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Featured Application: This work represents a proof of concept for COPD patient supervision,
which can lead to a potential application related to home monitoring for clinicians working on
the respiratory field.

Abstract: Patients with chronic obstructive pulmonary disease (COPD) suffer from voice changes
with respect to the healthy population. However, two issues remain to be studied: how long-term
speech elements such as prosody are affected; and whether physical effort and medication also affect
the speech of patients with COPD, and if so, how an automatic speech-based detection system of
COPD measurements can be influenced by these changes. The aim of the current study is to address
both issues. To this end, long read speech from COPD and control groups was recorded, and the
following experiments were performed: (a) a statistical analysis over the study and control groups to
analyse the effects of physical effort and medication on speech; and (b) an automatic classification
experiment to analyse how different recording conditions can affect the performance of a COPD
detection system. The results obtained show that speech—especially prosodic features—is affected
by physical effort and inhaled medication in both groups, though in opposite ways; and that the
recording condition has a relevant role when designing an automatic COPD detection system. The
current work takes a step forward in the understanding of speech in patients with COPD, and in
turn, in the research on its automatic detection to help professionals supervising patient status.

Keywords: chronic obstructive pulmonary disease; COPD; machine learning; prosody; speech analysis

1. Introduction

Acoustic speech features are affected in patients suffering from respiratory diseases
such as chronic obstructive pulmonary disease (COPD) or asthma [1–3], especially funda-
mental frequency (f0) and voice quality parameters. Some works have reported relevant
correlations between f0 and voice quality parameters with the smoking index and the
forced expiratory volume in one second (FEV1) and the asthma degree [1,2], and increased
voice quality parameters or breath sounds in patients with pneumonia and COPD [4–7], so
that relevant differences appear between healthy and COPD subjects in acoustic and per-
ceptual voice parameters [8]. Voice changes are also encountered in respiratory sounds in
infants [9], bronchodilator response effects in asthma tracheal sounds [10–12], obstructive
sleep apnea [13], and voice rise in dyspnea [14].
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Most of these studies are focused on the analysis of small segments of controlled
speech, or even only on sustained sounds of vowels. However, natural speech, either
read or conversational, provides information not contained in short speech segments,
such as prosodic elements [15]. Further studies have dealt with the automatic detection
of breathing signal during conversational speech from low-level spectral features [16],
the prediction of exacerbations in high-risk patients using the COPD assessment test
(CAT) [17], the identification of clinical factors that modulate the risk of progression to
COPD among asthma patients using electronic medical records [18], or the prediction of
non-COPD/COPD patients from natural speech by means of pauses and voice quality
parameters [19]. All these works represent a step forward in the automatic assessment
of COPD measurements, which can greatly benefit the task of clinicians. Nevertheless, a
more fine-grained detection is needed, to see to what extent speech features can predict
the exacerbations of COPD associated with impairments reflected in parameters such as
FEV1, mMRC (modified Medical Research Council) dyspnea scale [20,21], and CAT (COPD
assessment test) questionnaire [22], and to what extent different recording conditions—
such as doing a physical effort or medication intake—can affect the widely reported voice
variations and thus the accuracy in automatic detection of COPD measurements.

The main contributions of this paper are:
1. The analysis of prosodic features in long read speech, apart from low-level acoustic

features. Based on the hypothesis that prosodic features are also vulnerable to changes in
COPD patients, long speech analysis is needed to extract prosodic parameters apart from
mere acoustic features.

2. The analysis of how these speech features are affected by physical effort and after
medication intake. Based on the hypothesis that physical effort and inhaled medication
can affect oral airflow and air pressure during speech production, the speech parameters
will then be modified under these conditions.

3. The analysis of to what extent COPD/non-COPD subjects can be predicted from
speech, and how variations of speech that feature in different recording conditions affect
the automatic prediction of COPD measurements. If COPD is manifested through speech,
one should be able to predict—to a certain extent—whether an individual suffers COPD or
not. Moreover, if knowledge on COPD measurements can be inferred from speech, and if
speech features change due to different recording conditions, then the way in which an
automatic detection system is defined from speech recordings is crucial.

2. Materials and Methods

40 COPD patients and 19 non-COPD control subjects were recruited in a primary
health care centre (CAP) to collect voice samples in different conditions: in rest, after
doing a physical effort, and after an inhaled medication intake (only COPD patients).
From the initial number of 40 study and 19 control subjects, only valid data from 35 study
(288 recordings) and 13 control individuals (124 recordings) were collected due to several
reasons: insufficient number of voice samples, recordings performed incorrectly, lack of
availability or interest to repeat or complete the sessions, spirometry test missing, or FEV1
results not meeting the inclusion criteria (<0.8). Speech features were then extracted from
the recordings, and they were used to perform a statistical analysis to see how they varied
between different conditions, and to build an automatic detection system to predict FEV1
values from speech to infer how such variations can affect a classification experiment.

2.1. Sampling and Study Design

This study is an observational study. Participants were selected from a patient popula-
tion attending at CAP Comte Borrell in Barcelona and were divided into study and control
groups. Due to the exploratory character of the pilot study, no formal calculation was
performed for sample size. The study group sample size was chosen based on experimental
criteria selecting a total of 40 patients. For the control group, a minimum size of 10 patients
was chosen. While 50 patients are generally considered a small group, numerous studies in
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the field of voice analysis have shown statistically significant correlations with a sample of
50 individuals or inferior [1,10,11,13].

2.1.1. Inclusion and Exclusion Criteria

Inclusion criteria for the study group: people >45 years with diagnosis of COPD
according to FEV1 [23]. Exclusion criteria: patients with diagnosis of COPD and home-
administered oxygen therapy; patients with pathologies that affect speech; patients with
pharmaceutical prescription that are known to influence speech; patients with reduced
mobility.

Inclusion criteria for the control group: people >45 years old not diagnosed with
COPD, with a value of FEV1/FVC > 0.80. Exclusion criteria were applied as in the study
group. Potential candidates were selected and contacted by phone by convenience sampling
by family doctors in CAP Comte Borrell. Those who agreed to participate in the study gave
their written consent. The ethics committee of the Hospital Clínic in Barcelona approved
the study design and protocol (HCB/2018/1190).

2.1.2. Study Variables

For the study and control groups, socio-demographic variables (sex, age) and the
following clinical variables related to COPD were collected: for the control group, FEV1
before bronchodilator and smoking habits and history. For the study group, FEV1 be-
fore/after bronchodilator, smoking habits and history, mMRC scale, CAT questionnaire,
COPD exacerbations/year, and time since the last episode were also collected. FEV1 is
used to assess COPD and monitor its progression. The mMRC scale for COPD ranges
from 0 to 4 grades based on the severity of dyspnea symptoms [24]. CAT questionnaire
measures the impact of COPD in daily life, consisting of a list of eight questions rated from
0 to 5, so that the final sum ranges from 0 to 40 [25].

The variables of the study were gathered through the analysis of the health information
system (ECAP database) or while interviewing the patient. To rule out undiagnosed COPD,
the control group participants underwent a spirometry test performed by trained personnel
without using the bronchodilator. During the first visit, the SpO2 was recorded for each of
the subjects before and after a test voice recording.

2.1.3. Voice Recording Conditions

All participants in the study received a voice recorder (Model EVIDA L69), a hard
copy user manual, a document with instructions on conditions for recordings, a sample text
consisting of two long paragraphs to be used during the recordings, and a recordings table
to keep record. Several test recordings were done to ensure that participants understood
the complete procedure. The participants made the recordings at home in a completely
autonomous way, and they returned the recorder once finished.

Each participant in the study was requested to record ten speech recordings in differ-
ent conditions and different days. In the study group, the conditions of recording were
classified according to intake of medication and the physical exertion performed. Record-
ings were requested to be made in three different days. The recording conditions were:
before using the inhaler (days 1–2–3), one hour after using the inhaler (days 1–2–3), at
rest (days 1–2), and at rest and five minutes after exercise (days 1–2). Participants with
no inhaler prescription were requested to perform only the recordings related to rest and
exercise conditions. In the control group, the voice recordings were requested to be made
in five different days, and the conditions of recording were classified for each day: at rest,
and five minutes after doing exercise. The physical exercise was also adapted to the fitness
of the subject.

2.2. Extraction of Speech Features

The recordings were performed with portable recorders that provided files in DVI
ADPCM (digital visual interface/adaptive differential pulse-code modulation) format,
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with a sampling rate of 48 kHz and a bit rate of 192 kbps. The original files were converted
into PCM WAV (pulse-code modulation/waveform audio file format) for their further
processing with the Praat speech analysis software [26].

f0, voice quality parameters such as jitter and shimmer, and pauses in COPD anal-
ysis were included following existing literature [1,19,27]. Prosodic information was also
included, accounting for the variation of f0 (range and slope), and other rhythm features
such as speech rate, articulation rate, and syllable duration. For the extraction of f0 and its
related features, the auto-correlation method in Praat was used with an interval of 10 ms
and a Hanning window of length 40 ms. Duration and speech rate features were extracted
by adapting the Praat script found in [28], without relying on transcriptions, and thus were
language independent.

2.3. Statistical Analysis

To analyse how speech was modified by physical effort and medication, their mean
values and standard deviations were obtained for each feature, each subject, and each
recording condition. First, a Shapiro–Wilk t test was performed to check normality in
distributions, obtaining p values from 0.166 to 0.999 and W values from 0.771 to 0.999.
Then, a one-way statistical paired t test with a confidence interval of 95% was performed
to obtain p values and check whether differences of speech features between groups are
statistically significant.

2.4. Classification Experiments

Machine learning-based classification was used to predict a class (FEV1) given a set of
data points (speech features). FEV1 was split into intervals specified by the Global Initiative
for Chronic Obstructive Lung Disease (GOLD) according to the severity degree [29], as
shown in Table 1.

Table 1. Intervals of FEV1 values according to their severity degree. GOLD classification.

Class Degree Range

1 mild FEV1 ≥ 80%
2 moderate 50% ≤ FEV1 < 80%
3 severe 30% ≤ FEV1 < 50%
4 very severe FEV1 < 30%

The classification experiments were carried out in two different scenarios:
Scenario 1: To discern between non-COPD/COPD individuals (only in rest condition

since non-COPD subjects are not taking medication).
Scenario 2: To discern between different COPD degrees in patients. Due to the severity

degree of patients with mMRC = 4 and FEV1 < 30%, the most severe patients were excluded
due to their low representation. Only subjects from GOLD 1 and 2 classes were analysed.
Here, two different classification experiments were tested: (a) using only in-rest recording
conditions; (b) using all recording conditions, in two different subcases: 1) experiments
using only speech information, and 2) experiments providing additional information on
the recording condition and subject medication.

The experiments were performed with the Weka workbench [30]. Among several
classification algorithms included in Weka, Random Forest was chosen for being the best
performative one in terms of accuracy. The whole set of instances were used in a 10-fold
cross-validation to get the maximum number of instances in the classification task [19],
ensuring that subjects used in the training folds were not present in the testing fold, and
using the following hyperparameters: number of iterations (-I) 100, batch size percentage
(-P) 100, seed (-S) 1, and a maximum path length of 0.
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3. Results
3.1. Characteristics of The Participants

Table 2 shows the main characteristics of participants from the study and control
groups.

Table 2. Characteristics of the participants.

Descriptor Study Group (Ns = 35) Control Group (Nc = 13) p Value *

Age in years, average (SD) 74.6 (7.8) 67.4 (8.9) 0.01
Female, n (%) 8 (22.9) 4.0 (30.8) 0.2

FEV1 without BD (%), average (SD) 67.6 (20.2) 1 90.5 (7.6) <0.01
FEV1 with BD (%), average (SD) 1 71.6 (19.8) n/a n/a

SPO2 (%), average (SD) 96.6 (2.0) 1 97.8 (1.28) 0.02
Smoking habits, n (%)

Smoker 8 (22.9) 2 (15.4) 0.05
Non smoker 27 (77.1) 11 (84.6) n/a
Ex-smoker 25 (92.6) 7 (63.6) 0.3

Packages per year, average (SD) 71.6 (103.2) 2 9.8 (9.7) 0.01
Years of tobacco use, average (SD) 37.9 (16.5) 24.3 (12.6) 0.09

Years since quitting tobacco, average (SD) 2 17.7 (15.3) 31.9 (9.3) 0.01
mMRC, average (SD) 3 1.1 (0.9) n/a n/a

CAT score, average (SD) 4 11.3 (7.5) n/a n/a
Number of exacerbations/year, average (SD) 5 1.3 (1.1) n/a n/a

1 no information in n = 1; 2 only ex-smokers; 3 no information in n = 2; 4 no information in n = 3; 5 no information in n = 9; * significant
differences at p < 0.05.

3.2. Voice Samples and Statistical Analysis

Table 3 shows the statistically significant changes in each of the speech features
due to physical effort in both study (S) and control (C) groups, and Table 4 shows the
statistically significant changes in each of the speech features due to medication in the
study group. Corresponding FEV1, mMRC, and CAT values are provided along with the
statistical measures. In both tables, the smoking habits information has been included
next to the subject ID: smoker (s), non-smoker (ns, never smoked), and ex-smoker (es).
Only p values < 0.05 are shown for simplicity. Positive (+) and negative (−) changes in the
mean values between rest and physical effort/medication conditions are shown after the
p values. In the control and study groups, the significant differences after doing physical
effort showed absolute t values ranging from t(2) = 2.13 to t(2) = 3.96, and t(2) = 2.38
to t(2) = 24.10, respectively. In the study group, the significant differences after taking
medication showed t values ranging from t(2) = 3.10 to t(2) = 24.51. The percentage of
subjects in which each feature exhibited a statistically significant modification is also shown.
Values with strongest statistical significance (p < 0.010) are marked in bold.

To avoid data imbalance in scenario 1, the non-COPD instances were oversampled
to equal both groups and use a baseline of 50% in accuracy. A total of 314 instances (157
for each class) were used to classify COPD/non-COPD classes from the set of eleven
speech features. Then, an automatic classification using a random forest (RF) with 10-fold
cross-validation in rest condition was performed, achieving an accuracy of 72.0% of COPD
detection in the dataset and using only those instances recorded in rest conditions, over a
baseline of 50%. Sensitivity and specificity are 70.0% and 74.5%, respectively.
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Table 3. Changes in speech features due to physical effort (study and control groups).

Subject,
Smoking f0 Range f0 Slope f0 Jitter_(loc) Jitter_(abs) Shimmer_(loc) Shimmer_(abs) Pauses_Ratio Speaking_Rate Articulation_Rate Syllable_Duration preFEV1 postFEV1 mMRC CAT

Study group
S-1 es 0.040+ 0.036− 0.042− 0.037− 0.042− 95 100 1 11
S-2 es 0.013− 63 63 2 9
S-4 s 0.045+ 0.037+ 64 65 1 8
S-5 es 0.036− 0.014+ 0.014− 78 83 2 8
S-6 es 67 73 2 6
S-7 es 56 60 1 13
S-8 es 56 57 0 10
S-9 s 0.002+ 0.026+ 0.019− 0.015+ 0.014+ 83 88 2 16

S-10 s 30 40 2 15
S-11 es 0.011− 0.025− 0.026− 0.027− 0.026− 36 40 1 16
S-12 es 0.041− 49 64 2 5
S-13 es 0.028− 0.017− 55 60 1 10
S-14 s 0.049− 0.018+ 0.001+ 42 57 1 19
S-16 s 83 82 1 5
S-17 es 0.032− 47 49 1 n/a
S-20 es 33 32 3 11
S-21 es 56 68 1 14
S-22 s 0.034+ 0.013− 0.030+ 77 77 2 31
S-23 es 0.002+ 0.012+ 0.028+ 0.034− 40 42 1 8
S-24 es 97 103 0 8
S-25 es 0.043+ 95 103 1 8
S-26 ns 0.012− 78 92 0 0
S-27 s 69 71 1 13
S-28 es 55 62 1 10
S-29 es 0.014+ n/a n/a 3 29
S-30 es 0.045+ 88 89 0 0
S-31 es 56 56 n/a n/a
S-33 es 0.001− 0.028− 99 102 0 4
S-34 es 52 54 1 31
S-36 es 0.001+ 0.048− 0.011+ 73 73 2 4
S-37 es 0.004− 0.011− 0.046− 0.035− 70 83 0 3
S-39 es 86 90 0 10
S-40 s 0.027− 83 80 0/1 9

% 24.24 9.09 18.18 15.15 9.09 15.15 21.21 6.06 18.18 6.06 6.06
Control group

C-1 es 92 0 0
C-2 ns 0.035− 0.048− 0.049− 0.036− 0.035+ 81 0 0
C-9 es 0.037+ 0.043− 0.008+ 102 0 0
C-10 s 0.038− 0.035+ 87 0 0
C-11 es 84 0 0
C-12 ns 82 0 0
C-13 es 95 0 0
C-14 s 0.022+ 0.046− 0.035+ 0.030− 0.047− 91 0 0

C-15 ns 0.013− 0.040− 103 0 0
C-16 ns 0.044− 0.012− 0.028− 87 0 0
C-17 es 0.019+ 81 0 0
C-18 es 0.001− 0.029+ 0.043+ 91 0 0
C-19 es 0.015+ 0.005− 0.027− 0.013− 0.049+ 99 0 0

% 23.08 23.08 15.38 30.77 38.46 23.08 15.38 23.08 0.00 15.38 15.38
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Table 4. Changes in speech features due to medication (study group).

Subject,
Smoking f0 Range f0 Slope f0 Jitter_(loc) Jitter_(abs) Shimmer_(loc) Shimmer_(abs) Pauses_Ratio Speaking_Rate Articulation_Rate Syllable_Duration preFEV1 postFEV1 mMRC CAT

S-4 s 0.009− 0.036− 64 65 1 8
S-5 es 0.002+ 0.003+ 0.003− 78 83 2 8
S-6 es 67 73 2 6
S-7 es 56 60 1 13
S-8 es 56 57 0 10
S-9 s 83 88 2 16

S-10 s 0.021+ 30 40 2 15
S-11 es 36 40 1 16
S-12 es 0.045− 49 64 2 5
S-13 es 0.021+ 0.032− <0.001− 55 60 1 10
S-14 s 0.034+ 42 57 1 19
S-17 es 47 49 1 n/a
S-20 es 33 32 3 11
S-22 s 0.031− 0.040+ 77 77 2 31
S-23 es <0.001+ 0.011+ 0.007− 0.011+ 0.012− 40 42 1 8
S-27 s 0.022+ 0.022+ 0.019− 0.008+ 69 71 1 13
S-28 es 0.003+ 55 62 1 10
S-29 es 0.014− 0.027− n/a n/a 3 29
S-30 es 88 89 0 0
S-31 es 0.025+ 56 56 n/a n/a
S-32 ns 0.010+ 102 103 0 4
S-34 es 0.018+ 0.014+ 0.006+ 0.036+ 0.042− 52 54 1 31
S-36 es 73 73 2 4
S-37 es 70 83 0 3

% 8.33 16.67 12.50 16.67 16.67 8.33 4.17 4.17 20.83 12.50 12.50
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In scenario 2, after excluding the most severe cases, the average values of FEV1 before
the bronchodilator (preFEV1) and after the bronchodilator (postFEV1) were computed
and used to set up a threshold to define the classes in the classification experiments,
ensuring the maximum balance of instances per class. In preFEV1, class1 was assigned
to instances with preFEV1 < 75%, and class2 to instances with preFEV1 ≥ 75%. Similarly,
the threshold for postFEV1 was fixed to 77%. In total, 222 instances were used in case
(a)—rest conditions—, and 288 instances in case (b)—all recording conditions—to classify
two classes for preFEV1 and two classes for postFEV1 from the set of speech features. In a
third experiment, the classification was fed with additional information regarding which
condition is related to each speech feature, and whether the patient is taking medication or
not. As in scenario 1, the groups are balanced, and baseline is of 50% (Table 5). Considering
class1 as negative condition and class2 the positive condition, the following measurements
are shown: accuracy (percentage of correct instances), sensitivity (true positive rate), and
specificity (true negative rate).

Table 5. Accuracy (Acc), sensitivity (Sens) and specificity (Spec) values for the automatic classification of FEV1 given a
reference threshold.

preFEV1 postFEV1

Acc (%) Sens (%) Spec (%) Acc (%) Sens (%) Spec (%)

baseline 50.0 50.0
in-rest condition 62.1 61.4 62.8 59.6 59.7 59.5

all conditions (rest, effort, medication) 56.5 58.1 55.6 56.1 55.9 56.2
all conditions + additional information 75.0 81.1 71.0 73.9 77.7 71.1

4. Discussion

From the results in Tables 3 and 4, based on the experimental dataset, it can be inferred
that, with regards to speech features, they all exhibit statistically significant differences
between rest and physical/medication conditions, ranging from 4% to 38% (except for
speaking rate) depending on the speech feature and the group of analysis, although
no significant correlation is observed between the number of relevant modifications in
speech features and COPD variables (FEV1, mMRC and CAT). However, when validating
the significant modification in f0 values after taking the medication by computing the
correlation of such changes (i.e., f0 after medication—f0 before medication) with four
different COPD indicators: the FEV1 value without bronchodilator, the FEV1 value with
bronchodilator, the modified Medical Research Council (mMRC) scale, and the COPD
assessment test (CAT), the obtained results showed that high FEV1 values and low mMRC
and CAT indicators (which are related to healthier subjects), clearly showed a tendency to
smaller f0 modifications. This means that f0 modifications after medication are larger in
those subjects with higher severity COPD degrees.

Regarding the effect of physical effort, in the study group, the less significant differ-
ences are observed in the prosodic features related to rhythm, and the most significant
differences are in f0 and shimmer. Effort tends to be more relevant in the control group,
with voice quality, f0, f0 range, and pause ratio being the most affected speech features.
Regarding the effect of medication, the greatest effect is observed on the speaking rate.

The difference of the physical effort effect on both the study and control groups is
significant. While a larger effect would have been expected in the COPD group due to
their pulmonary and respiratory impairments, the results show the opposite. This could be
explained by the fact that COPD patients might not have the same capability of making a
large effort as the healthy group, and the resulting physical effort is lighter, so is their effect;
or perhaps their voice parameters are always impaired, so no differences are perceived
before and after exercise. A detailed look at a feature basis reveals that physical effort in
general causes higher f0 values, more pauses, longer syllables, a more flattened intonation
(lower values of f0 range and slope), lower voice quality features (probably due to a lower
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air pressure), and lower speech rates. The results also suggest that, unlike the physical
effort effect, medication produces a less flattened intonation (f0 range and slope), and faster
rhythm characteristics: higher speech rates, fewer pauses, and lower segment durations.
By contrasting the results with the smoking habits of the subjects (currently smoker (s),
never smoked (ns), and ex-smoker (es)), it transpired that there is no direct correspondence
between the number and the degree of changes in speech features neither in the physical
effort nor in the medication conditions. Even for the two smokers of the control group,
their behaviour is similar, and they do not differ with respect to the non-smoking subjects.

The differences encountered can be relevant when designing a COPD prediction
experiment, and the following conclusions can be inferred from Table 5. First, preFEV1 can
be detected more accurately than postFEV1 when only the speech information extracted
from the rest condition is used. This makes sense, since the in-rest samples have been
recorded without any kind of medication, while postFEV1 is obtained after use of the
bronchodilator, which can cause changes not reflected in the corresponding speech samples.
Second, by using all three conditions, the detection of both FEV1 values decreases, since
the aim is to predict the same value (preFEV1 or postFEV1) from speech samples that suffer
a degree of variability due to the different recording conditions. However, in this case,
the difference in the prediction of both preFEV1 and postFEV1 is not significant. Third, by
using speech samples extracted from different conditions but also feeding the classifier
with information about what recording condition corresponds to each speech sample and
whether that patient is usually taking medication, the accuracy is highly increased. This
can be explained by the fact that the system is provided with information about the source
of speech variation, which is thus learned by the system. Furthermore, patients taking
medication are usually associated with lower FEV1 values, which also helps the system
to discern between different COPD degrees. Last, it can be observed that sensitivity and
specificity remain similar for each set of experiments, except for the last case (all conditions
plus additional information) in which the rate of true positives detected (sensitivity) clearly
outperforms the rate of true negatives (specificity).

5. Conclusions

The presented work explores the effect of physical exertion and medication on speech
features in subjects with COPD. The effects of physical effort have been compared to
those produced by a control group. The results have shown that several speech features,
ranging from f0, voice quality, to prosodic features based on intonation and rhythm, might
suffer signification changes under both physical effort and inhaled medication, and that
the differences of the physical effort and medication effects are consistent in intonation
and rhythm prosodic features. While effort causes a more flattened intonation and lower
rhythm characteristics, medication seems to help patients to achieve more expressive
speech and a higher rhythm, reflected as higher speech rates, a smaller number of pauses,
and lower segment durations.

The current study also explored the performance of a classification system to discern
between COPD/non-COPD subjects, and to predict FEV1. Very few studies deal with
classification of COPD variables. The results achieved up to 72% of classification accuracy
over a baseline of 50%, which are comparable to—and even outperform—the ones obtained
in previous studies such as [19], where COPD and non-COPD individuals were found
differentiable with an accuracy of 68%. Moreover, it was shown that beyond the specific
accuracy values obtained, modifications in speech feature values due to different conditions
can affect the performance of a COPD automatic detection system, so that its design
regarding the recording conditions is important for a successful performance.

This work represents a proof of concept for COPD patient supervision using machine
learning algorithms and takes a step forward to the understanding of COPD, and to the
benefits of automatic detection of COPD variables from speech, which could be useful for
clinicians working in the respiratory field.
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