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Evaluation of the association of heterozygous germline

variants in NTHLI with breast cancer predisposition: an
international multi-center study of 47,180 subjects
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Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHLT cause a high-risk hereditary multi-tumor
syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An
analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant
enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous
carriers but the NTHLT bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to
27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a
heterozygous LoF variant (OR 1.06, 95% Cl: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% Cl:
1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located
within the endonuclease Ill functional domain showed a stronger association with breast cancer. Somatic sequencing of breast
cancers from carriers indicated that the risk associated with NTHLT appears to operate through haploinsufficiency, consistent
with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests
that heterozygous pathogenic germline coding variants in NTHLT may be associated with low- to moderate- increased risk of
breast cancer.
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INTRODUCTION
NTHL1 encodes a DNA glycosylase that is a critical component of
the DNA base excision repair (BER) pathway involved in the repair

cancer', and to a multi-tumor syndrome that includes a high
incidence of breast cancer in female carriers®™. Grolleman et al.*
described the largest set of carriers of bi-allelic germline NTHL1

of oxidatively damaged DNA. It has recently been shown that
carriers of bi-allelic loss-of-function (LoF) variants in NTHLT are
predisposed to colorectal adenomatous polyposis and colorectal

variants (29 carriers from 17 families), and reported that 9 of 15
female carriers (60%) were diagnosed with breast cancer at an
earlier age than observed in the general population (48.5 years
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Table 1. NTHLT LoF variants identified in familial breast cancer cases and cancer-free controls in BEACCON study.
Consequence Case Control Nucleotide change® Protein changeb Exon (of 6) dbSNP ID GnomAD®

n=4985 n=4786
Frameshift 1 0 c.64_83delAGCCTGGGACCCGGGGCTGG  p.Ser22AlafsTer5 1 - 0
Stop Gained 25¢ 11 c268C>T p.GIn90Ter 2 rs150766139  1.44x10 3
Frameshift 1 0 €.380_383dupTACG p.Arg129ThrfsTer42 3 rs566860680 4.48 x 107°
Stop Gained 0 1 c390C>A p.Tyr130Ter 3 rs371328106 2.36x10°°
Stop Gained 0 1 c390C>G p.Tyr130Ter 3 - 0
Stop Gained 2 0 c457C>T p.Arg153Ter 3 rs374489979 1.28x10°
Stop Gained 1 0 c760A>T p.Lys254Ter 5 - 0
Stop Gained 9 2 c859C>T p.GIn287Ter 6 rs146347092 1.62x10°*
Total 39 15 - - - - -
2ENST00000219066.1(NM_002528.5).
PENSP00000219066.1(NP_002519.1).
“gnomAD, the minor allele frequency of each variant in 134,187 samples from non-cancer cohorts in GnomAD database V2.1.1.
9Including one homozygous carrier.

compared to 62 years). In contrast to the previously described BER
defect caused by MUYTH deficiency, multiple tumor types from
carriers of germline bi-allelic NTHLT LoF variants exhibit a
distinctive somatic mutation pattern (Single Base Substitution
Signature 30 [SBS30] in the COSMIC database'®) characterized by
an abundance of C > T transitions at non-CpG sites, indicating that
an NTHL71-driven BER defect was the predominant mutational
process driving the development of these tumors. These data
demonstrated that germline bi-allelic inactivation of NTHLT
predisposes to breast cancer, although individuals with two LoF
variants are very rare in the population®. In contrast, 0.37% of non-
cancer participants in gnomAD are carriers of monoallelic LoF
variants (gnomAD V2.1.1, 134,187 participants), but whether
carriers are also predisposed to breast cancer has not been
evaluated. To address this question, this study sequenced all
exons and exon-intron boundaries of NTHLT in 9,771 subjects in
the hereditary BrEAst Case CONtrol (BEACCON) study, comprising
index cases from hereditary breast cancer families who tested
negative for germline pathogenic variants in BRCAT and BRCA2
and cancer-free older female controls (average 49.7 years vs. 65.6
years) in the same population. In addition, whole-genome and
targeted sequencing was performed on formalin-fixed, paraffin-
embedded (FFPE)-derived DNA from the breast cancers of 20
germline NTHLT LoF variant carriers. Further NTHLT sequencing
data were analyzed from nine additional case-control studies, to
give a combined analysis of 47,180 subjects including 27,421 cases
and 19,759 controls.

RESULTS

Germline variants in NTHL1 are associated with breast cancer
susceptibility in the BEACCON hereditary case-control study
All exons and exon-intron boundaries of the NTHLT gene were
sequenced in the BEACCON study of index cases from 4985
hereditary breast cancer families and 4786 cancer-free female
controls from the same Australian population. A total of eight
unique LoF variants were identified among 39 cases and 15
controls (0.78% vs. 0.31%, odds ratio [OR] 2.51, 95% Cl: 1.35-4.90,
P=10.002) (Table 1). p.(GIn90Ter) was the most frequent variant
accounting for 25 (0.50%) cases and 11 (0.23%) controls, followed
by p.(GIn287Ter) accounting for 9 (0.18%) cases and 2 (0.04%)
controls. The observed frequency of these two variants in the
controls were consistent with the carrier frequency reported
among 134,187 non-cancer subjects in the gnomAD database
(0.29% and 0.03%, respectively; database version v2.1.1). A single
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individual, homozygous for p.(GIn90Ter) variant, was the only bi-
allelic carrier identified; a case subject with a personal history of
multiple primary cancers including bilateral breast cancer and
colorectal cancer, consistent with the previously reported
syndrome for bi-allelic LoF of NTHL1' (Supplementary Table 1,
C21552; pedigree data for this individual was published pre-
viously?). In contrast, the heterozygous case carriers were
predominantly only affected with breast cancer (Supplementary
Table 1). A case-case analysis of cancer incidence in the families of
individuals harboring heterozygous NTHLT LoF variants found no
statistically significantly elevated incidence of colorectal cancer,
female breast cancer, male breast cancer or ovarian cancer when
compared to the NTHL1 wild-type families, although the number
of available NTHLT families was small and the statistical power was
limited (Table 2).

Missense variants in NTHL1 were also significantly enriched in
the cases compared to the controls (75, 1.50% vs. 47, 0.98%, OR
1.54, 95% Cl: 1.05-2.27, P = 0.02). All the variants were individually
“rare” with the highest minor allele frequency [MAF] detected in
the controls being 0.0015 in BEACCON and 0.0018 in gnomAD
(Supplementary Table 2). Consistent with the frequencies reported
in gnomAD, p.(Arg100Cys) and p.(lle176Thr) were the most
common missense variants in both the case and control cohorts.
The association of NTHLT missense variants with hereditary breast
cancer remained when applying a population rarity filter or in
silico prediction tools, Condel, PolyPhen2, SIFT, CADD, and REVEL
to enrich for likely pathogenic variants, with the strongest effect
observed for the missense variants that were selected for rarity
(MAF < 0.001, 39 versus 20, OR 1.88, 95% Cl: 1.07-3.41) (Supple-
mentary Table 3).

In contrast to the high penetrance reported for the multi-tumor
syndrome associated with bi-allelic LoF in NTHL1*, the OR for
heterozygous LoF or missense variants suggests only a moderate-
to low-penetrance effect. In this context, the background genetic
risk contributed by common, low-penetrance single nucleotide
polymorphisms (SNPs) may have an important risk-modifying
effect as described for other low-moderate penetrance genes’. To
assess this possibility, 70 SNPs with well-established, significant
associations with breast cancer were used to calculate a polygenic
risk score (PRS) for each carrier as described previously®. A
multivariable logistic regression model was used to simulta-
neously evaluate the association of NTHLT LoF variants, missense
variants, and the PRS with breast cancer in the case-control
cohort. The ORs observed for LoF variants, missense variants, and
the OR per unit standard deviation for the PRS were 2.41 (95% CI:
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Table 2. Incidence of other cancers in NTHL1 families compared to non-NTHL1 families in BEACCON study.

Family history® NTHL1 families® n =22 Non-NTHL1 families® n = 3239 OR 95% Cl p Value
Cancer (%) Non-cancer Cancer (%) Non-cancer

Breast cancer 28 (6.93) 376 3929 (6.46) 56,872 1.08 0.71-1.59 0.68

Male breast cancer 1 (0.25) 403 77 (0.13) 60,724 1.96 0.05-11.29 0.40

Colorectal cancer 9 (2.23) 395 1559 (2.56) 59,242 0.87 0.39-1.66 0.87

Ovarian cancer 6 (1.49) 398 541 (0.89) 60,260 1.68 0.61-3.71 0.18

#Cancer affected family members in the first and second degree of relatives of index cases.
ONTHL1 families, families in which the index cases carry a germline monoallelic LoF variant in NTHLT.
“Non-NTHL1 families, families in which the index cases do not carry any LoF variants in NTHLI.

1.30-4.44, P=0.005), 1.57 (95% Cl: 1.09-2.28, P=0.02) and 1.56
(95% Cl: 1.50-1.63, P<0.001), respectively. The ORs for LoF and
missense variants in NTHLT were not attenuated by the inclusion
of PRS in the model indicating that the risk associated with NTHL1
coding variants is independent of any familial aggregation of
polygenic risk that may be present in this cohort due to the
ascertainment based on family history. When the effect of the PRS
and NTHL1 status was considered in combination the OR for
NTHL1 carriers in the highest 20% of PRS was 3.88 (95% Cl:
1.25-15.97, P=0.012) for the LoF variants and 3.03 (95% Cl:
1.44-6.90, P=0.001) for the missense variants. This result
indicates that although the measured level of risk associated with
potentially pathogenic NTHLT variants in isolation is below the
current threshold for clinical intervention, a proportion of NTHL1
germline variant carriers in the highest PRS quintile reach a
clinically actionable level, as has been described for other low-
moderate breast cancer genes’. The distribution of NTHL1 LoF
and missense variant carriers by PRS quintile (relative to the
controls in the BEACCON study) is shown in Supplementary Fig. 1.

Co-segregation analysis in families with germline NTHL1
variants

Co-segregation analysis of breast cancer in families was performed
in 16 multi-case families from the BEACCON study segregating
NTHL1 LoF variants where detailed pedigree information was
available. Sanger sequencing was performed to determine the
genotype of 38 additional family members. Analysis of co-
segregation using a full-likelihood method'® calculated a max-
imum likelihood ratio of 1.18 at an odds ratio for breast cancer of
1.69—insufficient to either support or reject an association with
breast cancer predisposition.

Evaluation of bi-allelic inactivation in NTHL1 associated breast
cancers

Histopathologic characteristics are summarized for 22 breast
cancers from 20 NTHL1 LoF variant carrier cases in the BEACCON
study where pathology information was available (Supplementary
Table 4). The individual with a homozygous p.(GIn90Ter) variant
had bilateral breast cancer at age 47 (grade 2, invasive lobular
carcinoma, ER+, PR+, HER2—) and 53 (grade 2, invasive ductal
carcinoma, ER+, PR+, HER2—). The 21 breast cancers from 19
heterozygous LoF variant carrier cases were predominantly high-
grade, invasive, ductal carcinomas (19/21) and hormone receptor-
positive (16/21) of which three had ERBB2 amplification (HER2+).

To assess the occurrence of somatic bi-allelic inactivation in
NTHL1 and characteristic mutational signatures in NTHLT-asso-
ciated tumors, targeted sequencing was performed on tumor DNA
from cases with a germline NTHLT LoF variant using a custom-
designed panel of 259 genes (total targeted region of 1.337 Mb)
that included all exons and exon-intron boundaries of NTHLT and
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27 breast-cancer driver genes''. Fourteen breast cancers and
ovarian cancer from individuals with heterozygous NTHLT germ-
line variants, together with breast cancer and colorectal cancer
from the individual homozygous for germline LoF variants, were
sequenced. The alternative allele frequency of the germline
variants, reconstructed copy number profile, and tumor purity
estimation was used to determine loss of heterozygosity in the
NHTL1-associated tumors as described previously'>'>. The bi-
allelic mutation was confirmed in the breast and colorectal
cancers from the homozygous carrier, however, there was no
evidence of loss of the wild type allele or a second point mutation
in NTHLT in any cancers from heterozygous germline variant
carriers. Since CpG island methylation in the promoter region is a
possible alternative mechanism of gene silencing, bisulfite
sequencing was performed across the NTHLT promoter region
for 13 breast cancers with sufficient DNA available. No evidence
of hypermethylation was observed in any of the cancers tested
(Fig. 1a, Supplementary Fig. 2).

Mutational signatures in NTHL1 associated breast cancers

Targeted sequencing in 14 breast cancers from individuals
harboring an NTHLT heterozygous variant (NTHL1-het) identified
somatic mutations in breast cancer driver genes including TP53 (6/
14 cases), PIK3CA (3/14 cases), MAP3K1 (3/14 cases), and GATA3 (2/
14 cases) (Fig. 1a). This spectrum of somatic mutations in NTHLI-
het tumors was similar to that observed in sporadic breast cancer,
with mutations in TP53 and PIK3CA the most common, and
mutations in MAP3K71 and GATA3 frequently occurring in ER+
cancers'”.

To investigate whether NTHLT-associated breast cancers are
driven by the same mutagenesis mechanism as the colorectal
cancers from carriers of homozygous mutations'®, whole-genome
sequencing was performed on the breast cancers from the NTHL1-
null and NTHL1-het carriers of three different germlines LoF
variants (p.(GIn90Ter), p.(GIn287Ter), and p.(Ser22AlafsTer5)),
together with nine sporadic breast cancers with no known
germline cancer predisposition gene mutations as controls. A
predominant mutational signature SBS30 was observed in the
NTHL1-null breast cancer (Fig. 1b), consistent with the previously
reported NTHL1 bi-allelic loss driving tumorigenesis mechanism. In
line with the absence of bi-allelic inactivation, the three NTHL1-het
breast cancers each exhibited a mixture of mutational signatures,
with the top contributing signatures including COSMIC signatures
SBS3, SBS5, and SBS16, similar to the sporadic breast cancers.
While one of the three NTHLI-het cancers showed a minor
proportion of SBS30 (C37112, p.(GIn287Ter), Fig. 1b), this was also
observed in one of the nine sporadic cancers, suggesting no major
difference in mutational processes between NTHLI-het and
sporadic control cancers (BC3, Supplementary Fig. 3).
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carriers, and sporadic breast cancers (n = 115).
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Fraction of genome alteration and HRD scores in NTHL1
associated breast cancers

Genomic instability and HRD were measured using genome-wide
copy number data from the NTHL1 associated cancers. A genomic
instability index, a fraction of the genome altered by copy number
(FGA)'>, and an HRD score'®'” were generated for 14 NTHLI-het
cancers and one NTHL1-null cancer. A comparison cohort of breast
cancers with expected HR defects from PALB2 (n=15) and
RAD51C (n=9) germline LoF variant carriers, and 115 sporadic
breast cancers sequenced using the same platform, were also
evaluated. The NTHLT-het cancers exhibited a broad range of FGA
scores (Fig. 1¢) that were significantly lower than the PALB2
associated cancers (median 0.20 vs. 0.41, P<0.001 by Mann-
Whitney test) or the RAD51C associated cancers (median 0.20
versus 0.45, P < 0.001) and not statistically significantly different to
the FGA scores observed in the sporadic breast cancers (median
0.20 vs. 0.26, P=0.11). Similarly, the HRD scores for NTHL1-het
cancers were significantly lower than those observed in the PALB2
associated cancers (median 21.5 vs. 74.5, P < 0.001) or the RAD51C
associated cancers (median 21.5 vs. 58, P=0.01), and not
significantly different to those observed in sporadic cancers
(median 21.5 vs. 27, P=0.79) (Fig. 1d). The one NTHL1-null breast
cancer also showed a very low FGA and HRD score (0.07 and 7).

NTHL1 protein expression in NTHL1 associated breast cancers

To investigate whether heterozygous NTHLT LoF variants were
associated with reduced protein expression and/or altered cellular
location in breast cancers as has been observed in gastric
tumors'®, fluorescent immunohistochemistry was used to measure
NTHL1 protein levels, along with an epithelial cell marker
(Cytokeratin AE1/AE3), in 8 NTHLI-het breast cancers and
21 sporadic breast cancers. NTHL1 had a predominantly nuclear
localization in both wild-type and NTHLT-het cancers. Compared
to sporadic breast cancers, NTHL1-het cancers as a group showed
a 51% reduction in NTHL1 staining in the AE1/AE3-positive cancer
cells (average staining intensity 24.51 vs. 49.83, P<0.001 by
unpaired t test) (Fig. 2a, b) and a 40% reduction in the AE1/AE3-
negative non-cancer cells (35.62 vs. 59.65, P <0.001). In addition,
for 5 of the 8 NTHLI-het cancers, the expression of NTHL1 in the
breast cancer cells (AE1/AE3 positive cells) was reduced by >30%
compared to the surrounding non-cancer cells (AE1/AE3 negative
cells) (Supplementary Fig. 4), while only a small proportion of
control cancers showed the same phenomenon (5 of 21),
suggesting that NTHL1 expression may be attenuated further
specifically in the cancer cells of NTHL1 LoF variant carriers. When
considering the pathological subtypes individually the average
NTHL1 expression level was lower in NTHL1-het tumors than in the
controls in all three major subtypes: ER+, HER2+, and triple-
negative cancers, but only reached statistical significance in the
triple-negative cancers (Fig. 2c).

Analysis of NTHL1 in multi-center international case-control
cohorts

To evaluate the role of NTHLT in breast cancer predisposition in
diverse populations and independent studies, a total of 27,421
cases and 19,759 controls were screened for the entire coding
region of NTHLT from ten case—control studies including BEACCON
as discovery dataset, and nine additional studies as validation
dataset. The validation dataset included SEARCH, UK Population-
based Breast Cancer Study; GC-HBOC, German Consortium for
Hereditary Breast and Ovarian Cancer; GENESIS, French familial
BRCAx study (some data were previously published'®); VHIO,
familial breast cancer, and control study of the Vall d'Hebron
Institute of Oncology of Barcelona; OFBCR, Ontario Familial Breast
Cancer Registry; DFBBCS, the Dutch Familial Bilateral Breast Cancer
Study; HABC, Hispanic—American Breast Cancer Study; ABCFR,
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Australian Breast Cancer Family Registry; and CARTaGENE, Québec
Population-based Breast Cancer Study. The information of cohorts
and subjects, sequencing platform, and coverage are summarized
in Supplementary Table 5.

No additional bi-allelic LoF variants were identified in subjects
of the validation dataset, indicating germline bi-allelic loss of
NTHL1 is extremely rare as a cause of breast cancer (1/27,421
breast cancer cases and 0/19,759 controls). In the heterozygous
state, the overall effect observed in the validation dataset (OR =
0.84, 95%Cl =0.62-1.13) did not support the finding in the
BEACCON dataset, with 4/9 studies showing a weak positive
association while the others showed no effect or a weak negative
association, although the sample sizes of most studies were small
(Fig. 3a). The frequency of LoF variants observed in each study
varied greatly among both the cases (0.29-0.76%) and the
controls (0.24-0.68%), largely driven by differences in frequency
of the predominant variant p.(GIn90Ter) (Fig. 4a; Supplementary
Table 6). The remaining LoF variants identified were all rare in
gnomAD (MAF <0.001), with an overall statistically significant
enrichment, observed in the cases in the combined data for these
variants from all 10 studies (37 vs. 12, OR 2.22, 95% Cl: 1.16-4.26,
Fig. 4b).

In contrast to the LoF variants, the frequency of missense
variants was higher among the cases in the majority of studies in
the validation dataset (6/9 studies), and was statistically significant
in the overall analysis of the validation dataset (OR 1.24, 95% Cl:
1.00-1.53) and the combined BEACCON and validation datasets
(OR 1.31, 95% Cl: 1.09-1.57) (Fig. 3b). While the detected missense
variants were distributed across the whole gene (Supplementary
Table 6), there was an enrichment of missense variants in the
cases compared to controls in the Endonuclease Ill domain of
NTHL1 (187 vs. 95, OR 1.42, 95% Cl: 1.11-1.82) (Fig. 4c, d). When a
number of in silico prediction tools and population rarity filters
were applied to enrich for likely pathogenic variants in the
combined data from the ten studies, the predicted missense
variants were observed in excess in the cases compared to the
controls and reached statistical significance in all the in silico
prediction groups: Condel, PolyPhen2, SIFT, CADD, and REVEL
(Table 3). The strongest enrichment was observed for variants with
a high REVEL score of pathogenicity (REVEL > 0.75, OR 1.44, 95%
Cl: 1.08-1.94), and interestingly these likely pathogenic variants
according to REVEL were also predominantly located in the
conserved functional domain of NTHL1 protein, Endonuclease lI
(COGO0177, a member of ENDO3c Superfamily) (Supplementary
Fig. 5).

DISCUSSION

NTHL1 is a DNA glycosylase involved in the earliest steps of the
repair of oxidative DNA damage through the BER pathway.
Through its endonuclease activity it acts to excise damaged
nucleotides, predominantly pyrimidines, and loss of NTHL1 activity
would be expected to impact the effectiveness of normal DNA
repair. This effect was shown to be clinically significant by the
discovery of a specific cancer predisposition syndrome involving
complete loss of normal NTHL1 function through bi-allelic
pathogenic germline LoF variants. The resulting condition not
only demonstrates high risk for a range of different malignancies,
but it was possible to show that specific mutational processes
arising from the loss of NTHL1-mediated BER dominated the
genetic pathology of the resulting cancers, reflected in the
distinctive somatic mutational signature, COSMIC signature SBS30.
Although the recessive condition has proved to be very rare, the
analogy with other tumor suppressor genes raised the possibility
that inheritance of a single germline pathogenic variant followed
by somatic inactivation of the wildtype allele could achieve the
same outcome through a “two-hit” mechanism with the result that
heterozygous variants would also be associated with inherited
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Fig. 2 NTHL1 protein expression in sporadic breast cancer (n =21) and NTHL1-het breast cancer (n = 8). a NTHL1 expression in sporadic
breast cancer and NTHL1-het cancer of ER+, HER2+, and triple-negative types. Multiplex immunofluorescent staining approach was used and
the fluorescence signal was displayed in colorimetric pattern for better contrast. NTHL1: brown color; DIPI: blue color. The epithelial marker
AE1/AE3 (Supplementary Fig. 4) was used to identify cancer cells in the breast cancer tissue in NTHL1 expression quantitation in (b) and (c).
Scale bar =100 um. b The average intensity of NTHL1 in sporadic cancer group compared to NTHL1-het group. ¢ The average intensity of
NTHL1 in sporadic cancer group compared to NTHLT-het group according to ER, PR, and HER2 status. BC breast cancer, TNBC triple-negative

breast cancer.

cancer risk. We have examined this possibility specifically in regard
to the risk of breast cancer through sequencing of a large number
of cases and controls and examination of the somatic landscape of
cancers occurring in women carrying a single NTHL1 LoF variant.
The results have shown that germline bi-allelic loss is not a major
contributor to breast cancer in the populations studied and there
is equally no evidence that heterozygous variants act through a
traditional two-hit pathway to cause breast cancer. However, the
data do support a possible low-risk effect for at least some
heterozygous LoF variants and rare, deleterious missense variants.
Our data reflects the recent findings that heterozygous LoF
variants in NTHLT do not confer any substantial risk for colorectal
cancer and do not undergo bi-allelic inactivation®.

The difficulty in providing clear evidence of a breast cancer risk
association for LoF variants in the cases and controls appears to
reflect, in part, a higher degree of heterogeneity among the ten
analyzed studies compared to little variability between studies for
missense variants. The statistically significant two-fold excess in
the BEACCON study was not observed in the validation dataset
and this discrepancy was largely driven by the variable frequency
of LoF variants in control populations across cohorts which ranged
from 0.24 to 0.68%. In particular, the frequency of the p.(GIn90Ter)
variant, which accounted for the large majority of LoF variants,
was highly variable among the 10 studies, as it is across different
ethnic groups reported in gnomAD; ranging from ~1 in 280 in the
Finnish population to less than 1 in 3000 in African and Asian
populations. Differences in the ethnic background and ascertain-
ment methods among the different studies may explain the
diverse results in the sub-studies. This variability was, however,
limited to the p.(GIn90Ter) variant. If the analysis of the data from
the ten studies in combination was restricted to the remaining
rarer LoF variants, a statistically significant two-fold excess was
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observed in cases compared to the controls (37, 0.13% of 27,421
cases compared to 12, 0.06% of 19,759 controls, OR 2.22, 95% Cl:
1.16-4.26). With the exclusion of the most common LoF variant,
the numbers are small and the result requires validation in further
studies. Stronger evidence for a low-risk predisposition effect was
found for missense variants, which were more consistently
enriched in cases across sub-studies but also showed further
enrichment when selected for features most likely to be
associated with disruption of normal gene function: rarity,
deleterious in silico properties or location in a major functional
domain.

Tumor sequencing and promoter methylation analyses demon-
strated that NTHLT does not undergo bi-allelic inactivation in
breast cancers, which is supported by the fact that NTHLI-het
tumors retain approximately 50% of the wildtype protein
expression. Although Drost et al.® reported loss of the wild-type
allele in a single breast cancer carrying an NTHLT LoF variant
(p.(GIn287Ter)), our data suggest this is not a common event in
NTHL1-associated breast tumors. The reduced, but not complete
loss of NTHL1 expression in NTHLT-het cancers is consistent with
the fact that, while the mutational spectrum of the NTHL1-null
breast cancer strongly resembled COSMIC mutational signature
SBS30, only minor components of SBS30 were observed in one of
three NTHL1-het tumors examined. Although the total number of
tumors analyzed remains small, the NTHL7-het tumors appeared
similar to sporadic breast cancers in regard to the somatic
mutational features, and in other respects (HRD scores, histo-
pathology, and FGA).

The absence of a second hit in NTHLT may be a generic feature
of low-moderate penetrance alleles. While many high-risk breast
cancer genes BRCA1?', BRCA2?2, PALB2%, and RAD51C'? follow the
Knudson two-hit model, where a germline mono-allelic variant in
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a Case Control
Study, origin LoF Total LoF Total
BEACCON, Australian 38 4985 15 4786
SEARCH, British 59 12523 39 6474
GC-HBOC, German 14 3165 17 2767
GENESIS, French 4 1207 5 1199
VHIO, Spanish 3 1012 3 488
OFBCR, Canadian 4 600 4 592
DFBBCS, Dutch 5 1012 3 962
HABC, Hispanic American 3 1045 3 1189
ABCFR, Australian 5 1421 2 833
CARTaGENE, French Canadaian 3 451 2 469
Fixed effect model 27421 19759
Prediction interval
Heterogeneity: I* = 28% [0%; 66%], v* = 0.10, p = 0.18
Residual heterogeneity: I = 0% [0%; 0%], p = 0.96

b Case Control
Study, origin MS Total MS Total
BEACCON, Australian 75 4985 47 4786
SEARCH, British 134 12523 60 6474
GC-HBOC, German 39 3165 19 2767
GENESIS, French 23 1207 18 1199
HABC, Hispanic American 13 1045 16 1189
VHIO, Spanish 12 1012 8 488
DFBBCS, Dutch 8 1012 5 962
OFBCR, Canadian 5 600 4 592
ABCFR, Australian 6 1421 1 833
CARTaGENE, French Canadaian 1 451 1 469
Fixed effect model 27421 19759
Prediction interval
Heterogeneity: I* = 0% [0%; 45%], ** = 0.05, p = 0.72

Residual heterogeneity: I° = 0% [0%; 44%], p = 0.75
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Fig. 3 Frequency of heterozygous germline variants in NTHL7 and odds ratios for breast cancer observed in case-control data from
ten multicenter international cohorts. a Heterozygous loss-of-function variants in NTHLT and odds ratios in ten case-control cohorts.
b Heterozygous missense variants in NTHL7 and odds ratios in ten case—control cohorts. The overall effect of odds ratios were computed
based on a fixed-effect model. BEACCON hereditary BrEAst Case CONtrol study, SEARCH UK Population-based Breast Cancer Study, GC-HBOC
German Consortium for Hereditary Breast and Ovarian Cancer, GENESIS French familial BRCAx study (some data were previously published'®),
VHIO familial breast cancer and control study of the Vall d’'Hebron Institute of Oncology of Barcelona, OFBCR Ontario Familial Breast Cancer
Registry, DFBBCS the Dutch Familial Bilateral Breast Cancer Study, HABC Hispanic-American Breast Cancer Study, ABCFR Australian Breast
Cancer Family Registry, CARTaGENE Québec Population-based Breast Cancer Study.

the gene is accompanied by somatic loss of the wild-type allele,
the limited data currently available for alleles which confer low-
(RR 1-2) to moderate- (RR 2-4) risk suggest they do not always
undergo a second hit. For example, a second hit rarely occurs in
breast cancers from carriers of the lower penetrance CHEK2 p.
(le157Thr) variant®® or the BRCA2 p.(Lys3326Ter) variant??, while
limited reports suggest that it does occur in breast cancers from
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women carrying germline CHEK2 LoF variants®*?*. It is possible
that alleles associated with low or moderate risk mediate cancer
predisposition through pathways that do not require a second hit,
such as haploinsufficiency where reduced protein levels rather
than the complete loss are sufficient to increase the risk of
disease?* >3, Reduced NTHL1 expression has been previously
described as a feature of specific malignancies®**> and recent
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Fig. 4 Germline NTHL1 variants identified in 27,421 cases and 19,759 controls. a Lollipop plot of all LoF variants identified in 27,421 cases
and 19,759 controls. b Odds ratio (OR) and 95% confidence interval (95% Cl) for recurrent LoF variants p.(GIn90Ter) and all the rest of rare LoF
variants (MAF < 0.001 according to gnomAD). ¢ Lollipop plot of all missense variants identified in 27,421 cases and 19,759 controls. Nth,
Endonuclease Ill. d OR and 95% Cl for missense variants located in functional domain and the rest of the NTHL1 protein.

reports have found that NTHLT missense variants can induce
cellular transformation and genomic instability in vitro while
retaining normal cellular location and enzymatic function®®*’,
raising the possibility that a non-canonical function may be
involved. Alternatively, the distinction between high-risk cancer
susceptibility variants that undergo a somatic second hit and low-
risk alleles that do not—even where bi-allelic loss appears to
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convey a clear oncogenic advantage, as demonstrated in the case
of NTHLT by the recessive cancer syndrome—directly reflects the
fact that these alleles are less prone to obtain a second hit leading
to a complete loss of the function, and always retain some activity
in the tumor.

In summary, this is the first study to investigate the role of
heterozygous NTHLT LoF and missense variants in breast cancer
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Table 3. Likely pathogenic missense variants of NTHL1 selected by population rarity or deleterious in silico tool predictions in case-control data of
ten multi-center international cohorts.
NTHL1 missense variants Case n=27,421 Control n=19,759 OR 95% ClI p Value

Carriers % Carriers %
Total® 316 1.15 179 091 1.28 1.06-1.54 0.01
Rare (MAF < 0.001)° 121 0.44 70 0.35 1.25 0.92-1.7 0.16
Rare (MAF < 0.0001)b 92 0.34 49 0.25 1.35 0.95-1.96 0.09
Condel (deleterious) 175 0.64 92 0.47 1.37 1.06-1.79 0.02
PolyPhen2 (damaging) 161 0.59 83 0.42 1.4 1.07-1.85 0.01
SIFT (deleterious) 268 0.98 146 0.74 1.33 1.08-1.63 0.006
CADD (210) 282 1.03 155 0.78 1.31 1.08-1.61 0.006
REVEL (=0.75) 144 0.53 72 0.36 1.44 1.08-1.94 0.01
Includes all the missense variants identified.
PMAF, minor allele frequency in non-cancer non-Finnish Europeans in gnomAD database.

predisposition, which included 47,180 subjects from ten interna-
tional case-control studies. The data suggest that NTHLT may be
associated with a modest increase in breast cancer risk that would
not be considered clinically actionable in isolation under current
clinical guidelines but could be relevant when combined with
additional risk factors. Molecular analyses of breast cancers from
carriers indicate that NTHLT may be included in the growing list of
low-penetrance breast cancer genes that appear to function via
haploinsufficiency rather than the bi-allelic inactivation mechan-
ism almost universally observed for high-risk breast cancer
predisposition genes.

METHODS
Case-control Subjects

All exons and exon-intron boundaries of NTHL1 were analyzed in the
index cases of 4985 hereditary breast cancer families and in 4786 cancer-
free women in the hereditary BEACCON study. The cases were female
breast and/or ovarian-cancer affected patients (>95% breast cancer
affected) in the Variants in Practice (ViP) Study that were ascertained from
the combined Victorian and Tasmanian Familial Cancer Centres, and
Pathology North, NSW Health Pathology, Newcastle, Australia. The
controls were cancer-free women who were greater than or equal to
40 years old from the same population from the Lifepool study as
described previously®®. A hereditary breast cancer family is defined as
those assessed by a specialist Familial Cancer Clinic where most of the
affected family members meet family history criteria or have individual
risk factors that predict a greater than 10% chance of having a BRCAT or
BRCA2 pathogenic variant (a detailed guide is in https://www.evig.org.au/
cancer-genetics/adult/genetic-testing-for-heritable-mutations/620-brca1-
and-brca2-genetic-testing). All cases tested negative for pathogenic
variants in BRCAT and BRCA2 including large scale genome rearrange-
ments. The average breast cancer diagnosis age of the cases was 49.7
years (range 19.0-94.8). The average age of controls was 65.6 years
(range 40.0-97.5). The study was approved by the Human Research Ethics
Committee at the Peter MacCallum Cancer Centre (Approval # 09/29) and
all participating centers. All participants provided informed consent for
genetic analysis of their germline DNA.

Nine international case-control studies of diverse countries of origin and
sample sizes in which all exons of NTHLT gene were analyzed were used as
validation cohorts. The studies were; UK Population-based Breast Cancer
Study (SEARCH), German Consortium for Hereditary Breast and Ovarian
Cancer (GC-HBOC), French familial BRCAx study (GENESIS, some data were
previously published'®), familial breast cancer and control study of the Vall
d’Hebron Institute of Oncology of Barcelona (VHIO), Ontario Familial Breast
Cancer Registry (OFBCR), the Dutch Familial Bilateral Breast Cancer Study
(DFBBCS), Hispanic-American Breast Cancer Study (HABC), Australian
Breast Cancer Family Registry (ABCFR), and Québec Population-based
Breast Cancer Study (CARTaGENE). The case subjects in SEARCH, ABCFR,
and CARTaGENE were recruited in relevant populations without considera-
tion of enrichment for family history (population-based cohort), while the
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case subjects in the other studies were ascertained using various standards
to enrich for high-risk breast cancer patients (hereditary cohort). The
case and control subjects in individual cohorts were sequenced using
the same platform and had sufficient and comparable sequencing
coverage (Supplementary Table 5).

NTHL1 sequencing using germline DNA

Germline DNA from the cases in the BEACCON study was obtained from
blood and was extracted in clinical laboratories, and the DNA from controls
were obtained from blood (87%) and saliva (13%) and were extracted by
Lifepool researchers. All exons and 10 bp into each exon-intron boundary
of the NTHL1 gene were sequenced using a customized targeted HaloPlex
HS Targeted Enrichment Assay panel (Agilent Technologies, Santa Clara,
CA) which was designed using Agilent’s SureDesign tool at https://earray.
chem.agilent.com/suredesign/. A set of 74 Ancestry Informative Markers
(AIMs)>*>=*" was included in the sequencing of 3409 subjects (1747 cases
and 1662 controls) to determine the ethnicity background of study
subjects. Furthermore, a total of 70 SNPs that were reported to be
associated with breast cancer in GWAS studies® were sequenced in all
subjects to calculate breast cancer PRSs. Library preparation was
performed using the Agilent NGS Bravo automation system (Agilent
Technologies) according to the manufacturer's protocol (Agilent Technol-
ogies, HaloPlex HS Target Enrichment System Automation Protocol For
lllumina  Sequencing.  https://www.agilent.com/cs/library/usermanuals/
public/G9931-90010.pdf). Sequencing was performed by the Australian
Genome Research Facility (North Melbourne, VIC, Australia) on an Illumina
Hiseq2500 sequencer. Library pools of 96 samples were sequenced on a
HiSeq2500 Genome Analyzer using 100 bp paired-end reads (lllumina, San
Diego, CA) with an average read depth target of >250X. The average
sequencing depth yield for NTHLT gene was 396.13 and 358.64 for the
cases and controls, respectively, with 99.32% and 99.19% of the target
bases sequenced =10 reads.

Germline DNA sequencing alignment and variant calling
Sequencing data from the BEACCON study were processed, aligned, and
analyzed through a pipeline constructed using Seqliner v0.1a (http://
bioinformatics.petermac.org/seqliner) by Bioinformatic Core Facility of
Peter MacCallum Cancer Centre as described in detail elsewhere*?. GATK
Unified Genotyper v2.4 (Broad Institute, Cambridge, MA)*3, Haplotype
caller*’, and PLATYPUS™ were used for variant calling. ENST00000219066.1
(NM_002528.5) and ENSP00000219066.1(NP_002519.1) were used to
annotate the variants identified in NTHL1. LoF variants were defined as
frameshift, stop gained or essential splice site variants. The MAF reported
in EXAC and gnomAD databases were used as a population frequency
reference for the variants identified.

Variant filters and validation

Filters were applied to the sequencing data from BEACCON to remove
sequencing artifacts and included a quality score over 30, a minimum of 10
reads, and at least 5 reads supporting the alternative alleles and a variant
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allele proportion of greater than 20%. In addition, all variants included in
the analysis had to pass all the internal filters of at least two out of three
variant callers GATK, Unified Genotyper, Platypus, and Haplotype caller.
Sequencing BAM files were viewed in IGV to manually curate the accuracy
of the variant calls, and all the LoF and missense variants detected in
NTHL1 were validated using Sanger sequencing (primer sequences are
listed in Supplementary Table 7). In addition, any case or control carrying
an LoF variant in NTHLT was reviewed for any pathogenic variants in
known hereditary breast cancer genes (CHEK2, PALB2, ATM, TP53, CDH1,
PTEN, and STK11) or LoF variants in proposed breast cancer genes (RAD51C,
RAD51D, BRIP1, BARD1, MRE11A, RAD50, and NBN). Two case carriers each
had a CHEK2 c.1100delC variant, and one case carrier had a splice acceptor
variant ¢.2071-1 G > A in NBN. No pathogenic variants or LoF variants in any
proposed breast cancer genes were identified in any of the control carriers.

Co-segregation analysis in families with germline NTHL1
variants

Pedigree information for 16 families with an NTHLT LoF variant were
obtained and Sanger sequencing was performed to determine the
genotype for a total of 38 additional family members from these families.
A full-likelihood method was used for co-segregation analysis as described
previously'®. A full pedigree likelihood was calculated as a means of
assessing the linkage between the variant and disease based on all
available genotype information from the family, including any unaffected
individuals who have been tested.

Tumor microdissection and DNA extraction

FFPE breast or ovarian tumor blocks were obtained from carriers of
germline variants in the ViP study, and cancer cells were collected through
needle microdissection under a dissecting microscope. Hematoxylin and
eosin (H&E) stained slide was reviewed for each case to identify cancer cell-
enriched regions to guide the microdissection and achieve high tumor
purity (aimed to achieve >70% tumor cells). Between 15 and 30 slides per
block (depending on the size of the tumor and the proportion of cancer
cells) of 8-10 uM thickness was needle microdissected, and the DNA of the
collected cancer cells was extracted and purified using the QlAamp DNA
FFPE Tissue Kit (Qiagen, Valencia, CA, USA). DNA was quantified using
Qubit dsDNA high-sensitivity Assay kit (ThermoFisher Scientific, MA, USA).
A multiplex polymerase chain reaction (PCR)-based quality-control method
reported by van Beers et al.*®, was used to identify DNA samples with
sufficient quality for molecular analysis.

Whole-genome sequencing and targeted sequencing of tumor
DNA

Whole-genome sequencing (30x coverage, 100 bp paired-end) of four
tumor-normal pairs was performed on the BGI-Seq platform using 500 ng
of DNA extracted from FFPE tumors or from blood. Targeted sequencing of
tumor DNA was performed using an Agilent SureSelect XT Custom Panel
that targeted all exons of a total of 259 genes (total targeted region of
1.337 Mb) including all the candidate genes in Halo3 design, and an
additional 27 breast cancer driver genes''. Sequencing libraries were
generated using 300 ng tumor DNA and were sequenced on an lllumina
Next Seq 500 (75 bp paired-end reads).

Tumor DNA sequencing alignment and variant calling

Paired-end sequence reads from tumor DNA were aligned to the GRCh37
human reference genome using BWA-MEM'®. PCR and optical duplicate
reads were removed using Picard (http://broadinstitute.github.io/picard/)
and then local realignment around indels and base quality score
recalibration were performed using the Genome Analysis Tool Kit (GATK).
SNP and indel variants were called using GATK Unified Genotyper®,
Platypus®®, and Varscan2®’.

A quality score over 150, a minimum of 10 reads, and an alternate allele
frequency of more than 10% were used to rule out sequencing artifacts. In
paired tumor-normal sequencing data, the somatic mutations were
identified by removing the germline variants. In tumor sequencing data
without matched germline data, somatic mutations were identified by
applying stringent filters on the population frequency (minor allele
frequency, MAF < 0.0001 in EXAC and gnomAD48), the frequency in the in-
house sequencing cohort (<20% of 166 breast tumors with the exception of
variants in PIK3CA and TP53), and removing the variants identified in
germline sequencing data.
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Genome-wide copy number analysis

Genome-wide copy number data were generated from off-target
sequencing reads using CopywriteR v2.10 with 50 kb bins*®. NEXUS Copy
Number™ (software v8.0 with build version 9169, BioDiscovery Inc.) was
used for CN segmentation using the SNPFASST2 algorithm with default
parameters. Copy number gains and losses were called with log, ratio
thresholds of >0.2 and < —0.2, respectively.

Fraction of genome altered (FGA) and homologous
recombination deficiency (HRD) scores

Using the genome-wide copy number data, the FGA was calculated with
adjustment according to chromosome sizes as described®®®'. An HRD
score, combined from three HRD score components: number of telomeric
allelic imbalances®?, HRD-loss of heterozygosity®®, and large-scale state
transitions>* was calculated as described in detail elsewhere'>.

Mutational signature analysis

Mutational signatures were performed and plotted using deconstruct-
Sigs®® package in R v3.3.2°° based on the somatic mutations identified by
the whole genome or targeted sequencing of the tumors of interest. For
each sample, the somatic substitutions were categorized into six basic
base substitutions (C>A, C>G, C>T, T>A, T>C, and T>G) and
subcategorized into 96 subcategories according to the trinucleotide
context. Mutational signatures were determined referring to the COSMIC
mutational signature database.

NTHL1 promoter methylation analysis

The promoter regions of NTHL1 were examined for methylation status by
Sanger sequencing the promoter region using bisulfite-treated DNA.
Tumor DNA was treated by the EpiTect Fast DNA Bisulfite Kit (Qiagen,
Valencia, CA, USA) according to the manufacturer’s instructions, followed
by PCR amplification and Sanger sequencing of the promoter regions. The
primer pairs were designed using the default settings of the Bisulfite
Primer Seeker tool (https://www.zymoresearch.eu/bisulfite-primer-seeker,
Supplementary Table 7), and/or from previously published study®’.
CpGenome Human Methylated DNA Standard (Millipore, USA) served as
a methylation positive control and Female Genomic Reference DNA
(Promega, Madison, WI, USA) as a negative control to assess the
methylation status of tumor samples.

NTHL1 protein expression analysis

Opal multiplex fluorescent immunohistochemistry method (PerkinElmer)
was used to evaluate the NTHL1 protein expression in cancer and non-
cancer cells in FFPE breast cancer tissue. NTHL1 antibody (Abcam,
Branford, Connecticut, USA; 1:1000 dilution) and AE1/AE3 antibody
(multi-cytokeratin antibody, Leica Biosystems, Wetzlar, Germany; 1:1000
dilution) were used as primary antibodies. HRP-labeled anti-rabbit
antibody (PerkinElmer Waltham, Massachusetts, USA; 1:1000 dilution)
and anti-mouse antibody (PerkinElmer, Waltham, Massachusetts, USA;
1:1000 dilution) were used as secondary antibodies. Spectral DAPI
(PerkinElmer, Waltham, Massachusetts, USA) was used to label the nuclear.
The epithelial marker AE1/AE3 was used to identify cancer cells in the
breast cancer tissue, and the average intensity of nuclear expression of
NTHL1 was quantitated using PerkinElmer Vectra Automated Multispectral
Imaging System.

Statistical analysis

OR and two-tailed p value by Fisher's exact test for the case and control
study were calculated in R°°. The conditional Maximum Likelihood
Estimate was used for OR. Fisher's exact test (two-sided) was used for
the comparisons of case-control data, and a p value of <0.05 was
considered as statistically significant. PRS was calculated based on 70 low
penetrance breast cancer predisposition SNPs following a multiplicative
risk model (calculated by the sum of the minor alleles weighted by the per-
allele log OR) described by Mavaddat et al.®. Mann-Whitney U test was
performed for FGA and HRD score comparisons between groups of tumors
in GraphPad Prism version 7.00 (California, USA). Unpaired t test was used
for comparing NTHL1 expression in different comparison groups. The
meta-analysis for multi-center international cohorts was performed using
meta R package®® under a fixed-effect model for analysis within subgroups
or analyzing all ten cohorts.
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Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.14208293 *°. The sequencing data
have been deposited in the European Genotype-phenotype Archive under the
following accession: https:/identifiers.org/ega.dataset:EGAD00001007025 *° (study
ID: EGAS00001005043). These data include NTHL1 sequencing using germline DNA,
Alignment and variant calling, Whole-genome sequencing and targeted sequencing
of tumor DNA, Genome-wide copy number analysis, Mutational signature analysis. In
addition, the following data are not openly available to protect patient privacy:
NTHL1 protein expression analysis, FCC patient database, cohorts summary, NTHL1
promoter methylation analysis. Data requests for these data should be made to the
corresponding author.

Received: 10 September 2020; Accepted: 24 March 2021;
Published online: 12 May 2021

REFERENCES

1.

20.

Weren, R. D. et al. A germline homozygous mutation in the base-excision repair
gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 47,
668-671 (2015).

. Fostira, F. et al. Extending the clinical phenotype associated with biallelic NTHL1

germline mutations. Clin. Genet. 94, 588-589 (2018).

. Belhadj, S. et al. NTHL1 biallelic mutations seldom cause colorectal cancer, ser-

rated polyposis or a multi-tumor phenotype, in absence of colorectal adenomas.
Sci. Rep. 9, 9020 (2019).

. Grolleman, J. E. et al. Mutational signature analysis reveals NTHL1 deficiency to

cause a multi-tumor phenotype. Cancer Cell 35, 256-266 €255 (2019).

. Groves, A, Gleeson, M. & Spigelman, A. D. NTHL1-associate polyposis: first Aus-

tralian case report. Fam. Cancer 18, 179-182 (2019).

. Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the

origin of mutational signatures in cancer. Science 358, 234-238 (2017).

. Gallagher, S. et al. Association of a polygenic risk score with breast cancer among

women carriers of high- and moderate-risk breast cancer genes. JAMA Netw.
Open 3, €208501 (2020).

. Mavaddat, N. et al. Prediction of breast cancer risk based on profiling with

common genetic variants. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djv036
(2015).

. Muranen, T. A. et al. Genetic modifiers of CHEK2*1100delC-associated breast

cancer risk. Genet. Med. 19, 599-603 (2017).

. Thompson, D., Easton, D. F. & Goldgar, D. E. A full-likelihood method for the

evaluation of causality of sequence variants from family data. Am. J. Hum. Genet.
73, 652-655 (2003).

. Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their

genomic and transcriptomic landscapes. Nat. Commun. 7, 11479 (2016).

. Li, N. et al. Combined tumor sequencing and case/control analyses of RAD51C in

breast cancer. J. Nat/ Cancer Inst. https://doi.org/10.1093/jnci/djz045 (2019).

. Lee, J. E. A. et al. Molecular analysis of PALB2-associated breast cancers. J. Pathol.

245, 53-60 (2018).

. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-

genome sequences. Nature 534, 47-54 (2016).

. Vollan, H. K. et al. A tumor DNA complex aberration index is an independent

predictor of survival in breast and ovarian cancer. Mol. Oncol. 9, 115-127 (2015).

. Marquard, A. M. et al. Pan-cancer analysis of genomic scar signatures associated

with homologous recombination deficiency suggests novel indications for
existing cancer drugs. Biomark. Res. 3, 9 (2015).

. Telli, M. L. et al. Homologous recombination deficiency (HRD) score predicts

response to platinum-containing neoadjuvant chemotherapy in patients with
triple-negative breast cancer. Clin. Cancer Res. 22, 3764-3773 (2016).

. Goto, M. et al. Altered expression of the human base excision repair gene NTH1

in gastric cancer. Carcinogenesis 30, 1345-1352 (2009).

. Girard, E. et al. Familial breast cancer and DNA repair genes: Insights into known

and novel susceptibility genes from the GENESIS study, and implications for
multigene panel testing. Int. J. Cancer https://doi.org/10.1002/ijc.31921 (2018).
Elsayed, F. A. et al. Monoallelic NTHL1 loss of function variants and risk of
polyposis and colorectal cancer. Gastroenterology https://doi.org/10.1053/j.
gastro.2020.08.042 (2020).

Published in partnership with the Breast Cancer Research Foundation

. Lietal

np)j

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41,

42.

43.

w

44,

45,

46.

47.

48.

49.

50.

Elledge, S. J. & Amon, A. The BRCA1 suppressor hypothesis: an explanation for the
tissue-specific tumor development in BRCA1 patients. Cancer Cell 1, 129-132
(2002).

Polak, P. et al. A mutational signature reveals alterations underlying deficient
homologous recombination repair in breast cancer. Nat. Genet. 49, 1476-1486
(2017).

Lee, J. E. A. et al. Molecular analysis of PALB2-associated breast cancers. J. Pathol.
https://doi.org/10.1002/path.5055 (2018).

Mandelker, D. et al. The landscape of somatic genetic alterations in breast can-
cers from CHEK2 germline mutation carriers. JNCI Cancer Spectr. 3, pkz027 (2019).
Suspitsin, E. N. et al. Development of breast tumors in CHEK2, NBN/NBS1 and
BLM mutation carriers does not commonly involve somatic inactivation of the
wild-type allele. Med. Oncol. 31, 828 (2014).

Payne, S. R. & Kemp, C. J. Tumor suppressor genetics. Carcinogenesis 26,
2031-2045 (2005).

Willis, A, Jung, E. J, Wakefield, T. & Chen, X. Mutant p53 exerts a dominant
negative effect by preventing wild-type p53 from binding to the promoter of its
target genes. Oncogene 23, 2330-2338 (2004).

Goh, A. M., Coffill, C. R. & Lane, D. P. The role of mutant p53 in human cancer. J.
Pathol. 223, 116-126 (2011).

Papa, A. et al. Cancer-associated PTEN mutants act in a dominant-negative
manner to suppress PTEN protein function. Cell 157, 595-610 (2014).

Inoue, K. & Fry, E. A. Haploinsufficient tumor suppressor genes. Adv. Med. Biol.
118, 83-122 (2017).

Konishi, H. et al. Mutation of a single allele of the cancer susceptibility gene
BRCA1 leads to genomic instability in human breast epithelial cells. Proc. Natl
Acad. Sci. USA 108, 17773-17778 (2011).

Sedic, M. & Kuperwasser, C. BRCA1-hapoinsufficiency: unraveling the molecular
and cellular basis for tissue-specific cancer. Cell Cycle 15, 621-627 (2016).
Sedic, M. et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic
instability and premature senescence. Nat. Commun. 6, 7505 (2015).

Jiang, Z. et al. Expression analyses of 27 DNA repair genes in astrocytoma by
TagMan low-density array. Neurosci. Lett. 409, 112-117 (2006).

Karger, S. et al. Distinct pattern of oxidative DNA damage and DNA repair in
follicular thyroid tumours. J. Mol. Endocrinol. 48, 193-202 (2012).

Galick, H. A. et al. Germ-line variant of human NTH1 DNA glycosylase induces
genomic instability and cellular transformation. Proc. Natl Acad. Sci. USA 110,
14314-14319 (2013).

Marsden, C. G. et al. Expression of a germline variant in the N-terminal domain of
the human DNA glycosylase NTHL1 induces cellular transformation without
impairing enzymatic function or substrate specificity. Oncotarget 11, 2262-2272
(2020).

Li, N. et al. Mutations in RECQL are not associated with breast cancer risk in an
Australian population. Nat. Genet. 50, 1346—1348 (2018).

Kidd, J. R. et al. Analyses of a set of 128 ancestry informative single-nucleotide
polymorphisms in a global set of 119 population samples. Investig. Genet. 2, 1
(2011).

Kosoy, R. et al. Ancestry informative marker sets for determining continental
origin and admixture proportions in common populations in America. Hum.
Mutat. 30, 69-78 (2009).

Nassir, R. et al. An ancestry informative marker set for determining continental
origin: validation and extension using human genome diversity panels. BMC
Genet. 10, 39 (2009).

Li, N. et al. Evaluating the breast cancer predisposition role of rare variants in
genes associated with low-penetrance breast cancer risk SNPs. Breast Cancer Res.
20, 3 (2018).

DePristo, M. A. et al. A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nat. Genet. 43, 491-498 (2011).

Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the
Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 43,
11.10.11-33 (2013).

Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based
approaches for calling variants in clinical sequencing applications. Nat. Genet.
46, 912-918 (2014).

van Beers, E. H. et al. A multiplex PCR predictor for aCGH success of FFPE samples.
Br. J. Cancer 94, 333-337 (2006).

Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Res. 22, 568-576 (2012).
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285-291 (2016).

Kuilman, T. et al. CopywriteR: DNA copy number detection from off-target
sequence data. Genome Biol. 16, 49 (2015).

Burrell, R. A. et al. Replication stress links structural and numerical cancer chro-
mosomal instability. Nature 494, 492-496 (2013).

npj Breast Cancer (2021) 52

11


https://doi.org/10.6084/m9.figshare.14208293
https://identifiers.org/ega.dataset:EGAD00001007025
https://doi.org/10.1093/jnci/djv036
https://doi.org/10.1093/jnci/djz045
https://doi.org/10.1002/ijc.31921
https://doi.org/10.1053/j.gastro.2020.08.042
https://doi.org/10.1053/j.gastro.2020.08.042
https://doi.org/10.1002/path.5055

np)

N. Li et al.

12

51. Chin, S. F. et al. High-resolution aCGH and expression profiling identifies a novel
genomic subtype of ER negative breast cancer. Genome Biol. 8, R215 (2007).

52. Birkbak, N. J. et al. Telomeric allelic imbalance indicates defective DNA repair and
sensitivity to DNA-damaging agents. Cancer Discov. 2, 366-375 (2012).

53. Abkevich, V. et al. Patterns of genomic loss of heterozygosity predict homologous
recombination repair defects in epithelial ovarian cancer. Br. J. Cancer 107,
1776-1782 (2012).

54. Popova, T. et al. Ploidy and large-scale genomic instability consistently identify
basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 72,
5454-5462 (2012).

55. Rosenthal, R, McGranahan, N., Herrero, J.,, Taylor, B. S. & Swanton, C. Decon-
structSigs: delineating mutational processes in single tumors distinguishes DNA
repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31
(2016).

56. R: A language and environment for statistical computing. (R Foundation for
Statistical Computing, Vienna, Austria, 2016).

57. Hansmann, T. et al. Constitutive promoter methylation of BRCAT and RAD51C in
patients with familial ovarian cancer and early-onset sporadic breast cancer.
Hum. Mol. Genet. 21, 4669-4679 (2012).

58. Balduzzi, S., Rucker, G. & Schwarzer, G. How to perform a meta-analysis with R: a
practical tutorial. Evid. Based Ment. Health 22, 153-160 (2019).

59. Li, N. et al. Metadata record for the manuscript: Evaluation of the association of
heterozygous germline variants in NTHL1 with breast cancer predisposition: an
international multi-center study of 47,180 subjects. figshare. https://doi.org/
10.6084/m9.figshare.14208293 (2021).

60. European Genotype-phenotype  Archive.
EGADO00001007025 (2021).

https://identifiers.org/ega.dataset:

ACKNOWLEDGEMENTS

The BEACCON study was supported by the National Breast Cancer Foundation (IF-15-
004, I.G.C. and P.AJ), Cancer Australia/National Breast Cancer Foundation
(PdCCRS_1107870, 1.G.C. and P.AJ), the Victorian Cancer Agency (Tumor Stream
Grant, P.AJ) and the National Health and Medical Research Council of Australia
(GNT1023698, P.AJ.; GNT1041975, 1.G.C). Na Li is supported by Cancer Council
Victoria. The authors thank Simone M. Rowley, Jue Er Amanda Lee, Norah Grewal,
Gisela Mir Arnau, Timothy Semple, Jason Li, Kaushalya Amarasinghe and Richard
Lupat for helping with the sequencing and bioinformatic analysis. We also thank
Lyon Mascarenhas, Rebecca Driessen, for the ViP study site principal investigators
Geoffrey Lindeman, Marion Harris, Tom John, and Ingrid Winship, and the staff at the
Victorian and Tasmanian Familial Cancer Centers who enrolled participants and
provided clinical data. We also thank all the participants of the ViP and Lifepool
studies for donating their DNA samples and clinical information. GENESIS (GENE
SISters) is a French national study coordinated by D. Stoppa-Lyonnet and N. Andrieu
and sponsored by UNICANCER (Sinilnikova et al. BMC Cancer 2016). We wish to
thank the genetic epidemiology platform (the PIGE, Plateforme d'Investigation en
Génétique et Epidemiologie: Séverine Eon-Marchais, M. Marcou, D. Le Gal, L.
Toulemonde, J. Beauvallet, N. Mebirouk, E. Cavaciuti), the biological resource center
(S. Mazoyer, F. Damiola, L. Barjhoux, C. Verny-Pierre, V. Sornin) and all the GENESIS
collaborating cancer clinics. Financial support for GENESIS was provided by the Ligue
Nationale contre le Cancer (grants PRE05/DSL and PRE07/DSL), the French National
Institute of Cancer (INCa grant No b2008-029/LL-LC) and the comprehensive
cancer center SiRIC (Site de Recherche Intégrée sur le Cancer: Grant INCa-DGOS-
4654). Exome sequencing was supported by the France Génomique National
infrastructure, funded as part of the « Investissements d’Avenir » program managed
by the Agence Nationale pour la Recherche (ANR-10-INBS-09) and the Centre
National de Recherche en Génomique Humaine, CEA. The PERSPECTIVE project was
supported by the Government of Canada through Genome Canada and the Canadian
Institutes of Health Research (GPH-129344), the Ministére de I'Economie, de la
Science et de I'lnnovation du Québec through Genome Quebec, and the Quebec
Breast Cancer Foundation. The PREVENTION project was supported by a grant from
the Ministére de I'Economie, de la Science et de I''lnnovation du Québec through the
PSR-SIIRI-949 program. The CARTaGENE study was supported by Genome Canada.
The German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) is
funded by the German Cancer Aid (#110837, #70111850, coordinator: Rita K.
Schmutzler, Cologne). Next-generation sequencing of female control individuals was
supported by the Ministry for Innovation, Science, and Research of the State of North
Rhine-Westphalia (#323-8.0302.16.02-132142) and LIFE —-—- Leipzig Research Center
for Civilization Diseases, Universitét Leipzig. LIFE is funded by means of the European
Union, by the European Regional Development Fund (ERDF), and by means of the
Free State of Saxony within the framework of the excellence initiative. This work was

npj Breast Cancer (2021) 52

also supported by grant UM1 CA164920 from the USA National Cancer Institute. The
content of this manuscript does not necessarily reflect the views or policies of the
National Cancer Institute or any of the collaborating centers in the Breast Cancer
Family Registry (BCFR), nor does mention of trade names, commercial products, or
organizations imply endorsement by the USA Government or the BCFR. SEARCH is
funded by Cancer Research UK [C490/A10124, C490/A16561] and supported by the
UK National Institute for Health Research Biomedical Research Centre at the
University of Cambridge. The University of Cambridge has received salary support for
PDPP from the NHS in the East of England through the Clinical Academic Reserve.
The sequencing and analysis for this project were funded by the European Union’s
Horizon 2020 Research and Innovation Program (BRIDGES: grant number 634935).
The work in VHIO was supported by the Spanish Instituto de Salud Carlos Il (ISCIIl)
funding granted to Sara Gutiérrez-Enriquez (P116/01218 and PI19/01303), an initiative
of the Spanish Ministry of Economy and Innovation partially supported by European
Regional Development FEDER Funds. Sara Gutiérrez-Enriquez is recipient of an ISCIIl
Miguel Servet Program contract (CP16/00034). The VHIO authors acknowledge the
Cellex Foundation for providing research facilities and thank CERCA Program /
Generalitat de Catalunya for institutional support. Tu Nguyen-Dumont is the recipient
of a Career Development Fellowship from the National Breast Cancer Foundation
(ECF-17-001, Australia).

AUTHOR CONTRIBUTIONS

N.L. contributed to project management, data curation, data analysis and
visualization, manuscript writing, and editing; M.Z. and N.T. contributed to
bioinformatics analysis and visualization; S.M. and L.D. contributed to the collection
of study materials or patients; Y.KH and D.C. contributed to the curation of protein
expression data and analysis; S.GE, AMF, 0D, TN.D., M.CS,, JLH, JS, MD,, PS,
AM., RS, MKS., MAA, LA, EH., CE, FL, EG, SLN,EZ, JA, and D.F.E. contributed
to data curation and validation for the case-control data in validation cohorts and
manuscript editing. R.J.S. contributed to the provision of patients’ material and data
interpretation; K.L.G. contributed to data interpretation, supervision, and manuscript
review and editing; P.AJ. and |.G.C. contributed to project conceptualization,
supervision, clinical interpretation, manuscript review, and editing; All authors
contributed to drafting, editing and final approval of the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541523-021-00255-3.

Correspondence and requests for materials should be addressed to I.G.C.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Published in partnership with the Breast Cancer Research Foundation


https://doi.org/10.6084/m9.figshare.14208293
https://doi.org/10.6084/m9.figshare.14208293
https://identifiers.org/ega.dataset:EGAD00001007025
https://identifiers.org/ega.dataset:EGAD00001007025
https://doi.org/10.1038/s41523-021-00255-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180�subjects
	Introduction
	Results
	Germline variants in NTHL1 are associated with breast cancer susceptibility in the BEACCON hereditary case&#x02013;nobreakcontrol study
	Co-segregation analysis in families with germline NTHL1 variants
	Evaluation of bi-allelic inactivation in NTHL1 associated breast cancers
	Mutational signatures in NTHL1 associated breast cancers
	Fraction of genome alteration and HRD scores in NTHL1 associated breast cancers
	NTHL1 protein expression in NTHL1 associated breast cancers
	Analysis of NTHL1 in multi-center international case&#x02013;nobreakcontrol cohorts

	Discussion
	Methods
	Case&#x02013;nobreakcontrol Subjects
	NTHL1 sequencing using germline DNA
	Germline DNA sequencing alignment and variant calling
	Variant filters and validation
	Co-segregation analysis in families with germline NTHL1 variants
	Tumor microdissection and DNA extraction
	Whole-genome sequencing and targeted sequencing of tumor DNA
	Tumor DNA sequencing alignment and variant calling
	Genome-wide copy number analysis
	Fraction of genome altered (FGA) and homologous recombination deficiency (HRD) scores
	Mutational signature analysis
	NTHL1 promoter methylation analysis
	NTHL1 protein expression analysis
	Statistical analysis
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




