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Résumé 

Le concept O.I.C. (Overall Interaction Concept) permet de vérifier la résistance et la stabilité 

des membrures selon une approche purement numérique. Cette approche a été utilisée, dans 

une étude précédente, afin de quantifier l'apport positif d'une force de tension sur la résistance 

et stabilité d'une membrure en flexion. La méthode de l'O.I.C. requiert le multiplicateur 

plastique de la section afin de calculer l'élancement de la pièce λ ainsi que le facteur khi χ. 

L'étude précédente omettait, par manque d’outils numériques, les efforts de cisaillement dans 

le calcul de la résistance plastique des membrures. Cela causait des résultats imprécis pour 

les membrures courtes. Le travail effectué dans cette étude est alors en deux volets: i) 

Développer un outil numérique permettant de calculer la résistance plastique des sections 

symmétriques et non symmétriques selon des efforts provoquant des contraintes axiales et 

des contraintes de cisaillement et ii) Utiliser cet outil afin de calculer la résistance et la 

stabilité de membrures en traction ayant des charges transversales provoquant de la flexion 

et du cisaillement. Le développement de l'outil numérique permettant le calcul de la 

résistance plastique sous contraintes axiales et de cisaillement a été complété avec succès. 

L'utilisation de cet outil a permis de confirmer l'influence non négligeable du cisaillement 

sur la résistance plastique des poutres courtes et ainsi améliorer les résultats de la méthode 

O.I.C. pour les membrures en tension et flexion. 
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Abstract 

The O.I.C. concept is a numerical approach that calculates the overall resistance and stability 

of a member. This approach has been used in a previous study on the beneficil effect of a 

tension load on the overall resistance and stability of a member in flexure. The O.I.C. method 

requires the plastic multiplication factor of the cross-section to calculate the member 

slenderness λ and the khi factor χ. Altough, the previous study omitted the shear internal 

forces in the plastic capacity of the cross-section due to a lack of numerical tools. For short 

members where shear internal forces were dominant, the resistance and stability results were 

imprecise. The present work is divided in two main objectives: i) To develop a numerical 

tool to calculate the plastic capacity of doubly and mono-symmetric cross-sections for axial 

and shear loads and ii) Use the developed numerical tool to consider the shear internal forces 

effects for members under tension and bending. The cross-section plastic capacity tool has 

been successfully developed. The tool has also confirmed the non-negligeable influence of 

shear loads on the plastic capacity of short members. The short members resistance and 

stability results were imporved using the numerical tool. 
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Introduction 

The use of steel in the construction industry has been strong since many years. Steel 

structures have multiple advantages during and after the life expectancy of the structure. The 

erection process of steel structure can be done quickly as the members are pre-fabricated and 

simple to assemble. Steel is also able to withstand great loads while being lighter than other 

types of materials. Also, the ductile behavior of steel is beneficial for the safety of the 

structure. Since this material has been in use for a good number of years, engineers have 

developed an extensive knowledge on the design of such structures. Although the design and 

resistance of steel structures and their components are well covered through the standards, 

the advances in high strength steel will require further knowledge, design approaches and 

advanced numerical tools. 

As of today, the various standards typically define four buckling resistance classes, according 

to the cross-section slenderness. The b / t ratios of the constituting plates of the cross-section 

define the analysis methodology to be used. For a simple beam under major-axis bending, 

the buckling resistance curve, as shown in Figure 1, has three distinct zones: fully plastic, 

inelastic and elastic.  

 

Figure 1 – Major-axis bending buckling resistance (Boissonnade, Hayeck, Saloumi, & Nseir, 2017) 

The first zone is characterized by class 1 compact members where the instabilities does not 

affect the resistance; therefore, a plastic analysis may be performed. The second zone, 

representing class 2 cross-sections, is where inelastic buckling occurs as a combination of 

pure section resistance and instability. The third zone represents the response of slender 

elements with class 3 cross-sections and is governed by elastic buckling. For members having 

class 4 cross-sections, the effective properties must be calculated and used for the design. 
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Because the structures are increasing in complexity and size, the use of performant materials 

will become of prime importance. While a lot of research has been conducted about local and 

global instabilities of regular steel members, the advancement of high strength steel poses a 

new subject of research. The reduced plate thicknesses of high strength steel cross-sections 

will require new methods of predicting the resistance of a given member. The method will 

have to treat adequately the local and global resistance behavior of a structural member. Such 

new method is the Overall Interaction Concept (O.I.C.). Within the O.I.C., the resistance of 

the member may be characterized by an interaction between the cross-section resistance and 

the member instability 

The general O.I.C. procedure is shown in Figure 2. The process can be separated in two main 

steps: cross-sectional local behavior and member global behavior. First, the cross-section 

plastic capacity, for a given load set, is computed. This factor, Rpl, corresponds to the 

maximum plastic capacity of the cross-section, without considering any instabilities. The 

global member behavior design check requires the calculation of the global buckling factor 

Rcr,G. This factor uses the first global eigenmode shape to characterize the member instability. 

If no cross-sectional local instabilities are considered χL, which will be the case in the context 

of this work, the global khi factor χL+G is calculated by dividing the member ultimate 

resistance factor Rult by the cross-section plastic factor Rpl.  

 

Figure 2 – O.I.C. design flowchart 

Following the O.I.C. concept, the development of adequate tools is required. Although the 

tools themselves will incorporate complex theories and internal procedures, they will have to 
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not only be accurate but also simple to use. In the context of this work, the tool developed 

will carry the plastic capacity of cross-sections Rpl. To demonstrate the developed tool within 

the course of this work, the case of members under axial loading and bending moments will 

be studied.  

Depending on the loading configuration of a member, tensile or compressive forces may have 

either a positive or negative effect on the overall resistance of the member. Two prior master 

thesis have been working on that specific subject (Silva, 2013) and (Epiney, 2015). The work 

of (Epiney, 2015) adopted the O.I.C. framework. At the cross-sectional level, the bending 

capacity is reduced by both type of axial loading. However, the axial load direction has an 

influence on the critical bending moment of the member. The negative effect of compressive 

forces on the bending resistance of members is usually well covered in the standards but less 

so for the beneficial effect of tensile forces. This thesis will refine the results provided by the 

work of (Epiney, 2015) by using improved tools to consider the effect of shear forces, caused 

by transversal loads, on the overall tension and bending resistance of members. This thesis 

will elaborate on the O.I.C. design method by describing the work already done within the 

method framework and improved tools will be developed to achieve a practical yet powerful 

use of the method. 

In summary, the main goal of this work will be to develop and validate an advanced tool on 

the plastic capacity of cross-sections specifically adapted to suit the O.I.C. framework. First, 

the state-of-the-art on the plastic capacity calculations of cross-sections will be described. 

With the proper objectives regarding the tool capacities, the methodology to program the tool 

will be defined. The fundamental theory and characteristics of the developed tool will be 

described. From there, a validation study will be conducted to validate the programmed tool. 

With the confirmation of the tool’s validity, a study on the beneficial effects of tensile loading 

on the resistance of member in bending will be conducted. 
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Chapter 1 – State-of-the-art and methodology 

The following chapter will review the available literature on the plastic capacity of cross-

sections. First, a review of the methods proposed in selected standards will be done. Then, a 

review of the available numerical methods will be performed. This study will demonstrate 

the limitations of current methods and highlight the necessity to develop an advanced cross-

section plastic capacity tool. The development objectives of the plastic capacity tool will be 

defined from the information gathered in this chapter. 

1.1 – Provisions in design standards 

1.1.1 – CSA S16 

This section will describe the provisions on the plastic capacity of cross-sections in the 

Canadian steel standard CSA S16. For class 1 and 2 sections, the plastic interaction equation 

for axial and biaxial bending forces is shown in equation (1).  

 𝐶𝑓

𝐶𝑦
+ 0.85

𝑀𝑓𝑥

𝑀𝑝𝑥
+ 0.6

𝑀𝑓𝑦

𝑀𝑝𝑦
≤ 1.0 

𝑀𝑓𝑥

𝑀𝑝𝑥
+

𝑀𝑓𝑦

𝑀𝑝𝑦
≤ 1.0 

(1) 

where Mfx, Mfy and Cf are, respectively, the major-axis and minor-axis factored moments and 

the factored axial load applied to the cross-section. Mpx, Mpy and Cy are, respectively, the 

major-axis and minor-axis bending moment plastic capacities and the axial plastic capacity 

of the cross-section. To calculate the plastic resisting moments of the member, the following 

formula is used: 

 𝑀𝑝 = 𝜑𝑍𝑓𝑦 (2) 

where Z represents the plastic section modulus and fy the yield stress. The reduction factor, 

in the context of this study, will be defined as Φ=1. The axial plastic capacity is calculated 

using the following formula: 

 𝐶𝑦 = 𝜑𝐴𝑔𝑓𝑦 (3) 

where Ag represents the gross area of the cross-section. 

Equation (1) is a linear combination of the following equations: 
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 𝐶𝑓

𝐶𝑦
+ 0.85

𝑀𝑓𝑥

𝑀𝑝𝑥
≤ 1.0 (4) 

 

 𝐶𝑓

𝐶𝑦
+ 0.6

𝑀𝑓𝑦

𝑀𝑝𝑦
≤ 1.0 (5) 

Equation (4) represents the interaction between the axial force and the uniaxial major-axis 

bending moment and Equation (5) represents the interaction between the axial force and the 

uniaxial minor-axis bending. These equations are derived from the lower bound theorem. 

The lower bound theorem specifies that the internal forces must be in equilibrium with the 

applied loads. Therefore, the plastic stresses distribution in the section may be chosen 

arbitrarily if it satisfies the static equilibrium requirements. The standard uses a stress 

distribution in which the axial stress is distributed to a portion of the web and the bending 

stress is distributed to the flanges. 

The combined shear and moment interaction for a transversely stiffened web member is 

covered in the standard. For class 1 and 2 members, the combined plastic bending and shear 

resistance verification is done with the following interaction formula: 

 
0.727

𝑀𝑓

𝑀𝑟
+ 0.455

𝑉𝑓

𝑉𝑟
≤ 1 (6) 

where Mf and Vf are, respectively, the factored moment and shear loads applied. The resisting 

moment Mr, in the context of this work focusing on the plastic resistance, is the plastic 

bending moment Mp and does not account for any member or local instabilities. Vr is the shear 

resistance of the cross-section. The plastic shear resistance is defined in the code as: 

 𝑉𝑟 = 0.8𝜑𝐴𝑤𝐹𝑠 (7) 

where Aw represents the shear area of the member and Fs the ultimate shear stress. The shear 

area considered varies according to the steel cross-section fabrication method. The shear 

areas considered for hot-rolled shapes and welded shapes are shown in Figure 3.  
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Figure 3 – Shear area for a) Hot-rolled sections b) Welded sections 

According to the von Mises criterion, the shear yield stress for a ductile material is defined 

as: 

 
𝜏𝑦 =

𝑓𝑦

√3
= 0.577 𝑓𝑦 (8) 

where τy is the shear yield stress and fy the tensile yield strength of the material. The CSA 

S16 standard considers the beneficial effect of strain hardening on the shear yield stress. For 

compact sections, under the assumption that no local instabilities will occur, the shear yield 

limit defined in the standard is defined as: 

 𝐹𝑠 = 𝜏𝑦 = 0.66 𝑓𝑦 (9) 

No provisions for other loading interaction are provided within the CSA S16. For such 

loadings, the results validation will be based on analytical and numerical simulations. 

1.1.2 – Eurocode 3   

For doubly-symmetric I-beam class 1 and 2 sections, the plastic interaction set of equations 

for axial and bending forces is shown in equation (10). 

 
𝑀𝑁,𝑦,𝑅𝑑 = 𝑀𝑝𝑙,𝑦,𝑅𝑑

(1 − 𝑛)

(1 − 0.5𝑎)
 ≤  𝑀𝑝𝑙,𝑦,𝑅𝑑  

𝑛 =
𝑁𝐸𝑑

𝑁𝑝𝑙,𝑅𝑑
 

𝑎 =
𝐴 − 2𝑏𝑡𝑓

𝐴
≤ 0.5 

𝑀𝑁,𝑧,𝑅𝑑 = 𝑀𝑝𝑙,𝑧,𝑅𝑑 𝑓𝑜𝑟 𝑛 ≤ 𝑎 

𝑀𝑁,𝑧,𝑅𝑑 = 𝑀𝑝𝑙,𝑧,𝑅𝑑 [1 − (
𝑛 − 𝑎

1 − 𝑎
)
2

]  𝑓𝑜𝑟 𝑛 > 𝑎 

(10) 
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where MN,y,Rd is the reduced major-axis bending resistance, Mpl,y,Rd the major-axis plastic 

bending moment resistance, MN,z,Rd the reduced minor-axis bending resistance, Mpl,z,Rd the 

minor-axis bending resistance, NEd the applied axial load, Npl,Rd the plastic axial resistance, b 

the flange width and tf  the I-beam flange thickness. 

The plastic interaction equation for axial and biaxal bending forces is shown in equation (11). 

 
[

𝑀𝑦,𝐸𝑑

𝑀𝑁,𝑦,𝑅𝑑
]

𝛼

+ [
𝑀𝑧,𝐸𝑑

𝑀𝑁,𝑧,𝑅𝑑
]

𝛽

≤ 1 

𝛼 = 2 

𝛽 = 5𝑛 ≥ 1 

(11) 

 

Eurocode 3 also provides a set of equations to consider the interaction between major-axis 

bending and vertical shear. For doubly-symmetric I-shapes, the major-axis bending 

resistance is reduced following the equation below: 

 

𝑀𝑦,𝑉,𝑅𝑑 =

(𝑊𝑝𝑙,𝑦 −
𝜌𝐴𝑤

2

4𝑡𝑤
) 𝑓𝑦

𝛾𝑚𝑜
 ≤  𝑀𝑝𝑙,𝑦,𝑅𝑑 

𝑀𝑝𝑙,𝑦,𝑅𝑑 =
𝑊𝑝𝑙,𝑦𝑓𝑦

𝛾𝑚𝑜
  

(12) 

where My,V,Rd  is the reduced plastic bending moment resistance, My,c,Rd the plastic bending 

moment resistance, Wpl,y the plastic section modulus, Aw the shear area of the member, tw the 

web thickness, fy the tensile yield strength of the material. The reduction factor, in the context 

of this study, will be defined as γmo=1. 

The principle of this formula is to artificially remove portions of the web under shear loads 

to the plastic modulus of the section Wpl,y. Therefore, most of the bending resistance is 

provided by the flanges of the section. The factor ρ is calculated only when the vertical shear 

force is greater than half the plastic shear capacity of the cross-section. Therefore, no 

interaction between bending and shear force is considered and the cross-section has full 

bending resistance. It will be seen further that the interaction does occur before reaching that 

threshold. 
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𝜌 = (

2𝑉𝐸𝑑

𝑉𝑝𝑙,𝑅𝑑
− 1)

2

 (13) 

where ρ is the reduction factor used to determine the reduced bending resistance of members 

under bending and shear loads, VEd is the shear factored load and Vpl,Rd the plastic shear 

resistance. Contrarily to the Canadian S16 standard, the Eurocode 3 plastic shear resistance 

does not consider strain hardening and is given by: 

 

𝑉𝑝𝑙,𝑅𝑑 =

𝐴𝑣(
𝑓𝑦

√3
)

𝛾𝑚𝑜
 

(14) 

where Av is the shear area, similarly to Aw in the Canadian standard CSA S16. 

The shear area considered in the calculation of the shear plastic capacity of a cross-section 

has a non-negligible influence on the results. For hot-rolled cross-sections, the Eurocode 3 

considers the shear area showed in Figure 4, where the fillets and portions of the flanges are 

considered in Av. For welded sections, only the web area is considered, similarly to Figure 3 

b).  

 

Figure 4 – Shear area considered in Eurocode 3 

No provisions for singly-symmetric cross-sections are provided within the Eurocode. For 

such sections, the results validation will be based on analytical and numerical simulations. 

1.2 – Available numerical tools 

Various standards such as the Canadian Standards (CSA S16) and Eurocode 3 suggest 

interaction formulas to determine the plastic resistance of cross-sections, but these equations 

are specific to a limited number of geometries and loading cases. No interaction formula 
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exists to consider arbitrary internal forces combinations and geometries. Therefore, 

numerical methods will be explored to overcome such limitations. 

The Finite Element Method is the most general and precise numerical approach. The F.E.M. 

method and applications are well described and documented in many books and scientific 

articles, such as (Bathe, 2014). F.E.M. modeling allows for complex geometries, geometric 

and material non-linear calculations and an extensive list of available F.E.M. software. 

Within F.E.M. modeling, a cross-section plastic analysis requires to model not only the 

section, but also the beam in 3D. Therefore, the modeling process and the analysis of finite 

elements are complicated and only an experienced user can provide precise and reliable 

results.  

Another method to calculate the plastic capacity of cross-sections is the P.I.F. (Partial Internal 

Forces). The P.I.F. has been developed and explained in (Kindmann, 2011). The approach is 

a quasi-analytical method that distribute the normal and shear stresses over the constituting 

plates of the cross-section. The elastic stress distributions, for each different cross-section 

geometries must be known to determine the corresponding internal forces applied to each 

constituting plate. The method handles axial force, bi-axial moments, bi-axial shear, torsion 

and warping bi-moment. The P.I.F. method, in the reference cited above, has only been 

detailed for cross-sections with 3 plates, oriented perpendicularly. The P.I.F. method only 

allows for thin-walled cross-section using a single type of material. The method is based on 

a perfectly plastic material law and the effect of radiuses has not been considered. The P.I.F. 

method considers all the required internal forces but is very specific to steel cross-sections 

and is limited in terms of applicability. 

In a previous thesis (Epiney, 2015), the RRESIST program, based on the fiber decomposition 

approach, has been implemented. The general idea of the method is to decompose the cross-

section area into fibers, thus creating integration points across the cross-section surface. The 

normal deformations and bending curvatures are increased proportionally to determine the 

strain distributions over the cross-section. With the calculated normal strains and the material 

stress-strain curve, the normal stresses, for each fiber, can be calculated and numerically 

integrated over the cross-section to determine the internal forces. Although the method is 

accurate for doubly-symmetric cross-sections, restrictions regarding other possible cross-
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section shapes render this program not general enough for arbitrary cross-section shapes. The 

fiber decomposition allows for various materials within the cross-section. Also, the program 

does not support the shear internal forces.  

The alternative is to use the fiber decomposition method coupled with the tangent stiffness 

method (Santathadaporn & Chen, 1971). This method uses a non-linear Newton-Raphson 

algorithm to provide an accurate yet simple way of calculating the cross-section plastic 

capacity for any cross-section shapes under axial load and bi-axial bending. In addition to 

the advantage of defining various shape geometries, the section may be composed of multiple 

materials. Each fiber is linked to a material stress-strain curve, allowing for composite section 

analysis and complex material behavior. Further details will be given in the following 

sections. 

1.3 – RRESIST program description 

The RRESIST program calculates the plastic capacity of doubly-symmetric I-section, singly 

symmetric I-section and HSS cross-sections. In the program, following the Euler-Bernoulli 

theory, plane sections remain plane. Therefore, for the various loading conditions, the 

program increments the cross-section plane of deformations. From the plane and the 

geometrical properties of the cross-section, the strains at key locations are calculated. From 

the strains, the resulting stresses of each fiber are then computed and integrated until 

achieving convergence at each increment. The strain distribution in each fiber is determined 

by the purely normal deformation, the major-axis and the minor-axis curvature. The shear 

stresses are not supported by the tool. 

 

Figure 5 – a) Normal deformation b) Major-axis curvature c) Minor-axis curvature 

Each fiber is related to a stress-strain relationship corresponding to the material defined. The 

deformations of each fiber, taken at its center, are incremented until a given maximum 



11 

 

deformation limit is obtained. This maximum limit can be set arbitrarily. To obtain full 

plasticity, 10 times the elastic deformation limit is often sufficient. With this limit, the cross-

section is far into the elasto-plastic phase or fully yielded. The program supports the 

interaction between axial and bi-axial bending efforts. It also supports multiple material laws 

and consider the filet radiuses. Although the program provides accurate results for doubly-

symmetric sections, convergence problems and inaccuracies were found when calculating 

the plastic capacity of singly-symmetric I-sections. 

1.3.1 – RRESIST program limitations 

The program is limited in its usage regarding the geometry of the cross-sections to be 

analysed. Even though the mono-symmetric I-beam cross-section is included within the 

program options, the internal forces equilibrium is not respected. Initially, in the elastic stress 

zone, the curvatures of the cross-section rotate around the elastic neutral axis (center of 

gravity) as it coincides with the plastic neutral axis. Therefore, the strain distribution, in the 

elastic zone, is valid. As a result of the asymmetry, the spread of plasticity of the fibers across 

the section creates a loss in equilibrium of the internal stresses. In a simple case of major-

axis bending, that phenomenon can be represented by the inequalities of the yielded areas 

above and below the elastic neutral axis. To keep the stresses in equilibrium, a shift of the 

plastic neutral axis should occur away from the geometrical center of gravity. The shift can 

either be along one or two axes of the cross-section. For uniaxial bending moment, the neutral 

axis will only shift in one axe. For biaxial bending, the neutral axis will shift in both axes. 

The shift of the plastic neutral axis was not handled in the RRESIST program as the curvatures 

are always rotated around the elastic neutral axis. This leads to false results in the elasto-

plastic range as a major-axis bending moment would create a resulting axial effort. Therefore, 

the tension and compression zone efforts, produced by the bending load, do not balance.  

Tests have been conducted to determine the error related to the method compared to theorical 

results. Two major-axis bending moment cases have been considered to confirm the 

statements above: one test for a doubly-symmetric I-beam and one test for a singly-symmetric 

I-beam. Previous mesh density tests have already been conducted in (Epiney, 2015). 

Therefore, adequate meshing precision has been used. Each cross-section plates have been 

divided horizontally and vertically in 5 or 10 divisions. The number of horizontal and vertical 
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divisions are denoted respectively by the m and n. The doubly-symmetric section chosen is 

a W410x85 and the mono-symmetric section is a WRF1000x340. The yield limit (fy) is 

defined at 350 MPa. 

Table 1 - RRESIST plastic capacity results for singly and doubly-symmetric I-Section 

 Analytical Mpl 

[kN·m] 

RRESIST Mpl 

[kN·m] 

Error [%] 

 

Doubly-symmetric W410x85 

𝒎 = 𝒏 = 𝟓 605.50 606.00 0.08 

𝒎 = 𝒏 = 𝟏𝟎 605.50 608.25 0.45 

Mono-Symmetric WRF1000x340 

𝒎 = 𝒏 = 𝟓 5583.20 6500.00 14.10 

𝒎 = 𝒏 = 𝟏𝟎 5583.20 (Diverged) - 

For the doubly-symmetric section, the results are in very good accordance with the analytical 

results. The slightly higher error, for the more refined meshing, may be caused by numerical 

errors as the number of operations is greater. Among the convergence problems, the plastic 

capacities obtained for the singly-symmetric I-beam are not satisfactory. An error of 14.1 % 

could produce major design errors in practice as the plastic capacity is not safe-sided. 

From the results described above, the RRESIST program is limited to doubly-symmetric cross-

sections. Convergence problems and errors on the plastic capacity of mono-symmetric cross-

sections limits the usability of RRESIST.  

1.4 – Description of the O.I.C. Concept  

The previous section discussed the plastic resistance of a member cross-section. Although, 

the global resistance of a member is not limited to the cross-section plastic capacities. This 

section will present a new method to calculate the overall resistance of a member. 

The O.I.C. (Overall Interaction Concept) is a design method that incorporates multiple 

advantages, in accuracy and consistency, compared to current methods prescribed in the 

standards. The O.I.C. is a concept where key design values can be determined with specific 

attention regarding the local instabilities and global instabilities of the cross-section and the 

member. The method relies on the resistance-instability concept, with various generalized 
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slenderness and buckling factors. The goals for the designing engineers are to provide a safe 

but economical design to their client. As of today, the engineers strictly base their designs on 

the various design codes applicable to their region. While all being close to each other, the 

codes have slightly different design philosophies and degree of explanations behind the 

equations provided. Every standard is based on the cross-section classification as an initial 

design step. The cross-section class is defined by the most detrimental plate classification, 

by means of b / t ratios, of the constituting plates of the cross-section. Some inconsistencies 

may be observed at the class 2 and class 3 border. Figure 6 illustrates the sudden gap of 

resistance at the class 2-3 border. 

 

Figure 6 – Bending resistance gap at the class 2-3 limit 

A major advantage of the O.I.C. method is to consider the cross-section as a whole, instead 

of assuming “ideal support conditions” for the cross-section constituting plates. There are 

indeed non-negligible interactions between the elements of a given cross-section. For 

example, the flanges stiffness of an I-section, which are considered as pinned-free elements, 

have an influence on the support conditions of the web, usually considered as pinned-pinned. 

By increasing the flanges thicknesses, the web supports tend to be close to clamped-clamped, 

modify the buckling behavior and lead to over-conservative results (Boissonnade et al., 

2017).  

While those standards are there to simplify the design of structures, some techniques used 

are cumbersome, such as the calculation of the effective properties of class 4 sections. The 

extensive number of calculations needed may discourage the use of high strength steel as 

most of the constituting plates of an element are slender.  
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The O.I.C. concept is an open and general methodology which removes the barrier of classes 

and performs the analysis and design according to any section shape and any grade or type 

of steel used. Figure 7 demonstrates the basic principles and application steps of the O.I.C. 

design method. The lambda factor λrel represents the slenderness of the element by 

considering the relation between the full plastic capacity of the member and the critical 

instability limit. The khi factor χ defines the relation between the plastic resistance and the 

element ultimate failure. 

 

Figure 7 – O.I.C. basic principles 

1.5 – Objectives and methodology 

Even though steel doubly-symmetric I-beams are used the most in practice, a numerical tool 

is required to perform the plastic capacity analysis of arbitrary cross-sections. The O.I.C. is 

a general design approach; therefore, the numerical tools must be used for any section 

geometries. The first objective is to develop and validate a numerical tool to determine the 

plastic load multiplier of arbitrary steel cross-sections under axial and bi-axial loading. The 

second objective is to include, within the tool, the effects of shear forces, major-axis and 

minor-axis shear, on the plastic capacity of cross-sections. With the program validated for 

normal and shear loads, the study previously done by (Epiney, 2015) will be reviewed and 

completed. In summary, the objectives of this work are to (i) precisely calculate the plastic 

capacity of unsymmetrical cross-sections, (ii) consider the shear forces detrimental effects 

on the plastic capacity through the von Mises criterion and (iii) to consider the influence of 

shear for members in bending (transversal loading) and tension. 

  



15 

 

Chapter 2 – Plastic capacity of cross-sections 

From the chapter above, it is known that the plastic capacity multiplier of cross-sections is a 

required parameter in the O.I.C. approach. This chapter will present and detail an approach 

to calculate the plastic capacity multiplier of cross-sections. The approach has been described 

in (Santathadaporn & Chen, 1971). Although, this approach only calculates the plastic 

capacity multiplier for cross-sections under axial and bi-axial loading. Using this approach, 

a numerical program Rpl will be developed. With the objective to include the shear loads 

effects on the plastic capacity of cross-sections, a review of the shear theory will be presented. 

A method to implement the shear effects into the numerical tool will be proposed. In 

summary, this chapter will describe the approach used to develop the numerical tool Rpl and 

the approach used to implement the effects of shear loads on the plastic capacity of cross-

section into Rpl. 

2.1 – Cross-section tangent stiffness method 

The cross-section tangent stiffness method has been described by (Santathadaporn & Chen, 

1971). The method relies on the tangent stiffness of the cross-section and the Newton-

Raphson convergence algorithm. The tangent stiffness matrix is built by numerically 

integrating the cross-section stresses during the iteration process. The cross-section is divided 

into fibers and the stresses are calculated at the center of each fiber. While performing a non-

linear analysis, the external loads are applied gradually. To apply the loads gradually, the 

total external loading is divided into load steps. Therefore, the internal forces, contained 

within the cross-section in the iteration process, will also increase gradually. 

The general idea of this method is to build, for each iteration, the tangent stiffness matrix of 

the cross-section. The tangent stiffness matrix is used in conjunction with the external loads 

of the given load step to iterate toward an equilibrium of the cross-section deformations and 

internal stresses. Within a load step, the tangent stiffness is calculated to predict the 

incremental strains of the fibers in relation to the out-of-balance force vector. The generalized 

strains are the axial deformations and the major-axis and minor-axis bending curvatures. To 

reach the next load step, the iteration procedure must have converged to an equilibrium for 

the current state of loading. Essentially, this method has been developed to build interaction 

diagrams for steel and concrete sections under axial load and biaxial bending. 
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2.1.1 – Meshing and section properties 

The first step of the process is to discretize the cross-section into multiple fibers. Each 

discretized fiber may have different geometrical and material properties. Although the 

method is flexible in terms of the material constituting the cross-section, the most general 

case is a homogenous cross-section. Each fiber is assigned an integration point at its 

geometrical center as depicted by Figure 8. Figure 8 also depicts the axis system convention. 

The strains of each fiber will be evaluated at the integration points. From the strains, the 

stresses, for each fiber, will be calculated. From the calculated stresses of each fiber, the 

global internal forces will be integrated. Special attention must be addressed to the cross-

section discretization. For the results to be precise, the cross-section must be divided in an 

adequate number of fibers. This has a direct consequence on the time of calculation of the 

plastic capacity of the cross-section, mostly if the full interaction diagrams are required. The 

influence of the meshing density on the precision of the results will be studied in the next 

chapter. 

 

Figure 8 – Cross-section meshing. integration points and reference axes convention 

As the cross-section is divided into fibers, the method does not require any pre-defined 

knowledge of the general cross-section geometry to calculate the axial stresses distribution. 

The axial strains and stresses distribution only require the geometrical properties of each 
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individual fibers. Contrarily, the shear stress distribution calculations require the geometrical 

properties of the whole cross-section. 

Using the integration points, the global cross-section properties are numerically integrated. 

The numerical integration considers the effect of each individual fiber on various key 

properties, such as the total area and the moments of inertia about the Y-axis and Z-axis of 

the cross-section.  

The cross-section total area A is defined by: 

 
𝐴 = ∑𝐴𝑖

𝑛

𝑖=1

 (15) 

where n is the total number of fibers comprised within the cross-section and Ai the area of 

each fiber.  

The moment of inertia about the Y-axis and Z-axis are calculated using the Parallel Axis 

Theorem (Craig JR., 2011). The major-axis and minor-axis moments of inertia are defined 

by the inertia of each individual fibers plus the product of the fiber area and the squared 

distance of the fiber to the centroid. 

 
𝐼𝑧𝑧 = ∑𝐼𝑖 + 𝑦𝑖

2𝐴𝑖

𝑛

𝑖=1

 (16) 

 

 
𝐼𝑦𝑦 = ∑𝐼𝑖 +  𝑧𝑖

2𝐴𝑖

𝑛

𝑖=1

 

 

(17) 

where Izz and Iyy are respectively the major-axis and minor-axis moments of inertia, Ii the 

fiber individual moment of inertia and yi and zi the distances of the fiber to a given reference 

point. 

Although the method has been developed to be general, no reference regarding the 

consideration of shear stresses were found in the literature. The shear stresses have been 

added considering an understanding of the cross-section behavior under such loads. Further 

details will be provided in later sections. 
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2.1.2 – Numerical integration of the cross-section filets 

Basically, two fabrication processes for steel members can be found in practice, namely the 

hot-rolled and welded fabrication processes. For welded cross-sections, the weld area is small 

and can be neglected. Neglecting the weld and considering only the plates in the plastic 

analysis does not produce significant errors.  

However, the radiuses of filets of hot-rolled cross-sections do affect positively the plastic 

resistance. The radiuses have been modeled using the fiber method by dividing horizontally 

and vertically their area. Again, the numerical integration of the fibers is performed by 

considering only 1 integration point for each fiber. Although it follows the same resolution 

methodology, the radiuses were not considered in the description of the tangent stiffness 

method in (Santathadaporn & Chen, 1971). 

2.1.3 – Generalized normal stresses and strains 

Within the elastic range of a fiber, Hooke’s law dictates the relation between the axial stresses 

and the axial strains by the modulus of elasticity E. 

 𝜎𝑥𝑖 = 𝐸 𝜀𝑥𝑖 (18) 

where σxi and εxi are respectively the axial stress and strain of a fiber. 

The forces that produce axial stresses over the cross-section plane are the axial load, the 

biaxial bending moments and the warping bi-moment. As mentioned in the previous chapter, 

it is assumed that plane sections remain plane. These forces may be numerically integrated 

using the equations below. 

 
𝑁 = ∑σ𝑥𝑖 𝐴𝑖

𝑛

𝑖=1

 (19) 

 

 

 
𝑀𝑦 = ∑σ𝑥𝑖 𝑧𝑖 𝐴𝑖

𝑛

𝑖=1

 (20) 
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𝑀𝑧 = ∑σ𝑥𝑖  𝑦𝑖 𝐴𝑖

𝑛

𝑖=1

 (21) 

 

 
𝐵𝑤 = ∑σ𝑥𝑖 𝜔𝑖 𝐴𝑖

𝑛

𝑖=1

 (22) 

where N is the internal axial force, My and Mz are respectively the internal bending moments 

around the Y-axis and Z-axis, Bw the warping bi-moment, ωi the warping function and n the 

number of fibers composing the cross-section. More information on how to calculate the 

warping function may be found in (Kindmann, 2011). Although the warping bi-moment has 

been programmed within Rpl, no further tests validation tests have been performed on that 

internal force. Also, a warping bi-moment invalidates the hypothesis that plane sections 

remain plane. 

To determine the total axial stress σxi of each fiber, the total axial deformation εxi must be 

known. 

 𝜀𝑥𝑖 = 𝜀𝑥𝑖−1 + 𝛥𝜀𝑥𝑖  (23) 

where εxi-1 is the cumulated axial strain and Δεxi is the calculated iterative incremental axial 

strain of the fiber. The incremental deformation of each fiber is related to the generalized 

strains on the cross-sectional level as given by equation (24). 

 𝛥𝜀𝑥𝑖 = 𝛥𝜀𝑜 + 𝛥𝜑𝑦 ∗ 𝑧𝑖 + 𝛥𝜑𝑧 ∗ 𝑦𝑖  (24) 

where Δεo is the global incremental axial strain and Δφy and Δφz are the incremental curvature 

of the Y-axis and Z-axis respectively. A curvature defines a plane of axial deformation of a 

given cross-section as shown in Figure 9. Thus, the axial deformation of any given fiber of 

the cross-section, caused by a bending moment M, is calculated by the linear relationship of 

the curvature φ and the geometrical location of the fiber. 

When a cross-section is under pure bending, the resultant of the axial stresses for all fibers 

must be equal to zero. For a fully elastic cross-section, the equilibrium between compressive 

and tension stresses is calculated according to the elastic neutral axis (E.N.A.). The E.N.A. 
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is an axis where the strains and stresses are zero. For a cross-section that is fully elastic and 

isotropic, the E.N.A. is located at the center of gravity of the cross-section.  

For a partially yielded cross-section under pure bending, the equilibrium of the axial stresses 

is determined by the plastic neutral axis (P.N.A.). For isotropic and symmetrical cross-

sections, the P.N.A. and the E.N.A. share the same position and divides the cross-section into 

two equal areas. For cross-sections that are either made of multiple materials or 

unsymmetrical, at the onset of yield, the P.N.A. position does not correspond to the E.N.A. 

position. During the elastoplastic state, where the cross-section is partially elastic and 

partially yielded, the P.N.A. shifts gradually toward its fully plastic position. The integration 

of the compressive and tension axial stresses, if calculated according to the E.N.A., would 

not fulfill the zero axial stress resultant requirement. Therefore, the P.N.A. divides the cross-

section into two equal axial forces (tension and compression) resultants. 

For cases where the cross-section is under a combination of axial and bending loads, the axial 

force resultant over the cross-section must be equal to the axial external load. 

When all the fibers are in their elastic domain, the 3 components of equation (24) are 

uncoupled and have no interaction. Thus, the axial deformations caused by the axial load and 

the bending moments can be calculated separately and the stress resultants are calculated 

according to the E.N.A. As the cross-section progressively yields, the P.N.A. position 

becomes unknown, and those components become coupled. The problem must be resolved 

using non-linear iteration techniques to find the deformations at which the internal loads are 

in equilibrium. 
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Figure 9 – Axial deformation of a cross-section caused by the major-axis curvature 

(https://learnaboutstructures.com/Bernoulli-Euler-Beam-Theory) 

The stresses in each fiber are determined according to the material stress-strain curve and the 

calculated strains at every iteration according to equation (23) and (24). 

 𝜎𝑥𝑖 = 𝑓(𝜀 + 𝛥𝜀𝑖) (25)  

where σxi is the axial stress of a fiber calculated at the integration point and f(ε +Δεi) the 

piecewise stress-strain function which gives the axial stress value of a fiber for a given value 

of strain. 

2.1.4 – Material stress-strain curves 

The stress-strain curve of a material represents the evolution of the stresses as the material 

deforms. Each type of material behaves differently, requiring various stress-strain curves to 

represent each material accurately. In the context of this study, material laws specifically for 

steel will be described.  

In general, the plastic capacity of steel cross-sections is calculated using a perfectly elasto-

plastic material law without strain hardening as depicted in Figure 10. Therefore, the stresses 

cannot go beyond the yield stress fy. Any beneficial strain hardening effects on the plastic 

capacity are thus neglected.  
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Figure 10 – Perfectly plastic stress-strain curve (Kindmann, 2011) 

Even though calculations usually omit the strain hardening effects on the plastic capacity of 

cross-sections, strain hardening can be found in mild steel and may have a major effect on 

the plastic resistance of the cross-section. Material laws considering this effect will be 

programmed.  

The strain hardening effect may be approximated as a linear increase of the stresses beyond 

the yield stress fy as depicted in Figure 11. As the stresses go beyond the yield stress fy, the 

strain hardening effect is considered using an appropriate Young modulus Ep for the yielded 

the fibers. 

 

Figure 11 – Stress-Strain curve with linear strain hardening (Kindmann, 2011) 

Also, such type of material stress-strain curve may avoid numerical instabilities. The cross-

section tangent stiffness method uses the tangent Young modulus Et to calculate the tangent 

stiffness matrix. The tangent Young modulus Et is extracted from the material stress-strain 

curve. The tangent Young modulus Et is the slope of the stress-strain curve at a given 
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deformation. For the material law depicted in Figure 10, the material Young modulus beyond 

fy is null. This translates to fibers with no rigidities. At high deformations, this may cause an 

overall loss in rigidity of the cross-section and the tangent stiffness matrix may become 

unstable and the solution will diverge. To address this issue, a material model, such as Figure 

11, with linear strain hardening can be used to mitigate those numerical issues while 

maintaining fy as the yield stress in each fiber. If this stress-strain curve is only used to avoid 

numerical issues, the plastic Young modulus Ep may be defined as approximately 0.1% of 

the elastic Young modulus of the material. The slope being very shallow, the stress increase 

compared to fy is negligible.  

If more precision is needed when considering the strain hardening, refined stress-strain laws, 

such as Ramberg-Osgood, can be used. The goal is to represent as best as possible the 

behavior of the corresponding type of steel used in the calculations.  

2.1.5 – Non-linear resolution techniques 

The following section briefly explains the non-linear control method used. Contrarily to a 

static analysis, where the full loading is applied all at once, a non-linear analysis uses the 

principle of load steps. A load step is basically a fraction of the total external loading applied 

to the structure. Within the load step, the out-of-balance forces are computed using iterations 

until convergence of the external and internal loads is obtained, as shown in Figure 12.  

The Full Newton-Raphson (F.N.R.) iterative technique has been implemented in the context 

of this work. The F.N.R. computes the tangent stiffness matrix every iteration in comparison 

to the Modified Newton-Raphson (M.N.R.) technique, where the stiffness matrix is only 

computed at every load step. As the tangent stiffness matrix is calculated at every iteration, 

the F.N.R. usually converges in less iterations than the M.N.R. Although the number of 

iterations required in the F.N.R. may be less than the M.N.R., the mathematical operations 

on the stiffness matrix may render the iterations process slower. The stiffness matrix size is 

a key variable on the time consumption.  

The reasoning behind the decision to use the F.N.R. is that (i) the dimension of the stiffness 

matrix is small and (ii) it converges in less iterations. The dimension of the stiffness matrix 

being small, resolution time should not be an issue. Numerical tests will be performed to 

confirm the performance of the F.N.R. for this application. 
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The M.N.R. algorithm could eventually be implemented for this application but the F.N.R. 

does not require much more computing time, thus limiting the beneficial effects of the 

M.N.R. technique. Figure 12 shows the basic principle of the F.N.R. procedure, which is to 

recalculate the stiffness tangent matrix at every iteration within a load step to predict the 

estimated incremental displacements at every iteration. How rapidly convergence is achieved 

within a load step is governed by the scaling of the variation of the load and the non-linearity 

of the problem to be solved.  

 

Figure 12 – Full Newton-Raphson iterative procedure (Crisfield, 1991) 

Of all the various non-linear control methods, such as the displacement or arc-length method, 

the load control formulation is the most straightforward non-linear resolution procedure to 

implement and, also, the most limited convergence wise. The load control formulation may 

only reach the first limit point. A limit point is a point where the behavior of the problem 

may change as a result of the solution becoming unstable. The general principle of this 

method is to divide the total external applied load into multiple load steps. Using the F.N.R. 

procedure, convergence is obtained using iterations within a load step. Inside the load step, 

the load factor parameter λ, does not vary. Convergence within the iterations signifies a stable 

solution and the analysis may proceed to the next load step.  

The downfall of the load control method comes from the inability to converge past limit 

points. This behavior is explained by the inability to reduce the load after a limit point is 

reached. For the plastic capacity of cross-sections, this method is sufficient as only the first 

limit point is required and thus does not require the additional complexity of other methods. 
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2.1.6 – Cross-section tangent stiffness matrix 

As described in the previous section, the F.N.R. procedure is separated into two main blocks; 

the load step increments and the iterations within the load steps. Within the iteration block, 

the tangent stiffness matrix is used in the non-linear iteration scheme as a predictor of the 

cross-section deformations. The tangent stiffness matrix provides the relationship between 

the incremental strains, for a given iteration, and the unbalanced force vector. The 

relationship is as follows: 

 {𝑅} = [𝐾𝑐𝑠]{𝛥𝜀} (26) 

where {R} is the unbalanced force vector, [Kcs] the tangent stiffness matrix and {Δε} the 

vector of incremental strains. The incremental strain vector {Δε} represents the incremental 

strains Δεo, Δφy and Δφz. To determine the incremental strains, the stiffness matrix is inverted 

and equation (27) is used. 

 {𝛥𝜀} = [𝐾𝑐𝑠]
−1{𝑅} (27) 

where [Kcs]-1 is the inverted tangent stiffness matrix of the cross-section. 

The fiber’s tangent Young modulus is the key parameter related to the stiffness of the cross-

section and will be used to build the tangent stiffness matrix. The tangent Young modulus Et 

is evaluated for each individual fiber as the planes of deformation will create a variation of 

deformations intensity over the cross-section, thus a variation of the material properties. The 

cross-section tangent stiffness matrix is calculated as follows: 

 

[𝐾𝑐𝑠] =

[
 
 
 
 
 
 
 
 ∑𝐸𝑡_𝑖 𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑧𝑖𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑦𝑖𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑧𝑖𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑧𝑖
2𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑦𝑖𝑧𝑖𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑦𝑖𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑦𝑖
𝑧𝑖𝐴𝑖

𝑛

𝑖=1

∑𝐸𝑡_𝑖 𝑦𝑖
2𝐴𝑖

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

 (28) 

With the equations shown in this section, the general analysis procedure will be detailed in 

the next section. 

2.1.7 – General procedure of the tangent stiffness method 

As defined previously, the non-linearity of the problem and the coupling of the variables 

require a linearization of the system of equations. Linear variations of the stresses and 
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deformations are used to do such linearization. The material behavior of the fibers is 

determined by linear segments dependant of the stresses and strains where the slopes are the 

tangent modulus Et. Using linearized material laws, the yielded tangent modulus Et of the 

fibers may be determined for any state of axial strain calculated with equation (23). 

The F.N.R. technique is used to obtain convergence of the internal forces to the external 

forces. The system of equations is defined by 3 unknowns governing the problem. The 

variables have been described in (24) and correspond to Δεo, Δφy and Δφz. The linearization 

of the problem is performed by defining the stress-strain relationship in terms of variations 

of theses unknowns. The incremental strains can be written in vector form as such: 

 {𝛥𝜀} = [𝛥𝜀𝑜   𝛥𝜑𝑦     𝛥𝜑𝑧]
𝑇
 (29) 

where Δε is the vector of incremental strains containing the variation of the axial strain Δεo 

and the bending curvatures Δφy and Δφz. These incremental strain values are used in 

conjunction with equation (24) to determine the incremental axial deformation of each fiber. 

From the incremental axial strains, the vector of total strains is calculated as follows. 

 {𝜀} = {𝜀} + {𝛥𝜀} (30) 

As defined by equation (27), the incremental strains are calculated using the tangent stiffness 

matrix and the out-of-balance force vector. The out-of-balance force vector is obtained by 

the relationship between the applied external forces and the internal forces carried by the 

cross-section. This vector is defined by the difference between the external and internal load 

vectors and is recalculated within the iteration procedures.  

 {𝑅} = {𝐹𝑒𝑥𝑡} − {𝐹𝑖𝑛𝑡} (31) 

where {R} is the out-of-balance force vector commonly known as the residual vector, {Fext} 

is the external force vector and {Fint} is the internal force vector. The iterative scheme is set 

to converge toward an equilibrium of the internal forces stored in the cross-section fibers and 

the external forces.  

As mentioned above, the external loads are applied incrementally. The external force vector 

{Fext} corresponds the load applied to the cross-section for the current load step. The load 
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step increment corresponds to the additional fraction of the total external load λ that needs to 

be converged to.  

 {𝐹𝑒𝑥𝑡} = 𝜆 ∗ {𝐹𝑡𝑜𝑡} (32) 

where {Fext}is the external load applied to the cross-section at the current load step, λ the 

fraction of the total load at the current load step and {Ftot} the total load to be applied on the 

cross-section. The external load vector {Fext} represents, in order, the external loads N, My 

and Mz. 

The loads increase proportionally until the maximum load is reached, meaning they increase 

according to the same load ratio. The load path eventually reaches the failure surface such as 

shown in Figure 13. The failure surface delimits the maximal resistance capacity of the cross-

section for combined loading. 

 

Figure 13 – Radial loading path to the failure envelope (Chiorean, 2013) 

The internal force vector {Fint} is calculated by integrating the stresses of each fiber. The 

stresses are calculated using the total axial deformation and the stress-strain curve of the fiber 

using the equation (25). In vector form, the numerically integrated internal forces, calculated 

using equations (19), (21) and (20), are denoted as such: 

 
{𝐹𝑖𝑛𝑡} = {

𝑁
𝑀𝑦

𝑀𝑧

} (33) 

Convergence of the iterations, for a given load step, is obtained when the residual vector 

converges toward zero, within a given tolerance. When convergence is achieved, the load 

step is incremented to reach higher levels of external loading. The plastic capacity of the 

cross-section is found when a stop criterion is triggered. The stop criterions are (i) when a 



28 

 

fiber reaches the maximum allowable strain or (ii) when the non-linear solution diverges. 

The maximum allowable strain is defined as an input in the program. The value of the 

maximum allowable strain must be chosen wisely so that (i) most of the cross-section yields 

and (ii) it should not lead to an over-estimation of the plastic capacity of the cross-section 

when considering a material with strain hardening. When either of the stop criterions are 

reached, the factor λ is the plastic capacity of the cross-section. It defines the load multiplier 

of the initial loading to which the cross-section can no longer sustain increased loads. The 

load increments are constant throughout the analysis. The divergence of the non-linear 

resolution technique may be caused by (i) the rigidity of the cross-section becomes null as 

all fibers have yielded (ii) a limit point has been reached. At that point, all the cells have 

yielded, or the remaining elastic cells produce near zero rigidity in comparison to the amount 

of load applied.  

Reaching the full plasticity of the cross-section is very seldom achieved as it requires very 

large axial deformations at the extremities of the cross-section for the cells near the plastic 

neutral axis P.N.A. to yield. For example, the fibers closest to the P.N.A., under a major-axis 

moment, are likely to remain elastic. For a given curvature, their distance to the P.N.A. is 

very small and the added rigidity of those fibers to the global rigidity of the cross-section is 

consequently very small. Figure 14 presents the Rpl program flowchart. 
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Figure 14 – Rpl program flowchart 

2.2 – Shear stresses  

Part of this project is to calculate the plastic capacity of cross-sections under shear loads. For 

cases where the loads are being applied within the span of the member, the interaction 

between shear and bending efforts is of prime importance. To implement the effect of shear 

on the plastic capacity of cross-sections, the following sections will review the theory of pure 

shear and shear stresses in beams. The implementation of those stresses within the program 

Rpl will also be explained. 
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2.2.1 – Shear stress in thin-walled beams 

Unlike the case of pure bending, where the assumption that plane sections remain plane is 

valid, transverse shear stress distorts the section. Although it violates Bernoulli’s hypothesis, 

the effects of the distortions on the axial behavior of the cross-section have negligible 

influence. Therefore, an assumption is made that the deformations caused by shear do not 

influence the axial stress distribution over the cross-section. Thus, the hypothesis that plane 

sections remain plane, for the predictions of axial stresses, is still valid. A shear stress is 

defined by a force acting tangentially over a surface as depicted in Figure 15 b). 

 

Figure 15 – a) Shear load over a surface b) Infinitesimal distribution the shear load over the surface (Craig JR., 2011) 

The applied shear load may be distributed and represented by acting over infinitesimal 

portions of the surface. Therefore, the resultant shear force is calculated by integrating the 

shear stresses over the cross-section surface according to equation (34) and shown in Figure 

15 b). 

 
𝑉 = ∫τ 𝑑𝐴 = ∑𝜏𝑖 𝐴𝑖

𝑛

𝑖=1

 (34) 

First, the case of pure shear over a deformable body and secondly, the shear stress theory for 

thin-walled beams will be examined. The application of shear stresses over a deformable 

body requires the satisfaction of equilibrium requirements. An infinitesimal volume within 
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the deformable body will be used to demonstrate the required force equilibrium as shown in 

Figure 16. To ensure the force equilibrium of the free-body diagram of the infinitesimal 

volume, equivalent forces in opposite directions must be found on all faces of the element.  

 

Figure 16 – Shear stress equilibrium over a deformable body (Craig JR., 2011) 

While the shear stresses are in equilibrium over the faces of the infinitesimal element, the 

shear strain γ is defined as the angle of deformation of the element as shown in Figure 17. 

The concept of shear strain is important and will be the basis of implementing the shear 

stresses in the plastic capacity tool developed.  

 

 

Figure 17 – Shear strain over an infinitesimal element (Craig JR., 2011) 

While the basic equilibrium requirements and the shear strain have been explained, the shear 

stress distribution over a cross-section still need to be defined. To do so, a brief summary of 

the shear stress theory for beams will be presented below. The explanation will consider the 

simple case of a beam under major-axis bending where the moment M(x) varies along its 

length. The elastic normal stress distribution over the cross-section is known and must be in 

equilibrium such that the axial force resultant must be zero. At every level y of the cross-

section, longitudinal shear stress must be present, as shown in Figure 18, to balance the axial 
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stresses. Knowing from the shear stress reciprocity that τxy=τyx, the vertical shear stress of an 

infinitesimal element of the cross-section must be of equal magnitude with the longitudinal 

shear stress. It is interesting to note that there is no longitudinal shear stress at both ends of 

the cross-section because the normal stresses equilibrium is met. This results in no vertical 

shear stress at those positions.  

 

Figure 18 – Longitudinal shear stresses caused by unbalanced flexure stresses (Craig JR., 2011) 

Next, the theory of shear flow will be explored. As the moment M(x) varies along the beam, 

the axial resultant must be zero at every position of the beam. Therefore, for a position x and 

x+Δx, a longitudinal shear stress must balance the axial force resultants if M(x) is not equal 

to M(x+Δx) and V(x)>0 as shown in Figure 19.  

 

Figure 19 – Flexural and shear resultants of a beam under bending and shear loads (Craig JR., 2011) 

The shear flow is the additional shear stress caused by the unequilibrated normal stresses 

divided by the infinitesimal segment Δx. Therefore, the shear flow is the shear force per unit 

length Δx and is given by:  

 
𝑞 =

𝑉 ∗ 𝑄

𝐼
 (35) 
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where q is the shear flow, V the shear load, Q the first moment of inertia and I the second 

moment of inertia. By dividing the shear force by the area where it acts (tributary area of the 

shear flow), this gives the average shear stress at a specific level of the cross-section. 

 
𝜏(𝑥,𝑦) =

𝑉(𝑥) ∗ 𝑄(𝑥, 𝑦)

𝐼(𝑥) ∗ 𝑡(𝑥, 𝑦)
 (36) 

where V(x) is the shear force at the position x along the beam, Q(x,y) is the first moment of 

inertia with respect to the neutral axis of the area above y, I(x) is the moment inertia of the 

cross-section at position x along the beam and t is the thickness of the cross-section at the 

level y.  

The shear theory presented above is only valid for beams having a height about 2 times their 

width. The shapes used in the steel construction industry can be categorised as thin-walled 

sections, either open or closed. The shear flow can be evaluated for their constitutive plates 

at their centerlines. As the plates are generally thin, the shear stress calculated is an average 

shear stress over the thickness of the plate at a certain level y. Also, the shear stresses are 

considered as tangent to the plate centerline. For further mathematical developments, refer 

to (Craig JR., 2011). 

2.2.2 – Shear stresses in Rpl 2.0 

Shear stresses have been included in the plastic cross-section analysis in Rpl 2.0. The shear 

stresses considered are the major-axis and minor-axis shear. The shear stresses have been 

implemented for mono-symmetric and doubly-symmetric I-sections. Therefore, any fiber of 

the cross-section may be solicited by three stresses: an axial stress σx, a major-axis shear 

stress τxz and a minor-axis shear stress τxy. Shear stresses induced by torsion have not yet been 

implemented in the program. As the Rpl tool only considers equilibrium of the stresses at a 

specific cross-section, the use of the thin-walled beam shear flow and shear stress 

distributions can be implemented.  
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Figure 20 – Axial and shear stresses acting on the cross-section fibers (Craig JR., 2011) 

The major-axis and minor-axis shear force resultants are calculated by numerically 

integrating the shear stresses acting on the fibers over the surface of the cross-section. The 

equilibrium equations for those internal forces are as follows: 

 
𝑉𝑧 = ∫τ𝑥𝑧 𝑑𝐴 = ∑τ𝑥𝑧_𝑖 𝐴𝑖

𝑛

𝑖=1

 (37) 

 

 
𝑉𝑦 = ∫τ𝑥𝑦 𝑑𝐴 = ∑τ𝑥𝑦_𝑖 𝐴𝑖

𝑛

𝑖=1

 (38) 

In the elastic range, the shear stresses τ are related to the shear strains γ by the shear modulus 

G. Elastic shear stresses follow an analogous relationship to the normal stresses. The shear 

stresses are defined by: 

 𝜏𝑖 = 𝐺 ∗ 𝛾𝑖 (39) 

where τi is the shear stress along either the Z-axis or Y-axis of a fiber, G is the shear modulus 

and γi the shear strain of a fiber.  

In the same logic as the axial stresses non-linear algorithm and procedures, the program 

applies increasing shear strains to each fiber according to the elastic shear stress distribution 

for the specific cross-section. Within a load step, the priority is given to the axial stress 

equilibrium. This procedure induces a limitation when consider axial and shear loads. In the 

plastic domain, the path to which a fiber deforms is important. Therefore, the procedure is 

only valid when a fiber is still within the ultimate plastic resistance curve envelope shown in 

Figure 13. A perfectly elastic-plastic material law must be used so that the post yield behavior 

of a fiber is not altered by the step-wise path of the axial and shear stresses algorithm. When 
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the internal and external axial loads are in equilibrium, the shear strains are increased to 

obtain the internal and external shear loads equilibrium.  

As the shear loads increase, some of the fibers may attain their plastic state. Therefore, the 

stresses required to obtain the corresponding elastic shear stress distribution cannot be 

reached. Although the stresses are limited to the yield limit of the fibers, the shear strains can 

still be increased according to the elastic shear stress distribution. The fibers reach their 

maximum capacities, and the integration of the stresses does not equal the applied shear 

loads. As the plasticity spreads and the stresses reach a plateau, the shear strains need to be 

increased until equilibrium is reached between the internal and external forces. To obtain this 

equilibrium, a Newton-Raphson algorithm is used to increase the strains until the applied 

shear stress is fully carried. This process is done for all the external shear loads. At this point, 

every fiber of the cross-section carries the normal and shear strains required for cross-section 

equilibrium. The fibers plastic capacity is determined using the von Mises criterion. 

Simplifications have been introduced to the major-axis shear stress distribution of such cross-

sections. According to (Beyer, 2018), numerical simulations demonstrated that the plasticity 

does not spread into the filets. Therefore, they should not be included in the shear resistance 

area. Also, a choice has been made to neglect the flange accompanying horizontal shear 

stresses. Such a simplification has also been made in the P.I.F. method. According to (Craig 

JR., 2011), the web carries most of the shear force and therefore, the flange shear stresses 

may be neglected. In that case, the Newton-Raphson algorithm equilibrates the external and 

internal loads and the shear stress carried by the flanges are redistributed into the web. That 

could lead to safer results as yielding of the web may happen sooner as the stresses are 

slightly higher. The web area considered is the height of the web at the centerline of the 

flanges. A representation of the plastic shear stress distribution in the major-axis direction of 

an I-section is shown in Figure 21. 
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Figure 21 – Major-axis plastic shear stress distribution (Kindmann, 2011) 

The minor-axis shear stress distribution is straight forward as the shear area considered is the 

area of both flanges. For doubly-symmetric cross-section, the shear load is separated in 2 

equivalent concentrated loads acting on the top and bottom flange. For mono-symmetric 

cross-sections, an assumption is made that the total shear load is distributed as a ratio of the 

areas of both flanges. A representation of the plastic shear stress distribution in the minor- 

axis direction of an I-section is shown in Figure 22. 

 

Figure 22– Minor-axis plastic shear stress distribution (Kindmann, 2011) 

This section described how the shear efforts were transferred into the cross-section fibers. 

With axial and shear stresses within the fibers, a plasticity criterion must be used to determine 

the equivalent yield stress of the fibers. The von Mises yield criterion will be described in 

the next section. 

2.2.3 – von Mises yield criterion 

The fibers equivalent yield stress is calculated using the von Mises criterion. As the strains 

increase, the stresses are calculated according to the material stress-strain curve of the 
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material. For shear, an elastic-perfectly plastic shear strain law is used. The shear yielding 

limit is defined as: 

 
𝜏𝑝𝑙 =

𝑓𝑦

√3
 (40) 

where τpl is the shear yield stress. As described in (Chen & Han, 1989), the von Mises 

criterion is based on the principle that the yielding of a ductile material is related to the second 

deviatoric stress invariant. The formulation used in the scope of this work is the von Mises 

equivalent tensile stress calculated with the Cauchy stress tensor. Therefore, only the tensile 

yield strength of the material used (steel) is required to define the plastic capacity of the fibers 

under tensile and shear stresses. The von Mises criterion is based on the physical 

interpretation that yielding of pressure independent materials begins when the octahedral 

shearing stress reach the critical value k as shown in equation (41). 

 

𝜏𝑜𝑐𝑡 = √
2

3
𝐽2 = √

2

3
𝑘 (41) 

where τoct is the octahedral shear stress, J2 the second invariant of the stress deviator tensor 

and k is the yield stress in pure shear of the material. Equation (41) may be rearranged to a 

simpler form such as: 

 𝐽2 = 𝑘2 (42) 

The yield stress in pure shear of a pressure independent material is given by: 

 𝑘 =
𝜎𝑦

√3
 (43) 

The second invariant of the stress deviator tensor is given by: 

 
𝐽2 =

1

6
[(𝜎𝑥 − 𝜎𝑦)

2
− (𝜎𝑦 − 𝜎𝑧)

2
− (𝜎𝑧 − 𝜎𝑥)

2] + 𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2  (44) 

By combining equations (42), (43) and (44), the von Mises yield criterion, in terms of the 

Cauchy stress tensor components is given by: 

𝜎𝑉𝑀 = √
1

2
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑧 − 𝜎𝑥)2] + 3 [𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2]  (45) 

For the purposes of Rpl, equation (45) may be simplified. The equilibirium requires that (τzx= 

τxz) and only axial stresses σx are applied to the cross-section. 
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𝜎𝑉𝑀 = √𝜎𝑥

2 + 3 [𝜏𝑥𝑦
2 + 𝜏𝑥𝑧

2] (46) 

As mentioned in previous sections, the Rpl program has a stop criterion based on a maximum 

allowable strain εu. The total strain formulation, which is related to the von Mises criterion 

and the second invariant of the deviatoric strain tensor, will be used to calculate the 

equivalent axial strain of a fiber under axial and shear strains (Mendelson, 1968).  

 
𝜀𝑝 =

√2

3
√([(𝜀𝑥 − 𝜀𝑦)

2
− (𝜀𝑦 − 𝜀𝑧)

2
− (𝜀𝑧 − 𝜀𝑥)2] + 6(𝛾𝑥𝑦

2 + 𝛾𝑦𝑧
2 + 𝛾𝑧𝑥

2)) (47) 

where εp is the total equivalent strain. For the purposes of Rpl, equation (47) may be simplified, 

using (γzx= γxz), to: 

 

𝜀𝑝 =
2

3
√(𝜀𝑥

2 +
3

4
(𝛾𝑥𝑦

2 + 𝛾𝑥𝑧
2)) (48) 

For each fiber, the equivalent strains are calculated using equation (48). The calculated strains 

are then verified against the maximum allowable strain εu defined as the plastic capacity 

analysis stop criterion.  

The theory and implementation methods, for the program Rpl, have been detailed in this 

chapter. The next chapter will validate the accuracy and effectiveness of the Rpl program. 

This study will compare the plastic capacity results obtained using Rpl to results obtained 

using shell finite element models. 
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Chapter 3 – Validation study of the Rpl 2.0 program 

The previous chapter detailed the theory and the general flow of operations of the Rpl 2.0 

program. With Rpl 2.0 programmed and ready to be used, meshing density and validation 

tests will be performed. Before launching large-scale numerical studies, these tests will 

establish guidelines to ensure results accuracy. To properly validate the results provided by 

Rpl 2.0, the general finite elements analysis program ABAQUS will be used as a reference 

tool. In ABAQUS, shell models will be used to accurately compute the plastic capacities of 

cross-sections. 

To validate Rpl 2.0 and the shell models, different sections in terms of size and fabrication 

process will be studied. One hot-rolled and one welded doubly-symmetric I-beam and one 

welded singly-symmetric I-beam have been used for the mesh density and validations tests. 

The cross-sections are a hot-rolled W360x33, a welded doubly-symmetric WWF2000x732 

and a singly-symmetric welded WRF1800x543. The bottom flange to top flange ratio 

(bfb / bft) of the WRF1800x543 section is 1.83. As the bottom flange width is nearly twice as 

much as the top flange width, this section is well suited to study the effects of mono-

symmetry on the results. The shell model length sensibility study has been conducted using 

a WWF500x456 cross-section. The length sensibility study will determine the required 

member lengths to use in the shell model to produce reasonably accurate plastic capacity 

results. These sections have been selected from the Handbook of Steel Construction 

(Canadian Institute of Steel Construction, 2010). The dimensions of these cross-sections are 

provided in Table 2. 
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Table 2 - Selected cross-sections and dimensions 

Dimensions 

[mm] 
W360x33 WWF2000x732 WWF500x456 WRF1800x543 

h  349 2000 500 1800 

bft  127 550 500 300 

tft  8.5 50 50 45 

bfb  127 550 500 550 

tfb  8.5 50 50 45 

w  5.8 20 20 18 

r  16.5 - - - 

Before comparing the plastic capacity results of Rpl 2.0 to ABAQUS, validation tests will be 

performed on the ABAQUS models to ensure (i) the suitability of the modeling techniques 

and (ii) reasonable meshing density of the three-dimensional shell models. The shell model 

results will be compared to analytical values to validate the accuracy of the numerical 

simulations. A notable difficulty arises from the fact that ABAQUS models are in three-

dimensions, but the plastic capacity of a cross-section is fundamentally a two-dimensional 

problem. This indicates that instead of working only with a cross-section, the ABAQUS shell 

models will consider members with a defined length. Therefore, specific attention has been 

devoted to the modeling of the ABAQUS shell models and the interpretation of the calculated 

plastic capacities of the cross-section. Further details and specificities of the ABAQUS shell 

models are provided in the next sections. 

Mesh density tests will also be performed for the Rpl program. The tests will determine the 

required number of divisions along the width and thickness of the constituting cross-section 

plates. As mentioned in earlier sections, the divisions in Rpl are represented by fibers with a 

single integration point at their center. The mesh density study will determine the required 

number of fibers to obtain results with a reasonable accuracy. 

Finally, the results from Rpl 2.0 will be compared to the material non-linear analysis (M.N.A) 

results obtained using shell models in ABAQUS. 
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3.1 – ABAQUS shell model 

Automated modeling tools have been developed specifically to generate the required input 

data to ABAQUS. This facilitates and increases the number of simulations performed by 

automating the process and launching multiple analyses with batch files. The shell element 

used for the purpose of this research is the “S4R” element in the ABAQUS library of elements. 

The M.N.A calculations have been performed using the Newton-Raphson algorithm with the 

arc-length resolution method. Automatic arc-length incrementation has been used throughout 

the tests. 

3.1.1 – Material law used in ABAQUS 

Although the Rpl 2.0 program possibly handles material strain hardening effects, as shown in 

Figure 11, an elastic-perfectly plastic material law has been used for the tests as shown in 

Figure 10. This decision has been made to simplify the comparison of the results obtained 

using numerical methods to the general formulas available in catalogues. Generally, the 

design standards interaction formulas do not consider strain hardening effects, therefore, for 

comparison purposes, no strain hardening is considered. The steel grade used is a 350W with 

a Young’s modulus E of 200 GPa and a yield stress fy of 350 MPa. 

3.1.2 – Radiuses of hot-rolled cross-sections in ABAQUS 

The radiuses of hot-rolled cross-sections have a non-negligible influence on the plastic 

capacities of the cross-section. The position of the radiuses, relatively to the neutral axis of 

the section, and their non-negligeable areas contribute to their beneficial effects on the plastic 

capacity of the section. Therefore, modeling of the radiuses cannot be omitted. Because the 

modeling is done with shell elements, a special technique has been used to introduce the 

radiuses and their effects in the model.  

First, the web-to-flange zone of hot-rolled sections has been receiving a specific treatment, 

as shown in Figure 23. Within shell modeling, this region indeed suffers from (i) an overlap 

of material and from (ii) the disregarding of so-called “flange radius” areas. Both 

imprecisions may have a direct impact on the calculated plastic capacity of the section. The 

material overlap may cause an over-estimation of the plastic capacities. The omission of the 

radiuses may cause an under-estimation of the plastic capacities. 
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In order to fix thoses issues and to get closer to the real characteristics of such steel sections, 

an additional node has been placed within the web height, at the exact vertical position of the 

centroid of the radius zone. In addition to being linked with the shell elements of the web, 

this node bears an additional beam element, oriented in the member longitudinal direction, 

whose cross-section area is equal to that of the radius zones minus the overlapped area. 

Moreover, the section of this additional element is chosen to be a square hollow section, with 

height and thickness carefully adjusted so as to provide nearly-exact cross-sectional 

properties of the shell element in comparison to analytical ones, in particular with respect to 

the torsional inertia. It is also given the same constitutive law as the plate elements. 

 

Figure 23 – Modelling principles of web-to-flange area 

Another improvement is brought by the introduction of additional truss elements to maintain 

the area influenced by the flange radius more rigid, i.e. restrain local buckling at the web-to-

flange junction. This truss system is composed of three elements with increased stiffness, 

making a rigid triangle. It implies the placement of adequate nodes at the foot of the radiuses 

in both the web and flanges, thus the non-equally spaced nodes observed in some of the 

figures. Such truss systems are also visible in Figure 24. 

This particularly influences the torsional response of the section as recomposed by shell 

elements by limiting the local buckling of the section. Although, for M.N.A computations, 

the torsional response of the section is not of importance as local and global geometrical non-

linearities are not considered. This modeling technique is implemented so the model may be 

used to consider the buckling effects as per the O.I.C. method. 
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Figure 24 – Examples of F.E. modelling of web-to-flange area 

As for welded sections, no such modelling refinements have been considered, since the 

influence of the weld is much smaller and has therefore been deemed negligible. 

3.1.3 – Support conditions & loading 

To respect Bernoulli’s hypothesis that plane sections remain plane, special attention have 

been paid to support conditions at the extremities of the member. A common method to 

support the extremities of a member is the rigid end plate method. The rigid plate method 

generates a relatively thick plate at both extremities of the member. The rigid plate method 

simulates fixed support conditions at both extremities. Although the rigid end plate method 

is commonly used and simple to incorporate into a model, it has not been selected as this 

method restricts the warping of the member. The warping is restricted as the rigid plates 

restrict the flanges from moving along the x-direction of the member. Instead, fork support 

conditions have been used throughout the following studies. Figure 25 a) represents the 

boundary conditions applied at the end extremities of the beam. Vertical supports are applied 

at the flanges and lateral supports are applied at the web nodes to prevent local instability. A 

longitudinal support condition is applied at the centroid node of the member.  
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Figure 25- a) Fork support conditions b) Linear constraints 

The tangent stiffness method presented earlier is based on the hypothesis that plane sections 

remain plane. Therefore, this hypothesis must also be respected in the shell models. Linear 

constraints, applied at the member extremities, have been used in the shell model to respect 

that hypothesis. Also, the linear constraints allow the warping of the section. Two linear 

constraints have been studied, the kinematic coupling constraints and the equation based 

linear constraints. Both methods are based on the principle of master nodes that control slave 

nodes.  

The kinematic coupling constraints requires the selection of the degrees of freedom of the 

master node to enforce to the slave nodes. The degrees of freedom of the slave nodes are then 

eliminated in the global matrix assembly. Therefore, no other boundary conditions or 

constraints can be applied to the slave nodes. 

The equation constraints do not remove degrees of freedom of the solution but instead links 

displacements of the slave nodes to the master nodes by the means of a linear equations. To 

replicate beam mechanics behavior in a shell model for open cross-section shapes, four global 

cross-section movements must be included such as: the axial displacement, the major-axis 

and minor-axis curvature and warping of the extremities. The master nodes are free to move 

in the longitudinal direction of the member and the slave nodes move according to the master 

nodes as described in Figure 25 b). Because of the good performance and behavior of the 
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equation constraints modeling technique, this method has been selected and implemented in 

the shell models. 

As the constrained nodes move in the x-direction according to the plane created by the four 

free nodes, the loading has been applied to the free nodes by means of concentrated loads. 

To generate an axial load to the beam, equivalent concentrated loads, oriented in the same 

direction, are applied to the free nodes of the cross-section, thus creating the axial plane 

deformation as shown in Figure 26 a). The principle to generate a major-axis or minor-axis 

bending moment, respectively shown in Figure 26 b) and Figure 26 c), is similar. The method, 

described in Figure 26, generates constant bending moments along the length of the member. 

Depending on the desired curvature, concentrated loads of opposite directions are applied at 

the free nodes of the cross-section. 

 

Figure 26- a) Axial deformation plane b) Major-axis curvature c) Minor-axis curvature 

Generally, vertical shear loads in beams are applied by means of transverse loads along the 

beam. Thus, the transverse loading creates an accompanying bending moment. It is then 

difficult to determine the pure shear plastic capacity of a cross-section. A work around is to 

apply the shear loads to the web as if the web was an isolated plate, see Figure 27. Shear 

stresses, applied using concentrated loads, must be equal for each edge of the web. The 

concentrated loads are applied at nodes and are applied according to the shear stress pattern 

shown in Figure 27 a).  
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Figure 27 – a) Single plate shear stress (Craig JR., 2011) b) Shear stress distribution on a beam in ABAQUS 

3.1.4 – Cross-section plastic capacity results of the shell models 

The previous sections explained the details and techniques used to build the shell models. 

With the shell models built, M.N.A computations are ready to be launched. As mentioned 

earlier in this text, shell models are three-dimensional problems, although the plastic capacity 

of a cross-section is a two-dimensionnal problem. Therefore, the plastic capacity of a cross-

section is not readily available. The cross-section plastic capacities will require an 

interpretation of the basic finite element results, such as the load proportionality factor and 

the nodal displacements. This section describes the techniques used to interpret the results 

and properly define the plastic capacities of the cross-section, from the three-dimensional 

shell model.  

Rpl 2.0 and ABAQUS models are very different in nature. The Rpl tool is strictly limited to the 

cross-section behavior and therefore greatly simplifies the interpretation of the results. A 

maximum strain limit, for any given fiber, can be defined as the analysis stop criterion. 

Because full yielding is needed, a strain limit of 2% has been defined for all tests, which 

corresponds to approximately 1000% of the elastic strain limit of steel. The elastic strain limit 

of steel is 0.175%.  

In the shell model, such parameter was not automated, and the interpretation of the results is 

slightly more complicated. Therefore, specific attention has been paid to extract and interpret 

key numerical data. As the concept of cross-section is non-existent in shell modeling, the 
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model must have a definite length. The task is to determine the plastic capacities of the beam 

cross-section with the beam modeled with shell elements. 

The main difficulty is, for any kind of loading, to define a method to properly calculate the 

plastic load factor of the model. For loads inducing axial deformation, the method chosen 

consists of monitoring the displacements of one of the beam extremities. The displacements 

are extracted at the four master nodes used earlier to apply the loading to the beam. From the 

nodal displacements, the strains are calculated knowing the length of the beam and using the 

basic material mechanicals equation (49). 

 
𝜀𝑥 =

∆𝐿

𝐿
 (49) 

The strains, calculated using equation (48), are calculated for each load step of the non-linear 

analysis. When the strain limit of 2% is reached, the load proportionality factor corresponding 

to the load step corresponds to the plastic capacity factor. 

As this study comprises axial and shear loads, the cross-section extremities will undergo axial 

and shear deformations. Therefore, a von Mises like criterion, based on the deformations, has 

been used. From the shell model results, the axial deformation ε and the shear strain γ must 

be isolated and calculated. The plastic load factor is reached when the von Mises equivalent 

strain of 2% is reached at a given load step. 

For a beam undergoing axial deformation only, either from simple or combined loading, the 

calculation of strains is straight forward as displacements at the nodes are readily available. 

For a beam under pure vertical shear, the nodes at the web-flange interfaces are used to 

extract the displacements and to determine the shear strain angle γ. The shear strain angle is 

calculated using the relative displacement of the nodes at the web/flange interface of a face. 

For combined major-axis bending moment and vertical shear, the interpretation of the results 

becomes more difficult as the movement of the end extremities are a combination of both 

types of loading. For each load step, the axial deformations ε and the shear strains γ are 

individually calculated by monitoring the relative displacements of both extremities of the 

beam. 
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Now that the plastic capacity of cross-section can be calculated from three-dimensional shell 

models, for various types of loading; the next sections will perform the shell model validation 

studies. 

3.1.5 – Effect of beam length on the results  

A study specifically aimed at determining the effect of the length of the beam on the results 

is presented in this section. The shell finite element analyses are performed without 

considering non-linear geometrical effects, thus only considering material non-linearities. It 

is then of interest to verify the influence of the length of the member on the plastic capacity 

results. To ensure the validity of the following numerical tests, the mesh along the plates of 

the cross-section will be very fine. By doing so, only the length of the beam may have an 

influence on the plastic capacities. The tests will be conducted according to ratios of the 

cross-section height L / h, ranging from 0.5 to 7 times the height of the cross-section. A WWF 

500x456 cross-section is considered and tested for axial, major-axis and minor-axis bending 

moments as well as vertical shear loads. The tested lengths for that cross-section are shown 

in Table 3. 

Table 3 - Tested lengths for cross-section WWF 500x456 

L / h [–] 0.5 1 1.5 2 2.5 3 4 5 6 7 

L [mm] 250 500 750 1000 1250 1500 2000 2500 3000 3500 

 

 

Figure 28 - Beam with L/h ratios of a) 0.5 b) 2.5 and c) 7 

The first series of tests, to determine the effect of the member length on the plastic capacity 

of the cross-section, were conducted for a major-axis bending moment. The results show that 

numerical issues occurred when the beam is very stocky. For ratios of L / h under 2, the cross-

section could not reach the plastic strain criterion of 2% and the phenomenon of load reversal 



49 

 

occurred. Simply, the non-linear algorithm could not converge toward a solution and 

bifurcated to an alternate solution where the direction of the loading is reversed. For ratios 

of L / h greater than 2, the non-linear material analysis was stable and the plastic capacity 

results were very similar. Indeed, the maximum difference observed on the results was 

0.01%.  

The second series of tests were conducted for a minor-axis bending moment loading type. 

Similar to the first series of tests, beams with ratios L / h under 2 could not reach the plastic 

strain criterion of 2%. For ratios of L / h greater than 2, the maximum difference observed on 

the results was 0.27%.  

The third series of tests were conducted for a vertical shear load. Contrarily to previous tests, 

the ratio L / h did not have a considerable effect on the stability and accuracy of the results. 

Yet, it has been observed that the plastic capacity results were more precise with larger values 

of L / h. Lower values of L / h tended to overestimate the cross-section vertical shear plastic 

capacity by not much than 0.73%. As a cause, the boundary conditions effects on the results 

increase as the member gets shorter. 

In conclusion, too short of a member does not give accurate results. When the member is 

shorter than twice the height of the cross-section, the gathered results had not reached the 

stop criterion of 2% strain. Not only the deformation criterion has not been reached, but the 

overall convergence of the model is also not deemed proper. Load reversal and divergence 

of the model is observed for overly stocky members. Therefore, a conclusion can be made 

that member length, for the numerical simulations, must be greater than twice the height of 

the cross-section. With the guidelines on the required member length determined, the next 

section will perform the validation of the three-dimensional shell models and mesh density 

tests. 

3.1.6 – Shell meshing density study & ABAQUS models validation 

The previous section studied the effect of the length of the beam on the plastic capacity results 

of the shell models. The following sections will apply the recommendations on the minimal 

member length to ensure proper results. As mentioned previously, beam behavior modeled 

with shell models requires a three-dimensional approach. Therefore, the number of divisions 

along each plate and along the length of the beam will be studied.  
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Using analytical reference values on the plastic capacities of a beam, both the mesh density 

and the modeling techniques of the ABAQUS models will be validated in this section. The 

models to be tested will consist in hot-rolled and welded cross-sections. Because of the 

various loading possibilities, the mesh density study will be conducted for various single load 

cases. The mesh density may have an influence depending on the direction where the stresses, 

generated by the loading, vary. The loading cases that will be studied are axial, major-axis 

and minor-axis bending moments and vertical shear loads.  

The user-interface modeling tools in ABAQUS have not been used for this study. Instead, a 

custom program developed in Excel has been used to generate the shell models and their 

specific modeling features. Therefore, the meshing of the shell model can be fully controlled. 

Although it might have proven useful to have separate plate discretization parameters for the 

flanges and the web, to simplify the user’s input, the cross-section plates discretization is 

controlled by only one parameter. Therefore, the plates of the cross-section all have the same 

number of divisions, according to the input of divisions by the user. This may cause an overly 

dense meshing along the flanges if the web height is much larger than the flanges width. 

Generally, quadrilateral shell elements perform better when they are not distorted. Because 

the mesh generation tool targets an aspect ratio of the shell element close to 1.0 (square 

elements), the divisions along the length of the beam are governed by the plates shell 

elements sizes. Therefore, the main variable is the number of divisions along the flanges of 

the cross-section. The number of divisions along the web depends on the number of divisions 

of the flanges and is calculated to obtain square elements along the length of the member.  

Contrarily to the tangent stiffness approach, plate thicknesses, in shell models, are not 

explicitly modeled. Shell elements are geometrically plane elements with a given thickness. 

Instead of having multiple fibers along the thickness of plates, shell elements have integration 

points along their thickness to capture the gradual yielding under flexure. Mesh density will 

influence the precision of the plastic distribution of stresses and displacements within the 

finite elements. 

Results with a very densely meshed shell model will be compared to those analytical values. 

This comparison is aimed toward validating the ABAQUS shell modeling techniques used. 
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Then, the cross-sections will be divided into various meshes, varying from coarse to dense 

meshing. The numerical tests will be conducted on a W360x33 hot-rolled cross-section. 

The initial step is to calculate the plastic capacities analytical values. The Handbook of Steel 

Construction (HSC) (Canadian Institute of Steel Construction, 2010) directly provides the 

axial, major-axis and minor-axis bending and vertical shear plastic properties of the 

W360x33 cross-section, with respectively Ag = 4170 mm2, Zz = 542x103 mm3, 

Zy = 71.8x103 mm3 and Av = 2024.2 mm2. Although readily available, the calculations of 

those properties are not explicitly detailed in the HSC. To ensure the validity and accuracy 

of the properties extracted from the HSC, alternative equations found in (ArcelorMittal, 

2009) have been used  to calculate the plastic section modulus for both bending axes and the 

plastic vertical shear area as shown by equations (50), (51), (52) and (53).  

 𝐴𝑔 = 2𝑡𝑓𝑏 + (ℎ − 2𝑡𝑓)𝑡𝑤 + (4 − 𝜋)𝑟2 (50) 
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𝜋

2
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 𝐴𝑣 = 𝐴𝑔 − 2𝑏𝑡𝑓 + (𝑡𝑤 + 2𝑟)𝑡𝑓 (53) 

The properties calculated using these equations are respectively Ag = 4318.3 mm2, Zz = 

565x103 mm3, Zy = 72.8x103 mm3 and Av = 2489.1 mm2. Table 4 presents the calculated 

plastic capacities from both the HSC and equations (50) to (53) for the various types of 

loading.  
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Table 4 – Analytical plastic capacities of a W360x33 cross-section  

W360x33 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

(HSC) 1459.5 189.7 25.1 409.0 

Eq.(50)-(53) 1511.4 197.8 25.5 503.0 

Variation [%] -3.6 -4.3 -1.5 -23.0 

A first observation from the table above is that the plastic capacity values from equations 

(50) to (53) are higher than the values from the HSC. The variations between the HSC and 

equations (51) and (52) values of Zz and Zy are respectively 4.3% and 1.5%. These variations 

may be attributed to the proper calculation of the radiuses effect on the cross-section 

geometrical properties. Because the radiuses exact dimensions are not directly provided in 

the HSC, the W360x33 cross-section plastic capacities will be calculated without the radiuses 

using equations (50) to (53). 

Table 5 – Effect of radiuses on the analytical plastic capacities of a W360x33 cross-section 

W360x33 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

Eq.(50)-(53) (r=0.0) 1429.6 184.6 25.0 399.1 

 Eq.(50)-(53) (r=16.5) 1511.4 197.9 25.5 503.0 

Variation [%] -5.7 -7.2 -2.0 -26.0 

From the results of Table 5, it is therefore evident that for hot-rolled cross-sections, the 

radiuses influence is not negligible on the plastic capacities results and that they must be 

included in the model as to not underestimate the plastic capacity of the cross-section. The 

radiuses affect mainly the axial, major-axis bending and major-axis shear plastic capacities 

with respective variations of -5.7%, -7.2% and -26.0%. The minor-axis bending plastic 

capacity is less affected by the omission of the radiuses as the radiuses areas are very close 

to the neutral axis of the cross-section, thus not participating less to the bending resistance. 
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The major difference from both references is the vertical shear plastic capacity. As shown in 

equation (53), the radiuses are taken into consideration for the calculation of the shear area 

whereas the HSC method only considers, for hot-rolled cross-sections, the web area extended 

into the flanges. Therefore, it can be observed that the flanges, in equation (53), contribute in 

a larger extent to the total shear area than in the HSC, hence the larger shear plastic resistance. 

As mentioned earlier in Section 2.2.2, an assumption has been made that radius do not 

influence the vertical shear capacity of beams. From that hypothesis, the reference vertical 

shear value will be the one from the HSC. The axial and bending moment plastic capacities 

reference values selected are from equations (50) to (52), as the radius may withstand axial 

stresses and therefore participate in the axial and bending resistances. 

With the reference plastic capacities defined, the mesh density study for the W360x33 may 

be performed. Figure 32 displays the error percentage of the calculated plastic capacities, for 

various mesh densities, compared to the analytical results. Figure 29, Figure 30 and Figure 

31 represent various meshing densities tested, ranging from a coarse mesh density to a very 

fine mesh density. 
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Figure 29 – Coarse mesh density (6 divisions) 

 

Figure 30 – Fine mesh density (12 divisions) 

 

Figure 31 – Very fine mesh density (20 divisions) 
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Figure 32 – Mesh density results for various loading for a W360x33 

A first observation from Figure 32 is that the mesh density does have a non-negligeable 

influence for the axial loading. A coarse mesh (ten divisions and less) produces an 

unacceptable error of 6.17%. As the number of divisions increases, the error on the axial 

plastic capacity oscillates between 0.08 to 1.95%. The major-axis bending results are not 

sensible to the mesh density as much as the other types of loads. The maximum variation of 

the error percentages is only 0.33% for all mesh densities. The minor-axis bending results 

show more variations, with a maximum difference of the error percentages of 2.05%. The 

error percentage, for the minor-axis bending, is acceptable for coarse and finer meshes. The 

mesh density does have a considerable influence on the vertical shear results. The difference 

on the error percentages is 8.18%. From this observation, mesh densities below eight 

divisions along the plates do not provide accurate results. Also, it can be seen that a very high 

number of divisions along the plates do not necessarily translate to more precise results as 

shown by the minor-axis bending and vertical shear results. For that reason, the shell model 

may not need to be finely meshed to attain proper convergence. Combined with the fact that 

more divisions require more computing time to solve the numerical simulation, a number of 

ten to sixteen divisions along the plates is deemed reasonable. 

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0 5 10 15 20 25

Er
ro

r 
[%

]

Number of divisions

Influence of the mesh density for various loading on a hot-
rolled W360x33 in comparison to analytical values

Axial Load

Major Axis Bending

Minor Axis Bending

Vertical Shear



56 

 

From the conclusions of this mesh density study, the shell model numerical results will be 

compared to the analytical values. From this comparison, the modeling of the shell model 

will be verified. The numerical plastic capacities chosen will be an average of the numerical 

values obtained from the shell model with divisions along the plates of ten to sixteen. 

Table 6 – Shell model plastic capacities of a W360x33 cross-section 

W360x33 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

Eq.(50)-(53) 1511.4 197.9 25.5 409.0 

Shell model  1535.7 205.4 25.4 410.0 

Variation [%] -1.6 -3.8 0.6 -0.2 

While the mesh density study above has provided conclusive results for doubly-symmetric 

cross-sections, verifications will be conducted for singly-symmetric cross-sections. The 

plastic capacities of a WRF1800x543 will be numerically calculated, using fourteen 

divisions, and verified against analytical values. 

Table 7 - Shell model plastic capacities of a WRF1800x543 cross-section 

WRF1800x543 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

HSC  24 220.0 15 737.8 1593.9 6219.8 

Shell model  24397.00 15 680.70 1586.77 6379.01 

Variation [%] -0.7 0.4 0.5 -2.6 

Table 7 presents the plastic capacities results of the shell model for a mono-symmetric I-

beam. The error percentages are well into acceptable limits, with the vertical shear having an 

error of 2.56% compared to the analytical value. These tests validate the shell modeling 

techniques for mono-symmetric cross-sections.  

In summary, it has been determined that the length of the finite element shell model does 

have an influence on the results. To ensure an accurate behavior of the model and proper 

results, a length of at least twice the cross-section height is required. From the mesh density 
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tests, the number of divisions along the plates of the cross-section is also an important 

parameter to obtain accurate plastic capacities. Ten to sixteen divisions along the plates are 

required. For the remainder of the study, the number of divisions along the plates chosen is 

fourteen as it is a good compromise between precision and computing times. Finally, a mono-

symmetric cross-section has been analysed using shell models to confirm that the shell 

modeling techniques are also valid for mono-symmetric cross-sections. Indeed, the modeling 

techniques are valid for both doubly and mono-symmetric cross-sections. 

3.2 – Rpl 2.0 mesh density study & model validation 

A mesh density study in ABAQUS has been conducted, for various type of loading, to 

determine the required number of divisions along the plates of the cross-section to obtain 

satisfying precision on the results. To ensure adequate comparisons between Rpl and 

ABAQUS numerical simulations, a mesh density study has also been conducted for the Rpl 

tool. 

As opposed to the ABAQUS model, where the plates are only discretized along their length, 

the cross-section plates in Rpl are discretized along their width and along their thickness by 

fibers. The meshing in Rpl consists of dividing each plate of the cross-section in mxn elements 

as illustrated in Figure 33.  

 

Figure 33 - Cross-section plate discretization 

This discretization method allows for faster computing times for known types of loading. 

Different loadings will require different configurations of the meshing. For example, a major-

n 

m 
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axis bending moment will require a finer meshing along the thickness of the flanges and 

along the height of the web to capture the yielding of the extreme fibers as opposed to a 

minor-axis bending moment, where the fibers at the tips of the flanges will yield first. From 

that logic, a major-axis bending moment would require a high number of divisions in the n 

direction and a minor-axis bending moment would require a high number of divisions in the 

m direction. In the case of a major-axis bending moment, reducing the number of elements 

along the width of the flanges may provide faster computing times while maintaining 

adequate results accuracy. For vertical shear loads, the distribution of the shear stresses would 

require the web of the cross-section to be densely meshed along the heigh of the web n. 

Further details will be given for the mesh density requirements for vertical shear loads. 

The notions above demonstrate, generally, the importance of having adequate divisions along 

the direction of loading. Although simple for single load cases, the cross-section mesh density 

study must also consider combined load cases. Therefore, the goal of the mesh density study 

is to determine a general meshing configuration that provides accurate results, whatever the 

the load case, while still maintaining a reasonable time efficiency of the program. 

Other factors such as the non-linear load step factor, which controls convergence and 

precision, are considered being precise enough to have very little influence on the results 

compared to the meshing quality. 

To determine an appropriate meshing for most sections, the study will be conducted with a 

large section. A large section has been selected to demonstrate that the meshing density is 

relative. The meshing requirements here will apply in general to other sections. The section 

selected is a welded WWF2000x732 cross-section. 

The analytical values for the WWF2000x732 are calculated using the same equations as in 

section 3.1.3. The plastic properties from the HSC are respectively Ag = 93200 mm2, 

Zz = 71800x103 mm3, Zy = 7750x103 mm3 and Av = 38000 mm2. The plastic properties 

calculated using equations (50) to (53) are respectively Ag = 93000 mm2, 

Zz = 71675x103 mm3, Zy = 7752x103 mm3 and Av = 39000 mm2. 
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Table 8 - Analytical plastic capacities of a WWF2000x732 cross-section 

WWF2000x732 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

HSC 32 620.0 25 130.0 2712.5 7678.8 

Eq.(50)-(53) 32 550.0 25 086.3 2713.4 7880.8 

Variation [%] 0.2 0.2 -0.0 -2.6 

In Rpl, for a purely axial load, the number of divisions of each plate is less important. The 

reason is that there is no variation of stresses in the cross-section. An axial load stress is 

constant over the area of the section. Therefore, the analysis of any section under axial load 

should be done with a minimum of elements to optimize the computation time. 

In Rpl, for major-axis bending, divisions along the width m of the section will remain constant. 

For this type of loading, the important divisions are along the height n, where there is a 

variation in stresses and thus in deformations. For minor-axis bending, the divisions along 

the height n of the section will remain constant and the divisions along the width m will vary. 

Figure 34 shows the error percentage trends with various meshing densities for the welded 

WWF2000x732 section shape. Welds are neglected. 
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Figure 34 - Mesh density tests for a WWF2000x732 

Before discussing the results displayed in Figure 34, the method to calculate the error 

percentages will be described. The plastic capacities calculated using Rpl are compared to the 

plastic capacities calculated using equations (50) to (53). The error percentage is calculated 

according to equation (54). 

 
𝐸𝑟𝑟𝑜𝑟 % = 𝑎𝑏𝑠 (

𝑀𝑅𝑝𝑙 − 𝑀𝑧𝑝

𝑀𝑅𝑝𝑙
) ∗ 100 (54) 

For major-axis bending, the maximum error is in the order of 2.8% compared to the analytical 

values from equations (50) to (53). The calculated major-axis plastic bending moment in Rpl 

is 24400.0 kN-m compared to 25086.3 kN-m. The average plastic bending moment, for a 

mesh density of 8 divisions and higher, is 25100 kN-m. The average error percentage 

stabilizes at around 0.05% when the cross-section is divided by more than 8 divisions n.  

For minor-axis bending, the maximum error is in the order of 14.0% compared to the 

analytical values from equations (50) to (53). The calculated major-axis plastic bending 

moment in Rpl is 2380.0 kN-m compared to 2714.4 kN-m. The average plastic bending 
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moment, for a mesh density of 8 divisions and higher, is 2661.3 kN-m. The average error 

percentage stabilizes at around 1.9% when the cross-section is divided by more than 8 

divisions m. 

The axial plastic capacities are not influenced by the meshing density and the error 

percentage is near 0%. 

For both the major-axis and minor-axis bending, a meshing density of less than 4 divisions 

is inadequate. Although reasonable even with a coarse mesh (4 to 6 divisions), the more 

divisions, the more constant the results become. Figure 34 clearly shows a pattern that even 

divisions generate less errors than uneven divisions. Theses variations are caused by the 

numerical integration technique where only one integration point at the center of a fiber is 

used. Therefore, the position of the center of each element relative to the plastic neutral axis 

of the cross-section influences the results. For even number of elements within each plate, 

the center of gravity of the elements do not land directly on the neutral axis of the section. 

This enables each plate and its tributary area to fully contribute to withstand the applied 

bending moment. Otherwise, the lever arm of the element is zero and do not receive any 

stresses as the stresses are zero at the neutral axis of the section. For major-axis bending 

moments, the areas where divisions matter the most are i) at the extreme position of the 

flanges, near the maximal stresses and strains of the cross-section and ii) in the web, near the 

center of gravity of the cross-section. The divisions at the extreme position of the flanges are 

crucial to capture the initial yielding of the cross-section. The divisions in the web are 

important to capture the final stage of yielding of the cross-section, near the plastic neutral 

axis. From Figure 34, the error percentage become very consistent when there are more than 

8 divisions for all loading types. Because computing times are not significant, even at 15 

divisions, this value of n or m divisions is recommended and will be used for the rest of this 

study. 

For vertical shear loading, the divisions along the width m and along the length n of the plates 

will be incremented simultaneously. For this type of loading, the most important divisions 

are along the height n, where there is a variation in shear stresses and thus in shear strains. 

The vertical shear area determined in Rpl has been determined using a centerline shear 
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distribution model, as shown in Figure 35. Therefore, the web shear area is extended up to 

the flange and web centerline intersections. 

 

Figure 35 - Centerline shear distribution 

Using the center of gravity of the fibers, a verification is performed to determine if a fiber is 

comprised within that area. It is important for the fibers to be properly discretized along the 

width of the plate so that the total area of the fibers flagged inside the shear area zone 

corresponds to the actual shear area, as illustrated in Figure 36. Figure 37 displays a fiber that 

is not considered in the shear area as the c.g of the fiber is outside the shear area. Therefore, 

the m divisions along the width have an influence on the results. 
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Figure 36 – Center of gravity of a fiber within the shear area 

 

Figure 37 - Center of gravity of a fiber outside the shear area 

Figure 38 shows the error percentage trend for the welded WWF2000x732 under vertical 

shear loading. 

 

Figure 38 - Mesh density tests for a WWF2000x732 under vertical shear 

As expected, the mesh density, for vertical shear loading, has a drastic importance on the 

accuracy of the results. The maximum error is in the order of 23.0% compared to the 
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analytical values from equations (50) to (53). The major variations, for low number of 

divisions, are caused by an over-estimation of the shear area due to the flange fibers. For 

uneven divisions, the center of gravities of the middle row fibers are technically in the shear 

area zone, altough spreading much beyond the expected shear area. Using more divisions, 

the shear area considered by the program becomes more precise. To obtain results with an 

error consistently less than 5%, 12 divisions along m and n are required. From the conclusions 

of the major-axis and minor-axis mesh density study, 15 divisions will produce reasonnably 

accurate results for major-axis shear load cases. 

Contrarily to doubly-symmetric cross-sections, the plastic neutral axis of singly-symmetric 

cross-sections does not coincide with the geometrical center of gravity of the cross-section 

as the fibers progressively yield. Figure 39 illustrates the fully elastic and fully plastic state 

of the cross-section. As shown in Figure 39, the plastic neutral axis has shifted away from 

the elastic neutral axis. Such shift of the plastic neutral axis motivates the following mesh 

density study on a singly-symmetric cross-section. The tests have been performed using a 

WRF1800x543 mono-symmetric welded section. 
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Figure 39 – Elastic and Plastic neutral axis of a mono-symmetric cross-section (Beaulieu, Tremblay, & Grondin, 2005) 

 

Figure 40 - Mesh density tests for a WRF1800x543 

Figure 40 demonstrates that coarse meshing is not adequate for mono-symmetric cross-

sections. It also shows that the number of divisions required (n=3) for a major-axis bending 

moment, to obtain resonnable results, is slightly lower than for doubly-symmetric sections 

(n=4). Although, for the mono-symmetric cross-section, a coarse meshing produces an error 

higher (6.59%) than the doubly-symmetric cross-section (2.81%). Contrarily to doubly-

symmetric sections, the plastic neutral axis does not correspond, in the elastoplastic phase, 

to the center of gravity of the cross-section. It is therefore the reason a finer meshing is 
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required, to better represent the spread of plasticity in the web. The position of the plastic 

neutral axis governs the equilibrium of the stresses in the cross-section. The finer meshing 

improves the position accuracy, thus improving the stresses equilibrium calculations. 

The minor-axis of a mono-symmetric cross-section being symmetric, Figure 40 demonstrates 

that the mesh density under a minor-axis bending moment displays the same pattern as a 

doubly-symmetric cross-section. Consistent results are obtained for ten and higher divisions.  

 

Figure 41 - Mesh density tests for a WRF1800x543 under vertical shear 

Figure 41 displays the mesh density results for the mono-symmetric WRF1800x543 cross-

section. The high error percentage is directly linked to an over-estimation of the shear area 

caused by the coarse meshing. For the mono-symmetric cross-section, the error stabilizes 

under 5% when the divisions (m and n) are greater than fifteen. 

For the WRF1800x543, Table 9 compares the plastic capacities calculated with Rpl and the 

analytical values. Because equations (50)-(53) apply only to doubly-symmetric sections, the 

analytical values from the HSC are taken. 
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Table 9 - Rpl plastic capacities of a WRF1800x543 cross-section 

WRF1800x543 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

HSC 24 220.0 15 737.8 1593.9 6219.8 

Rpl 24 170.0 15 720.0 1560.0 6470.0 

Variation [%] 0.2 0.1 2.1 4.0 

As a continuity of the shell model study from the previous section, the plastic capacities for 

a W360x33 will be calculated using Rpl and compared against the analytical values. 

Table 10 - Rpl plastic capacities of a W360x33 cross-section 

W360x33 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

Eq.(50)-(53) 1511.4 197.9 25.5 409.0 

Rpl  1507.0 198.0 25.4 410.0 

Variation [%] 0.3 0.1 0.6 0.2 

Table 10 clearly indicates that Rpl provides very accurate results while being much simpler 

to use than full three-dimensional shell models. Finally, plastic capacities from Rpl and the 

shell models are compared in Table 11. 
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Table 11 - Plastic capacities comparison of Rpl and the shell models 

 Np  

[kN] 

Mzp  

[kN*m] 

Myp  

[kN*m] 

Vyp 

[kN] 

W360x33 

Shell model 1535.7 205.4 25.4 409.9 

Rpl 1507.0 198.0 25.4 410.0 

Variation [%] 1.9 3.6 0.0 0.0 

WRF1800x543 

Shell model 24 397.0 15 680.7 1586.8 6379.0 

Rpl 24 170.0 15 720.0 1560.0 6470.0 

Variation [%] 0.9 0.3 1.7 -1.4 

Table 11 confirms that Rpl provides accurate results for the load cases studied in this chapter. 

From that confirmation, plastic capacities studies with combined loadings will be performed 

in the next chapter. 

In summary, this chapter aimed at describing and validating the finite element shell modeling 

techniques. Length and mesh density studies have been conducted for various shell models. 

Also, mesh density studies have been conducted for Rpl. Plastic capacities, for both tools, 

have been compared to analytical plastic capacity values. With both tools validated for simple 

load cases, combined load cases will be studied in the next chapter. Using the shell models 

as a reference, interaction diagrams will be built and verified using interaction diagrams to 

validate the accuracy of Rpl 2.0 for combined loading cases.  
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Chapter 4 – Plastic capacity of cross-sections under combined loading 

The previous section validated the modeling techniques used for the shell FE models and Rpl 

2.0. Also, several numerical simulations validated the Rpl 2.0 plastic capacities calculations 

for single load cases. To reach the objectives of this thesis, the Rpl 2.0 program must also be 

validated for combined load cases. The combined loading must also include the effects of 

shear loads on the plastic capacity of cross-sections. The inclusion of the shear loads on the 

plastic capacity of cross-sections will be required to conduct the study of members under 

bending and axial loads using transversal loads. Therefore, this chapter will validate the 

accuracy and reliability of Rpl 2.0 for combined loadings. 

Interaction diagrams will be generated using Rpl 2.0 and shell finite elements models. The 

interaction diagrams obtained using these tools will be compared. Also, approximate 

analytical equations will be considered to generate interaction diagrams, thus providing 

additional confirmations of the results validity. Note however that the analytical equations 

are limited in their applicability and will may only be used for illustration purposes on 

specific cases. 

4.1 – Parametric study parameters 

To cover multiple cross-sections and loading scenarios, the studied cross-sections will be 

either doubly-symmetric or singly-symmetric I-beams. Also, numerical tests will be 

conducted on hot-rolled and welded cross-sections. The steel grade used for the numerical 

simulations has a Young’s modulus E of 200 GPa and a yield strength fy of 350 MPa. The 

material law, used in Rpl 2.0 and the FE shell models, is perfectly plastic, as shown in Figure 

10. In Rpl 2.0, the ultimate strain εu has been set to 2%. Recall that the elastic strain limit of 

steel is 0.175%, which is much smaller than 2%. 

Table 12 displays the studied cross-section geometries of this chapter. 
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Figure 42: Hot-rolled W360x33 

 

Figure 43: Welded WWF 800x161 

 

 

Figure 44: Welded WRF 1000x210 
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Table 12 – Studied doubly and singly-symmetric cross-sections dimensions 

Dimensions  

[mm] 
W360x33 WWF800x161 WRF1000x210 

h  349 800 1000 

bft  127 300 300 

tft  8.5 20 20 

bfb  127 300 550 

tfb  8.5 20 20 

w  5.8 11 10 

r  16.5 - - 

Also, a variety of load combinations will be studied. The interaction diagrams will be 

calculated for the following load combinations: 

• Axial load and major-axis bending moment (N + Mz); 

• Major-axis and minor-axis bending moments (Mz + My); 

• Axial load, major-axis and minor-axis bending moments (N + Mz + My); 

• Major-axis shear load and major-axis bending moment (Vy + Mz). 

In Rpl 2.0, the first three load combinations produce axial stresses only and the fourth 

produces a combination of axial and shear stresses on the cross-section fibers. For each 

interaction diagrams, the loading proportions will be varied to cover all the interaction 

spectrum. 

When possible, the results will be compared to analytical equations provided by either the 

standards or by (Beaulieu et al., 2005). These analytical equations have been mostly 

developed for doubly-symmetric I-beams and a perfectly plastic material law. 

4.1.1 – Plastic capacities of the studied cross-sections 

The individual plastic capacities calculated using various methods will be compared to 

characterize the expected results variations. The plastic capacities will be calculated 

according to the catalog properties, the FE shell models and Rpl 2.0. Table 13 presents the 

calculated plastic capacities for a WWF800x161 and a WRF1000x210 cross-sections. The 

plastic capacities of the W360x33 have been detailed in the previous chapter and are recalled 

again here. The plastic capacities displayed in Table 13 will be used to calculate the 
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interaction diagrams. Each point of an interaction diagram represents a load combination, 

combining two or more internal forces. 

Table 13 - WWF800x161 and WRF1000x210 plastic capacities 

WWF800x161 (Welded) 

 Np  

[kN] 

Mzp 

[kN*m] 

Myp 

[kN*m] 

Vyp 

[kN] 

HSC 7175.0 2212.0 323.4 1733.8 

Shell model 7153.7 2222.6 320.4 1706.0 

Variation (Shell - HSC) [%] -0.3 0.5 -0.9 -1.6 

Rpl  7130.0 2192.5 316.5 1755.6 

Variation (Rpl - Shell) [%] -0.3 -1.4 -1.2 2.8 

WRF1000x210 (Welded) 

HSC 9345.0 3503.2 695.3 1980.3 

Shell model 9650.1 3545.8 689.5 2048.4 

Variation (Shell - HSC) [%] 3.3 -1.2 -0.8 3.3 

Rpl  9317.7 3507.4 692.9 1990.0 

Variation (Rpl - Shell) [%] -3.6 -1.1 0.5 -2.9 

W360x33 (Hot-Rolled) 

 Eq.(50)-(53) 1511.4 197.9 25.5 409.0 

Shell model  1535.7 205.4 25.4 410.0 

Variation (Shell – Eq.) [%] -1.6 -3.8 0.6 -0.2 

Rpl 1507.0 198.0 25.4 410.0 

Variation (Rpl - Shell) [%] 1.9 3.6 0.0 0.0 

4.2 – Axial load and major-axis bending moment (N + Mz) 

The following plastic interaction diagrams present the interaction between axial load and 

major-axis bending moment. The axial load may be applied as a compression or tension load 

as both give similar results in the plastic capacity calculations of doubly-symmetric cross-

sections. For mono-symmetric cross-sections, the axial load direction does have an influence 

on the results. Figure 45 presents the interaction diagrams obtained for a W800x161 cross-

section. 



73 

 

 

Figure 45 - N +Mz interaction diagrams for a W800x161 cross-section 

Figure 45 shows a strong correlation of the plastic capacities obtained with all methods. 

Contrarily to the formulation proposed in (Beaulieu et al., 2005), the interaction formulas 

proposed in the CSA and Eurocode standards use a linear interaction formula. Figure 45 also 

shows that for both the CSA and Eurocode standards, the plastic major-axis bending capacity 

is not reduced by the axial loading until the axial loading reaches respectively 15% and 20% 

of the axial loadplastic capacity of the cross-section. Although, the interaction curves 

obtained using Rpl, FE shell models and other references clearly show that the interaction 

between the axial loading and the bending moments occurs much sooner. The standards 

interaction curves, for high bending moments load ratios, over-estimates the cross-section 

plastic capacity. For a bending moment load ratio of 0.98, the axial load ratio using Rpl is 

0.11 comparatively to 0.17 for the CSA and 0.22 for the Eurocode standards. The axial load 

ratio from the CSA standard is approximately 54% higher than Rpl and the axial load ratio 

from the Eurocode standard is approximately 100% higher than Rpl. Apart from the high 

bending moment ratio region, the CSA interaction curve provides safe sided results. Figure 

46 presents the interaction diagrams obtained for the W360x33 cross-section showing a 

strong concordance of the plastic capacities results obtained with all methods. 
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Figure 46 - N + Mz interaction diagrams for a W360x33 cross-section  

For the general case of mono-symmetric cross-sections under pure major-axis bending, the 

plastic capacity remains identical for either a positive or negative bending moment. However, 

for mono-symmetric cross-sections under axial and bending loads, the axial loads influence 

the plastic bending capacities. For a mono-symmetric I-beam, the different sizes of the top 

and bottom flanges influence the plastic bending capacities. A smaller flange signifies a 

smaller capacity to store stresses and that capacity may be exhausted faster than the larger 

flange. As the cross-section extremities gradually yield, the plastic neutral axis shifts toward 

the larger flange, as shown in Figure 47. Figure 47 presents the von Mises stresses of the 

cross-section. 
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Figure 47 - Shift of the plastic neutral axis toward the larger flange 

As the cross-section yields and the stresses reach their plastic limit fy, the shift of the neutral 

axis is required to keep the global axial load equilibrium. The application of an external axial 

load may increase or decrease the axial stresses on the smaller flange, thus either increasing 

or decreasing the axial stresses on that flange. Therefore, the axial loading may have a 

beneficial or detrimental effect on the plastic capacities, depending on the direction of 

internal axial stresses and strains of each fiber. Although, the beneficial effects are limited 

and may only be observed for high bending moment ratios and low axial load ratios. 

Otherwise, the addition of axial load is detrimental to the plastic bending capacities of cross-

sections. The direction or sign of the stresses and strains depends on the direction of 

application of the axial or bending loads. The following interaction diagrams will be 

computed for a tension load and positive and negative bending moments. Figure 48 presents 

the interaction diagrams obtained for the singly-symmetric welded cross-section 

WRF1000x210 for positive and negative bending loads. 
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Figure 48 - N +Mz interaction diagrams for a WRF1000x210 cross-section 

Figure 48 displays the effect of an axial load on the plastic interaction diagrams of a mono-

symmetric cross-section for positive and negative bending moments. The axial load produces 

positives strains and stresses (tension). The positive bending moment generates compression 

in the bottom flange and tension in the top flange. The negative bending moment generates 

tension in the bottom flange and compression in the top flange. The bottom flange is the 

largest flange, as shown in Figure 44.  

Figure 47 shows that the interaction curves, for positive and negative bending moments, are 

not symmetric. The negative bending moment interaction diagram shows that, until a certain 

level, the tension load allows to exceed the pure plastic bending moment capacity of the 

cross-section(Villette, 2004). The cross-section being mono-symmetric, the strains and 

stresses along the cross-section height are non-symmetric. The positive strains and stresses, 

generated by the tension load, counteracts the negative stress and stresses (compression) of 

the cross-section top flange. The yielding of the top flange is delayed and, by extension, 

delays the shift of the plastic neutral axis. 

Figure 48 demonstrates that plastic capacities, computed using the shell finite elements, are 

slightly over-evaluated. The shell models being represented in three-dimensions, plasticity 

spreads along the member length. Therefore, the shell elements do not yield simultaneously, 
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and the remaining elastic shells bring additional rigidity to the model. Hence, the calculated 

resistances are slightly higher. 

4.3 – Major-axis and minor-axis bending moments (Mz + My) 

Figure 49 presents the interaction diagrams between major-axis and minor-axis bending 

obtained for a W800x161 cross-section. 

 

Figure 49 – Mz +My interaction diagrams for a W800x161 cross-section 

Figure 49 shows a strong concordance of the shell model results, the Rpl results and the results 

obtained in (Beaulieu et al., 2005). Figure 49 also displays a limitation in the analytical 

equations provided by (Beaulieu et al., 2005). The equations have been constructed to 

calculate a reduced major-axis bending moment plastic capacity caused by a minor-axis 

bending moment. Hence, the equations do not cover interaction points where minor-axis 

bending governs and are thus limited in their use. In addition to the equations provided by 

(Beaulieu et al., 2005), the plastic capacity of a cross-section may be calculated using static 

plastic distribution theorems. 

The equations provided by the standards are safe-sided approximations. The CSA linear 

interaction may be considered overly-conservartive. For a major-axis bending moment load 

ratio of 0.5, the minor-axis bending moment load ratio using Rpl is 0.89 comparatively to 0.5 

for the CSA standard. The minor-axis bending moment load ratio from the CSA standard is 
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almost half the ratio calculated using Rpl and the FE shell models. Figure 50 presents the 

interaction diagrams obtained for a W360x33 cross-section. 

 

Figure 50 - Mz +My interaction diagrams for a W360x33 cross-section 

Figure 50 presents the interaction diagrams obtained for a W360x33 cross-section and shows 

a fairly good agreement of the results. The shell element results tend to slightly overestimate 

the cross-section plastic capacities for load combinations where minor-axis bending is 

dominant. Although, the interaction diagram obtained using (Beaulieu et al. 2005) follows 

very well the interaction diagram obtained using Rpl.  

Figure 51 presents the interaction diagrams obtained for a WRF1000x210 cross-section. For 

biaxial bending without any axial load, the sign of the bending moments does not influence 

the results, therefore only one interaction diagram is displayed. 
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Figure 51 - Mz +My interaction diagrams for a WRF1000x210 cross-section 

Again, Figure 51 shows that the shell element results tend to slightly overestimate the plastic 

capacities of the cross-section. Analytical equations considered here do not cover mono-

symmetric cross-sections. 

4.4 – Axial load, major-axis and minor-axis bending moments (N + Mz + My) 

In this section, interaction diagrams will be generated for axial, major-axis and minor-axis 

bending moments. N + Mz + My interaction diagrams are three-dimensionnal, where the 

vertical axis represents the axial load ratios and both other axes represent the major-axis and 

minor-axis bending moment ratios. Generating full three-dimensionnal interaction diagrams 

is quite a complex. For that reason, two-dimensionnal interaction diagrams will be presented. 

The interaction curves will display the interaction results for various ratios of the major-axis 

and minor-axis bending moments for a given initial axial load intensity (0.2, 0.5 or 0.8 the 

axial plastic capacity of the cross-section). 

To properly generate N + Mz + My interaction diagrams with Rpl and FE shell models, an 

iterative method must be implemented. The objective is to calculate the plastic capacity 

multiplier for a constant axial load intensity. The Rpl program has included such an iterative 

method. Because the load multipler in Rpl increments the internal loads radially, the initial 

axial load applied to the cross-section multiplied by the final plastic load capacity mutiplier 
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Rpl may not correspond to the desired final load intensities of either 0.2, 0.5 or 0.8 the axial 

plastic capacity of the cross-section. Therefore, an iterative process compares the desired 

axial load intensity to the calculated axial load carried by the cross-section and ajusts the 

initial axial load ratio if convergence is not reached. Because of the iterative process, the final 

axial load intensity is within a small tolerance of the desired constant axial load intensities of 

0.2, 0.5 or 0.8 the axial load plastic capacity. Although, this iterative process could not be 

implemented within the ABAQUS procedure and performing the iterations manually would 

be a time-consuming and imprecise process. Instead, the following interaction diagrams will 

be calculated using a simplified method. 

The simplified method consists of applying simultaneously the N + Mz + My loads. Their 

intensity will be increased radially by the Rpl and the FE shell models until the plastic capacity 

multiplier is found. This simplified method will provide radial plastic capacity values, where 

the final axial load carried by the cross-section may not correspond to the desired axial load 

intensities of 0.2, 0.5 or 0.8 the axial plastic capacity of the cross-section. For each axial load 

intensities of 0.2, 0.5 or 0.8, the major-axis and minor-axis bending moments are varied.  

Figure 52 presents the interaction diagrams obtained for a W800x161 cross-section and 

shows a relatively good concordance of the results obtained with the shell model plastic 

capacities. 
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Figure 52 - N + Mz +My interaction diagrams for various axial load intensities for a W800x161 cross-section 

However, Rpl tends to slightly underestimate the plastic resistances for axial load ratios of 

(n = 0.2). Yet again, the FE shell model plastic capacities may be over-estimated because of 

the spread of plasticity along the member length. Also, an interesting fact may be noted. The 

axial load (n = 0.2) inhibits the cross-section to reach the full plastic major-axis bending 

moment, contrarily to the minor-axis bending resistance. For (n = 0.2), the major-axis 

bending moment reaches approximately 90% of the full cross-section major-axis bending 

capacity. Figure 53 presents the interaction diagrams obtained for a W360x33 cross-section. 
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Figure 53 - N + Mz +My interaction diagrams for various axial load intensities for a W360x33 cross-section 

Figure 53 shows a good concordance of the results obtained for axial load ratios of (n = 0.2) 

and (n = 0.8). For (n = 0.2), Rpl plastic capacity values for high major-axis bending moment 

ratios are higher than the FE shell models and the plastic capacity values for high minor-axis 

bending moment ratios are slightly lower than the FE shell models. 

However, the interaction diagrams of Rpl and the FE shell models for (n = 0.5) do not 

coincide. The interaction curve from the FE shell models is linear and provides lower plastic 

capacity results than Rpl. For that reason, an additionnal interaction curve has been calculated 

using the initial version of Rpl 1.0. The calculated interaction curve using Rpl 1.0 shows a 

good concordance and a similar pattern with the interaction curve calculated using Rpl 2.0, 

thus validating the interaction curve calculated using Rpl 2.0. Further investigations of this 

particular FE shell model should be considered to explain the differences between the 

interaction curves. 

Figure 54 presents the interaction diagrams obtained for a WRF1000x210. Because the cross-

section is mono-symmetric, the interaction diagrams have been generated for both positive 

and negative bending moments. 
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Figure 54 - N + Mz +My interaction diagrams for various axial load intensities for a WRF1000x210 cross-section 

The axial ratio of (n = 0.8) has been disregarded as the biaxial bedning interaction influence 

is less significant. Figure 54 shows the unsymmetric behavior of the cross-section, depending 

on the bending moment loading direction. For (n = 0.2), the FE shell model results tend to 

over-estimate the plastic capacities of the cross-section, compared to Rpl. Figure 54 also 

displays that the full plastic major-axis and minor-axis bending capacities are reached for the 

axial load ratio of (n = 0.2) and a negative major-axis bending moment. For that specific 

case, the axial load does not seem to influence the plastic capacity of the cross-section as 

both bending moments reached their ultimate plastic capacities. For (n = 0.2) and a positive 

major-axis bending moment, the cross-section is limited to approximately 80% of the pure 

plastic bending capacity of the cross-section.  

For (n = 0.5), either for a positive or negative bending moment, the biaxial bending plastic 

capacities are reduced by the axial loading. The minor-axis bending plastic capacity is limited 

to approximately 70% and the major-axis bending plastic capacities to approximately 50% 

for a positive bending moment and approximately 60% for a negative bending moment. 

4.5 – Major-axis shear load and major-axis bending moment (Vy + Mz) 

The interaction diagrams in this section have been calculated for the vertical shear and major-

axis bending moment. In addition to the interaction diagrams calculated using shell models, 
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CSA and Eurocode interaction diagrams will be presented. Figure 55 presents the interaction 

diagrams obtained for a W800x161 cross-section. 

 

Figure 55 - Mz +Vy interaction diagrams for a W800x161 cross-section 

Figure 55 shows a good agreement between the shell simulations, Rpl and the Eurocode. 

Although, some key differences can be observed. As previously stated, Eurocode 3 neglects 

any bending moment resistance reduction before the shear load is greater than 50% of the 

shear plastic capacity of the cross-section. The CSA standard neglects any interaction before 

a shear load that is greater than 60% of the shear plastic capacity of the cross-section. Results 

from the Rpl tool show that the interaction between major-axis bending and shear begins 

before the prescribed limit of the CSA and Eurocode standards, around a shear load of 20% 

of the shear plastic capacity of the cross-section. Conversely, the interaction diagram from 

the FE shell model is seen to begin only at around 70% of the plastic shear capacity of the 

cross-section.  

Figure 55 shows that the shear plastic resistance defined by the Eurocode and CSA equations 

is not reduced until the bending moment is greater than 75% of the plastic bending capacity. 

Both the CSA and Euroce interation curves are similar although the CSA standard consider 

a simplified linear interaction. Both Rpl and the shell model show an interaction for bending 
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moment ratios under 75%. For a shear load ratio of 60%, the Rpl moment resistance is reduced 

by approximatively 4% compared to the Eurocode at the limit point and 5% compared to the 

CSA standard. For a major-axis bending load ratio of 75%, the Rpl shear resistance is reduced 

by approximatively 12% compared to the CSA standard. 

For predominant shear loads, both the Rpl tool and the finite element simulations converge 

toward the plastic limit defined from the Eurocode standard. Figure 56 presents the 

interaction diagrams obtained for a W360x33 cross-section. 

 

Figure 56  - Mz +Vy interaction diagrams for a W360x33 cross-section 

Results displayed in Figure 56 follows the same pattern as the W800x161 cross-section. 

Although, the shear capacity for the Eurocode is reduced when 70% of the major-axis 

bending load ratio is reached, compared to approximately 75% in Figure 55. 

The Eurocode provisions for mono-symmetric sections use a different approach than for 

doubly-symmetric I-sections. The yield limit fy is reduced in proportion of the shear loading. 

Similar to previous provisions, interaction between bending and shear loading is only 

considered when the shear load is greater than 50% of the shear plastic capacity of the cross-
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section. Figure 57 presents the interaction diagrams obtained for a WRF1000x210 cross-

section. 

 

Figure 57 - Mz +Vy interaction diagrams for a WRF1000x210 cross-section 

The Rpl and the shell model interaction curves are in good agreement. Yet, Figure 57 shows 

non-negligeable differences between the interaction diagram results. The Rpl and the shell 

model interaction curves provide higher estimations of the plastic capacities compared to the 

Eurocode results. Because the following chapter will work on doubly-symmetric cross-

sections, the variation in the results will not be studied in detail. Also, further investigations 

could address the lack of smoothness of the FE shell model interaction curve. 

In conclusion, the interaction diagrams presented throughout this chapter validate the 

accuracy of Rpl 2.0 for combined load cases. In general, a good agreement of the results from 

the analytical, the FE shell model and the Rpl results can be observed. Also, the interaction 

curves for the W800x161 and W360x33 cross-sections validated the use of Rpl for combined 

loading including shear loads. With Rpl 2.0 validated, the study on the effect of transversal 

shear forces on the overall resistance of members in tension and bending will follow. 
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Chapter 5 – Study of members in bending and tension 

The previous chapters were mainly focused on validating the Rpl 2.0 program for the plastic 

analysis of cross-sections under single and combined loading cases. Therefore, previous 

chapters were only focused on the resistance of members at the cross-section level. This 

section will now be considering the global resistance of members, thus expanding the scope 

of this study. Specifically, the global resistance of members under bending and tension will 

be studied. Such loading case may arise for members in tension, such as bracings, with 

eccentric connections. The connection eccentricities may generate bending moments at both 

member extremities. From the interaction diagrams presented in previous chapters, it is 

known that an axial load has a detrimental effect on the plastic capacity of a member in 

bending. In rare cases, where the cross-section is mono-symmetric and the axial load ratio is 

small, the plastic bending capacity of the cross-section is slightly increased. Although, for 

slender members, a tension load may have a beneficial effect on the lateral torsional buckling 

resistance of the member as it may delay the buckling of the compression flange. 

The subject of the resistance and stability of members in bending and tension has been studied 

in two previous master theses by João Tomás Mello e Silva  (Silva, 2013) and Vincent Epiney 

(Epiney, 2015). The studies considered various parameters such as multiple cross-sections, 

member lengths, steel grades, bending moment distributions, tensile force intensities and load 

application positions. The work of Silva, with approximately 2000 numerical results, 

confirmed the beneficial effect of tension forces on the global bending resistances of slender 

members. The bending moments were applied by concentrated moments at the member ends.  

Epiney (2015) studied, with a similar number of numerical tests, the beneficial effect of 

tensile forces, although, the bending internal forces were induced by transversal loads. 

Epiney also reprocessed Silva (2013) results strictly in accordance with the O.I.C. concept. 

As mentioned in chapter 1, the O.I.C. concept generates resistance curves using i) the lambda 

factor λ, which represents the slenderness of the element and ii) the khi factor χ, which defines 

the relation between the plastic resistance and the element ultimate failure. By applying the 

bending forces with transversal loads, shear internal forces are induced in the member, most 

notably near the supports. Those shear internal forces were not considered in the plastic cross-

section capacity calculations in previous studies due to a lack of tools. The tools available at 
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the time could not calculate the plastic capacity of the complex axial load, major-axis bending 

and major-axis shear load interaction. 

This limitation is now removed with the Rpl 2.0 tool. Rpl 2.0 handles, in addition of axial and 

bending loads, major-axis and minor-axis shear loads in the plastic capacity calculations. The 

objective will be to determine the effect of that simplification on the results and to recalculate 

the member resistances, under the O.I.C. format, of each numerical simulation. Therefore, 

this study aims at completing and correcting the results obtained in those previous theses. 

Further details on how this study will improve and correct the results will be given later. The 

next section will briefly describe the models and resistance equations used for the numerical 

simulations.  

5.1 – Models description and resistance equations 

The first thesis, done by Silva (2013), studied a simply supported beam with concentrated 

bending moments at the member ends. The tension loading was applied by concentrated axial 

forces also applied at the member ends. Figure 58 depicts the general representation of the 

studied system. As described in the introduction of this chapter, the end bending moments 

may represent the bending moments generated by the connection eccentricities and the 

tension in the member. 

 

Figure 58 - Beam in tension and bending with concentrated bending moments (Silva, 2013) 

From the general model shown above, five different bending moment distributions were 

studied. The distributions were characterized by the factor Ψ, as depicted in Figure 59. The 

Ψ factor is the ratio of the bending moment intensities of both extremities. 



89 

 

 

Figure 59 – Bending moment distributions for various factor ψ (Epiney, 2015) 

The main objective of both theses was to generate buckling curves representing the overall 

resistance of members subjected to bending and tension. Although, the generation of the 

buckling curves were done slightly differently. Equations (55) and (56) present the method 

used by Silva (2013) to calculate the member λLT and χLT.  

 

𝜆𝐿𝑇 = √
𝑀𝑝𝑙,𝑅𝑘

𝑀𝑐𝑟
 (55) 

 

 
𝜒𝐿𝑇 =

𝑀𝑢

𝑀𝑝𝑙,𝑅𝑘
 (56) 

where Mpl,rk is the cross-section plastic capacity under pure major-axis bending, Mu the 

ultimate member capacity calculated using 3D shell elements models and Mcr the critical 

bending moment capacity. Silva (2013) developed analytical equations to calculate the 

critical bending moments under tension forces that were virtually exact. Although, it can be 

observed, from the equations above, that the tension forces were omitted in the calculations 

of the plastic bending moments Mpl.Rk. Because of that, this formulation cannot be applied to 

general loading cases as the plastic cross-section resistance Mpl,Rk is calculated for pure 

bending only. Because the work of Silva (2013) was focused on members where instabilities 

usually governed the overall resistance of the members, this formulation did not interfere in 

large extent with the validity of the results. Although, it limited his study solely on the 

instability portion of the resistance curve. Therefore, the plastic cross-section resistance had 

little to no influence on the results, hence the λLT and χLT notation. 
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The second thesis, elaborated by Epiney (2015), used the same general model except that the 

bending moments were applied using transversal loads, as shown in Figure 60. The vertically 

distributed loads are constant along the length of the members. In total, five load cases were 

studied, each having some particularities. Load cases 1 to 3 are almost identical, except that 

the uniform loading is applied at various position along the cross-section height. For load 

case 1 to 3, the uniform load is applied respectively at the top, at the middle and at the bottom 

of the cross-section. The load application position has a direct influence on the member 

stability, thus the global resistance of the member. Loads applied higher than the cross-

section center of gravity favors the lateral torsional buckling of the member. Loads applied 

lower than the center of gravity generally helps the stability of the member. Those cases are 

aimed at evaluating the beneficial or detrimental effect of the load application point on the 

ultimate and critical resistance. For load cases 4 and 5, additional concentrated bending 

moments are applied to the members ends. Also, for load case 4, the uniform load is applied 

at the top of the cross-section and for load case 5, at the middle. 

 

Figure 60 - Bending moment distributions for various load cases (Epiney, 2015) 

Epiney (2015) generalized the formulation used to calculate the ultimate resistance of 

members under bending and tension. By adapting the equations presented above according 

to the O.I.C. concept, cases with low slenderness, characterized by the pure cross-section 

resistance, may be covered. The new formulation could treat the ultimate resistance of the 

member due to instabilities and the ultimate resistance of the member governed by the cross-
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section capacities by considering the axial and bending loads effects on the member plastic 

capacities. By doing so, the formulation, as shown in equations (57) and (58), was conform 

to the O.I.C. concept. 

 

𝜆𝑀𝐵 = √
𝑀𝑝𝑙,𝑁,𝑅𝑘

𝑀𝑐𝑟
 (57) 

 

 
𝜒𝑀𝐵 =

𝑀𝑢

𝑀𝑝𝑙,𝑁,𝑅𝑘
 (58) 

From the equations above, it can be observed that the axial force is now considered in the 

plastic bending moment Mpl.N,Rk calculations. With this addition, the resistance curves may 

accurately represent the entire response of the member behavior. By calculating the values 

of Mu using 3D finite element models, the effect of the transversal loads on the ultimate 

resistance are directly captured. Therefore, Mu values capture the effect of axial, bending and 

shear loads while Mpl.N,Rk values only capture the effect of axial and bending loads. Although 

improved, equations (57) and (58) remain incomplete because the shear loads are not 

included in plastic capacity calculations and that creates a mismatch in the equation 

parameters. This problem will be addressed, and further details will be given later in this 

chapter. 

As Silva (2013) loading methods generally did not apply extensive shear loads, and that the 

work of Epiney (2015) is readily inline with the O.I.C. concept, the work of this study will 

be based on the thesis of Epiney.  

As mentioned above, the internal bending forces were mainly applied by uniform transverse 

loads. The uniform transverse loads produce flexure and vertical shear internal forces. A 

large quantity of results, in Epiney (2015), were challenging. Figure 61 displays the results 

obtained, for load cases q1 to q5. That figure shows many numerical results below the general 

pattern of the buckling curves (see ellipse). The omission of the shear loads, in the plastic 

capacity analysis of the cross-sections, may be the cause of the discrepancies. 
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Figure 61 – Buckling curves obtained by Epiney (2015) for load cases q1 to q5 

With the problematic described above, this work will study and verify the influence of the 

shear internal force on the buckling curves of members under transversal loads. Using the 

developed Rpl 2.0 tool, the cross-section plastic capacities under combined loads will be 

calculated for members undergoing bending, shear and tension forces. 

Before launching numerous numerical calculations, the details of the parametric study are 

described, and the underlying causes of the results situated below the curve will be explored. 

Also, a new formulation for equations (57) and (58) will be suggested to correct the 

challenging results. Then, the new set of results will be presented and discussed. The results 

will be studied to confirm or deny the effect of the transverse shear on the results. 

5.2 – O.I.C. resistance curve formulation including shear loads 

As mentioned previously, a new formulation is required to calculate the resistance curves of 

members with shear internal forces. As explained in section 1.4, the ultimate resistance of a 

member may be governed by global or local instabilities, ultimate global resistance, or a 

combination of both as shown in equations (57) and (58). Although conform to the O.I.C. 

philosophy, these equations will be generalized to properly consider all internal forces. The 

generality of the O.I.C. formulation easily allows the shear internal force effects to be 

included in the resistance curves formulation as shown in equations (59) and (60). 
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𝜆𝐺 = √
𝑅𝑝𝑙(𝑁,𝑀,𝑉)

𝑅𝑐𝑟(𝑁,𝑀,𝑉)
 (59) 

 

 
𝜒𝐺 =

𝑅𝑢(𝑁,𝑀,𝑉)

𝑅𝑝𝑙(𝑁,𝑀,𝑉)
 (60) 

where Rpl(N,M,V) is the cross-section plastic capacity load multiplier for axial, bending and 

shear loads, Ru(N,M,V)  the global ultimate resistance capacity load multiplier from FE shell 

calculations and Rcr(N,M,V) the critical instability load multiplier. In this context, N represent 

the tension force (Nt), M the major-axis bending (Mz) and V the major-axis shear force (Vy). 

Comparatively to previous formulations, equations (59) and (60) are presented in terms of 

load multipliers instead of specific load resistances or capacities. Therefore, this formulation 

is particularly well suited to treat combined load cases. Although, the tools used to calculate 

each load multipliers must similarly incorporate all types of loads in the load combinations. 

Because no cross-section local instabilities are considered in this study, the λG and χG notation 

will be used, as per Figure 2.  

5.2.1 – Calculation of the critical stability load multipliers (Rcr) 

The critical bending stability load multipliers Rcr were calculated in previous thesis Epiney 

(2015). The tool LTBeamN was used. The LTBeamN tool has the capability of calculating 

the critical member stability factor Rcr for load combinations that include axial and bending 

loads. The bending loads can be applied as transversal loads, as required by this study. Also, 

the tool allows to modify the load application point of the transversal loads, as required by 

cases q1, q3 and q4. Although the values obtained in previous thesis Epiney (2015) are valid, 

they were not in the load multiplier format as required by equation (59). The exported values, 

from LTBeamN, were the critical bending moments Mcr. Therefore, slight adaptations of 

those results have been made to calculate the original overall critical load factors Rcr. Epiney 

(2015) conducted a validation study on the critical bending moments calculated using 

LTBeamN. Therefore, this study will consider the results as verified and valid. Further details 

on this subject can be found in Epiney (2015). 
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5.2.2 – Calculation of the ultimate global resistance load multipliers (Ru) 

The ultimate capacity load multipliers Ru(N,M,V)  have been calculated in previous studies and 

properly incorporated the effect of shear loads. The calculations were performed using the 

finite element analysis FINELg. The ultimate member resistance results, calculated using 

shell elements, are already in the proper load multiplier format Ru. The shell finite elements 

may withstand axial and shear stresses. Therefore, the ultimate load multipliers already 

included the axial, bending and shear loads influence. Although not all simulations provided 

valid results. Some simulations did not converge properly, and some were invalidated by 

some “cable effect” phenomenon. These results were carefully discarded from this study. 

The modeling and analysis details are provided in the thesis of Vincent Epiney and will not 

be detailed furthermore here. 

5.2.3 – Calculation of the cross-section plastic capacity load multipliers (Rpl) 

The plastic capacity load multipliers will be calculated using Rpl 2.0. The cross-section plastic 

capacity calculations, when considering shear loads, are not as straightforward as for member 

under bending and axial loads only. Bending and shear internal forces diagrams, for cases q1 

to q3 are shown in Figure 62. Because the bending and shear internal forces reach their 

maximum at different positions along the member, it is difficulty to determine which internal 

force governs the plastic resistance of the member. For constant transverse loading, the 

maximum bending moment is positioned at the middle of the member and varies, until it 

reaches zero at the member ends, parabolically. Contrarily to the bending distribution, the 

maximum shear internal force is positioned at the member supports. The shear forces vary 

linearly along the member length, reaching a value of zero at the middle of the member. Thus, 

multiple calculation points must be considered to determine the critical cross-section position 

under shear and bending loads. Cross-section plastic capacities were calculated at evenly 

spaced sections along half of the member (from L=0 to L=L/2). The internal forces symmetry 

permitted to verify only half of the member length. With the calculated cross-section plastic 

capacities, the most critical plastic capacity factor Rpl was chosen. 
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Figure 62 – Bending and shear internal forces distribution for a uniform load on a simply supported member (Canadian 

Institute of Steel Construction, 2010) 

Thanks to Rpl 2.0 new possibilities, a complete reprocessing of the numerical simulations was 

carried out. No additional simulations have been performed. Using equations (59) and (60), 

the treatment of the results will be more consistent for cases with transverse loads. The 

following section will describe the numerical simulations of the study. 

5.3 – Description of the numerical simulation properties and geometries 

This section will describe the various studied models. Four cross-sections and two steel 

grades will be studied. Table 14 presents the studied member lengths for each cross-section. 

The steel grades have a Young’s modulus E of 210 000 MPa and yield strengths fy of 355 

and 460 MPa. For each cross-section configurations, five load cases will be studied (q1 to 

q5), as shown in Figure 60. Each of these load cases will be studied for i) varying axial load 

ratios β as described in equation (61) and for varying member lengths. In total, 1920 

numerical simulations have been performed.  
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Table 14 – Studied cross-sections and their respective lengths 

Length [m] IPE 300 IPE 500 HEB 300 HEB 500 

1 x    

2 x x x x 

3.5 x x x x 

5 x x x x 

8 x x x x 

10 x x x x 

15 x x x x 

20 x x x x 

25  x x x 

For each case, the tensile load intensities, were varied according to factor β, as shown in 

equation (61). 

 
𝛽 =

𝑁𝑡

𝑀𝑧
 (61) 

where Nt is the applied tension load and Mz is the applied bending moment. The tension 

loading, for various β values, is function of the applied bending moment. The bending 

moment Mz corresponds to the maximum bending moment at the middle of the member. The 

ratios β are 0, 0.5, 0.75, 1.0, 1.25 and 1.5. The load combinations were generated to obtain 

the same maximum bending moment at the center of the members. Because of the various 

model lengths, the transversal loads applied to the members varied. To attain the given 

bending moment, shorter beams required a higher intensity of the transversal loads compared 

to longer members. Therefore, even tough the same maximum bending moment is reached 

for all members, the load combinations vary. High transversal loads on shorter members will 

generate high shear internal forces near the supports. Contrarily, lower transversal loads on 

longer members will generate less internal shear forces near the supports.  

The resistance results λG and χG are obtained following the general steps below: 

I. Determine the applied bending moment of the member Mz; 
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II. Using Mz, the axial load intensities are defined using equation (61). The axial load is 

constant along the length of the member. The equivalent uniform transversal load q 

required to reach Mz is calculated; 

III. The axial, bending and shear internal forces are calculated at multiple calculations 

points along the member; 

IV. Using the load combinations above, Rcr(N,M,V) and Ru(N,M,V) values are calculated;  

V. Using Rpl 2.0, Rpl(N,M,V) values are calculated at every calculation point and the critical 

value is selected. More details on the calculation of Rpl values will be presented later; 

VI. With Rcr(N,M,V), Ru(N,M,V)  and Rpl(N,M,V), the λG and χG values are calculated. 

The section below will describe the procedure used to determine the proper load multiplier 

Rpl. 

5.3.1 – Cross-section plastic capacities for N + Mz + Vy load cases 

The plastic capacity results calculated using Rpl 2.0 will be compared to results obtained in 

previous works. To properly compare the results, the plastic bending capacities calculated by 

Epiney (2015) will be transformed into load multipliers. The cross-section plastic capacities 

Mpl,N,Rk were obtained by multiplying the input bending moment by the load factor obtained 

in Rpl 1.0. Table 15 to Table 18 presents, for all cross-sections (fy = 355 MPa), the previously-

calculated bending moment capacities and their respective plastic capacity load factors. Then, 

a comparison with the factors obtained with Rpl 2.0 and the original load factors will be 

performed to ensure a coherent continuity of the study. Also, the comparison will indicate 

which models are the most affected by the shear loading. The complete results tables, for all 

lengths and materials, can be found in Annex A. 
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Table 15 – Cross-section plastic capacities of the HEB 300 with fy = 355 MPa 

HEB 300 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.4 5.4 5.4 5.5 

Rpl 2.0 [-] 2.4 2.6 2.7 2.7 2.8 2.9 

ΔRpl [-] -51.5% -51.0% -50.3% -49.6% -48.6% -47.5% 

L = 3.5m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 4.2 4.5 4.6 4.8 4.9 5.0 

ΔRpl [-] -15.1% -14.3% -13.3% -12.1% -10.5% -8.8% 

L = 5m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 0.9% 1.2% 0.9% 0.8% 0.8% 0.6% 

Table 16 - Cross-section plastic capacities of the HEB 500 with fy = 355 MPa 

HEB 500 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 2.1 2.3 2.4 2.5 2.6 2.7 

ΔRpl [-] -59.0% -58.2% -57.2% -55.9% -54.4% -52.7% 

L = 3.5m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 3.6 3.9 4.1 4.3 4.4 4.6 

ΔRpl [-] -28.2% -27.0% -25.4% -23.4% -21.0% -18.4% 

L = 5m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 0.9% 0.9% 0.8% 1.0% 0.8% 0.7% 
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Table 17 - Cross-section plastic capacities of the IPE 300 with fy = 355 MPa 

IPE 300 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 1m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 2.4 2.5 2.6 2.6 2.7 2.8 

ΔRpl [-] -52.6% -52.4% -52.1% -51.7% -51.1% -50.5% 

L = 2m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 4.7 5.0 5.1 5.3 5.4 5.5 

ΔRpl [-] -5.2% -4.8% -4.3% -3.8% -2.9% -1.9% 

L = 3.5m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.1% -0.1% -0.1% -0.2% -0.1% -0.1% 

Table 18 - Cross-section plastic capacities of the IPE 500 with fy = 355 MPa 

IPE 500 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 3.3 3.6 3.7 3.9 4.0 4.1 

ΔRpl [-] -34.9% -34.1% -33.2% -31.9% -30.5% -28.9% 

L = 3.5m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 

L = 5m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 
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Table 15 to Table 18 show major differences in cross-section plastic capacities when shear 

is considered. The shear loads influence on the plastic capacity results is particularly 

noticeable for shorter spans. For spans of 2 meters, the maximum variation, from the original 

results, is a decrease of approximately 59 % for the HEB 500.  The minimum variation 

corresponds to a decrease of 28.9 % for the IPE 500. These results clearly indicate that for 

shorter spans, shear loads near the supports govern the plastic resistance of the members. A 

similar tendency of overestimating the cross-section plastic capacities is observed for spans 

of 3.5 meters, although less pronounced. Table 15 to Table 18 also show that, for higher β 

values, the plastic capacity variations reduce slightly. 

For longer spans, the member plastic capacity is still governed by bending and axial internal 

forces, thus the similarity in the plastic capacities results. Therefore, for cases with longer 

spans, λG and χG values are not expected to change. 

From equations (59) and (60), hypothesis may be drawn to explain the imprecise results 

shown in Figure 61. A basic observation is that data points have either a slenderness λG or a 

calculated value χG that is much smaller than their true values. Because the plastic capacity 

multiplier Rpl is present in both equations, this factor will influence both λG and χG. In 

equation (59), for the slenderness of the member to increase, the plastic capacity factor must 

increase. In equation (60), for the variable χG to increase, the plastic capacity must decrease. 

By incorporating the shear effect on the plastic capacity calculations of cross-sections, the 

plastic load multiplier is expected to decrease, thus decreasing the slenderness λG and 

increasing χG. Because the load multiplier Rpl is under a square root in equation (59), a 

reduction of Rpl will induce, simultaneously, a slight decrease in the slenderness but an 

increase of χG. 

Using the calculated plastic capacity multipliers, the next section will show the obtained 

resistance curves calculated using equation (59) and (60).  
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5.4 – Analysis of λG and χG results and discussion 

This section analyzes the λG and χG results obtained using the modified plastic capacity 

multipliers. To see the great improvement of the results, Figure 63 may be compared to the 

initial results shown in Figure 64. Most of the results under the EC3 curve, as seen in Figure 

64, are now directly positioned on the general trend of the resistance curve. The results under 

the curve, obtained in Epiney (2015), were indeed caused by the omission of the shear loads 

in the plastic capacity calculations of the cross-sections. To support that fact, Figure 63 shows 

that the numerical simulations, for high slenderness members, were generally unaffected by 

the new formulation. Even though that the resistance results now follow the same general 

trend, multiple buckling curves may be required to properly characterize the member 

response for low slenderness λG values. Detailed figures for the individual cases q1 to q5 will 

be shown later. 
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Figure 63 – Results for load cases q1 to q5 considering the shear effects 

 

Figure 64- Initial results for load cases q1 to q5 
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To simplify the analysis of the results, Figure 65 displays the resistance curve results obtained 

for a specific case. The figure presents the results for the IPE cross-sections for load case q1 

and (β = 0.5). That figure also contains the results obtained in Epiney (2015). The data points 

that have been affected the most are highlighted on the figure and are detailed in Table 19. 

 

Figure 65 – Resistance curve results comparison for load case q1 - IPE 

Figure 65 clearly shows that high slenderness members are practically not affected by the 

shear loads as the results are nearly identical. However, the new formulation of this study 

corrected the results of low slenderness members. The results for low slenderness members 

are now following the general trend of the resistance curve. Table 19 compares the results 

obtained considering axial and bending forces (N+M) and results obtained considering axial, 

bending and shear forces (N+M+V). 
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Table 19 - Comparison of previous and new data points obtained for load case q1 - IPE 

Section 
L 

[m] 

fy  

[MPa] 

λN+M 

[-] 

χN+M 

[-] 

λN+M+V 

[-] 

χN+M+V 

[-] 

ΔRpl 

[%] 

Δλ 

[%] 

Δχ 

[%] 

IPE 300 1 355 0.396 0.627 0.274 1.317 -52.36 -30.81 110.05 

IPE 300 1 460 0.451 0.571 0.311 1.198 -52.34 -31.04 109.81 

IPE 300 2 355 0.749 0.849 0.731 0.893 -4.84 -2.40 5.18 

IPE 300 2 460 0.853 0.789 0.832 0.829 -4.79 -2.46 5.07 

IPE 500 2 355 0.587 0.784 0.477 1.190 -34.09 -18.74 51.79 

IPE 500 2 460 0.668 0.716 0.543 1.087 -34.07 -18.71 51.82 

By considering the shear forces on the plastic capacity of the cross-sections, the slenderness 

λG has decreased by as much as 30.8% for the IPE 300 members of length of 1 meter. The χG 

parameter, that relates the member cross-section plastic capacities to the ultimate resistance 

of the beam, has drastically increased by 110%. The slenderness reduction is due to a 

decrease in member plastic capacity. This indicates that, for stocky members, the overall 

resistance is governed by the fully plastic region of the buckling curve.  

Although the results have been detailed for specific cases, this behavior may be observed for 

all other results. Figure 66 to Figure 75 present the charts obtained in this study and their 

respective comparative charts of previous results. These figures present the entirety of the 

numerical simulations obtained for cases q1 to q5. 
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Figure 66 - Resistance curve results for all q1 load cases 

 

Figure 67 - Resistance curve results for all q1 load cases obtained by Epiney (2015) 
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Figure 68- Resistance curve results for all q2 load cases 

 

 

Figure 69 - Resistance curve results for all q2 load cases obtained by Epiney (2015) 
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Figure 70- Resistance curve results for all q3 load cases 

 

Figure 71 - Resistance curve results for all q3 load cases obtained by Epiney (2015) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

χ
[-

]

λ [-]

Load case q3



108 

 

 

Figure 72 - Resistance curve results for all q4 load cases 

 

 

Figure 73 - Resistance curve results for all q3 load cases obtained by Epiney (2015) 
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Figure 74 - Resistance curve results for all q5 load cases 

 

Figure 75 - Resistance curve results for all q5 load cases obtained by Epiney (2015) 
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This study demonstrated that the plastic resistance of short members is highly influenced by 

the shear forces near the supports. Multiple numerical tests have confirmed that using 

reduced bending moment plastic capacities values for short members is not valid. To 

demonstrate the influence of shear, members of various lengths have been studied. The 

ultimate resistance behavior of a member largely depends on its length. For short members, 

the ultimate failure behavior is characterized by the exhaustion of the member plastic 

capacities. Therefore, for stocky members, using a reduced plastic bending moment, 

including axial loads only, is not coherent with the failure pattern. To correct this problem, 

the plastic capacity multiplier, including the axial and shear loads was used. Low slenderness 

members are generally shorter members with a very high critical stability factor Rcr. Short 

members are not prone to lateral torsional buckling, thus having a higher critical stability 

factor than slender members. These low slenderness members were the ones with the 

challenging results, as the effect of shear becomes non-negligible. The high transversal load 

intensities, for short members, produced high shear forces near the supports. The plastic 

capacities of the cross-sections, for those cases, were governed by the shear forces. The 

plastic capacities calculated in this study, for stocky members, were much lower than 

previously calculated. The lower plastic capacities decreased the slenderness λG and greatly 

increased the χG values. 
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Conclusion 

The first objective was to develop a general numerical tool to calculate the plastic capacity 

of cross-sections for the O.I.C. methodology. The developed numerical tool has the ability to 

calculate the plastic capacity of cross-sections under axial loads, bi-axial bending moments 

and shear loads.  

The usability of the initial version of Rpl was limited. The numerical tool produced valid 

plastic capacity results for doubly-symmetric cross-sections. Although, after performing 

numerical tests, the program was shown to be inaccurate for mono-symmetric cross-sections. 

Also, the shear stresses were not yet included in the program. Following the objective to have 

a general numerical tool for the O.I.C. method, the initial version of Rpl was not sufficient 

and a more robust and advanced algorithm was required. 

A new version of Rpl was developed according to the cross-section tangent stiffness method. 

This method discretizes the cross-section into fibers and requires a non-linear convergence 

algorithm, such as a Newton-Raphson approach. The fiber method has multiple advantages 

such as considering any type of cross-section geometries and accepting custom material laws. 

In the most general case, each fiber may follow a different material stress-strain law. In the 

cross-section tangent stiffness method reference articles, only the axial loading and bi-axial 

bending moments were considered and implemented. The shear stresses were not included 

in the method. As stated before, the program to be developed required the inclusion of shear 

stresses. The implementation of the shear stresses into the cross-section tangent stiffness 

method was done using the general shear stress theory and using the von Mises criterion. 

With the inclusion of the shear stresses, the numerical tool satisfied the first objective of this 

work. 

Before using the newly developped Rpl tool, validation tests were required to ensure the 

accuracy of the calculated plastic capacities. To validate the results, shell models in 

ABAQUS were used. The accurary of the ABAQUS shell models were validated with mesh 

density studies and comparisons to theorical values. Mesh density studies were also 

performed for Rpl 2.0. Then, comparisons between Rpl 2.0 and ABAQUS were performed for 

simple load cases. Also, Rpl 2.0 results were compared to theorical values. The results 

comparison was conclusive as Rpl 2.0 results, for simple load cases, were accurate. 
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Following the objective of having a general numerical tool, Rpl 2.0 had to be tested for 

combined load cases. The validation tests were performed using interaction curves for 

various load combinations. Interaction curves obtained with Rpl were compared to interaction 

curves calculated using ABAQUS. Yet again, the results were satisfactory and the Rpl program 

was ready to be used for the second objective of this work. 

The second objective of this work was to study the effect of shear stresses on the buckling 

curves obtained by (Epiney, 2015). Using the O.I.C. approach to generate the buckling curves 

of beams in tension and bending, some results did not follow the general buckling curve trend 

and seemed inaccurate. The transversal loads, used to generate the bending moments, develop 

shear forces along the beam. The effects of those shear forces on the plastic capacities 

calculations were not considered due to a lack of numerical tools.  

The initial Rpl tool used was inaccurate for short beams as it did not consider the shear loads. 

Using the developed numerical tool, the plastic capacity of cross-sections included the effects 

of the shear forces and buckling curves were calculated using the new plastic capacity results. 

The buckling curves for the various models and load cases were processed using the O.I.C. 

method and the newly developped Rpl 2.0 tool. Initially, the buckling curves were generated 

by omitting the effects of shear on the plastic capacity of cross-sections. For short members, 

where the failure is mostly governed by the cross-section ultimate capacity, the consideration 

of shear forces proved to be crucial. The inaccurate results were indeed caused by the 

omission of shear stresses when calculating the slenderness λG and χG. The buckling curves 

are now much smoother and consistent. 

Although Rpl answered the problem of the plastic capacity of a cross-section with shear 

stresses, other development and improvements could be added. Other cross-section 

geometries could be added to the Rpl program. Mono-symmetric C-shape cross-sections could 

be of general interest. Furthermore, sections with no axis of symmetry, such as L-shape cross-

sections, could also be of interest. Although, work must be done to consider the shear stresses 

in those type of sections. Also, additional internal forces could be considered such as torsion 

and warping. Torsion effects are particularly important for open cross-sections. As Rpl uses 

a fiber approach, each fiber may have a different material and material stress-strain law. The 

method would therefore be suitable to calculate the plastic capacity of concrete cross-sections 
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or composite cross-sections including concrete and steel. Some fibers would follow the 

material stress-strain law of steel and some of concrete.  
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Annexe A 

Table 20 – Cross-section plastic capacities of the HEB 300 with fy = 355 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 2.4 2.6 2.7 2.7 2.8 2.9 

ΔRpl [-] -51.5% -51.0% -50.4% -49.6% -48.6% -47.5% 

L = 3.5m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 4.2 4.5 4.6 4.8 4.9 5.0 

ΔRpl [-] -15.1% -14.3% -13.3% -12.1% -10.5% -8.8% 

L = 5m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 0.9% 1.2% 0.9% 0.8% 0.8% 0.6% 

L = 8m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.1% 0.9% 0.9% 0.8% 0.7% 

L = 10m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.1% 0.9% 0.9% 0.8% 0.7% 

L = 15m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.2% 0.9% 0.9% 0.8% 0.7% 

L = 20m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 
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ΔRpl [-] 1.0% 1.1% 0.9% 0.9% 0.8% 0.7% 

L = 25m 

Mpl [kN-m] 663.6 656.8 648.5 637.8 624.6 610.9 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.1% 0.9% 0.9% 0.8% 0.7% 

 

Table 21 - Cross-section plastic capacities of the HEB 300 with fy = 460 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 2.4 2.6 2.7 2.7 2.8 2.9 

ΔRpl [-] -51.5% -51.0% -50.4% -49.6% -48.6% -47.4% 

L = 3.5m 

Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 4.2 4.5 4.6 4.8 4.9 5.0 

ΔRpl [-] -15.1% -14.3% -13.4% -12.1% -10.5% -8.7% 

L = 5m 

Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 0.9% 1.1% 0.8% 0.8% 0.8% 0.8% 

L = 8m 

Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 0.9% 1.1% 0.8% 0.9% 0.8% 0.8% 

L = 10m 

Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.2% 0.8% 0.9% 0.8% 0.8% 

L = 15m 
Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 
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Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.2% 0.8% 0.9% 0.8% 0.8% 

L = 20m 

Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.2% 0.8% 0.9% 0.8% 0.8% 

L = 25m 

Mpl [kN-m] 859.9 851.1 840.8 826.4 809.4 790.4 

Rpl [-] 5.0 5.3 5.3 5.4 5.4 5.5 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.5 

ΔRpl [-] 1.0% 1.1% 0.8% 0.9% 0.8% 0.8% 

 

Table 22 - Cross-section plastic capacities of the HEB 500 with fy = 355 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 2.1 2.3 2.4 2.5 2.6 2.7 

ΔRpl [-] -59.0% -58.2% -57.2% -55.9% -54.4% -52.7% 

L = 3.5m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 3.6 3.9 4.1 4.3 4.4 4.6 

ΔRpl [-] -28.2% -27.0% -25.4% -23.4% -21.0% -18.4% 

L = 5m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 0.9% 0.9% 0.8% 1.0% 0.8% 0.7% 

L = 8m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 0.9% 0.9% 1.0% 0.8% 0.8% 

L = 10m Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 
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Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 0.9% 0.9% 1.1% 0.8% 0.8% 

L = 15m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 1.0% 0.9% 1.0% 0.8% 0.8% 

L = 20m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 1.0% 0.9% 1.0% 0.8% 0.8% 

L = 25m 

Mpl [kN-m] 1709.4 1676.7 1636.2 1587.1 1531.4 1472.1 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 1.0% 0.9% 1.0% 0.8% 0.8% 

 

Table 23 - Cross-section plastic capacities of the HEB 500 with fy = 460 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 2.1 2.2 2.4 2.5 2.6 2.7 

ΔRpl [-] -59.0% -58.5% -57.2% -55.9% -54.4% -52.7% 

L = 3.5m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 3.6 3.9 4.1 4.3 4.4 4.6 

ΔRpl [-] -28.2% -27.0% -25.4% -23.4% -21.0% -18.4% 

L = 5m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 0.9% 0.9% 0.8% 0.9% 0.8% 0.7% 
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L = 8m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 1.0% 0.9% 1.2% 0.8% 0.8% 

L = 10m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 0.9% 0.9% 1.1% 0.8% 0.8% 

L = 15m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 1.0% 0.9% 1.0% 0.8% 0.8% 

L = 20m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 0.9% 0.9% 1.0% 0.8% 0.8% 

L = 25m 

Mpl [kN-m] 2215.0 2172.6 2120.1 2056.5 1984.3 1907.5 

Rpl [-] 5.0 5.4 5.5 5.6 5.6 5.6 

Rpl 2.0 [-] 5.1 5.5 5.6 5.6 5.7 5.7 

ΔRpl [-] 1.0% 0.9% 0.9% 1.0% 0.8% 0.8% 

 

Table 24 - Cross-section plastic capacities of the IPE 300 with fy = 355 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 1m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 2.4 2.5 2.6 2.6 2.7 2.8 

ΔRpl [-] -52.6% -52.4% -52.1% -51.7% -51.1% -50.5% 

L = 2m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 4.7 5.0 5.1 5.3 5.4 5.5 
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ΔRpl [-] -5.2% -4.8% -4.3% -3.8% -2.9% -1.9% 

L = 3.5m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.1% -0.1% -0.1% -0.2% -0.1% -0.1% 

L = 5m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.1% -0.1% -0.1% -0.2% -0.1% -0.1% 

L = 8m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.1% -0.1% -0.1% -0.2% -0.1% -0.1% 

L = 10m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.1% -0.1% -0.1% -0.2% -0.1% -0.1% 

L = 15m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.1% -0.1% -0.1% -0.2% -0.1% -0.1% 

L = 20m 

Mpl [kN-m] 223.1 221.9 220.4 218.5 215.9 213.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.1% -0.1% -0.1% -0.2% -0.1% -0.1% 

 

Table 25 - Cross-section plastic capacities of the IPE 300 with fy = 460 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 1m 
Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 
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Rpl 2.0 [-] 2.4 2.5 2.6 2.6 2.7 2.8 

ΔRpl [-] -52.6% -52.3% -52.1% -51.6% -51.1% -50.5% 

L = 2m 

Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 4.7 5.0 5.1 5.3 5.4 5.5 

ΔRpl [-] -5.2% -4.8% -4.5% -3.7% -2.9% -1.9% 

L = 3.5m 

Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.2% -0.2% -0.3% -0.2% -0.2% -0.2% 

L = 5m 

Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.2% -0.2% -0.3% -0.2% -0.2% -0.2% 

L = 8m 

Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.2% -0.2% -0.3% -0.2% -0.2% -0.2% 

L = 10m 

Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.2% -0.2% -0.3% -0.2% -0.2% -0.2% 

L = 15m 

Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.2% -0.2% -0.3% -0.2% -0.2% -0.2% 

L = 20m 

Mpl [kN-m] 289.1 287.5 286.0 283.0 279.7 276.0 

Rpl [-] 5.0 5.3 5.4 5.5 5.5 5.6 

Rpl 2.0 [-] 5.0 5.3 5.4 5.5 5.5 5.6 

ΔRpl [-] -0.2% -0.2% -0.3% -0.2% -0.2% -0.2% 
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Table 26 - Cross-section plastic capacities of the IPE 500 with fy = 355 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 3.3 3.6 3.7 3.9 4.0 4.1 

ΔRpl [-] -34.9% -34.1% -33.2% -31.9% -30.5% -28.9% 

L = 3.5m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 

L = 5m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 

L = 8m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 

L = 10m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 

L = 15m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 

L = 20m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 
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L = 25m 

Mpl [kN-m] 779.0 768.9 756.7 740.9 722.6 703.1 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.2% -0.1% -0.1% -0.2% -0.3% 

Table 27 - Cross-section plastic capacities of the IPE 500 with fy = 460 MPa 

 β = 0 β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5 

L = 2m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 3.3 3.6 3.7 3.9 4.0 4.1 

ΔRpl [-] -34.9% -34.1% -33.2% -31.9% -30.5% -28.9% 

L = 3.5m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.1% -0.1% -0.1% -0.2% -0.3% 

L = 5m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.1% -0.1% -0.1% -0.2% -0.3% 

L = 8m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.1% -0.1% -0.1% -0.2% -0.3% 

L = 10m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.1% -0.1% -0.1% -0.2% -0.3% 

L = 15m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.1% -0.1% -0.1% -0.2% -0.3% 
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L = 20m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.1% -0.1% -0.1% -0.2% -0.3% 

L = 25m 

Mpl [kN-m] 1009.4 996.2 980.5 960.1 936.3 910.9 

Rpl [-] 5.0 5.4 5.5 5.7 5.7 5.8 

Rpl 2.0 [-] 5.0 5.4 5.5 5.7 5.7 5.8 

ΔRpl [-] -0.1% -0.1% -0.1% -0.1% -0.2% -0.3% 

 


