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Simple Summary: The phosphoinositide-3-kinase (PI3K) pathway is the most frequently activated
pathway in human cancers. Consequently, a number of compounds targeting the various nodes of this
pathway have been developed. However, the majority of these compounds have been unsuccessful
in patients due to high levels of toxicity, as well as their inability to effectively downregulate the
pathway to levels required for tumour responses. This inability to downregulate the pathway is
partially mediated by intrinsic adaptive response, also known as compensatory mechanisms or
feedback loops, which reactivate the pathway following inhibition; limiting the effectiveness of these
compounds. In this review we highlight the mechanisms of action of these adaptive responses and
highlight potential combinatorial strategies to delay tumour progression.

Abstract: The phosphatidylinositol-3-kinase (PI3K) pathway plays a central role in the regulation
of several signalling cascades which regulate biological processes such as cellular growth, survival,
proliferation, motility and angiogenesis. The hyperactivation of this pathway is linked to tumour
progression and is one of the most common events in human cancers. Additionally, aberrant
activation of the PI3K pathway has been demonstrated to limit the effectiveness of a number of
anti-tumour agents paving the way for the development and implementation of PI3K inhibitors
in the clinic. However, the overall effectiveness of these compounds has been greatly limited by
inadequate target engagement due to reactivation of the pathway by compensatory mechanisms.
Herein, we review the common adaptive responses that lead to reactivation of the PI3K pathway,
therapy resistance and potential strategies to overcome these mechanisms of resistance. Furthermore,
we highlight the potential role in changes in cellular plasticity and PI3K inhibitor resistance.

Keywords: PI3K pathway; mechanisms of resistance; PI3K pathway inhibitors

1. Introduction

The phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently en-
hanced oncogenic pathways in human cancers. Since the first discovery of PI3K pathway
mutations in solid malignancies in 2004, numerous studies have highlighted the prognostic
and therapeutic implications of these mutations. As a result, more than 40 compounds
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targeting key components of this pathway have been tested in early phase clinical trials.
Frustratingly, the clinical development of many of these compounds has not advanced
past late phase clinical trials with the efficacy of PI3K inhibitors being primarily limited by
their narrow therapeutic window and frequent treatment-related toxicities. Nevertheless,
the PI3K inhibitors BYL719 (alpelisib), CAL101 (idelalisib) and BAY 80-6946 (copanlisib),
and the mTOR inhibitors RAD001 (everolimus) and CCI-779 (temsirolimus), have been
approved for the treatment of various malignancies. However, the outstanding question
remains as to why PI3K inhibitors have not yielded the same impressive clinical activity
with what is observed in other targeted therapies. In this review, we will discuss some of
the known intrinsic adaptive responses which lead to reactivation of the PI3K pathway,
drug tolerance or changes in cellular plasticity which together limit responses to PI3K
inhibitors in the clinic.

2. PI3K Pathway

PI3K belongs to a family of lipid kinases which are responsible for the phosphorylation
of the 3′OH group on phosphatidylinositols (PtdIns) [1,2]. PI3Ks are grouped into three
classes—I, II or III—based on their physical structure and substrate specificity [3]. Addition-
ally, class I is further subdivided into IA and IB. Class IA PI3Ks are commonly known for
the role they play in tumorigenesis in human cancers [4]. Class IA PI3Ks are heterodimers
comprised of a p85 regulatory subunit and p110 catalytic subunit. The regulatory subunit
can be found in three different isoforms including p85α (encoded by PIK3R1), p85β (en-
coded by PIK3R2) and p55γ (encoded by PIK3R3) [5,6]. The PIK3R1 gene also transcribes
for two shorter isoforms, p55α and p50α, through alternative transcription-initiation sites.
The p85 regulatory isoforms encode for an adaptor-like protein that has two Src-homology
2 (SH2) domains and an inter-SH2 domain that binds constitutively to the catalytic subunit
p110, rendering it inactive [2]. Class IA p110 can be found in cells, as one of three isoforms
p110α, p110β and p110δ (encoded by PIK3CA, PIK3CB and PIK3CD, respectively). These
three catalytic subunits can associate with any of the five regulatory subunits [7]. Class IB
PI3Ks consist of a heterodimer of p110γ catalytic subunit (encoded by PIK3CG) and either
the regulatory subunit p101 (encoded by PIK3R5) or p87, sometimes referred to as p84
(encoded by PIK3R6) [3].

PI3Ks are autoactivated by various extracellular stimuli including hormones, cytokines
and growth factors which bind to their cognate receptor tyrosine kinases (RTKs) [8,9]. Upon
stimulation RTKs are phosphorylated at a conical YXXM motif, which results in the re-
cruitment of the PI3K heterodimer to the plasma membrane and the binding of the p85
SH2 domains to the phosphorylated tyrosine residue [10]. The binding of p85 relieves the
inhibition of p110 where p110 is now able to catalyse the generation of phosphatidylinos-
itol 4,5-biphosphate (PIP2) phosphorylation to phosphatidylinositol 3,4,5-trisphosphate
(PIP3) [11] (Figure 1).

PIP3 has now been recognised as one of the most important secondary messengers
in the cell [12]. The accumulation of PIP3 at the membrane results in the recruitment of
Pleckstrin-homology (PH) domain-containing proteins [12]. Approximately 40 mammalian
proteins have been identified to date containing this motif including the AKT family of
serine–threonine kinases. There are three AKT isoforms (AKT1, AKT2 and AKT3) with
each isoform having specific features and distinct roles in cell signalling. All three forms
of AKT possess similar structures which allows them to be activated in a similar manner.
AKT contains a PH domain that is docked in the N-terminal region to PIP3 [13]. The
binding of AKT to PIP3 induces AKT to undergo a conformational change that exposes two
amino acids essential for phosphorylation. Furthermore, the binding to PIP3 permits its
localisation to another PH domain containing protein kinase, phosphoinositide-dependent
protein kinase 1 (PDK1). PDK1 phosphorylates AKT at threonine 308 (T308) in the activa-
tion, or T-loop, of the kinase [14]. This phosphorylation mediates the partial activation of
AKT kinase activity with a secondary phosphorylation within the C-terminal hydrophobic
motif of AKT serine 473 (S473), mediated by the mammalian target of rapamycin (mTOR)
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complex 2. This results in stabilisation of T308 phosphorylation and full activation of the
protein [15–17].
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Figure 1. The PI3K and MAPK signalling pathways. Growth factors and other external signalling molecules stimulate
the activation of the PI3K and MAPK pathways through receptor tyrosine kinase (RTK) phosphorylation at the cell
membrane. Activated RTKs recruit molecules bearing phosphotyrosine-binding (PTB) or Src homology-2 (SH2) domains,
such as IRS or p85, respectively. For PI3K enzymes, the binding of the p85 subunit activates the catalytic function of
p110, prompting the phosphorylation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol 3,4,5-
trisphosphate (PI(3,4,5)P3). PI(3,4,5)P3, a prominent second messenger in cell signalling, accumulates at the cell membrane
attracting molecules with pleckstrin-homology (PH) domains, primarily phosphoinositide-dependent protein kinase 1
(PDK1) and the AKT serine/threonine kinase family (protein kinase B/PKB). PDK1 partially activates AKT at threonine
308 through phosphorylation, with full activation enabled by serine 473 phosphorylation via the mammalian target of
rapamycin (mTOR) complex 2 (mTORC2). AKT targets various proteins in order to alter major signalling pathways within
the cell. These include prosurvival pathways (BIM, BAX, BAD, BCL-2, MDM2 and FoxO1), cell cycle progression and
glucose metabolism (p27, GSK3 and AS160), and cellular proliferation and protein synthesis (TSC2). Another prominent
effector targeted downstream in the PI3K pathway is mTOR complex 1 (mTORC1), which has been shown to regulate
cellular growth and metabolism, amongst other processes. In particular, mTORC1 targets ribosomal protein S6 kinase (S6K)
and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), with the former directly effecting eukaryotic initiation factor
4E (eIF4E) and subsequent translation of cell cycle regulators.

AKT localisation and activation is terminated through removal of the 3′ phosphate
from PIP3 by the lipid phosphatase PTEN (phosphatase and tensin homolog) making it
an important tumour suppressor [18]. Mutations causing the loss or inactivation of PTEN
have been shown to lead to the development of cancer due to the hyperactivation of the
PI3K pathway [19].

Over one-hundred proteins have been shown to be directly phosphorylated by AKT
with many of these regulating key downstream signalling nodes (excellently reviewed in
Manning et al. [20]). For the purposes of this review, we will focus specifically on those
substrates and networks that have been recognised as essential for PI3K-mediated feedback
loops and mechanisms of resistance to PI3K inhibitors, although it is very likely that more
will be identified in the near future. Specifically, AKT phosphorylates proteins involved
in cell cycle and glycogen synthesis (GSK3), glucose uptake (AS160), cell survival (FOXO,
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BIM, BAX, BAD and BCL2), and protein synthesis and proliferation (TSC2 and PRAS40)
(Figure 1). The most well studied of these signalling cascades comprises members involved
in mTORC1 activation. This involves a relay whereby AKT phosphorylates and inhibits the
tuberous sclerosis complex 2 (TSC2). The C-terminal domain of TSC2 functions as a GAP for
the RAS-related GTPase (RHEB) promoting the conversion of active RHEB-GTP to inactive
RHEB-GDP [21]. The phosphorylation of TSC2 by AKT results in the rapid release of the
TSC complex from RHEB permitting RHEB to become GTP-loaded activating mTORC1.
AKT simultaneously phosphorylates the mTORC1 inhibitory subunit proline-rich AKT
substrate of 40 kDa (PRAS40) at threonine 246 (T246) to a level of regularity that PRAS40
T246 is considered a proxy for AKT activation in most cells and tissues [22]. Although
the biological function of this phosphorylation remains unclear PRAS40 phosphorylation
results in the dissociation of PRAS40 from mTORC1, which increases mTORC1 binding to
other substrates [23].

mTOR is a serine–threonine kinase that forms a part of the phosphatidylinositol kinase-
related kinase (PIKK) family of kinases. mTORC1 is comprised of three core components:
mTOR catalytic subunit, regulatory associated protein of mTOR (Raptor) and mammalian
lethal with Sec13 protein 8 (mLST8/GβL) [24–26]. In addition to these core components the
mTORC1 complex also contains PRAS40 and DEP domain containing mTOR interacting
protein (DEPTOR), which act to inhibit the complex [22,27]. Similar to mTORC1, mTORC2
contains two of the three core proteins but instead of RAPTOR, mTORC2 forms a complex
with rapamycin insensitive companion of mTOR (RICTOR) [28]. Likewise, mTORC2
contains DEPTOR as well as the regulatory subunit SIN1 [29].

mTORC1 regulates several cellular processes which are implicated in homeostasis
and cell growth, which include autophagy, lipogenesis, cellular proliferation, cell survival,
glucose metabolism and protein synthesis [21,30]. The two most characterised targets of
mTORC1 are eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal
protein S6 kinase 1 protein (S6K1), which are both involved in protein synthesis [31]. 4E-
BP1 is hyperphosphorylated by mTORC1, inhibiting its binding to eukaryotic initiation
factor 4E (eIF4E), leading to cap-dependent translation of key cell cycle regulators such as
MYC or CYCLIN D1 [32]. 4E-BP1 is known to inhibit mRNA translation in healthy cells;
however, it has been seen to be overexpressed in numerous human cancers and has been
linked with a poor prognosis in numerous cases [33–35].

S6K1 (p70S6Kα) or p70S6 kinase is also phosphorylated by mTORC1, which results
in the downstream phosphorylation of S6 ribosomal protein (rpS6) [36]. S6K1 is a ser-
ine/threonine kinase that can regulate cellular mechanisms heavily involved in oncogenesis
such as cellular proliferation, growth, migration, invasion, survival, apoptosis and pro-
tein translation [37–39]. S6K1 does this by phosphorylating proteins that are involved in
translation and protein biosynthesis [40]. S6K1 is comprised of five domains: an autoin-
hibitory domain, linker domain, N-terminal regulatory domain, catalytic domain and the
C-terminal domain [41].

The activity of S6K1 is sequentially regulated by the phosphorylation of various
serine/threonine sites within its C-terminal domain by p38, ERK and CDC2, resulting in
the release of the catalytic domain from C-terminal inhibition [42]. The hydrophobic motif
phosphorylation site on S6K1 is then phosphorylated by mTORC1 at T389, followed by
phosphorylation of the T229 site in the activation loop by PDK1 [43]. This results in the
full activation of the protein permitting downstream phosphorylation of rpS6 and protein
synthesis.

Another target of the mTORC1-S6K1 cascade is insulin receptor substrate 1 and 2
(IRS1 and IRS2). As part of a negative feedback loop, phosphorylation of these proteins
by mTORC1 and S6K at multiple serine residues results in the rapid degradation of both
proteins stifling upstream PI3K signalling [44]. Taken together, AKT phosphorylation
results in activation of a number of downstream signalling networks, which, along with
other key signalling pathways, form the basis for cellular proliferation and growth. This is
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due to these components being constitutively activated, as a result of mutations that drive
tumorigenesis.

3. Pharmacological Targeting of the PI3K Pathway

From early on in its discovery it became readily apparent that the PI3K pathway
is important for translating external environmental cues to cellular actions required for
facilitating growth and cell cycle progression. The fact that activating alterations in the
PI3K pathway were frequently found in a variety of cancers further cemented the notion
that cancer cells needed to exploit the PI3K downstream pathways to initiate and maintain
tumorigenesis. Importantly, these findings suggested that this class of enzymes are a prime
target for chemotherapy agents.

The first PI3K inhibitor, wortmannin, was derived from fungi metabolites in 1987 and
initially was found to negatively affect oxidation in neutrophils [45]. Further investigation
identified that wortmannin non-specifically reacted with various elements in the PI3K
pathway, including PI3K and mTOR as well as an array of other proteins [46,47]. However,
the compound effects on the pathway were irreversible, toxic and unstable when used in
animal studies, thus limiting its use as a targeted therapy [48,49]. LY294002 was the first
artificial inhibitor of PI3K, developed to combat the harsh effects of wortmannin while still
maintaining the inhibitory effects on multiple proteins in the PI3K pathway including the
PI3K complex, mTOR and DNA-PK [50]. LY294002 is a slightly more stable compound
and its effects on PI3K are reversible. However, the future of this drug was limited to
pathway analysis over clinical development due to constraints with its pharmacological
properties [48,51]. Other inhibitors that targeted multiple PI3K proteins were developed
that share similar structures to wortmannin and LY294002, including SF1126 and PX-
866 [49,52]. Although both analogues presented better pharmacologic properties than their
predecessors, only PX-866 entered early phase clinical trials, with mixed results.

A second seminal discovery was the isolation of rapamycin, a macrolide produced by
Streptomyces hygroscopicus bacteria taken from a soil sample at Easter Island (also known
as Rapa Nui). Rapamycin (Sirolimus) was demonstrated to have broad antiproliferative
activities potentially through inhibition of the S6K1, a downstream mediator of PI3K
signalling. However, it was not until the early 1990s that mTOR was identified as the
target of the toxic effects of rapamycin [53,54]. Although rapamycin-based therapies have
demonstrated some benefits in clinical settings, the use of rapamycin as a single agent
is limited due to its modest efficacy, this is primarily due to its inability to completely
abrogate mTORC1-mediated signalling events. However, as a scientific tool, the use of
rapamycin has led to some of the greatest contributions to our understanding of the
intricacies involved in targeting the PI3K-AKT-mTOR pathway.

A decade ago, there were more then 30–40 compounds in preclinical development
targeting various nodes in the PI3K pathway with all but a few of these receiving FDA
approval in recent years. These inhibitors were classed into six general classes: rapamycin
analogues, active site mTOR inhibitors, pan-class I PI3K inhibitors, isoform-selective PI3K
inhibitors, dual inhibitors and AKT inhibitors [55]. These different classes are discussed
briefly below. For a complete overview of PI3K pathway inhibitors in clinical trials we
refer to Janku et al. [56,57].

3.1. mTOR Inhibitors

Following on from the early success of rapamycin in certain clinical settings an enor-
mous effort was made to effectively target mTOR in cancer. Unsurprisingly, rapamycin has
been the muse in the development for an array of anticancer drugs with improved pharma-
cokinetic properties (Table 1). Note that rapamycin is not a direct inhibitor of mTORC1 but
rather rapamycin binds to FK506-binding protein of 12kDA (FKBP12) which then interacts
with the FKBP12-rapamycin binding domain (FRB) of mTOR, thus inhibiting mTORC1
functions [58]. In contrast, the FKBP12-rapamycin complex cannot physically bind to
mTORC2, limiting the acute inhibition of mTORC2. As such, mTORC1 and mTORC2
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are designated respectively as rapamycin-sensitive and rapamycin-insensitive complexes.
There are currently two types of inhibitors in this category: allosteric mTORC1 inhibitors
or the ATP-competitive catalytic mTOR inhibitors [59].

Table 1. Inhibitors of the PI3K signalling pathway. Targeted therapies made specifically for the inhibition of elements of
the PI3K signalling pathway. Although there are various targets and specificities for these therapies, only a few have been
successful in receiving FDA approval for their effectiveness and patient response.

Target Drug Cancer Targets FDA Status

Pan-PI3K
Inhibitors

Copanlisib (BAY 80-6946) Refractory follicular lymphoma (FL) Approved

Duvelisib (IPI-145)

Refractory follicular lymphoma (FL); refractory chronic
lymphocytic leukaemia (CLL); small lymphocytic

lymphoma (SLL); refractory follicular B-cell
non-Hodgkin lymphoma (NHL)

Approved

Buparlisib (BKM120) Discontinued

Pictilisib (GDC-0941) Under clinical development in breast cancer Under clinical
development

Isoform-Specific
PI3K Inhibitors

Alpelisib (BYL719)
Hormone receptor-positive/HER2-negative

(HR+/HER2-) PIK3CA mutant breast cancer in
combination with fulvestrant

Approved

Idelalisib (CAL101)

Second-line treatment for patients with Chronic
lymphocytic leukaemia (CLL) in combination with

rituximab; follicular B-cell non-Hodgkin lymphoma (FL)
and relapsed small lymphocytic lymphoma (SLL), both

in patients who have received at least two prior
systemic therapies.

Approved

Serabelisib
(INK1117/TAK-117)

Under clinical development for various tumours
including breast, and endometrial cancer.

Active but not
recruiting

AKT Inhibitors

MK2206
Under clinical development for PIK3CA and/or PTEN
mutant breast cancer; non-small cell lung cancer, and

ovarian cancers.

Under clinical
development

TAS-117 Under clinical
development

Capivasertib (AZD5363) Under clinical development for patients with AKT
E17K mutations

Under Clinical
development

mTOR Inhibitors

Everolimus (RAD001)

Advanced renal cell carcinoma; hormone
receptor-positive/HER2-negative (HR+/HER2-) breast

cancer; gastrointestinal/lung neuroendocrine
tumours (NET)

Approved

Temsirolimus (CCI-779) Advanced-stage renal cell carcinoma Approved

Torkinib (PP242) Discontinued

Sapanisertib (MLN0128) Under clinical development for multiple solid tumours Under clinical
development

Vistusertib (AZD2014) Under clinical development for multiple solid tumours Under clinical
development

Nab-sirolimus (ABI-009) Perivascular epithelioid cell neoplasms (PEComa) Approved

Dual PI3K/mTOR
Inhibitors

Dactolisib (BEZ235) Discontinued

Apitolisib (GDC-0980) Under clinical development for prostate cancer. Under clinical
development

Vortalisib (XL765) Discontinued

Gedatolisib (PF-05212384) Under clinical development for breast cancer Under clinical
development
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3.1.1. Allosteric mTOR Inhibitors

Temsirolimus (cell cycle inhibitor-779, CCI-779) is a derivative of rapamycin and is
currently approved for the treatment of advanced-stage renal cell carcinoma. Although
temsirolimus monotherapy prolonged overall survival, objective response rates are low.
Interestingly, a retrospective study identified a number of risk criteria that were directly
associated with poor prognosis [56].

Another derivative of rapamycin is everolimus (RAD001). Unlike temsirolimus,
everolimus is administered orally [60]. Despite having low response rates as monotherapy
towards some tumours, everolimus has been FDA approved for the treatment of advanced
renal cell carcinoma, hormone receptor-positive/HER2-negative (HR+/HER2-) breast
cancer, as well as an array of neuroendocrine tumour types [61–63]. Importantly, findings
from the BOLERO-2 trial demonstrated that treatment with everolimus in conjunction
with aromatase inhibitor exemestane significantly improved the overall response rate in
patients with HR+ advanced cancer that had previously been treated with nonsteroidal
aromatase inhibitors, and its activity was irrespective of PI3K genetic alterations [64]. These
clinical findings validated the notion that the PI3K pathway is a major contributor to the
development of resistance to hormone therapy.

Finally, ABI-009 (nab-sirolimus) has recently been submitted for approval for the treat-
ment of perivascular epithelioid cell neoplasms (PEComa). Nab-sirolimus is an injectable
nanoparticle form of human albumin-bound sirolimus which has demonstrated increased
tumour uptake. Preclinical studies have demonstrated that nab-sirolimus indicated in-
creased tissue penetration and pharmacodynamics compared to equal doses of oral mTOR
inhibitors [56].

3.1.2. Active Site or Catalytic mTOR Inhibitors

Catalytic mTOR inhibitors target the kinase domain of both mTORC1 and mTORC2
(and subsequently, AKT), making them more efficient at inducing an inhibitory effect over
the current allosteric therapies [65]. The most promising ATP-competitive mTOR inhibitors
in development include MLN0128 (sapanisertib), PP242 (tokinib), AZD2014 (vistusertib)
and AZD8055. These therapies have shown promising results in a range of cancer types,
and have been shown to reverse incidences of resistance to other therapeutics [66].

In clinical trials, MTOR inhibitors are generally well tolerated with the most common
side effects being headache, fatigue and erythema (skin rash). However, the use of MTOR
inhibitors is known to be associated with a higher risk of developing Hypertriglyceridemia,
hypercholesterolemia and hyperglycaemia [67–70].

3.2. Dual mTOR and PI3K Inhibitors

During the early developmental phases of mTOR and PI3K inhibitors it was noted
that these enzymes possessed structural similarities in their kinase domains making it
relatively easy to design ATP-competitive drugs targeting both kinases simultaneously [71,72].
Conceptually, the main benefit of dual-targeting these particular elements is due to a
number of reports which demonstrated that mTOR inhibition results in repression of a
negative feedback loop which activates the PI3K and MAPK pathways. As such, inhibition
of both PI3K and mTOR was thought to limit these compensatory mechanisms [73,74]. The
first of these dual inhibitors BEZ235 (dactolisib) was created by Novartis Pharmaceuticals
initially as a pan-PI3K inhibitor, but studies also demonstrated increased binding efficacy
for mTOR [75–77]. The drug showed promising anticancer results in preclinical studies,
resulting in its progression to early phase clinical trials. Thus, making it the first of many
PI3K pathway inhibitors to do so [78]. Despite the overwhelming hype over this treatment
option, BEZ235 exhibited highly toxic characteristics in patients and limited pharmacoki-
netic properties, and thus was not deemed a worthwhile treatment option on its own [79].
Subsequently, other PI3K/mTOR dual-targeting inhibitors include GDC-0980 (apitolisib),
XL765, PF-04691502 (gedatolisib), PF-05212384 (PKI-587) and GSK2126458 (omipalisib),
and they all showed favourable results in preclinical studies but alas faltered in clinical
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trials in terms of both toxicities and percentage effectiveness in patients (Table 1) [48,57]. A
bright spot for this family of inhibitors may be GDC-0084 (paxalisib) which has been shown
to delay the progression of newly diagnosed glioblastoma, with manageable adverse side
effects [80,81]. Currently, there are no dual inhibitors approved for clinical use.

3.3. Pan-Class I PI3K Inhibitors

Further insights into the molecular characteristics of the PI3K pathway elements led
to the development of inhibitors that can specifically target individual molecules and
their associated isoforms. The premise behind the development of these agents was that
they would be effective in cancers with elevated levels of PIP3, regardless of the tumours
bearing aberrant PI3K mutations or PTEN loss. Some of these pan-PI3K inhibitors include
BKM120 (buparlisib), GDC-0941 (pictilisib) and BAY 060-6946 (copanlisib), which are three
of the most well studied inhibitors; both in a preclinical setting and in current clinical
trials [82,83]. Buparlisib showed promising results in patients with both triple-negative
breast cancer (TNBC) and ER-positive breast cancers, especially when used alongside
other inhibitors such as the PARP inhibitor olaparib or the oestrogen receptor antagonist,
fulvestrant [84–86]. Buparlisib has the ability to permeate the blood–brain barrier (BBB)
suggesting it could be beneficial for targeting various brain malignancies, but has the
tendency to cause mood changes [83,87]. Pictilisib, on the other hand, barely penetrated
tumours in models with intact BBB potentially explaining the lack of associated mood
changes [80,88]. Both buparlisib and pictilisib have had less success in terms of clinical trials;
however, both display favourable pharmacokinetic properties suggesting combination
therapies may be a potential future use of this compound [82,89,90].

Interestingly, due to its targeting of PI3K alpha/delta copanlisib has shown good
anti-tumour properties in patients with non-Hodgkin lymphoma, and was FDA approved
for patients with refractory follicular lymphoma in 2017 [91]. Some positive responses were
also observed when copanlisib was used simultaneously with cisplatin plus gemcitabine
(CisGem) in patients with advanced cancers despite more recent phase II studies which
did not met their primary endpoint [92].

Duvelisib (IPI-145) is an inhibitor that targets the PI3K isoforms delta and gamma,
and exhibits anticancer activity in primary chronic lymphocytic leukaemia (CLL) cells
while normal B cells remain unscathed by its cytotoxic effects [93]. Various clinical trials
have shown duvelisib to have a satisfactory safety profile with tolerable adverse effects in
patients with varying types of lymphoma as well as demonstrating relatively high response
rates [94–96]. The FDA approved duvelisib for use in patients with refractory CLL or small
lymphocytic lymphoma following the use of a minimum of two other systemic treatments
and was fast-tracked for approval for patients with refractory follicular lymphoma [97]. As
it stands copanlisib and duvelisib are the only two pan-PI3k inhibitors which have been
approved for clinical use.

Other pan-PI3K inhibitors which were evaluated in clinical trials include GDC-0032
(taselisib) and XL-147 (pilaralisib). Taselisib can target all isoforms of p110 subunit of
PI3K with high specificity, with the exception of the beta isoform [57]. It has shown a
promising response rate in patients; however, it does seem to cause borderline adverse
effects, including stomatitis and diarrhoea [98]. In the recent SANDPIPER trial, the results
indicated that taselisib in combination with fulvestrant for patients with PIK3CA mutated,
HR+/HER2-negative breast cancer, met its primary endpoint of increased progression-free
survival. Unfortunately, it was concluded that given its safety profile and modest clinical
activity this combination has no clinical utility [99]. Pilaralisib targets all isoforms of PI3K
and has been found to inhibit PIP3 formation, thus preventing the phosphorylation of AKT
and downstream S6 in preclinical models of various cancers [100]. Pilaralisib was assessed
in phase II clinical trials for endometrial cancers by monotherapy, as well as in patients with
breast cancers in conjunction with HER2 antagonist trastuzumab or aromatase inhibitor,
letrozole [101]. Although in both cases pilaralisib, either as monotherapy or in combination,
was well tolerated, overall response rates were low and the drug has been discontinued.



Cancers 2021, 13, 1538 9 of 27

3.4. Isoform-Selective PI3K Inhibitors

Like dual PI3K-mTOR inhibitors clinical development of pan-Class I PI3K inhibitors
has been greatly limited by the dose-limiting toxicities observed at the required doses
needed for adequate target engagement. This, above all else, has led to rapid development
of isoform-selective PI3K inhibitors which are predicted to have a wider therapeutic index
as their genetic alterations are limited to primarily malignant cells (Table 1). The most
prominent illustrative example is CAL-101 (idelalisib), a potent inhibitor of the delta
isoform of PI3K. Unlike isoforms p110α and p110β which are ubiquitously expressed in all
tissues, p110δ is primarily expressed in leukocytes, limiting any deleterious effects on PI3K
signalling in healthy tissues [102,103]. p110δ is in integral component of B cell receptor
signalling in chronic lymphocytic leukaemia (CLL) and downregulation of p110δ with
idelalisib in combination with rituximab demonstrated significant overall responses rates
with progression free and overall survival benefit [104]. This led to idelalisib being the first
isoform-selective PI3K inhibitor to be FDA approved. Current clinical trials are assessing
the synergistic use of CAL-101 alongside other inhibitors in an array of cancers and other
diseases.

The most recent isoform specific therapy sparking interest is the p110α-specific in-
hibitor, BYL719 (alpelisib) [105]. In initial phase I studies, alpelisib monotherapy demon-
strated promising clinical activity; however, subsequent data revealed that PI3K inhibition
enhances oestrogen signalling in HR+ breast cancer, limiting the overall effectiveness of
these compounds [106–108]. Alpelisib has been approved in combination with fulvestrant
for the treatment of metastatic breast cancer in patients harbouring alterations in PIK3CA.
Thus, making alpelisib the first isoform-specific drug targeting p110α to be FDA approved
in patients under the aforementioned conditions [109,110].

3.5. AKT Inhibitor

An alternative target for downregulation of the PI3K-AKT-mTOR pathway is AKT
itself. AKT inhibitors are separated into two differing groups; the allosteric inhibitors
which target the PH domain of AKT and the ATP-competitive inhibitors which are selective
for the catalytic site of AKT (Figure 2) [111–113]. Specific catalytic inhibition of AKT
was predicted to be difficult as the ATP binding pocket of AKT shows a high degree of
homology with protein kinase A and protein kinase C. However, these reservations have
been overcome using allosteric inhibitors of AKT. The pan inhibitor MK2206 remains the
most prominent of the allosteric inhibitors, however others such as TAS-117 have also
shown promising effects [56,114]. The effectiveness of this targeted therapy is attributed
to its targeting of the PH domain on AKT, which prevents its activation and translocation
to the cell membrane [115]. MK2206 has displayed prominent antitumour activity in
preclinical breast cancer models with PIK3CA and/or PTEN mutations both on its own,
or when enhanced with endocrine therapies [116]. However, MK2206 has not progressed
further in these clinical scenarios. At present MK2206 is currently only being assessed in
a phase II clinical trial in combination with the EGFR inhibitor gefitinib for patients with
non-small cell lung cancer (ClinicalTrials.gov Identifier: NCT01147211).

TAS-117 is a selective oral allosteric AKT inhibitor, which has recently been established
as a potent inhibitor of cellular growth in multiple myeloma [117]. TAS-117 is currently
being evaluated in patients with solid tumours harbouring mutations in the canonical PI3K
pathway.
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Figure 2. Insulin-mediated feedback loops following PI3K/mTOR inhibition. Following treatment with PI3K inhibitors, the
liver breaks down stored glycogen releasing glucose into the bloodstream. The increased levels of glucose (hyperglycaemia)
are detected by the pancreas, and in an effort to overcome these high levels of glucose, large amounts of insulin are
released (hyperinsulinemia). This substantial release of insulin is sufficient to partially reactivate the insulin receptor
which re-instates both IRS and GBR2 activity. What results is an increase in both PI3K and MAPK pathway activation,
limiting the therapeutic effects of PI3K inhibitors. mTOR1 inhibitors, such as rapamycin, block downstream translation
by downregulating S6K1 and 4E-BP1. In turn, this de-represses the S6K1 substrate IRS1, which acts as an intermediary
between insulin receptor and the PI3K complex. The recruitment of PI3K to the active receptor enhances both MAPK and
downstream PI3K signalling. Thus, limiting the overall sensitivity of mTOR inhibition in these tumours. Downregulation of
mTOR activity either through AKT inhibition or direct mTOR inhibition blocks 4E-BP1-mediated translation of PTEN. This
enhances the pool of PIP3 in cells resulting in the sustained activation of AKT.

Similarly, preclinical work utilising ATP-competitive therapies demonstrated promis-
ing activity in a variety of tumour types including lung, breast, prostate and melanoma
cells. Most notably of these is GDC-0068 (ipatasertib). Ipatasertib in combination with
endocrine therapy and CDK4/6 inhibitors is currently in registrational studies for the treat-
ment of metastatic breast cancer (ClinicalTrials.gov Identifier: NCT03959891). In earlier
studies ipatasertib was well tolerated and importantly clinical activity was demonstrated in
a significant proportion of patients treated [118]. Importantly, ipatasertib has demonstrated
durable clinical responses in a patient with the AKT hyperactivating mutation E17K [119].
Ipatasertib is also being evaluate in combination with abiraterone acetate in patients with
castration-resistant prostate cancer (NCT01485861) and in combination with the PARP
inhibitor Rucaparib in patients with advanced breast, ovarian or prostate cancer (Clinical-
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Trials.gov Identifier: NCT03840200). Likewise, AZD5363 has depicted promising results.
In a variety of patient tumours containing the AKT E17K mutation, AZD5363 treatment
resulted in cessation of tumour growth, and in some cases, tumour shrinkage [120]. Like
ipatasertib, AZD5363 is currently being evaluated in a late-stage clinical trial for patients
with triple-negative breast cancer (ClinicalTrials.gov Identifier: NCT03997123).

After two decades of research into the clinical translatablility of PI3K pathway in-
hibitors, it is reasonable to state that despite modest clinical activity in solid tumours
PI3K inhibitors have the potential to be important pharmacological compounds for the
treatment of these tumours. However, at this stage there is a requirement for an increased
understanding in PI3K biology, as well as the intrinsic processes which are deregulated
following PI3K inhibition, to limit the overall sensitivity of these compounds. A few of
these intrinsic processes are highlighted below.

4. Reactivation of PI3K Signalling

The inability of compounds targeting the PI3K pathway to combat cancer growth and
metastasis effectively, has only emphasised the fact of how extensive PI3K/AKT/mTOR
signalling can be. In general, studying the effects of various targeted therapies has shown
how cancers can disregard the downregulation of the pathway by either maintaining
or re-establishing activation of the targeted pathway or by inducing alternate signalling
pathways. This is occasionally determined by genetic predisposition, whereby the selection
of rare pre-existing resistance-conferring genetic mutations limit overall therapy sensitivity.
In some of these cases, the development of drug resistance may be mediated by loss of
PTEN expression; altered expression of RSK3/4, PIM, AXL, FOXM1, NOTCH, c-MYC, PDK-
1-SGK1, SGK3 and CDK4/6; or KRAS mutations [77,121–130]. However, under certain
contexts downregulation of the targeted pathways can result in genetically independent
intrinsic compensatory mechanisms with survival rather than continued proliferation being
the ultimate outcome. These compensatory mechanisms can also be referred to as feedback
loops or adaptive responses.

To accurately translate cues from the extracellular environment into appropriate tran-
scriptional outputs, signal transduction is tightly regulated by a number of compensatory
mechanisms that can either effectively downregulate or upregulate signal strength [131].
The mechanisms to maintain this tight balancing act are retained in cancer cells, but in
the majority of cases their importance is diminished in the presence of oncogenic driver
mutations. Nevertheless, these feedback loops are once again activated or derepressed
upon targeted inhibition leading to reactivation of the pathway and eventual therapy
evasion.

A number of recent studies have not only shown that short-term treatments can result
in the activation of these feedback loops subsequently decreasing overall response rates,
but that chronic administration of these therapies may result in the establishment of a
reservoir of slow cycling cells that eventually may acquire resistance-conferring genetic
mutations [132]. The most commonly identified mechanisms of resistance to targeted
therapies are discussed below.

4.1. Insulin Signalling and PI3K Reactivation

To continuously meet the needs required for hyperproliferation, transformed cells
must appropriately adjust their signalling and metabolism. The PI3K pathway is one of
the key pathways that regulates nutrient uptake and cell survival. It is also therefore no
surprise that the PI3K signalling cascade is one of the most frequently mutated pathways
in cancer.

Altered glucose metabolism is a consistent feature in cancer cells, characterised by an
increased rate of glucose uptake and a glycolytic conversion to lactate. This phenomenon
was originally observed by Otto Warburg over one-hundred years ago and is referred to as
aerobic glycolysis or the “Warburg effect”. In addition to providing numerous metabolic
intermediates required by various metabolic pathways and cellular processes, such as
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protein production, it also supplies the cancer cell with its energy requirements through
the generation of ATP [133].

The uptake of glucose into cells is primarily mediated by the glucose transporter fam-
ily (GLUTs) [134]. Constitutive activation of downstream AKT signalling has been shown
to be sufficient to induce aerobic glycolysis by promoting glucose uptake through GLUT1
and GLUT4. Notable mechanisms promoting this involves AKT2-mediated phosphory-
lation of the Rab-GTPase-activating protein TBC1D4, also known as AS160. Specifically,
AS160 impairs GLUT4 migration to the cell membrane. AKT2 phosphorylation blocks
AS160 function enhancing GLUT4 intracellular vesicular transport, and as such promotes
glucose uptake following insulin release [135]. However, this mechanism appears to be
specific for GLUT4, and is thus unlikely to play a major role in glucose uptake into cancer
cells, which predominantly express GLUT1. The transport of GLUT1 to the cell membrane
has been associated with AKT activation, although the mechanism of this is not fully
understood [136–139]. Nevertheless, recent reports have demonstrated that thioredoxin-
interacting protein (TXNIP) is a direct target of AKT, and the phosphorylation of which
annuls TXNIP-mediated endocytosis of GLUT1 and GLUT4, resulting in a pronounced
increase in glucose uptake. The transcription of GLUT1 occurs through downstream effec-
tors of the PI3K pathway, including through c-Myc, mTORC1-induced HIF1α expression,
and various transcription factors associated with glucose metabolism [139–142].

Apart from glucose transporter guidance it has been shown that PI3K-AKT pathway
regulates multiple nodes of the glycolytic cascade (reviewed by Hoxhaj et al. [133]). As
indicated above, the PI3K pathway is stimulated by an array of growth factors that tar-
get cell surface receptors in order to achieve, among other things, continual metabolic
requirements of the cell. This includes activation of the epidermal growth factor receptor
(EGFR), platelet derived growth factor receptor (PDGFR), insulin receptor (INSR) and
the insulin-like growth factor receptor (IGFR), with each of these receptors regulating
pathways involved in proliferation, migration, metabolism and cell survival. As such, the
interactions between these receptors and their signalling cascades can overlap to conform
to synergistic responses, where, for instance, the induction of cell cycle progression also
promotes an influx in energy synthesis by altering metabolic activity [143].

Mechanistically, the activation of receptors INSR and IGFR following growth factor
stimulation results in the recruitment and subsequent phosphorylation of insulin receptor
substrate (IRS) adaptor molecules, mainly IRS-1. The phosphorylated variants of IRS-
1 can then activate PI3K through binding to both SH2 domains on the p85 subunit of
PI3K, relieving its hold on the catalytic p110 subunit, promoting activation of the path-
way [57,69,144–146]. Conversely, p85 on its own has also been found to form a sequestration
complex with IRS-1 when in excess to the p110 subunit. This complex causes the relocation
of phosphorylated IRS-1 into the cytosol, away from the PIP3 production site at the cell
membrane. This essentially prevents IRS-1 from carrying out its intended function of
pathway activation [147]. This mechanism can not only lead to the suppression of insulin
signalling through the maintenance of p85 basal inhibition on p110, but can also result
in insulin resistance if expressed in surplus [147,148]. Once activated, the p110α subunit
of PI3K can then mediate the intracellular response to insulin stimulation, promoting
growth and glucose homeostasis in most tissues [149]. As such, aberrations to the PIK3CA
gene encoding the p110α subunit are associated with various diseases and pathologies
associated with glucose metabolism and tissue growth [143].

Two of the most common adverse effects witnessed in patients undergoing PI3K
inhibitor clinical trials are hyperglycaemia and hyperinsulinemia, which are readily man-
aged in patients under circumstances where they remain chronic [57,69,144–146]. Upon
treatment with PI3K/AKT inhibitors, glycogenolysis in the liver is promoted and the ability
of AKT2 to regulate GLUT transport in adipose tissue is downregulated. This causes the
levels of glucose taken up in these cells to be reduced, prompting the transient develop-
ment of systemic hyperglycaemia. However, this effect tends to be transient. As part of
the body’s normal glycaemic regulation, insulin production is increased in the β cells of
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the pancreas following high blood glucose levels. This response returns blood glucose to
within the normal range; however, this can also result in systemic hyperinsulinemia [150].
Because of its function within the PI3K pathway, increased insulin is likely to stimulate
insulin receptor (IR)-rich tumours promptly activating downstream signalling and tumour
maintenance (Figure 2).

This effect can be seen when looking at glucose uptake using 18F-deoxyglucose
positron emission tomography (FDG-PET) in tumours following PI3K inhibitor treat-
ment. In a phase Ib trial combining buparlisib with letrozole, half of the treated patients
exhibiting a marked reduction in FDG tumour uptake correlating with clinical benefit,
whereas those with increased FDG uptake correlated with tumour progression [110]. These
data indicate that an observed increase in tumour FDG uptake shortly after PI3K inhibitor
treatment is potentially explained by an insulin surge following PI3K inhibition. This
indicates that patients are less likely to respond to the treatment offered. This effect is
possibly due to increased IR expression within the tumours, suggesting these results as
likely biomarkers associated with patient responses following treatment [151]. It has also
recently been reported that lactate can serve as surrogate to measure glycolytic flux and
can effectively determine PI3K pathway inhibition [125,152].

Importantly, Hopkins et al. studied the effects of negating the insulin response fol-
lowing PI3K/AKT inhibitor treatment in animal models through both pharmacological
and dietary influences [149]. The authors reasoned that using the antidiabetic drug met-
formin and compounds targeting the sodium glucose cotransporter 2 (SGLT2), would
lower insulin levels/increase insulin sensitivity and reduce glucose reabsorption at the
kidneys, respectively. The efficacy of a ketogenic diet was also assessed, which utilises
glycogen stores, preventing a surge of glucose release from the liver and reducing overall
blood glucose levels and increasing insulin sensitivity. Interestingly, both SGLT2 inhibition
and the ketogenic diet showed promising results reducing glucose levels and lowering
insulin release upon treatment with buparlisib. Promising data were also reported with the
PI3K pathway inhibitors alpelisib, pictilisib, taselisib, GDC-0098 and Copanlisib in murine
models placed under a ketogenic diet [149]. Translation of these methods in clinical trials
will further assess the use of SGLT2 and ketogenic diets in improving the sensitivity of
inhibitors in patients and will further determine the effects of increased efficacy of these
drugs in the clinical setting.

As insulin is a potent instigator of PI3K pathway activation, it is not surprising that
not only maintenance of insulin signalling but also reactivation of the components of this
pathway through feedback loops have been described as critical mediators of response to
PI3K pathway inhibitors. The first observations that downstream signalling could regulate
PI3K activity through a feedback loop came from a chain of studies that revealed that insulin
treatment led to the phosphorylation and subsequent proteasomal mediated degradation of
the adapter protein IRS-1 [153–155]. Subsequently, a number of studies demonstrated that
this effect was mediated through both transcriptional and post translational mechanisms.
This is not altogether surprising as IRS-1 is a critical regulator of PI3K signalling and
therefore to maintain the desired levels of PI3K pathway activation diminished levels of
IRS-1 levels would ensure that prolonged hyperactivation of PI3K signalling does not occur.
Unfortunately, the reverse also holds true. In a seminal paper by Carracedo et al. [44], it
was shown that pharmacological inhibition of the PI3K/AKT/mTOR pathway with the
mTOR inhibitors rapamycin and everolimus released this negative feedback loop resulting
in reactivation of the PI3K and MAPK pathways (Figure 2) [44]. This mechanism, although
controversial at the time, sparked the inquest into the use of synergist inhibitors which
target multiple elements of the pathway in an attempt to limit this regulatory activity. The
relevance of these findings was further underscored by work in a number of labs which
demonstrated that PI3K/AKT/mTOR pathway inhibition leads to the upregulation of a
number of RTKs (discussed in detail below).
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4.2. Receptor Tyrosine Kinase Reactivation

IGF-1R, EGFR, HER2 and HER3 are just some RTKs that are stimulated following
inhibitor treatments promoting the activation of the PI3K and MAPK signalling cas-
cade [77,156,157]. This event was found to be caused by the loss of the inhibitory effect AKT
has on the Forkhead Box O (FOXO) family of transcription factors and mTORC1, promot-
ing the transcription of these RTKs and reactivation of the signalling cascade [74,156–158].
When the PI3K pathway is stimulated, AKT phosphorylates FOXO proteins within its
nuclear localisation sequence creating a 14-3-3 binding site masking the nuclear localisation
signal and preventing nuclear translocation. The sequestration of FOXO in the cytoplasm
attenuates the transcriptional capabilities of the FOXO proteins [159]. Through this process
PI3K hyperactivation suppresses the induction of a number of FOXO targets involved in the
induction of apoptosis or cell cycle arrest. Likewise, it inhibits the ability of FOXO to upreg-
ulate the transcription of a number of RTKs. Therefore, this mechanism acts as an indirect
feedback mechanism limiting the overall activation of the RTKs by extracellular stimuli.
However, upon PI3K inhibition either through loss of stimulus or through treatment with
chemical compounds targeting this pathway, FOXO phosphorylation is blocked. This en-
hances FOXO expression in the nucleus resulting in the activation of a number of RTKs and
partially restoring PIP3 activity (Figure 3). Therefore, PI3K pathway activation can never
be fully attenuated as PIP3 levels will be maintained, driving cell survival. This was further
elegantly demonstrated by Muranen and colleagues using ovarian cancer 3D spheroids
treated with dactolisib where they demonstrated that PI3K pathway inhibition enhances
apoptosis exclusively in the inner matrix-derived cells, while outer matrix-derived cells
continued to display low levels of proliferation as marked by Ki67 staining [160]. Using
reverse phase protein array analysis (RPPA), they demonstrated that BEZ235 treatment
decreased phosphorylation of FOXO while concomitantly enhancing the expression and
activation of various RTKs including EGFR, HER2, c-KIT and IGF1R [160]. Furthermore, in
a separate study, Lin and colleagues demonstrated that FOXO can upregulate the mTORC2
component RICTOR resulting in increased AKT S473 phosphorylation [161].

The mechanism of AKT reactivation in these above-mentioned models is mediated
by PI3K p110α. However, in PTEN-null tumours PI3K p110β is the primary PI3K isoform
driving PI3K signalling [162]. This discrepancy in PI3K activation through various cellular
contexts highlights the many altered signalling routes that can lead PI3K mediated tumour
proliferation. Moreover, it reasons that because these mutations affect various nodes of
the same signalling cascade isoform-specific PI3K inhibitors are unlikely to function in
all genetic contexts. This was demonstrated in two seminal papers by Costa et al. and
Schwartz et al. [163,164]. Costa et al. demonstrated that inhibition of HER2-amplified cell
lines with alpelisib resulted in a rebound of PIP3 levels after 6 h [163]. This rebound was
dependent on p110β. Interestingly, in PIK3CA-mutant tumours, this rebound was not
observed. Likewise, Schwartz et al. [164] demonstrated that treatment of PTEN null cells
with the p110β inhibitor AZD8186 significantly decreased PI3K signalling and tumour
cell growth. In these models, selective p110α inhibition had no effect, as these tumours
are solely dependent upon p110β signalling. However, AKT/mTOR downregulation in
these models was transient because downregulation of mTOR led to derepression of FOXO
and subsequent RTK transcription leading to p110α mediated AKT signalling. In both
studies, targeted inhibition with isoform specific PI3K inhibitors (p110α or p110β) triggered
AKT/mTOR signalling, through the reactivation of the other PI3K isoform. Importantly,
this reciprocal activation was annulled through the concomitant inhibition of p110α and
p110β, resulting in greater antitumour activity compared to either inhibitor alone.
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Figure 3. Adaptive and epigenetic-driven mechanisms of resistance to PI3K/AKT inhibition. A
number of adaptive mechanisms regulating PI3K inhibitor sensitivity have been described. The
most notable of which is the upregulation receptor tyrosine kinases (RTKs) following PI3K/AKT
inhibition. Members of the FOXO family of transcription factors are direct substrates of AKT with
phosphorylation limiting their nuclear localisation. Upon AKT downregulation FOXO is drawn into
the nucleus where it is recruited to binding sites which upregulate a number of receptor tyrosine
kinases including HER2 and HER3. This upregulation of these RTKs results in the enhanced activity
of both MAPK and PI3K signalling pathways. Similarly, in ER+ breast cancers AKT phosphorylates
the methyl-transferase KMT2D inhibiting the methyl-transferase activity of the enzyme. Upon AKT
inhibition KMT2D activity is restored priming the recruitment of the transcription factors FOXA1,
PBX1 and ER onto ER binding sites enhancing ER-dependent gene transcription and limiting the PI3K
therapeutic effects. SGK3 is an ER transcriptional target. PIK3CA mutant tumours displaying low
levels of pAKT can circumvent this by activating SGK3 and downstream mTOR signalling limiting
the sensitivity of PI3K inhibitors.

More recently, it has been demonstrated that as part of a negative feedback loop
mTOR regulates PTEN translation through 4E-BP1 [165]. The overall effect of this is to
limit excessive PI3K signalling through the targeted regulation of PIP3 levels in the cells.
Conversely, downregulation of PI3K signalling blocks mTOR phosphorylation of 4E-BP1
inhibiting PTEN translation, resulting in a rebound of AKT phosphorylation as soon as
2–4 h post-treatment. A number of interesting conclusions were derived from these studies.
The first was that PTEN downregulation was predominantly observed following PI3K
inhibition with p110α, but not p110β inhibitors, even though treatment with the p110β
inhibitor AZD8186 effectively downregulated AKT signalling and a similar rebound in
AKT signalling was observed at earlier time points. Critically, no downregulation of mTOR
targets was observed upon treatment with AZD8186 at these early time points, which
likely explains the lack of PTEN downregulation. Nevertheless, it will be interesting to
see if the AZD8186-mediated AKT rebound is dependent upon FOXO downregulation as
determined by Schwartz et al. [164] or if alternate rebound mechanisms exist. Importantly,
these results also give credence to earlier observations by Costa et al. [163] and may suggest
the mechanism of action for the increase in PIP3 levels following alpelisib treatment in
this previous work. Furthermore, this work confirms the observations in other studies,
which advocate that variations in oncogenic mutations in the PI3K pathway significantly
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alters the levels of mTOR activity. It has been previously noted that cell lines harbouring
PIK3CA mutations display lower levels of AKT phosphorylation compared to cell lines
with PTEN loss [166]. In addition, cell lines with PTEN loss and activating mutations in
PIK3CA do not confer the same level of AKT/mTOR signalling as cells with PTEN loss and
coexistent PI3K activation mediated by upstream regulators (ex. RTKs) [165]. This is further
confounded by the fact that cell lines with oncogenic helical mutations in PIK3CA display
no demonstrable activation of AKT, even though they display equivalent levels of PDK1
expression and activation [166]. To circumvent this deficiency, PIK3CA mutant cell lines
activate downstream mTOR signalling through the serum and glucocorticoid regulated
kinase 3 (SGK3). SGK3 shares a 50% identity with the catalytic domain of AKT and can
phosphorylate a number of AKT substrates including TSC2, promoting the activation of
mTORC1. Downregulation of SGK3 by both genetic and chemical means significantly
diminishes the viability of PIK3CA mutant cancer cells highlighting the importance of this
signalling node in tumours with low AKT activation [166,167]. Although SGK3-mediated
signalling is not rapidly activated through a compensatory mechanism following PI3K
pathway inhibition, prolonged AKT inhibition does increase SGK3 mRNA levels over a
number days [167]. The precise mechanism of SGK3 induction remains unknown; however,
SGK3 has been reported to be an oestrogen transcriptional target in ER+ breast cancer
suggesting that low levels changes in oestrogen signalling may be sufficient to drive
downstream mTOR activation, limiting the use of single agent PI3K pathway inhibitors
(see below) [168].

Apart from transcriptional induction of respective RTKs involved in the reactivation
of the PI3K-MAPK pathways reports have also indicated that PI3K/mTOR inhibition acti-
vates JAK/STAT signalling as early as 4 h post-treatment with upregulation of the pathway
remaining active for up to 20 h. Interestingly, this perpetual upregulation of JAK/STAT5
appears to be regulated through biphasic and intriguingly independent mechanisms. At
later time points, JAK/STAT induction is dependent upon PI3K inhibition-mediated secre-
tion of several cytokines including IL-8 [169]. Notable secretion levels of IL-8 occurred were
only detected 20 h after the addition of PI3K inhibition, suggesting that IL-8 upregulation is
transcriptionally mediated. However, the authors noted that this would not explain the im-
mediate upregulation of pJAK/STAT. This was further validated when selective inhibition
of CXCR1 (the cognate receptor for IL-8) only decreased overall JAK/STAT activation at
later time points. Britschgi and colleagues further demonstrate that accumulation of IRS-1
preceded JAK/STAT5 phosphorylation at earlier time points indicating that IRS-1 may
be a mediator of JAK/STAT signalling resulting in an overall decrease in PI3K inhibitor
sensitivity [169].

More recently, it has been demonstrated that PI3K inhibition promoted AKT reac-
tivation by the E3 ubiquitin ligase Skp2, an effect which was diminished when either
PDK-1 or mTORC2 activity was blocked [170]. Not completely unexpectantly this effect
was independent of PI3K activity or PIP3 production. As SKP2-mediated ubiquitination
of AKT is required for plasma membrane recruitment it is likely that SKP2 enhances the
localisation of AKT with PDK1 and subsequently mTORC2 for priming and full activation
of the protein [171].

Taken together these interesting results highlight the complexity of these intrinsic
feedback loops to effectively downregulate PI3K signalling. Importantly, combination
therapies that target PI3K, AKT or mTOR alongside various RTK molecules effectively
combat this response in preclinical studies [172–175]. However, there continue to be
limitations in the clinical setting due to primarily negative adverse effects experienced by
the patients, as well as a lack of selectivity when it comes to available drugs that target
RTKs specifically [151].

4.3. Endocrine-Mediated Resistance

Approximately 85% of breast cancers express the hormone receptors ER, PR or HER2,
the former having been shown to strongly correlate with mutations in PIK3CA [176,177].
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Owing to the presence of applicable compensatory mechanisms following downregulation
of either estrogen or PI3K signalling it has long been suggested that that there is an impor-
tant crosstalk between these oncogenic pathways. Several studies have demonstrated that
enhanced PI3K signalling either through hyperactive mutations or upregulation of PI3K
pathway components drives endocrine therapy resistance [178]. These initial observations
lead to seminal work which demonstrated that mTOR inhibition in combination with
endocrine therapy provided significant antitumour activity [64,178,179]. The ability of the
ER pathway to affect the PI3K pathway following inhibitor treatment suggests there is
likewise a means for PI3K pathway inhibitors to promote the activity of ER, leading to
adaptive resistance to PI3K therapies. In 2015, Bosch et al. [106] identified an enhanced
luminal gene expression signature controlling ER transcription in ER+, PIK3CA-mutation
bearing breast cancer cells following treatment with therapeutic doses of PI3K or AKT
inhibitors. Not surprisingly, the enhanced expression of these genes resulted in increased
ER activity and decreased PI3K inhibitor sensitivity (Figure 3) [106]. Subsequent CHIP-Seq
data revealed that a large proportion of ER genes contained consensus binding motifs for
the transcription factors FOXA1 and PBX1 [107]. Interestingly, the proposed mechanism
prompting this reaction requires activated methylated histone marks. A subsequent study
by the same group demonstrated that the PI3K pathway tightly suppresses ER-mediated
transcription via direct phosphorylation of the lysine methyltransferase KMT2D (also
known as MLL2 or MLL4) by AKT1, sequestering its enzymatic activity and preventing
the transcription of ER and related factors [107]. Upon PI3K inhibition, activation of the
methyltransferase KMT2D promotes the transition of chromatin to an accessible state,
which is essential for FOXA1 and PBX1 recruitment and subsequent ER activation, and
PI3K inhibitor resistance (Figure 3). Interestingly, the serum and glucocorticoid-regulated
kinase 1 (SGK1), a protein which shares high similarity with the catalytic domain of AKT
and can phosphorylate consensus AKT motifs, functions through a negative feedback loop
to downregulate KMT2D. PI3K blockade induces ER which promotes SGK1 transcription
through direct binding to its promoter. This upregulation of SGK1 results in the phosphory-
lation and downregulation of KMT2D and loss of ER signalling [108]. Interestingly, SGK1
can also overcome AKT inhibition. Like AKT, PDK1 can phosphorylate SGK1 resulting in
downstream activation of mTORC1 and decreased PI3K inhibitor sensitivity [129]. How-
ever, it is important to note that feedback loop activation between these overlapping but
independent biological mechanisms is context dependent. Although both kinases share the
same upstream regulators, mTORC2 and PDK1, only AKT harbours a PH domain required
for plasma membrane localisation. Castel et al. indicate that in cell lines made resistant
to PI3Kα inhibitors minimal SGK1 activity was detected [129]. This contrast in resistant
mechanisms between PI3K inhibition and seemingly linear downstream AKT inhibition or
mTOR inhibition highlights the need for a continuing increased understanding of the PI3K
biology. Only when these signalling networks are understood can we design rationale
therapies to be used in combination with those in neighbouring pathways to provoke more
significant prolonged patient outcomes.

4.4. Cellular Plasticity and PI3K Inhibitor Resistance

The above-cited mechanisms of resistance are based on intrinsic changes resulting in
reactivation of the PI3K pathway or subsidiary pathways involved in maintaining cellular
proliferation. However, note that downregulation of a number of the RTKs involved in PI3K
signalling results in the generation of genetically independent transcriptional programs re-
sulting in “drug-tolerant” cell populations [180,181]. This state, as opposed to primary drug
resistance, is one where tumour cells transiently survive but do not proliferate on treatment.
Nevertheless, these drug-tolerant populations are capable of escaping initial drug therapy
but importantly do not contain the genetic mechanisms to acquire full resistance required
for tumour progression. Yet, they can provide a reservoir of tumorigenic slow-cycling
cells from which secondary genetic mechanisms of acquired resistance can evolve [181].
Emerging evidence has demonstrated that these cells are at the core of the development of



Cancers 2021, 13, 1538 18 of 27

secondary resistance not only to targeted therapy but also to immunotherapy [182]. This
protective measure has been shown to be associated with a phenotypic switch, commonly
referred to as cell plasticity, whereby epithelial tumours progress to a more mesenchymal
state [132,183,184]. This epithelial–mesenchymal transition (EMT) has long been associated
with chemoresistance [185,186]. Most importantly, this drug-refractory state is reversible
upon drug withdrawal emphasising the lack of genetic mutations driving this drug-tolerant
state [181].

This phenotypic switch in response-targeted therapies is likely to be mediated not only
by key EMT transcription factors, but also by chromatin-modifying enzymes enhancing
the accessibility of key binding motifs linked to these transcription factors. The finding that
methyltransferase KMT2D activity is altered following PI3K inhibition may be a potential
precursor to other chromatin-modifying enzymes and the regulation of cell plasticity [107].
A further argument to this scenario is the observation that combination therapy using
epigenetic inhibitors such as histone deacetylase (HDAC) inhibitors, or bromodomain and
extra terminal domain (BET) inhibitors with PI3K inhibitors were effective in preclinical
models [187].

Ultimately, the initial mechanisms prompting changes in EMT upon PI3K pathway
inhibition remain poorly understood with PI3K signalling involved in both the activation
and inhibition of a number of EMT associated transcription factors [181,188]. At this early
stage, additional work will be required to tease out the specific factors downstream of RTK
signalling to determine the critical nodes regulating changes in the epigenome driving
EMT and PI3K inhibitor resistance.

Cancer cells placed under selective pressure can also enter a drug-tolerant state
similar to an evolutionary conserved survival strategy known as diapause. Diapause is a
reversible environmentally induced state that occurs when the embryo is proliferating in
unfavourable conditions such as delayed blastocyte implantation [189]. This effect has been
shown to be partially regulated by mTOR, whereby mTOR inhibition induces reversible
pausing of blastocyte development permitting prolonged survival without appreciable
cell death or cell cycle alterations [190]. Autophagy appears to be a critical mediator
of diapause as autophagy is increased prior to diapause initiation. mTOR is known to
inhibit autophagy by phosphorylating autophagy-related gene 13 (ATG13) and unc-51 like
autophagy-activating kinase 1(ULK1) disrupting its interaction with AMPK [191].

Interestingly, Rehman et al. recently demonstrated that in patient derived colorec-
tal cancer models treated with standard of care chemotherapy or the mTOR inhibitor
INK128 cells entered a drug-tolerant state comparable to diapause [192]. This diapause-
like drug-tolerant state was exemplified by mTOR downregulation and an upregulation
of autophagy [192]. Upon treatment discontinuation, cell lines once again continued to
proliferate, highlighting once again the plasticity of these various drug tolerant states.
Furthermore, the authors demonstrated that combination treatment using chemother-
apy and autophagy inhibitors significantly decreased cell survival suggesting a potential
therapeutic opportunity to target cancer cells within this diapause-like state.

An important observation is that in both drug-tolerant populations, the first mediated
by changes in EMT and the second mediated by induction of diapause, the cells do not
enter dormancy or complete latency but rather remain in a slow-cycling state similar to that
of pluripotency. This suggests that the use of differentiation therapy such as transforming
growth factor β (TGFβ) or leukaemia inhibitory factor (LIF) inhibitors may be applicable
in certain contexts [192]. Nonetheless, the development of these drug-tolerant populations
prior to the occurrence of secondary bona fide resistance mechanisms identifies a potential
therapeutic window of opportunity and a rational approach for future targeted therapies
in combination with PI3K pathway inhibitors.

5. Conclusions

The PI3K pathway is hyperactivated in almost all cancer types with the pathway
playing a key role in tumour cell proliferation and survival. The identification of selective
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PI3K pathway inhibitors was met with great enthusiasm. However, the results from clinical
trials have been largely disappointing with the majority of these compounds not advancing
to late-phase randomised trials. The overall success of these agents has been limited by a
number of factors including suboptimal patient selection and subtherapeutic maximum
tolerated doses limited by dose-related toxicities. This later point, highlighted in this
review, is greatly influenced by intrinsic adaptive responses which re-establish pathway
activation following treatment resulting in inadequate pathway inhibition and tumour
progression. Furthermore, the establishment of drug-tolerance mediated by changes
in cellular plasticity or diapause-like mechanisms further limits the antitumourigenic
properties of these compounds. This not only underscores the argument for an increased
understanding of the complexities of PI3K signalling, but also greatly supports evidence
for the use of specific combinations to overcome these mechanisms of resistance.
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