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ABSTRACT 

A tree search strategy is said to be adaptive when it dynamically identifies which areas of the tree are likely to contain good solutions, 

using information gathered during the search process. This work shows how an adaptive approach can be used to enhance the 

efficiency of the coordination process of an industrial supply chain. The result is a new adaptive method (called Adaptive Discrepancy 

Search), intended for search in non-binary trees, and that is exploitable in a distributed optimization context. For the industrial case 

studied (a supply chain in the forest products industry), this allowed reducing nearly half the time needed to obtain the best solution in 

comparison with a standard non-adaptive method. The method has also been evaluated for use with synthesized problems in order to 

validate the results obtained and to illustrate different properties of the algorithm. 
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I. INTRODUCTION 

Many combinatorial optimization problems can be formulated as tree search problems. This is the case for an important coordination 

problem found in industrial supply chains. Within this context, each manufacturing unit (or agent) wishes to plan/schedule its own 

manufacturing operations. However the agents must coordinate in order to produce a global operations plan permitting them to best 

meet the needs of the external customers. Because the solution space can be represented as a tree, the coordination process between 

the agents can be seen as a distributed search in that tree [1]. However, the tree is very large and the search strategy employed by the 

agents‟ collective will have a considerable impact on their capacity to find good solutions rapidly (i.e., solutions best satisfying the 

demands of external customers). 

In this article, we pose the hypothesis that certain zones of the tree are more apt to contain good solutions, and that it is possible for 

agents to locate them collectively and dynamically (i.e. during search), with the aim of focusing on them in priority. Search strategies 

presenting these characteristics are called adaptive [2] or reactive [3]. They exploit a form of learning where certain characteristics of 

the part of the tree already visited serve to feed a statistical model that guides the remainder of the search. Most adaptive approaches 

proposed in the literature are intended for search in binary trees for solving constraint satisfaction problems. They are destined to 

be used in a centralized environment. 

In this work, we show how these notions can be adapted to coordination in supply chains. The result is an adaptive method (called 

Adaptive Discrepancy Search, or ADS) designed for combinatorial optimization problems represented by a non-binary tree, and 

capable of being exploited in a distributed context. The proposed approach has allowed a considerable reduction in the time 

necessary for coordination in an industrial supply chain, in comparison with standard non-adaptive methods. 

The remainder of this paper is organized as follows. Sections II, II and IV present some background and review the literature 

regarding supply chain coordination and adaptive search methods. Then, the proposed adaptive method (ADS) is introduced in Section 

V. Experimental results are provided in Section VI, for both a real industrial supply chain problem and synthesized problems. Finally, 

Section VI concludes the paper. 
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II. THE SUPPLY CHAIN COORDINATION PROBLEM (SCCP) 

To fulfill their mission, today‟s companies must collaborate with a number of partners. These business units possess varied and 

complementary expertise. They form together a value creation network constituted of loosely coupled but interdependent business 

units called the supply chain (SC) [4]. Figure 1 presents a fictitious example of a supply chain (adapted from [5]). 

Suppliers

(raw material)
Manufacturers Distributors

External 

customers

 

Figure 1. Example of a supply chain. Adapted from [5].  

Arcs represent product flows between business units. 

Supply Chain Management (SCM) deals with the coordination of manufacturing and logistics activities between these autonomous (or 

semi-autonomous) decision making units. Partners in the supply chain seek competitive advantages, like the ability to meet the 

changing and diverse needs of customers within short lead times [6]. SCM encompasses a wide range of problems, including design of 

production and distribution networks [7, 8], management of inventory [9], design of contracts between buyers and producers [10] and 

development of advanced supply chain planning systems [11].  

These problems are attracting the attention of researchers from many different backgrounds, from economics to operations research 

and industrial engineering. More recently, they have interested people from the artificial intelligence community, notably because of 

the fact that the concept of multi-agent system is a natural metaphor to describe a supply chain [5, 12]. Since 2003, the Trading Agent 

Competition Supply Chain Management Game (SCMG) [13] has been held, which puts researchers in contact with certain aspects of 

supply chain management. While the SCMG competition involves antagonist agents competing for customer orders and supply [14], 

the focus of this paper is on coordination in collaborative supply chains. This constitutes another important economic issue, as most 

executives agree that future competition will more and more occur between supply chains, instead of between isolated companies [15]. 

This research focuses on the specific problem of synchronizing manufacturing operations in a collaborative supply chain over a short-

term horizon. This can be referred to as collaborative production planning [16] or the supply chain coordination problem [17]. Figure 

2 provides an illustrative example. In this example, supply chain partners are manufacturing agents that must coordinate their 

manufacturing operations in order to deliver what was ordered by an external customer with the least possible delay (they could also 

want to optimize other criteria; we provide this one only as an example). However, different alternatives are possible regarding the 

parts to use, the manufacturing processes to follow, the scheduling of operations and the choice of transportation.  

From a global perspective, this can be seen as a classic planning and scheduling problem (decide what to do, where, and when). 

However, this situation is better described as a coordination problem: each agent wants to plan and schedule its own operations (that 

is, produce a local plan by itself), but there are dependencies between these local plans (i.e. product flows between agents they must 

agree on). In an industrial setting, each agent uses specialized software to plan its operations (the planning problems of each factory 

generally differ from one to another). These tools are called Advanced Planning and Scheduling Systems (APS) [18] and they can take 

a very different form from one factory to another. However, each agent is generally able to propose several alternative local plans in 

order to achieve the common objective. The different valid combinations of these alternative plans define the coordination space that 

is accessible to the partners. In industrial practice, the collective does not have an infinite amount of time to search this coordination 

space and make a proposition to the external customer (indeed, producing the local plans takes time and the consortium can be in 

competition with other supply chains). The consortium will then quickly seek for a solution, and if time remains will try to find a 

better quality solution. This is called an anytime algorithm [19, 20]. 
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Figure 2. Local plan and product flow for a simple supply chain. 

 

The literature on Supply Chain Management (SCM) is plentiful, but more limited regarding the coordination of the manufacturing 

operations on a day-to-day basis [17]. There is a gap to be filled between problem solving at the agent level and coordination strategy 

at the supply chain level [21]. Indeed, at one end of the spectrum, many researchers propose specialized algorithms for the agents to 

make their local decisions (e.g. scheduling) with no consideration for the other aspects of the global problem. These algorithms have 

generally made their way into industrial applications, being integrated into software packages, but support for integration of local 

models is rather limited [22]. 

At the other end of the spectrum, many researchers study the key characteristics of good business relationships. For example,  they 

study which incentive policies (such as penalty costs) can be used to direct the behavior of the cooperating units (see [10]). Other 

researchers study the impact of improved information sharing on the performance of the agents. For example, Schneeweiss studied in 

[23] the performance of the supply chain as a function of the accuracy of the information accessible to agents, and Moyaux et al [12] 

studied the reduction of inventory fluctuations achievable when sharing demand information between partners.  

Concerning the coordination mechanism itself, recent literature in SCM proposes other forms of advanced coordination frameworks 

involving negotiation and information exchange schemes aiming at synchronizing planning decisions through the supply chain (e.g. 

[17, 24]). Generally, these approaches are applied in contexts where partners have different objectives/interests but wish to agree on a 

plan. They are usually defined for two-partner relationships or the method involves a mediator. 

Finally, in SCM literature, we see an increasing use of multi-agent technologies in order to create advanced systems for enterprises 

collaboration [25-27]. This community particularly emphasizes the design of interaction protocols for agent coordination (see [28, 29] 

for a review). However, most of these protocols can be described as coordination heuristics. Other authors propose radically different 

approaches where agents are totally benevolent; agents plan and synchronize at the same time by applying together a distributed 

algorithm they agreed on in advance (e.g. [30]). This is a different context than the SCPP situation described previously, where each 

agent uses a specialized algorithm to make its local decision but they need to coordinate. 

Another promising path is to allow agents to use distributed search algorithms as a coordination mechanism [1, 31, 32], but in a 

context where the general assignment of responsibilities to agents as well as the structure of the tree (the coordination space) are 

induced by the business environment. Searching this tree allows obtaining good solutions in short computation time, and lead to an 

optimal solution if enough time is available. The following section reviews how this concept can be used in practice. 

III. DISTRIBUTED SEARCH AS COORDINATION MECHANISM 

In an industrial context, a certain form of hierarchy usually exists in the network. For example, in a customer-supplier relationship, the 

role of the customer is similar to the one of an order-giver in a military hierarchy. Its decisions determine the leeway available to the 

followers. 

Schneeweiss proposed a general framework in order to model these kinds of problem hierarchies in [33]. According to this 

framework, the decision taken at a given level (top) is interpreted by the following level (bottom) as a parameter of its subproblem 



4 

 

(i.e. the subproblem bottom is defined as a function of the top decision). Of course, this can be generalized to situations with more 

than two subproblems. The subproblems can be solved sequentially, from top to bottom, which is termed upstream planning [24, 34].  

The decomposition of the overall global problem into a sequence of subproblems is determined by the business context. To illustrate, 

let us see how this concept of hierarchy applies to our supply chain example from Figure 2. One of the agents (A1) is in contact with 

the external customer who expresses his need/demand. Knowing the demand from the external customer, this agent makes a 

temporary plan to compute its needs in raw material and sends this information to its supplier (A2) as a demand plan (a list of 

products, quantities and expected delivery dates). In turn, the supplier tries to satisfy this demand and responds with a supply plan that 

does not necessarily meet all demands (e.g. some deliveries may be planned to be late or some products can be replaced by 

substitutes). When informed of the supply granted by its supplier, the initial agent (A1) has to revise its production plan in order to 

account for supply constraints. When this protocol is extended to the whole supply chain, the succession of planning activities forms a 

loop with two phases: one upstream, where demand is tentatively propagated, and the other downstream, where final supply is 

propagated (see Figure 3). This is called Two-phase planning in [28]. 

Planning
demand

plan

demand

plan

supply

plan Planning
supply

plan

3
Planning

Planning

Planning

demand

plan

supply

plan

External

customer

Agent  A3 Agent  A2 Agent  A1

12

4 5

 

Figure 3. Two-phase planning protocol as coordination mechanism for the previous supply chain. 

This illustrates well how business is done in practice; partners have well defined local planning/scheduling domains, and synchronize 

by exchanging business artifacts (e.g. demand plan, supply plan) following well-established protocols. Each specific situation can be 

modeled using a workflow diagram similar to the one in Figure 3 that states a sequence (or hierarchy) of subproblems.  

A. Modeling the SCCP as a Hierarchical Distributed Constraint Optimization Problem (HDCOP) 

Given the hierarchy (or sequence) of subproblems, and knowing that each agent is able to produce alternative solutions (local plans) 

for its local subproblems, the whole situation can be modeled as a Hierarchical Distributed Constraint Optimization Problem 

(HDCOP) [31], and the coordination space can be represented as a non-binary tree of fixed depth.  

Definition 1:  Hierarchical Distributed Constraint Optimization Problem (HDCOP) [31]. A global problem is defined by a vector of 

subproblems:  ,...,
1 M

X X X . Each subproblem 
i
X  comes under the responsibility of an agent    ,..., A

i 1 N
X A A A . For each 

subproblem 
i
X  the agent  A

i
X  has access to a solver Si  producing a vector i

S  of alternative solutions: Si i

i
(X ) S  where 

 
  

i

i i i

1 S
S = S ,...,S . These local solutions (in our case, local plans) are not known a priori; they are revealed one after another by the 

solver (in our case the APS tools used by the industry). Eventually one gets selected. We will denote it by i

*
S . Agents look for the 

vector *,...,  
1 M

*
S S  minimizing an objective function  *,...,  F 1 M

*
S S . Each subproblem 

i
X  is defined by the chosen solutions for the 

previous subproblems:   
 

Gi j

i *
X = S 1 j<i . 

For example, for the two-phase planning protocol previously described in Figure 3, the coordination space can be modeled as the 

following tree (Figure 4). Each node on a specific level represents an instance of the corresponding subproblem (defined by decisions 

for previous subproblems). Each arc is an alternative and feasible solution to the subproblem. The number and order of these arcs 

depend on the local algorithm used by the agent. To each leaf of the tree corresponds a solution to the global problem. 



5 

 

… …

… …

…

…

Demand from the 

external customer

Alternative demand plans

Alternative demand plans

Alternative supply plans

Alternative supply plans

…

… …

Alternative global solutions

(propositions to the 
external customers)

1
X

2
X

3
X

4
X

5
X

 

Figure 4. Coordination space for Two-phase planning within HDCOP. 

Thus, this tree models the coordination space available to agents for a given business context/protocol and for a given set of local 

algorithms used by the agents. Of course, using different local algorithms or business protocols would lead to a different 

tree/coordination space.  

This reformulation of the coordination problem as a tree calls for the use of a distributed search algorithm as a coordination 

mechanism. However, agents must perform search in a tree that is not fully defined a priori. That is, (1) the alternative solutions (arcs) 

of the local subproblems are not known before being produced by the local solver, and (2) the specific instances of each subproblem 

(node) are not known either, because they depend on the solution obtained for previous subproblems. The tree will therefore be 

„revealed‟ progressively during the search process. The next section presents basic algorithms that can be used to search this HDCOP 

space. 

B. Basic algorithms 

The simplest but complete method for the agents to collectively explore the coordination space is for them to perform a distributed 

chronological backtracking. This can be done by applying what Yokoo calls Synchronous Branch and Bound (SyncBB) [35].  Agents 

solve their subproblems in sequence: the first one solves its subproblem and sends its decision to the second agent, and so on. In the 

case of a dead end, or when an agent has considered all of its local solutions, this agent sends a message back to the previous agent, 

asking for an alternative proposition. This backtracking message contains the value of the best solution found so far. It is used during 

search to prune the tree. 

Agent  

Agent  

Alternative

global solutions

(ii) (iii) (iv) (v) (vi)(i)

1
A

2
A

 

Figure 5. Example of an execution trace for SyncBB. 

Because it applies chronological backtracking, SyncBB presents the following drawback. Once the first global solution is found, it 

tries to enumerate every other alternative solution for the last subproblem without considering other options for the previous 

subproblems. By doing so, it persists in exploring only minor variations of the first global solution (for industrial cases, a subproblem 

may have thousands of alternative solutions) in a given period of time. 



6 

 

In contrast, for centralized search, other backtracking strategies allow rapidly visiting different areas of the tree at the beginning of the 

search. This is the case for methods based on the computation of discrepancies, like, for example, Limited Discrepancy Search (LDS) 

[36]. LDS implements the following backtracking strategy. For a binary tree, each node is characterized according to the number of 

times one should branch to the right when going from the root of the tree to that node (each of them is called a discrepancy, see Figure 

6). When backtracking conditions occur (we encounter a global solution and aim for another) we „backjump‟ to the node already 

visited for which the next unvisited child has the fewest discrepancies (for non-binary trees, it was proposed in [37] to count the 

discrepancies as follows: the i-th arc followed at a given level counts as 1i  discrepancies). One consequence of doing that is that 

solutions visited in a given period of time will be from more different parts of the tree than those produced using chronological 

backtracking.  

0 1 1 2 1 2 2 3
 

Figure 6. Binary tree (two arcs per node) with the associated number of discrepancies for each leaf. It corresponds to the number of times one 

branches to the right when going from the root to that leaf (dotted arcs on the figure). 

An adaptation of LDS for distributed search was proposed in [31]. The protocol, called SyncLDS, is the following. Agents perform the 

search in a scheme similar to SyncBB, except that when a global solution is found, the agent detecting that condition sends a message 

to other agents asking each of them to identify the subproblem/node under its jurisdiction for which the next child has the smallest 

number of discrepancies. This can be seen as a kind of bid; the agent that detects the need for backtracking gives control to the agent 

with the smaller bid. The next global solution is reached from that point by solving the remaining sequence of subproblems. 

SyncLDS was applied to the Supply Chain Coordination Problem and evaluated for an industrial problem in [32]. It allowed 

considerable improvement of solution quality and computation time in comparison with SyncBB which proved to be inefficient. Even 

for huge computation times, SyncBB keeps exploring one region of the tree. In contrast, SyncLDS quickly explores different areas of 

the tree.  

Therefore, the key to good results is through rapidly exploring different areas of the tree. It is thus legitimate to question whether 

dynamically detecting (during the search) which areas of the tree are most interesting (in order to focus on them first) will lead to a 

gain in performance. This is what we propose for our distributed problem in Section V. But first, the following section indicates how 

this idea of adaptive search has already been exploited in a centralized context. 

IV. ADAPTIVE SEARCH AND OTHER LEARNING TECHNIQUES FOR CENTRALIZED COMBINATORIAL SEARCH 

This section reviews some of the learning methods that are used in centralized global combinatorial search. Some will serve as root for 

the distributed scheme we propose in Section V.  

First, let us recall the major difference between our context and the more general one of combinatorial optimization (in addition to the 

fact that our problem is distributed). In classical combinatorial problems, it is the solving algorithm that constructs the tree (by 

choosing the order in which variables are instantiated and the order in which values are tried). Learning can then be used in order to 

establish a strategy for variable ordering and value ordering. In the context of hierarchical decision making, the sequence of sub-

problems (equivalent to the sequence of variables) is determined in advance and the sequence of local solutions (equivalent to value 

ordering) depends on the local solver Si  of each decision maker (see problem definition in Section III.A). In this situation, our room 

for manoeuvre is limited to the learning of a backtracking strategy. We will however have a look at methods that use learning for a 

different purpose, as it seems relevant to establish a parallel with those approaches. 

Firstly, we must distinguish between two major currents: (1) the training (or offline) approach, and (2) the adaptive approach. The first 

approach (1) consists in training a system for the resolution of a particular family of problems. In its basic form, the system achieves 

what a practitioner would do manually, that is, to configure a solver for a particular context [38]. For example, using a set of training 

problems, the system could determine which variable ordering heuristics and value ordering heuristics are best for a given family of 

problems. The ACE system [39] uses a similar but more advanced approach. After the training phase, it attributes weights to different 

heuristics according to their pertinence. Once in production, the system will have the different heuristics to vote for the next variable 
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to instantiate, taking their weight into account. The performance obtained can be better than that of individual heuristics. Other 

approaches can be used. As an example, the system proposed in [40] studies a set of trees in order to identify the cuts that can be 

carried out on all these trees while still being assured that good solutions can be found. After training, these cuts are applied to the new 

problem instances submitted to the system. 

The adaptive (or reactive) approach (2), concerns the development of systems that dynamically react and adjust during the resolution 

of a particular instance of a problem [3]. This approach is often put to good use for constraint satisfaction problems (CSP). Many 

authors apply what is called learning from failure. When a constraint is violated during the descent of the tree, the conditions of that 

failure are analyzed with the view of making the most of this knowledge throughout the remainder of the search. For example the 

techniques of nogood recording and clause learning seek to avoid redoing combinations of variable/value affectations that are 

mutually inconsistent. Others try to learn during the search which variables are the most difficult to instantiate, in order to change 

dynamically the order of variables (e.g. YIELDS [41]). In Impact Based Search (IBS), the impact of variables is measured by 

observing how their instantiation reduces the size of the search space [42]. In [43] and [44], each time a constraint causes a failure, the 

priority of variables implicated in this constraint is increased. In [45], another approach for variable ordering is proposed, but in the 

context of Weighted CSP.   

As regards backtracking strategy, approaches where the system learns to evaluate the quality of nodes are of particular interest to us. 

Ruml has made an interesting proposal regarding this. While a basic LDS strategy gives the same importance to any discrepancy, 

BLFS [2] dynamically attributes different weights to discrepancies according to their depth. For a binary tree, BLFS will define two 

parameters for each level of the tree. One corresponds to the “cost” of branching to the left, and the other to the right. The value of a 

leaf is reckoned to be equal to the sum of the costs along the path from the root to this leaf. By knowing the value of a certain number 

of leaves, BLFS uses a linear regression in order to establish the value of the parameters. The model was not really used in order to 

define a backtracking strategy. Instead, the search algorithm proceeds by a series of successive descents in the tree. At each run, it tries 

to reach a leaf using a path that minimizes the costs. The branching choices are made stochastically in order to avoid always taking the 

same path. Ruml has achieved very good results with this algorithm (see [46]). 

The limits of this approach are the following. The branching factor must be the same for each node on the same level, and one can say 

nothing about the cost of a supplementary discrepancy at a given node as long as at least as much has been done at another node on the 

same level. Moreover, the impact of performing an i-th discrepancy at a given node is supposed to be the same for all other nodes on 

the same level, and preliminary experiments showed that this hypothesis was not met for our industrial problem. 

The next sections explain how the idea can however be adapted to support distributed optimization in a non-binary tree in order to be 

applied for supply chain coordination.  

V. ADS: AN ADAPTIVE SEARCH STRATEGY FOR DISTRIBUTED OPTIMIZATION 

This section proposes an adaptive search strategy (Adaptive Discrepancy Search, or ADS) that can be used by agents to solve a 

hierarchical distributed optimization problem (HDCOP). During the search process, agents collectively and dynamically identify the 

most promising areas of the tree in order to explore them first. It allows agents to systematically search the solution space (thus 

looking for the optimal solution) but aims at producing good solutions in a short amount of time. 

The proposed approach can be described as an adaptive backtracking strategy (see Section IV). It exploits the facts that the tree is not 

binary and that we are facing an optimization problem. Since each subproblem (node) has many solutions (arcs), we have to backtrack 

many times to each node during the search process. Each time we will do so, we will measure how beneficial it has been to produce an 

i-th solution for the corresponding subproblem (that is, how beneficial it has been to allow an additional discrepancy on that node). 

We then seek to extrapolate for which node it would be more profitable to produce other local solutions (that is, allow additional 

discrepancies), and how many should be generated before it becomes better to pass on to another node.  

The basic concepts are introduced informally in Section A using a naive example. We will then introduce formally a method that 

allows extrapolating (predicting) the contribution associated to performing an i-th discrepancy at a given node (B). Finally, we will 

define a backtracking strategy that uses this information (C), and a protocol that allows agents to implement it in a distributed scheme 

(D). 
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A. Main idea 

To illustrate the basic concepts, we will consider a fictitious minimization problem represented by a non-binary tree.  

Figure 7i shows the part of the tree that is known after reaching the first global solution. Let us suppose this solution‟s quality (as 

measured by the objective function) is equal to 1.0. At that moment, three nodes are candidates for backtracking (a, b and c). 

Backtracking to any of them would lead to a new global solution having a number of discrepancies equal to 1. If we were to apply an 

LDS policy, we would not have a preference for any of them. Let us suppose we backtrack to each of them in turn. We then get three 

new solutions of quality 1.2, 0.6 and 0.9 (subfigure ii). 

(ii)

1.0

a

b

c

- 0.1

1.0 1.2 0.6 0.9

1.0

1.0

1.0

1.2

0.6

0.9

0.9

0.90.6

- 0.4

- 0.0

a

b

c d

e

f

(i)  

Figure 7. ADS - Illustrating the main idea. 

We now have 6 nodes (a to f) that are candidates for backtracking (nodes a, b and c are still candidates since the tree is not binary). 

Again, these nodes are of equal interest from the point of view of an LDS policy (each would lead to a leaf having 2 discrepancies). 

However, we can see that for node c, the second arc led us to a leaf for which the solution quality is worse than for the first arc (1.2 > 

1.0). For node b, the second arc produces an improvement of 0.4 (1.0 – 0.6). For node a, the improvement is 0.1 (1.0 – 0.9).  

In short, although nodes a, b and c are equally appealing from an LDS point of view, when considering recent history it seems more 

interesting to produce a third solution from node b. As for nodes d, e and f, we have no information available but they could lead to 

promising areas. We thus have to make a choice between exploiting available information (and choosing node b) or exploring new 

areas. The following sections develop these ideas. 

B. Predicting the effect of performing an i-th discrepancy at a given node 

Let us suppose that a search is in progress. An i-th global solution has just been found and we need to backtrack in order to explore 

alternative solutions. Let nodeList  be the list of nodes node  that are candidates for backtracking (i.e. nodes for which there are 

unexplored local solutions for their local subproblems). For each node nodeList , we will denote by n  the number of local solutions 

already explored (i.e. number of arcs exiting from this nodes already explored). We will define the following terms in the context of a 

specific node : 

Definition 2 :  Child i  corresponds to the node headed by the i-th arc of node . It is defined for 0... 1i n  .  Child i  may be a leaf 

or an internal node. As an example, on Figure 7ii, for node b we have 2n  ,  Child 0 corresponds to node c and  Child 1 to node d. 

Definition 3 :  NextLeaf i  corresponds to the first leaf we would encounter performing a depth-first search in the subtree having 

 Child i  as its root. If  Child i  is a leaf, then  NextLeaf i  returns this leaf. Otherwise we have:      Leaf : Child .NextLeaf 0i i . 

Definition 4 :  ArcValue i  corresponds to the quality of the first global solution that can be reached by following arc i. That is 

   ArcValue : NextLeaf .i i score . As an example, each arc on Figure 7ii is labeled by its value. One might use other definitions for 

 ArcValue  (e.g. best solution in the subtree). However, the definition we proposed has the following advantage. Each time we 
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backtrack to a node, we can measure the quality of the followed arc as soon we reach the next leaf (that is before the next backtrack) 

and this value remains unchanged for the rest of the search, which limits data updates. 

Definition 5 :  bestToDate  is a vector of size n such as    
0

min ArcValue
j

i
bestToDate i j


 .  

Figure 8 illustrates the relationship between  ArcValue  and  bestToDate . It shows a node for which 4n   (subfigure i). Each 

arc 0...3i   is labeled by its value  ArcValue i . Subfigure ii illustrates the apparent difficulty of extrapolating a value for 

 ArcValue 4 . In contrast,  bestToDate is monotonic decreasing
1
 (iii). It seems easier to extrapolate a value for  4bestToDate  than 

for  ArcValue 4 . 

1 .6 .9 .21 ? ?
?

 ArcValue i  bestToDate i

i i

(ii) (iii)(i)  

Figure 8. Relation between  ArcValue  and  bestToDate . 

Definition 6:  F . We will suppose a continuous function  F    that approximates  bestToDate . This function will be 

generated by an algorithm named  A  that analyzes the already known value for  bestToDate . Formally, 

     A 0... 1 FbestToDate n     . 

The following shows how we can implement  A . Our principal concern is not to generate a function which explains well the values 

in the known range (interpolation), but rather to extrapolate a new one outside the known range. Generally, extrapolation represents 

an additional challenge in comparison with interpolation [47]. However, considering our definition for  bestToDate , algorithm 

 A  can limit itself considering only monotonic decreasing functions. For example, if one puts forward the hypothesis that 

 bestToDate  decreases from its initial value   ArcValue 0  by a constant rate   until it reaches an inferior limit  , algorithm 

 A  must then produce a function with the following form:     F : ArcValue 0 ii e     . Figure 9 illustrates this situation. 

The role of algorithm  A  is then to estimate the value of parameters   and   for a given node. This could be done, for example, 

by achieving a least squares curve fitting using the Gauss-Newton Algorithm or the Levenberg-Marquardt Algorithm [47, 48]. 

 ArcValue 0



 F i

i

  ArcValue 0 ie   

 

Figure 9. A simple model for function  F i . 

                                                           
1    1 0bestToDate i bestToDate i i     



10 

 

Definition 7 :  improvement . Let us consider a node and two of its consecutive arcs, 1i   and i . They respectively lead to leaves 

having quality  1arcValue i   and  arcValue i . The value of  improvement i  corresponds to the improvement effected at the level 

of  bestToDate :  

     1improvement i bestToDate i bestToDate i    

Definition 8 :  Improvement . In a similar way, we will define the function  Improvement i  as being the expected improvement 

associated to the generation of an i-th local solution for the subproblem associated to current node, according to our approximation 

 F  for  bestToDate  : 

     Improvement : 1i F i F i    

For a given node node for which n local solutions have been generated, we are particularly interested in the value  Improvement n . 

This value is the extrapolation we seek, indicating whether an additional local solution (arc) is believed to lead to a global solution 

  NextLeaf n  better than the one associated to the previous arcs. For simplification, we will write  Improvement  in place of 

 Improvement n  in the rest of the text. 

C. Backtracking strategy 

The strategy we propose is the following. As in SyncBB and SyncLDS, the first global solution is obtained by solving the 

subproblems sequentially. For the first few backtracks, we select a node using an LDS policy. When we have backtracked at least once 

for each level of the tree, we can start using the method of the previous section in order to choose the node to backtrack to. The nodes 

will be compared according to their  Improvement  value. We use  Improvement  rather than  F  for the following reason: 

using  F , a node having generated a good solution in the past would therefore be preferred even if it started generating bad 

solutions. 

By definition,  Improvement  can only be computed for nodes for which at least two arcs have been explored. Consequently, only 

the nodes meeting this condition are considered. We also suppose there is a threshold value  beyond which the improvement is 

significant in the application domain. Besides this value, we suppose it is preferable to explore other nodes. In practice, we can use 

=0. When not enough nodes qualify according to the previous conditions (less than 2), we apply an LDS policy to select a node. 

Doing so increases the number of nodes which will qualify in the future, and represents an opportunity to discover new promising 

nodes. No node (even if it is expected improvement is below ) is discarded forever. The exploration of its remaining arcs is 

postponed until no other node seems more interesting. The method is complete (exploring the same search space as SyncBB or 

SyncLDS) but aims at producing good solutions in a short amount of time. 

Each time a new global solution is found, data must be updated. This dynamically modifies the priority given to the nodes, and by 

doing so, brings about the adaptive character of the strategy. Next section presents the pseudocode performing this update. We than 

presents the pseudocode of a node selector
2
 applying the proposed strategy. 

1) Updating the Data 

Let us suppose that a global solution (leaf) has just been obtained. One must then update the vector  bestToDate  and recompute the 

function  F  for certain ancestors of this leaf. Figure 10 presents the pseudocode achieving this update. The function UpdateData 

receives as arguments the quality of the leaf (score) and its unique identifier p[]. It is a vector of integers representing the path that 

would lead to the leaf in the corresponding global tree. The element p[j] defines, for a level j, which arc should be followed when 

going from the root to that leaf.  The function Card returns the length of the vector. Finally, we recall that nodeList contains the 

nodes available for backtracking. Each node is defined by a tuple <p[], bestToDate[], F()>. 

                                                           
2 In the present context, a node selector is a function that identifies the node to which we should backtrack to. It is called every time we need to backtrack. 
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The main loop navigates along the path p[], from the leaf to the root. For the leaf‟s parent node, we always update  bestToDate  

and  F . As for the upper nodes along the path, the update is not always necessary. Consider a node node and its i-th child child 

such as they are both on the path leading to leaf. If leaf is not the first leaf in the subtree rooted by child, then 

 .NextLeafleaf node i  and this leaf‟s score is of no use in the computation of node‟s  ArcValue i  and  bestToDate i   (according 

to Definitions 4 and 5). In this case, the nodes on the path that are above node do not need to be updated. 

Procedure UpdateData(p[], score)

do

{

i := p[Card(p)-1];

remove last element from p; // p is now the path of the parent

node := select node in nodeList : (node.p = p); // node is that parent

if (i = 0) node.bestToDate[0] := score;

else node.bestToDate[i] := Min(node.bestToDate[i-1], score);

node.F := A(node.bestToDate);

}

while ((Card(p) > 0) and (i = 0))
 

Figure 10. Updating  bestToDate  and  F  when a global solution is found. 

2) Node Selector Implementing the Strategy 

This section describes a node selector implementing the backtracking strategy. Figure 11 presents the pseudocode (see SelectNode). 

Since the model is unusable as long as a minimum of information has not yet been accumulated, the first backtracks are produced by 

virtue of an LDS policy. This is done by giving priority to the nodes for which the next global solution created will have a total 

number of discrepancies inferior to or equal to 1. We also prefer the LDS policy if too few nodes meet the ADS selection criteria 

(enforced by FilterADS). Nodes for which n is equal to zero also have priority as this corresponds to normal descent of the tree 

(when no backtracking is required). The function CompareLDS allows applying the LDS policy. It compares two nodes and returns the 

one of highest priority. The arguments of this function are: the path in the global tree of the next local solution each node would 

generate (thus, the concatenation of p[] and n as a new vector). In the case of equality, the equivalent of a chronological backtrack is 

applied to separate between the nodes (CompareBT). 

Function SelectNode(nodeList) 

 nodeListADS:= FilterADS(nodeList) 

 if (Card(nodeListADS) < 2) 

 or ( node in nodeList) : ((SumOfDisc(node)+node.n  1) or (node.n = 0)) 

   candidate := select node in nodeList according to function CompareLDS()  

  else  

   candidate := select node in nodeListADS : node.Improvement() is maximal  

  return candidate 

 

Function FilterADS(nodeList) 

  return all node in nodeList : (node.n >= 2) and (node.Improvement() > ) 
 

Function SumOfDisc(node) 

  return (j=0..Card(node.p[])-1) node.p[j] 
 

Function CompareLDS(p1, p2) 

 t1 := (j=0..Card(p1)-1) p1[j] 

 t2 := (j=0..Card(p2)-1) p2[j] 
 if (t1 < t2) return p1 

 else if (t2 < t1) return p2 

 else return CompareBT(p1, p2) 

 

Function CompareBT(p1, p2) 

 depth := Min(Card(p1), Card(p2)) 

 j := 0 

 while (p1[j] = p2[j] and j < depth) j := j+1 

 if (j < depth) 

  if (p1[j]  p2[j]) return p1 else return p2 
 else 

  if (Card(p1)  Card(p2)) return p1 else return p2 
   

 

Figure 11. Node selector implementing the ADS strategy. 
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WhenReceive MsgProposition(<d,p[]>) do 

 nodeList.add(<d, p[], n=0>) 

 Work(node) 

 

Procedure Work(node) 

 proposition := NextSolution(node); 

 if (proposition  ) 
  node.n := node.n+1 

  if (Successor(node)  ) 
   send MsgProposition(<proposition, node.p[]+[node.n-1]>) to Successor(node) 

  else 

   UpdateBestToDate(node, node.n-1, proposition.score); 

   node.F := A(node.bestToDate[]) 

   if (node.n = 1) send MsgQuality(score, node.p[]+node.n-1) to Predecessor(node) 

   CooperativeBacktracking() 

 else  

 nodeList.remove(node) 

  CooperativeBacktracking() 

 

Procedure UpdateBestToDate(node, i, score) 

 if (i = 0) node.bestToDate[0] := score 

 else node.bestToDate[i] := Min(node.bestToDate[i-1], score) 

 

WhenReceive MsgQuality(score, p[]) do 

 node := select node in nodeList : p[] begins with node.p[] 

 i := p[Card(node.p)-1] 

 UpdateBestToDate(node, i, score) 

 if (i = 0) and (Predecessor(node)  )  
  send MsgQuality(score, p[]) to Predecessor(node) 

 

Procedure CooperativeBacktracking() 

 send MsgAskNbADSQualifiedNodes to Everybody // including itself 

 nbQualifiedNodesADS :=  answer from Everybody 
 send MsgAskBestLocalNode() to EveryBody 

 answers := all answer from EveryBody : (answer  ) 
 if (nbQualifiedNodesADS < 2) 

 or ( node in answers) : ((SumOfDisc(node)+node.n  1) or (node.n = 0)) 

   candidate := select node in answers[] according to function CompareLDS()  

  else  

   candidate := select node in answers[] : node.Improvement() is maximal  

  send MsgBacktrackADS(node) to Agent(answer) 

 

WhenReceive MsgAskNbADSQualifiedNodes() do return Card(FilterADS(nodeList)) 

 

WhenReceive MsgAskBestLocalNode() do return SelectNode(nodeList) 

 

WhenReceive MsgBacktrack(node) do Work(node) 

   

Figure 12. Pseudocode for SyncADS. Each agent executes this pseudocode at the same time. They communicate using the following mechanism. An 

agent sends a message to another using the following syntax: “send MsgName(content) to AgentName”. On the receiving side, the pseudocode 

defined by the label “WhenReceive MsgName(content)” is automatically executed on reception of the message. 

D. Distributed implementation 

This section introduces a protocol (SyncADS) allowing agents to perform distributed search while applying the previous adaptive 

backtracking strategy (ADS). Strictly speaking, the global tree exists nowhere, but the global solutions will be visited in the same 

order as if one was carrying out centralized search in the equivalent tree. As in SyncBB and SyncLDS, only one agent at a time is 

active. The transition from one agent to the other takes place by the exchange of messages that could be seen as the transmission of a 

privilege (or token). The term synchronous refers to the fact that an agent cannot select/change the solution for his local problem 

asynchronously (that is at any moment).  

Each agent manages a list of nodes/subproblems under its authority (nodeList) and executes the pseudocode in Figure 12. For a 

given agent, the main procedure (MsgProposition) is activated when the agent receives a proposition from the previous one (or 

from the external customer). This proposition is denoted by a couple <d,p[]>. The element d represents the decisions for the 
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previous subproblems and p[] is a vector of integers representing the path leading to the corresponding node in the global tree. Upon 

receiving this message, the agent creates a node corresponding to the new subproblem to solve and then adds it into nodeList. It then 

begins solving this instance of the subproblem (Work), finds a first solution and sends it to the next agent as a proposition (send 

MsgProposition). If there is no following agent, then we have on hand a solution for the global problem. The agent then updates its 

data (UpdateBestToDate and F()), informs its predecessors about the new solution quality (the message MsgGlobalSolQuality 

is propagated upward) and starts the cooperative backtracking mechanism (CooperativeBacktracking).  

In function CooperativeBacktracking, each agent is asked to identify which node under its authority would be locally chosen 

(each agent selects it using the SelectNode function in Figure 11. Agents are also asked to count how many nodes qualify according 

to the ADS filtering criteria. Knowing that information, the calling agent can identify the node/subproblem with highest priority (using 

code similar to Figure 11 SelectNode). It then gives control to the agent responsible for that subproblem (MsgBacktrack). Please 

note that agents do not really send nodes as we do in pseudocode. They only need to communicate the vector p[] and the value n. 

VI. EVALUATION 

We will first apply the proposed approach to a real supply chain coordination problem from the forest products industry (Section A). 

This case has the advantage of being well documented, relies on real data, and has already been used in published works. We will 

evaluate the gains associated with the use of the adaptive strategy, and the quality of the predictive function  F we defined. Finally, 

we will evaluate the approach using a wider range of synthesized problems, in order to generalize the obtained results (Section B).  

A. Evaluation with industrial data: Coordination in a lumber production supply chain 

A decade ago, the Canadian lumber industry was confronted with the need to reengineer the way they manage and plan their supply 

chain operations. Together with researchers, they created the FORAC Research Consortium with the mission to develop Advanced 

planning and scheduling systems (APS). This section first describes a typical lumber supply chain, and the planning problems and 

tools developed for each manufacturing unit, as they were described in [28, 49]. We will then evaluate the performance of the 

proposed adaptive coordination mechanism. Basic distributed search was already evaluated for this case study in [32]. Here, we will 

evaluate the improvement that can be obtained by using the adaptive search strategy. 

1) Lumber production supply chain 

Figure 13 presents the different production units involved in softwood lumber production: (1) the sawing facility, where logs are cut 

into various sizes of rough pieces of lumber; (2) the drying facility, which reduces the lumber moisture content; and (3) the finishing 

facility, where lumber is planed (surfaced), trimmed and sorted. 

Logs Green and rough 

lumber
Dry and rough 

lumber

Sawing

unit (1)

Drying

unit (2)

Finishing

unit (3)

Graded finished

lumber  

Figure 13. Softwood lumber production supply chain. 

Sawmilling produces multiple types of lumber at the same time (co-production) from a single type of log at the input (divergence). 

Many setup configurations are possible for the plant during each shift. Each configuration limits the log types and cutting patterns that 

can be used. Therefore, the planning decisions the production manager must make are the following: (1) decide how the plant will be 

set up for each production shift, and (2) decide which quantities of each log class to consume at each production shift.  

Once logs are sawn, pieces of lumber are assembled into bundles of the same dimension (2”x3”, 2”x4”, etc.) and length (8-foot, 12-

foot, 16-foot, etc.), and generally of the same species (spruce, fir, etc.) in order to be dried. 

Lumber drying is a transformation operation which aims at decreasing the lumber moisture content in order to meet customer 

requirements. These requirements are usually specified by industry standards, although some customers may require specific levels of 
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moisture content. Softwood lumber drying is a rather complex process to carry out. It takes days and it is done in batches within large 

kiln dryers. Bundles of lumbers of different length can be dried in the same batch (e.g. 8-foot and 16-foot), but lumbers must be of the 

same dimension and species (although there are some exceptions).  

For a given batch of green lumber, there are different possible alternative operations that can be used for air-drying and kiln-drying. 

The planning decisions for this production unit are the following: (1) what drying activities to perform, (2) what loading pattern to use, 

and (3) when to perform them. 

At the finishing facility, lumber is first planed (or surfaced). Lumber is then sorted according to its grade (i.e. quality) with respect to 

the residual moisture content and physical defects. Lumber may be trimmed in order to produce a shorter lumber of a higher grade and 

value. This process is usually optimized by hardware to yield products with the highest value, with no consideration for the actual 

customer demand. It is common to obtain more than 20 different types of products from a single product and the exact products mix to 

obtain from a batch depends on the drying process used. There is also a setup cost each time the facility processes a different 

dimension (e.g. from 2”x3” to 2”x6”). To sum up, the decisions that must be taken in order to plan the finishing operations are the 

following: (1) which campaign to realize (i.e. which lumber dimensions), (2) when and for how long and (3) for each campaign, which 

quantities of each length to process. Figure 14 shows a simple example of a production plan, including the campaigns (2”x3”, 2”x6” 

and 2”x4”) and the time spent on each length.  

2"x3" 2"x6" 2"x4"

12’ 10’ 8’ 12’ 8’ 10’

t = 1 2 3 4 5 6

 

Figure 14. Production plan for a finishing line for six consecutive production shifts. 

2) Local decision-making 

Each of these local planning problems were described formally in [49]. Each production unit is able to plan its own production using a 

different specialized tool/algorithm (see [32, 49, 50]). Sawing operations are planned using a Mixed Integer Linear Programming 

model. Drying operations and finishing operations are planned using Constraint Programming models. Each unit can utilize its 

algorithm to produce a local production plan aiming to deliver the products ordered by its customer with the least possible delay (e.g. 

the sawing unit seeks to deliver on time what the drying unit has ordered, etc). 

3) Coordination 

This situation has been modeled as a Hierarchical Distributed Constraint Optimization Problem (HDCOP) in [32]. By default, the 

units apply the Two-phase planning protocol in order to synchronize their operations (see Figure 15 and Section III). Considering that 

each unit is able to produce alternative local plans, the coordination spaces can be modeled as a tree (HDCOP) and the coordination 

process is assimilated into a search in this tree. 

Planning
demand

plan

demand

plan

supply

plan Planning
supply

plan
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Planning
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12
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Figure 15. Subproblems hierarchy for lumber production. 

Synchronous Branch and Bound (SyncBB) and Synchronous Limited Discrepancy Search (SyncLDS) were evaluated and compared 

using industrial data in the mentioned article. Even for a large computation time, SyncBB persisted in exploring only minor variations 

of the first solutions. In contrast, SyncLDS allowed better sampling of the solution space as LDS rapidly explores different areas of 

the tree. As a consequence, the quality of the solutions found by SyncBB stops improving after a short computation time, while it 
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continues to improve with SyncLDS - until it finally reaches a plateau after around an hour of calculation time. In the following 

subsection, we will use the same search trees in order to evaluate SyncADS. 

4) Experiments 

SyncADS will be evaluated for the aforementioned supply chain coordination problem. We will measure the gain associated to the use 

of the adaptive strategy (SyncADS), in comparison with what was reported as the best non adaptive technique (SyncLDS) in [32]. 

We will also evaluate different predictive function  F  used for the extrapolation of  bestToDate . First (1), the function based on 

the learning parameters   and   presented in Section V. We recall it makes the assumption that  bestToDate  decreases according 

to a constant rate   until it reaches a plateau  . We therefore have:     F : ArcValue 0 ii e     . 

Second (2), we will test a simplified version where it is supposed that  bestToDate  decreases until it reaches zero: 

   F : ArcValue 0 ii e  . 

Function 1 is expected to give better results than Function 2. However, Function 2 has the advantage that there is only one parameter 

to fit, and this can be done using simple linear regression. For evaluation purposes we used the Levenberg-Marquardt Algorithm 

(LMA) to fit/update all parameters
3
. This standard non-linear least-squares minimization method [47] has the following advantage 

over the Gauss-Newton Algorithm. Although for both algorithms we need to provide initialization values for the parameters, LMA is 

less dependent on the quality of the initialization values. In our experiments, we used the following initial values: 0.5   and 0  . 

For comparison, we will also test (3) a second-degree polynomial function :   2 2:F i i i     . Although we should expect good 

interpolation capacity from this function (i.e. it should well fit the known points of the curve), it is expected to show a rather poor 

extrapolation capacity, as it is not a monotonic decreasing function. 

5) Results 

Table 1 compares the time needed to get the best solution. It shows the reduction of computation time (%) achieved when using 

SyncADS instead of SyncLDS for the four industrial cases studied. Function 1 allowed an average reduction of 47.3%, in comparison 

with 43.2% for Function 2. As for the third function, it is with no surprise that we obtained poor results (which, in our opinion, is 

explained by the weak extrapolation capacity of this function, see next section). 

Table 1. Computation time needed to get best solution – Reduction (%) made possible by SyncADS (vs SyncLDS). 

Predictive function Case #1 Case #2 Case #3 Case #4 Average 

    1. : ArcValue 0 iF i e      47.6 % 30.9 % 55.1 % 55.7 % 47.3 % 

   2. : ArcValue 0 iF i e   42.9 % 25.7 % 50.1 % 54.2 % 43.2 % 

  2 23. :F i i i      -17.5 % -3.9 % -7.8 % -4.2 % -8.4 % 

Table 2 presents the average reduction of computation time needed to get solutions of intermediate quality. This performance measure 

was proposed to verify that SyncADS allows obtaining solutions of intermediate quality (not just the best one) for a computation time 

equal or less than SyncLDS. The metric is calculated in the following way. Let us consider the execution of SyncLDS. The quality of 

the “best solution to the global problem found up to now” evolved over time. For any level of quality reached by SyncLDS, we 

evaluate the time necessary for SyncADS to reach a solution that is equal or better. 

For both the predictive functions 1 and 2, the reduction is smaller than for the previous indicator (time needed to get the best solution). 

Indeed, the more one is ready to accept poor solutions, the more the advantage of SyncADS over SyncLDS diminishes. The 

explanation is as follows. For both algorithms it takes less time to find poor solutions than good solutions; SyncADS then has less 

time to learn and to distinguish itself over SyncLDS. We will further study this relationship between the performance of ADS and 

                                                           
3 We use the following implementation: Levenberg-Marquardt.NET, by Kris Kniaz. See http://kniaz.net 
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computation time in Section B. As for the third predictive function, we again observe a poor performance, but there is no clear 

correlation between results for this indicator and the previous one. 

Table 2. Average reduction (%) of the computation time needed to get solutions equal or better than SyncLDS. 

Predictive function Case #1 Case #2 Case #3 Case #4 Average 

    1. : ArcValue 0 iF i e      31.2 % 2.5 % 44.9 % 37.1 % 28.9 % 

   2. : ArcValue 0 iF i e   26.6 % 11.5 % 41.2 % 36.6 % 29.0 % 

  2 23. :F i i i      25.9 % -6.3 % 23.4 % -5.4 % 9.4 % 

6) Quality of the predictive functions 

We have seen in the previous section that SyncADS allowed better performance than SyncLDS for the industrial problems. In our 

opinion, two elements explain this result. First (1), the proposed predictive functions  F  model well  bestToDate  and allow good 

extrapolation of further values. Second (2), the curve/profile for  bestToDate  is relatively different from one node to another (i.e. 

there are some subproblem instances for which it is more worthwhile to generate alternative local solutions). Indeed, if this curve had 

been identical for all the nodes, it would have been futile to choose the backtracking candidate on the basis of this; an LDS strategy 

would have given equivalent results. 

In order to verify hypothesis 1, we measured the gap between the forecasts (i.e. the values returned each time  F i  is called) and the 

actual values of  bestToDate i  known a posteriori. We measured an average error of 1.6% for Function 1, 3.6% for Function 2 and 

9.6% for Function 3. We note that the function with the best extrapolation is also the one that gave the best results in previous section. 

To verify hypothesis 2, we proceeded as follows. For each node we characterized its vector  bestToDate  using a single value  . 

We simply took the values in  bestToDate  (they are all known after the search) and best fit them.  

Figure 16 shows the distribution for   in the industrial data. The trend line shows the distribution is close to being exponential 

 12.718xe , defined for the interval  0, ... ,0.5 . Let us recall that nodes for which   is close to zero correspond to subproblems 

instances for which it has been unprofitable to generate alternative solutions (these are therefore very numerous in our industrial case). 

Nodes with a bigger   have more potential (and the strategy seeks to dwell on these in priority). 

12.718xe

2 0.98R 
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12.718xe

2 0.98R 

  

Figure 16. Distribution of the values   for the nodes of the studied trees. 

In a similar way, for each node we observed the last value in the vector  bestToDate  in order to estimate  . For our node 

population, values for   are distributed more or less uniformly between  ArcValue 0  and  0.5 ArcValue 0 . 
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B. Evaluation with synthesized data: Generalization 

In the trees corresponding to our industrial coordination problems, there are some node/subproblems for which it is more worthwhile 

to produce alternative solutions (these are the nodes for which we measured large  ). The performance of our approach is strongly 

related to the distribution of the values for  . Here, we will generate new datasets that will be more or less favorable to our algorithm, 

in order to study some of its characteristics. We will also study the impact of the distribution for  , and the impact of the number of 

subproblems (that is, the depth of the tree). 

We will suppose minimization problems such as the first leaf of the tree corresponds to a solution with quality equal to 1. For each 

node, we randomly choose a value for parameter   using the probability distribution  PR :
x

x e
 

  . For our industrial cases we 

measured 12.718    but we will try other values. In a similar way, the values for   will be randomly chosen using a uniform 

distribution defined between 0 and  arcValue 0  . Knowing values   and   for each node, we can calculate the quality of other 

leaves using Function 1. The trees are generated dynamically during search so the total number of nodes will depend on the 

computation time allowed to the search. 

To introduce our evaluation framework, we will first study the following case. We have trees corresponding to a hierarchy of 4 

subproblem types, generated using 10   (considering 0 0.5  ) and 0  . This case was chosen because it allowed producing 

solutions with a score very close to 0 within reasonable computation time. Figure 17i shows the quality of the best solution found so 

far, according to computation time (measured as the number of visited nodes) for SyncLDS and SyncADS. We can see that for large 

computation time, both allow very good solutions. Subfigure (ii) presents the reduction in computation time allowed by SyncADS (in 

comparison with SyncLDS) for equal solution quality. As an example, obtaining a solution with a score equal to 0.4 (i.e. a reduction 

of the objective function of 60%) takes approximately half the time using SyncADS. We can also point out that that the relative 

advantage of SyncADS decreases for scores very close to 0. For both methods the score tends towards 0 for large computation time 

(subfigure i) and the relative advantage tends to diminish. 

Solution quality according to computation time
Reduction of computation time (%) 

to reach solution of a given quality (ADS vs LDS)

(i) (ii)  

 

Figure 17. Comparison of SyncLDS and SyncADS for trees of depth=4, with [ 10  ; 0 .5  ; 0  ]. 

The next experiment (Figure 18) shows how the number of subproblems (that is, the depth of the tree) affects the performance. 

Subfigures (i) and (ii) show solution quality according to computation time for SyncLDS and SyncADS (for depth=50, 100, 150). 

Subfigure (iii) shows the reduction in computation time permitted by ADS. Two details receive our attention. With ADS, the quality 

of the solutions improves more gradually and continuously according to computation time. However, at the beginning of the search 

the results for ADS are identical to those for LDS. This corresponds to the initialization phase of our algorithm, where backtracking is 

performed like LDS. We can see (subfigure ii) that we quickly reach a plateau (especially noticeable for depth=150). The end of this 

plateau corresponds to the end of the initialization phase.  
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Quality according to computation time (SyncLDS) Quality according to computation time (SyncADS)
Reduction of computation time (%) 

to reach solution of a given quality (ADS vs LDS)

(i) (ii) (iii)

Figure 18. Impact of the number of subproblems (depth=50, 100, 150), with [ 10  ; 0 .5  ; 0  ]. 

The results shown in Figure 19 demonstrate the impact of parameter  . Once again, we have assumed the values of   to be between 

0 and 0.5 according to an exponential distribution xe  . With 0  , the values   are chosen from a uniform distribution. The higher 

  is, the fewer nodes there are with high  . Stated otherwise, the greater   is, the fewer nodes there are for which it is profitable to 

produce a great number of discrepancies. It should thus be more difficult to find good solutions (hypothesis 1) and the search for and 

detection of „profitable‟ nodes should be worthwhile (hypothesis 2). The subfigures (i) and (ii) confirm hypothesis 1; for a same 

strategy, the quality curves are less and less good as   grows. Subfigure (iii) confirms hypothesis 2; the greater   is, the more the 

ADS strategy has a significant advantage over the LDS strategy. These results empirically illustrate the following intuitive idea: the 

rarer the „promising‟ nodes are, the more searching for and remaining with them is worthwhile. Even for 0  , we can observe an 

advantage of ADS over LDS. This is because there is still variability in the tree (and thus some nodes are more interesting than others) 

even if the   values are taken from a uniform distribution
4
. 

Quality according to computation time (SyncLDS) Quality according to computation time (SyncADS)
Reduction of computation time (%) 

to reach solution of a given quality (ADS vs LDS)

(i) (ii) (iii)

Figure 19. Impact of parameter   (0, 1, 10, 15, 100), with [ 0 .5  ; depth=10; 0  ]. 

Finally, the last experiment illustrates the impact of parameter  . Let us recall that the   values of the nodes (the value towards 

which  bestToDate i  tends for the high i ) are chosen between  0arcValue  and  0arcValue   according to a uniform 

distribution. When we have 0  , then for every node the value  Next Leaf i  tends toward 0 for a high i . The higher   is, the 

more variability there is in the tree and the more the learning becomes profitable. This is illustrated by the results in Figure 20. 

 

                                                           

4 If we use the same value   for any node in the tree, then ADS reports the same results as LDS (not shown on the chart). 
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Quality according to computation time (SyncLDS) Quality according to computation time (SyncADS)
Reduction of computation time (%) 

to reach solution of a given quality (ADS vs LDS)

(i) (ii) (iii)  

Figure 20. Impact of parameter  (0, 0.25, 0.50, 0.75), with [ 10  ; 0 .5  ; depth=10]. 

VII. CONCLUSION 

The contributions of this work are situated at different levels. Firstly, we have demonstrated the potential of adaptive search methods 

in an industrial context, more precisely for supply chain coordination. We applied the proposed method (ADS) to a real industrial 

coordination problem in the Canadian forest industry for which it reduced by almost half the computation time needed to get the best 

solution. As well, we have evaluated ADS for synthesized problems. It allowed evaluating the performance of the algorithm with a 

wider range of problems, according to how difficult it is to find nodes leading to good global solutions. ADS qualified as an excellent 

algorithm for distributed optimization, with the limitation that the problem needs to be formalized as a Hierarchical Distributed 

Constraint Optimization Problem (HDCOP). 

By doing so, we have shown how the basic principles of adaptive approaches can be extended to support distributed optimization in 

non-binary trees (rather than centralized constraint satisfaction using binary trees, as is usually the case in the literature). Working on a 

real optimization problem, we have brought to light the fact that a certain structure exists in the problem, which can be identified and 

dynamically exploited during search with the help of a learning model analyzing the non-binary tree. 

A question remains, however. Could the proposed adaptive method prove interesting in a classical/centralized optimization context? 

While in a centralized environment it is common usage for solvers to binarize the search space, one wonders whether directly 

exploiting the non-binary tree would allow finding and exploiting a structure in the problem, with the help of the learning model. This 

question remains open for future work. 
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Captions 

Table 1. Computation time needed to get best solution – Reduction (%) made possible by SyncADS (vs SyncLDS). 

Table 2. Average reduction (%) of the computation time needed to get solutions equal or better than SyncLDS. 

 

Figure 1. Example of a supply chain. Adapted from [5]. Arcs represent product flows between business units. 

 

Figure 2. Local plan and product flow for a simple supply chain. 

 

Figure 3. Two-phase planning protocol as coordination mechanism for the previous supply chain. 

Figure 4. Coordination space for Two-phase planning within HDCOP. 

Figure 5. Example of an execution trace for SyncBB. 

Figure 6. Binary tree (two arcs per node) with the associated number of discrepancies for each leaf. It corresponds to the number of times one 

branches to the right when going from the root to that leaf (dotted arcs on the figure). 

Figure 7. ADS - Illustrating the main idea. 

Figure 8. Relation between  ArcValue  and  bestToDate . 

Figure 9. A simple model for function  F i . 

Figure 10. Updating  bestToDate  and  F  when a global solution is found. 

Figure 11. Node selector implementing the ADS strategy. 

Figure 12. Pseudocode for SyncADS. Each agent executes this pseudocode at the same time. They communicate using the following mechanism. An 

agent sends a message to another using the following syntax: “send MsgName(content) to AgentName”. On the receiving side, the pseudocode 

defined by the label “WhenReceive MsgName(content)” is automatically executed on reception of the message. 

Figure 13. Softwood lumber production supply chain. 

Figure 14. Production plan for a finishing line for six consecutive production shifts. 

Figure 15. Subproblems hierarchy for lumber production. 

Figure 16. Distribution of the values   for the nodes of the studied trees. 

Figure 17. Comparison of SyncLDS and SyncADS for trees of depth=4, with [ 10  ; 0 .5  ; 0  ]. 

Figure 18. Impact of the number of subproblems (depth=50, 100, 150), with [ 10  ; 0 .5  ; 0  ]. 

Figure 19. Impact of parameter   (0, 1, 10, 15, 100), with [ 0 .5  ; depth=10; 0  ]. 

Figure 20. Impact of parameter  (0, 0.25, 0.50, 0.75), with [ 10  ; 0 .5  ; depth=10]. 
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Footnotes 

 

1    1 0bestToDate i bestToDate i i     

2
 In the present context, a node selector is a function that identifies the node to which we should backtrack to. It is called every time 

we need to backtrack. 
3
 We use the following implementation: Levenberg-Marquardt.NET, by Kris Kniaz. See http://kniaz.net 

4
 If we use the same value   for any node in the tree, then ADS reports the same results as LDS (not shown on the chart). 
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