelihood to constitute a
long-term niche for the virus through the evasion of
the immune system and the action of antiretroviral
drugs [5,34]. However, CD4™" T cells are intrinsically
a heterogeneous population and are defined by
differential expression of cell surface receptors asso-
ciated with different stages of cell maturation, acti-
vation, differentiation, function, and cell turnover.
In blood, subpopulations of CD4™ T cells showing
central memory (Tcy), transitional memory (Try),
and effector memory (Tgy) phenotypes comprise
the largest proportion of HIV proviruses [35,36]. A
detailed review of the major cell subpopulations
that compose the total HIV reservoir can be found
here [37]. From the total pool of reservoir cells, only
a small fraction of cells contain intact viral forms
[6,7,38,39]; higher proportions of intact viral
regions seem to be located, in some studies, in the
Tenm subset [7,15,38,40], but naive CD4" T cells
could also contain intact HIV [41,42]. Importantly,
only a small fraction of infected cells contain active
HIV without previous cell activation [8"%,9]. In
blood, Ty and Ty, cells with relatively short
half-lives, are the main contributors to HIV tran-
scription [19,43,44"]. Grau-Exposito et al. found Ty
CD4" T cells as a major niche for HIV transcription
in ART-treated patients [19], whereas Yukl et al
found enrichment in HIV transcriptional activity
in Tgy but also in Ty cells [43]. Similarly, Tga cells
which is the subpopulation with the fastest replace-
ment rates were found highly enriched for HIV-RNA
and contained the most clonal proviral expansion
[44"]. However, viral burden in several tissues,
including lymph nodes (LN), cervix, and the gut-
associated lymphoid tissues is systematically higher
than in blood [26,43,45-47]. Indeed, CD4 " T-follic-
ular helper (Tgy) cells found in LN are highly
enriched in viral RNA and replication-competent
HIV [47,48]. Similarly, in the female genital tract,
tissue-resident memory CD4" T cells (Tgy) contain
transcriptionally active HIV and are the highest
contributors to the total pool of HIV-infected cells
[46]. Some of these cellular subsets and anatomical
compartments might constitute sanctuaries for
HIV persistence under ART [46,48,49] and might
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promote viral rebound upon treatment interruption
[40]. Collectively, active cellular reservoirs for HIV
are widely distributed in different anatomical and
cellular compartments, which might vary inter-
patient, and represent potential sources of replica-
tion-competent virus that, eventually, might fuel
systemic viral replication after ART discontinuation.

Given the highly diverse sources of persistent
cell reservoirs, finding a unique, or a set of markers,
able to identify cells carrying replication-competent
virus could significantly facilitate the development
of new strategies directed to cure HIV [50]. Several
surface molecules, such as CD2high, CXCR3,
CD32a, and CD161 [51-54] or immune exhaustion
markers like PD-1, TIGIT, CTLA-4, and TIM-3
[55,56], have been reported to identify latent cells
enriched in inducible proviruses. Recently, cells
expressing the activation marker human leukocyte
antigen — DR were shown to contain high levels of
intact HIV [57,58]. Importantly, similar viral tran-
scriptional levels are found in these cells and their
negative counterparts, suggesting that phenotypic
markers of cell activation are not necessarily surro-
gates for cells with a transcriptionally active viral
status [58]. Besides, other molecules, such as CD30
and CD20 have been able to identify transcription-
ally active cells, and the targeting of these active
reservoirs with specific antibodies ex vivo and in vivo
have showed reduction in the HIV cellular burden
[25™,59]. Among cell markers, CD32a probably
remains one of the most promising candidates, since
it was shown to contain latent HIV [52,60] and to be
enriched in transcriptionally active HIV in several
compartments; CD32a was detected in infected cells
in blood and main tissue reservoirs like the LN and
the gastrointestinal tract in people on ART [61-63].
Although the value of CD32a as a marker of the HIV
reservoir was challenged by early investigations
denoting technical artifacts [64,65], the isolation
of bona fide CD32" CD4" T cells has pointed out
the usefulness of CD32a as a relevant marker of HIV
reservoir cells [46,60,61]. Moreover, CD32a is also
expressed on cells enriched in molecules related to
HIV susceptibility and long-term maintenance
[46,61], and importantly, the possible interaction
of CD32a with immune complexes might confer to
the infected cell an escaping mechanism from
immune surveillance [66,67]. Together, up to date,
several markers have been reported to identify active
HIV in CD4™" T cells. To what extend the combina-
tion of these markers or their expression kinetics
during the HIV infection cycle might represent a
more accurate measure to identify active reservoir
cells warrants further investigation. A summary of
the main cell markers proposed for the study of the
active HIV reservoir, as well as the main cell
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FIGURE 1. Active HIV reservoirs identified in individuals on ART. lllustration representing the relative contributions to the total
HIV reservoir of both, the silent and the active viral fractions, highlighting the main different cell markers, cell subsets and
anatomical compartments that might support HIV transcription during ART.

subpopulations and anatomical compartments
showed to contribute to HIV expression in subjects
on ART, is illustrated in Fig. 1.

THE ACTIVE HUMAN IMMUNODEFICIENCY
VIRUS CELL RESERVOIR AND LONG-TERM
VIRAL PERSISTENCE

The mechanisms driving HIV latency in vivo are
currently not well defined; the existence of a pool of
cells with different blocks in several steps of the HIV
replication process precedes the high heterogeneity
in wviral silencing observed in cell reservoirs
[24,68,69]. Although HIV transcription and produc-
tion of viral particles do not necessarily mean infec-
tious competence, here we summarize some data
supporting the importance of characterizing the
active cell reservoirs during ART.

In viremic patients, the clinical significance of
measuring the intracellular levels of viral RNA soon
became apparent by the direct association between
intracellular HIV-RNA quantification and CD4*" T
cell counts [70-72]. Moreover, the level of viral
transcription has been associated with virological
failure in patients on ART, suggesting the frequency
of HIV RNA™ cells as a potential biomarker of ther-
apy success [22]. Importantly, in several investiga-
tions, viral expression predicted time to viral
rebound after treatment interruption [73"%,74].
During ART, however, only a small fraction of
the total pool of reservoir cells are able to transcribe
HIV [8%%,9,75]. The fraction of these cells contain-
ing replication-competent HIV and therefore,
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representing a potential target for cure approaches,
has not been very well established. The disconnec-
tion between the assays used to detect different
forms of the viral reservoir has not allowed to
estimate the fraction of transcriptionally active
cells with potential to produce infectious viral par-
ticles on a per cell level basis. Recently, however,
several investigations found the existence in some
ART-treated individuals, of persisting cell clones
expressing HIV that represented the source of resid-
ual viremia, being closer to a replication-competent
state [14]. Furthermore, new methodologies based
on the simultaneous genome DNA and RNA viral
sequencing in single cells have demonstrated that
intact genomes could also express viral RNA
[15%%,16], and importantly, that intact HIV located
in cell clones could transcribe HIV during long
periods of time [8"",9,14,15™]. Whether or not
these specific cell clones have a constitutive or
intermittent expression of viral RNA, and/or are
properly targeted by the immune system, are still
open questions. Likewise, further research on T cell
clones and residual viremia in patients on ART
might be very informative [76], since viral blips
and low-level viremia might affect long-term
dynamics of the HIV reservoir, slowing down the
reduction of its size [77].

Besides, recent studies have also demonstrated
the presence of defective provirus encoding trans-
lationally competent HIV-RNA transcripts [78-80].
These transcriptionally and translationally compe-
tent cell reservoirs could be responsible for the
persistent immune activation and cell exhaustion
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evidenced in ART-treated and some Elite controllers
patients [81-83]. The direct relationship between
the expression of viral products and viral-driven
pathogenesis during ART evidences the need to
pay more attention to the existence and the impact
of the active reservoir. It is tempting to speculate
that the elimination of RNA-expressing cells or the
acceleration of the active viral reservoir decay, could
have a positive effect not only on systemic immune
activation, but also on shifting the reservoir toward
a profound dormant state as recently shown in elite
controllers [32%,84]. However, to accomplish this
goal will likely require the restoration of relevant
antiviral immune responses and revert possible
immune resistant mechanisms raised in reservoir
cells, as recently suggested [67,85].

CONCLUSION

The role of the active viral reservoir on HIV persis-
tence has not been completely considered until
recently. During ART, HIV can be found in a tran-
scriptionally and translationally active state, com-
prising a small proportion of the total reservoir cells.
Recently, new technological advances have allowed
characterizing the reservoir landscape in depth, and
have identified the presence of active reservoir cells
with intact genomes with potential to survive long-
term. Based on these recent findings, we believe that
a more profound study of the active reservoir might
lead to the development of new targeted strategies
for the continuous elimination of relevant reservoir
cells over time. Elimination of cells with viral tran-
scriptional activity could significantly impact viral
persistence.
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