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Résumé

Ce mémoire traite l'intégration dynamique des opérations de gestion des stocks et du transport

avec la présence d'un évènement perturbateur, qui est la livraison urgente sur appel impré-

vue. En s'inspirant du cadre général de l'industrie énergétique et la distribution de l'huile

à chau�age en particulier, après une revue de littérature exhaustive des problèmes de tour-

nées de véhicules dynamiques et stockage-routage, nous introduisons une nouvelle variante qui

cadre le problème dynamique de stockage-routage avec livraisons sur appel. Notre démarche

de traitement s'est devisée en deux grandes étapes. Une première étape, statique et déter-

ministe, s'est focalisée sur la description et la formulation mathématique du problème en se

basant sur la programmation linéaire mixte et une résolution exacte à travers l'algorithme de

branch-and-cut. Pour le besoin de l'intégration dynamique des livraisons incertaines sur appel

dans un temps d'exécution raisonnable, une deuxième étape dynamique s'est concentrée sur

le développement d'une heuristique basée sur la recherche tabou avec la con�guration de deux

politiques dynamiques de contrôle qui étudient les possibilités d'insérer les visites dynamiques

soit dans la route en cours d'exécution ou dans celle de la période suivante dans le cas échéant.

72 instances ont été générées, et des analyses ont été menées sur di�érents facteurs qui peuvent

in�uencer le taux de service des clients dynamiques aussi que les coûts d'opération.

Mots clés: problème de routage-stockage; problème de tournées de véhicules dynamiques;

livraisons sur appel; politiques de contrôle dynamiques.
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Abstract

This thesis deals with the dynamic integration of inventory management and transportation

operations with the uncertain event of unplanned deliveries following urgent calls. Inspired by

the general framework of the energy industry and the distribution of heating oil, in particular,

a comprehensive literature review of both problems of dynamic vehicle routing and inventory-

routing are conducted. We then introduce a new variant, called the dynamic inventory-routing

problem with customer requests. Our solution approach has been divided into two main steps.

A static and deterministic �rst step focused on the mathematical description and formulation

of the problem based on a mixed-integer programming model and the development of an

exact solution approach through a branch and cut algorithm. Then, to dynamically integrate

uncertain on-call deliveries in a reasonable execution time, a second dynamic step is established

to develop a heuristic, based on tabu search, with the con�guration of two dynamic control

policies that consider the possibilities of inserting dynamic visits either in the route under

the execution or in that of the following period. 72 instances are generated, and analyses are

conducted on various factors that can in�uence the service level for dynamic customers and

operation costs.

Keywords: Inventory routing problem; dynamic vehicle routing problem; dynamic customer

requests; dynamic policies.
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Avant-propos

Ce travail de recherche porte sur l'optimisation dynamique de l'activité de distribution de

l'huile à chau�age et a comme principale contribution un article scienti�que intitulé � Dynamic

inventory routing problem with customer requests�.

Les coauteurs de cet article ont contribué à ce travail à travers leur expertise, leurs propositions

avisées et leur support continu pour l'accomplissement de l'article ainsi que du mémoire. Les

coauteurs sont :

• Maryam Darvish, Professeure adjointe

Département d'opérations et systèmes de décision, FSA ULaval

• Jacques Renaud, Professeur titulaire
Département d'opérations et systèmes de décision, FSA ULaval

A titre de premier auteur, j'ai réalisé cet article en e�ectuant la revue de littérature, tous les

tests préliminaires et les analyses des résultats, ainsi que sa rédaction complète.

L'article sera éventuellement soumis pour publication.
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Introduction générale

L'industrie énergétique contribue directement au développement de l'économie canadienne en

représentant plus de 10% du produit intérieur brut (PIB) en 2018, tout en produisant, trans-

formant et distribuant di�érents produits énergétiques (Gouvernement.CA, 2020). Ce secteur

présente la particularité de l'étendue de sa chaîne de valeur ainsi que la complexité de son

réseau d'intervenants. Dans ce contexte de gestion décentralisée des activités, les entreprises

÷uvrant dans ce domaine font face à plusieurs dé�s à savoir la �uctuation des prix du pétrole

brut, la �uctuation de la demande avec les pics hivernaux (le chau�age des locaux a représenté

64% de la consommation énergétique résiduelle annuelle des québécois en 2016) (Whitmore

and Pineau, 2018), et les limites de capacité de stockage surtout au niveau de l'activité de

distribution du pétrole ra�né ou gaz liquide aux consommateurs �naux (une capacité qui ne

dépasse pas un maximum de l'équivalent de deux jours du pic de la demande) (Whitmore and

Pineau, 2018). En prenant l'exemple du propane, les grands distributeurs s'approvisionnent

directement des terminaux à travers la voie ferrée ou routière.

Quoique les capacités de stockage soient toujours réduites à cause des coûts élevés d'instal-

lation, ces distributeurs, disposent généralement de leurs propres espaces et installations de

stockage qui comportent des grands réservoirs à partir desquels les camions-citernes de livrai-

son sont remplis. Cette dépendance au transport routier ou ferroviaire rend la distribution en

aval particulièrement vulnérable aux retards d'approvisionnement ou de livraison aux clients

�naux étant donné que la neige peut bloquer ou ralentir l'accès aux terminaux, aux espaces

de stockage et aussi aux localisations des utilisateurs �naux (NEB, 2014).

Ces fournisseurs énergétiques se chargent aussi de surveiller les niveaux des stocks dans les ré-

servoirs de leurs clients et s'assurent de leur réapprovisionnement en cas de risque de rupture.

Avec le progrès technologique, certains fournisseurs investissent dans l'installation de réser-

voirs intelligents avec des capteurs qui permettent le suivi en temps réel de la consommation

de leurs clients (Superior, 2021). Ce genre d'activité est généralement géré par des contrats à

prix �xes qui englobent les frais de location ou achat des réservoirs ainsi que les opérations oc-

casionnelles de réapprovisionnement (CAA-Québec, 2021). Ce genre de fournisseur gère aussi

une autre catégorie de clients qui préfèrent des livraisons sur appel et des paiements au prix

de détail courant lors du remplissage du réservoir. À ce niveau, ces distributeurs font face

aussi à d'autres dé�s de gestion de la demande incertaine et de livraisons dynamiques sur
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appel. Quoique le changement d'un fournisseur à un autre du même secteur soit assez rare vu

les frais d'installation et les restrictions contractuelles, tout refus de répondre à une demande

imprévue, pourra engendrer l'insatisfaction des clients, et leur désintérêt pour cette alterna-

tive énergétique moins polluante et moins coûteuse face à l'électricité et au gaz naturel (NEB,

2014).

La problématique étudiée

Dans ce mémoire, nous nous focalisons sur le dernier maillon de la chaîne de valeur énergé-

tique, tout en mettant le point sur l'activité de distribution de l'huile de chau�age ou tout

autre type de produit énergétique liquide qui nécessite la disponibilité de réservoirs de sto-

ckage chez les clients. Ceci se concrétise en réalité par les activités de réapprovisionnement des

stations-service ou les réservoirs positionnés aux locaux résidentiels, commerciaux ou institu-

tionnels.

Pour garder un certain niveau de compétitivité, l'intégration logistique et le partage d'infor-

mation sont parmi les piliers les plus primordiaux dans ce domaine. Quoique l'intégration des

activités de stockage et routage a été bien adoptée dans la gestion des �ux de distribution

énergétique, les mécanismes de prise de décision de la logistique traditionnelle se sont toujours

basés sur la condition de la disponibilité d'une information complète pour garantir l'e�cacité

des résultats. L'intégration des activités de gestion des stocks et du transport fait toujours

référence en littérature au problème du stockage-routage ou Inventory Routing Problem (IRP).

Tout en présumant que tous les paramètres du problème sont déterministes et statiques, la

version classique de l'IRP vise la minimisation des coûts communs de stockage et transport.

Face à une réalité bien marquée par l'incertitude et le dynamisme, le plani�cateur se trouve

contraint par le temps et aura besoin toujours d'avoir une solution rapide du nouveau pro-

blème au moment d'apparition des nouvelles informations, ainsi que la possibilité de tester

des scénarios avant de choisir l'action à entreprendre (Psaraftis, 1988).

La motivation de ce travail consiste ainsi à proposer un outil qui permettra d'adapter ce sys-

tème de stockage-routage aux nouveaux besoins dynamiques et incertains de la livraison sur

appel tout en gardant un certain équilibre avec les besoins engendrés par le mécanisme de

réapprovisionnement intégré.

Dans ce contexte dynamique d'apparition de nouveaux clients lors des livraisons, nous traite-

rons plus précisément les questions de recherche suivantes :

• Comment intégrer la livraison sur appel dans le contexte de l'IRP,

• Quelle approche adopter pour pouvoir prendre en compte l'arrivée incertaine et dyna-

mique des appels des clients,

• Quelles politiques de contrôle sont adéquates pour la gestion des appels dynamiques

des clients dans le contexte de l'IRP,

• Quels impacts apporte l'intégration des appels dynamiques des clients et la considéra-
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tion de leurs taux de service sur l'e�cacité économique du problème.

Méthodologie

A�n de traiter ce problème, et apporter des éléments de réponse aux questions de recherche,

nous allons tout d'abord e�ectuer une revue de littérature qui permettra de positionner notre

problème dans la littérature scienti�que étant donné qu'il présente la particularité de combi-

ner deux sous-problèmes qui sont connus et qui font partie des deux familles de tournées de

véhicules dynamiques (Dynamic Vehicle Routing Problem-DVRP) et l'IRP.

Ensuite, nous allons proposer deux versions de notre problème. Une première version déter-

ministe et statique sera présentée, qui suppose la présence d'une information complète sur les

périodes d'appel et les quantités à commander par les clients dynamiques. Ceci se concrétise

par la proposition d'une formulation mathématique et sa résolution sur le solveur CPLEX en

utilisant des instances tirées de la littérature et adaptées aux spéci�cités de notre problème.

Ceci sera suivi par une deuxième version dynamique qui se base sur le développement d'une

heuristique et deux politiques de contrôle pour l'intégration des appels dynamiques des clients.

Après une étape de test de performance de notre heuristique, nous allons proposer une analyse

de sensibilité à travers l'application de notre heuristique ainsi que les politiques de contrôle

sur 72 instances générées. Cette analyse de sensibilité servira par la suite à analyser l'impact

du choix de la politique de contrôle ainsi que d'autres facteurs sur la qualité des solutions.

Organisation du mémoire

Dans ce qui suit, nous proposons dans le Chapitre 1 une étude bibliographique exhaustive sur

le DVRP qui va mener à proposer une taxonomie des di�érentes caractéristiques dynamiques

des problèmes de tournées de véhicules étudiées jusqu'à ce jour en littérature. Ce chapitre

proposera aussi une classi�cation des méthodes de résolution développées suivant les critères de

la qualité de l'information disponible (déterministe ou stochastique) et l'approche de résolution

(hors ligne ou en ligne). Dans le Chapitre 2, et suite à la présentation d'une brève revue de

littérature de l'IRP, nous introduisons notre problème étudié et ses particularités qui seront

par la suite suivis par la présentation de nos approches de résolution dans les deux versions,

statique et dynamique. Après une analyse des résultats nous proposons dans le dernier chapitre

une conclusion générale qui englobe une synthèse de tout le travail, les contributions, ainsi

que des pistes de recherche futures sur le sujet.
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Chapitre 1

Models and solution algorithms for

real-time vehicle routing problems

1.1 Résumé

Le développement des technologies de l'information a permis de suivre, de traiter et de par-

tager l'information changeante en temps réel. À la suite de ces progrès technologiques, il y

a eu un intérêt accru à adopter la version dynamique du problème de tournées de véhicules

au cours des dernières années. Dans ce travail, nous présentons une taxonomie des caracté-

ristiques dynamiques des problèmes de routage récemment étudiés. Les caractéristiques phy-

siques, temporelles, spatiales et de plani�cation sont incluses. Deuxièmement, nous proposons

une classi�cation des modèles et des méthodes de résolution utilisées en se basant sur deux

critères : l'approche de résolution et la qualité de l'information.

1.2 Abstract

The development of information technologies has made it possible to track, process, and share

changing information in real-time. As a result of this technological advances in recent years,

there has been a growing interest in adopting the dynamic version of the vehicle routing prob-

lem. In this work, �rst, we present a taxonomy of dynamic characteristics of recently studied

routing problems. Physical, temporal, spatial, and planning characteristics are considered.

Second, we propose a classi�cation of the applied models and solution methods based on two

criteria: solution approach and information quality.

1.3 Introduction

To cope with the ever-changing business environment, companies need to be more responsive

and �exible. With the development of information and communications technologies (ICTs),
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a growing research interest has been observed over the past three decades in treating the

dynamism of distribution challenges. The dynamic vehicle routing problem (DVRP), as a

variant of the vehicle routing problem (VRP) relies on dynamic or real-time information. This

variant covers several important applications, namely pick-up and delivery, waste collection,

dial-a-ride, ride-sharing taxis, ambulance logistics, and winter gritting. However, unlike the

classic VRP, the dynamic version requires real-time information inputs, e.g., customer demand,

location, travel time, vehicle positions, tra�c status, etc., and advanced communication tools

for drivers and planners.

To deepen the understanding of the concepts, we refer the readers to previously published

literature reviews [see (Psaraftis, 1995; Gendreau et al., 1996; Ghiani et al., 2003; Pillac et al.,

2013; Psaraftis et al., 2016; Ritzinger et al., 2016)] which provide insights on di�erences bet-

ween the classic VRP and its dynamic version, the degree of dynamism, and the value of

information.

This chapter aims to review recent models and algorithms proposed for the DVRP. Our purpose

is not to include an exhaustive list of all the techniques developed, but to focus on the main

trends in the literature and to identify avenues for future research.

The contributions of this work are mainly twofold. First, we propose a taxonomy of the DVRP.

Second, we classify the solution methods with regard to two criteria: the quality of the available

information and the solution approach adopted.

The remainder of this chapter is organized as follows: Section 1.4 presents the concepts, de�-

nitions, and taxonomy of the main characteristics considered in the DVRP literature for the

last three decades. Section 1.5 focuses on the solution methods found in the literature. The

goal is to propose a classi�cation that can be used as a guideline for the choice of the solution

algorithm. Our concluding remarks are given in Section 1.6 where we also enumerate a list of

potential research avenues.

1.4 De�nitions and taxonomy

We �rst present the DVRP's de�nition in Section 1.4.1. Then, we list its characteristics in

Section 1.4.2.

1.4.1 De�nition

The DVRP, also known in the literature as the real-time or online routing problem, is a variant

of the classic VRP. It owes its roots to a level of uncertainty and information changing over

time. For instance, in discrete-time planning, solving this problem optimally during a given

planning period does not guarantee the robustness of this solution for the following periods.

This is due to the inherent dynamism in the decision environment.
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Dealing with any stochastic/dynamic problem, the main concerns are: What form of change

is expected, When it may happen, and How accurate real-time decisions can be made. This

section focuses on answering the �rst two questions, and Section 1.5 is devoted to the third

one.

New information may a�ect all inputs (or parameters) of the problem at any planning period.

The widely discussed sources of uncertainty in the literature are mainly the volatility of the

demand, such as variations in the number of unserved customers (Gendreau et al., 2006),

customers pick-up/delivery time windows (Srour et al., 2018; Voccia et al., 2019), or customers

locations (Reyes et al., 2017). Another form of uncertainty concerns the transition in supply,

manifested by the change in the number of available vehicles (Angelelli et al., 2016), their

speeds, capacities (Archetti et al., 2020), and locations (Bertsimas et al., 2019). Less attention

has been given to uncertainty due to external factors. These changes are limited to, for example,

variations in travel times (Fleischmann et al., 2004) and arrival rate of customers' requests

(Ichoua et al., 2006) (with little consideration of their temporal-spatial density and disparity).

This is with the intention to indirectly capture some impacts of the congestion and peak tra�c

periods (Ghiani et al., 2009; Bopardikar and Srivastava, 2019).

To date, many variants of the DVRP exist in the literature. Each problem is viewed as a

speci�c case by taking into account a di�erent combination of parameters and assumptions,

which can be grouped into four main categories: physical, temporal, location, and planning

characteristics. In what follows, we provide a summary of research conducted for each category.

1.4.2 Characteristics

Physical characteristics This category covers the vehicle's characteristics, the depot, and

products or services provided. Di�erent combinations of these characteristics may generate

various problems with speci�c challenges. Angelelli et al. (2016) introduced the stochastic dy-

namic traveling purchaser problem (SDTPP) in the objective to optimize procurement-routing

decisions of a purchaser visiting di�erent markets, where the volume of available products de-

creases over time. This problem arises in the daily procurement of multiple products available

in limited quantities on several markets, as perishable food in restaurants or locally purchased

spare parts for industrial companies. As with multiple products, routes planners may deal

with various services such as installing, repairing or emergency services. This is echoed in

the literature under di�erent categories of problems, such as the dynamic traveling repairman

problem (DTRP) (Bertsimas and Van-Ryzin, 1989). The objective is to minimize the waiting

time of upcoming calls for service until they are ful�lled. In this context, the planner faces

dynamic arrival of customers' requests that need to be assigned to a speci�c vehicle according

to di�erent criteria, such as locations of customers and vehicles. In such cases, vehicles are

usually heterogeneous concerning the available equipment, capacity, or competency level of

the technician assigned to it.
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As in static routing problems, the vehicle capacity in DVRPs can be considered unlimited,

limited to a certain prede�ned amount, or shared. The shared capacity is widely adopted in

city logistics problems assuming door-to-door deliveries as ride-sharing systems. By matching

drivers and riders to the same itineraries, the objectives are to reduce trip expenses, maximize

vehicle occupation, and decrease gas emissions. The dynamic version considers updating sys-

tem inputs such as drivers and riders status and their current positions (Agatz et al., 2012;

Homsi et al., 2021).

Temporal characteristics The time dimension is crucial in DVRPs. It was manifested in

the DVRP literature by incorporating temporal parameters in objective functions and/or as

part of the studied problem's constraints. This category covers various types of time windows.

Regarding VRPs with time windows (VRPTW), customers' time windows are common in a

variety of real-world applications, including school bus routing, repairman scheduling, and

e-commerce distribution. As a result, the customer's time window restricts the earliest and

latest times to begin and end service at the customer's location (Cordeau et al., 2001). Hard

time windows refer to cases when the servicing vehicle is not allowed to violate time window

constraints, such as starting earlier or �nishing the service later. However, soft or mixed time

windows, consider the possibility of failing to meet at least one of them.

Due to the incorporation of real-time customer requests occurring during routes execution, the

VRPTW in its dynamic version (DVRPTW) appears to be more di�cult to solve. Soft time

constraints are more commonly used in this context, with time-dependent penalties re�ecting

customer dissatisfaction (Barkaoui et al., 2015). Time windows can also refer to other contexts,

such as dynamic pick-up and delivery problems (DPDP), in which the planner is confronted

with the dynamic arrival of customer requests that include pick-up and drop-o� locations as

well as preferred pick-up time. To group them, and assuming some customer �exibility, each

pick-up time is then assigned to a time window that speci�es the earliest and latest time to

complete the pick-up (Ichoua et al., 2006; Srour et al., 2018).

The depot opening time window is another type of time constraint. Routing decisions in the

case of same-day delivery problems take into account a departure from and a return to the de-

pot within a predetermined time window. In dynamic situations, a mixed time window is more

commonly used. When a new customer request is received, it can be assigned to an available

vehicle in the depot. The charged vehicle has the option of leaving the depot immediately or

waiting for potential incoming requests. However, once leaving, it must return to the depot

before the deadline (Voccia et al., 2019).

Other temporal parameters have become more relevant with the development of DVRPs. We

recognize that travel, on-site service, and waiting times explicitly demonstrate the temporal

uncertainty encountered when dealing with DVRPs, mainly when service levels and response

time to changes are considered (Ichoua et al., 2006; Ferrucci et al., 2013; Srour et al., 2018).

This is because, in reality, at least one of the previously mentioned parameters remains unk-
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nown (or imprecisely known) until operations are performed (Srour et al., 2018). To address

temporal uncertainty, time-dependent distributions and/or stochastic methods are usually

adopted (Ritzinger et al., 2016). More details on solution methods are presented in Section

1.5.

Location characteristics The most common customer locations handled by VRPs are the

customer addresses from which they require pick-up, delivery, or both services. However, in

reality, the customer's location may change over time. For example, in last-mile deliveries, a

customer's absence at the delivery time results in multiple visits following those missed deli-

veries and ine�cient delivery systems due to a signi�cant increase in the number of kilometers

traveled, particularly in residential areas. To accommodate changes in customer location, the

VRP with roaming delivery locations is introduced to promote vehicle trunk deliveries appli-

cations instead of home deliveries. This variant takes into account a customer's geographical

pro�le rather than an exact and unique location. The geographical pro�le speci�es the appro-

priate time and place for a delivery based on a set of time-dependent locations that correspond

to time windows during which the customer's vehicle remains in the same location (Reyes et al.,

2017).

Similarly, other locations were considered in di�erent studied DVRPs, such as waiting loca-

tions, also known in the literature as � idle points�. They are usually adopted in highly dynamic

problems, such as DPDP and DTRP, for daily delivery management. First, customer locations

are aggregated into geographical zones, and the planning horizon is divided into time periods

within a day. Waiting points can then be strategically de�ned based on the stochastic arrival

rates of customer requests corresponding to each zone. When a vehicle arrives at a customer

location before its time window, it can be redirected to an appropriate waiting location to serve

a potential customer in the meantime (Ichoua et al., 2006). Other types of locations arise from

recourse actions such as refueling locations in the event of a vehicle breakdown (Bertsimas and

Van-Ryzin, 1991) and waste disposal stations where demand is realized only when the vehicle

arrives at the point of collection (Pillac et al., 2018; Bopardikar and Srivastava, 2019).

Planning characteristics The planning task in DVRPs depends on several criteria: the

planning horizon, the available information, the degree of dynamism of the problem, the arrival

rate of customers' requests, and strategies applied. Assuming generally discrete-time planning,

researchers consider �nite, in�nite, or double (short and long-term) planning horizon. In the

literature, the double planning horizon is discussed in two ways. Psaraftis (1988) used a long-

term rolling horizon by dynamically rede�ning a short-term horizon. On the other hand,

Mitrovic-Minic et al. (2004) used a solution method with a di�erent objective for each planning

horizon. On the short-term planning horizon, the total distance is minimized. However, the

goal of the long-term planning horizon is to minimize a linear function of distance and time.

The availability and quality of information are also critical factors in�uencing the robustness

of dynamic schedules. It is possible that some parameters are available just locally. In the case
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of waste collection, for example, the exact waste level may be revealed only when the vehicle

arrives at the tank's location. However, as technology advances, information becomes more

widely available, allowing planners to obtain global and continuous data on inventory levels,

tra�c conditions, etc. Furthermore, during route planning and execution, data such as vehicle

number and capacity may be deterministic and certain. Inventory levels and demand could

be stochastic and derived from forecasts or prede�ned distribution functions. However, as the

plan is carried out, such stochastic input must be revised and updated (Psaraftis, 1995).

Any DVRP can be classi�ed into three categories based on the degree of dynamism proposed by

Larsen et al. (2007): low, medium, and highly dynamic. A �rst E�ective Degree of Dynamism

is calculated based on four factors: the number of real-time requests and their arrival times,

the total number of requests, and the planning horizon. This metric assesses the degree of

dynamism based on the time distribution of dynamic request arrivals. Larsen et al. (2007)

adapted this measure for the DVRPTW by incorporating time windows in such a way that

they re�ect the required reaction time. To this extent, the more dynamic the problem is, the

more crucial anticipation and reaction time become.

In response to the need for quick reaction times and anticipation tools, many of strategies have

been developed in the literature, including the waiting strategy, deviation strategy, assignment

and redeployment strategy and rejection strategy.

The waiting strategy can be adapted, depending on the availability of certain information,

such as aggregating customer locations and distribution areas into geographic zones, splitting

the planning horizon into time intervals, and estimating the arrival rate of customer requests

for each time interval and geographic zone combination. It is common to assume in the DVRP

literature that the arrival rate of customers' requests follows an independent Poisson process

for each zone (Ichoua et al., 2006). With all of those details, as well as a real-time track

of vehicle positions, the planner may be able to determine whether it is better to require a

vehicle to wait in its current position rather than directing it to its next planned destination

belonging to another zone if it seems that new customer requests are likely to appear in

the neighborhood. It is also worth noting that the e�ectiveness of this strategy depends on

determining the appropriate to wait time. If it is too short, it may not be possible for forecasted

requests to be ful�lled in time. If it is too long, the vehicle may remain waiting for an extended

period of time, allowing service requests in other zones to accumulate (Ichoua et al., 2006).

Unlike the waiting strategy, the deviation strategy can be used in extremely dynamic situations

where the vehicle can be directed to a new destination to serve an immediate request, even if

it is already on its way to a planned one (Ichoua et al., 2000). In this context, Gendreau et al.

(2001) proposed a redeployment strategy in the emergency ambulances dispatching problem,

where reaction time is strongly related to saving lives. Each patient call is rated based on its

urgency, which is determined by the patient's medical condition. Then, vehicles are assigned to

cover all available demand positions within a 15-minute radius and the most urgent requests

within a 7-minute radius. As a result, the redeployment strategy was designed to relocate
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ambulances in such a way that if a vehicle is already assigned to a less urgent request, it can

be reassigned to an urgent one if a set of prede�ned criteria is met.

A summary of the previous characteristics is presented in Table 1.1. The taxonomy combines

the four families of location, physical, temporal, and planning characteristics. Each column in

this table presents a distinct characteristic for each corresponding family.

1.5 Models and methods

First, we present di�erent models and methods applied to solve DVRPs. Then, we classify

them according to the solution approach and the quality of available information.

1.5.1 Modelling concerns

Although research on the DVRP is rapidly growing, the main emphasis has been on designing

more competitive algorithms in terms of performance and solution quality (Ulmer et al.,

2020). In the absence of a modeling framework and benchmark, we can quickly recognize

diversi�ed modeling approaches dealing with various constraints, variables, objective functions,

and approximate solution methods. All of which complicates any attempt to compare results

and limit the role of mathematical models provided to the following axes:

• a tool to formalize the description of the problem under study,

• a tool to compare an approximate solution of the dynamic problem against the optimal

solution of the static and deterministic version,

• a tool to allow identi�cation of an initial solution for a metaheuristic solution method.

Moreover, the widely used word dynamic in the literature creates confusion among a dynamic

problem, a dynamic model, and a dynamic application. A problem is considered dynamic if

at least one of its parameters is de�ned as a function of time. Mainly, there are two categories

of dynamic problems: dynamic data problems and time-dependent data problems (Powell

et al., 1995). In the �rst category, we tackle problems where the information changes during

the planning horizon, such as immediate customer requests or tra�c conditions. The second

category relies on known data, which is also a function of time, such as time-dependent VRPs.

A model is dynamic when it explicitly treats the change of information over time based on the

system's states and interactions between them during the decision process. Finally, a dynamic

application refers to a static model which is resolved repeatedly as the information is revealed

(Powell et al., 1995).

1.5.2 Solution approaches

After de�ning the problem, choosing the right solution approach is a crucial task. This selection

mainly relies on the quality of the available data (deterministic or stochastic) and the choice

between online or o�ine solution approaches.
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Dynamic and deterministic information

In the absence of any stochastic information, re-optimization has been the most widely used

approach to the DVRP. This approach has the bene�t of adopting the already mastered models

and methods applied in static routing problems (Ulmer et al., 2020). It was introduced follo-

wing two di�erent solution processes: periodic re-optimization or continuous re-optimization

(Pillac et al., 2013).

Periodic re-optimization Periodic re-optimization is based on splitting the time horizon

into k epochs uniformly (o�ine re-optimization) or randomly by immediate events (online

re-optimization). In the o�ine case, at the beginning of each epoch, an update of the current

system state (current vehicle locations, assigned, not yet served, or unassigned customers,

etc.) is carried out. According to the new system state, we face a static problem similar to the

classic VRP. Over the �rst epoch, the routes resulting from solving the static problem will be

applied. Any update will not be recognized until the start of the next epoch. This approach is

more suited for problems with a low degree of dynamism since it tends to accumulate customer

requests until the end of each epoch to achieve more �exibility against longer reaction times

(Larsen et al., 2007; Pillac et al., 2013). Psaraftis (1988) applied a periodic re-optimization

heuristic for a dynamic routing problem of cargo ships under military emergency. In such

situations of military mobilization, the objective is to allocate cargoes to ships so as to ensure

that cargoes arrive at their destination as planned in a certain time window, respect the

speci�city of each cargo, ship and port, avoid congestion in ports, and ensure the maximal

utilization of ships. To consider the dynamic change in inputs, a prede�ned system updating

parameters are set, in a way, in each epoch of time, the system inputs are updated and a

re-optimization process is launched.

By addressing changes immediately, the second approach, the online re-optimization, is more

reactive. In fact, a re-optimization process is launched by the arrival of any new customer

request, and a static VRP is solved according to the new system state. In order to avoid any

costly insertions, this approach usually involves a rejection strategy (Gendreau et al., 1999).

Continuous re-optimization The continuous re-optimization is appropriate for medium to

high dynamic problems with more limited time windows and an important proportion of real-

time requests compared to the total number of customers. Bank ATM terminal repair (Van-

Anholt et al., 2016; Van-Der-Heide et al., 2020) and emergency services, such as ambulance

dispatching (Gendreau et al., 2001), are examples of these categories (Larsen et al., 2007). In

these contexts, the time between two successive events should be best exploited. Thus, the

optimization process runs continuously and saves the best solutions in an adaptive memory for

potential system updates. It stops with each new event by adding a new customer request in

the set of unserved customers or more simply by the end of on-site service. A new problem is

then identi�ed, and a solution process is restarted with the appropriate initial solution already
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saved.

In these three re-optimization cases (o�ine, online and continuous re-optimization), a linear

programming model is implemented by considering the particularities of the problem studied

and is likely to be solved by the methods developed previously for the static VRP (Psaraf-

tis, 1988). The optimal solution is often limited to small instances, particularly considering

the execution time challenge. Thus, besides applying the column generation method (Chen

and Xu, 2006; Hvattum et al., 2007), the use of a combination of construction and improve-

ment heuristics, as well as local search metaheuristics are quite common (Ghiani et al., 2003;

Montemanni et al., 2005; Gendreau et al., 2006; Ritzinger and Puchinger, 2013), and more

precisely, the parallel implementation of the tabu search (Gendreau et al., 1999; Ozbaygin and

Savelsbergh, 2019).

Dynamic and stochastic information

In the presence of stochastic information, the dynamic problem can be handled through histo-

rical or probabilistic data. By focusing on these data in the solution process, two approaches

have been developed in the literature: o�ine or online stochastic and dynamic planning.

O�ine stochastic & dynamic planning It is a proactive approach (o�ine), often referred

to as the a priori approach. The decision process begins at period 0 before any changes in

inputs. It is mainly based on listing possible change scenarios using stochastic information to

complete the routing plans appropriate to each scenario. These plans will then be executed

(but without any update) as the information changes in real-time.

The widely used formulations for the proactive decision processes are the Markov decision

process (MDP) and the stochastic-dynamic programming, where initial and �nal states, tran-

sitions, post-decision state and decision policies are de�ned. To overcome the dimensionality

issues, approximate solution methods are developed based on the rollout algorithm (Ulmer

et al., 2019), value function approximation with a lookup table (Powell, 2007), and dedicated

algorithms as learning algorithms (Klapp et al., 2018; Ulmer et al., 2019).

Online stochastic & dynamic planning It is referred to as the a-posteriori or reactive

(online) approach. The solution process is initiated every time the information is updated. A

solution quality improvement process will proceed in the lapse of time between two events

(this depends on the method used, the degree of dynamism, and mainly the reaction time

required).

For the reactive process decision, the modeling approaches developed in the literature are

multi-stage stochastic modeling approach (Angelelli et al., 2016), multi-scenario approach

(Powell, 2007), sampling approach (Bent and Van-Hentenryck, 2004; Pillac et al., 2012, 2013),

mixed-integer modeling approach (Liu, 2019; Carvalho et al., 2020) and queuing approach
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(Zhang et al., 2018). Regarding the solution methods, a wide range of speci�c heuristics was

developed as the center of gravity heuristic, �xed routes, online expectation algorithm, branch-

and-regret heuristic (Thomas, 2007; Van-Hentenryck et al., 2010; Ghiani et al., 2012; Ritzinger

et al., 2016). Moreover, a thread of adequate local search and insertion methods are developed

as dynamic stochastic variable neighborhood search (DSVNS) (Gutjahr et al., 2007), adaptive

VNS, and anticipatory insertion heuristics (Hvattum et al., 2007; Azi et al., 2012; Ghiani et al.,

2012; Pillac et al., 2012).

A summary of our proposed classi�cation for solution methods is presented in Table 1.2. The

rows mention the two solution approaches adopted in literature which are either the online or

the o�ine approach. The columns show the quality of information that can be deterministic or

stochastic. For each combination of solution approach and quality of information, we indicate

the models and solution methods generally applied in the literature.
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1.6 Conclusions

Even though research on dynamic routing problems has grown in recent years, it lacks a

guiding framework that summarizes all characteristics and matches the problem's solution

approach to the appropriate solution method to use. This di�culty arises �rst from confusion

of how the term dynamic is used in the literature. As mentioned in Section 1.5.1, the various

interpretations result in multiple perspectives on the same problem and, as a result, multiple

solution methods. Second, each problem addressed in the literature considers di�erent parti-

cularities and characteristics, increasing subjectivity and making it di�cult to generalize one's

approach to solve other problems. In terms of solution methods, we realized that the use of

re-optimization-based-solution approach in the context of low dynamic problems is commonly

used. Such a solution approach allows the application of static solution methods in a dynamic

context while maintaining the quality of the results. However, as the problem becomes more

dynamic, methods used to solve it diverge, making it more challenging to adapt an exact

solution approach in a context where reaction time to change is crucial.

In this chapter, we attempted to present a general and precise literature review for real-time

VRPs in order to enhance future research in this area by proposing a taxonomy of the main

dynamic characteristics considered in recent research and a classi�cation of solution methods

based on the adopted solution approach and the quality of the available information. Many

research and ideas were already developed, but a wide range of research avenues have yet to

be explored. Below we mention some of them:

• Stochastic and dynamic problems: More attention should be paid to stochastic and

dynamic problems in the literature. The most common characteristics used in recent

studies are dynamic demand or stochastic customer requests assumed to follow a Pois-

son process. Travel times, for example, have always been important in transportation

problems, and taking into account real-time travel time changes can make dynamic and

stochastic problems more realistic.

• Environmental issues: Considering greenhouse gas emissions reduction goals by

adapting speed as a decision variable and adding congestion costs to in�uence the

route choice.

• Disruption management: Considering the cases of simultaneous events of disruption,
for example, vehicle breakdown and product unavailability.

16



Chapitre 2

Dynamic inventory routing problem

with customer requests

2.1 Résumé

Ce chapitre traite l'intégration des décisions dynamiques de routage-stockage dans le contexte

de l'industrie des produits pétroliers. Inspirés par une situation réelle d'une entreprise de dis-

tribution de l'huile à chau�age, nous introduisons le problème dynamique de routage-stockage

avec les appels des clients (DIRPCR) comme variante du problème bien connu de routage-

stockage (IRP). Plus précisément, nous considérons un fournisseur qui gère le réapprovision-

nement des réservoirs des clients réguliers et l'arrivée dynamique des demandes imprévues de

livraisons pour le même jour. Nous proposons une heuristique basée sur la recherche tabou

et deux politiques dynamiques pour intégrer les demandes urgentes imprévues sur un hori-

zon mobile. Les résultats de l'étude indiquent que cet algorithme fonctionne bien dans un

contexte dynamique. De plus, dans le cadre des di�érentes expérimentations menées, nous

avons présenté des recommandations pour d'autres recherches futures et pour des directives

managériales.

2.2 Abstract

This chapter addresses the integration of dynamic inventory-routing decisions in the context

of the petroleum industry. Inspired by a real-world case, we introduce the dynamic inventory

routing problem with customers' requests as a variant of the well-known inventory routing

problem. Speci�cally, we consider a supplier that manages the replenishment of regular cus-

tomers' tanks and the dynamic arrival of unplanned requests for same-day deliveries. We

propose a tabu search-based heuristic and two dynamic policies to integrate the incoming

requests in a rolling horizon manner. The results of the study indicate that this algorithm

performs well in a dynamic context. Also, based on di�erent experiments conducted, we
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present recommendations for further research avenues and provide managerial guidelines.

2.3 Introduction

The Oil Distribution Problem (ODP) is a real-world problem faced by companies active in

the petroleum products industry. They plan the distribution, monitoring, and replenishment

of oil or any liquid that needs to be consumed daily and stored in dedicated tanks directly

positioned in customers' locations. In addition to residential heating oil deliveries, we can also

address this problem by replenishing gas stations. Most researchers viewed the ODP as an

inventory routing problem (IRP) since the supplier handles the customer's inventory to avoid

any stock-outs. However, another stream of research ignores inventory costs and focuses only

on transportation planning. Therefore, they study the ODP as a multi-period vehicle routing

problem.

This work is motivated �rst by the social side of the oil distribution problem. In winter, distri-

buting heating oil or lique�ed natural gas is a life necessity, and any stock-out can put people's

lives in danger. Moreover, oil distribution is undoubtedly viewed as a second alternative for

electricity, but it is crucial to ensure energy equity between regions and o�er stability bet-

ween seasons. Thus, proposing decision making techniques to reduce oil distribution costs may

motivate companies to maintain providing this alternative. Although this problem has been

studied in the literature for almost three decades, there has always been a lack of research

considering more realistic assumptions. As a result, we will concentrate mainly on two points

in this chapter:

• A solution approach that handles urgent unplanned deliveries quickly by o�ering same-

day or next-day delivery. A quantity-dependent penalty will also be used to avoid

dynamic request rejection and to maximize service level in other ways.

• A sophisticated analysis will be conducted to investigate the e�ects of increasing pe-

nalty or opportunity cost, vehicle capacity, and customer dispersion on service levels

and operational costs in order to propose managerial recommendations to better serve

customers while maintaining e�ciency and competitivity.

Inspired by an actual oil distribution company, this work adopts an inventory routing approach

to solve the problem by introducing a new variant of the classic IRP to deal with the dynamic

arrival of customers' requests. By studying deterministic and dynamic versions of the problem,

our goal is to solve large instances of this problem e�ciently and quickly by appropriately

integrating the dynamic requests, using a heuristic approach and reactive policies.

The remainder of this chapter is organized as follows. Section 2.4 presents a literature review

on the most relevant papers related to the IRP. Section 2.5 introduces our variant of the IRP

and focuses on the description and formulation of the problem in its deterministic version.

Section 2.6 deals with the dynamic version of the problem by presenting the tabu search-

based algorithm and two dynamic policies to integrate urgent customers' requests. Section 2.7
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starts by enumerating the preliminary tests to evaluate the heuristic's performance and to set

its parameters. Next, we provide information on how instances are generated and present the

�nal results. Finally, Section 2.8 is dedicated to the concluding remarks, recommendations,

and potential research avenues.

2.4 Literature review

The literature on the IRP is broad. In what follows, we give a brief overview of relevant works.

For further classi�cations and extensive literature reviews, we refer the interested reader to

Andersson et al. (2010) and Coelho et al. (2014b). The classic version of the IRP aims to

minimize operation costs by assigning customers to delivery days of a prede�ned planning

horizon, allocating quantities to deliver according to an inventory holding policy and custo-

mers' consumption rates, to �nally generate the appropriate routes. Operation costs usually

include supplier and customer inventory holding and transportation costs. In some real-world

situations, the operational costs are reduced to only transportation costs, for example, when

the supplier and customer belong to the same company, or when the supplier deals directly

with �nal customers, e.g., heating oil distribution, waste collection, or vending machines re-

plenishment. The IRP is a tactical planning problem that aims to capture the e�ect of the

short-term decisions on long-term costs. Earlier research has focused on determining optimal

delivery days from which penalties or incentives are incurred in case a delivery is postponed

or advanced. In this context, Dror et al. (1985); Dror and Trudeau (1986) and Dror and Ball

(1987) proposed a two-step IRP with deterministic and stochastic consumption rates (with

normal distribution variations). After determining each customer's optimal delivery period in

accordance with the Order Up to level (OU) policy, the �rst step of the assignment divides

customers into mandatory and optional categories. Customers are considered mandatory when

they risk running out of stock if no delivery is planned on the current planning period, other-

wise they are considered optional. The second step, assuming the presence of a single truck,

optimizes the generated daily routes by solving a modi�ed Traveling Salesman Problem (TSP)

iteratively over the planning horizon with a constructive heuristic and an objective function

to minimize traveling costs including:

• a penalty cost in case of delivering a mandatory customer signi�cantly earlier than

the optimal delivery date (the goal here is to postpone the delivery of a mandatory

customer until the optimal delivery date, to consolidate deliveries),

• a bonus for delivering an optional customer before the planned delivery date (the goal

here is to encourage advancing the delivery of optional customers, if they are located

in a mandatory customer's neighborhood to avoid a costly delivery in the near future).

Considering inventory holding costs and di�erent inventory policies, Archetti et al. (2007) sol-

ved the IRP optimally with a branch-and-cut (B&C) algorithm. Experiments were conducted

to conclude that:
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(i) The saving in costs is more e�ective with a longer planning horizon due to reduced trans-

portation costs. With a longer planning horizon, more chances can appear to coordinate

and consolidate shipments,

(ii) The saving in costs can be improved by relaxing the constraints on the delivered quanti-

ties. More precisely, the widely used OU policy, despite its simplicity, appears to be rigid

and generates high inventory levels in some cases. Thus, applying other �exible policies

according to the speci�cities of the problem under study may be relevant.

Desaulniers et al. (2016) applied the maximum-level (ML) policy to an IRP with single sup-

plier, and known customers' consumption rates. By �xing an upper bound for the quantity to

deliver in each period, and an extreme route delivery pattern that takes into account full tank

re�lls with the possibility of a one-time partial re�ll during the planning horizon, the problem

was formulated as a mixed-integer program (MIP) with the objective to minimize the sum of

the traveling and inventory holding costs at the supplier and the customers. The holding costs

depend on the remaining inventory at the end of each period. The problem was solved with a

branch-price-and-cut algorithm applied to the benchmark instances proposed by Coelho and

Laporte (2014). They �nally concluded that the ML policy outperforms the OU and is more

�exible and challenging to solve.

Another research stream focused on managing stochastic demand by incorporating additional

costs of recourse actions in case of a planning mismatch. Trudeau and Dror (1992) presented an

IRP with demands that become known once the vehicle reaches the customer's location. Such

operations' e�ciency is measured by an average of delivered quantity per hour of distribution.

According to an estimated value of the demand, two sets of mandatory and optional customers

are generated for daily deliveries on a weekly planning horizon. The optional customers are

assigned according to their proximity to the mandatory ones. In case of a route failure (lack

of vehicle capacity), an emergency delivery service is performed to re�ll the tank and charge

a stock-out cost. Based on a single vehicle problem and to manage demand stochasticity and

transportation capacity violation, Coelho et al. (2014a) proposed two options for recourse

actions as follows: outsource direct deliveries for route failures caused by vehicle capacity

violation and lateral emergency transshipments between customers, in case a customer faces

a shortage. In both cases, the supplier incurs a distance and volume-dependent cost.

Less attention has been paid to dynamism in the context of the IRP. The literature mainly

assumes stochastic or random and stationary or non-stationary demands that change during

the planning horizon. Based on a set of known customers, di�erent approaches have been de-

veloped to balance dynamic demands and uncertainty with a focus on inventory management

e�ects (Roldán et al., 2016). Solyal� et al. (2012) proposed a robust optimization approach to

solve an IRP with dynamic uncertain demand and unknown probability distribution. Consi-

dering a stationary random demand Bertazzi et al. (2013) used dynamic programming to

model a stochastic IRP by minimizing the expected transportation, inventory and penalty
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costs and a hybrid rollout algorithm to solve it. Consequently, the literature on dynamic in-

ventory routing optimization remains rather scant. In fact, the dynamic parameter considered

on dynamic IRPs is mainly customer demand. For example, Brinkmann et al. (2020) discuss

the management of bike-sharing systems by dealing with stochastic and dynamic IRP. They

modeled the problem by using a Markov decision process to minimize the unmet demand

by relocating bikes between stations. Di�erent experiments highlighted the importance of the

coordination between anticipate and reactive actions in managing dynamic and stochastic sys-

tems. However, research on other dynamic parameters is limited. For example, Rahimi (2017)

introduced a perishable multi-commodity IRP with demand and tra�c condition variation.

He considered a bi-objective mathematical formulation by maximizing revenues against inven-

tory holding, ordering, and transportation costs on the one hand and reducing accident rates

with the produced noise emissions per vehicle on the other. He also proposed a heuristic to

solve the dynamic version of the problem according to a re-optimization process that considers

real-time updating of demand and tra�c condition.

The dynamic inventory routing problem (DIRP), as we present in this work, is a combination

of the vendor-managed inventory (VMI) and the dynamic vehicle routing problem (DVRP)

(see Figure 2.1). It is based on uncertain events that trigger changes. However, besides the

stochastic and/or dynamic demand, it is crucial to consider other parameters to handle DIRP

concerning more realistic situations. In this problem we deal, for example, with dynamic

transportation lead times due to changing tra�c conditions, and dynamic customer locations.

Speci�cally, in this work, we focus on the dynamic arrival of customers' requests.

Figure 2.1 � DIRP in relation to the VMI and the DVRP

2.5 Problem description and formulation

In this section, we introduce the dynamic inventory routing problem with customer requests

(DIRPCR) which is a new variant of the classic IRP by allowing the dynamic arrival of custo-

mer requests during the planning horizon. In Section 2.5.1, we present a detailed description

of the problem. Then, we propose a mathematical formulation for its deterministic version in

Section 2.5.2.

21



2.5.1 Problem description

The DIRPCR can be de�ned on an undirected graph (V,E) where V represents the set of

vertices, and E the set of weighted edges (i, j) relating pairs of vertices according to a non-

negative travel cost Cij . S is the set of visited nodes and E(S) = {(i, j) ∈ E|i ∈ S, j ∈ S}

The set V of vertices is composed of a node 0 representing the supplier and a subset V ′=
{1, ...,n} of the customers. V ′ is partitioned into two subsets of VMI and Self-Monitoring (SM)

customers, respectively Vvmi, Vsm. VMI customers are contractual customers that maintain

a long-term partnership with the supplier and delegate the total monitoring of their inven-

tory replenishment via a monthly billing of the generated expenses. SM customers may also

be contractual customers but they have usually reduced consumption rates and prefer self-

monitoring their inventory. In other situations, an SM customer may be a price-dependent

customer who avoids long-term contracts and switches for the supplier with the most compe-

titive price. In both cases, an SM customer is in-charge of inventory monitoring and each time

an urgent order is passed, its delivery cannot exceed one day from the date of ordering. It is im-

portant to note that SM customers can be proactive in real-world situations by placing orders

prior to the stock-out period. However, dealing with same-day or next-day delivery requests is

usually more disturbing and challenging. Thus, in this work, we only consider urgent requests

to be ful�lled on the same or next-day, which need some reactive policies to be appropriately

integrated.

A vehicle of capacity Q is assumed to be available at the depot. Considering a double discre-

tized planning horizon, the supplier operates in two steps. First, he/she frames a master plan

for VMI customers in a long-term horizon T of H days (i.e., for weekly or monthly updates).

Considering an OU inventory policy, its initial inventory I0t and periodic receptions r0t, the

supplier monitors the inventory replenishment of the VMI customers based on their initial

inventory levels Iit, the known consumption rates rit and the inventory holding capacity Ui

for each customer i ∈ Vvmi. Second, the supplier deals with the integration of the dynamic

arrival of the SM customer requests in the short-term horizon P ∈ T of a single day p (i.e.,

for daily updates). Thus, a request of an SM customer i is de�ned by an order day pi, and an

ordered quantity γi.

The objective is to determine delivery routes to minimize the operation costs, avoid stock-

outs for VMI customers and integrate the maximum number of SM customer requests, by

considering the following points:

• each route starts and ends at the depot,

• an opportunity cost is incurred to the supplier every time an SM customer request is

rejected,

• the vehicle capacity is respected,

• the supplier inventory level is respected,
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• the OU policy is respected.

2.5.2 Problem formulation

We present the deterministic formulation of this problem by including VMI customers with

stationary consumption rates (rit = ri,∀t ∈ T / {0}) and a known list of SM customers orders

that we either accept to ful�ll on the same order day pi, or reject and face a quantity-dependent

penalty σγi. At this level, we present a modi�ed version of the IRP model proposed in Archetti

et al. (2007) to deal with the problem at hand.

The main modi�cations are:

• as the supplier is dealing with �nal customers, and the objective is to reduce distribution

costs, we do not include the inventory holding costs in our model. However, we consi-

der the update of inventory levels, and the necessary constraints to avoid stock-outs

according to the OU policy.

• as we consider di�erent types of customers, we add constraints to integrate the SM

customers orders.

• a quantity-dependent opportunity cost is considered if an SM customer is rejected,

using a penalty coe�cient σ.

• to avoid starting a new delivery planning cycle with stock-out cases, we consider a

planning horizon of H + 1 periods, which refers to T = {1, ...,H+1}.
The variables are:

• Ilt: the inventory level at location l at the start of each period t.

• qit: represent the quantity delivered to each customer i during period t.

• ylt: represent a binary variable equal to 1 if location l is visited at period t, and 0

otherwise.

• xtij : represent the number of times edge (i, j) ∈ E is used in period t ∈ T .

minimize
∑

(i,j)∈E

∑
t∈T

Cijx
t
ij + σ

∑
i∈Vsm

∑
p∈P

γi(1− yip) (2.1)

subject to

I0t = I0,t−1 + r0,t−1 −
∑
i∈V ′

qi,t−1,∀t ∈ T (2.2)

I0t ≥
∑
i∈V ′

qit,∀t ∈ T (2.3)

Iit = Ii,t−1 − ri,t−1 + qi,t−1,∀i ∈ Vvmi,∀t ∈ T (2.4)
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qit ≤ Ui − Iit,∀i ∈ Vvmi, ∀t ∈ T (2.5)

qit ≥ Uiyit − Iit,∀i ∈ Vvmi, ∀t ∈ T (2.6)

qit ≤ Uiyit,∀i ∈ Vvmi, ∀t ∈ T (2.7)

∑
i∈V ′

qit ≤ Qy0t, ∀t ∈ T (2.8)

qit = γiyit,∀t = pi,∀i ∈ Vsm (2.9)

∑
t∈T

yit ≤ 1,∀i ∈ Vsm (2.10)

∑
j:(i,j)∈E

xtij = 2yit,∀i ∈ V, ∀t ∈ T (2.11)

∑
(i,j)∈E(S)

xtij ≤
∑
(i)∈S

yit − yst,S ⊆ V ′, ∀s ∈ S, ∀t ∈ T (2.12)

yit ∈ {0, 1} ,∀i ∈ V,∀t ∈ T (2.13)

qit ≥ 0,∀i ∈ V ′, ∀t ∈ T (2.14)

Iit ≥ 0,∀i ∈ V, ∀t ∈ T (2.15)

xtij ∈ {0, 1} , i, j ∈ V ′,∀t ∈ T (2.16)

xt0j ∈ {0, 1, 2} , j ∈ V ′,∀t ∈ T (2.17)

The objective function (2.1) minimizes the sum of transportation costs for every scheduled

delivery to any customer in the planning horizon and the opportunity cost for rejecting the

delivery of SM customers. Constraints (2.2)-(2.4) are the inventory conservation constraints.

Adopting an OU policy, constraints (2.5)-(2.7) impose that each delivery to a customer must
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re�ll the tank to its maximum level which depends on the capacity of the tank (Ui) and the

already existing oil level in it (Iit). Constraints (2.8) ensure the vehicle capacity is respec-

ted. Constraints (2.9)-(2.10) consider SM customers' requests, by enforcing visiting each one

of them just during the predetermined delivery date pi and delivering the exact requested

quantity γi. Constraints (2.11)-(2.12) are the routing constraints. Constraints (2.11) are the

degree constraints for each node on the planning horizon. Constraints (2.12) are the subtour

elimination constraints which stipulate the availability of two edge disjoint paths to reach

each visited node via the source one (the depot)(Fischetti et al., 1998; Archetti et al., 2014).

Finally, constraints (2.13)-(2.17) de�ne the domain and nature of the variables.

Since our focus is on the dynamic aspect of the problem by considering the dynamic arrival of

SM customer requests during route execution, and handling real-time decisions, we propose a

heuristic approach.

We present in Section 2.6, a tabu search-based heuristic to handle plan updates, as well as

two di�erent policies to integrate the dynamic customer requests in the solution process.

Consequently, an SM customer can get a real-time reply by either accepting his request and

integrating his order on the delivery plan of the same or next day, or by rejecting it in a way

to be able to look for another supplier immediately.

2.6 Solution algorithm

Tabu search (TS) is known as an e�ective method for solving the classical VRP and its variants

(Rego and Roucairol, 1995; Renaud et al., 1996; Bolduc et al., 2010) as well as the IRP (Chiang

and Russell, 2004; Archetti et al., 2012). Therefore, we have developed a tabu search-based

heuristic to solve the dynamic version of our problem.

The TS is an approximate algorithm that is used to solve NP-hard problems in a reasonable

amount of time by �nding near-optimal solutions. Exploiting local search tools, TS covers the

search space A by moving from a current solution a to its neighbor a', which is not forbidden

to visit according to a permanently updated tabu list. The application of the appropriate type

of tabu list, the tenure parameter value, and the use of speci�c techniques such as aspiration or

jump techniques are all important factors in TS performance. Moreover, TS has the advantage

of not exploring all possible solutions, but instead, it selects the more promising neighbors to

handle wisely the local optimums. More details about the tabu search algorithm can be found

in Glover (1986).

Before delving into the functionality, it is necessary to highlight the various basic elements of

our heuristics.
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2.6.1 Heuristic components

The �rst step in the development of our algorithm is based on de�ning the following com-

ponents based on de�nitions found in Glover and Taillard (1993) and Osman and Wassan

(2002):

(i) tabu list: has the role of saving some characteristics of conducted moves on a current

solution for a certain number of iterations. Stored attributes are used to uniquely identify

each move and then de�ne its status at each iteration. In fact, once a move is added to

the tabu list, it cannot be used again until the tabu status expires. For instance, a move

that inserts customer i into a route of period t is identi�ed in the tabu list based on

three elements: move operator, customer, and period numbers.

(ii) tabu tenure: is the parameter that de�nes how many iterations a move remains in the

tabu list.

(iii) move operator: has the role to make a change in the current solution. We used four

di�erent move operators: Add, Remove,Move, and Swap, which will be explained in detail

in Section 2.6.2

(iv) stopping criteria: is the rule that allows deciding when the solution process should be

terminated.

(v) reactive tabu list: is considered reactive if it dynamically changes the tenure parameter

value based on the ongoing search process. If unimproving moves are generated repeatedly

and consecutively, the tenure parameter value is gradually increased to force the search

solution process to be moved to another area. When successively improved moves are

generated, the tenure parameter value is reduced to spread the search in the same area.

(vi) aspiration criteria: adopting this technique allows to override a move's tabu status if

it generates a better solution than the current best one. As a result, even if it is on the

tabu list, a promoting move is always chosen.

2.6.2 Heuristic design

Our algorithm is designed based on three main procedures: initialization, move, and improve-

ment. The general scheme is presented in Figure 2.2.
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Figure 2.2 � Overview of the tabu search-based algorithm

Initialization procedure

Inspired by the work of Dror and Ball (1987), initially and in a rolling horizon manner we

calculate for each VMI customer i ∈ Vvmi a coverage parameter fit which represents the

number of periods that the available oil level in the tank can cover the consumption over the

planning horizon. The optimal solution of an OU policy suggests that each customer should be

visited at its stock-out period and get re�lled to the maximum level. Knowing the consumption

rates rit, and the starting level of oil Iit for each period t, fit is determined for each customer

i ∈ Vvmi and for every period t ∈ T as depicted by the function fit in (2.18):

fit = Iit/rit, ∀i ∈ Vvmi, ∀t ∈ T (2.18)

After assigning VMI customers to their stock-out periods, we assign each SM customer i

∀i ∈ Vsm to its prede�ned delivery date which is equivalent to its order day pi.

Delivering all VMI customers in their stock-out period guarantees reducing deliveries frequen-

cies and transportation costs, but may violate vehicle capacity and supplier inventory levels.

Such infeasible solutions are considered admissible as initial solutions. Speci�cally, each solu-

tion is considered admissible if it guarantees the absence of customers stock-out and over-stock

situations in every planning period while not necessarily respecting vehicle capacity and sup-

plier inventory levels constraints throughout the entire planning horizon, which we consider

to be a relaxation of our modelling constraints (supply inventory levels, vehicle capacity, and

SM customers deliveries). However, every generated admissible solution is penalized based on

an evaluation function as described in the following Section 2.6.2.

27



An initial solution a ∈ A is then considered by respecting the numerical order of customers,

that is, the �rst assigned customer to a route is the �rst one to be visited.

The pseudo code of the initialization procedure is presented in Algorithm 2.1.

Algorithm 2.1 Initialization procedure pseudo code
1: while t ≤ H + 1 do

2: for each customer i ∈ V' do
3: if i ∈ Vvmi and fit < 1 then

4: qit ← Ui − Iit
5: else i ∈ Vsm and pi=t
6: qit ← γi
7: end if

8: end for

9: end while

At this point, it is important to note that assigning SM customers during the initialization

procedure is only used to test the deterministic version of our heuristic. In the dynamic ver-

sion, however, after preparing an initial plan of only VMI customers deliveries, we assign SM

customers dynamically based on developed control policies as presented in Section 2.6.3.

Move procedure

The move procedure is designed based on the previous application of the TS to the IRP in

Archetti et al. (2012). After generating an initial solution a ∈ A, the move procedure generates
the corresponding neighborhood set N (a) and selects the best solution a' ∈ N (a).

The neighborhood set N (a) is created according to four types of moves: Add, Remove, Move,

and Swap.

• Add(i,t) considers the current solution a and randomly chooses customer i and period t

who is not assigned to and inserts i in the route at t by the cheapest insertion method.

Add is considered valid under three conditions. First, we assign a VMI customer to a

period that is not already assigned to it. Second, we assign an SM customer i to the

prede�ned delivery date pi. Third, the new assignment would keep the current solution

at least admissible.

• Remove(i,t) considers the current solution a and randomly chooses a customer i from

the list of customers to visit on a selected period t, removes it from the route, and

links its predecessor to its successor. Remove is considered valid just when we remove a

customer from a period that is already assigned to, it remains at least another scheduled

delivery for each VMI customer and when the removal of the planned delivery would

keep the current solution at least admissible.

The two other types of moves can be viewed as combinations of the above mentioned ones.

• Move(i, t, t') can be considered as the application of a remove move on the current
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solution a, followed by and an add move. In fact the move removes a visit of customer

i from period t and adds a new visit to the same customer in another period t'.

• Swap(i, t, i', t') can also be considered as simultaneous remove and add moves, but for

two customers which removes a visit to customer i from period t and adds a new one

to period t', and in the opposite way, removes a visit to customer i' from period t' and

adds a new one to period t.

Given that VMI customers may be visited more than once over the planning horizon, and

based on the initial plan resulted from the initialization step, the application of the various

types of moves alters the frequency and interval between visits. In fact, Add(i,t) has the role

of increasing the frequency of visits to customer i by scheduling a new visit on period t to

which is not already assigned. For instance, if we consider a three-period planning horizon,

a customer i may already be assigned to be visited on period 1, but by using the Add move

type, we can add another visit on period 2 or 3 except for period 1 which is already assigned

to it. As a result, the frequency of visits to customer i increases to 2. Moreover, Remove(i,t)

has the role of decreasing this frequency, by removing an already scheduled visit to customer

i on period t. However, Move(i, t, t') and Swap(i, t, i', t') do not a�ect the frequency of visits

but the interval between them. For example, suppose we have a six-period planning horizon

and a customer i is already scheduled to be visited twice during periods 1 and 4. By using a

Move move we can increase the interval between the two visits by �xing the visit scheduled

for period 1 and postponing the visit scheduled for period 4 to period 5 by Move(i, 4, 5) or 6

by Move(i, 4, 6). We can also shorten the interval between those two visits by either �xing the

visit scheduled for period 1 and advancing the visit scheduled for period 4 to its predecessors

(period 3 by Move(i, 4, 3) or period 2 by Move(i, 4, 2)) or �xing the visit scheduled for period

4 and postponing the visit scheduled for period 1 to its successors (period 2 by Move(i, 1, 2)

or period 3 by Move(i, 1, 3)).

To ensure that a generated solution remains at least admissible, the same quantity should be

deducted from the next delivery when we add a visit to a chosen customer, if there is a next

one. In the opposite way, the same quantity to deduce when we remove a visit from a chosen

customer, should be added to the next delivery, if there is a next one.

The neighborhood N (a) is generated from a by applying the above moves, and by relaxing

vehicle capacity, supplier inventory level and SM customers' requests constraints. To choose

the best solution a' ∈ N (a), an evaluation function F(a) is then used to penalize any infeasible
but admissible solution as follows (see Function 2.19):

• kt(a): transportation cost of solution a in period t,

• Qt(a): total quantity delivered in period t by using a unique vehicle with a capacity Q,

• It(a): the supplier inventory level in period t,

• Qsm,t(a): The total quantity delivered to SM customers in period t,

• α, β, σ: vehicle capacity, supply stock-out, and SM customers rejection constraints

violation parameters,
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• [·]+= max(., 0),

F(a) =
∑
t∈T

kt(a) + α
∑
t∈T

[Qt(a)−Q]+ + β [−I0t(a)]+ + σ
∑
t∈T

[ ∑
i∈Vsm

γi −Qsm,t(a)

]+

(2.19)

The current and the best solutions are then updated according to the evaluation step results,

and the best move is added to a reactive tabu list with a dynamic length and tenure parameters

values.

Algorithm 2.2 Move procedure pseudo code
1: Inputs: MaxIter, MaxMoves
2: Apply the initialization procedure to generate an initial solution a
3: Abest ← a
4: CurrentIter ← 1
5: CurrentMove← 1
6: while CurrentIter ≤MaxIter do

7: while CurrentMove ≤MaxMoves do
8: Generate all feasible and/or admissible moves and update N (a)
9: end while

10: Evaluate all solutions in N (a) and choose the best one (a')
11: if a' < Abest then

12: Abest ← a'
13: end if

14: end while

Improvement procedure

This procedure is used on the one hand as a guiding tool to avoid generating and evaluating

all admissible solutions at each iteration and to improve execution time. On the other hand,

it is applied with the aim of consolidation and reduction of visit frequencies. At this level,

we consider a priority of visit categorizations (as seen in Dror and Ball (1987)) for VMI

customers, by distinguishing the mandatory ones from the optional ones according the their

on-hand oil levels. A customer is considered mandatory, when she/he is assigned to a stock-out

period t*. Thus, we cannot postpone planned visits for any of next periods t>t*. A customer

is considered optional, when she/he is assigned to a period t<t*. These visits can either be

postponed to a period t' where t < t'≤ t* or advanced further to period t� where 1<t�<t.

The �rst improvement step focuses on emptying the last period (H + 1) by choosing the

appropriate scheduled visit moves according to customers categories. Pushing back the visits

to the previous periods may generate more admissible but infeasible solutions with respect to

vehicle capacity and supply inventory level violations. The next step focuses on those periods

with capacity violations, by choosing either to advance the delivery of mandatory customers to

a previous period or to postpone the visit of optional customers to the next one. The last step

focuses on reducing unnecessary visits during the �rst period. As we assume the availability

of a certain oil level in all VMI customer tanks on period 0, Remove or Move type movements
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are privileged to push forward any optional customer visit to the next period.

In addition to the guiding process, we apply speci�c versions of 2 and 3-Opt algorithms for

daily TSP optimization (referred to respectively as 2-Opt-sv and 3-Opt-sv hereafter). In fact,

we adopted a neighborhood-based con�guration as detailed in Martin et al. (1991) which has

the advantage of not considering all possible edges by avoiding far positioned edge exchanges

and privileging edge exchanges of nodes in the same neighborhood (Algorithms 2.3 and 2.4).

As a result, those versions are chosen to improve execution time.

As indicated by the Algorithms 2.3 and 2.4, in order to be able to apply them on various tours

generated throughout the planning horizon, the following elements should be available:

• tour, represents the sequence of customers' visits on the route generated for each plan-

ning period. For instance, tour[i] = ω, denotes that i will be the ωth customer to

visit.

• symmetric distance matrix d[i][j]

• neighborhood matrix nbhd[i][j], generated by sorting each row in dij in a non-decreasing

order. For large instances, we can reduce the neighborhood matrix to a λ-neighborhood

matrix, where λ refers to each customer's �rst λ nearest neighbors. For instance,

nbhd[i][k] = c, denotes that customer c is the kth neighbor of i.

• MinLink refers to the value of the shortest link between all (i, j) ∈ E where i, j ∈ tour

• MaxLink refers to the longest link between all (i, j) ∈ E where i, j ∈ tour. Throughout

the optimization process, this value should be updated.

Regarding the 2-Opt-sv, in Algorithm 2.3 shown below, u, v, z, w, are nodes in tour, and u1,

v1, z1, w1 are their corresponding positions. We begin by looping through these nodes in tour.

Taking the �rst node u in tour and its successor v, we look then for the closest neighbor to u,

which is w and its successor z. Then, we should determine whether linking u to its neighbor

w will not increase the total distance of the route. Finally, we perform an intra-route swap by

exchanging the edges (u, v) and (w, z) with (u,w) and (v, z) in a tour.
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Algorithm 2.3 2-Opt-sv pseudo code
1: Inputs:

• route list: tour,
• route size: RS,
• neighborhood matrix: nbhd,
• distance matrix: d[i][j],
• Shortest distance in tour: MinLink,
• longest distance in tour: MaxLink

2: boolean hastourChanged=true
3: while hastourChanged = true do
4: hastourChanged = false
5: for each position u1 ∈ tour do

6: v1 = (u1 +RS − 1)%RS
7: u = tour[u1]
8: v = tour[v1]
9: for each position k ∈ nbhd[u] do

10: w1 = Index(nbhd[u][k]) . w1 gets the position of the kth neighbor of u in tour
11: z1 = (w1 +RS − 1)%RS
12: w = tour[w1]
13: z = tour[z1%RS]
14: if d[u][w] +MinLink > d[u][v] +MaxLink then

15: break . break out of k loop and go to next u1
16: end if

17: if d[u][w] + d[v][z] < d[u][v] + d[w][z]) then
18: Swap(v, w) . exchange the edges (u,v) and (w,z) by (u,w) and (v,z) in tour
19: hastourChanged = true
20: break . break out of k loop and go to next u1
21: end if

22: end for

23: end for

24: end while

The same logic is followed by the 3-Opt-sv Algorithm 2.4 but with 6 nodes instead of 4. b, u,

v, w, z and d are nodes in tour, and b1, u1, v1, w1, z1, d1 are their corresponding positions in

tour. Starting from the edge (u, v), we loop on both neighbors of u and v, checking each time

if linking u and v to each neighbor will improve the route transportation cost in relation to

the MinLink and MaxLink values. Following that, we use an intra-route swap to reduce the

overall distance between the 6 nodes.
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Algorithm 2.4 3-Opt-sv pseudo code
1: Inputs:

• route list: tour,
• route size: RS,
• neighborhood matrix: nbhd,
• distance matrix: d[i][j],
• Shortest distance in tour: MinLink,
• longest distance in tour: MaxLink

2: boolean hastourChanged=true
3: double d(uv, bd, wz) = 0
4: while hastourChanged = true do
5: hastourChanged = false
6: for each position u1 ∈ tour do

7: v1 = (u1 +RS − 1)%RS
8: u = tour[u1]
9: v = tour[v1]

10: for each position k ∈ nbhd[v] do
11: z1 = Index(nbhd[v][k]) . w1 gets the position of the kth neighbor of v in tour
12: w1 = (z1 +RS − 1)%RS
13: z = tour[z1]
14: w = tour[w1]
15: if d[v][z] + 2×MinLink > d[v][u] + 2×MaxLink then

16: break . break out of k loop and go to next u1
17: end if

18: if d[v][z] + 2×MinLink > d[v][u] + d[w][z] +MaxLink then

19: continue
20: end if

21: for each position k1 ∈ nbhd[u] do
22: d1 = Index(nbhd[d][k1]) . d1 gets the position of the k1th neighbor of u in tour
23: b1 = (d1 +RS − 1)%RS
24: b = tour[b1]
25: d = tour[d1]
26: if d[v][z] + d[u][d] +MinLink > d[v][u] + d[w][z] +MaxLink then

27: break . break out of k1 loop and go to next k
28: end if

29: d(uv, bd, wz) = d[u][v] + d[b][d] + d[w][z]
30: if d[u][d] + d[v][z] + d[b][w] < d(uv, bd, wz) then
31: Swap(u, z) . exchange the edges (u,v) and (w,z) by (v,z) and (w,u) in tour
32: Swap(w, d) . exchange the edges (b,d) and (w,u) by (d,u) and (b,w) in tour
33: . which result in the exchange of edges (u,v), (w,z) and (b,d) by (v,z), (d,u)

and (b,w) in tour
34: hastourChanged = true
35: break . break out of k and k1 loops and go to next ui
36: end if

37: end for

38: end for

39: end for

40: end while
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2.6.3 Dynamic policies

The TS-based heuristic can be used to solve the DIRPCR under two di�erent proposed policies:

Rerouting and Reassignment. These policies' role is to use a di�erent reactive pattern to

integrate SM customers' requests into the a priori plan, either in the same routing period or

the next.

Rerouting policy

This policy focuses on inserting SM customers in same-day delivery and avoiding pre-established

delivery plan changes. According to this policy, the SM customers' requests are revealed just

during route executions. After a given SM customer request becomes known, an evaluation

step is incurred to check if adding an SM customer on the current route on the one hand will

not cause supply stock-out and transportation capacity violations and increase transportation

costs extensively against opportunity ones on the other hand. Assuming that the vehicle leaves

the depot with a full load, the SM customer is either added at the end of the current route

or rejected to incur a quantity-dependent opportunity cost. This same procedure is repeated

by checking and updating capacities and route visits, each time an SM customer request is

accepted until the set of SM customers is empty. We have to mention that adding the SM cus-

tomer in a position other than the last one to a route under execution needs a real-time track,

update, and record of all the parameters during the route execution such as the vehicle posi-

tion and the status of customers. However, this detailed and real-time monitoring procedure

requires sophisticated ICTs use, which is not always the case in real-world applications.

Reassignment policy

This policy avoids same-day deliveries to allow SM customer requests integration in a better

position on the route for the following delivery period. After receiving an SM customer i

request in period pi, we add it with the cheapest insertion to the planned route of the next

period pi+1, we update the remaining vehicle capacity and supplier residual inventory level,

and we launch a new assignment cycle starting from pi+1 and ending in period H+1.

According to both policies, SM customers' requests may be rejected for three reasons: vehicle

or supply inventory level violations or cost increase. The latter refers to situations where

adding an SM customer may generate higher transportation costs than the opportunity cost.

After the reassignment step, we continue revealing SM customers' requests and deciding on

VMI customers' possibilities to postpone, advance, or reject some SM requests and incur an

opportunity cost until the end of the planning horizon.
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2.7 Computational experiments

Our experiments are divided into two steps. The �rst step is dedicated to what we call �the

deterministic version� of the problem and a second step for �the dynamic version�.

2.7.1 Preliminary tests

The �rst step was to make preliminary tests on our heuristic to set up di�erent parameters

and evaluate its performance as an approximate solution method against an exact approach

for solving the deterministic version. The preliminary tests are made on modi�ed versions of

Archetti et al. (2007) instances. In the context of solving classic IRPs, the authors proposed

160 instances divided into four classes regarding planning horizon length and inventory holding

costs. They were generated randomly according to uniform distribution within di�erent ranges

of parameters. Thus, the number of customers varies from 5 to 50 with Euclidean positions

to plan their deliveries on three or six-period planning horizons according to speci�ed vehicle

capacity, periodic reception/consumption rates, maximum inventory levels, and inventory hol-

ding unit costs. To be adapted to our problem, we chose three instances with 5, 30, and 50

customers and two di�erent planning horizon sizes of three and six periods. Given that the

Archetti et al. (2007) instances were generated based on other criteria unrelated to our work,

such as supplier and customer inventory holding costs, we estimated that the three instances

chosen were su�cient to assess the heuristic's performance at various variations, whether in

terms of the number of customers or the length of the planning horizon.

We considered the already available data as VMI customers' ones, and we added the corres-

ponding SM customers' needed parameters randomly, mainly γi, pi and locations.

For the exact approach, a B&C algorithm implemented in C++ was tested by using IBM

ILOG CPLEX 12.6.1, and run on an Intel Xeon E3-1270 V2 3.5 GHz and 12 GB RAM

computer with a maximum running time of two hours.

For the approximate approach, the TS-based heuristic was implemented in Java using and

incorporating modi�cations on the Open TS package released by the COIN-OR foundation,

Inc. and developed by Harder et al. (2004).

Parameters setting

For our heuristic, we used a unique tabu list with a length of n2, where n refers to the total

number of customers in an instance. As previously stated, in addition to using an aspiration

criterion throughout the entire solution process, a reactive tabu list was incorporated by a

dynamic variation of the tabu list tenure parameter. The tenure parameter was initialized

to 10, then is decreased by 90%, if a new best solution is reached and increased by 40% if

a move does not improve the current solution. In terms of the stopping rule, we chose two

criteria: reaching the optimal solution for the deterministic version tests and completing 300×n
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iterations for the dynamic version application.

During our �rst tests, we noticed that generating feasible solutions depends on respecting

vehicle capacity, which was the most challenging constraint to maintain between iterations

(see Table 2.1).

α is the parameter for the vehicle capacity violation penalty, and is initially set to 1. We

tested two ways to update it during algorithm execution. A rise to 5 on all iterations, was

tested. Then, a dynamic update at every 5 iterations was also incorporated: if the 5 last

generated solutions were feasible, then α is reduced by 75%, and if they were infeasible, then

it is increased by 50%.

Table 2.1 shows a summary of results by applying our TS-based heuristic on one of the modi�ed

instances from Archetti et al. (2007). The instance has a total of 60 customers, 50 of which are

VMI customers and 10 of which are SM customers; the planning horizon is of three periods.

The �rst column represents the iteration number, the second column denotes the solution

evaluation function value F(a), the third, the fourth, the �fth and the sixth columns, refer to

the four elements of F(a) which are the transportation cost (TC), the supply stock-out penalty
(SP), the vehicle capacity penalty (VCP), and the opportunity cost of rejecting SM customers

(SMCP). The last two columns are the number of generated moves on each iteration and the

best chosen move to apply on the next one. For instance, �move(20,4,3)� denotes a move type

move of customer 20 from period 4 to 3.

Such generated debriefs with each run support in guiding our preliminary tests steps. In the

�rst iteration, an initial solution with a value of 21077 is generated in comparison to an

optimal solution value of 5817. Moving customer 20 from period 4 to 3 is chosen to generate

the best F(a) out of a total of 27 other moves. After applying this move, the solution value

on the second iteration dropped by 34% to 13954.2. Move type moves are chosen to apply

on the (H+1) planning period from the second iteration until the seventh. Because of the

vehicle capacity violation and the concentration of visits on period 3, by the eighth iteration,

unfeasible but admissible solutions began to be generated. In fact, successive moves of visits

from period 4 to period 3 were chosen until iteration 30. Emptying period 4, accumulated

deliveries on period 3, reduced transportation costs by 53% on one side (transportation cost

on iteration 30 is 12085.1 instead of 21077 on the �rst iteration), but increased the penalty due

to vehicle capacity violation on the other. On subsequent iterations, and in order to reestablish

feasibility, moves are made to balance visits mainly between periods 3 and 2. Finally, at the

48th iteration a solution of value 5991.1 is obtained which is 2.9% from the optimum and

71.5% lower than the initial solution.
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Table 2.1 � Example of runs for absH3high_5n50 instance

Iter F(a) TC SP VCP SMCP Number of moves Best Move

i1 21077.0 21077.0 0.0 0.0 0.0 27 move(20,4,3)
i2 13954.2 13954.2 0.0 0.0 0.0 26 move(36,4,3)
i3 13523.4 13523.4 0.0 0.0 0.0 25 move(13,4,3)
i4 13394.8 13394.8 0.0 0.0 0.0 24 move(19,4,3)
i5 13325.2 13325.2 0.0 0.0 0.0 23 move(38,4,3)
i6 13262.6 13262.6 0.0 0.0 0.0 22 move(5,4,3)
i7 13204.9 13204.9 0.0 0.0 0.0 21 move(23,4,3)
i8 13180.9 13155.9 0.0 25.0 0.0 20 move(8,4,3)
i9 13215.4 13140.4 0.0 75.0 0.0 1 K-Opt-sv
i10 13215.4 13140.4 0.0 75.0 0.0 19 move(46,4,3)
i11 13253.0 13118.0 0.0 135.0 0.0 18 move(47,4,3)
i12 13359.5 13159.5 0.0 200.0 0.0 17 move(4,4,3)
i13 13476.8 13151.8 0.0 325.0 0.0 16 move(44,4,3)
i14 13611.3 13001.3 0.0 610.0 0.0 15 move(40,4,3)
i15 13763.3 12988.3 0.0 775.0 0.0 14 move(9,4,3)
i16 13938.5 12898.5 0.0 1040.0 0.0 13 move(17,4,3)
i17 14138.6 12938.6 0.0 1200.0 0.0 12 move(10,4,3)
i18 14358.4 12903.4 0.0 1455.0 0.0 11 move(25,4,3)
i19 14617.7 12742.7 0.0 1875.0 0.0 1 K-Opt-sv
i20 14617.7 12742.7 0.0 1875.0 0.0 10 move(30,4,3)
i21 14893.1 12738.1 0.0 2155.0 0.0 9 move(27,4,3)
i22 15266.2 12836.2 0.0 2430.0 0.0 8 move(32,4,3)
i23 15703.1 12878.1 0.0 2825.0 0.0 7 move(50,4,3)
i24 16156.0 12851.0 0.0 3305.0 0.0 6 move(24,4,3)
i25 16622.5 12832.5 0.0 3790.0 0.0 5 move(29,4,3)
i26 17102.9 12832.9 0.0 4270.0 0.0 4 move(15,4,3)
i27 17541.9 12796.9 0.0 4745.0 0.0 3 move(7,4,3)
i28 18001.1 12836.1 0.0 5165.0 0.0 2 move(34,4,3)
i29 17650.1 12085.1 0.0 5565.0 0.0 1 K-Opt-sv
i30 17650.1 12085.1 0.0 5565.0 0.0 1 move(33,4,3)
i31 19883.5 14133.5 0.0 5750.0 0.0 23 move(37,3,2)
i32 13135.8 8855.8 0.0 4280.0 0.0 44 move(3,3,2)
i33 10327.3 7157.3 0.0 3170.0 0.0 63 move(11,3,2)
i34 8681.5 6711.5 0.0 1970.0 0.0 80 move(42,3,2)
i35 7242.3 6712.3 0.0 530.0 0.0 95 move(41,3,2)
i36 6442.2 6442.2 0.0 0.0 0.0 145 move(32,2,1)
i37 6331.5 6321.5 0.0 10.0 0.0 109 swap(45,3,11,2)
i38 6330.1 6330.1 0.0 0.0 0.0 146 swap(45,2,6,3)
i39 6241.4 6241.4 0.0 0.0 0.0 1 K-Opt-sv
i40 6241.4 6241.4 0.0 0.0 0.0 146 move(47,2,1)
i41 6197.7 6197.7 0.0 0.0 0.0 147 move(47,1,2)
i42 6174.3 6174.3 0.0 0.0 0.0 146 move(35,3,2)
i43 6156.4 6156.4 0.0 0.0 0.0 159 move(50,2,1)
i44 6066.4 6066.4 0.0 0.0 0.0 160 move(44,2,1)
i45 6044.1 6044.1 0.0 0.0 0.0 161 move(4,2,1)
i46 5997.1 5997.1 0.0 0.0 0.0 162 move(13,2,1)
i47 5992.5 5992.5 0.0 0.0 0.0 163 move(48,3,2)
i48 5991.1 5991.1 0.0 0.0 0.0 174 move(18,3,2)

K-Opt-sv incorporation

After setting up parameters, the next step was to test the incorporation of 3-Opt-sv and 2-

Opt-sv algorithms in two ways: at �rst separately with a frequency of application at each

certain number of iterations. Then we integrated them into each type of move by applying the

chosen move on the current solution followed by a K-Opt-sv operation (either a 2-Opt-sv or

a 3-Opt-sv). The evolution of the current solution value during the execution process showed

that the 2-Opt-sv performs better than the 3-Opt-sv algorithm in our case compared to the

exact solution value (Z*) (see Figure 2.3).
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Figure 2.3 � Performance of 2-Opt-sv and 3-Opt-sv on absH3high_5n50 instance

Table 2.2 summarizes the results of applying the B&C algorithm as well as the TS algorithm

with/without the 2-Opt-sv. The row �B&C� refers to the solution of the deterministic version

of our problem assuming full information about both VMI and SM customers. On row �Ts-

W-2-opt� we show the results of the tabu search without applying a 2-Opt-sv. The rows

�Ts-S-2-opt� show the results of using a tabu search with a separate 2-Opt-sv called at each

�xed number of iterations. Finally, the row �Ts-I-2-opt� stands for the results of applying tabu

search with an integrated 2-Opt-sv into each move involved in each iteration.

Table 2.2 � 2-Opt-sv incorporation

Instances absH3high_1n5 absH3high_5n50 absH6low_5n30

n 8 60 37
Vmi customers 5 50 30
Sm customers 3 10 7

H 3 3 6
Heuristic initial solution 3030 21077 22576

B&C
z* 2563 5817 8511

Time (s) 0.08 186.84 721.61

Ts-W-2-Opt

Best Solution 2563 7728 13726
Time (s) 0.515 5.756 2.917
Gap (z) 0.0% 32.9% 61.3%

Ts-S-2-Opt

Best Solution 2563 5970 8668
Time (s) 0.464 3.401 21.996
Gap (z) 0.0% 2.6% 1.8%

Ts-I-2-Opt

Best Solution 2563 6000 9584
Time (s) 0.826 10.452 4.383
Gap (z) 0.0% 3.1% 12.6%

It is shown that in general, incorporating a 2-Opt-sv in a tabu search process makes a si-

gni�cant improvement. Indeed, without a 2-Opt-sv, the heuristic solution value generated a

32% gap on an instance of 50 customers and three periods of planning horizon. In addition,

it generates a 61% gap on an instance of 30 customers and a six-period planning horizon. By

using a 2-Opt-sv algorithm at a speci�c frequency during the execution of the TS, solution

gaps were reduced to 1% and 2%, respectively (see the �Ts-S-2-Opt� row on Table 2.2). Howe-
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ver, when the 2-Opt-sv is included in each move execution, solution gaps increase by 10% (see

�Ts-I-2-Opt� row on Table 2.2). We, therefore, decided that the TS with a separate 2-Opt-sv

was the best con�guration to use.

The preliminary results also show that the application frequency of the 2-Opt-sv (referred to

as �f� in Figures 2.4 and 2.5) widely impacts its performance. As shown in Figures 2.4 and

2.5, the 2-Opt-sv when applied separately, performs better, especially, on instances with larger

planning horizons, and that the larger it gets, more intervals we need between two successive

2-Opt-sv. According to those results, we �xed a frequency of three for three-period instances

and a frequency of forty for six-period ones.

Figure 2.4 � Variations of 2-Opt-sv frequency on three-period instances

Figure 2.5 � Variations of 2-Opt-sv frequency on six-period instances
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2.7.2 Instance generation

In this section, we present a description of the instances generated following Archetti et al.

(2007). Four groups of instances were generated and named �IRPDC-a-b-c-d� with �a� for the

planning horizon, �b� for the number of VMI customers, �c� for instance group, and �d� for

the percentage of SM customers. Each group contains 18 instances resulting from di�erent

combinations of the following parameters:

• planning horizon length H: 3, 6 periods,

• VMI customers set size Vvmi: {30, 50, 100},
• SM customers set size Vsm: k × Vvmi with k ∈ {10%, 25%, 50%},
• travel cost Cij : represented by the euclidean distance

√
(Xi −Xj)2 + (Yi − Yj)2 bet-

ween points (Xi, Yi) and (Xj , Yj) which are generated uniformly and randomly in the

interval [0, 500], or clustered according to the depot position and a radius of 50,

• SM customer i delivery date pi ∈ T : an integer number generated randomly in the

interval [1,H],

• SM customer i ordered quantity γi, ∀ i ∈ Vsm: randomly generated in the interval

[10, 100],

• vehicle capacity Q: 3
2 ×

∑
i∈Vvmi

rit, or 2×
∑

i∈Vvmi
rit,

• consumption rates rit, i in Vvmi: randomly generated in the interval [10, 100],

• VMI customer i inventory holding capacity Ui, i ∈ Vvmi: g × rit where g is an integer

generated randomly in [1,H],

• VMI customer i initial inventory level Ii0: Ui-rit,

• supplier's initial inventory level I00:
∑

i∈Vvmi
Ui, i ∈ Vvmi,

• supplier's periodic reception r0t:
∑

i∈Vvmi
rit, i ∈ Vvmi.

The speci�city of the �rst group of instances lies in the uniform random generation of vertex

coordinates. Then comes the second group by using the same data and just increasing the

vehicle capacity. Next, the third group considers clustered customer positions against randomly

generated ones for supplier and SM customers. Finally, the fourth group is similar to the third

group with the di�erence of increasing the vehicle capacity. In Tables 2.3 and 2.4, we present

the characteristics of each group of instances. Columns 1-8 provide information on di�erent

parameters used for each instance.

Precisely, the �rst column presents the group number, the second one the name of the instance,

the third one the number of customers, the fourth one the number of VMI customers, the �fth

one the number of SM customers, the sixth one the planning horizon, the seventh one the

percentage of the incorporated SM customers, next the vehicle capacity.
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Table 2.3 � Characteristics of the �rst and second groups of instances with uniform customers
dispersion

Instances | V ′| |Vvmi| |Vsm| H % SM customers Q

Group 1

IRPDC-3-30-1-10 33 30 3 3 10

low

IRPDC-3-30-1-25 38 30 7 3 25
IRPDC-3-30-1-50 45 30 15 3 50
IRPDC-3-50-1-10 55 50 5 3 10
IRPDC-3-50-1-25 63 50 12 3 25
IRPDC-3-50-1-50 75 50 25 3 50
IRPDC-3-100-1-10 110 100 10 3 10
IRPDC-3-100-1-25 125 100 25 3 25
IRPDC-3-100-1-50 150 100 50 3 50
IRPDC-6-30-1-10 33 30 3 6 10
IRPDC-6-30-1-25 38 30 7 6 25
IRPDC-6-30-1-50 45 30 15 6 50
IRPDC-6-50-1-10 55 50 5 6 10
IRPDC-6-50-1-25 63 50 12 6 25
IRPDC-6-50-1-50 75 50 25 6 50
IRPDC-6-100-1-10 110 100 10 6 10
IRPDC-6-100-1-25 125 100 25 6 25
IRPDC-6-100-1-50 150 100 50 6 50

Group 2

IRPDC-3-30-2-10 33 30 3 3 10

high

IRPDC-3-30-2-25 38 30 7 3 25
IRPDC-3-30-2-50 45 30 15 3 50
IRPDC-3-50-2-10 55 50 5 3 10
IRPDC-3-50-2-25 63 50 12 3 25
IRPDC-3-50-2-50 75 50 25 3 50
IRPDC-3-100-2-10 110 100 10 3 10
IRPDC-3-100-2-25 125 100 25 3 25
IRPDC-3-100-2-50 150 100 50 3 50
IRPDC-6-30-2-10 33 30 3 6 10
IRPDC-6-30-2-25 38 30 7 6 25
IRPDC-6-30-2-50 45 30 15 6 50
IRPDC-6-50-2-10 55 50 5 6 10
IRPDC-6-50-2-25 63 50 12 6 25
IRPDC-6-50-2-50 75 50 25 6 50
IRPDC-6-100-2-10 110 100 10 6 10
IRPDC-6-100-2-25 125 100 25 6 25
IRPDC-6-100-2-50 150 100 50 6 50

Table 2.4 � Characteristics of the third and fourth groups of instances with clustered custo-
mers dispersion

Instances |V ′| |Vvmi| |Vsm| H % SM customers Q

Group 3

IRPDC-3-30-3-10 33 30 3 3 10

low

IRPDC-3-30-3-25 38 30 7 3 25
IRPDC-3-30-3-50 45 30 15 3 50
IRPDC-3-50-3-10 55 50 5 3 10
IRPDC-3-50-3-25 63 50 12 3 25
IRPDC-3-50-3-50 75 50 25 3 50
IRPDC-3-100-3-10 110 100 10 3 10
IRPDC-3-100-3-25 125 100 25 3 25
IRPDC-3-100-3-50 150 100 50 3 50
IRPDC-6-30-3-10 33 30 3 6 10
IRPDC-6-30-3-25 38 30 7 6 25
IRPDC-6-30-3-50 45 30 15 6 50
IRPDC-6-50-3-10 55 50 5 6 10
IRPDC-6-50-3-25 63 50 12 6 25
IRPDC-6-50-3-50 75 50 25 6 50
IRPDC-6-100-3-10 110 100 10 6 10
IRPDC-6-100-3-25 125 100 25 6 25
IRPDC-6-100-3-50 150 100 50 6 50

Group 4

IRPDC-3-30-4-10 33 30 3 3 10

high

IRPDC-3-30-4-25 38 30 7 3 25
IRPDC-3-30-4-50 45 30 15 3 50
IRPDC-3-50-4-10 55 50 5 3 10
IRPDC-3-50-4-25 63 50 12 3 25
IRPDC-3-50-4-50 75 50 25 3 50
IRPDC-3-100-4-10 110 100 10 3 10
IRPDC-3-100-4-25 125 100 25 3 25
IRPDC-3-100-4-50 150 100 50 3 50
IRPDC-6-30-4-10 33 30 3 6 10
IRPDC-6-30-4-25 38 30 7 6 25
IRPDC-6-30-4-50 45 30 15 6 50
IRPDC-6-50-4-10 55 50 5 6 10
IRPDC-6-50-4-25 63 50 12 6 25
IRPDC-6-50-4-50 75 50 25 6 50
IRPDC-6-100-4-10 110 100 10 6 10
IRPDC-6-100-4-25 125 100 25 6 25
IRPDC-6-100-4-50 150 100 50 6 50
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2.7.3 Results and analysis

This section aims to present and analyze the results obtained from our computational experi-

ments and compare the performance of the proposed dynamic policies according to operational

costs and SM customers service levels. Final results are shown in Tables 2.5-2.20. They show

the results of applying Rerouting and Reassignment policies on the four distinct groups of

instances with di�erent vehicle capacity or opportunity cost coe�cient σ (from 1 to 25) values

and changing the dispersion of VMI customer locations (from uniform to clustered).

A �rst category of results focuses on presenting operational costs, heuristic running time and

rejection levels of SM customers' requests. Those results are summarized in Tables 2.5-2.8-

2.11-2.14-2.17-2.20 where columns 2-5 present the results of adopting the Reassignment policy

and applying the developed heuristic on each instance. In particular, column 2 presents the

solution value, column 3 the running time (in seconds), column 4 the number of rejected SM

customers (noted as Rsm), and column 5 the percentage of SM customers rejection calculated

as the fraction of the number of rejected ones by the total number of SM customers. Columns

6-9 show the results of adopting the Rerouting policy and applying the developed heuristic on

each instance.

The second category of results concentrates on rejection reasons of SM customers' requests

and their percentages. Those results are summarized in Tables 2.6-2.7-2.9-2.10-2.12-2.13-2.15-

2.16-2.18-2.19-2.21-2.22. According to the planning horizon length H, column 1 enumerates

the SM customers request periods, column 2 enumerates the SM customers delivery periods,

column 3 mentions the total number of SM customers rejected requests due to cost reasons

in all instances combined and the column 4 is related to the number of SM customers rejec-

ted requests due to vehicle capacity limitation, column 5 shows the number of accepted SM

customers on each period. As mentioned before, an SM customer request is rejected due to

cost reasons when the marginal transportation cost of accepting the request exceeds the op-

portunity cost of rejecting it. Also, an SM customer request is rejected due to vehicle capacity

restriction when the quantity ordered exceeds the residual vehicle capacity.

VMI customers uniform dispersion

Table 2.5 shows that there is a signi�cant di�erence between the two dynamic policies. In fact,

the Reassignment policy generated an average of 58% of rejected dynamic requests, compared

to 99.6% for the Rerouting policy. However, the Reassignment policy resulted in higher opera-

tional costs, averaging 10035.40 versus 8132.43 for the Rerouting policy. Moreover, adopting a

Reassignment policy guarantees more �exibility and better integration of SM customers than

the Rerouting one. The results also show that the performance of the Reassignment policy

depends on the overall number of VMI customers: the higher the number of VMI customers

in an instance, the lower the rejection number and percentage of SM customers. In fact, ope-

rational costs and service levels depend extensively on the locations of VMI customers on one

side and the number and positions of SM customers on the other side. For instance, as shown
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in Table 2.5, applying the Reassignment policy on three-period instances generated the lowest

rejection rate of 40% with 100 VMI customers and 25 SM customers to insert against 100%

rejection rate with 30 VMI customers and 7 SM customers to insert. On six-period instances,

the lowest rejection levels were also noted on instances of 50 and 100 VMI customers. However,

operational costs depend also on the length of the planning horizon when a Reassignment is

adopted by generating lower costs on six-period instances than three-period ones, even with

an equal number of customers. For example, considering the instance �IRPDC-3-100-1-50�

(150 customers and three-period planning horizon), inserting 16 SM customers generated an

operational cost of 20109.26 against 16445.36 for inserting 28 SM customers concerning the

instance �IRPDC-6-100-1-50� (150 customers and six-period planning horizon). As a result,

the Reassignment policy allows inserting more SM customers with longer planning horizons

by re-checking the prior plan and so the frequency of visits of VMI customers and the interval

between them on each period of the planning horizon.

Adopting a Rerouting policy does not show good results for integrating SM customers: a 100%

rejection level is recorded for most instances. These results show that assigning SM customers

at the end of the route under execution depends �rstly on customers locations and secondly on

the residual vehicle capacity. In fact, with randomly generated customers and a reduced op-

portunity cost coe�cient, inserting an SM customer rarely results in a marginal transportation

cost that is less than the potential opportunity cost. Moreover, as we do not consider returns

to depot to re�ll the vehicle, SM customer requests may be rejected due to lower residual

vehicle capacity, particularly during the �nal periods when there is usually a concentration of

VMI customer deliveries and a lower residual vehicle capacity at the end of routes.

Table 2.5 � Dynamic policies results of �rst group instances (σ=1, Q=Low)

Reassignment policy Rerouting policy

Instances Solution value Time (s) Rsm % rejection Solution value Time (s) Rsm % rejection

IRPDC-3-30-1-10 3584.24 3.15 2 67% 3519.72 4.48 3 100%
IRPDC-3-30-1-25 3643.70 2.51 7 100% 4146.88 4.83 7 100%
IRPDC-3-30-1-50 4374.13 9.33 13 87% 4319.53 6.58 14 93%
IRPDC-3-50-1-10 5953.00 9.64 3 60% 5637.97 9.35 5 100%
IRPDC-3-50-1-25 5169.54 17.66 8 67% 5167.70 15.58 12 100%
IRPDC-3-50-1-50 6263.89 23.84 18 72% 5890.13 12.06 25 100%
IRPDC-3-100-1-10 15094.67 95.41 8 80% 11253.46 92.49 10 100%
IRPDC-3-100-1-25 19588.68 356.27 10 40% 11533.60 117.91 25 100%
IRPDC-3-100-1-50 20109.26 487.47 34 68% 10505.66 96.91 50 100%
IRPDC-6-30-1-10 6775.70 5.29 2 67% 6720.65 6.37 3 100%
IRPDC-6-30-1-25 7069.33 6.58 7 100% 6839.11 6.33 7 100%
IRPDC-6-30-1-50 6278.80 7.50 11 73% 6300.49 5.10 15 100%
IRPDC-6-50-1-10 9733.27 20.39 2 40% 8424.79 28.13 5 100%
IRPDC-6-50-1-25 9477.98 31.17 5 42% 8760.01 20.94 12 100%
IRPDC-6-50-1-50 10149.53 75.58 11 44% 8694.72 21.22 25 100%
IRPDC-6-100-1-10 16171.25 148.75 0 0% 13308.05 123.46 10 100%
IRPDC-6-100-1-25 14754.92 314.22 0 0% 12444.60 105.32 25 100%
IRPDC-6-100-1-50 16445.36 773.73 22 44% 12916.61 138.23 50 100%

Average 10035.40 132.69 9.06 58% 8132.43 45.29 16.83 99.6%

Tables 2.6 and 2.7 provide more details on SM customer assignments respectively according

to the Rerouting or Reassignment policies. Table 2.6 shows that by applying the Rerouting

policy, more than 70% of SM customers are usually rejected due to cost reasons independently
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of the planning horizon. In fact with a default penalty coe�cient value of 1, adding SM cus-

tomers at the end of a current route generates larger transportation cost than the potential

opportunity cost. The other SM customer requests are prone to rejection due to vehicle ca-

pacity limitation, especially on the last periods of the planning horizon. Table 2.7 shows that

the rejection percentages due to cost reasons dropped to 35% by applying the Reassignment

policy. Nevertheless, its performance depends widely on the planning horizon: the longer it is,

the higher the percentage of SM customers added and the lower the percentage of rejection due

to vehicle capacity restriction. In fact, on a planning horizon of three periods, 31% rejections

are generated due to vehicle capacity limitation, against 5% on six-period planning horizon.

Also, 32% of requests are accepted on three-period planning horizon against 61% on six-period

one. However, the rejection percentages due to cost reasons are not impacted by the planning

horizon length, and it remained around 35% for both situations.

Table 2.6 � SM customers status by applying Rerouting policy on group 1 instances (σ=1,
Q=Low)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 42 1
2 2 52
3 3 36 21

% 86% 14% 1%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 21
2 2 23
3 3 25
4 4 7 24
5 5 25 6
6 6 11 10

% 74% 26% 0%
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Table 2.7 � SM customers status by applying Reassignment policy on group 1 instances
(σ=1, Q=Low)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 5 1 37
2 3 3 46 3
3 4 48 9

% 37% 31% 32%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 21
2 3 6 17
3 4 9 16
4 5 21 10
5 6 8 7 16
6 7 9 12

% 35% 5% 61%

Increasing opportunity cost (σ)

With a higher opportunity cost, the results on Table 2.8 outline an overall decrease on SM

customers request rejection for both policies. Increasing σ from the default value of 1 to a

greater value of 25, decreased rejection rates from on average 99% to 36% for the Rerouting

policy and from 58% to 34% for the Reassignment policy. This stipulates the fact that with

a higher opportunity cost, it becomes more interesting to accept SM customers requests and

reduce the possibility of rejection of dynamic requests, except those susceptible to generate

higher transportation costs due to their locations. It is also notable that when the percentage of

SM customer requests becomes equal to or higher than 25% of VMI customers, the Rerouting

policy tends to generate lower total operational costs than the Reassignment one (see the

highlighted cells in Table 2.8). Thus, the more potential SM customer requests, the more

suitable it is to integrate them in the same-day delivery. Instead, incorporating them on the

following day by updating the delivery plan will incur higher operational costs at the end of

the planning horizon.

Tables 2.9 and 2.10 show that increasing the opportunity cost generates lower rejections due

to cost reasons. Instead, it generates more rejections due to vehicle capacity, especially for

the requests on the last periods of the planning horizon. In other words, the SM customers'

requests accepted due to the opportunity cost increase, bring vehicle capacity imbalances

later at the end of the planning horizon. The results also show an important improvement

in the performance of the rerouting policy by increasing the accepted requests percentages

from around 0% to 56% and 66% respectively on three-period and six-period planning horizon

against a slight increase of 10% on the accepted requests percentage on three-period planning

horizon using the Reassignment policy.
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Table 2.8 � Dynamic policies results for increased σ to 25

Reassignment policy Rerouting policy

Instances Solution value Time (s) Rsm % rejection Solution value Time (s) Rsm % rejection

IRPDC-3-30-1-10 4542.12 2.71 0 0% 3716.15 3.96 1 33%
IRPDC-3-30-1-25 5048.78 2,53 4 57% 3643.70 5.30 3 43%
IRPDC-3-30-1-50 4611.55 9,13 8 53% 4319.53 6.22 5 33%
IRPDC-3-50-1-10 6564.48 8.19 2 40% 5711.69 10.22 2 40%
IRPDC-3-50-1-25 6583.91 13,57 7 58% 4864.95 15.54 4 33%
IRPDC-3-50-1-50 7074.17 31.12 12 48% 5428.94 12.89 15 60%
IRPDC-3-100-1-10 14373.23 84.74 3 30% 13238.26 84.47 5 50%
IRPDC-3-100-1-25 21190.65 367.19 13 52% 11541.82 107.36 7 28%
IRPDC-3-100-1-50 22698.79 460.41 28 56% 12646.34 95.85 25 50%
IRPDC-6-30-1-10 7272.42 5,20 0 0% 6720.65 6.35 1 33%
IRPDC-6-30-1-25 7651.43 7.35 3 43% 6839.11 6.12 2 29%
IRPDC-6-30-1-50 8320.63 7.36 9 60% 6262.13 4.71 6 40%
IRPDC-6-50-1-10 10840.86 20.53 1 20% 8405.22 28.00 2 40%
IRPDC-6-50-1-25 10720.72 31.04 1 8% 8973.17 18.57 3 25%
IRPDC-6-50-1-50 10727.16 70.97 6 24% 8694.72 21.52 8 32%
IRPDC-6-100-1-10 14792.88 152.96 0 0% 15425.05 129.83 2 20%
IRPDC-6-100-1-25 14116.25 304.64 0 0% 12447.12 123.25 5 20%
IRPDC-6-100-1-50 16467.97 773.32 29 58% 12648.89 132.40 23 46%

Average 10755.44 130.72 7.00 34% 8418.19 45.14 6.61 36%

Table 2.9 � SM customers status with Rerouting policy after increasing σ to 25

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 8 35
2 2 9 4 39
3 3 7 39 11

% 16% 28% 56%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 7 14
2 2 2 21
3 3 2 23
4 4 2 25 4
5 5 3 2 26
6 6 9 12

% 11% 24% 66%

Table 2.10 � SM customers status with Reassignment policy after increasing σ to 25

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 43
2 3 1 47 4
3 4 29 28

% 20% 31% 49%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 21
2 3 3 20
3 4 6 19
4 5 14 3 14
5 6 3 14 14
6 7 6 15

% 21% 11% 68%
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Increasing Vehicle capacity

Increasing the vehicle capacity while maintaining the opportunity cost low, as shown in Table

2.11 leads to a slight decrease on the average of rejections from 58% to 51% by applying the

Reassignment policy against no signi�cant improvement by applying the Rerouting policy.

Results show that rejection levels are lower on six-period instances than three-period ones.

However, operational costs tend to be lower just on the largest six-period instances containing

between 110 to 150 customers. This demonstrates that, unlike the variation in opportunity

cost, vehicle capacity has no direct impact on operational costs. However, the appropriate

combination of SM and VMI customers on routes has a greater impact on operational costs.

The more VMI customers we have assigned to a route, the easier it is to insert an SM customer

at a lower marginal cost by using a Reassignment policy, as opposed to a limited improvement

for the Rerouting policy. In fact, according to the Rerouting policy the marginal cost of inser-

ting a new SM customer request is always determined by the location of the last customer on

the current route under execution.

Table 2.11 � Dynamic policies results for increased vehicle capacity (Q=High)

Reassignment policy Rerouting policy

Instances Solution value Time (s) Rsm % rejection Solution value Time (s) Rsm % rejection

IRPDC-3-30-2-10 3871.32 1.16 3 100% 3734.83 1.70 3 100%
IRPDC-3-30-2-25 3690.48 2.22 6 86% 3845.83 3.10 7 100%
IRPDC-3-30-2-50 4598.33 6.13 7 47% 4507.83 3.96 14 93%
IRPDC-3-50-2-10 8153.44 6.54 3 60% 5968.62 3.26 5 100%
IRPDC-3-50-2-25 6668.78 15.16 7 58% 4991.60 9.14 12 100%
IRPDC-3-50-2-50 5826.39 25.10 23 92% 5624.21 2.96 25 100%
IRPDC-3-100-2-10 16781.87 40.62 4 40% 13249.53 7.38 10 100%
IRPDC-3-100-2-25 17552.42 73.54 6 24% 11158.39 40.09 25 100%
IRPDC-3-100-2-50 18181.60 191.05 42 84% 13623.84 30.37 50 100%
IRPDC-6-30-2-10 6384.36 4.79 2 67% 5582.85 7.05 3 100%
IRPDC-6-30-2-25 7246.97 8.99 0 0% 7017.20 4.31 7 100%
IRPDC-6-30-2-50 6796.57 6.91 12 80% 6474.09 4.37 15 100%
IRPDC-6-50-2-10 10060.12 12.45 0 0% 8252.70 14.26 5 100%
IRPDC-6-50-2-25 9596.29 32.06 10 83% 8822.14 20.66 12 100%
IRPDC-6-50-2-50 9786.31 80.42 11 44% 8937.81 23.40 25 100%
IRPDC-6-100-2-10 16401.52 116.44 0 0% 12685.56 102.84 10 100%
IRPDC-6-100-2-25 13824.42 276.59 2 8% 10922.59 77.35 25 100%
IRPDC-6-100-2-50 17834.79 485.63 20 40% 13631.03 81.18 50 100%

Average 10180.89 76.99 8.78 51% 8279.48 24.30 16.83 99.6%

Concerning Tables 2.12 and 2.13 , increasing vehicle capacity helped reduce rejections due to

vehicle capacity limitation when the number of customers to visit increased within a period. On

three-period instances, where usually there is more concentration of customers within periods,

applying a Reassignment policy with an extended vehicle capacity reduced such rejections

from 31% to 15% and 14% to 1% for the Rerouting policy. However, applying any of the

two policies, whether on instances of three or six periods, increased rejection levels due to

cost reasons even with a low opportunity cost coe�cient (σ=1). The results also show that

increasing vehicle capacity does not increase SM customers' request acceptance percentage

using any of the two policies.
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Table 2.12 � SM customers status with Rerouting policy after increasing vehicle capacity
(Q=High)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 42 1
2 2 52
3 3 56 1

% 99% 1% 1%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 21 0
2 2 23 0
3 3 25 0
4 4 30 1 0
5 5 31 0
6 6 16 5 0

% 96% 4% 0%

Table 2.13 � SM customers status with Reassignment policy after increasing vehicle capacity
(Q=High)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 14 29
2 3 24 15 13
3 4 40 8 9

% 51% 15% 34%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 6 15
2 3 10 13
3 4 10 1 14
4 5 9 22
5 6 6 3 22
6 7 12 9

% 35% 3% 63%

VMI customers clustered dispersion

Changing VMI customers' locations to clustered positions has increased the possibility of re-

jection and the di�culty of integrating SM customers' requests. By applying the Reassignment

policy, Table 2.14 reveals an increase in rejection rates from an average of 58% with a random

and uniform dispersion of VMI customers to 73% when clustered within a radius of 50 around

the depot. However, a decrease on operational costs using both policies is noted. Operational

costs dropped from an average of 10035.4 to 6631.75 using a Reassignment policy and from

8132.43 to 5638.45 using a Rerouting policy.

Results also show that for instances with a larger planning horizon and a higher number of

VMI customers, rejection rates are lower. In fact, Table 2.16 provides that 32% of requests are

accepted on six-period instances against 17% on three-period instances when a Reassignment
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Table 2.14 � Dynamic policies results with clustered VMI customers (σ=1, Q=Low)

Reassignment policy Rerouting policy

Instances Solution value Time (s) Rsm % rejection Solution value Time (s) Rsm % rejection

IRPDC-3-30-3-10 2993.73 3.49 3 100% 2933.65 5.35 3 100%
IRPDC-3-30-3-25 3657.32 4.38 3 43% 3446.40 5.59 7 100%
IRPDC-3-30-3-50 2979.93 9.02 13 87% 2792.88 6.74 15 100%
IRPDC-3-50-3-10 4109.18 5.01 5 100% 3623.33 15.58 5 100%
IRPDC-3-50-3-25 4198.56 14.65 11 92% 3187.91 14.03 12 100%
IRPDC-3-50-3-50 4071.70 21.50 23 92% 3410.19 10.75 25 100%
IRPDC-3-100-3-10 9684.98 71.89 3 30% 5164.26 91.60 10 100%
IRPDC-3-100-3-25 8706.03 138.01 16 64% 6005.73 76.43 25 100%
IRPDC-3-100-3-50 6209.15 412.33 49 98% 6117.35 77.92 49 98%
IRPDC-6-30-3-10 5747.67 5.09 3 100% 5317.56 6.63 3 100%
IRPDC-6-30-3-25 6357.98 6.35 4 57% 6150.61 7.22 7 100%
IRPDC-6-30-3-50 5380.07 12.56 11 73% 5229.53 7.64 15 100%
IRPDC-6-50-3-10 7148.43 12.00 3 60% 6388.31 27.14 5 100%
IRPDC-6-50-3-25 6815.51 25.79 7 58% 6156.05 21.76 12 100%
IRPDC-6-50-3-50 8376.60 54.91 20 80% 6353.43 17.22 25 100%
IRPDC-6-100-3-10 9513.10 168.73 6 60% 9409.23 127.19 10 100%
IRPDC-6-100-3-25 10626.78 306.71 12 48% 9383.78 126.86 25 100%
IRPDC-6-100-3-50 12795.04 760.30 37 74% 10421.98 109.00 50 100%

Average 6631.76 112.93 12.72 73% 5638.45 41.93 16.83 99.9%

policy is applied. On the other hand, concerning vehicle capacity, 30% of requests are rejected

due to vehicle capacity limitation on three-period instances against just 8% on six-period

instances.

However, a higher transportation cost remains the main reason for rejecting SM customers'

requests. It re�ected between 53% to 60% of rejection cases within the Reassignment policy

with a higher level of rejection on the H+1 periods of the planning horizon in which usually no

VMI customers deliveries are scheduled. As shown in Table 2.15, applying a Rerouting policy

generates higher rejection levels for operational cost reasons within rates of 80% on three-

period instances and 89% on six-period instances. The remaining 20% and 11% of rejections

cases are incurred by vehicle capacity violation. They are usually recorded on the last periods

of the planning horizon, where there is a higher number of VMI customers scheduled deliveries.

Table 2.15 � SM customers status by applying Rerouting policy on group 3 instances (σ=1,
Q=Low)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 39 1
2 2 55
3 3 27 30

% 80% 20% 1%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 23 0
2 2 30 0
3 3 26 0
4 4 12 9 0
5 5 22 1 0
6 6 22 7 0

% 89% 11% 0%
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Table 2.16 � SM customers status by applying Reassignment policy on group 3 instances
(σ=1, Q=Low)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 24 5 11
2 3 8 41 6
3 4 48 9

% 53% 30% 17%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 7 16
2 3 20 10
3 4 19 1 6
4 5 18 3
5 6 3 11 9
6 7 24 5

% 60% 8% 32%

Increasing opportunity cost (σ)

Increasing the opportunity cost (σ=25) on the third group instances of clustered VMI cus-

tomers re�ected an overall decrease on rejection levels by using both policies for an average

of dynamic requests rejection of 36% as depicted in Table 2.17. Comparing solution values

outlines that the Rerouting policy generates lower operational costs when applied on small

instances of 30 to 50 clustered VMI customers. However, the Reassignment policy provides

more signi�cant results when used on larger instances with 75 to 150 customers.

Table 2.17 � Dynamic policies results with clustered VMI customers and increased σ to 25

Reassignment policy Rerouting policy

Instances Solution value Time (s) Rsm % rejection Solution value Time (s) Rsm % rejection

IRPDC-3-30-3-10 4078.03 3.45 1 33% 2917.25 5.38 1 33%
IRPDC-3-30-3-25 4281.98 4.95 3 43% 3110.69 5.35 6 86%
IRPDC-3-30-3-50 4056.42 9.34 9 60% 2787.53 7.07 5 33%
IRPDC-3-50-3-10 4524.08 5.09 2 40% 3644.70 16.40 2 40%
IRPDC-3-50-3-25 4930.51 17.04 5 42% 3140.63 14.59 3 25%
IRPDC-3-50-3-50 5032.73 24.87 20 80% 3869.22 10.83 13 52%
IRPDC-3-100-3-10 6856.06 72.24 4 40% 6630.10 89.08 3 30%
IRPDC-3-100-3-25 12511.64 143.01 7 28% 7060.37 79.72 15 60%
IRPDC-3-100-3-50 8307.58 341.77 22 44% 5801.80 77.47 24 48%
IRPDC-6-30-3-10 6427.92 5.60 1 33% 5317.56 6.54 0 0%
IRPDC-6-30-3-25 7002.95 6.88 2 29% 6150.61 7.18 3 43%
IRPDC-6-30-3-50 6867.96 11.98 9 60% 5217.97 7.83 5 33%
IRPDC-6-50-3-10 7876.49 12.67 2 40% 6406.74 25.96 1 20%
IRPDC-6-50-3-25 7210.76 25.23 4 33% 6156.05 21.97 2 17%
IRPDC-6-50-3-50 9432.20 55.82 2 8% 7449.59 16.69 5 20%
IRPDC-6-100-3-10 10780.24 198.48 2 20% 8546.63 151.70 4 40%
IRPDC-6-100-3-25 12200.08 299.72 4 16% 9179.34 123.91 10 40%
IRPDC-6-100-3-50 13677.74 878.11 3 6% 10350.92 110.50 17 34%

Average 7558.63 117.57 5.67 36% 5763.21 43.23 6.61 36%

Concerning the reasons of rejection, Tables 2.18-2.19 show that increasing the opportunity

cost generates lower dynamic request rejections due to cost reasons in clustered locations

context against uniform ones. Instead, it also generates more rejections due to vehicle capacity,

especially for the requests on the last periods of the planning horizon.
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Table 2.18 � SM customers status by applying Rerouting policy and increasing σ to 25

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 5 35
2 2 5 10 40
3 3 3 49 5
% 9% 39% 53%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 2 21
2 2 6 24
3 3 26
4 4 5 12 4
5 5 3 3 17
6 6 3 13 13

% 13% 18% 69%

Table 2.19 � SM customers status by applying Reassignment policy and increasing σ to 25

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 2 7 31
2 3 52 3
3 4 12 45

% 9% 39% 52%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 23
2 3 2 28
3 4 2 1 23
4 5 9 12
5 6 2 2 19
6 7 11 18

% 17% 2% 81%

Increasing vehicle capacity:

Increasing the vehicle capacity (σ=1, Q=High) on clustered customer instances generated an

increase in rejection levels when applying the Reassignment policy. The average rejection level

jumped from 51% with uniformly dispersed customers to 70% with clustered ones against no

notable change on the overall rejection levels by using the Rerouting policy. Vehicle capacity

increase also generated lower operational costs on clustered customer instances than those

with uniformly dispersed customers.

With regard to Tables 2.21 and 2.22, we note that all rejections are generated due to increased

cost reasons and no more due to vehicle capacity limitation.
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Table 2.20 � Dynamic policies results with clustered VMI customers and increased vehicle
capacity (σ=1, Q=High)

Reassignment policy Rerouting policy

Solution value Time (s) Rsm % rejection Solution value Time (s) Rsm % rejection

IRPDC-3-30-4-10 3123.35 4.35 3 100% 3123.35 4.99 3 100%
IRPDC-3-30-4-25 3324.67 2.26 6 86% 3348.55 1.40 7 100%
IRPDC-3-30-4-50 3295.98 2.95 12 80% 3030.06 1.33 15 100%
IRPDC-3-50-4-10 4466.92 3.35 4 80% 3929.29 2.76 5 100%
IRPDC-3-50-4-25 3651.14 8.74 11 92% 3631.70 2.70 12 100%
IRPDC-3-50-4-50 4387.65 22.09 18 72% 3921.32 3.03 25 100%
IRPDC-3-100-4-10 7070.33 32.36 1 10% 5627.95 8.67 10 100%
IRPDC-3-100-4-25 7382.71 75.80 22 88% 6744.05 10.89 25 100%
IRPDC-3-100-4-50 9414.66 167.94 29 58% 7103.00 9.27 50 100%
IRPDC-6-30-4-10 5845.49 5.45 1 33% 4986.22 4.57 3 100%
IRPDC-6-30-4-25 5786.45 5.32 6 86% 5573.85 6.90 7 100%
IRPDC-6-30-4-50 5289.03 5.80 9 60% 5365.17 4.32 15 100%
IRPDC-6-50-4-10 7789.18 9.78 3 60% 6460.37 20.94 5 100%
IRPDC-6-50-4-25 7443.73 25.27 10 83% 6134.11 17.04 12 100%
IRPDC-6-50-4-50 7909.26 39.72 18 72% 6339.57 10.00 25 100%
IRPDC-6-100-4-10 10228.96 143.60 10 100% 9495.34 108.98 10 100%
IRPDC-6-100-4-25 11471.75 204.67 8 32% 9999.63 100.45 25 100%
IRPDC-6-100-4-50 11592.81 348.11 33 66% 11203.69 30.64 50 100%

Average 6637.45 61.53 11.33 70% 5889.85 19.38 16.89 100%

Table 2.21 � SM customers status with Rerouting policy after increasing vehicle capacity
(σ=1, Q=High)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 40 0 0
2 2 55 0 0
3 3 57 0 0

% 100% 0% 0%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 1 23 0 0
2 2 30 0 0
3 3 26 0 0
4 4 21 0 0
5 5 23 0 0
6 6 29 0 0

% 100% 0% 0%

Table 2.22 � SM customers status with Reassignment policy after increasing vehicle capacity
(σ=1, Q=High)

H=3

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 19 0 21
2 3 37 0 18
3 4 50 0 7

% 70% 0% 30%

H=6

Request period Delivery period Rejected/Costs Rejected/Vehicle capacity Accepted

1 2 13 0 10
2 3 23 0 7
3 4 20 0 6
4 5 20 0 1
5 6 4 0 19
6 7 18 0 11

% 64% 0% 36%
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Table 2.23 summaries all of previously discussed results. The values of the various parameters

used in the sensitivity analysis are listed in the columns, along with the group of instances

they were applied to. Rows are divided into three families. The �rst family is dedicated to the

parameters we investigated, such as VMI customers dispersion, Vehicle capacity, opportunity

cost coe�cient σ, and planning horizon length H. The second set of rows is for performance

measures linked to the Rerouting policy, such as averages of operational costs (solution value),

running times, numbers of rejected SM customers (noted as Rsm), and rejection rates for SM

customers. Furthermore, the rejection rates due to vehicle capacity limitations and costs, as

well as the rate of acceptance, are considered. The �nal family of rows is dedicated for the

Reassignment policy performance measures.
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2.8 Conclusions

This chapter investigates a special case of the real-world oil distribution problem. We proposed

a new variant that takes into account the dynamic arrival of customer requests by using

an inventory routing problem approach (DIRPCR). Focusing on the dynamic speci�city of

the problem, after framing the de�nition and mathematical modeling of the DIRPCR, we

presented a tabu search-based heuristic as well as two dynamic policies that can be integrated

into the heuristic execution process. The results show that the proposed heuristic can handle

the short execution time required to outperform the exact approach limitations in dealing with

this dynamic problem. In fact, compared to the B&C, our heuristic took lower execution time

when applied on instances with di�erent customer set sizes and planning horizon lengths. Also,

the proposed heuristic, showed a certain �exibility to be used as a tool to simulate scenarios

by applying the Rerouting and Reassignment dynamic policies to four groups of generated

instances distinguished mainly by customers' dispersion and vehicle capacity criteria.

Experimental �ndings

The generated results provided detailed insights into the interaction between the applied

dynamic policies' performance with di�erent con�gurations of VMI customer dispersion as

well as changes in vehicle capacity and opportunity cost parameters. Starting with uniformly

distributed customers, the Reassignment policy outperformed the Rerouting policy in almost

all situations. Moreover, the results revealed that the performance of the Reassignment policy

is a�ected by the total number of VMI customers and the length of the planning horizon: the

larger these factors, the higher the service level. On longer planning horizons, the succession of

reassignment cycles allows reviewing the a-priori plan every time a new request is revealed and,

as a result, improving the insertion possibilities of SM customers in appropriate positions on

the reviewed routes. However, the higher the proportion of SM customers in the total number

of customers, the more appropriate it is to integrate them in same-day delivery. Incorporating

them the next day by updating the delivery plan, on the other hand, will result in a higher

cumulative operational cost at the end of the planning horizon. In fact, as we near the end of

the planning horizon, there are fewer opportunities to postpone or advance deliveries to VMI

customers, and it becomes more costly to add SM customers. However, the Rerouting policy

is determined by the last customer location on the current route as well as the residual vehicle

capacity. As a result, it usually generates a higher transportation cost than the potential

opportunity cost or necessitates extra vehicle capacity, particularly during the last delivery

periods when there is a higher concentration of VMI customer deliveries. In this same context,

but with a higher opportunity cost, it is critical to implement more selective SM customer

criteria or make available dynamic transportation capacity to meet the need for increased

transportation capacity at the end of the planning horizon. Instead, SM customers' requests

accepted as a result of the opportunity cost increase, result in a vehicle capacity imbalance at
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the end of the planning horizon.

A clustered VMI customer location con�guration reduces operation costs while also lowering

SM customer service levels. In particular, accepting SM customer requests, tends to generate

higher operation costs due to inadequate uniformly generated SM customer positions compared

to clustered VMI customer locations.

In the same context, increasing vehicle capacity reveals that rejection levels are lower on six-

period instances than on three-period ones. However, operational costs are typically lower

only during the largest six-period instances, which have between 110 and 150 customers.

Additionally, increasing vehicle capacity assists in reducing rejections due to vehicle capacity

limitation when the number of customers to visit increases within a period. For example,

on three-period instances, where there is usually more customer concentration within periods,

applying a Reassignment policy with an extended vehicle capacity reduces rejections for lack of

vehicle capacity, but without any consideration of the marginal transportation cost of accepting

SM customers, tends to generate higher operational costs. A higher opportunity cost tends

to improve extensively service level and enhance accepting SM customers requests, even if it

generates a higher transportation cost, which remains lower than the potential opportunity

cost. When comparing solution values, the Rerouting policy reduces operational costs when

applied to small instances of 30 to 50 clustered VMI customers. However, when used on larger

instances of 75 to 150 customers, the Reassignment policy produces more signi�cant results.

Furthermore, in the context of a high opportunity cost environment, it is demonstrated that it

is critical to obtain increased transportation capacity during the �nal periods of the planning

horizon to adapt to an increase in accepted SM customer requests due to the higher opportunity

cost.

Managerial recommendations

Based on the �ndings, we propose the following managerial recommendations:

• The business environment: The opportunity cost is in�uenced by the company's

position and the value of the product sold on the market. As a result, it is critical to

conduct studies on the company's positioning in relation to competitors o�ering the

same product or another alternative, such as electricity, as well as studies about the

�uctuation of sales prices. The availability of this information helps the implementation

of appropriate policies for accepting or declining dynamic requests. The geographic

dispersion of VMI customers has a direct impact on the operating costs and service

levels of dynamic requests. First, the activity territory should be geographically zoned

based on the location of VMI customers. Second, a predictive analysis of dynamic

requests should be performed to be able to adapt resources in real-time and apply

other reactive dynamic policies, such as the integration of returns to the depot to

anticipate the arrival of dynamic requests or the integration of waiting times rather
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than automatically following the a-priori plan.

• Resources availability: Throughout our analyses we have noticed that the increase

of the transport capacity has limited e�ects on the quality of results. For instance, it

was worthy only in speci�c situations of planning on a very short term of three periods,

which tend to generate a signi�cant concentration of deliveries over time. The second

situation involves the accumulation of large number of deliveries in the last planning

periods. In the face of this �uctuation in transportation demand, it is �rst necessary

to determine the minimum number of vehicles required to manage the company's sta-

tic activity, which is the replenishment of VMI customers. Second, it is important to

establish a management system for the entire subcontracting activity to ensure �exibi-

lity in transport capacity, whether demand is increasing or decreasing, which is heavily

in�uenced by weather conditions.

Further research can be conducted, by investigating parallel computing to get results with

more competitive execution time on larger and more complicated scenarios, as well as testing

other powerful heuristics such as the adaptive large neighborhood search.
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Conclusion générale

Dans ce mémoire, le problème de distribution de l'huile à chau�age a été étudié. Nous avons

considéré la particularité de la présence de deux types de clients : des clients VMI dont

la gestion du réapprovisionnement de leurs stocks est déléguée au fournisseur, et d'autres

clients SM qui gèrent eux-mêmes leurs consommations et expriment leurs besoins à travers

des appels dynamiques urgents qui nécessitent une livraison dans le jour même ou le jour

suivant. En adoptant une approche de résolution qui s'inspire du cadre classique du problème

de stockage-routage (IRP), nous avons dé�ni une nouvelle variante DIRPCR qui traite les

livraisons dynamiques sur appel.

Pour étudier ce problème, nous avons commencé par une version statique et déterministe qui

suppose que les quantités demandées et les dates de livraison des clients SM sont connues à

l'avance. En se basant sur cette hypothèse, nous avons proposé une formulation mathématique

de notre problème et nous avons pu par la suite le résoudre avec le solveur CPLEX tout en

ayant recours à des versions modi�ées des instances d'Archetti et al. (2007) qui ont été appliqué

auparavant en littérature sur les IRP.

Ensuite, nous avons entamé la version dynamique de notre problème. Nous avons proposé en

premier lieu une heuristique basée sur la recherche tabou. Cette heuristique permet de gérer

les décisions d'a�ectation et routage des clients VMI tout en générant un plan de livraison

a-priori qui s'étend sur tout l'horizon de plani�cation. En second lieu, nous avons conçu

deux politiques dynamiques qui permettent d'intégrer les demandes de livraison sur appel. En

e�et, en adoptant une approche de ré-optimisation périodique, et en choisissant l'une de nos

politiques dynamiques, à chaque période, les demandes des clients dynamiques correspondants

sont révélées et des décisions d'acceptation ou de rejet de ces demandes urgentes sont conclues.

Cette opération est répétée jusqu'au traitement de toutes les demandes dynamiques sur toutes

les périodes de l'horizon de plani�cation.

Finalement, nous avons généré 72 instances qui nous ont permis de mener une analyse extensive

sur di�érents facteurs qui peuvent in�uencer le coût d'opération et le taux de service des

clients dynamiques (SM), à savoir la dispersion des clients VMI, la capacité de transport, et le

coût d'opportunité. Certaines recommandations managériales sont énumérées pour orienter les

gestionnaires dans leurs décisions de mise en place des systèmes dynamiques de distribution.
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Contributions

Dans ce travail, nous avons pu mettre en ÷uvre le cas où deux types de clients sont présents

dans le contexte dynamique de l'IRP et dans le cadre de la distribution su produits énergé-

tiques. En e�et, coordonner entre plusieurs systèmes de gestion de besoins de clients est un dé�

auquel font face les preneurs de décision dans tous les domaines. Quoique les systèmes VMI

soient largement adoptés dans les grandes compagnies, les systèmes traditionnels de service à

la commande sont toujours présents.

Notre travail est considéré ainsi parmi les premiers qui traitent cette particularité, au moins

dans le contexte de distribution de l'huile à chau�age, qui pourra se généraliser facilement sur

d'autres domaines et situations réelles.

Nous avons aussi tenté d'adopter une approche de résolution dynamique qui rime avec les

besoins réels de la plani�cation des tournées de l'huile à chau�age. En e�et, le contexte dyna-

mique nécessite une certaine capacité de réaction rapide face aux changements, et des outils

qui permettent de tester des scénarios avant de décider. L'application de di�érentes politiques

de contrôle dynamiques sur notre heuristique et les temps d'exécution rapides ont montré que

notre algorithme pourrait être déployé dans une application de gestion de tournées dynamiques

et pourrait aussi servir comme un outil de simulation et d'aide à la décision aux plani�cateurs.

A travers nos analyses, nous avons pu proposer des directives managériales qui peuvent guider

toute intention de mise en place de système dynamique de distribution.

Finalement, nous avons proposé une taxonomie qui précise les caractéristiques de base des

problèmes de tournées de véhicules dynamiques, ainsi qu'une classi�cation des méthodes de

résolution développées en littérature suivant les critères de l'approche de résolution et la qua-

lité de l'information. Ces deux éléments présentent un guide qui facilitera le positionnement

des futures recherches sur la thématique de tournées de véhicules dynamiques.

Orientations futures

A travers le travail mené au cours de ce mémoire, nous proposons deux grandes lignes de

recherches futures:

(i) Des recherches en lien avec les méthodes de résolution : Dans ce travail, nous

nous sommes basés sur une ré-optimisation périodique pour intégrer les demandes dyna-

miques et nous avons supposé que chaque client dynamique accepté pour une livraison

dans le même jour d'appel sera inséré à la �n de la route en cours d'exécution. Cette

technique utile dans les cas d'absence des données actualisées sur l'état de système (po-

sition des véhicules, clients visités et non visités, etc.), limite cependant la performance

de la politique de Reroutage ou autrement dit les possibilités de livraison dans la même

journée. En se servant des progrès technologiques, et le développement des systèmes de

géolocalisation, ceci rend facile l'accès aux données nécessaires en temps réel, et permet
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l'adoption d'une approche plus réactive de ré-optimisation continue avec traitement mas-

sif parallèle.

En plus, dans ce travail nous avons con�guré deux politiques de contrôle dont une qui

vise l'intégration des clients dynamiques au jour même d'appel, et l'autre est liée aux

a�ectations au jour suivant. Sous la condition d'avoir accès aux données actualisées en

temps réel, d'autres politiques peuvent être con�gurées à savoir les politiques de dé-

viation et d'attente et par la suite une analyse comparative plus approfondie peut être

menée.

(ii) Des recherches en lien avec les extensions du problème étudié: Parmi les ex-

tensions prioritaires du problème étudié est l'exploitation de son volet stochastique. En

e�et, pour bien gérer les problèmes dynamiques, il faut tirer pro�t des informations

stochastiques pour améliorer l'anticipation des changements et par la suite le temps de

réaction. Par exemple, avec le développement des domaines des données massives et de

l'intelligence arti�cielle, prévoir la demande des clients dynamiques et la distribution de

leurs appels potentiels est devenu à portée de main.

Ensuite, dans notre étude nous avons considéré que le camion part du dépôt avec une oc-

cupation maximale. Cependant, quand cette capacité est épuisée, le reste des demandes

dynamiques est rejeté. Nous pourrons ainsi étudier une nouvelle con�guration qui sup-

pose par exemple la présence des stations intermédiaires ou des retours au dépôt pour

rechargement.

Aussi, la considération des contraintes de la logistique urbaine pourrait présenter des

extensions intéressantes. Dans notre travail, nos coûts de transport se sont basés sur des

distances euclidiennes, alors que l'adoption des données réelles sur la con�guration réelle

des routes, des détours, ainsi que les niveaux de congestion permetent de rapprocher

beaucoup plus les résultats de la réalité.

Finalement, dans ce travail nous nous sommes focalisé sur l'intégration logistique des

activités de transport et gestion des stocks tout en supposant un réapprovisionnement

périodique et déterministe du fournisseur. Étendre cette intégration pour couvrir les ap-

provisionnents du fournisseur se voit nécessaire étant donné qu'en réalité le maintien de

son stock subit les e�ets du changement des conditions météorologiques et les blocages

récurrents des routes d'accès aux terminaux pendant l'hiver.
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