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A B S T R A C T   

Background and rationale: Thalamus atrophy has been linked to cognitive decline in multiple sclerosis (MS) using 
various segmentation methods. We investigated the consistency of the association between thalamus volume and 
cognition in MS for two common automated segmentation approaches, as well as fully manual outlining. 
Methods: Standardized neuropsychological assessment and 3-Tesla 3D-T1-weighted brain MRI were collected 
(multi-center) from 57 MS patients and 17 healthy controls. Thalamus segmentations were generated manually 
and using five automated methods. Agreement between the algorithms and manual outlines was assessed with 
Bland-Altman plots; linear regression assessed the presence of proportional bias. The effect of segmentation 
method on the separation of cognitively impaired (CI) and preserved (CP) patients was investigated through 
Generalized Estimating Equations; associations with cognitive measures were investigated using linear mixed 
models, for each method and vendor. 
Results: In smaller thalami, automated methods systematically overestimated volumes compared to manual 
segmentations [ρ=(-0.42)-(-0.76); p-values < 0.001). All methods significantly distinguished CI from CP MS 
patients, except manual outlines of the left thalamus (p = 0.23). Poorer global neuropsychological test perfor
mance was significantly associated with smaller thalamus volumes bilaterally using all methods. Vendor 
significantly affected the findings. 
Conclusion: Automated and manual thalamus segmentation consistently demonstrated an association between 
thalamus atrophy and cognitive impairment in MS. However, a proportional bias in smaller thalami and choice of 
MRI acquisition system might impact the effect size of these findings.   

1. Introduction 

Cognitive deficits are present in up to 70% of patients with multiple 
sclerosis (MS) and have a significant effect on their activities of daily 
living and quality of life (Amato et al., 2010; Chiaravalloti & DeLuca, 
2008; Rao et al., 1991). Disturbances in the domains of attention, in
formation processing speed (IPS), memory and executive skills are major 
features of the MS cognitive profile and can often be detected already 
early in the disease course (Amato et al., 2010; Rao et al., 1991; Rogers 
& Panegyres, 2007). 

In MS patients, there is increasing evidence of the relationship be
tween cognitive dysfunction and damage to deep grey matter (GM) 
structures, which is typically measured in vivo from structural magnetic 
resonance imaging (MRI) (Amiri et al., 2018; Geurts, Calabrese, Fisher, 
& Rudick, 2012). Especially thalamus atrophy seems strongly associated 
with cognitive decline (Filippi et al., 2014; Houtchens et al., 2007; 
Minagar et al., 2013; Schoonheim et al., 2015, 2012). Therefore, thal
amus volume is a potential surrogate outcome measure for cognition in 
multicenter observational and treatment studies. However, when using 
different segmentation approaches a considerable amount of variability 
is found in the measurement of thalamus volume, leading to inconclu
sive results regarding the correlation with cognitive tests (Amiri et al., 
2018; Derakhshan et al., 2010; Houtchens et al., 2007; Popescu et al., 
2016). 

Currently, several software packages are available for measurement 
of thalamus volume, most of which employ an atlas-based segmentation 
approach based on information from healthy control (HC) images (Amiri 
et al., 2018; Geurts et al., 2012). These have been widely applied in MS, 
but their accuracy and consistency are impacted by various sources of 
error related to technical factors (e.g. variations in image intensity and 
tissue contrast due to different MRI hardware and acquisition parame
ters), variability due to disease related changes (white matter lesion, 
parenchymal atrophy, etc.) and other physiological / pathological fac
tors (e.g., age, sex, hydration, vascular risk factors etc.) (Amiri et al., 
2018; de Sitter et al., 2020; Gelineau-Morel et al., 2012; Rocca et al., 
2017a, 2017b; Sastre-Garriga et al., 2020). Given the previously re
ported limitations of image analysis methods, it is important to 

understand how consistent and reliable the association between thal
amus atrophy and cognition is when using different segmentation ap
proaches in MS patients. 

Therefore, the primary aim of this study was to assess the replica
bility and consistency of the association between thalamus volume and 
cognitive scores for five automated segmentation methods and fully 
manual outlining, in a large multi-center cohort of relapsing-remitting 
MS (RRMS) patients. We chose to compare software packages that are 
well established, freely available, and widely used throughout the 
neuroimaging MS research community in order to ensure that our 
findings would be relevant for future MS neuroimaging studies. 

2. Materials and methods 

This study was approved by the Local Ethical Committees on human 
studies in each participating center and all subjects gave written 
informed consent prior to study participation. 

2.1. Subjects 

Subjects were recruited from January 2009 to May 2012 as part of a 
project on imaging correlates of cognitive impairment in MS at 7 Eu
ropean centers (Bisecco et al., 2015; Damjanovic et al., 2017; Preziosa 
et al., 2016; Rocca et al., 2014; Tillema et al., 2016). Patients had to have 
a diagnosis of RRMS (Lublin et al., 2014; Polman et al., 2011), no relapse 
or corticosteroids treatment within the month before scanning and no 
history of psychiatric conditions, including major depression. Further 
inclusion criteria for this study required all subjects to be right-handed 
and aged between 20 and 65 years. 

Since manually delineating the thalamus is labor-intensive and time- 
consuming, a subset of the full multicenter dataset was selected for 

Table 1 
An overview of the cognitive domains and neuropsychological tests.  

Cognitive domains Cognitive tests 

Verbal memory Selective Reminding Test (SRT) 
Visuospatial memory 10/36 Spatial Recall Test (10/36 SRT) 
Attention / information 

processing speed 
Symbol Digit Modalities Test (SDMT) & Paced 
Auditory Serial Addition Test (PASAT) 2 and 3 s 

Verbal fluency Word List Generation (WLG) 
Executive functions Wisconsin Card Sorting Test (WCST)  

1 Hugo Vrenken and Charles R.G. Guttmann - Both authors contributed 
equally. 
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automated and manual tissue segmentation of the thalamus. A random 
sample of patients and HCs was selected by H.V., matched on age and 
sex, using a computer-generated list of random numbers. The final 
dataset included 57 RRMS patients [37 females; age 38.9 ± 8.5 (mean ±
standard deviations (SD) years); 13.0 (7.0–20.0) (median (range)) years 
of education] and 17 HCs [12 females; age 40.5 ± 6.6 (mean ± SD) 
years; 17.0 (8.0–20.0) (median (range)) years of education]. See Table 1 
for demographic and clinical variables. Patients had a median (range) 
disease duration of 6.0 (2.0–33.0) years, and a median (range) Expanded 
Disability Status Scale (EDSS) score of 2.0 (0.0–6.0). Age, sex and edu
cation did not differ between HCs and MS patients (p = 0.47; p = 0.66 
and p = 0.12, respectively). 

2.2. Clinical and cognitive evaluation 

Within 48 hours of the MRI acquisition, MS patients underwent a 
neurological evaluation including EDSS score and a neuropsychological 
assessment (see table 1), performed at each participating site by expe
rienced neurologists and neuropsychologists, unaware of the MRI re
sults, using validated translations of the neuropsychological tests. For all 
patients, cognitive performance was assessed by using the Brief 
Repeatable Battery of Neuropsychological Tests (BRB-N) (Rao et al., 
1990), which includes the Selective Reminding Test (SRT) to assess 
verbal memory; the 10/36 Spatial Recall Test (10/36 SRT) to assess 
visuospatial memory; the Symbol Digit Modalities Test (SDMT) and 
Paced Auditory Serial Addition Test (PASAT) 2 and 3 s to assess atten
tion/information processing speed; and the Word List Generation (WLG) 
test to assess verbal fluency. In addition, the Wisconsin Card Sorting Test 
(WCST) was administered to evaluate executive function (Heaton et al., 
1993). Performance on the WCST was evaluated by computing scores 
related to the total errors, the number of perseverative errors, and the 
number of perseverative responses (Heaton et al., 1993). 

The Z-scores for each of the domains were calculated (Sepulcre et al., 
2006). Patients with at least 2 abnormal test scores [i.e. scores ≤ 2SD 
from the normative values provided by Boringa et al. for the BRB-N 
(Boringa et al., 2001) and by Heaton et al. for the WCST (Heaton 
et al., 1993)] were considered cognitively impaired (CI), as previously 
described (Damjanovic et al., 2017; Preziosa et al., 2016). In all MS 
patients, a cognitive impairment index (CII) was determined as an 
overall measure of cognitive dysfunction for each patient. Briefly, the CII 
is a continuous variable obtained by a grading system applied to each 
patient’s score on every cognitive test, dependent on the number of SDs 
below the mean normative value (Amato et al., 2006; Camp et al., 1999). 
Hence, the higher the grade, the greater the patient’s impairment. 

2.3. MRI acquisition 

MR images were acquired on 3 T scanners (Amsterdam and Naples: 
Signa, GE Healthcare, Milwaukee, Wisconsin; Barcelona, Graz and 
London: Magnetom Trio, Siemens, Erlangen, Germany; Milan and Siena: 
Philips Intera, Best, the Netherlands). The brain imaging sequences 
included: (a) a dual-echo turbo-spin-echo (TSE) T2-weighted scan: TR =
4000–5380 ms; TE1 = 10–23 ms; TE2 = 90–102 ms; echo-train length =
5–11; 44 contiguous, 3-mm-thick axial sections parallel to the anterior/ 
posterior commissure plane; matrix = 256 × 192; FOV = 240 × 180 
mm2 (rectangular FOV = 75%); (b) three-dimensional (3D) T1- 
weighted scan: TR = 5.5–8.3 ms (for GE Healthcare/Philips Intera 
scanners) or 1900–2300 ms (for Siemens scanners); TE = 1.7–3.0 ms; 
flip angle = 8◦–12◦; 176–192 sagittal sections with thickness = 1 mm 
and in-plane resolution = 1 × 1 mm. All scans were visually inspected 
for quality. 

2.4. MRI analysis of lesions and global atrophy 

The analysis of lesions and global atrophy on structural MRI data was 
done centrally at the Neuroimaging Research Unit (Milan, Italy) by 

experienced observers under supervision of a neurologist (M.A.R.) with 
20 years of experience, blinded to the subjects’ identity. T2 hyperintense 
lesion volumes (LV) were measured on dual-echo TSE images in a semi- 
automated fashion using a local thresholding segmentation technique 
(Jim 6.0 software; Xinapse Systems, Colchester, UK). Normalized brain 
(NBV), normalized white matter (WM) and grey matter (GM) volumes 
were measured on 3D T1-weighted scans using the SIENAX software 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA) (Smith et al., 2002), after 
WM lesion-filling with LEAP (Chard, Jackson, Miller, & Wheeler- 
Kingshott, 2010), using co-registration of the T2 lesion masks to the 
3D T1-weighted scans (Popescu et al., 2014). 

2.5. Thalamus volume measurements 

Manual and automated volumetric analyses of the thalamus were 
performed on 3D T1-weighted data sets. 

2.5.1. Manual delineations 
Manual volumetric analysis was performed within the online 

framework of the SPINE virtual laboratory (https://spinevirtuallab. 
org/)), developed by the Center for Neurological Imaging at Brigham 
and Women’s Hospital, which can be used for manual tracing of regions- 
of-interest on MRI. This web-based program allows visualization of MR 
images in axial, coronal, and sagittal orientations to facilitate 3D 
anatomical interpretation. The delineations were performed according 
to a standardized protocol (see supplementary material for a detailed 
description of the anatomical definitions and detailed outlining in
structions) and the voxel-wise labeling process was completely manual; 
that is, it involved no thresholding, seed-growing, shape fitting or other 
automated interference. One expert reader manually delineated the 
whole thalamus on axial slices, in a slice-by-slice manner. To assess the 
long-term test–retest reliability, a random subset of thalami for nine MR 
images (4 HCs and 5 MS patients) were delineated in a separate session 
more than three months later. The reader was a neurologist (J.B.), with 
specialized training and experience in the anatomical labeling of deep 
GM structures on MRI, supervised by a neuroradiologist (F.B. with more 
than 30 years of experience). The reader was blinded to the subject’s 
clinical characteristics. 

2.5.2. Automated segmentation methods 
Five automated segmentation programs were used to measure the 

volume of the thalamus. FreeSurfer, FMRIB Integrated Registration and 
Segmentation Tool (FSL-FIRST), Computational Anatomy Toolbox for 
Statistical Parametric Mapping 12 (SPM12) (CAT12), Geodesic Infor
mation Flows (GIF) and MRI Brain Volumetry System (VolBrain), which 
will be described briefly below. Further details of these methods are 
available in the documentation provided by the developers. We ran the 
software without user intervention, since this is the mode of operation 
that would be used when processing patient data of large cohorts. 

FreeSurfer’s (http://surfer.nmr.mgh.harvard.edu/) (Dale, Fischl, & 
Sereno, 1999; Fischl, Sereno, & Dale, 1999) volume-based stream is 
designed to preprocess MRI volumes and label subcortical structures. 
The stream consists of multiple stages: in brief, the first stage is an affine 
registration with Talairach space specifically designed to be insensitive 
to pathology and to maximize the accuracy of the final segmentation. 
This is followed by an initial tissue classification and correction of the 
variation in intensity resulting from the B1 bias field. Finally, there is a 
high-dimensional nonlinear volumetric alignment to the Talairach atlas 
where the final segmentation takes place. The manual editing steps that 
are recommended for FreeSurfer to adjust for cortical reconstructions 
were excluded here, since we are focusing on the subcortical output; 
FreeSurfer was applied as a fully automated software, without the 
addition of any manual editing steps. 

FIRST (Patenaude, Smith, Kennedy, & Jenkinson, 2011) is a model- 
based segmentation tool also part of FSL (http://www.fmrib.ox.ac. 
uk/fsl/first/index.html) (Smith et al., 2002). Subcortical brain 
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segmentation is performed using Bayesian shape and appearance models 
constructed from a set of 336 manually-labeled T1-weighted MR images. 
FIRST models the outer surface of each deep GM structure as a mesh, 
using models derived from the reference images and the local intensity 
profiles around the mesh. Finally, it assigns each voxel in the image an 
appropriate structure label, taking into account local variations in both 
surface and shape, as well as the presence of neighboring structures. 

The CAT12 toolbox (the successor of VBM8) is an extension to 
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to pro
vide computational anatomy (Mutsaerts et al., 2020). The algorithm 
allows local variations in the tissue intensity distributions, making it 
more robust to the presence of pathology such as WM lesions. 

GIF software (part of NifySeg: http://cmictig.cs.ucl.ac.uk/niftyweb/ 
program.php?p5GIF) uses manually created atlases for segmentation of 
the input images (http://www.neuromorphometrics.com/) (Klein & 
Tourville, 2012). GIF captures the local variation in morphology and in 
standard space locations, and has been recommended in previous 
studies on (deep) GM atrophy in MS (Eshaghi et al., 2018). With the use 
of an iterative geodesic minimization algorithm and the manual labels, 
more accurate segmentations are expected (Cardoso et al., 2015). 

The VolBrain fully automated pipeline provides volumetric brain 
information at different scales (Manjón & Coupé, 2016). The proposed 
pipeline is based on a library of manually labeled templates to perform 
the segmentation process, constructed from subjects from different 
publicly available datasets (normal adults, Alzheimer disease and pe
diatric datasets), including subcortical structure segmentation as pro
posed by Coupé et al. 2011 (Coupé et al., 2011). 

2.6. Normalization 

To correct for the influence of head size, thalamus volumes were 
multiplied by the head-normalization factor derived from SIENAX for all 
segmentation methods, including the manual tracings. Alternatively, 
FreeSurfer segmentations were divided by the estimated total intracra
nial volume (eTIV) from FreeSurfer. The unnormalized data were used 
for the evaluation of agreement between methods; the normalized data 
served for the association analyses with cognitive outcomes. 

2.6.1. Contrast-to-noise ratio 
To assess whether there were different tissue contrasts in the T1- 

weighted images obtained at different sites in this multi-center study, 
as well as to assess if this was related to the observed relation with 
cognitive measures, we quantified the contrast-to-noise ratio (CNR) for 
each thalamus (left and right separately, in each subject). This was done 
as follows: The mean signal in the thalamus was calculated by eroding 
the manual thalamus outline once using a 3x3x3 kernel (to avoid any 
chance of partial volume effects from WM) and applying this as a mask 
on the N3-corrected T1-weighted image, and calculating the mean signal 
intensity in that region. The mean signal intensity in the WM bordering 
the thalamus was obtained similarly, but in this case the mask was 
created by first dilating the manual thalamus mask once, using a 3x3x3 
kernel (here, to avoid any chance of partial volume effects from thal
amus in the WM border mask) and then creating a border region around 
that expanded thalamus mask by dilating three times using a 3x3x3 
kernel. The border region was then masked with the SIENAX WM mask 
and with the inverse of the lesion mask, to exclude GM, CSF and lesions. 
This WM border mask was then applied on the N3-corrected T1- 
weighted image and the mean signal intensity was calculated. Subse
quently, the standard deviation of the image noise was approximated by 
taking the standard deviation of the signal in the ventricular CSF. The 
FreeSurfer ventricles segmentation, after excluding choroid plexus, was 
eroded once using a 3x3x3 kernel to avoid partial volume effects, and 
then applied as a mask on the N3-corrected T1-weighted image, and the 
standard deviation was calculated. Finally, the CNR for that thalamus 
was calculated by dividing the absolute difference between the mean 
thalamus signal intensity and the mean border WM signal intensity, by 

the standard deviation of the ventricles. 

2.7. Statistical analysis 

All data analysis was done using SPSS for Windows version 22.0 
(Armonk, NY: IBM Corp). The normality of each variable’s distribution 
was assessed using histograms and normality plots. Group differences of 
the demographical and clinical variables, as well as the volumetric MRI 
quantities and scanner type were evaluated using independent sample T- 
tests for normally distributed variables, non-parametric analysis (Mann- 
Whitney) for non-normally distributed variables, and Chi2 for categor
ical variables. Brain T2 and T1 LV were log-transformed due to their 
skewed distribution. Mean and standard deviation of CNR values were 
reported both per site and per vendor / scanner type. 

Volumetric agreement of the manually and automatically generated 
thalamus segmentations was evaluated through the intraclass correla
tion coefficient (ICC) based on a two-way mixed effects model, where 
people effects are random and measure effects are fixed (McGraw & 
Wong, 1996). The absolute agreement (ICC “type A”) and consistency 
(ICC “type C”) were reported. Further, to describe the agreement be
tween different segmentation methods, Bland-Altman plots were created 
in which the difference of two paired measurements (A-B) was plotted 
against the average of the two measurements [(A + B)/2] (Altman & 
Bland, 1983; Giavarina, 2015). We ran a One-Sample T-Test to examine 
whether the mean of the difference equals 0, and a linear regression 
[Pearson rho (ρ)] to evaluate whether a proportional bias was present. In 
the Bland-Altman plot this bias will be reflected in the scatter points 
with a trend to high or low values of the difference across the range of 
values of the average. 

Intra-rater reliability of the manual delineations was evaluated 
through the ICC as described above, reporting the absolute agreement. 
We used Koo’s criteria to interpret the ICCs: values < 0.5 are indicative 
of ‘poor’ reliability, values between 0.5 and 0.75 indicate ‘moderate’ 
reliability, values between 0.75 and 0.9 indicate ‘good’ reliability, and 
values greater than 0.90 indicate ‘excellent’ reliability (Koo & Li, 2016). 

The ability of the thalamus volumes to distinguish between CI and CP 
MS patients was compared between different segmentation methods by 
using Generalized Estimating Equations with logit link function and an 
unstructured covariance matrix, corrected for age. Correlations of 
cognition with thalamus volumes were investigated using linear mixed 
models CII and cognitive domain Z-scores as the dependent variables, 
adjusting for age and with random effects for subject and center, 
comparing the results between the different segmentation methods. Sex 
and education were not significantly different between CI and CP pa
tients and were not retained in the models. To assess the influence of 
vendor, we additionally performed the same general linear regression 
analysis with CII as the dependent variable for each method, per vendor. 

A p-value of<0.05 was considered statistically significant. As the 
main goal of our study was to investigate the replicability of the asso
ciation between thalamus volume and cognitive scores using different 
automated segmentation methods, we did not correct for multiple 
comparisons to address possible type I errors. 

3. Results 

3.1. Subject characteristics 

Table 2 summarizes the main demographic, clinical and MRI char
acteristics of the HCs and MS patients, as well as CP and CI MS patient 
subgroups. Twenty-two (39%) MS patients were classified as CI. 
Compared with CP, CI patients were older (p = 0.01) and had a higher 
EDSS score (p = 0.025); whereas no difference was found for sex (p =
0.33), education (p = 0.52) and disease duration (p = 0.83). As a 
consequence, age was included as nuisance covariate in the regression 
models. Compared to HCs, MS patients had lower NBV (p = 0.001), 
NWMV (p = 0.01) and NGMV (p < 0.05). Except NWMV (p = 0.33), all 
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MRI volumes were more altered in CI than in CP patients (all p-values <
0.05), including T2 LV (p < 0.01). The cognitive domains most 
frequently affected were attention / IPS (32% of the MS patients), ex
ecutive function (23%), verbal memory (19%), visuospatial memory 
(16%) and verbal fluency (16%). The distribution of vendors across the 
HC and MS patient subgroups was similar (MS vs HC: p = 0.08; CI vs CP: 
p = 0.51). Table 3 lists the number of subjects per center and MR scanner 
type. CNR values by site and hemisphere are also included, displaying 
some heterogeneity between sites in this multi-center study. 

3.2. Analysis of volumetric agreement 

3.2.1. Intraclass correlation analysis 
Fig. 1 shows examples of the segmentations for each method. In 

terms of consistency, the agreement between the automatically and 
manually generated left and right thalamus volumes was good for 
FreeSurfer and FSL-FIRST, with ICC values ≥ 0.77, and moderate for 
CAT12, GIF and VolBrain (ICC: 0.61–0.75) (table 4). In terms of absolute 
agreement, ICC values were good for FreeSurfer (≥0.79), and moderate 
for FSL-FIRST (≥0.68). Poor absolute agreement was found for left and 
right thalamus volume measurements from CAT12 (ICC 0.20 and 0.21), 
GIF (ICC 0.44 and 0.47) and VolBrain (ICC 0.39 and 0.42). 

3.2.2. Bland-Altman scatter plots and analysis 
Fig. 2 and table 5 describe the results of the Bland-Altman scatter 

plots and analysis of the unnormalized thalamus volume measurements: 
automated minus the manual methods. On average, FreeSurfer left 
thalamus volumes were similar to the manual output, while right 
thalami were larger [mean difference (SD): left thalamus: − 0.09 (0.85), 
p = 0.39; right thalamus: 0.36 (0.79), p < 0.001]. FSL-FIRST obtained 
larger thalamus volumes for both hemispheres [left thalamus: 0.69 
(0.92), p < 0.001; right thalamus: 0.60 (0.88), p < 0.001]. In compari
son, the software packages CAT12, GIF and VolBrain obtained smaller 
thalamus volumes bilaterally (all p-values < 0.001). Except for CAT12, a 
proportional difference with a negative trend was observed in all scatter 
plots showing the agreement between the automated and manual thal
amus volume measurements. In smaller thalami the automated methods 
appeared to systematically overestimate the thalamus volumes 
compared to manual outlines, whereas in larger thalami the reverse was 
found. Qualitatively, the areas with the most disagreement occurred in 
the superior and inferior parts of the thalami, including the geniculate 
bodies (see Fig. 1). 

3.3. Reproducibility of manual thalamus outlining 

The long-term intra-rater reliability of the manual output, assessed 
on the images of 9 subjects, was moderate with a median ICC (absolute 
agreement) of 0.62 (p < 0.01) for the left thalamus and 0.63 (p < 0.001) 
for the right thalamus. 

3.4. Relation of thalamus volume measures with cognition 

3.4.1. Thalamus volumes 
Table 6 lists the normalized left and right thalamus volumes obtained 

through manual tracings and automated techniques in CI and CP MS 
patients. Compared to CP patients, CI patients had smaller thalami based 
on all methods, excepted the left thalamus volumes obtained through 
manual outlining (p = 0.18) and marginally significant for left thalamus 
volumes from GIF (p = 0.05). All segmentation methods consistently 
demonstrated smaller thalami in MS patients than in HCs (all p-values <
0.001; not shown in the table). In both HCs and MS subjects, the right 
thalami were smaller than the left thalami for all methods. This differ
ence in left and right thalamus volumes was not statistically significant 
between methods (p = 0.79 for both HCs and MS patients; not shown in 
the table). 

3.4.2. Consistency of discrimination between cognitively impaired and 
preserved patients 

Table 6 summarizes the results of the binary logistic regression 
analysis for the discrimination between CI and CP MS patients, using the 

Table 2 
Demographic, clinical and MRI characteristics of healthy controls and cognitively preserved and impaired patients.      

MS patients  

HC (n = 17) MS (n = 57) p CP (n = 35) CI (n = 22) p 

Demographic Characteristics 
Age (in years)a 40.5 ± 6.6 38.9 ± 8.5  0.47 36.6 ± 8.1 42.5 ± 7.9  0.010 
Sex (Female / Male) 12 / 5 37 / 20  0.66 21 / 14 16 / 6  0.33 
Education (in years)b 16.5 (12.0–18.3) 13.0 (12.0–17.0)  0.12 13.0 (13.0–17.0) 13.0 (11.8–17.0)  0.52 
MS Characteristics 
Disease duration (in years)b  6.0 (4.0–10.0)  – 6.3 (4.0–10.0) 6.0 (4.8–10.7)  0.83 
EDSSb  2.0 (1.5–2.5)  – 2.0 (1.0–2.0) 2.0 (2.0–4.0)  0.025 
MRI Characteristics 
T2-lesion volume (mL)b – –  3.16 (1.48 – 6.66) 8.69 (3.02 – 26.24)  0.001 
NBV (L)a 1.53 ± 0.07 1.44 ± 0.11  0.001 1.47 ± 1.00 1.40 ± 0.11  0.012 
NWMV (L)a 0.71 ± 0.05 0.66 ± 0.07  0.013 0.67 ± 0.06 0.65 ± 0.09  0.33 
NGMV (L)a 0.82 ± 0.05 0.78 ± 0.07  0.048 0.80 ± 0.06 0.75 ± 0.06  0.003 
Vendor 
(GE / Philips / Siemens) 6 / 5 / 6 18 / 18 / 21  0.08 10 / 11 / 14 8 / 7 / 7  0.51 

Abbreviations: CI = cognitively impaired; CP = cognitively preserved; EDSS = Expanded Disability Status Scale; : HC = healthy controls; MS = multiple sclerosis; NBV 
= normalized brain volume; NWMV = normalized white matter volume; NGMV = normalized grey matter volume; a Data are mean (SD) for normally distributed 
variables; b Because of non-normal distribution, median and interquartile range are provided; p-values in bold represent significant values. 

Table 3 
An overview of the subjects for each center (MR scanner).  

Institute (scanner 
type) 

HC CP CI Total CNR left 
thalamus 

CNR right 
thalamus 

Barcelona 
(Siemens, Trio) 

2 8 1 11 1.02 ± 0.30 1.12 ± 0.34 

Graz (Siemens, 
Trio) 

1 3 2 6 0.82 ± 0.23 1.02 ± 0.23 

London (Siemens, 
Trio) 

3 3 4 10 1.18 ± 0.40 1.34 ± 0.43 

Amsterdam (GE, 
Signa HDxt) 

3 4 3 10 1.80 ± 0.64 1.79 ± 0.61 

Naples (GE, Signa 
HDxt) 

3 6 5 14 2.33 ± 0.60 2.34 ± 0.58 

Siena (Philips, 
Intera) 

2 8 1 11 2.03 ± 0.25 2.07 ± 0.26 

Milan (Philips, 
Intera) 

3 3 6 12 1.47 ± 0.49 1.52 ± 0.48 

Total 17 35 22 74 1.60 ± 0.68 1.67 ± 0.63 

Abbreviations CI = cognitively impaired; CNR = contrast-to-noise ratio; CP =
cognitively preserved; HC = healthy controls. 
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normalized thalamus volume measurements. As expected, a negative 
effect was found for all segmentation methods, indicating that CI pa
tients were significantly more likely to have smaller thalami than CP 
patients (odds ratios: 0.44–0.72). No effect was found for manual 
measurements of the left thalamus (p = 0.23). Normalization through 
FreeSurfer also resulted in negative effects for FreeSurfer segmentations 
of the left [odds ratio (95% confidence interval): 0.27 (0.11–0.68); p =
0.005)] and right thalamus [0.17 (0.05–0.61); p = 0.006]. 

3.4.3. Analysis of correlations with cognition 
After normalization through SIENAX, poorer global neuropsycho

logical test performance (higher CII) was significantly associated with 
lower left and right thalamus volumes using all segmentation methods, 
(table 7). For example, CII is expected to increase by 1.45 (p = 0.021), 
1.26 (p = 0.002), 1.22 (p = 0.002), 1.06 (p=<0.001), (1.05 (p = 0.013) 
and 0.65 points (p = 0.032), when the left thalamus volume decreases by 
one centimeter3 when obtained through GIF, FreeSurfer, VolBrain, 
CAT12, FSL-FIRST and manual outlining, respectively. Normalization 
through FreeSurfer (eTIV) also resulted in significant correlations be
tween CII and thalamus volumes for FreeSurfer. Table 8 shows the as
sociations between CII and thalamus volume measurements for each 
method, for each scanner vendor (GE, Philips or Siemens) separately. 
Volumes that were obtained with Siemens scanners resulted in signifi
cant correlations for all methods (p-values: 0.001–0.031). Philips scans 
only showed significant correlations when analyzed with CAT12 
(bilaterally: p = 0.007 and 0.038), FreeSurfer (right thalamus: p =
0.045) and FSL-FIRST (left thalamus: p = 0.043). No associations were 
found for any of the methods when applied to GE images. These corre
lations seem to be in contradiction with the CNR results by vendor, listed 
at the bottom of Table 8, which show that in fact the CNR values were 

lowest for Siemens and highest for GE. 

3.4.4. Analysis of correlations with performance scores on separate 
cognitive domains 

Looking at the correlation with cognitive domain z-scores (table 7), 
thalamus volume loss was associated with visuospatial memory and 
attention / IPS based on all methods, excepted a lack of statistically 
significant association between manually segmented left thalamus vol
ume and visuospatial memory. Based on CAT12, right thalamus volume 
was associated with verbal fluency (p = 0.044) and executive function 
(p = 0.045). No associations were found with the other cognitive domain 
z-scores. Similar results were found for the normalized (eTIV) FreeSurfer 
thalamus volume measurements, except that a significant correlation 
between left thalamus volume loss and verbal memory was also found 
using this method (p = 0.03). 

4. Discussion 

In this multi-center cohort, RRMS patients with relatively mild 
physical disability and overt CI showed severe thalamus atrophy based 
on all automated segmentation techniques, as was also evidenced by a 
unique set of manually defined reference outlines in which the whole 
thalamus was segmented. Automated and manual tissue segmentation 
consistently demonstrated a relationship between the degree of thal
amus atrophy and cognitive dysfunction, which suggests that the 
observed association is truly a manifestation of the disease. However, 
the robustness of these associations was systematically affected by 
scanner. Somewhat surprisingly, our results showed that images with 
lower CNR resulted in more significant correlations with cognitive 
measures, warranting further and more systematic studies of these 

Fig. 1. 3D T1-weighted images and thalamus segmentations of manual tracing, FreeSurfer, FSL-FIRST, CAT12, GIF and VolBrain. Segmentations of the 
thalamus bilaterally in the axial plane of two MS patients, revealing the inferior portion of the thalamus of one cognitively impaired patient (top row) and the middle 
part of the thalamus of one cognitively preserved patient (bottom row) for: manual tracings (A), FreeSurfer (B), FSL-FIRST (C), CAT12 (D), GIF (E) and VolBrain (F) 
segmentations. 

Table 4 
Intraclass correlation between the absolute (not normalized for head size) thalamus volume measures of different segmentation methodsa,b.  

Intraclass Correlation Freesurfer – Manual FSL-FIRST – Manual CAT12 – Manual GIF – Manual VolBrain – Manual 

Absolute Consistency Absolute Consistency Absolute Consistency Absolute Consistency Absolute Consistency 

Left thalamus  0.81  0.80  0.68  0.77  0.20  0.61  0.44  0.60  0.39  0.69 
Right thalamus  0.79  0.82  0.69  0.77  0.21  0.64  0.47  0.65  0.42  0.75 

Abbreviations: Absolute = absolute agreement; . a Two-way mixed effects model where people effects are random and measures effects are fixed, single measures. 
Intraclass correlation coefficients are displayed; b p= <0.001 for all variables. 
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issues. The differential bias present in smaller and larger thalami should 
be taken into account when evaluating treatment response of thera
peutic interventions. 

To our knowledge, this is the first multicenter study that compared 

automated thalamus segmentation methods and manual outlining, and 
evaluated their influence on the association of thalamus volume with 
cognition in MS patients in the presence of MS-related pathologies. 
Earlier research on this topic considered single-scanner data only 

Fig. 2. Bland Altman scatter plots of the unnormalized thalamus volume measurements of the MS patients. The difference of two paired measurements 
[(automated–manual) / average] was plotted against the average of the two measurements [(automated + manual) / 2]. Except for CAT12, a proportional bias was 
observed between the automated and manual thalamus volume measurements, indicated by a trend [linear regression (Pearson rho (ρ))] to high and low values of the 
difference across the range of values of the average. 
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(Glaister et al., 2017; Houtchens et al., 2007; Popescu et al., 2016); or 
compared automated techniques without including manual outlining 
(Derakhshan et al., 2010; Popescu et al., 2016). When aiming to fully 
understand the relationship between thalamus atrophy and cognitive 
decline, automated methods may present a biased picture or reflect 
spurious correlations, since there have been reports that the algorithms 
may yield measurement errors that increase with increasing MS pa
thology such as WM lesions and atrophy (Amiri et al., 2018; Derakhshan 
et al., 2010; Sastre-Garriga et al., 2020). Taken together, the finding of 
the present study that expert manual outlining, by and large, resulted in 
the same associations with cognition as automated methods, is an 
important confirmation of many earlier reports that have consistently 
demonstrated more severe thalamus damage in CI patients (Benedict 
et al., 2013; Houtchens et al., 2007; Minagar et al., 2013; Popescu et al., 
2016; Rocca et al., 2018; Schoonheim et al., 2015, 2012). Of note, 
attention to variations in image characteristics, in particular the CNR 
between target structure (thalamus) and surrounding tissue, between 
different scanners and protocols is essential, especially when attempting 
to minimize the number of patients and observations needed to 
adequately power clinical trials relying on MRI-derived measurements. 
Based on our results, which for Siemens showed an unexpected co- 
occurrence of lowest CNR and significant correlations with cognitive 
scores across all segmentation software methods, further studies are 
required to more systematically study the interplay between image 
contrast, image noise and thalamus segmentation quality. 

Similarly to previous studies (Batista et al., 2012; Benedict et al., 
2013; Houtchens et al., 2007; Schoonheim et al., 2015, 2012), impaired 
performance on the domains of attention / IPS and visuospatial memory 
were associated with thalamus degeneration bilaterally, which was also 
confirmed through manual outlining. In contrast, we did not find a 
correlation with executive function, except using CAT12 right thalamus 

measurements. Impaired IPS is a common and highly invalidating deficit 
in MS, which can occur at the earliest stages of the disease (Amato et al., 
2010; Chiaravalloti & DeLuca, 2008; Rao et al., 1991). With its extensive 
afferent and efferent interconnections with the midbrain and the cere
bral cortex, the thalamus serves as relay station and, thus, thalamus 
degeneration is likely to contribute to IPS dysfunction (Minagar et al., 
2013). 

Although the present work confirms that the thalamus is of great 
clinical relevance to cognitive processes in MS, considerable variations 
were observed between software packages and scanners, which co
incides with the variability reported by previous investigators (Amiri 
et al., 2018; Glaister et al., 2017; Popescu et al., 2016). In line with an 
earlier report by Glaister et al, visual inspection of our data showed that 
the areas with most disagreement occurred in the superior and inferior 
parts of the thalami, including the geniculate bodies (Glaister et al., 
2017). This is probably due to their low contrast compared to sur
rounding tissue in T1-weighted MRI, which makes it more complicated 
to trace the edges of the thalamus in these subregions, also manually. 

Table 5 
Pairwise Bland-Altman comparisons between segmentation methods.  

Measure     Proportional bias 

µ diff SD SE µ p- 
Value 

ρ 
(rho)a 

t p- 
Value 

Freesurfer - 
Manual        

Left 
Thalamus 

− 0.09  0.85  0.10  0.391 − 0.44 − 4.14  <0.001 

Right 
Thalamus 

0.36  0.79  0.09  <0.001 − 0.42 − 3.98  <0.001 

FSL-first - 
Manual        

Left 
Thalamus 

0.69  0.92  0.11  <0.001 − 0.44 − 4.12  <0.001 

Right 
Thalamus 

0.60  0.88  0.10  <0.001 − 0.48 − 4.58  <0.001 

CAT12 - 
Manual        

Left 
Thalamus 

− 2.87  1.25  0.15  <0.001 − 0.17 − 1.46  0.15 

Right 
Thalamus 

− 2.75  1.18  0.14  <0.001 − 0.16 − 1.33  0.19 

GIF - Manual        
Left 

Thalamus 
− 1.04  1.08  0.13  <0.001 − 0.74 − 9.30  <0.001 

Right 
Thalamus 

− 1.02  0.98  0.11  <0.001 − 0.76 − 9.82  <0.001 

VolBrain - 
Manual        

Left 
Thalamus 

− 1.65  1.05  0.12  <0.001 − 0.42 − 3.92  <0.001 

Right 
Thalamus 

− 1.63  0.91  0.11  <0.001 − 0.47 − 4.48  <0.001 

Abbreviations: µ diff = mean difference; SD = standard deviation; SE µ= stan
dard error of µ; ρ (rho) = Pearson correlation; t = t-test statistic; a Correlation of 
the volume difference and mean between two measurements; p-value in bold 
represent significant values. 

Table 6 
Normalized thalamus volume measurements and summary of results of the bi
nary logistic regression analysis for cognitively impaired versus cognitively 
preserved MS patientsa.   

Thalamic volumes Binary logistic regression 

CP (n =
35) 

CI (n 
= 22) 

p- 
Value 

OR 95% 
Conf int. 
for OR 

p-Value 

Normalization 
SIENAXb       

Manual outlines 
Left thalamus 

(mL) 
8.99 ±
1.37 

8.24 
± 2.31  

0.18  0.85 0.66 – 
1.11  

0.23 

Right thalamus 
(mL) 

9.06 ±
1.31 

7.91 
± 2.18  

0.033  0.72 0.52 – 
0.95  

0.018 

Freesurfer 
Left thalamus 

(mL) 
9.02 ±
1.18 

8.11 
± 1.44  

0.012  0.64 0.42 – 
0.99  

0.047 

Right thalamus 
(mL) 

8.59 ±
1.07 

7.54 
± 1.37  

0.002  0.53 0.37 – 
0.78  

0.001 

FSL-first 
Left thalamus 

(mL) 
10.13 
± 0.94 

9.05 
± 1.45  

0.004  0.51 0.40 – 
0.66  

<0.001 

Right thalamus 
(mL) 

9.92 ±
0.83 

8.90 
± 1.44  

0.005  0.49 0.35 – 
0.68  

<0.001 

CAT12 
Left thalamus 

(mL) 
5.34 ±
1.38 

4.09 
± 1.93  

0.012  0.61 0.51 – 
0.72  

<0.001 

Right thalamus 
(mL) 

5.38 ±
1.14 

4.17 
± 1.95  

0.013  0.58 0.48 – 
0.71  

<0.001 

GIF 
Left thalamus 

(mL) 
7.68 ±
0.70 

7.17 
± 1.04  

0.05  0.55 0.34 – 
0.88  

0.013 

Right thalamus 
(mL) 

7.63 ±
0.63 

7.08 
± 1.05  

0.033  0.49 0.31 – 
0.79  

0.003 

VolBrain 
Left thalamus 

(mL) 
7.02 ±
1.03 

5.85 
± 1.48  

0.003  0.51 0.41 – 
0.63  

<0.001 

Right thalamus 
(mL) 

6.99 ±
0.90 

5.77 
± 1.44  

0.001  0.44 0.34 – 
0.58  

<0.001 

Fraction of eTIV 
Freesurferc       

Freesurfer 
Left thalamus 

(10− 3) 
4.71 ±
0.57 

4.20 
± 0.63  

0.003  0.27 0.11 – 
0.68  

0.005 

Right thalamus 
(10− 3) 

4.49 ±
0.55 

3.91 
± 0.61  

0.003  0.17 0.05 – 
0.61  

0.006 

Abbreviations CI = cognitively impaired; Conf int = confidence interval; CP =
cognitively preserved; OR = odds ratio. a Data are mean (SD) for normally 
distributed variables; b Thalamic volumes were multiplied by the head- 
normalization factor derived from SIENAX; c Thalamus volumes were divided 
by the estimated total intracranial volume (eTIV) from FreeSurfer; p-values in 
bold represent significant values. 
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The Bland Altman plots revealed that thalamus volumes were on 
average overestimated by FSL-FIRST and FreeSurfer (excepted left 
thalamus measurements), while they were systematically under
estimated by CAT12, GIF and VolBrain, which is in line with an earlier 
publication on this topic (de Sitter et al., 2020). It appeared that the 
absolute agreement for CAT12 (ICC: 0.20–0.21), GIF and VolBrain (ICCs 
between 0.39 and 0.47) in our study were much worse than previously 
reported by de Sitter et al. (2020). However, different study populations 
and combined manual segmentations created by majority voting were 
used in previous work. Further investigations are needed to unravel in 

more detail the mechanisms leading to the observed differences between 
different segmentation pipelines. 

Furthermore, the analysis of agreement between the software pack
ages and manual outlines revealed important insights into how MS 
pathological changes may affect the association between thalamus at
rophy and cognitive outcome. First, Bland-Altman revealed a propor
tional bias with a negative trend of differences between virtually all 
automated segmentation techniques included in this study (excepted 
CAT12) and manually derived thalamus measurements, proportional to 
the magnitude of thalamus size. It seems therefore that the algorithms 

Table 7 
Summary of results of the general linear regression analysis with cognitive scores as the dependent variablesa.  

Thalamic 
volumes 

Cognitive 
Impairment Index 
(CII) 

Verbal memory Visual memory Attention Fluency Executive functionb 

B (95% 
CI) 

p-Value B (95%CI) p- 
Value 

B (95%CI) p-Value B (95%CI) p-Value B (95%CI) p- 
Value 

B (95%CI) p- 
Value 

Normalization 
SIENAXc             

Manual outlines 
Left thalamus − 0.65 

(-1.23 – 
(-0.06)) 

0.032 − 0.06 
(-0.08–0.21) 

0.38 0.15 
(-0.002–0.30) 

0.053 0.16 
(0.04–0.28) 

0.010 0.07 
(-0.07–0.22) 

0.31 0.19 
(-1.44–1.83) 

0.81 

Right thalamus − 0.72 
(-1.32 – 
(-0.13)) 

0.017 0.09 
(-0.06–0.23) 

0.22 0.17 
(0.02–0.32) 

0.032 0.18 
(0.06–0.30) 

0.004 0.11 
(-0.03–0.26) 

0.11 − 0.08 
(-1.74–1.58) 

0.92 

Freesurfer 
Left thalamus − 1.26 

(-2.05 – 
(-0.47)) 

0.002 0.17 
(-0.03–0.37) 

0.091 0.33 
(0.12–0.53) 

0.002 0.32 
(0.16–0.47) 

<0.001 0.18 
(-0.02–0.38) 

0.076 − 0.45 
(-2.74–1.85) 

0.67 

Right thalamus − 1.36 
(-2.18 – 
(-0.53)) 

0.002 0.11 
(-0.10–0.32) 

0.29 0.40 
(0.20–0.60) 

<0.001 0.33 
(0.16–0.49) 

<0.001 0.19 
(-0.02–0.40) 

0.070 0.63 
(-1.76–3.03) 

0.60 

FSL-first 
Left thalamus − 1.05 

(-1.87 – 
(-0.23)) 

0.013 0.09 
(-0.12–0.29) 

0.40 0.32 
(0.12–0.53) 

0.003 0.31 
(0.15–0.47) 

<0.001 0.15 
(-0.06–0.35) 

0.16 1.36 
(-0.91–3.63) 

0.23 

Right thalamus − 0.93 
(-1.81 – 
(-0.05)) 

0.039 0.05 
(-0.17–0.26) 

0.67 0.34 
(0.12–0.55) 

0.003 0.30 
(0.13–0.47) 

0.001 0.15 
(-0.06–0.37) 

0.15 1.22 
(-1.18–3.62) 

0.31 

CAT12 
Left thalamus − 1.06 

(-1.63 – 
(-0.49)) 

<0.001 0.07 
(-0.08–0.22) 

0.34 0.25 
(0.10–0.39) 

0.002 0.26 
(0.14–0.37) 

<0.001 0.13 
(-0.01–0.28) 

0.072 1.58 
(-0.05–3.22) 

0.57 

Right thalamus − 1.12 
(-1.71 – 
(-0.53)) 

<0.001 0.08 
(-0.07–0.24) 

0.29 0.27 
(0.12–0.43) 

0.001 0.27 
(0.16–0.39) 

<0.001 0.16 
(0.004–0.31) 

0.044 1.74 
(-1.74–1.58) 

0.045 

GIF 
Left thalamus − 1.45 

(-2.67 – 
(-0.23)) 

0.021 0.17 
(-0.13–0.47) 

0.26 0.40 
(0.10–0.71) 

0.010 0.48 
(0.24–0.71) 

<0.001 0.27 
(-0.03–0.57) 

0.074 0.26 
(-3.16–3.67) 

0.88 

Right thalamus − 1.36 
(-2.61 – 
(-0.11)) 

0.033 0.14 
(-0.17–0.44) 

0.38 0.39 
(0.07–0.70) 

0.016 0.45 
(0.21–0.70) 

<0.001 0.30 
(0.0004–0.60) 

0.050 0.40 
(-3.06–3.86) 

0.82 

VolBrain 
Left thalamus − 1.22 

(-1.98 – 
(-0.46)) 

0.002 0.12 
(-0.07–0.32) 

0.20 0.35 
(0.16–0.54) 

<0.001 0.34 
(0.19–0.49) 

<0.001 0.15 
(-0.04–0.34) 

0.13 1.27 
(-0.90–3.45) 

0.25 

Right thalamus − 1.30 
(-2.10 – 
(-0.51)) 

0.002 0.12 
(-0.08–0.32) 

0.24 0.37 
(0.17–0.57) 

<0.001 0.34 
(0.19–0.50) 

<0.001 0.17 
(-0.03–0.37) 

0.10 1.63 
(-0.62–3.88) 

0.15 

Fraction of 
eTIV 
FreeSurferd             

FreeSurfer 
Left thalamus − 2.51 

(-4.13 – 
(-0.89)) 

0.003 0.45 
(-0.03–0.37) 

0.03 0.59 
(0.16–1.03) 

0.009 0.65 
(0.34–0.96) 

<0.001 0.10 
(-0.32–0.52) 

0.63 1.03 
(-3.67–5.73) 

0.66 

Right thalamus − 2.58 
(-4.24 – 
(-0.93)) 

0.003 0.30 
(-0.12–0.71) 

0.16 0.73 
(0.32–1.14) 

0.001 0.65 
(0.32–0.97) 

<0.001 0.11 
(-0.32–0.53) 

0.62 3.03 
(-1.69–7.75) 

0.20 

Abbreviations: B = unstandardized regression coefficient; CI = confidence interval; a All regression analysis were corrected for center and age; b WCST number of 
perseverative errors; c Thalamic volumes were multiplied by the head-normalization factor derived from SIENAX; d Thalamic volumes were divided by the estimated 
total intracranial volume (eTIV) from FreeSurfer; p-values in bold represent significant values. 
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tend to reduce the gap between smaller and larger thalami, which could 
negatively impact the study conclusions in several ways. For example, 
type 1 errors could potentially emerge from invalid comparisons be
tween different structures or tissue types. Also, type 2 errors could occur 
because sensitivity to true group differences might be obscured by 
inconsistently localized effects. Nevertheless, automated thalamus seg
mentations yielded larger effect sizes for the separation of CI vs CP MS 
patients than manually derived volumes. These discrepancies are most 
likely explained by the higher level of variability present in the manual 
data (as indicated by the higher SD, especially for the left thalamus) and 
a worse level of agreement (ICC) between repeated measures. Future 
algorithmic developments should be directed towards minimizing pro
portional bias, since this is likely to significantly influence the statistical 

power of experiments measuring thalamus volumes. 
A discernible amount of variability was found in the manual tracing 

of the thalamus as evidenced by the intra-rater ICC’s (Derakhshan et al., 
2010; Fischl et al., 2002; Houtchens et al., 2007). Owing to the 
complexity of the cerebral anatomy combined with imaging artefacts 
(partial volume, intensity inhomogeneity, noise, etc.) present in MRI 
data, manual outlining is difficult, labor-intensive and time consuming. 
This particularly applies to the thalamus, which is an agglomeration of 
smaller nuclei, which leads to an ill-defined boundary of the overall 
thalamus on conventional MRI, especially in the presence of neuro
degeneration. In order to minimize error and reduce variability, we 
decided to solicit a single expert reader trained in manual tracing on MRI 
to obtain the highest quality thalamus outlines possible. We did not limit 
the number of patients or slices and decided to generate thalamus seg
mentations on each slice, which increases the relevance of this study. 
Importantly, by using this dataset we were able to objectively compare 
some of the most widely applied automated segmentation techniques in 
a multi-center setting, considering the sampling from a large cohort of 
patients, representative of the full range of a typical RRMS population. 
Moreover, we have created a valuable set of full manual thalamus out
lines of all subjects to provide reference correlations with the cognitive 
scores. 

4.1. Limitations 

Our study has several limitations, including the absence of a neu
ropsychological evaluation of the HCs, as well as the assessment of 
thalamus damage only, which did not allow us to investigate other 
patterns of microstructural tissue and (deep) GM damage that likely 
contribute to CI (Damjanovic et al., 2017; Preziosa et al., 2016; 
Schoonheim et al., 2015, 2012). The choice of the thalamus as a region 
of interest was motivated by the abundance of literature showing a 
relationship between damage to the thalamus and cognitive dysfunction 
in MS patients. As a result, we cannot rule out the possibility that other 
patterns of more diffuse pathological processes contributed to CI in our 
MS patients, and a multi-structure imaging and measurement approach 
is likely needed (Damjanovic et al., 2017; Sastre-Garriga et al., 2020). 
Concerning image acquisition, (near)isotropic 3D T1-weighted images 
with similar acquisition parameters were used to obtain thalamus at
rophy. In this work we addressed the potential effect of between-center 
heterogeneity in MRI acquisition in the regression analyses, however, 
remaining differences between scanners can systematically affect the 
robustness of the association between deep GM atrophy measurements 
and cognition across methods (Amiri et al., 2018). A more detailed 
evaluation of the interaction between MRI acquisition parameters and 
different thalamus segmentation methods (i.e., the robustness of the 
various segmentation methods with regards to MRI acquisition param
eters) transcended the scope of this study, but should be addressed in 
future work. 

4.2. Conclusion 

This multi-center study helps to shed light on some previously re
ported differences between various automated segmentation techniques 
and how these might influence the relationship between thalamus vol
ume measurements and cognition in MS. It supports the notion that 
thalamus atrophy is associated with a worse cognitive profile in MS 
patients. However, one should be cautious when interpreting these 
findings given the proportional biases that might be present in auto
mated volumetry, especially in smaller and larger thalami, as well as the 
impact of differences in scanners and acquisition protocols. The ap
proaches work in a multi-center setting, but statistical power is 
increased by appropriate matching of algorithms with optimal scanners 
and MRI acquisition parameters. Further research is needed to account 
for these potential sources of error and ensure the accuracy of these 
methods in the real-world clinical evaluation of MS patients. 

Table 8 
Summary of results of the general linear regression analysis with CII as the 
dependent variable, for each vendora.  

Thalamus 
volumesb 

GE (N = 18) Philips (N = 18) Siemens (N = 21) 

B (95% 
CI) 

p- 
Value 

B (95%CI) p- 
Value 

B (95%CI) p- 
Value 

Manual outlines 
Left 

thalamus 
0.32 
(-1.06 – 
1.70) 

0.63 − 0.47 
(-1.50 – 
0.57)  

0.36 − 1.32 
(-2.02 – 
(-0.62))  

0.001 

Right 
thalamus 

0.08 
(-1.28 – 
1.44) 

0.90 − 0.58 
(-1.77 – 
0.61)  

0.32 − 1.15 
(-1.85 – 
(-0.44))  

0.003 

FreeSurfer 
Left 

thalamus 
− 0.48 
(-1.88 – 
0.92) 

0.48 − 1.79 
(-3.64 – 
0.05)  

0.06 − 1.48 
(-2.46 – 
(-0.51))  

0.005 

Right 
thalamus 

− 0.57 
(-2.09 – 
0.95) 

0.44 − 1.65 
(-3.26 – 
(-0.04))  

0.045 − 1.68 
(-2.79 – 
(-0.56))  

0.005 

FSL-FIRST 
Left 

thalamus 
− 0.05 
(-1.40 – 
1.30) 

0.94 − 2.11 
(-4.14 – 
(-0.08))  

0.043 − 1.40 
(-2.41 – 
(-0.39))  

0.009 

Right 
thalamus 

− 0.12 
(-1.50 – 
1.26) 

0.86 − 1.56 
(-3.87 – 
0.74)  

0.17 − 1.34 
(-2.45 – 
(-0.24))  

0.020 

CAT12 
Left 

thalamus 
− 0.27 
(-1.20 – 
0.67) 

0.56 − 2.00 
(-3.38 – 
(-0.62))  

0.007 − 1.38 
(-2.17 – 
(-0.60))  

0.001 

Right 
thalamus 

− 0.34 
(-1.33 – 
0.66) 

0.49 − 1.51 
(-2.94 – 
(-0.09))  

0.038 − 1.53 
(-2.33 – 
(-0.73))  

0.001 

GIF 
Left 

thalamus 
− 0.82 
(-2.80 – 
1.15) 

0.39 -0.253 
(-6.69 – 
1.62)  

0.22 − 1.62 
(-3.08 – 
(-0.17))  

0.031 

Right 
thalamus 

− 0.90 
(-2.87 – 
1.07) 

0.35 − 1.48 
(-4.91 – 
1.94)  

0.37 − 1.71 
(-3.22 – 
(-0.19))  

0.029 

VolBrain 
Left 

thalamus 
− 0.22 
(-1.54 – 
1.10) 

0.73 − 1.83 
(-3.78 – 
1.20)  

0.06 − 1.53 
(-2.40 – 
(-0.65))  

0.002 

Right 
thalamus 

− 0.24 
(-1.75 – 
1.28) 

0.75 − 1.59 
(-3.31 – 
0.13)  

0.07 − 1.65 
(-2.57 – 
(-0.72))  

0.001 

Contrast-to- 
noise 
ratio 

GE (N = 18) Philips (N = 18) Siemens (N = 21) 

Left 
thalamus 

2.11 ± 0.66 1.74 ± 0.48 1.04 ± 0.35 

Right 
thalamus 

2.11 ± 0.64 1.78 ± 0.47 1.18 ± 0.37 

Abbreviations: B = unstandardized regression coefficient; CI = confidence in
terval; CII ¼ Cognitive Impairment Index. aAll regression analysis were cor
rected for center and age; b Thalamus volumes were multiplied by the head- 
normalization factor derived from SIENAX; p-values in bold represent signifi
cant values. 
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Robertson, Andrew D., Václavů, Lena, Groote, Inge, Kuijf, Hugo, Zelaya, Fernando, 
O’Daly, Owen, Hilal, Saima, Wink, Alle Meije, Kant, Ilse, Caan, Matthan W.A., 
Morgan, Catherine, de Bresser, Jeroen, Lysvik, Elisabeth, Schrantee, Anouk, 
Bjørnebekk, Astrid, Clement, Patricia, Shirzadi, Zahra, Kuijer, Joost P.A., 
Wottschel, Viktor, Anazodo, Udunna C., Pajkrt, Dasja, Richard, Edo, 
Bokkers, Reinoud P.H., Reneman, Liesbeth, Masellis, Mario, Günther, Matthias, 
MacIntosh, Bradley J., Achten, Eric, Chappell, Michael A., van Osch, Matthias J.P., 
Golay, Xavier, Thomas, David L., De Vita, Enrico, Bjørnerud, Atle, Nederveen, Aart, 
Hendrikse, Jeroen, Asllani, Iris, Barkhof, Frederik, 2020. ExploreASL: An image 
processing pipeline for multi-center ASL perfusion MRI studies. NeuroImage 219, 
117031. https://doi.org/10.1016/j.neuroimage.2020.117031. 

Patenaude, Brian, Smith, Stephen M., Kennedy, David N., Jenkinson, Mark, 2011. 
A Bayesian model of shape and appearance for subcortical brain segmentation. 
NeuroImage 56 (3), 907–922. https://doi.org/10.1016/j.neuroimage.2011.02.046. 

Polman, Chris H., Reingold, Stephen C., Banwell, Brenda, Clanet, Michel, Cohen, Jeffrey 
A., Filippi, Massimo, Fujihara, Kazuo, Havrdova, Eva, Hutchinson, Michael, 
Kappos, Ludwig, Lublin, Fred D., Montalban, Xavier, O’Connor, Paul, Sandberg- 
Wollheim, Magnhild, Thompson, Alan J., Waubant, Emmanuelle, 
Weinshenker, Brian, Wolinsky, Jerry S., 2011. Diagnostic criteria for multiple 
sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 69 (2), 292–302. 
https://doi.org/10.1002/ana.22366. 

Popescu, V., Ran, N.C.G., Barkhof, F., Chard, D.T., Wheeler-Kingshott, C.A., Vrenken, H., 
2014. Accurate GM atrophy quantification in MS using lesion-filling with co- 
registered 2D lesion masks. NeuroImage: Clinical 4, 366–373. https://doi.org/ 
10.1016/j.nicl.2014.01.004. 

Popescu, V., Schoonheim, M. M., Versteeg, A., Chaturvedi, N., Jonker, M., Xavier de 
Menezes, R., . . . Vrenken, H. (2016). Grey Matter Atrophy in Multiple Sclerosis: 
Clinical Interpretation Depends on Choice of Analysis Method. PLoS One, 11(1), 
e0143942. doi:10.1371/journal.pone.0143942. 

Preziosa, Paolo, Rocca, Maria A., Pagani, Elisabetta, Stromillo, Maria Laura, 
Enzinger, Christian, Gallo, Antonio, Hulst, Hanneke E., Atzori, Matteo, 
Pareto, Deborah, Riccitelli, Gianna C., Copetti, Massimiliano, De Stefano, Nicola, 
Fazekas, Franz, Bisecco, Alvino, Barkhof, Frederik, Yousry, Tarek A., Arévalo, Maria 
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