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Abstract
This paper offers a supervised classification strategy that combines functional data 
analysis with unsupervised and supervised classification methods. Specifically, a 
two-steps classification technique for high-dimensional time series treated as func-
tional data is suggested. The first stage is based on extracting additional knowledge 
from the data using unsupervised classification employing suitable metrics. The sec-
ond phase applies functional supervised classification of the new patterns learned 
via appropriate basis representations. The experiments on ECG data and comparison 
with the classical approaches show the effectiveness of the proposed technique and 
exciting refinement in terms of accuracy. A simulation study with six scenarios is 
also offered to demonstrate the efficacy of the suggested strategy. The results reveal 
that this line of investigation is compelling and worthy of further development.

Keywords Functional data analysis · Functional supervised classification · 
Functional k-means · Functional random forest · Augmented labels

1 Introduction

Learning from high-dimensional data is a hot topic in supervised and unsupervised 
classification frameworks. There are various reasons why the statistical literature 
is rapidly evolving on the subject. Technological progress increasingly stimulates 
research and the production of devices to gather data in large quantities in many 
human activities and fields of study, such as the medical, ecological, telephone and 
energy sectors. In this framework, analysing high-dimensional data presents some 
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challenges, mainly due to the curse of dimensionality and the difficulty of dealing 
with data observed over time using conventional data analysis methods. Definitely, 
clustering and supervised classification techniques have opened new methodological 
perspectives in the learning from these huge amounts of complex data. In this con-
text, Functional Data Analysis (FDA) has undergone significant developments over 
the past two decades. Indeed, FDA can deal with high dimensionality and also grasp 
additional information in the patterns of curves, for example, through derivatives or 
curvature (Ferraty and Vieu 2003; Ramsay and Silverman 2005).

The basic idea of FDA is to view the sets of scalar observations as a single object 
and then operate directly on the curves through smoothing and dimensional reduc-
tion techniques. Consequently, each statistical unit can be characterised by one or 
more functions depending on whether the one-dimensional or multidimensional case 
is considered (Ramsay and Silverman 2005). In both cases, the functions often have 
specific traits; discovering these characteristics is essential to acquiring additional 
information in statistical analysis. For example, many scholars have emphasised how 
investigating the behaviour of derivatives or curvature can be more attractive, in 
some contexts, than analysing the original curves (see.g. Cuevas 2014; Maturo et al. 
2019, 2020).

The reference context of the present paper is the supervised classification of 
high-dimensional data through FDA. In particular, the goal is to create a classifier 
for a categorical response variable based on functional predictors, i.e. the scalar-
on-function classification problem. Therefore, the primary idea is to extract infor-
mation from the curves to get new features for the classification task. The further 
crucial aspect is based on how to merge the latter information with a functional 
classifier (see.g. Ramsay and Silverman 2005; Ferraty and Vieu 2006; Cuevas 
et al. 2007; Preda et al. 2007; Febrero-Bande and de la Fuente 2012). To improve 
the accuracy of the functional classifier by discovering additional information from 
data, B-splines and functional principal components are adopted. Indeed, they pro-
vide supplementary knowledge on the original curves and can be used as features 
for training a functional classification rule (see e.g. Febrero-Bande and de la Fuente 
2012; Maturo and Verde 2022a). However, since the outcome is a categorical vari-
able, this research suggests a strategy to discover extra information about the groups 
before training the functional classifier. Definitely, in real life, phenomena are often 
characterised by subpatterns. In other words, curves that belong to the same class 
and accordingly with the same label can be characterised by very distinct behav-
iours. For example, electrocardiogram signals of people affected by myocardial 
infarction may show different shapes over time. Creating a functional classifier over-
looking this knowledge about subpatterns is undoubtedly a waste of information that 
can be used profitably to train the functional classifier.

Starting from the latter consideration, this study strives to improve classical func-
tional classifiers’ performance via an original two-phase clustering-classification 
strategy (hereafter denoted with “Clustering and Train (C &T)”) that exploits infor-
mation on subpatterns of the original groups. A first clustering step is performed 
to discover distinct clusters of curves among the same labelled classes. In the sec-
ond step, supervised classification is performed by exploiting the extra informa-
tion on the new subgroups derived from the first step. Thus, the basic idea is to get 



1 3

Combining unsupervised and supervised learning techniques…

additional knowledge in the training data to improve the performance of the final 
classifier.

The clustering in the first step is performed separately for each starting group. 
Therefore, even if a functional classifier is created using a number of classes higher 
than the original ones, each new subgroup is related to the original labelled classes. 
Hence, it is straightforward to bring the labels of the subgroups to those of the origi-
nal groups to assess the performance of the trained functional classifier. This study 
concentrates on the Functional K-Means (FKM) algorithm because it provides opti-
mal results in terms of homogeneity of the subgroups. However, different clustering 
methods and metrics or semi-metrics to compute the distance between curves can 
be adopted in the first step. Regarding the clustering process, several strategies can 
be used to determine the optimal number of subgroups (see e.g. Ramsay and Silver-
man 2005; Ramsay et  al. 2009). To illustrate the proposal, this research refers to 
some functional classifiers, such as the functional k-nn (see e.g. García et al. 2015; 
Febrero-Bande and de la Fuente 2012; Jacques and Preda 2013), and the more recent 
functional random forest based on B-splines or functional principal components (see 
e.g. Yu and Lambert 1999; Maturo and Verde 2022a, b). Definitely, the proposed 
strategy can also be extended to other classifiers.

The remainder of this paper is as follows. Section 2 illustrates the so-called C &T 
procedure. Section 3 presents an application to a real data set concerning ECG data. 
Section 3.2 displays a simulation study with six different scenarios and compares 
classification methods with and without augmenting the number of classes. Finally, 
Sect. 4 ends the paper with a discussion and conclusions.

2  Material and methods

2.1  Functional data representation

Starting from time-series data, the FDA’s basic idea is to work directly on the curves 
rather than the scalars given by the time observations. In other words, the focus 
shifts to the functions and their characteristics rather than to single temporal obser-
vations. This approach has several advantages. The first is undoubtedly an intrinsic 
dimensionality reduction due to the representation of data through fixed or  data-
driven basis systems (Ramsay and Silverman 2005). The second is to exploit addi-
tional information that the starting data do not highlight, e.g. derivatives, curvature, 
integrals, etc (Ferraty and Vieu 2006; Cuevas 2014). Furthermore, no particular 
assumptions are required, and it is possible to analyze data that also occur at irregu-
lar intervals. Finally, there is the theoretical possibility of observing the phenom-
enon in a much finer grid and, in the limit, to observe it at any fixed instant. Usually, 
the reference domain of the functions is time, but FDA can also be used in contexts 
where the domain is different (see e.g. Maturo et al. 2019).

In simple terms, FDA usually refers to those statistical issues where the available 
data consist of a sample of n functions, x1(t), x2(t), ..., xN(t) , defined on a compact 
interval. FDA takes some connections with those statistical issues, often referred 
to as inference in stochastic processes where the sample information is given by a 
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partial trajectory x(t), t ∈ [0, T] of a stochastic process {X(t), t ≥ 0} (Cuevas 2014). 
When a process {X(t), t ≥ 0} is monitored, one usually records the values in a dis-
crete grid t1, t2, ..., tN . Hence, at the end, there is always a possibly high-dimensional 
vector observation x(t1), x(t2), ..., x(tN) (Cuevas 2014).

Focusing our attention to the case of a Hilbert space with a metric d(⋅, ⋅) associ-
ated with a norm so that d(x1(t), x2(t)) = ‖x1(t) − x2(t)‖ , and where the norm ‖ ⋅ ‖ is 
associated with an inner product ⟨⋅, ⋅⟩ so that ‖x(t)‖ = ⟨x(t), x(t)⟩1∕2 , we can obtain 
as a specific case the space L2 of real square-integrable functions defined on � by 
⟨x1(t), x2(t)⟩ = ∫

�
x1(t)x2(t)dt . Therefore, if x(t) ∈ L2 , a basis function system is a set 

of known functions �j(t) that are linearly independent of each other and which span 
L2 (Ramsay and Silverman 2005).

The most standard technique to describe functions is to exploit a finite representa-
tion in a fixed basis system (Ramsay and Silverman 2005) as follows:

where ci = (ci1, ..., ciΩ)
T (i = 1, 2, ...,N) is the vector of coefficients describing the 

linear combination and ��(t) is the �-th basis function, from a subset of Ω < ∞ 
functions that can be used to approximate the whole basis expansion.

One of the most adopted techniques to express curves via a data-driven basis 
system is the Functional Principal Components (FPCs) decomposition, which leads 
to a dimensionality reduction whilst keeping the maximum portion of information 
from the starting data (Ramsay and Silverman 2005; Aguilera and Aguilera-Morillo 
2013; Febrero-Bande and de la Fuente 2012). In this case, the functional data can be 
expressed as follows:

where K is the total number of FPCs, �ik is the score of the generic FPC �k of the i-th 
function xi(t) ( i = 1, 2, ...,N ). By trimming this representation in terms of the first p 
FPCs, it is possible to get an approximation of the sample curves, whose explained 
variance is given by 

∑p

k=1
�k , where �k is the variance of the k-th functional principal 

component. The most significant benefit of the latter procedure is that it captures the 
primary characteristics of the data using just a smaller set of uncorrelated FPCs1

(1)xi(t) ≈

Ω∑

�=1

ci���(t),

(2)xi(t) =

K∑

k=1

�ik�k(t),

1 Centering the curves so that the sample mean is equal to 0, we define the covariance function 
v(t, r) = N−1

∑N

i=1
x
i
(t)x

i
(r) and, to find the principal components weight function �

k
 , we maximize the 

variance by solving the characteristic equation

s.t.

∫
�

v(t, r)�
k
(t)dt = �

k
�
k
(t),

�
�

�
k
(t)2dt = 1 and �

�

�
k
(t)�

l
(t) dt = 0, for l ≠ k.
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2.2  Unsupervised and supervised classification in the FDA context

As in the traditional (non-functional) statistical context, one can distinguish between 
the unsupervised and supervised classification. Unsupervised classification coin-
cides with clustering and is therefore always based on creating groups of curves that 
are similar to each other within groups and dissimilar as much as possible between 
groups. The term “unsupervised” naturally highlights that there is no prior knowl-
edge of class labels or even the number of possible classes. Instead, in functional 
supervised classification, the labels of each curve are known a priori, and they are 
used to train a functional classifier, i.e. a classification rule that can be exploited to 
predict the unknown value of the grouping variable of any new curves. The litera-
ture on functional classification, in recent decades, has extended much of the classi-
cal statistics to the case in which objects of study are functions.

Both in the context of clustering and supervised classification, proximity meas-
ures among statistical units play a critical role because, according to different chosen 
distances, contrasting results can be achieved. The choice of a proximity measure 
depends on the nature of the data and the purpose of the specific research. In the 
context of FDA, different metrics and semi-metrics can be used; however, limiting 
our consideration to the case of the L2-space, the most ordinarily employed proxim-
ity measures between functional elements are the L2–distance, and the semi-metrics 
of the FPCs or derivatives (Ramsay and Silverman 2005; Ferraty and Vieu 2006; 
Febrero-Bande and de la Fuente 2012).

The L2–distance is given by:

where the observed points on each curve are equally spaced. Instead, the semi-met-
ric of the FPCs is given by:

where �i,k is the coefficients of the expansion, and �k is the k-th orthonormal eigen-
vector. Often, the semi-metric of the r-order derivatives of two curves could also be 
considered because it furnishes compelling knowledge depending on the scope of 
the study (Ramsay and Silverman 2005; Febrero-Bande and de la Fuente 2012).

(3)‖‖x1(t) − x2(t)
‖‖2 =

√

∫
�

[x1(t) − x2(t)]
2dt,

(4)d2
(
x1(t), x2(t)

)
≈

√√√√
K∑

k=1

(
�1,k − �2,k

)2‖‖�k‖‖,

where the i-th FPCs scores are given by �
ik
= ∫

�
x
i
(t)�

k
(t) dt , i = 1,⋯ ,N, and �

k
 is the variance 

explained by the k-th functional principal component.

Footnote 1 (continued)
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2.2.1  The functional K‑means (FKM)

There are many strategies available in the functional clustering literature. For exam-
ple, Jacques and Preda (2013) presents an interesting review and also Febrero-Bande 
and de la Fuente (2012) implement many methods in the R package fda.usc. In the 
following, this research focuses on the FKM as a possible unsupervised classifica-
tion technique for functional data, but keeping in mind that the approach can be 
extended to other clustering strategies.

The fundamental idea of FKM is to look for a partition for which the variability 
within clusters is minimized. Starting from N functional observations, this method 
pursues to group functional data into G ≪ N groups, C1,C2, ...,CG to minimize the 
within-cluster sum of squares. The initial phase of this iterative process involves 
fixing G initial functional centroids, � (0)

1
(t), ...,�

(0)

G
(t). Subsequently, each curve is 

assigned to the cluster whose centroid, at the prior iteration (� − 1) is the closest 
according to the desired metric:

where Δ is the maximum number of stages of the algorithm. Once all the curves 
have been allocated in a group, the cluster functional means are updated as follows:

where ng is the number of functions in the g-th cluster, Cg (Febrero-Bande and de la 
Fuente 2012; Fortuna et al. 2018; Maturo et al. 2020). The procedure ends when the 
curves no longer change group or the maximum number of predetermined iterations 
is reached.

The choice of the number of groups, as in any clustering method, is significant 
for identifying patterns within the original data. By expressing the curves of the 
training set through a basis system, it is possible to exploit the classic methods for 
determining the number of groups. In fact, working on the scores of the FPCs or 
B-spline, the so-called “direct methods” and also the statistical testing approaches 
can help to choose the number of groups. The former strategies optimise a crite-
rion, such as the within-cluster sums of squares or the average silhouette. The cor-
responding procedures are the elbow and silhouette methods, respectively. Instead, 
the latter compares evidence against the null hypothesis, e.g. the gap statistic. In 
the literature, there are many other techniques available for choosing the number of 
groups, but a complete review is out of the scope of this paper because the choice 
of the number of groups is secondary to the main strategy. Consequently, in the fol-
lowing, this study concentrates only on the silhouette method extended to the FPCs 
and B-splines scores to identify the suitable number of subgroups to be used for the 
FKM initialisation.

The average silhouette determines how well each curve lies within its cluster and 
can be computed for different values of G. The optimal number of clusters G∗ is the 

(5)C(�)
g

= argmin
g∈1,...,G

d2

(
xi(t),�

�−1
g

(t)
)
, � = 1, ...,Δ,

(6)��

g
(t) =

∑

xi(t)∈Cg

xi(t)

ng
,
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one that maximizes the average silhouette over a range of possible values for G. The 
silhouette for the i-th curve is computed as follows:

where: a(i) = 1

ng−1

∑
j∈Cg

d(xi(t), xj(t)) is the mean distance of the i-th curve with 
respect to all the functions belonging to the same cluster Cg (with ng the number of 
functions in the class Cg ; -1 because is not included xi ) and b(i) = min

l
d(xi(t), xl(t)) 

(with xl ∉ Cg ) is the minimum distance between the i-th curve and all the curves 
belonging to the other classes.

2.2.2  The functional K‑NN (FKNN) and functional random forest (FRF)

In the FDA context, there are many strategies of supervised classification (see e.g. 
Preda et al. 2007; Febrero-Bande and de la Fuente 2012; Chang et al. 2014; Baíllo 
et al. 2018; Mousavi and Sørensen 2018; Baíllo and Cuevas 2008; Maturo and Verde 
2022a). To illustrate the proposal, in the second step, this research concentrates on 
the Functional K-NN (FKNN) (Febrero-Bande and de la Fuente 2012) and the Func-
tional Random Forest (FRF) (Breiman 2004). Nevertheless, the suggested approach 
could be extended to further functional classifiers.

In the functional classification framework, the aim is to forecast the class (or 
label) of an observation x taking values in a separable metric space ( �, d). Hence, 
our strategy is designed for functional data of the form {yi, xi(t)} , with a predictor 
curve xi(t) , t ∈ � , and yi being the categorical response, observed for i = 1, ...,N . 
The classification of a new observation x from X is carried out by constructing a 
mapping f ∶ � ⟶ {1, ...,H} , with H being the total number of categories of the 
response variable Y. The so-called “classifier” maps x into its predicted label with a 
probability of error given by P{f (X) ≠ Y}.

Given a sample X, the aim is to estimate the posterior probability of belonging to 
each group Ch:

where h = 1, ...,H denotes the different modalities of Y.
The classification rule consists in assigning a new curve to that group with the 

maximum posterior probability.

The estimate of the posterior probability ph(X) can be calculated using different 
classifiers such as the FKNN or FRF that are implemented in the following (see e.g. 
Ramsay and Silverman 2005; Febrero-Bande and de  la Fuente 2012; Maturo and 
Verde 2022b).

The FKNN classifier is a non-parametric supervised classification approach for 
functional data; it is probably the simplest and most used algorithm for classify-
ing curves based on the classes of the “k” curves in the training set which are 

(7)S(i) =
b(i) − a(i)

max(b(i), a(i))
,

(8)ph(X) = P(y = Ch ∣ x = X),

(9)ŷ = argmax p̂h(X).
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closest to the one considered. Despite being a very simple classifier, by choosing 
a suitable value for the parameter k, it is a very performing algorithm in terms of 
accuracy (Febrero-Bande and de la Fuente 2012).

On the other hand, the FRF is an extension of the classical random forest to 
the FDA context (Breiman 2004). Starting from a single Functional Classification 
Tree (FCT) trained using the scores obtained via a selected functional representa-
tion technique, it is possible to build an ensemble of weak classifiers whose final 
result is very powerful in terms of accuracy and variance reduction.

Each FCT of the forest consists of recursive binary separations of the feature 
space into rectangular regions (nodes) composed of sets of curves xi(t) ∈ X . In the 
building procedure, an optimal binary partition is implemented at each phase of 
the algorithm, based on optimising the cost criterion. Typically, the latter regards 
the reduction of the impurity of the node via the Gini index G = 1 −

∑H

h
f 2
rh

 , 
where frh denotes the proportion of training curves in the r-th region that are from 
the h-th class, and H is the number of categories of Y, or the Shannon-Weiner 
index E = −

∑H

h
frhlnfrh , where frh is the proportion of training observations in the 

r-th region that are from the h-th class (Hastie et al. 2009; Therneau and Atkinson 
2019). The algorithm starts with the entire functional data set and continues until 
terminal nodes (leaves) are obtained (Maturo and Verde 2022a).

The reason of shifting from FCTs to FRF is similar to the non-functional con-
text, that is, to lower the variability of estimates due to the presence of corre-
lated FCTs (Breiman 2004; Hastie et  al. 2009; James et  al. 2013). Effectively, 
FRF creates many FCTs on B bootstrap replicates of the original dataset, decor-
relating the FCT. For this purpose, a random sample of m features is considered 
at each split in such a way that FCTs are less dominated by the same predictors (a 
detailed description of this procedure is available in (Maturo and Verde 2022a)). 
Hence, at each division in the FCTs, the algorithm does not consider most of the 
available FPCs (or B-splines). Thus, on average, K−m

K
 will not even be considered 

in the splitting procedures. A general rule of thumb can be to choose, as the size 
of the subset of FPCs (or B-splines), a value of m ≈

√
K . Because each FCT has 

its forecast label of the class, a new curve is assigned according to the so-called 
“majority vote” criterion (Breiman 2004).

Concerning the assessment of the functional classifiers’ accuracy, differ-
ent strategies are available as in the non-functional framework. Indeed, both for 
FKNN and FRF, it is possible to exploit cross-validation, bootstrap, or valida-
tion test set (Hastie et al. 2009; James et al. 2013). In the FDA context, the use 
of a functional test set is of particular appeal because the test functions must be 
described according to the same basis system used to define the functional train-
ing set. If a fixed basis system is used to express the curves in the training set, the 
test functions can be represented by employing the same fixed basis system, e.g. 
with the same number and order of B-splines. On the contrary, if a data-driven 
basis system is used, the test curves xs , ( s = 1,… , S ), must be projected onto the 
FPCs space generated by the training curves in order to get the appropriate scores 
as follows:
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where the weight functions �′
k
s are obtained executing the FPCs on the training set 

X, xc
s
 are the centered curves of the test set (obtained subtracting the sample mean 

function of the training samples), and S is the total number of functions in the test 
set.

2.3  The “clustering and train” (C &T) method

The main goal of the proposed strategy is to enhance the accuracy of the functional 
classifier by generating extra information on possible subpatterns of the original 
classes before training a functional classifier. With this aim, an original two-phase 
classification technique, namely “Clustering and Train” (C &T) is introduced. The 
latter combines unsupervised (first phase) and supervised (second phase) classifica-
tion techniques in the FDA framework. An outline of the C &T procedure is illus-
trated in Algorithms 1 and 2.

The preliminary step of the procedure is the representation of high-dimensional 
time series into functional objects through the classical FDA techniques. Accord-
ingly, the first decision involves choosing the basis system. If a fixed basis system is 
used, the training and test set can be easily represented employing the same number 
of basis with the same order. If, on the other hand, a data-driven basis system is 
adopted, the test set curves must be projected into the space generated by the FPCs 
generated by the training set functions. Once the curves are represented through a 
linear combination of basis functions, it is possible to extract the scores (or the coef-
ficients) to be used as features.

The unsupervised classification phase involves critical choices such as the clus-
tering method, number of subgroups, and metric or semi-metric to evaluate the simi-
larity between functional data. It is worth nothing that the clustering procedure is 
applied separately for each original group of curves in the training set.

Once the subclasses have been identified, it is possible to move on to the sec-
ond phase, which consists of supervised classification with an augmented number of 
classes. Therefore, it is necessary to choose a functional classifier and the possible 
values of its hyperparameters, since there are numerous classifiers in the FDA litera-
ture. The performance of the C &T strategy, in terms of accuracy, can be evaluated 
using the training set via cross-validation and bootstrap, or adopting a functional test 
set. However, the accuracy of the functional classifier must be assessed after tracing 
the predicted classes to the original classes. Having carried out the clustering sepa-
rately for each original group, bringing the subclasses back to the original classes is 
immediate. In the following, this study refers to the test set approach for assessing 
the accuracy of the FKNN and FRF classifiers.

The aforementioned procedure usually improves the performance of the func-
tional classifier, in particular in cases in which the original groups are composed 
by subpatterns. Definitely, the C &T algorithm can be generalised to different func-
tional classifiers by replacing the “5: STEP 2”.

(10)�sk = ⟨xc
s
, �k⟩ = ∫

�

xc
s
(t)�k(t) dt s = 1,⋯ , S,
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3  Applications and results

3.1  Application to the ECG200 dataset

This section aims to illustrate the methodology proposed on a dataset concerning the 
electrocardiogram signals (ECG). The ECG200 dataset was presented by R. Olsze-
wski at Carnegie Mellon University in 2001 as part of his work “Generalized feature 
extraction for structural pattern recognition in time-series data” (Olszewski 2001). 
The dataset is worldwide adopted to test new classifiers, and the existing world 
record, in terms of classification accuracy, is 89.05%. Each sequence traces the elec-
trical activity recorded during one heartbeat. The two classes are Normal Heartbeat 
(NH) and Myocardial Infarction (MI). Both the training and test sets are composed 
of 100 signals. The data is freely obtainable at www.timeseriesclassification.com 
(Bagnall et al. 2021). Our purpose is to forecast whether a new patient is healthy or 
diseased.

Figure 1 illustrates the original ECGs in the training and test set. The original 
signals are time records, and the observations are joined through a simple graphi-
cal interpolation. The red signals identify healthy patients, that is, those with a 
regular heartbeat. Black signals display sick patients, i.e. those suffering from 
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myocardial infarction. The charts clearly show that the signals of sick patients are 
characterized by subpatterns. In other words, not all patients suffering from myo-
cardial infarction have similar electrocardiogram trends.

Fig. 1  ECG signals of the training and test set (ECG200 dataset). The R packages fda (Ramsay et  al. 
2022) and fda.usc (Febrero-Bande and de la Fuente 2012) are used to represent functional data
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Figure 2 displays the centered smoothed curves of the training set. This pic-
ture highlights the functional differences between healthy and diseased people. 
Also, it helps to understand Fig. 3 which presents the FPCs decomposition of the 
curves in the training set. The first four FPCs explain about 80% percent of the 
variability. However, we cannot be satisfied with explaining 80% because, in the 
perspective of supervised classification, the FPCs that explain little variability are 
essential in ensuring a good accuracy of the classifier.

Figure  4 exhibits the average silhouette to measure the quality of clustering 
for the different number of groups. The two graphs in Fig. 4 highlight the desired 
number of subgroups for the Myocardial Infarction (MI) and Normal Heartbeat 
(NH) original groups, respectively. The MI group can be decomposed into two 
subgroups, whereas the NH group furnishes three different patterns.

Figure 5 illustrates the FKM results in terms of final functional centroids. The 
latter remark that the original groups are characterized by clear subpatterns.

Figures 6 and 7 show the FCTs trained using the FPCs and B-splines, respec-
tively. The latter do not use the C &T technique, and thus the leaves are given 
by the original labels of the outcome, i.e. MY and NH. The R packages rpart 
(Therneau and Atkinson 2019) and rpart.plot (Milborrow 2021) are used to 

Fig. 2  Centered smoothed curves of the training set (ECG200 dataset)
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represent FTCs with the appropriate adjustments due to the original methodol-
ogy. The splitting criterion adopted in this study is based on the Gini index.

Figures 8 and 9 offer the FCTs trained using the FPCs and B-splines approaches 
with the C &T method, respectively. Therefore, the terminal nodes are no longer 
represented by the original labels but by the subgroups of the original labels; in fact, 
the number of classes to predict has increased to five. The single FCT has only an 
explanatory role in the methodology because, effectively, FRF deals with an ensem-
ble of FCTs.

Figures 10 and 11 offer the results of the FRF-B-splines and FRF-FPCs, respec-
tively. Both the pictures compare the FRF without the C &T approach and FRF per-
formed via the C &T technique. The accuracy is computed based on the test set and 
is plotted as the forest size varies. The results of the FRF-B-splines always consider 
a fixed number of basis functions. Instead, the FRF-FPC deals with a number of 
FPCs from 2 to 20. Consequently, two pieces of information can be exploited in 
the performance assessment of the FRF-FPCs classifier. The first is represented by 
the maximum value reached by the accuracy (dotted curves). On the other hand, 
the average accuracy value gives the second fascinating information (solid curves 
which provide the average accuracy using a different number of FPCs given the size 
of the forest). The latter information is definitely the most important because it is 
little affected by fluctuations due to chance. Figures  10 and 11 highlight that the 
FRF-B-splines and FRF-FPCs performed via the C &T technique provides extraor-
dinary results on this dataset. In fact, the previous record (89.05% accuracy) is 
repeatedly beaten with both the classifiers. Indeed, the FRF-FPCs classifier achieves 
94% accuracy for many forest sizes. Another aspect worthy of being highlighted is 

Fig. 3  FPCs decomposition of the training set curves (ECG200 dataset).
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Fig. 4  Number of subgroups selection for the Myocardial Infarction and Normal Heartbeat original 
groups (ECG200 dataset)
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that, in Fig. 11, the mean accuracy of the FRF-FPCs via the C &T is systematically 
above that one of the classical functional classifier, and also higher than the previous 
89.05% accuracy record.

Figure 12 describes the results of C &T adopted employing FKNN in the super-
vised classification phase. A comparison between the classical FKNN and FKNN 
with augmented labels is provided Also in this circumstance, the C &T method 

Fig. 5  Functional centroids of the Myocardial Infarction and Normal Heartbeat original groups accord-
ing to the FKM clustering procedure (ECG200 dataset)
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enhances the accuracy of the classical FKNN. Precisely, with 3-NN, 92% accuracy 
is obtained.

3.2  Simulation study

To exhibit the performance of the novel strategy, diverse models suggested in pre-
vious studies are proposed (Cuevas et al. 2007; Preda et al. 2007; Taiwo Ojo et al. 
2021). Particularly, there are six scenarios in which the first four take into account 
the case of a binary classification problem, and the last two consider three and four 
classes, respectively. In each scenario, 100 functions for any group are generated. 
Consequently, in the two-class classification problems, there are 200 curves, while 
in the last two scenarios, there are 300 and 400 curves, respectively. The different 
simulations are obtained using the following six scenarios.

Simulation 1. Group 1 is generated by the model Xi(t) = �t + ei(t) and 
group 2 is generated by the model Xi(t) = �t + qkiITi≤t + ei(t) where t ∈ [0, 1] , 
ei(t) is a Gaussian process with zero mean and covariance of the form 

Fig. 6  FPCs classification tree (ECG200 dataset)
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�(s, t) = � exp {−� ∣ t − s ∣�} , ki ∈ {−1, 1} with P
(
ki = −1

)
= P

(
ki = 1

)
= 0.5 , I is 

an indicator function, q is a constant controlling how far the curves in group 2 
are from the mass of group 1, and Ti is a uniform random variable in an interval 
[a, b] ⊂ [0, 1] . This simulation allows us to get two groups that differ in their mag-
nitude only in a specific part of the time domain. Figure 13(1) shows the simu-
lated data obtained fixing � = −2 , q = −2 , a = 0.2 , b = 0.8 , � = 0.1 , � = 1 , and 
� = 0.9.

Simulation 2. We take into account the following two functional data generat-
ing models to get two groups, which differ mainly due to their amplitude. The 
main model is Xi(t) = a1i sin� + a2i cos� + ei(t) . To obtain group 2 we refer to 
the model Xi(t) =

(
b1i sin� + b2i cos�

)(
1 − ui

)
+
(
c1i sin� + c2i cos�

)
ui + ei(t) 

where t ∈ [0, 1] , � ∈ [0, 2�] , a1i, a2i follows a uniform distribution in an inter-
val 

[
a1, a2

]
 , b1i, b2i follows uniform distribution in an interval 

[
b1, b2

]
 , c1i, c2i fol-

lows uniform distribution in an interval 
[
c1, c2

]
 , ui follows Bernoulli distribution, 

and ei(t) is a Gaussian process with zero mean and covariance function of the form 
�(s, t) = � exp {−� ∣ t − s ∣�} . Figure 13(2) shows the simulated data obtained fixing 
a1i = 2 , a2i = 29 , b1i = 1.5 , b2i = 23 , c1i = 1 , c2i = 15 � = 12 , � = 0.5 , and � = 1.

Fig. 7  B-spline classification tree (ECG200 dataset)
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Simulation 3. We consider the following two functional data generating models 
to obtain two groups, which differ mainly according to their amplitude. The main 
model is of the form Xi(t) = �t + ei(t) . To obtain group 2 we refer to the model 
Xi(t) = �t + k sin(r�(t + �)) + ei(t) where t ∈ [0, 1] , and ei(t) is a Gaussian process 
with zero mean and covariance function of the form �(s, t) = � exp {−� ∣ t − s ∣�} , 
� is uniformly distributed in an interval [a, b], and k, r are constants. Figure 13(3) 
shows the simulated data obtained fixing � = −12 , a = 0 , b = 0.99 , r = 1 , k = 5 , 
� = 1 , � = 0.3 , and � = 0.6.

Simulation 4. We use two functional data generating models to get two groups, 
which have a slight dissimilarity in magnitude and shape in a portion of the time 
domain. Group 1 is achieved employing the model Xi(t) = �t + ei(t) whereas 
group 2 is generated by the model Xi(t) = �t + (−1)uq + (−1)(1−u)

�
1√
r�

�
exp (−z(t − v)w) + ei(t)

 , 
where t ∈ [0, 1] , ei(t) is a Gaussian process with zero mean and covariance func-
tion of the form �(s, t) = � exp {−� ∣ t − s ∣�} , u follows a Bernoulli distribution 

Fig. 8  FPCs classification tree with augmented labels (ECG200 dataset)
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with P(u = 1) = 0.5 , q, r, z and w are constants, v follows a uniform distribution 
in [a,  b]. The two sets of curves are got specifying the following parameters: 
� = 0 , q = 2 , a = 0 , b = 0.55 , � = 0.51 , � = 1 , � = 1 , w = 2 , r = 0.02 , z = 3 , and 
w = 2 . Figure 13(4) displays the simulated curves.

Simulation 5. Simulation 5 exploits the model considered in Simulation 1 
with suitable adjustments to the three-classes classification problem. Specifi-
cally, Fig. 13(5) shows the simulated data obtained fixing � = −14 , q = 3 , a = 0.6 , 
b = 0.75 , � = 2 , � = 1 , and � = 0.5 for Groups 1 and 2, and � = −14 , q = 5 , a = 0.2 , 
b = 0.95 , � = 2 , � = 1 , and � = 0.5 for Group 3.

Simulation 6. Simulation 6 adopts the model used in Simulation 4, adjusting to 
the four-classes classification undertaking. Specifically, Fig. 13(6) displays the sim-
ulated data given by � = 0 , q = 1.8 , a = 0.45 , b = 0.45 , � = 1 , � = 1 , � = 1 , w = 2 , 
r = 0.02 , and z = 90 for Groups 1 and 2, and � = −2 , q = 1.8 , a = 0.15 , b = 0.15 , 
� = 0.8 , � = 0.8 , � = 1 , w = 4 , r = 0.01 , and z = 90 for Groups 3 and 4.

Fig. 9  B-spline classification tree with augmented labels (ECG200 dataset)
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We compare the classical functional classifiers for each simulation that employed 
the FRF-FPCs, FRF-B-splines, and FKK operating the C &T approach. The accu-
racy is calculated using the test set, following the same scheme and reasoning 
adopted for the ECG200 dataset. Accordingly, for each scenario, three detailed com-
parisons are offered.

Figure 14b and c show that in Scenario 1, the C &T method enhances the clas-
sification accuracy for both the FRF-FPCs and FKNN approaches. Rather, Fig. 14a 
exhibits that, using B-splines, there is no improvement for the classical FRF.

In scenario 2, Fig. 15a, b, and c highlight the excellent results of the proposed 
approach. Specifically, the average accuracy of the FRF-FPCs classifiers is system-
atically exceeding the mean of the functional classifier not using the two-phase pro-
cess (especially when the forest size exceeds 80 FCTs).

Scenario 3 is a straightforward classification task, and consequently, the results 
of all the methods are very high in terms of accuracy. Thus, the performances of the 
classical approaches are identical to those of the novel technique (Fig. 16a, b and c). 

Fig. 10  Comparison of max accuracy computed on the test set between the classical FRF-B-spline and 
FRF-B-spline with augmented labels classifiers (ECG200 dataset). The mean accuracy is not considered 
in the FRF-B-spline classifier because a fixed number of B-splines is used, and thus no average is avail-
able for a given size of the forest
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Despite this last consideration, the result of the FRF-FPCs is fascinating because the 
average accuracy using the C &T strategy is always much higher than the classical 
method (solid blue curve in Fig. 16b).

In scenario 4, the C &T procedure turns out to be broadly superior to the classi-
cal functional classifiers. Notably, the FRF-B-splines and FRF-FPCs offer compel-
ling results (Fig. 17a, b and c). The accuracy of the FRF-B-spline is systematically 
higher than that of the classical methods and, therefore, it certainly cannot be due to 
chance. The same goes for the FRF-FPCs when examining the average accuracies 
(solid blue curve in Fig. 17b).

Figure  18a, b and c demonstrate that, in the three-classes classification, the C 
&T process is definitely foremost to classical strategies. Using the FRF-FPCs, the 
accuracy in Fig. 18b is systematically higher for both the maximum and average ver-
sions, and the same is for the FRF-B-splines. Figure 18c depicts that the maximum 
accuracy is 80% when operating the FKNN, but this result is also achieved without 
the C &T approach with 3-NN.

Fig. 11  Comparison of mean and max accuracy computed on the test set between the classical FRF-
FPCs and FRF-FPCs with augmented labels classifiers (ECG200 dataset). The mean accuracy is com-
puted using a different number of FPCs (from 2 to 20) given the size of the forest
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Scenario 6 deals with the four-classes classification problem. Figures 19b indi-
cates that the FRF-FPCs provides equivalent results both with and without the C &T 
procedure. Rather, Fig. 19a and c highlight that the C &T technique is still outstand-
ing when applied to the FRF-B-splines and the FKNN.

The details of each simulated scenario, in terms of functional centroids of the 
identified subgroups, for each original group, are provided in the supplementary 
material.

4  Discussion and conclusions

In real life, phenomena are frequently characterised by subpatterns, even if con-
cisely categorized into a single class. Therefore, curves with the same class label 
can have distinct typical behaviours over time. Creating a functional classifier 
omitting this knowledge is certainly a waste of details that can be used profit-
ably to train a functional classifier. Starting from the high-dimensional data 

Fig. 12  Test set accuracy comparison between the classical FKM and a FKM with augmented labels 
(ECG200 dataset)
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classification issue, this work focuses on combining supervised and unsuper-
vised classification in the context of FDA. This research seeks to offer a strategy 
capable of apprehending additional information on the functional patterns of the 

Fig. 13  Simulated scenarios of functional data with two, three, and four classes to predict (more details 
in the supplementary materials)
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original groups of curves to build a more performing functional classifier. The 
proposed procedure enhances the importance of considering subpatterns in the 
structure of the functions related to a different behaviour over the time of the 
observed phenomenon. For this purpose, a two-step method called Clustering and 
train (C &T) is proposed, using first the FKM combined with the FKNN and then 
the FKM combined with the FRF.

In the first step, a functional clustering algorithm is used to discover new pat-
terns in the original classes. Naturally, it is possible to choose different clustering 
methods and various metrics or semi-metrics to compute the distance between 

Fig. 14  Scenario 1: a test set accuracy comparison between the classical FRF-B-spline and FRF-B-spline 
using the C &T approach. b test set mean and max accuracy comparison between the classical FRF-FPCs 
and FRF-FPCs using the C &T approach. c test set accuracy comparison between the classical FKM and 
FKM using the C &T approach
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curves. At the same time, several strategies can be used to determine the opti-
mal number of subgroups. These options can influence the final results, but are 
of secondary importance at this stage. Undoubtedly, future studies could explore 
how different metrics and cluster methods can affect the final result. Nonetheless, 
in this study, we are interested in obtaining additional knowledge on the exist-
ence of functional subgroups of curves belonging to the same initial classes of 
the outcome to understand if the strategy improves the classic functional classi-
fiers’ performance.

Fig. 15  Scenario 2: a test set accuracy comparison between the classical FRF-B-spline and FRF-B-spline 
using the C &T approach. b test set mean and max accuracy comparison between the classical FRF-FPCs 
and FRF-FPCs using the C &T approach. c test set accuracy comparison between the classical FKM and 
FKM using the C &T approach
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This method concentrates on the FKNN and FRF as supervised approaches in 
the second step. Nevertheless, future investigations may focus on other classi-
fiers to comprehend how the procedure acts with different strategies. The suit-
able number of subgroups is based on an extension of the silhouette technique to 
the functional framework through B-splines or FPCs scores. Future studies could 
focus on looking for methods that support finding the optimal number of sub-
groups of curves without concentrating on the scores.

Fig. 16  Scenario 3: a test set accuracy comparison between the classical FRF-B-spline and FRF-B-spline 
using the C &T approach. b test set mean and max accuracy comparison between the classical FRF-FPCs 
and FRF-FPCs using the C &T approach. c test set accuracy comparison between the classical FKM and 
FKM using the C &T approach
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The functional two-step procedure, which executes clustering before training, 
proved to be a reliable tool for catching helpful knowledge on the heterogeneity 
of the original groups before shifting on to the supervised phase. Definitely, the 
applications to ECG data and simulated datasets under different scenarios show 
that the suggested strategy repeatedly leads to a compelling refinement of the 
functional classifiers’ accuracy.

Fig. 17  Scenario 4: a test set accuracy comparison between the classical FRF-B-spline and FRF-B-spline 
using the C &T approach. b test set mean and max accuracy comparison between the classical FRF-FPCs 
and FRF-FPCs using the C &T approach. c test set accuracy comparison between the classical FKM and 
FKM using the C &T approach
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Although many possible facets of the proposed procedure can enhance the 
classifier’s performance, this research delivers fascinating results that could drive 
further research.

Fig. 18  Scenario 5: a test set accuracy comparison between the classical FRF-B-spline and FRF-B-spline 
using the C &T approach. b test set mean and max accuracy comparison between the classical FRF-FPCs 
and FRF-FPCs using the C &T approach. c test set accuracy comparison between the classical FKM and 
FKM using the C &T approach



 F. Maturo, R. Verde 

1 3

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00180- 022- 01259-8.

Funding Open access funding provided by Università degli Studi della Campania Luigi Vanvitelli within 
the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

Fig. 19  Scenario 6: a test set accuracy comparison between the classical FRF-B-spline and FRF-B-spline 
using the C &T approach. b test set mean and max accuracy comparison between the classical FRF-FPCs 
and FRF-FPCs using the C &T approach. c test set accuracy comparison between the classical FKM and 
FKM using the C &T approach

https://doi.org/10.1007/s00180-022-01259-8
https://doi.org/10.1007/s00180-022-01259-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Combining unsupervised and supervised learning techniques…

References

Aguilera A, Aguilera-Morillo M (2013) Penalized PCA approaches for B-spline expansions of smooth 
functional data. Appl Math Comput 219:7805–7819. https:// doi. org/ 10. 1016/j. amc. 2013. 02. 009

Bagnall A, Lines J, Vickers W, Keogh E (2021) The UEA & UCR time series classification repository. 
www. times eries class ifica tion. com

Baíllo A, Cuevas A (2008) Supervised classification for functional data: a theoretical remark and 
some numerical comparisons. Functional and operatorial statistics. Physica-Verlag HD, Heidel-
berg, pp 43–46

Baíllo A, Cuevas A, Fraiman R (2018) Classification methods for functional data. Oxford Handbooks 
Online

Breiman L (2004) Random forests. Mach Learn 45:5–32. https:// doi. org/ 10. 1023/A: 10109 33404 324
Chang C, Chen Y, Ogden RT (2014) Functional data classification: a wavelet approach. Comput Stat 

29:1497–1513. https:// doi. org/ 10. 1007/ s00180- 014- 0503-4
Cuevas A (2014) A partial overview of the theory of statistics with functional data. J Stat Plan Infer-

ence 147:1–23. https:// doi. org/ 10. 1016/j. jspi. 2013. 04. 002
Cuevas A, Febrero M, Fraiman R (2007) Robust estimation and classification for functional data 

via projection-based depth notions. Comput Stat 22(3):481–496. https:// doi. org/ 10. 1007/ 
s00180- 007- 0053-0

Febrero-Bande M, de la Fuente MO (2012) Statistical computing in functional data analysis: the R 
package fda. usc. J Stat Softw 51:1–28

Ferraty F, Vieu P (2003) Curves discrimination: a nonparametric functional approach. Comput Stat 
Data Anal 44(1–2):161–173. https:// doi. org/ 10. 1016/ s0167- 9473(03) 00032-x

Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York. https:// doi. org/ 
10. 1007/0- 387- 36620-2

Fortuna F, Maturo F, Di Battista T (2018) Clustering functional data streams: unsupervised classifica-
tion of soccer top players based on google trends. Qual Reliab Eng Int 34(7):1448–1460. https:// 
doi. org/ 10. 1002/ qre. 2333

García MLL, García-Ródenas R, Gómez AG (2015) K-means algorithms for functional data. Neuro-
computing 151:231–245. https:// doi. org/ 10. 1016/j. neucom. 2014. 09. 048

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining inference 
and prediction. Springer, New York. https:// doi. org/ 10. 1007/ 978-0- 387- 84858-7

Jacques J, Preda C (2013) Functional data clustering: a survey. Adv Data Anal Classif 8(3):231–255. 
https:// doi. org/ 10. 1007/ s11634- 013- 0158-y

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with applica-
tions in R. Springer, New York. https:// doi. org/ 10. 1007/ 978-1- 4614- 7138-7_1

Maturo F, Verde R (2022) Pooling random forest and functional data analysis for biomedical signals 
supervised classification: theory and application to electrocardiogram data. Stat Med 41:2247–
2275. https:// doi. org/ 10. 1002/ sim. 9353

Maturo F, Verde R (2022) Supervised classification of curves via a combined use of functional data 
analysis and tree-based methods. Comput Stat TBA. https:// doi. org/ 10. 1007/ s00180- 022- 01236-1

Maturo F, Migliori S, Paolone F (2019) Measuring and monitoring diversity in organizations 
through functional instruments with an application to ethnic workforce diversity of the U.S. 
Federal Agencies. Comput Math Organ Theory 25(4):357–388. https:// doi. org/ 10. 1007/ 
s10588- 018- 9267-7

Maturo F, Ferguson J, Di Battista T, Ventre V (2020) A fuzzy functional k-means approach for moni-
toring Italian regions according to health evolution over time. Soft Comput 24:13741–13755. 
https:// doi. org/ 10. 1007/ s00500- 019- 04505-2

Milborrow S (2021) rpart.plot: Plot ’rpart’ Models: an enhanced version of ’plot.rpart’. R package 
version 3.1.0 https:// CRAN.R- proje ct. org/ packa ge= rpart. plot,

Mousavi SN, Sørensen H (2018) Functional logistic regression: a comparison of three methods. J Stat 
Comput Simul 88:250–268. https:// doi. org/ 10. 1080/ 00949 655. 2017. 13866 64

Olszewski R (2001) Generalized feature extraction for structural pattern recognition in time-series 
data. Carnegie-Mellon University, Pittsburgh

Preda C, Saporta G, Lévéder C (2007) PLS classification of functional data. Comput Stat 22(2):223–
235. https:// doi. org/ 10. 1007/ s00180- 007- 0041-4

https://doi.org/10.1016/j.amc.2013.02.009
http://www.timeseriesclassification.com
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s00180-014-0503-4
https://doi.org/10.1016/j.jspi.2013.04.002
https://doi.org/10.1007/s00180-007-0053-0
https://doi.org/10.1007/s00180-007-0053-0
https://doi.org/10.1016/s0167-9473(03)00032-x
https://doi.org/10.1007/0-387-36620-2
https://doi.org/10.1007/0-387-36620-2
https://doi.org/10.1002/qre.2333
https://doi.org/10.1002/qre.2333
https://doi.org/10.1016/j.neucom.2014.09.048
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/s11634-013-0158-y
https://doi.org/10.1007/978-1-4614-7138-7_1
https://doi.org/10.1002/sim.9353
https://doi.org/10.1007/s00180-022-01236-1
https://doi.org/10.1007/s10588-018-9267-7
https://doi.org/10.1007/s10588-018-9267-7
https://doi.org/10.1007/s00500-019-04505-2
https://CRAN.R-project.org/package=rpart.plot
https://doi.org/10.1080/00949655.2017.1386664
https://doi.org/10.1007/s00180-007-0041-4


 F. Maturo, R. Verde 

1 3

Ramsay J, Silverman B (2005) Functional Data Analysis, 2nd edn. Springer, New York. https:// doi. org/ 
10. 1007/ b98888

Ramsay J, Hooker G, Graves S (2009) Introduction to functional data analysis. In: Functional data analysis 
with R and MATLAB, Springer New York, pp 1–19, https:// doi. org/ 10. 1007/ 978-0- 387- 98185-7_1

Ramsay JO, Graves S, Hooker G (2022) fda: Functional data analysis. , R package version 6.0.3 https:// 
CRAN.R- proje ct. org/ packa ge= fda

Taiwo Ojo O, Lillo R, Fernandez Anta A (2021) fdaoutlier: Outlier detection tools for functional data 
analysis. R package version 0.2.0 https:// CRAN.R- proje ct. org/ packa ge= fdaou tlier,

Therneau T, Atkinson B (2019) rpart: Recursive partitioning and regression trees., R package version 
4.1-15 https:// CRAN.R- proje ct. org/ packa ge= rpart

Yu Y, Lambert D (1999) Fitting trees to functional data, with an application to time-of-day patterns. J 
Comput Graph Stat 8(4):749–762. https:// doi. org/ 10. 1080/ 10618 600. 1999. 10474 847

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1007/b98888
https://doi.org/10.1007/b98888
https://doi.org/10.1007/978-0-387-98185-7_1
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fdaoutlier
https://CRAN.R-project.org/package=rpart
https://doi.org/10.1080/10618600.1999.10474847


Supplementary Material 

“Combining unsupervised and supervised learning techniques for enhancing the performance of 

functional data classifiers” 

 



  



  



 

 

 

 



 

 

 

 



 


	Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers
	Abstract
	1 Introduction
	2 Material and methods
	2.1 Functional data representation
	2.2 Unsupervised and supervised classification in the FDA context
	2.2.1 The functional K-means (FKM)
	2.2.2 The functional K-NN (FKNN) and functional random forest (FRF)

	2.3 The “clustering and train” (C &T) method

	3 Applications and results
	3.1 Application to the ECG200 dataset
	3.2 Simulation study

	4 Discussion and conclusions
	References


