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Abstract: Prolactinoma has the highest incidence rate among patients with functional pituitary
tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical,
radiological and pathology features have been associated with a poor prognostic. Therefore, it can be
considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the
molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and
gain deeper insight into the better understanding of tumour development and its management. This
is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised
therapeutics options.
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1. Introduction

Prolactinomas comprise 40 to 60% of all pituitary adenomas and are mostly presented
in women of childbearing age as indolent microadenomas (<10 mm in diameter) [1,2].
However, there are great differences in the clinical behaviour depending on gender, age
and size. In addition, it should be noted that prolactinomas are the second-most frequent
aggressive pituitary tumours after corticotroph tumours [3].

Prolactinoma aggressiveness is defined as a radiologically invasive tumour which
has an unusually rapid rate of tumour growth despite optimal standard therapies [4].
Baseline characteristics such as plasma prolactin (PRL) levels, tumour size or radiological
features such as invasion, are not prognostic factors of aggressiveness per se [5]. Some
clinical features such as younger age at diagnosis (<20 years) [6], especially in males [7] or
resistance to dopamine agonists (DA) have been associated with a poor prognostic [8,9].
However, the early identification of prolactinoma aggressiveness and resistance to DA
remains controversial [10,11] and, therefore, represents a therapeutic challenge.

In addition, pathology proliferation markers (Ki-67 expression: >3%, mitotic count
n > 2) taken alone are not reliable markers of malignancy [12,13]. In fact, only the rare
pituitary tumours with distant metastases can be named “pituitary carcinomas”, indicating
truly malignant behaviour [14,15].

Overall, these findings reveal that prolactinomas can be considered as a group of
heterogeneous tumours. Therefore, better understanding of the molecular pathways
involved in tumour development is essential for identifying patients harbouring aggressive
prolactinoma and establishing personalised therapeutic options.

2. Pituitary Development and Lactotroph Lineage
2.1. Anatomy and Ontogeny of Pituitary

The pituitary gland has a dual embryonic origin (neuroectodermal and non-neuroectodermal)
that confers a unique histological appearance. Both parts are made up of anatomically and
functionally distinct lobes of the pituitary. The posterior lobe (neurohypophysis) consists
of nervous tissue arising from the embryonic forebrain and represents an extension of
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the hypothalamus. The anterior lobe (adenohypophysis) [16], which is derived from an
outpouching of the roof of the pharynx, called Rathke’s pouch, can be further divided into
three parts

Pars anterior or distalis: this is the largest part and is responsible for hormone secretion.

Pars tuberalis: this is an upwards extension of the pars anterior and wraps the pituitary
stalk, which is composed of unmyelinated axons from the hypothalamic nuclei. The
hormones oxytocin and vasopressin accumulate in these axons [16].

Pars intermedia: this is a thin epithelial layer that separates the pars anterior from the
posterior lobe. Pars intermedia contains the colloidal matrix and includes the remainder
of the Rathke’s pouch cleft. It has some pituitary stem cells, and secretes melanocyte-
stimulating hormones and endorphins [16].

2.2. Lactotroph Lineage

During pituitary development, the dorsal and ventral sides generate signalling media-
tors which regulate transcription factors that are essential in governing cell proliferation
and differentiation [17,18]. Lactotrophs, also called mammotrophs or prolactin cells, com-
prise 20-50% of the cellular population of the anterior pituitary gland depending on sex and
physiological status [19]. These type of cells are acidophils and stain red by hematoxylin
and eosin. Ontogenetically, lactotrophs belongs to the Pit-1-dependent lineage in the cau-
domedial region of the pituitary gland, together with somatotrophs and thyrotrophs, and
produce prolactin, a polypeptide hormone prolactin of 199 amino acids (24 kDa) (Figure 1).
The best known function of PRL is the growth and preparedness of the mammary gland
for lactation but its exact role in the male is poorly understood [20].
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Figure 1. The dorsal and ventral side of the embryonic pituitary generate proliferative and positional signals which regulate
the expression of transcription factors. The T-PIT signal differentiates the most dorsal cells into corticotropes (C). Pit1 is
induced in the caudomedial region of the pituitary gland, which ultimately gives rise to somatotropes (S), lactotropes (L),
and thyrotropes (T). On the ventral side when GATA, SF1, ERBa are activated, the gonadotrope lineage (G) is determined.

3. Prolactin Axis, Dopamine Receptor and Prolactin Receptor
3.1. Prolactin Axis

PRL secretion is mainly under inhibitory stimuli, via tuberoinfundibular dopamine
(TIDA) neurons in the hypothalamus binding to Type 2 Dopamine Receptor (D2R) and
GABA (gamma aminobutyric acid), the latter playing a minor role [21]. PRL also controls
its own secretion through a short loop negative feedback, stimulating TIDA cells [22] and
in the own lactotroph cell by an autocrine loop [23] (Figure 2). There are also prolactin-
releasing factors (PRFs) such as thyrotropin-releasing hormone, vasoactive intestinal pep-
tide, serotonin, histamine, oxytocin and oestrogens [24]. Nevertheless, the nature of the
physiological PRF is unclear [24]. Nipple stimulation, light, olfaction, and stress, stimu-
late prolactin secretion. Other neurotransmitters and neuropeptides can also modulate
PRL secretion (for example endothelin, TGF betal, angiotensin, somatostatin, substance P,
neurotensin, calcitonin, EGF, natriuretic atrial peptide, bombesin, cholecystokinin, acetyl-
choline, and vasopressin) [25-27]. Among medications that increase serum PRL, dopamine
receptor antagonists such as neuroleptics (i.e., sulpiride, haloperidol, chlorpromazine,
risperidone) and antiemetic drugs (i.e., metoclopramide, domperidone) can elevate serum
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PRL at the same range that is usually detected in prolactinoma [28]. Serotoninergic and
antihistaminergic drugs are less potent than antidopaminergic ones [25,29].
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Figure 2. Control of prolactin production and secretion. Prolactin controls its own secretion through a short loop, stimulating
TIDA cells and in the own lactotroph cell by an autocrine loop.

As we mentioned above, prolactin is responsible for milk production and breast devel-
opment, but also acts in many other less known functions such as metabolic functions [30],
immune functions [31] and the regulation of adult stem/progenitor cells [32] (Figure 2).

Circulating prolactin is low in males and nonlactating nonpregnant females, and a
hypo-prolactinemic syndrome has not been described. Its overproduction could lead to
galactorrhea and has an inhibitory effect on the release of gonadotropin-releasing hormone
that results in infertility, menstrual cycle disturbances in women, and decreased libido and
spermatogenesis in men, as well as other less studied effects that will be described below.

3.2. D2 Receptor, Prolactin Secretion and Antiproliferative Activity

The dopamine receptors are members of the superfamily of G protein-coupled re-
ceptors. There are five types, which include D1 to D5. Each receptor has a different
function [33]. The five different dopamine receptors can be grouped in two categories
depending on the action to the G protein:

(1) D1 and D5, also called D1-like receptors. By coupling to G stimulatory sites, adenylyl
cyclase cCAMP is activated, which in turn activates protein kinase A (PKA), thus
enhancing transcription. These receptors are abundant in the striatum, nucleus
accumbens, olfactory bulb, and substantia nigra and are essential in regulating the
reward system, motor activity, memory, and learning.

(2) D2, D3 and D4 (D2-like receptors). By coupling to G inhibitory sites, they inhibit
adenylyl cyclase and activate K+ channels. They are expressed mainly in the stria-
tum, as well as the external globus pallidus, the core of the nucleus accumbens,
hippocampus, amygdala, and cerebral cortex.

The regulation of the lactotroph cell is manly by D2R [34] (Figure 3).
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Figure 3. Prolactin and dopamine receptor in the lactotroph cell. After dopamine binding to dopamine receptor type 2, K+
channels are activated and adenylyl cyclase activity is inactivated, resulting in the suppression of PRL gene expression,

lactotroph proliferation and a decrease in the size of hypertrophied lactotrophs. D2 via GO0 also activates phosphatidyli-

nositol 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) pathways to prevent lactotroph proliferation. The

autocrine released prolactin binds to the prolactin receptor and, via the Janus kinase-2-signal transducer and activator of
transcription-5 (JAK2-STAT5), (PI3K-Akt-mTOR) or the MAPK pathways, mediates changes in transcription, differentiation

and proliferation.

When dopamine binds to D2R, both PRL secretion and lactotroph proliferation are
inhibited. Within seconds after binding, dopamine activates K+ channels which leads to
membrane hyperpolarisation and the inactivation of voltage-gated calcium channels. Con-
sequently, a reduction of intracellular free calcium occurs, thus resulting in the inhibition
of PRL release from secretory granules (Figure 3). Within minutes to hours, dopamine
suppresses adenylyl cyclase activity and lowers inositol phosphate metabolism, resulting
in the suppression of PRL gene expression. Within days, dopamine inhibits lactotroph pro-
liferation and decreases the size of lactotrophs [33]. All this orchestrated process explains
in part why in general, but not invariably, prolactin secretion and tumour volume are in
parallel in prolactinomas.

3.3. Prolactin Receptor, Intracellular Signalling and Autocrine Function

Prolactin action has different outcomes in the endocrine, autocrine and paracrine
signalling. In addition, the target cell and the different pathways of activation/inactivation
determine its final action.

Classically, PRL is known to activate the peripheral prolactin receptor (PRLR), promot-
ing proliferation and inhibiting apoptosis linked to its main function of milk production
and breast development. How autocrine/paracrine or endocrine PRL levels collaborate
with oncogenes to foster tumourigenesis, e.g., in breast tissue, but also in other hormonally
responsive cancers, is not well understood [35]. In this section, we will focus on PRL central
action in the pituitary gland and the main recognised downstream pathways activated
after prolactin binding to its receptor on lactotroph cells.

PRLR is expressed on TIDA cells (a short-loop feedback circuit) and also on lactotrophs
of the pituitary gland where it may provide an autocrine loop to regulate lactotroph func-
tion [23]. The PRLR is a member of the cytokine receptor superfamily that signals via
Janus kinase-2-signal transducer and activator of transcription-5 (JAK2-STATS5), phospho-
inositide 3-kinase-Akt (PI3K-Akt-mTOR) or the MAPK pathways to mediate changes in
transcription, differentiation and proliferation [36] (Figure 3).

The JAK2-STAT5 pathway is involved in processes such as immunity, cell division,
cell death and tumour formation [37]. Ferraris J. et al. [38] showed that acute hyperpro-
lactinemia induced in ovariectomised rats using PRL injection or dopamine antagonist
treatment rapidly increased apoptosis and decreased the proliferation of lactotroph cells,
in contrast to the classical proliferative or antiapoptotic actions exerted by PRL in most
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other tissues [39]. The same group recently investigated this antiproliferative effect of
PRL in the pituitary and identified PRLR/JAK2/STAT5 pathway constitutive activation in
lactotroph cells as a major link in producing prolactin antiproliferative effects [40]. Thus,
the constitutive paracrine/autocrine activation of the PRLR/JAK2/STAT5 pathway in the
lactotroph cell inhibits cell proliferation and induces apoptosis as opposed to the classical
proliferative effects of PRL (i.e., hormonally responsive tissues).

The mTOR pathway regulates the cell cycle and its overactivity has been associated
with several cancers [41], as well as with aggressive pituitary tumours [42,43]. Gorvin et al.,
determined the PRLR sequence in 46 prolactinomas, and found that a PRLR variant was
associated with increased signalling in this pathway, which was reverted with everolimus,
a mTOR inhibitor [44].

The MAPK pathway is one of the best-defined pathways in cancer biology. It promotes
cellular overgrowth activating proliferative genes, and, at the same time, enables cells to
overcome metabolic stress by inhibiting AMPK signalling, a key sensor of cell energetic
status [45]. Long-term activation of the Ras/MAPK pathway was found to promote
differentiation of the bihormonal somatolactotrope GH4 precursor cell into a prolactin-
secreting cell (lactotroph cell phenotype) in both in vitro and in vivo [46].

4. Tumour Development, Lessons from Mice
4.1. D2R-Deficient Mice and Dopamine Transporter-Deficient Mice

As we mentioned above, dopamine not only inhibits PRL secretion but also prolif-
eration and hypertrophy of the lactotroph cells. The evidence supporting the antimitotic
activity of dopamine on lactotrophs comes from the induction of pituitary hyperplasia in
D2R-deficient mice (which prevents dopamine action) [47,48] and the opposite phenotype,
the pituitary hypoplasia that exhibits the dopamine transporter (DT)-deficient mice (which
increases dopamine availability) (Figure 4).

Dopamine transporter-deficient mice
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Figure 4. Dopamine receptor-deficient mice and dopamine transporter-deficient mice. D2R-deficient mice, led to hyperpro-

lactinemia, lactotroph hyperplasia in male and adenomas in female. Dopamine transporter-deficient mice have an increased

dopaminergic tone due to dopamine availability. D2R: dopamine receptor.
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The major characteristics of D2R-deficient mice are chronic hyperprolactinemia and
lactotroph hyperplasia which lead to adenoma development in aged females only. D2R
null mice of either sex had 3- to 4-fold higher basal PRL levels, but without repercussions
in spermatogenesis, and with a little impact on fertility in females. Older D2R-null fe-
male mice developed significant hyperplasia (up to 50-fold higher) and large lactotroph
adenomas. However, the pituitary in age-matched males was similar or only double in
size [47,48]. These findings led to the hypothesis that the proliferative action of prolactin is
conditioned by an oestrogen permissive action. In addition, local growth factors (normally
under dopaminergic inhibition) and an imbalance between angiogenic/antiangiogenic
factors could participate by promoting the availability of different growth factors and
mitogens [48].

DT-null mice have increased dopaminergic tone, anterior pituitary hypoplasia, dwarfism
(D2R is present in somatotroph cells), and an inability to lactate [49]. DT elimination dra-
matically reduces the numbers of lactotrophs and somatotrophs in the pituitary. However,
DT-null mice present two unexpected factors: an unchanged basal serum PRL level, and
an unresponsiveness to the dopamine receptor antagonist sulpiride [33]. These events
could be the result of compensatory mechanisms acting to diminish the effects of enhanced
dopamine tone, such as downregulation of the lactotroph D2R and an increased sensitivity
to PRL secretagogues.

Although animal models are a huge source of knowledge, they are not always identical
to humans. The presence of the mutated D2R gene in humans was examined by direct
DNA sequencing in 79 pituitary tumours, mostly lactotroph and mixed GH/PRL-secreting
tumours. No mutations were demonstrated, and all migration abnormalities detected
were due to polymorphisms within the D2R gene [50]. More recently, a retrospective case-
control study analysing the frequency of five DRD2 polymorphisms in 148 patients with
prolactinoma and 349 healthy subjects, failed to demonstrate any difference in genotypes
between case and control group. In addition, a correlation between DRD2 polymorphisms
and cabergoline responsiveness was not found in the prolactinoma group [51]. In addition,
prolonged dopamine deficits in humans caused by neuroleptics, pituitary stalk dysfunction
or direct hypothalamic damage, did not induce prolactinomas.

Collectively, these observations argue against the presence of mutated D2R or the loss
of dopamine inhibition as primary causes of lactotroph tumours in humans.

4.2. PRLR Deficient Mice

Plasma PRL levels in the receptor-null mice (PRLR /) are increased 30-fold in
males and 100-fold in females, and this is accompanied by a somewhat enlarged pituitary
gland [33]. The double mutant (D2R~/~, PRLR™/~) mice used to bypass the short loop
feedback and investigate possible dopamine-independent effects of PRL on lactotroph
function, exhibited prolactinomas that were significantly larger than those observed in
D2R ~/~ mice [52] However, PRLR~/~ mice presented more profound hyperprolactinemia
and larger tumours than age-matched D2R ~/~ mice [52]. The associated phenotype in
PRLR~/~ mice was more severe in females [53]. Furthermore, to determine whether a direct
pituitary effect of hyperprolactinemia on lactotroph growth does exist, Schuff et al. [52],
assessed lactotroph proliferation in vitro by culturing pituitary cells from wild-type and
D2R~/~ mice in the presence of recombinant PRL. PRL treatment markedly inhibited the
proliferation of wild-type female and male D2R~/~ derived lactotrophs but had no effect
on female D2R~/~ lactotrophs. These findings suggest a downregulation or desensitisation
of PRLR in response to chronic hyperprolactinemia.

Taking into account all this data, there is a cross-talk between dopamine and prolactin
which seems modulated by gender factors (i.e., oestrogens).

5. Gender Differences and Oestrogens in Prolactinomas

Oestrogen was the first-discovered inducer of pituitary tumour transforming gene
(PTTG) through its nuclear «ER (oestrogen receptor «). PTTG is a well-known proto-
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oncogene whose aberrant accumulation is known to cause cancer development, activating
fibroblast growth factor 2 and VEGF production, thus further promoting invasiveness and
angiogenesis. In human and rodent pituitary, «ER plays a major role in the physiological
regulation of the secretory and mitotic activity of lactotroph cells, whereas in somatotroph
cells, both «ER and {3 are of importance [54]. oER expression in prolactinomas correlates
with tumour size and resistance to treatment and is different regarding gender [55,56].
These facts have been confirmed in a clinical study showing a clear association between
the low nuclear expression of aER (measured by immunohistochemistry) in prolactinomas
and several clinical variables such as gender (low expression in males), tumour size,
proliferative activity, low rate of surgical cure, DA resistance, and tumour progression [56].
More recently, these findings have been confirmed by the same method [57], and with more
sophisticated techniques, including transcriptomic, microarray and comparative genomic
hybridisation analyses [58]. Thus, ®kER immunostaining could be helpful as a prognostic
marker in prolactinomas. The lower expression level of oER in male tumours may explain
the higher risk of more aggressive tumour behavior, recurrence, and resistance to treatment.

More recently, Xiao Z et al. [59] investigated the effects of xER and PRLR signalling
cross-talk in the bromocriptine-resistant prolactinoma cell line. Surprisingly, they found
increased levels of ERoc and PRLR protein expression in bromocriptine-resistant prolactino-
mas. In addition, a reciprocal positive regulatory loop that could contribute to bromocrip-
tine resistance was reported. Furthermore, it was shown that «ER inhibition restored
bromocriptine sensitivity. It seems, therefore, that the ER pathway could be helpful not
only for characterisation, but also as a therapeutic target (Figure 5).
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Figure 5. Nuclear oestrogen receptor (xER) and crosstalk with PRLR and D2R. Oestrogens bind to
«ER, which stimulates lactotroph cell growth and proliferation. Prolactin induces phosphorylation of
«ER («ERp), while oestrogen promotes PRLR upregulation via pERa. ERx inhibition, restores pitu-
itary adenoma cell sensitivity to bromocriptine by activating among others D2-G0 MAPK signalling.
PRLR: prolactin receptor; D2R: dopamine receptor; xERp: phosphorylated xER.

6. Somatostatin Receptors and Prolactinoma

The inmunohistochemical analysis of somatostatin receptors (SSTR) in prolactinomas
demonstrated that SSTR5 was the most frequent, followed by SSTR2A and SSTR1 [60].
Since SSTRS5 is more important in PRL release regulation [61], somatostatin analogues with
improved selective binding affinity for SSTR5 subtype may be effective in the treatment
of hyperprolactinemia. Recently, some case reports have shown tumour shrinkage and
prolactin level normalisation in resistant prolactinomas treated with pasireotide long-acting
release, a second-generation somatostatin receptor ligand which binds to multiple SST
receptors, but with a particularly high affinity for SST5 receptor [62,63]. These promising
results should be confirmed in specific clinical trials.



Int. . Mol. Sci. 2021, 22, 11247

8 of 15

7. Genomics in Prolactinoma

Prolactinomas can appear as a result of germline mutation present in multiple en-
docrine neoplasia, familial isolated pituitary adenomas (FIPA) [64] or Carney complex [65].
However, somatic mutations, as occur in other pituitary tumours such as corticotrophi-
noma, have only occasionally been reported [66,67]. Nevertheless, Li et al. [68] have
recently identified a hotspot somatic mutation in splicing factor 3 subunit B1 (SF3B1) in up
to 19.8% of prolactinomas. These patients with mutant prolactinomas displayed higher
PRL levels and a shorter time in tumour development compared to patients without the
mutation. Moreover, they identified that the SF3B1 mutation caused aberrant splicing of
oestrogen-related receptor gamma, thus leading to a stronger binding of pituitary-specific
positive transcription factor 1, resulting in a greater transcriptional activation of PRL. More
interesting, this mutation was more frequent in males than in females (24.34% vs. 10.67%),
and demonstrated that SF3B1 mutation was significantly associated with poor prognosis.
This result contributes not only to the understanding of gender differences in the natural
history of prolactinoma but could also open up a new therapeutic strategy.

HMGAI1 Gene

High mobility group A proteins (HMGA) modulate transcription by altering the
chromatin architecture binding to amino-terminal regions and thereby regulate the tran-
scriptional activity of several genes [69]. The expression of HMGA genes is high in
malignant cells in vitro and in vivo [69]. Transgenic mice overexpressing HMGA1 [70] and
HMGAZ? [71] develop mixed prolactinoma and growth hormone pituitary adenoma.

8. Clinical Features Predicting Prolactinoma Response to DA

The therapeutic approach to prolactinoma is a current hot topic. Although at present
there is a general consensus that DAs are the first line in both micro- and macroprolactino-
mas, the following evidence argues against this general recommendation: (I) up to 20%
of macroprolactinoma could be resistant to medical treatment. (II) Normoprolactinemia
after dopamine agonist withdrawal is only reached in 20-35% of cases and, therefore,
most patients will need lifelong medical treatment [72,73]. (III) A recent meta-analysis
showed that long-term remission rates were significantly higher after surgery than after
medical treatment [74]. (IV) Data on the cost-effectiveness analysis revealed that TSS was
more cost-effective than medical therapy not only in macroprolactinomas, but also in
microprolactinomas in young patients with a life expectancy greater than 10 years [75].

Several studies have explored the early clinical predictors of the response to DA.
Some of them argue in favour of prolactin normalisation as the strongest predictor to guide
clinical decisions [76-78]. However, macroprolactinomas with very high basal levels of PRL
could have significant PRL reductions despite not reaching PRL normalisation by the third
month after the start of treatment and be good long-term responders [79-81]. In this regard,
the percentage of prolactin reduction could be a more valuable predictor to response to
DAs than a predefined cut-off value [73]. We, and others [82], argue in favour of a direct
measure of tumour shrinkage response in the third trimester of treatment as an early
marker of tumour response. This strategy permits us to take a more individualised decision
and not delay foreseeable successful trans-sphenoidal surgery (TSS) in a subgroup of poor
responders to DAs with eventual long-term aggressive behaviour [81]. Taking into account
that macroprolactinoma is the second-most frequent aggressive tumour [3] predominantly
in young men, continued DA dose escalation and extended medical treatment should be
carefully balanced with the possibility of performing an early and successful TSS. From the
research point of view, TSS samples obtained by TSS have a unique value for investigating
the underlying molecular pathways associated with clinical phenotypes, which is essential
for gaining new insights into personalised treatment.
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9. Future Direction and Medical Options in Aggressive Prolactinomas

Knowledge of the molecular pathway allows us to improve our understanding of
the mechanisms of tumour growth/aggressiveness. Beyond DAs, currently, we have no
approved drugs for treating prolactinoma. Therefore, all efforts to increase our knowl-
edge of the underlying molecular mechanisms of prolactinoma aimed at designing more
personalised therapeutic strategies are very welcome.

Table 1 summarises the future therapeutic options for aggressive prolactinoma
based on the available evidence. The following pathways seem closely related to
prolactinoma aggressiveness.

9.1. JAK2-STAT

As mentioned above, this is a major pathway in pituitary PRLR. Although PRL has
extrapituitary proliferative actions, constitutive activation in lactotroph cells by the JAK-
SATAT pathway acts as a proapoptotic and antiproliferative factor [40].

Atiprimod, an anticarcinogenic agent targeting STAT3, was effective in apoptotic
induction in GH3 pituitary adenoma cells, a model of the lactotroph cell [83]. Therefore,
this kind of drug could be useful in aggressive prolactinoma. However, clinical trials are
required to confirm this hypothesis.

9.2. PI3K-Akt-mTOR

Aydin et al. [84] studied the miRNA-mediated drug repositioning (transcriptome data
that exploit disease-specific signatures in addition to biological and pharmacological data
to elucidate a rational prioritisation of pathways and drugs) in 17 prolactinomas. The
group found seven drugs including 5-fluorocytosine, nortriptyline, neratinib, puromycin,
taxifolin, vorinostat, and zileuton as potential candidates for the treatment of prolactinoma.
Except for puromycin, the other six drugs act through the PI3K/Akt pathway. They also
demonstrated the inhibition of proliferation with such drugs in the PRL-producing MMQ
tumour cell line. These findings confirm that PI3K/Akt is an important pathway in prolacti-
noma development and show the therapeutic potential of drugs targeting this pathway.

Everolimus, an mTOR inhibitor, was able to revert increased mTOR signalling in
certain variants of PRLR that have constitutively activated these pathways [44].

Although everolimus has been employed in several aggressive neuroendocrine tu-
mours, its use in pituitary tumours is not standardised and has been limited to a few case
reports [3,85,86].

9.3. MAPK/AMPK Pathway

As mentioned above MAPK/AMPK have an interlink related to cell proliferation
and energetic status [45]. Recently, Ding et al. [87] using the model of DRD2—/— mice
found that the blockade of MAPK14 expression in mice significantly reduced prolactinoma
formation and PRL production and secretion. This highlights MAPK14 as a potential
therapeutic target in the treatment of prolactinoma.

Likewise, in the past 10 years, metformin (an antidiabetic drug) has been attracting
increasing interest due to its anticancer effects [88]. These effects are exerted by stimulating
AMPK. Indeed, some studies performed in human lactotroph cell cultures showed that met-
formin reduced lactotroph cell proliferation and promoted their apoptosis [89]. However, a
recent prospective study performed in 10 adults with cabergoline-resistant prolactinoma,
in which metformin (1.0-2.5 g/d) was added to cabergoline, failed to show a consistent
inhibitory effect in serum prolactin levels; unfortunately, tumour volume changes were not
reported [90].

9.4. Oestrogen Modulation

As previously indicated, prolactinomas have oestrogen receptors which induce the
formation of pituitary adenomas in sensitive rats or mice [91]. In humans, we have some
evidence regarding the oestrogen influence. In this regard, prolactinomas are more frequent
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in young women. Likewise, in the Dutch transgender registry, there was found a higher risk
of prolactinomas in transwomen, compared to the general Dutch female population [92].
However, this result was not confirmed by other groups, despite prolonged oestrogen
exposure [93].

On the other hand, the lower expression of the «ER level in male tumours in com-
parison with female tumours seems to confer a higher risk of more aggressive tumours,
recurrences, and resistance to treatment in males [56-58]. In addition, Choudhary et al.
reported that treatment with raloxifene, (an oestrogen-receptor modulator) was associated
with an up to 25% decrease in the PRL level in 10/14 (71%) patients with prolactinoma who
were on stable doses of DAs, while two patients (14%) normalised their serum prolactin
levels [94]. The mechanism by which a low expression in «ER in males confers a greater
risk of a poor response to DAs and of recurrences is not fully understood.

Table 1. Future therapeutic options for aggressive prolactinoma based on the available evidence.

Place of Action Evidence (References) Clinical Trials

Capecitabine and
Temozolomide in firstline

MGMT
inhibits DNA synthesis and
slows growth of tumour tissue

Ongoing NCT03930771 for
functional and non-functional
aggressive pituitary tumours

Isolated human case reports
summarised in [86]

multireceptor ligand

Pasireotide SSTR5 > SSTR2 > SSTR3 > Case reports (humans) [62,63] No
SSTR1
Atiprimod JAK2-STAT — STAT3 rat cell lines GH3 [83] No
5-fluorocytosine, nortriptyline, MMQ cell lines and
neratinib, ta?<1fohn, vorinostat, PI3K-AKt-mTOR mRNA—mlRNA data No
zileuton integration [84]
prolactinoma derived cells
Everolimus (human) [44] No
Case reports (humans) [85]
mice and human
Blockade of MAPKI14 MAPK/AMPK prolactinoma cells [87] No
No. A pilot study (1 = 10)
Metformin prolactinoma derived cells failed to show PRL
(human) [8] normalisation (no data on
tumour growth)
Raloxifene oestrogen receptor modulator case reports (humans) [94] P1lot.study (n = 14), not
randomised, no control group
PD-L1 PIT-1 case reports (humans) [95] No
Progressive pituitary
Immunotherapy Ipilimumab and nivolumab adenoma/carcinoma
P NCT04042753 and
NCT02834013

9.5. Temozolomide and Others Cytotoxic Agents

Temozolomide (TMZ) is used as a first-line chemotherapeutic agent for aggressive
pituitary tumours and carcinomas [4]. TMZ exerts its cytotoxic activity by alkylating DNA
at the O6-methylguanine DNA methyltransferase (MGMT) position of guanine resulting
in irreversible DNA damage and cell death. A lower expression of MGMT counteracts
the effects of TMZ, and its expression correlates with the effectiveness of the drug [4]. For
this reason, the routine determination of MGMT status in all aggressive pituitary tumours
by immunochemistry is recommended [4]. To the best of our knowledge, apart from
TMZ there is no other chemotherapeutic agent for treating aggressive prolactinoma in
the first line, except for few cases of the synergic combination of capecitabine and TMZ
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(CAPTEN) either in TZM naive patients or after TZM fails and confined case reports, of
TMZ association with VEGF-targeted therapy (bevacizumab or apatinib) [3,86].

Turchini et al. [95] have recently found that the programmed death-ligand 1 (PD-L1)
expression was common in somatotrophs, lactotrophs, and PIT-1 positive plurihormonal
pituitary adenoma. These results open up a new potential role of immunotherapy as an
adjuvant treatment of selected cases of prolactinoma which needs to be explored. In this
respect, two clinical trials with ipilimumab and nivolumab are actively recruiting patients
with aggressive pituitary tumours/carcinoma NCT04042753 and NCT02834013 (Table 1).

10. Concluding Remarks

Current guidelines in prolactinoma management [96] strongly recommended DAs
(preferably cabergoline) as the first line of treatment. This is valid for micro- and macropro-
lactinomas. Surgery is reserved for when there is resistance to high doses of cabergoline or
it is not well tolerated. However, biomarkers of response to DAs such as tumour shrinkage
at the third month of treatment seem to better predict the long-term response, thus allowing
for more personalised treatment to be implemented.

The guidelines for aggressive tumours [4] recommend surgery as first line treatment
and the adjuvant use of radiotherapy in patients with relevant tumour growth despite
surgery with pathological markers (the Ki67 index, mitotic count, p53 immunodetection).
The unique formal recommendation as first-line chemotherapy after surgery is temozolo-
mide in monotherapy with MGMT status evaluation to predict the response. This shows
that we are far from achieving a personalised approach to prolactinoma.

An early TSS in the subgroup of patients with potential aggressive tumours allows
us to investigate the underlying molecular pathways associated with clinical phenotypes.
In this regard, some PRLR variants that increase PRL secretion and lactotroph prolif-
eration could benefit from the mTOR inhibitors such as everolimus. The assessment
of the SSTR, PD-L-1 and MGMT status in tumour tissue will provide the mechanistic
basis for recommending more targeted therapies, resulting in more personalised and
cost-effective treatments.

There is an urgent need for basic and clinical researchers to join forces to gain more
insight into the underlying molecular mechanisms of prolactinomas. This approach will
permit us to improve clinical practice and provide a better approach to the treatment of
prolactinomas, in particular, the aggressive ones.

11. Search Strategy and Selection Criteria
We searched PubMed for articles published, with the terms “prolactinoma [tiab] AND

molecular [tiab]”, “prolactinoma [tiab] AND aggressive [tiab]”, “prolactin receptor [T1]
AND review [Filter]” and “dopamine receptor” [TI] AND review [Filter], “aggressive
pituitary tumours [tiab]”. Articles identified by these searches and relevant references
cited in those articles were reviewed. Only articles published in English were included.
Review articles and book chapters are also cited to provide readers with more detail in
some specific areas not addressed in this review. We largely selected those published in the

past 20 years but did not exclude seminal older articles.
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