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Abstract—Multiplayer online battle arena games (MOBAs)
are one of the most popular types of online games. Annual
tournaments draw large online viewership and reward the
winning teams with large monetary prizes. Character selection
prior to the start of the game (draft) plays a major role in the
way the game is played and can give a large advantage to either
team. Hence, professional teams try to maximize their winning
chances by selecting the optimal team composition to counter
their opponents. However, drafting is a complex process that
requires deep game knowledge and preparation, which makes it
stressful and error-prone. In this paper, we present an automatic
drafter system based on the suggestions of a discriminative neural
network and evaluate how it performs on the MOBAs Heroes of
the Storm and DOTA 2. We propose a method to appropriately
exploit very heterogeneous datasets that aggregates data from
various versions of the games. Drafter testing on professional
games shows that the actual selected hero was present in the
top 3 determined by our drafting tool 30.4% of the time for
HotS and 17.6% for DOTA 2. The performance obtained by this
method exceed all previously reported results.

Keywords — MOBA, esports, Heroes of the Storm, DOTA
2, Neural Network

I. INTRODUCTION

Multiplayer Online Battle Arena (MOBA) is an increas-
ingly popular type of video game in which teams of 5 players
face off on a virtual battleground. Each player controls a
unique hero, selected before the start of the game. Players must
cooperate with their team to take out the enemy by destroying
a core structure located deep in enemy territory. The major
MOBA games include titans like DOTA 2 (Valve Corporation)
and League of Legends (Riot Games), which gather millions of
players and viewers online [1]. Smaller MOBAs like Heroes of
the Storm (Blizzard Entertainment) also attract a large number
of players and nurture a thriving professional scene with more
than 5 million dollars annually awarded in prize money for
competing in online and offline tournaments in 2017 and
2018 [2]. Also, these games are increasingly being studied by
researchers because they offer a wealth of data on important
topics such as the player experience and toxic online behaviors
[3].

The competitive mode of all of these games share a similar
characteristic: prior to the start of the game, heroes are selected
alternatingly by each team until each team is complete. This
is known as the draft phase. Table I shows the drafting order
for both teams. Each hero has strengths and weaknesses that
make it unique. Therefore, optimal hero selection aims for
synergistic relationships with other heroes on the team and
to counter/mitigate the strengths of the opponent. In addition,
the selection of an effective team of heroes is influenced by a

relatively strict metagame. For example, the absence of heroes
classified as support or tank can seriously handicap a team’s
chances to win the game. Therefore, the draft phase of a game
is crucial because it can give a major advantage to one of the
two teams.

However, it is a very complex task because of the large
number of heroes available (> 80 for Heroes of the Storm and
> 100 for DOTA and League of Legends). At a time where
MOBA tournament stakes can reach millions of dollars, pro-
fessional teams look for any advantages they can get in drafts
against their opponents. Hours of manual draft preparation can
be made before an important match, and teams are increasingly
turning to professional coaches to assist them. Team Gen. G.,
2018 World Heroes of the Storm champion, attributed much
of its success to entrusting the draft phase to a retired player
turned coach [4]. In order to make reliable and consistent
drafting for their team, coaches are looking for data-driven
tools that go beyond first-order statistics like heroes win rate.

To complicate things further, MOBAs are constantly evolv-
ing games, as developers roll out regular balance patches
updating hero skills, tweaking hero characteristics to address
potential imbalances and introducing new heroes. Heroes can
see dramatic rise or fall in popularity following a balance
patch, sometimes because a stronger replacement was intro-
duced or because its strengths and weaknesses shifted. This
makes it hard for an automated system to train on data from
multiple patches, because a good recommendation for patch
N−1 might be a bad one in patch N . This shifting metagame
was identified as an obstacle for combining data from different
patches by Summerville et al. [5]. In HotS, another layer
of complexity is added to the drafting phase due to the 9
distinct battlegrounds that are available in competitive play.
Each battleground features a unique map layout and a special
objective that requires coordination and teamwork to capture
for a large advantage. Drafting priorities change depending on
which battleground the game takes place on, because different
skills are needed to prevail on the objective. For example,
high mobility heroes that can move quickly across maps like
Falstad or Dehaka are regularly drafted in larger battlegrounds
like Cursed Hollow, but are rarely seen on smaller ones like
Battlefield of Eternity.

This paper will focus on predicting hero selection in
professional games of Heroes of the Storm (HotS) and DOTA
2. We propose a single model aggregating data from different
patches and different maps in order to increase the sample size
for hero selection prediction.

• We introduce discriminative networks as an alternative
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approach for optimal drafting. Exploitation of this model
does not require expensive search strategies like MCTS
and discriminator score can be used as an estimator of
draft quality.

• We introduce a method to integrate patch and map
information into a single model, allowing the use of
heterogeneous datasets for training.

• We report state-of-the-art results on the problem of pre-
dicting the next pick in professional matches in 2 major
MOBAs.

II. RELATED WORKS

Previous works have studied the drafting phase in DOTA
and League of Legends in terms of determining the winner
of amateur matches after the drafting phase using machine-
learning models, using the selected heroes as input [6]–[10].No
previous work has studied drafting in HotS, partly because it is
a newer game. Once trained, the usefulness of those models is
to make optimal draft choices based on this win rate estimator.

The possibility of predicting the winner from draft and us-
ing this model for drafting was first introduced by Conley et al.
[6]. Next, the influence of hero choice and player experience
was studied by Pobiedina et al. [8]. Classifier choice is usually
crucial in any machine-learning application, and Semenov et
al. [7] explore the importance of this when predicting the
winner of DOTA 2 games. Since model performance is so
dependent upon hyperparameters tuning, Porokhnenko et al.
tune multiple classifiers with different hyperparameters applied
to win rate prediction. Also, Wang et al. [10] introduce a new
representation for each hero based on overall in-game statistics
to inform the model on crucial features such as average
gold earnings. Making these optimal choices using win rate
prediction models require exploration of the possibility tree
from a partially completed draft, which is realized by Chen
et al. [11] using Monte-Carlo Tree Search (MCTS). Finally,
machine-learning models can be trained to imitate experts
[5], who are assumed to follow optimal drafting strategy. In
the latter work, recurrent neural networks with memory units
(LSTMs) were used to predict the next hero selected based on
the previous heroes selected in professional DOTA 2 matches.

Reinforcement learning is a very successful approach to
general game-playing and has been applied to the game of Go
and DOTA 2 to create agents such as AlphaGo [12] and Open
AI 5 [13] that surpassed human performance in their respective
game. The key to successful reinforcement learning is to obtain
a reliable evaluation function, which is hard to obtain for
drafts without playing out the games and requires professional
level game-playing agents on accelerated hardware. Open AI 5
actually devised a drafting scheme where the agents’ expected
win rate at the start of the game was evaluated for all possible
drafts (with a restricted hero pool of 18 heroes) and a tree-
search algorithm was used to optimally select from those. This
"brute-force" method would not scale well to the full hero
pool and heavily relies on the availability of professional level
game-playing agents. Also, they report no formal comparison
with professional drafting. Because of the resources required

and limitations associated with reinforcement learning, we turn
our attention to predicting picks in professional MOBAs play
using a different approach.

Similarly to Summerville et al. [5], our work is based on
a dataset of professional MOBA matches. However, instead of
directly trying to predict the next pick with LSTMs as they
suggested, we propose to learn a divergence measure for the
manifold on which professional drafts lie or are close to using
discriminative neural networks. We then approach drafting as
minimizing the divergence to this manifold at all points during
the draft.

The intuition behind this approach is that a discrimina-
tive network provides us with an explicit quality metric for
drafts: bad drafts will have bad discriminative scores, whereas
predicting the next pick gives no information about the state
of the draft. Moreover, a discriminative model provides not
only a ranking of possible choices, but also the magnitude of
change in discriminator score associated with these. Another
advantage of our method is that this model enforces the
commutativity property of the drafting phase, while the LSTM
method is sensitive to the order in which previous heroes have
been drafted.

III. METHODOLOGY

A. Datasets

The dataset used to train the network comes from the
masterleague.net website which hosts all the replays files of
HotS professional games since the beginning of the official
Heroes Global Championship (HGC) organized by Blizzard.
As of December 2018, it contains 7630 games starting in
March 2016 for 110 074 examples of hero picks and bans. The
web site provides an API, available under a creative commons
license (CC BY-NC-SA 4.0). The following data was extracted
via the API: the ordered picked and banned heroes, the patch
number and the map on which the game was played. The
dataset is composed of these features about every available
game in the database. Notably, this dataset ranges across
54 different balance patches and more than 30 new heroes
were introduced in this period, in addition to more than 50
significant changes to some heroes’ core mechanics. Drafting
rules were also modified during this period, as a third ban was
introduced in the first ban phase in June 2018. The draft data
is arranged in DraftStates (Xt) which are vectors twice the
length of the hero pool (82 playable heroes). The index of
the DraftStates denotes the number of non-zero elements. The
first half of the vector represents the heroes picked and banned
for team A, while other half is for team B. The DraftStates
are set to 0 at the start of the draft. Selecting a hero for a
team will set the vector element associated with that hero on
that team’s half at 1, or at -1 for a ban. The DraftStates are
built incrementally, following the order presented in table I:
for each game in the database, there are 14 or 16 DraftStates
associated (depending on the number of bans). For instance,
for each game there will be the empty DraftStates (X0), one
where the first ban for team A is set to -1 (X1), then another
where the bans for both teams are set to -1 (X2). The draft

masterleague.net
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Ban Ban Ban Ban Pick Pick Pick Pick Pick Ban Ban Pick Pick Pick Pick Pick
Team A X X X X X X X X
Team B X X X X X X X X

TABLE I
DRAFTING ORDER IN A HOTS GAME.

goes on, following the selection rules, until the end of the
draft where 10 elements of this vector are set to 1 and 4 or
6 elements are set to -1 depending on the patch number (for
each hero selected and banned by both teams). Patch and map
information are stored for each DraftStates in separate one-
hot encoded vectors. The dataset is partitioned in training and
testing set, with 5% of the games uniformly sampled and held
out for testing.

The method is further tested on an additional DOTA 2
dataset provided by the administrator of the website datdota.
com. This dataset is made of 10250 games drafted in pro-
fessional events between December 2016 and January 2019.
This dataset ranges from patch 7.0 to 7.20. DOTA 2 features
a single map, so this feature is not needed here. The drafts
are encoded in the same way as the HotS dataset, but the
input vector is longer to account for the greater number of
available characters. Also, complete drafts in DOTA 2 have
more elements than in HotS, with 6 bans per team instead of
3, for a total of 22 steps in the draft instead of 16.

Another similar DOTA 2 dataset focused only on a single
patch is also used in this work and is the same as the one used
by Summerville et al [5]. It consists of 1518 DOTA 2 matches
gathered during patch 6.85 and enables direct comparison of
results between the methodologies.

B. Discrete generative adversarial network

The datasets described above provide the discriminator
plenty of positive examples of professional drafts, but the
negative examples need to be generated. We focus on the
generation of negative examples that lie near the distribution of
professional drafts in order to provide meaningful examples.
Generative adversarial networks (GANs, first introduced by
Goodfellow et al [14]) seem like a good candidate for this task.
In particular, conditional GANs [15] are of interest, because
they are conditioned with an input instead of random noise.
Conditional GANs have had big impacts, especially in the
image translation field with the Pix2Pix network [16]. In this
paradigm, a generator network is trained to select one of the
discrete choices for a given Xt associated with a map and
a patch. On the other hand, a discriminator network tries
to distinguish the real drafts from the generated draft. The
generated examples are of the form Xt+1 and denoted Xt+1

g .
Negative examples are created by the generator sampling
one of the possibles choices for a given Xt in the training
dataset, excluding the real Xt+1 for this example (even though
multiple identical Xt can have a different Xt+1). The real
Xt+1 is excluded from the generator output to avoid a situation
where the discriminator is faced with two contradictory ex-
amples. The discriminator output is a single sigmoid-activated
value representing classification between generated examples

(Xt+1
g ) and true examples (Xt+1). A particularity of the

GAN training presented here is the limited number of discrete
choices available for the generator. Even with the exclusion of
the real Xt+1, it could be impossible to distinguish between
real and generated examples, which can lead to pathological
GAN behavior. In order to verify this intuition, another version
of the discriminator network is also trained with random
sampling of the possible choices at Xt to create negative
examples without using the generator network.

C. Architecture

Our implementation of the generator and the discriminator
is coded using the Tensorflow library [17]. The networks
are multilayer perceptrons with 3 hidden layers. The num-
ber of neurons per layer is {1024, 512, 128} respectively.
Both networks receive an input composed of the three input
vectors described previously: Xt, maps and patches. The
input vectors are concatenated into a single vector and fed
to the neural network. Generator output is the same input
Xt, with an additional pick or ban (one element set to 1
or -1). Because discrete operations block gradients’ flow, the
generator’s output layer uses a relaxed one-hot categorical
distribution, which is a continuous approximation to a one-hot
categorical encoding, also called Gumbel-Softmax [18] . With
a low enough temperature, samples from the Gumbel-Softmax
distribution become one-hot but still support gradients’ flow.
This distribution is commonly used when creating discrete
GANs [19]. Drafting logic is coded into the generator graph
as run-time Tensorflow logical operations to prevent invalid
choices like: picking an already picked or banned hero, picking
a hero for the wrong team or banning at the wrong time.
Training is stabilized using various common tricks, a good
compilation of which is presented by Chintala et al [20]. We
use different mini-batches for real and generated data when
training the discriminator and leaky ReLU is the activation
function for hidden layers to avoid sparse gradients. The
ADAM optimizer is used for training with default parame-
ters [21] and labels are soft and defined as 0.05 for real drafts
and 0.95 for generated drafts. All weights are L1-regularized
to avoid exploding gradients and heavy dropout (40% dropped
neurons) is used. The discriminative network is trained for
2 × 108 iterations with a learning rate of 1 × 10−4 and
mini-batch size of 100. Different mini-batches are used for
real and generated data, as is recommended for GANs. This
also balances the training, with the same number of positive
and negative examples presented to the discriminator. Binary
cross-entropy loss function is used for both generator and
discriminator. The depth of the network was optimized by
evaluating the discriminator’s performance on random valid
end-point drafts for 2, 3 and 4 layers respectively. Random

datdota.com
datdota.com
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valid end-point drafts refer to finished drafts where drafting
rules are followed. Thus, 5 heroes are selected on both sides,
the proper amount of heroes have been banned and no hero is
chosen or banned more than once. Degradation of the accuracy
on random valid end-point drafts was observed for 2 layers,
while it remained similar between 3 and 4 layers. As such, the
shallower model was preferred. When applied to the DOTA 2
dataset, the same network and the same parameters are re-used
without tuning, except for the number of iterations that was
increased to 6× 108 to reach convergence.

D. Model evaluation

Once the discriminator is trained, drafting can be ap-
proached as picking the hero that minimizes the discriminator
output. Since the number of possibilities is limited, it is
possible to explore all the possible hero choices in order to
minimize the discriminator output, which we’ll denote Xt+1

d .
The discriminator’s quality is evaluated by:

(1) Testing its classification accuracy on random valid end-
point drafts (in the sense that drafting rules are followed).
The reasoning behind this is that a good discriminator should
classify the vast majority of these as generated drafts.

(2) Testing its accuracy on the held-out testing set of
professional games.

(3) Comparing the picked heroes in the testing set versus
the top choices minimizing the discriminator output. The
set of n possible choices minimizing the discriminator is
denoted Xt+1

dn
. In a practical scenario, if Xt+1 ⊂ Xt+1

dn
for

an appropriate n, the set of heroes that a player using our
drafting tool has to consider could be reduced to n instead of
every hero. The greater n is, the greater the possibility that
Xt+1 ⊂ Xt+1

dn
.

(4) Assessing model’s learning curve when a new patch is
introduced. To do so, a model is trained using all data up until
a given patch and is tested on the next 50 games of this new
patch, using the previous patch’s weights. Then, games from
this new patch are added incrementally to the training process
and the model is always tested on the next 50 games. That
way, it is possible to obtain the minimum number of games
necessary for the model to adjust after a new patch. We test
this methodology on minor patches 7.19 for DOTA 2 and patch
2.37.1 for HotS. Despite being a later patch, patch 7.20 for
DOTA 2 was not used for this assessment because it was a
major patch with a very large number of balance changes.

IV. RESULTS

A. Hero clustering

In order to gain an understanding of the discriminator’s
process, it is useful to visualize the learned network weights.
Fortunately, the learned weights of the trained network linking
the input to the first hidden layer has a semantic meaning
due to the discrete properties of the input. Indeed, the set
of weights linking each element of the input to the first
hidden layer represents a learned representation of the hero

associated with that element. Thus, each hero has a set of
weights associated and it is logical that heroes with similar
roles should have similar weights. To test this hypothesis,
a Ward hierarchical clustering algorithm is applied to the
first half (representing heroes on team A) of the weights
linking the input to the first hidden layer. The clustering results
are shown in Figure 1. Four principal clusters are illustrated
and are coherent with commonly accepted roles in HotS.
The blue cluster is composed exclusively of healers, whose
task is restoring their allies health and protecting them with
defensive abilities. The green cluster is mostly composed of
melee assassins, that need to close in on their enemies to deal
damage. Next to it, the black cluster is composed of tanks,
that are melee heroes that protect their allies by disabling their
opponents. Thus, proximity between these roles is expected,
and confirms the quality of the representations learned by the
discriminator. Next, the red cluster is made entirely of ranged
heroes that can poke their enemies from afar. Finally, the other
greyed-out clusters are made of heroes that were not often
picked in professional games, so the small sample size makes
it hard for the network to learn meaningful weights. Indeed,
the heroes in the shaded clusters account for 35.3 % of the
available heroes, but less than 5% of the picks and bans in the
dataset.

B. Model performance

HotS Accuracy
Model type GAN NN
Random drafts 0.9997 0.999994
Pro drafts 0.784 0.843
Top 10 choice 0.488 0.624
Top 5 choice 0.328 0.435
Top 3 choice 0.238 0.304
Top 1 choice 0.100 0.131

TABLE II
HOTS DISCRIMINATOR ACCURACY IN VARIOUS SCENARIOS

DOTA 2 Accuracy
Model type GAN NN NN 7.07 NN 6.85
Random drafts 0.812 0.901 0.9992 0.9994
Pro drafts 0.668 0.722 0.489 0.683
Top 10 choice 0.352 0.393 0.316 0.495
Top 5 choice 0.227 0.259 0.203 0.321
Top 3 choice 0.154 0.176 0.144 0.216
Top 1 choice 0.062 0.075 0.051 0.100

TABLE III
DOTA 2 DISCRIMINATOR ACCURACY IN VARIOUS SCENARIOS

Tables II and III presents the discriminator accuracy in
the situations presented in the methodology. Accuracy on the
top discriminator choices was calculated for values of n of
{1,3,5,10}.The best values among all models are highlighted
in bold. We observe that in both HotS and DOTA 2, the GAN
approach underperformed compared to a discriminator trained
with random sampling of the possibles Xt+1

g (NN in Tables II
and III ). This behavior is caused by the discrete nature of the
hero picks and the fact that negative examples were generated
using the previous state. Therefore, GAN generated examples
are too similar to real examples and the discriminator is faced
with contradictory examples.
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Fig. 1. Ward linkage hierarchical clustering of heroes-associated weights of the first layer of the discriminator. Clear clustering by hero role is visible in
the graph. The blue cluster is made of healers, the black cluster contains only main tanks, while the green one next to it contains melee assassins and
secondary tanks, both of which share similarities with main tanks. The red cluster contains only ranged assassins. The other greyed-out clusters comprise
mostly characters that see little play in professional HotS, which means that the weights aren’t well defined. A few heroes who see some play are out of
place, for instance Tracer, who should be in the red cluster or Lucio and Tyrande, who should be in the blue cluster.

To the best of our knowledge, no work has been done on
draft analysis in HotS before and the results are presented
in Table II. Therefore, comparison will be attempted with
similar work on DOTA 2 drafts by Summerville et al [5].
In order to provide a fair comparison, the same dataset is
used with the same 11 fold cross-validation method. Table
III also report results for DOTA 2 on the complete dataset
(10 250 games compared with 1 518), in which the drafts
are more heterogeneous as they range across several balance
patches. Summerville et al [5] report accuracy on the top 3
recommended choices as 11.94%. By comparison, our method
achieved an accuracy of 17.6% for DOTA 2 drafts without fine
tuning the architecture or parameters. When trained on the
same dataset, an even better score is obtained, with a top-3
accuracy of 21.6% compared to 11.94%. We also report results
for a model trained only on patch 7.07 (1480 games), as a
comparison with a similar number of games. The discriminator
is also very specific towards professional drafts, with 84.3%
accuracy on every DraftState of the testing set for HotS and
72.2% for DOTA 2. Random valid end-point drafts are also
correctly identified as such with 99.9994% accuracy in HotS
and 90.1% in DOTA 2, which shows that the professional
drafts occupy only a tiny fraction of the valid drafts. The
results for DOTA 2 could probably be improved by tuning
the network parameters. This might help to bridge the gap
between the performance observed across HotS and DOTA 2,
but the draft complexity might simply be naturally higher for
DOTA 2.

In order to investigate the impact of heroes pool size, the

accuracy of the discriminator on the top 5 hero choice was
produced for each patch, hypothesizing that an increasingly
large number of available heroes would eventually reduce
accuracy. From patches 0 to 55, more than 30 heroes were
introduced in HotS, almost a 60% increase in available heroes.
Figure 2 shows a stable accuracy with increasing hero pool,
which means that the performance depends more on the
game’s complexity and balance than on the absolute number of
available characters. Lower fluctuations in accuracy for HotS
are observed starting at patch 30, mostly due to an increase in
the number of games for these patches. Performance is more
stable for DOTA 2, notably due to a higher number of games
per patch. However, a steady increase in performance can be
observed in the latest patches for DOTA 2, which may point
to a metagame with less diversity than before.

Figure 3 illustrates that the accuracy is decreasing with
draft progression for both games. This behavior is expected
and was first reported by [5]. It is explained by the fact
that a small subset made of the strongest heroes are selected
first, leaving room for more diversity later on in the draft.
Additionally, the high accuracy on the first ban for the second
team (observed in both DOTA 2 and HotS) is explained by
the fact that banning the strongest hero usually falls on the
second team to choose, because team A picks first and they
should deny them this hero.

Figure 4 presents the performance curve of the model on a
new patch with an increasing number of games in the training
set for this patch. Stable performance is obtained around 50
games for DOTA 2 and 20 games for HotS. Since both of
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these were relatively minor patches, it can be expected that
major patches would take slightly longer until convergence. In
addition, the figure highlights a steady decrease in accuracy
for DOTA 2 for larger amount of games. This is an unexpected
behavior, unseen for HotS. Consulting the DOTA 2 patch
notes, it can be seen that there were 3 smaller patches at
regular intervals during the 7.19 patch (7.19b, 7.19c, 7.19d),
but we only have information about the major patch number on
the dataset, while this minor patch information was available
for HotS. Therefore, the longer the major patch goes on, it
becomes less representative of the current minor patch version
and performance decreases.

Fig. 2. Discriminator accuracy for the top 5 picks for every patch with
professional games played. Larger variations are observed at the infancy of
the professional league, with performance stabilizing around patch 30 near
40%. This is in part because of the metagame stabilizing and larger sample
size for later patches. DOTA 2 performance is less noisy, in part because of
higher number of games and lower number of patches. However, an upward
trend is visible, with similar performance obtained on the current patch.

Fig. 3. Discriminator accuracy for the top 5 picks at each step of the drafting
process. A significant decrease in accuracy is evident going further into the
draft. This behavior is expected, as strongest heroes will be chosen first, and
there is a greater diversity of reasonable choices later on in the draft.

Fig. 4. Discriminator accuracy for the top 5 picks on a new patch for a
increasing amount of training games on this new patch (patch 7.19 for DOTA
2 and patch 2.37.1 for HotS). Performance are already optimal after only 50
games on the new patch for DOTA 2 and 20 games on HotS.
HotS training couldn’t reach 150 games because the number
of games in the patch was only 170 (50 kept for testing).

Picks Bans
Team A Valla Zeratul Artanis Garrosh Deckard Hammer Medivh Whitemane
Team B Thrall Diablo Raynor Yrel Healer? Liming Genji Hanzo

Hero name Role Network value
Kharazim Healer 0.575

Rehgar Healer 0.545
Lucio Healer 0.542
Uther Healer 0.538

Alexstrasza Healer 0.527
Abathur Support/Healer 0.518

Malfurion Healer 0.515
Stukov Healer 0.509
Junkrat Assassin 0.498

Tassadar Support 0.495

Fig. 5. Incomplete DraftState where Team B should pick a healer and top-10
ordered hero selection according to the discriminator. Choices highlighted in
green are all healers and thus are reasonable. This draft takes place on the
map Volskaya Foundry during the December 2018 balance patch.

As an example of the proposed method, Figure 5 presents
an almost-complete DraftState in HotS where the last hero for
team B is about to be picked. However, their team is missing
a healer and it should logically be their next choice. Table 5
presents the top 10 choices according to the discriminator for
this situation and the healers are colored in green. Strikingly,
the top 8 heroes are all healers, showing that the network
understands the basics of team building. Interestingly, it also
presents the choice of Abathur (not usually classified as a
healer), but replacing a conventional healer with Abathur is
a relatively new and effective strategy when the team already
has self-healing, which is the case here with all heroes on team
B having some sort of self-healing. The last two choices in
the top 10, Junkrat and Tassadar, would be poor picks in this
situation.
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V. DISCUSSION

In this work, we presented a general approach to the
problem of character drafting in 2 different MOBA esports.
Our method used a discriminative neural network to predict
which heroes professional players would have picked in this
situation. We interpret the discriminator’s output as the di-
vergence to the manifold of professional drafts and propose
to select heroes by minimizing the discriminator output. The
proposed method describes a way to take into account the
shifting metagame caused by game patches and new heroes,
and shows stable performance over a long period of time
that included major changes to HotS. The method, originally
developed for HotS, generalized very well to DOTA 2 without
any modification. This is encouraging for the application of
this method to all MOBAs. We show that the network has
learned useful representations of the heroes and the proposed
picks in hypothetical situations demonstrate that basic team-
building logic is respected. Computation of the next pick,
alternatives and expected draft takes about a second, which
enables its use in real time.

The proposed method is compared to a GAN approach to
the problem, and pathological behaviors for discrete GANs
are uncovered. However, generating negative examples using
a GAN might be possible if the examples are generated from
scratch. This way, the generated negative examples wouldn’t
overlap so much with the real distribution of professional
games.

Significantly different scores are obtained depending on
the dataset, which further supports Figure 2 in the sense that
the performance fluctuates with the patch. Therefore, future
work should make sure to compare performance on identical
datasets, which calls for the release of a benchmark dataset.
Performance within the same patch can also vary in DOTA 2
because of minor patches changes that are not available in the
dataset. Therefore, a better dataset with all major and minor
patch version should increase performance for DOTA 2.

The principal limitation of this work is that it does not aim
to pick the best hero for a situation, only what the network
thinks a professional would’ve picked. It is arguable that a
professional would pick the best hero, but it also means that it
is not really capable of innovative or surprising picks. Another
drawback is the disruption of the model when a new patch
is introduced. Whenever a new hero or patch is released,
the model must be trained first on this new data because
it can’t anticipate what changes this will bring. However, it
seems that only a very small amount of games are needed
to adjust the model, with as little as 50 games required for
DOTA 2 and 20 games for HotS until good performance is
restored. these results were obtained on minor patches, with
few balance changes, they can be considered a lower bound
on the amount of games necessary. Larger patches will require
a larger amount of games to adjust the model. In addition,
in a practical scenario where the model would be used by
a team, the model can also be trained on the drafts from
this team’s practice games (commonly called "scrims"), which
would accelerate convergence of the performance.

This method is quite different from other approaches,
such as trying to maximize the probability of winning the
game on the basis of heroes selected or draft prediction using
LSTM networks [5]. However, win rate maximization is a
harder problem requiring very large datasets ( [7], [11] used a
dataset of more than 5 million games) because of a multitude
of confounding factors like failure to execute a winning
strategy, players trolling (intentionally wanting to lose) and
skill difference between the teams, to name a few. This kind
of large dataset is not available for the professional scene,
thus limiting the applicability of this method on professional
play. Furthermore, exploration of the drafting possibilities
using techniques like Monte-Carlo Tree Search [11] are very
interesting from a game theory point of view, but can lead the
draft into team compositions that are not well characterized
by the win rate estimator due to low density in the training
data. Therefore, limiting the research to areas that are densely
populated and where estimator prediction should be reliable
is an interesting avenue. It seems that combining a win rate-
maximizing model explored using MCTS, but constrained with
the proposed approach could yield the best of both worlds:
maximizing the chance to win while ensuring that the model
doesn’t stray too far from what is professionally viable.

Finally, the proposed method is directly applicable to
any of the major MOBAs and the trained model can be
used in various scenarios. For instance, it could be used by
professional coaches and players to quickly get possible picks
to choose from and remove some of the pressure from drafting,
by commentators and casters to bring insight into the drafting
process and explain to their audience or by aspiring semi-
professional teams to teach them the professional metagame.

VI. CONCLUSION

In this paper, we tackled the task of the drafting phase
of professional games of Heroes of the Storm using a dis-
criminative neural network. This method generalized easily to
professional DOTA 2 drafting, yielding state-of-the-art results.
This work is motivated by professional teams and coaches
who seek help to optimize their drafting strategy in order to
gain an edge on the competition. We describe our approach to
this task and show promising results on two separate datasets
of professional MOBA esports. We were able to demonstrate
that the network learned meaningful representation between
heroes.

Esports is a growing domain where data is becoming
more and more available. This load of data is waiting to
be fully exploited and with increasingly high stakes in major
tournaments, teams will look for any advantage they can get.
We show that our method can be easily applied to different
MOBA games, given sufficient data. This would help coaches
and teams make informed choices during the drafting phase.
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