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Résumé

Les progrès récents en matière d’apprentissage automatique supposent généralement que les
données d’apprentissage et de test proviennent de la même distribution de données. Cependant,
dans la pratique, les données peuvent être collectées séparément comme des ensembles de
données différents.

Apprendre à partir de données provenant de plusieurs domaines sources et les généraliser à un
autre domaine est un problème crucial de l’apprentissage automatique. Nous abordons ce type
de problème dans le contexte de l’apprentissage par transfert (TL), notamment l’adaptation de
domaine (DA), la généralisation de domaine (DG) et l’apprentissage multi-tâches (MTL), et
ce dans le but de transférer les caractéristiques invariantes communes à de nouveaux domaines.
Nous avons étudié ce type d’apprentissage par transfert sous différents aspects, y compris
les problèmes liés au décalage conditionnel dans l’adaptation de domaine, les problèmes de
désalignement sémantique et de décalage d’étiquettes dans la généralisation de domaine et
l’apprentissage multi-tâches en parvenant à plusieurs résultats.

Concrètement, nous explorons d’abord les problèmes de décalage conditionnel (DA) avec
une stratégie d’apprentissage actif pour interroger les instances les plus informatives dans
le domaine cible afin de faire migrer le terme de désaccord entre les fonctions d’étiquetage
des domaines source et cible. Nous explorons ensuite les similitudes de catégories dans les
problèmes liés à la généralisation de domaine (DG) via l’entraînement adversarial basé sur le
transport optimal avec un objectif d’apprentissage de similarité métrique afin d’améliorer la
correspondance au niveau du domaine et de la classe pour les problèmes DG. Nous étudions
ensuite, plus en détail les relations entre les étiquettes et la sémantique dans le MTL, où nous
fournissons une compréhension théorique de la manière de contrôler les divergences entre les
étiquettes et la distribution sémantique. Enfin, nous étendons l’analyse théorique sur la façon
d’exploiter les étiquettes et l’information sémantique dans la généralisation de domaine (DG),
en fournissant une première analyse pour comprendre les propriétés de généralisation dans le
contrôle des divergences de distribution des étiquettes et de la sémantique.

Pour chaque travail reflété dans cette thèse, nous menons des expériences approfondies afin de
démontrer l’efficacité et les objectifs d’apprentissage. Les résultats expérimentaux confirment
que nos méthodes parviennent aux performances souhaitées et indiquées par les principes
d’analyse et d’apprentissage, ce qui valide les contributions de cette thèse.
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Abstract

Recent machine learning progresses usually assume the data for training and testing are from
the same data distribution. However, in practice, the data might be gathered separately
as different datasets. To learn data from several source domains and generalize to another
domain, is a crucial problem in machine learning.

We tackle this kind of problem in the context of Transfer Learning (TL), including Domain
Adaptation (DA), Domain Generalization (DG) and Multi-task Learning (MTL), with the
sake of transferring the common invariant features to new domains. We have investigated this
kind of transfer learning method in several different aspects, including the conditional shift
problems in domain adaptation, semantic misalignment and label shift problems in domain
generalization and multi-task learning problems with several accomplishments.

Concretely, we first explore the conditional shift problems DA with an active learning strategy
to query the most informative instances in the target domain to migrate the disagreement
term between the source and target domain labelling functions. We then explore the category
similarities in the DG problems via the optimal transport-based adversarial training with a
metric similarity learning objective to enhance both the domain-level and class-level matching
for DG problems. After that, we further investigate the label and semantic relations in MTL,
where we provide the first theoretical understanding of how to control the label and semantic
distribution divergences. Lastly, we extend the theoretical analysis on how to leverage the label
and semantic information in DG, providing the first analysis to understand the generalization
properties on controlling the label and semantic distribution divergences.

For each work reflected in this thesis, we also conduct intensive experiments to demonstrate
the effectiveness and learning objectives. The experimental results confirm that our methods
achieve the desired performance indicated by the analysis and learning principles, which
confirms the contributions of this thesis.
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Avant-propos

The introduction chapter explains the motivation of the research project of this thesis.

Chapter 1 presents the background knowledge on the learning problems explored in this thesis.

Chapter 2 presents the related works and state-of-the-art works, which summarizes the
progresses in the general transfer learning, domain adaptation, domain generalization and
multi-task learning. We merge the related works parts of the following four articles to show
the most related works while also summarize some broader topics as a literature review.

The core parts of this thesis consists of four chapters (chapter 3–6) in the form of articles as
follows :

Chapter 3 : Article 1 : Discriminative Active Learning for Domain Adaptation, In Knowledge-
Based Systems (published, first author).

Chapter 4 : Article 2 : Domain Generalization via Optimal Transport with Metric similarity
learning, In Neurocomputing (published, first author).

Chapter 5 : Article 3 : Multi-task Learning by Leveraging the Semantic Information, In Proc.
of the Thirty-Fifth AAAI Conference on Artificial Intelligence (published, first author).

Chapter 6 : Article 4 : On the Value of Label and Semantic Distributions in Domain Gene-
ralization, submitted to IEEE Transactions on Neural Networks and Learning Systems, first
author.

The conclusion chapter will be a summary of the contributions of this thesis and provide some
further discussions for the future researches.
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Introduction

In this chapter, we provide a brief overview of our Ph.D. researches. We first introduce the
motivations of our research and then give a high-level discussion on our work. We then provide
the organization of our thesis to show the contents of each chapter.

Recent years have witnessed the rapid developments of machine learning and deep learning
with impressive performances in different application areas including computer vision (He
et al., 2016a; Strubell et al., 2020; Høye et al., 2021; Hassaballah and Awad, 2020), natural
language processing (Young et al., 2018; Otter et al., 2020) and medical applications (Wang
et al., 2021a; Zou et al., 2020) etc. The performance achieved by deep models with end-to-end
training has largely outperformed the traditional hand-engineered methods.

Although the deep learning-based approaches have shown improved performances, there still
exists some open problems. In this thesis, we aim to figure out how to learn a model by
transferring the knowledge from different data distributions to learn from fewer data. We can
introduce the problems we tackled in the next section.

Problem Statement

Most of the modern deep learning models usually require a large amount of training data (Bhav-
sar and Ganatra, 2012). When designing a learning system to have a good generalization ability,
we should usually provide it with a large dataset. In practice, however, acquiring labelled data
could be highly prohibitive, e.g., when classifying multiple objects in an image (Long et al.,
2017a), when analyzing patient data in healthcare data analysis (Wang and Pineau, 2015), or
when modelling users’ products preferences (Murugesan and Carbonell, 2017). Data hungry
has become a long-term problem for deep learning (Marcus, 2018).

Besides, most of the progress of recent machine learning, especially the deep learning approaches,
are typically based on the traditional learning paradigm, which assumes that datasets, on
which the hypothesis trained and tested, are i.i.d. from the same distribution. However, in
many learning scenarios, such assumptions may not hold. For example, appearance shifts
caused by illumination, seasonal, and weather changes are hard to tackle for learning-based
vision systems (Kawano and Yanai, 2014). If a vision system was trained on one dataset (source
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Figure 0.1 – Performance drop as domain shift. Typically a model can have high prediction
accuracy on a single domain. However, if we deploy the model directly on the target domain,
we could observe an obvious performance drop-off due to the domain shift. Data images
captured from Office-home (Venkateswara et al., 2017), MNIST (LeCun et al., 1998) as well
as SVHN (Netzer et al., 2011) dataset.

domain) but then tested on another (target domain), the performance may diverge (Li et al.,
2016a). In many learning problems, we are not able to expect to have access to a large-scaled
dataset with plenty of labelled data. If we train the model on one dataset while training on
another, the learning performance may drop rapidly. This kind of image changes in terms of
style, color or illumination etc., is also known as domain shift as discussed in (Ganin et al.,
2016) and references therein. We illustrate in Fig. 0.1 to show that a model trained on one
dataset can drop off rapidly when tested on another. A general case in many practical scenarios
is that we have multiple datasets collected from different positions or angles using different
cameras or sensors, leading the data to have similar but different illuminations, styles and
poses etc., and our goal will be how to build a model that learns from those datasets.

Motivations

Human beings can learn by knowledge transfer. For example, consider a navigation task in a
maze environment using a visual recognition model illustrated in Fig 0.2 an agent is trying to
locate and catch the fruit near to it while it suffers from learning the knowledge due to the
color and illumination changes in the maze. On the contrary, we humans can easily handle this
kind of problem to identify the fruit’s location despite the color or position changes. Besides,
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Figure 0.2 – Example of visual recognition tasks in a maze environment. Images captured
from DeepMind Lab (Beattie et al., 2016) simulation environment.

in daily life visual recognition, humans can easily identify the dogs from images no matter
the color, illumination or sitting pose. However, this kind of domain shift (e.g., whether a cat
with orange color is standing on a bed or a cat with black color is lying on the ground) would
hinder the performances of a learning algorithm. To achieve a successful knowledge transfer,
we need to design an algorithm that can handle the data distribution shift.

Many previous approaches have been proposed to solve this kind of domain shift problem in
the context of domain adaptation, domain generalization and multi-task learning frameworks.
In terms of methodologies, a large number of methods fall into the method of domain-invariant
learning, which is typically achieved by the distribution alignment method using statistical
distance minimization or the adversarial training methods (Ganin et al., 2016).

Although this kind of invariant feature learning method has shown improved performances in
transferring the knowledge for predicting on the new dataset, there are still many open issues
that can prevent the model from a successful knowledge transfer. In order to find out the
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Figure 0.3 – A brief structure of our work. We have conduct the distribution matching
methods to explore both the single source transfer problems (domain adaptation) as well as
the multi-source transfer problems (domain generalization and multi-task learning).

guarantees for a good transfer learning algorithm, we explore in this thesis the transferable
feature from different domains with several accomplished works. We illustrate a brief structure
of our research in Fig. 0.3. The core methodology of our work is to match the data distributions
so that we can align the features from all the domains (will be introduced in section 1.5). In the
problem setting aspects, we have explored both the single source transfer (domain adaptation)
and the multi-source transfer (domain generalization and multi-task learning) problems.

Thesis Organizations

With our work and accomplishments, the rest parts of the thesis could be summarized as
follows,

— In Chapter 1, we introduce the background knowledge of general transfer learning with
specific attention to domain adaptation, domain generalization and multi-task learning.

— In Chapter 2, we summarize the related works that mostly inspire our work and a
state-of-the-art literature review to show the progresses in this area.

— In Chapter 3, we introduce our work (Zhou et al., 2021c) in which we focus on the
conditional shift problems in DA via querying target instances with uncertainty and
diversity criteria by exploiting the optimal transport and active learning methodologies.

— In Chapter 4, we introduce our work (Zhou et al., 2021b) where we tackle the domain
generalization problems via exploring the feature level alignment using optimal transport
with Wasserstein adversarial training, as well as the exploring the category level alignment
with metric similarity learning.
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— In Chapter 5, we leverage the label and semantic distributions to handle the semantic
misalignment and label shift problems in MTL problems. We provide in (Zhou et al.,
2021a) the first theoretical results on matching the semantic distributions for MTL
problems.

— In Chapter 6, we further explore the semantic relations in the domain generalization
problems and provide the theoretical generalization bounds to better understand the
DG problems via controlling the label and semantic distribution divergences.

— In the Conclusion chapter, we conclude our contributions towards the thesis and also
discuss the limitations in our works as well as the potential directions for future work.

— In the Appendix chapters, we first provide some basic models and approaches involved
in our research, then we provide the proofs of the theoretical results of our work.

Summary

In this chapter, we briefly introduce the motivations of our research work and show the thesis
organization. In the next chapter, we will formally define the learning problems involved in our
work, including domain adaptation, domain generalization and multi-task learning problems.
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Chapitre 1

Background and Preliminaries

In this chapter, we briefly introduce the general knowledge of transfer learning including
the single-source transfer (domain adaptation) and multi-source (domain generalization and
multi-task) learning paradigms, which are essential for our work.

1.1 Notations and Problem Setup

In this thesis, we focus on how to transfer the knowledge from different domains in the
context of Transfer Learning (TL) (Torrey and Shavlik, 2010) including Domain Generalization
(DG) (Dou et al., 2019), Domain Adaptation (DA) (Pan et al., 2010) and Multi-task Learning
(MTL) (Yang and Gao, 2013) with the sake that a learner could leverage the knowledge learned
from one (or many) domain(s) or task(s) to generalize to another different but related domains
or tasks. We could first give the definition of the notion of domain and task that involved in
our work,

Definition 1.1. Domain A domain D is defined as a yet unknown distribution over X × Y,
where X and Y are the input and output space, respectively.

Similarly, we can also consider a task as a yet unknown data distribution over the X × Y.
For the DA and DG problems, we aim to find out the transferable features from the source
domain and generalize to the target domain (see section 1.3.1 and section 1.4.1 for detailed
problem setup). For the MTL problems, we aim to learn several tasks together to improve the
learning model for each task by using the knowledge contained in other tasks (see section 1.4.2
for detailed problem setup).

All these three learning scenarios (DA, DG and MTL) focus on learning and transfer knowledge
from other domains. We tackle the transfer learning problems by measuring and matching the
data distributions (Ben-David et al., 2006; Ben-David et al., 2010a; Redko et al., 2017; Shen
et al., 2018) to handle different learning paradigms with different data distribution settings.
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Training Testing

Figure 1.1 – Problem set up of the transfer learning paradigms considered in our work.
Dataset from different domains are sampled from different data distribution Di(x, y), which
are different with each other while are considered generated from a compound probability
distribution D. During the training phase, we may have data from multiple sources while
during the testing phase, we may deploy the learning algorithm on a target domain which
is partially known or totally unknown during the training phase. Depending on the different
learning paradigms, we may have different but similar problem setups (see also in Table 1.1).

We present an illustration of general distribution and datasets generation setups in Fig. 1.1.
The respective domain shifts are based on different but related data distributions. The learner
is trained to generalize to a target domain generated by target distributions. We may have
different problem setups w.r.t. different learning paradigms.

In this thesis, we have made efforts to the domain adaptation, domain generalization and
multi-task learning problems. In a domain adaptation setting, the learner may have access
to the instances in the target domain but have no label information (unsupervised DA) or
part of the label information (semi-supervised DA) in hands. For the domain generalization
tasks, the learner only has access to source domains but have no instances nor labels about
the target domain(s). For the multi-task learning tasks, we consider the situation under which
the learner is trained on all the source domains with limited data while deployed on the same
domains (Long et al., 2017a).

We illustrate a general case of this learning process in Fig. 1.2. Typically, the learner is
provided with one or some labelled source domains or tasks and has an objective to generalize
its prediction ability to a target domain. In Fig. 1.3, we present a brief visualized comparison
on the three learning paradigms involved in our work. Now we start to introduce the problems
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Figure 1.2 – General case of paradigms involved in our research : A learner has a set of
labelled data from some source domains, and it aims at extracting invariant features across
the seen source domains and then learn to generalize to a new domain. Based on the manifold
assumption (Goldberg et al., 2009), each domain i is supported by distribution Di. The learner
could measure the distance between the source and target domain by measuring the source
and target distributions. With the measurement of distribution, the learner could apply some
domain confusion training method (e.g. adversarial training) to achieve a domain invariant
feature space. When a new domain comes, the learner could generalize the knowledge from the
invariant feature space to a new domain. In most DA cases, the learner will have access to the
instances and labels in the source domain but has only instances with no labels (unsupervised
DA) or only parts of labels (semi-supervised DA) in the target domain. For the MTL problems,
the learner is trained on all the task distributions with limited data and test on the same
distributions. For the DG task, the learner has only access to the source domain features and
labels, but has no features nor labels of the target domain.

Learning
task

Training Testing

Data Labelled ? Data

Domain Adaptation (DA) Source : DS(x, y) Source : ! DT (x, y)
Target : DT (x) Target : %

Domain Generalization (DG) Source : D1(x, y) . . .Dm(x, y) Source : ! DT (x, y)
(unseen)Target : N/A Target : N/A

Multi-task Learning (MTL)
Train
| |
Test

D1(x, y) . . .DT (x, y) Source : !
Target : !

D1(x, y) . . .DT (x, y)

Table 1.1 – Different problem setups involved in our work. For the domain adaptation
problems, the learner is trained on labelled source domains as well as unlabeled target features.
For the domain generalization problems, the learner only has access to the source domain data
D1(x, y) . . .Dm(x, y) while hope to generalize to the unseen target domain. For the multi-task
learning problems, the learner has access to the data from all the tasks D1(x, y) . . .DT (x, y).
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Figure 1.3 – Brief comparison of the three learning paradigms involved in this thesis. Dataset
images are drawn from PACS dataset (Li et al., 2017b). For DA problems, we learner is trained
with a source domain and unlabelled target domain and tested on the target domain. For
DG problems, the learner is trained on several source domains and then tested on the unseen
target domain. For the MTL tasks, we train the learner on several tasks with limited data
while test on the same tasks.

we focused on in the next part.

Before we introduce the core contribution chapters, we first go through the basic knowledge
on general transfer learning problems in section 1.2, then the background information of DA,
DG and MTL in section 1.3, 1.4.1 and 1.4.2, respectively. After that, we discuss the statistical
divergences and distances involved in our work in section 1.5.

1.2 Preliminary of Transfer Learning

As stated before, acquiring labelled data is usually expensive for deep learning. To address
that, transfer learning was introduced to leverage the previously learned tasks and transfer
the knowledge to another new task. In transfer learning, the goal is to train the hypothesis
(learner) from one task (distribution) and then re-use it as a starting point for another task.
For domain adaptation, which is a subset area of transfer learning, we aim to transfer the
learned knowledge from the source domain to the target domain.

Typically, the learner aims to predict on the target domain DT , and aims to leverage from
the knowledge gained from the source domain. Denote by DS and DT the source and target
domain distributions, we can give the definition of transfer learning as follows,
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Definition 1.2. Transfer Learning (Pan and Yang, 2009) : Transfer Learning aims to improve
the performance of predictive function fT (·) by discovering and transferring latent knowledge
from DS and DT where DS 6= DT . In addition, and in most cases, the size of DS is much
larger than the size of DT .

Typically, there could be different terminology to categorize transfer learning methods. Follow
the general transfer learning literature (Pan and Yang, 2009; Weiss et al., 2016; Zhuang et al.,
2020) we can categorize the transfer learning methods into three-folds :

— Instance-weighting based methods.

— Mapping-based methods.

— Network-based methods.

Notice that those kind of approaches can also be extended to the other transfer learning topics
including domain adaptation, domain generalization or multi-task learning. We first briefly
introduce here in the context of general transfer learning.

1.2.1 Instance-weighting based transfer learning

The instance-weighting based transfer learning approach aims at leveraging the knowledge of
each instance, which inspires our work (Zhou et al., 2021a,d) as part of the learning algorithm
(see the re-weighting scheme presented section 5.3.1 and section 6.3.2, respectively).

Considering a transfer learning scenario that we have labelled source domain data and we only
have limited labelled target domain data i.e., large amount of unlabelled data. In this case we
can only estimate the marginal distribution D(x) of the target domain. In this context, we
can assume that although the source domain knowledge couldn’t be reused directly on the
target domain, some parts of the source data could still be reused with few labelled target
instances (Zhuang et al., 2020). In order to align the source and target data distributions,
the source-domain instances are assigned with weights to reduce the marginal distribution
difference. Such weights are usually calculated based on the similarity between source and
target instances. This kind of approach needs to assign for each instance, so it is less attractive
for modern machine learning approaches as we usually have to deal with large-scaled data.
However, the idea of assigning weights to some instances can still inspire our work introduced
in Chapter 3, Chapter 5 and Chapter 6, where we leverage the weighting scheme of instances as
a part of our methodologies. We will briefly summarize some instance based transfer learning
approach in section 2.1.1 and introduce how this kind of weighting scheme used in our work in
Chapter 3, Chapter 5 and Chapter 6, respectively.
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1.2.2 Mapping-based transfer learning

Mapping based transfer learning approaches were very popular in the early literature of transfer
learning as well as domain adaptation as it enables the model to match the data distributions
in the feature space. This kind of method refers to map the instances from both the source
and target domain into a new data space (typically the reproduced-Hilbert kernel space) with
the assumption that “Although there are differences between the source and target domain,
they can be more similar in an elaborate new data space” (Weiss et al., 2016). Before the era
of deep learning, many principle component analysis (PCA)-based (Schölkopf et al., 1997) and
transfer component analysis (Pan et al., 2010) based methods were introduced for such kind
of mapping-based transfer learning approaches. The core part of these kinds of approach are
based on MMD mapping. For example. Tzeng et al. (2014) implemented MMD in comparing
the distributions inside a neural network together with a domain confusion loss to get a domain
invariant feature space. Redko et al. (2017) provided a Wasserstein Distance-based approach
to align the kernel space for domain adaptation. We will also summarize some other statistical
distances in section 1.5.1. Besides, the mapping based approaches were then adopted in the
domain adaptation and domain generalization approaches, which we presented in section 2.2.2
and section 2.3.1, respectively.

The early mapping based approaches usually mapped the features into a kernel space, which is
somehow limited in especially deep neural network-based approaches. It may not be suitable
for more advanced deep learning-based researches (Wang et al., 2018). With the development
of neural networks and deep learning, many network-based transfer learning approaches have
been proposed. We now introduce that in next section.

1.2.3 Parameter based Transfer Learning

Transfer learning using neural networks (NN) aims to transfer some parts of the NN parameters
(learned on a source domain) to a new model (deployed on a target domain). For example,
in many domain adaptation approaches, we usually take a pre-trained model (e.g. AlexNet
by Krizhevsky et al. (2012), VGG-Net by Liu and Deng (2015) or ResNet by He et al. (2016b))
as a feature extractor. Such a pre-trained model contains the pre-trained model parameters
(weights and biases) for some general computer vision tasks (usually on ImageNet by Deng et al.
(2009)), and we can transfer such parameters for new a new task. This kind of model parameters
transfer is also known as fine-tuning (He et al., 2016a). For a large-scale transfer learning
problem, the fine-tuning method usually requires a large amount of target labels. Besides,
the general fine-tuning method usually needs to re-train the whole model when adapting to
the target dataset, and this is somehow inefficient. To this end, one recent remarkable work
has been proposed to use such a network-based approach for meta transfer learning where a
base learner adopts a pre-trained backbone network as a base feature extractor (Sun et al.,
2019). Then, for each task, a specific classifier network will be used for a particular task. Each
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classifier is not trained from scratch but uses the network parameter trained on the previous
task and then applies a linear transformation based on the trained parameters. By following
such a cycle, the model can leverage the learned knowledge using the network parameters.

Now, with the briefly introduced background knowledge on transfer learning, we can introduce
the preliminaries of domain adaptation, domain generalization and multi-task learning in the
following parts.

1.3 Preliminary of Domain Adaptation

In this section, we present a general introduction to domain adaptation. After that, we show the
preliminaries on multi-source transfer learning, including domain generalization and multi-task
learning, in section 1.4.

1.3.1 Background of Domain Adaptation

As stated in the previous sections, in general learning paradigms, we usually have a basic
assumption that all the training and testing data come from the same distribution. However,
such an assumption may not hold if the datasets on which the learning algorithm was trained
are different from the one it was deployed. If the testing set and training set are from different
distributions, the test performance may diverge. Fig. 1.4 explains a binary classification task
that one usually can easily learn a classifier for the given domain (left of Fig. 1.4). What if we
have a new classification task for a new domain (middle of Fig. 1.4) ? Could we still use the
classifier trained on the source domain ? We can see from the right part of Fig. 1.4 that if we
directly deploy the classifier trained on the source domain to a new target domain, this could
fail. Then, one question came to us that could we train a classifier that can work on both
the source and target domains ? This problem has been widely investigated in the context of
Domain Adaptation (DA ) (Pan et al., 2010). Typically in DA, we aim to train a discriminative
classifier that can handle shift between training and test domains (distributions). During
training, the learner takes lots of labelled data in the source domain (e.g. synthetic images) in
hand. Then, it learns to predict unlabelled data in the target domain (e.g. real images). The
goal is described as training the hypothesis (typically Neural Network) on source domain and
can also perform well (with a high accuracy) on the target domain (Ben-David et al., 2010a).

We follow (Ben-David et al., 2010a; Redko et al., 2019) to give a formal definition of domain
adaptation. Consider classification tasks where X is the input space and Y = {0, 1, . . . ,K − 1}
is the set of K possible labels. Denote by x and y by the instance feature and the corresponding
labels, and X × Y by the input feature and label space, respectively. There are two different
(but related) distributions over input-output space X × Y , called the source domain DS and
the target domain DT . An unsupervised domain adaptation learning algorithm tries to learn on
labeled source samples drawn i.i.d. from DS(x, y), and an unlabeled target samples drawn i.i.d.
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Figure 1.4 – For one single source domain, we can easily train a classifier (left), but for a
new domain (middle) if we just adopt the classifier trained on the source domain, then the
classification process fails (right).

from DT (x), where DT (x) is the marginal distribution of DT over X . In this thesis, we refer
the notion domain adaptation to the general single source unsupervised domain adaptation
problems.

Define the expected source and target risk of h ∈ H over S (respectively, T ) as the probabilities
that h errs on the entire distribution DS (respectively, DT ) : RS(h) = E(x,y)∼DS `(h(x, y)) and
RT (h) = E(x,y)∼DT `(h(x, y)), where `(·) is the loss function. The goal of DA is to build a
classifier h ∈ H : X → Y training on source domain with a low target risk RT (h). The goal of
DA process is to learn h ∈ H : X → Y training on source domain can also perform well on the
target domain (with a low target risk RT (h)).

Previously, lots of efforts have been addressed towards domain adaptation, both theoreti-
cally (Ben-David et al., 2006; Ben-David et al., 2010a; Redko et al., 2017) and empirically (Ganin
et al., 2016; Wen et al., 2020; D’Innocente and Caputo, 2018). There are many kinds of termi-
nology to separate DA methods in different categories, and we categorize recent DA techniques
in three primary folds : 1) discrepancy based, 2) adversarial based and 3) reconstruction based
domain adaptation method. For the discrepancy based approach, it typically achieves domain
invariant features by minimizing the domain shift while fine-tuning the neural network. For
adversarial based ones, a domain discriminator is trained using an adversarial objective to learn
domain confusion features. For reconstruction based methods, typically, an AutoEncoder is
established to reconstruct the data as an auxiliary loss function to ensure the feature extractor
(encoder) can have invariant features. In this thesis, we mainly focus on the adversarial based
methods, which are widely used in recent domain adaptation researches (Wang et al., 2018).
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Figure 1.5 – The conditional relationship shifts during the adaptation process : The left is
source domain distribution with the binary labels and right is the target domain distribution
with binary labels. The marginal distribution looks similar while the conditional distribution
is different.

1.3.2 Basic Assumptions in Domain Adaptation

In this section, we will discuss the well-known assumptions that stand behind the domain
adaptation tasks, namely covariate shift, conditional shift and label shift.

1. Covariate Shift (Zhang et al., 2013) : Most recent DA advancements are mostly based
on the basic Covariate Shift assumption that the marginal distributions of source and target
domain change (DS(x) 6= DT (x)) while the conditional distribution (predictive relation) is
preserved (DS(y|x) = DT (y|x)) during the adaptation process.

2. Conditional Shift (Zhao et al., 2019a) : As stated before, most of the previous domain
adaptation process assumes that the conditional probability relations remain unchanged
during the adaptation process. Fig. 1.5 illustrates the conditional shift problem : the marginal
distribution of the source and target domain are similar, but the conditional distribution is
different (DS(y|x) 6= DT (y|x)). For real-world images, typically the conditional shift is minor
i.e. DT (y|x) ≈ DS(y|x) but there might be some implicit conditional shifts. For example,
hand-written digits from different people may have different labels.

3. Label Shift (Zhang et al., 2013) : In most cases of DA (e.g. Ganin et al., 2016; Wen et al.,
2020), it’s assumed that the number of label spaces in the source and target domain is the
same (DS(y) = DT (y)). Label shifts refer to the case that the label space of source and target
domains are different (DS(y) 6= DT (y)).

1.4 Preliminary of Multi-source Transfer

In this section, we introduce some background knowledge of the multi-source transfer learning
paradigms studied in our research, i.e., the domain generalization and multi-task learning
(MTL) problems. As aforementioned, these two learning paradigms share a common setting
that the data are issued from several related but different distributions, while they differ from
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Domain Generalization Multi-task Learning

Training All m source domains :
D1, . . . ,Dm

All T tasks :
D1, . . . ,DT
(Learn each task with
limited data )

Testing Target domain DT
(unseen during training)

All T tasks :
D1, . . . ,DT

Distribution
relation Uniformly Weighted relations

Learning
objective

Minimize risks on
source domains :
min

∑m
i=1Ri(h)

Minimize risks on all tasks
with weighted summation :
min αt

∑T
t=1Rt(h)

Table 1.2 – Comparison of two multi-source transfer learning problems tackled in our work.
For the domain generalization problems, we have no access to the target data during training,
so we have no idea about which source domain can contribute more for a successful transfer
process, which leads to a uniformly relations for all the source domains during training. For the
multi-task learning problems, we have (limited) data from all the tasks, so we can measure the
task similarity αt during the training process, which leads to an optimization of the weighted
summation of all task risks.

each other in terms of learning objective and the data availability. We show in Table 1.2 a
brief comparison of these two learning paradigms. We then briefly give the preliminaries of
these two learning paradigms in the following sections 1.4.1 and 1.4.2, while we will further
elaborate the problem settings of domain generalization (DG) in Chapter 4 and 6, as well as
the settings of MTL in Chapter 5.

1.4.1 Preliminary on Domain Generalization

As aforementioned, domain generalization (DG) shares some common assumptions with domain
adaptation (DA) while we have neither the instances nor the labels in the target domain. We
illustrate a general workflow of DG in Fig. 1.6.

Let (x, y) ∈ X × Y be a training example drawn from some unknown distribution D, where x
is the data point, and y is its label. A hypothesis is a function h ∈ H that maps X to the set
Y ′ sometimes different from Y , where H is a hypothesis class. For a non-negative loss function
` : Y ′×Y 7→ R+, we denote by `(h(x), y) the loss of hypothesis h at (x, y). Let S = {(xj , yj)}Nj=1
be a set of N training examples drawn independently from D. The empirical loss of h on S
and its generalization loss over D are defined, respectively, by R̂(h) = 1

N

∑N
j=1 `(h(xj , yj)),

and R(h) = E(x,y)∼D`(h(x), y).

In the context of DG, we are given m source tasks {Si}mi=1, where Si = {(x(i)
j , y

(i)
j )}Nij=1 is drawn

from a distribution Di. The objective of a DG algorithm is to learn a feature representation
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Figure 1.6 – General workflow of domain generalization (DG) : The model is trained on
several source domains (D1,D2, . . .Dm) while deployed on an unseen target domain. During
the training phase, the source data are mixed as input and feed into the model, during which
both the source feature D(x) and label D(y) are available to the learner. At the deployment
phase, the model is frozen and test on the target domain DT , which is not accessible to the
model during the training phase.

that extracts the knowledge that can be shared across all the known source domains so that it
can also generalize well to an unseen target domain distribution DT .

1.4.2 Preliminary on Multi-task Learning

Another multi-source transfer learning paradigm we have investigated is the multi-task learning
problems. MTL aims to learn multiple tasks simultaneously and improves learning efficiency
by leveraging the shared features across tasks. It has been prevalent in lots of recent machine
learning topics (Li et al., 2014; Wang et al., 2016; Teh et al., 2017). Typically, there could be
several kinds of terminology of MTL. We illustrate a general scheme of the MTL approaches in
Fig. 1.7. Our work (Zhou et al., 2021a) is most similar to the learning framework in Fig. 1.7(a),
where we have multiple tasks as input and hope to make predictions on a same set of output.
Then, in Fig. 1.7(b) we show a learning scenario where we have single-input task and hope
to make multiple output predictions. This kind of framework is widely used in multi-label
learning (Gibson et al., 2019; He et al., 2020) or multi-objective (Zhou et al., 2017; Sener
and Koltun, 2018) learning problems. Finally, Fig. 1.7(c) refers to the learning scenario that
multiple tasks data are mapped to the same multiple sets of output target. This kind of
framework is widely used in the multi-view learning (Jin et al., 2014; Zhang et al., 2019b) and
multi-modality learning (Liu et al., 2018; Zhou et al., 2020a) problems. In this thesis, we will
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Figure 1.7 – Different framework terminology of MTL. (a) : MTL framework where we
have multiple input task data and hope to map to a same set of output. Our work (Zhou
et al., 2021a) is tackled in this kind of framework. (b) : MTL framework where we have
single-input task and hope to make multiple output predictions. (c) MTL framework where
we have multiple sets of input task data and hope to map the data to the same multiple sets
of output target data. Figure referred from Thung and Wee (2018).

mainly focus on the learning framework in Fig. 1.7(a), which is tackled in our work (Zhou
et al., 2021a).

Fig. 1.8 shows the typical model structure of the MTL problems in our work. Assuming a
set of T tasks {D̂t}Tt=1, each of them is generated by the underlying distribution Dt over X
and by the underlying labelling functions ft : X → Y for {(Dt, ft)}Tt=1. A multi-task (MTL)
learner aims to find T hypothesis : h1, . . . , hT over the hypothesis space H to minimize the
average expected error of all the tasks :

arg min
h∈H

1
T

T∑
i=1

Rt(ht), (1.1)

where Ri(hi) ≡ Ri(hi, fi) = Ex∼Di`(hi(x), fi(x)) is the expected error of task t and ` is
the loss function. For each task i, assume that there are mi examples. For each task i,
we consider a minimization of weighted empirical loss for each task by defining a simplex
αj ∈ ∆T = {αi,j ≥ 0,

∑T
j=1 αi,j = 1} for the corresponding weight for task j. It could be

viewed as an explicit indicator of the task relations revealing how much information leveraged
from other tasks. The empirical loss (risk) w.r.t. the hypothesis h for task i could be defined as

R̂αi(h) =
T∑
j=1

αi,jR̂j(h), (1.2)

where R̂i(h) = 1
mi

∑mi
j=1 `(h(xj), yj) is the average empirical risk for task i. The learning goal

is to learn multiple related tasks simultaneously by minimizing the averaged risk over all the
tasks, and improves learning efficiency by leveraging the shared features across tasks.
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Figure 1.8 – Typical model structure involved in our work. The model shares some parts of
parameters θshare while for a certain task t we construct the specific classifier θt for it. For
training, we mixed all the instances from each task to the shared model. Then, for each specific
task, we feed the extracted features to each specific classifier θt.

1.5 Distribution Divergences for Similarity Measuring

As previously noticed, the idea of transfer learning is to transfer knowledge from one domain to
another. A basic assumption behind this process is that the related domains should not be too
far from each other. And if the distance between two domains is arbitrarily large, the transfer
process may fail (Ben-David et al., 2010a). Thus, we need to measure distance (divergence)
between the different data distributions. In this context, we usually have a generalization
bound to measure the target domain error so that we can implement learning techniques to
minimize that error bound to achieve successful transfer (Zhuang et al., 2020). Generally, the
generalization bound of transferring knowledge from source domain DS to a target domain
DT could be summarized with the following form

RT (h) ≤ RS +Ddiv(DS‖DT ) + λ (1.3)

whereRT is the risk on the target domain,RS is the risk on the source domain andDdiv(DS‖DT )
represents some divergences or metrics (e.g., Wasserstein distance (Courty et al., 2016),
Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) or H-divergence (Ben-David et al.,
2010a) etc.) to measure the distance between the source and target domain. The last term λ

represents the discrepancy between source and target labelling function. Depending on different
divergence or metric, Eq. 1.3 could have different forms, which will be further elaborated in

18



Extracted Features

D
istribution 
M
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Figure 1.9 – Typical distribution matching process : typically the model extracts the feature
from different data distributions and get the extracted features. The distribution matching
process is then applied in the extracted feature space by matching the extracted features.

section 1.5.2. In general, the divergence or metric between domains can be estimated from
the input data. To minimize this bound we can minimizing the source error and distance
between source and target domains. Therefore, we can learn the domain-invariant features by
matching the distributions. We present an illustration on the general distribution matching
process in Fig. 1.9. Typically, we have a feature model to extract the features from different
domains. Then, in the feature space, we can match the feature distributions by minimizing the
distance or adversarial training etc. so that the model can learn a domain-invariant feature
representation which can be generalized to a new domain.

Generally, a valid statistical divergence Ddiv(·‖·) satisfy the following properties :

— The divergence between distributions Di and Dj is non-negative : Ddiv(Di||Dj) ≥ 0

— The divergence attains zero iff. the two distributions are identical to each other, i.e.,
Di = Dj .

Depending on specific conditions, we may have different family of divergences. In this section,
we briefly summarize some popular statistical divergences in the literature and then show the
ones most related to our work.

1.5.1 Brief Summary of Different Distribution Divergences

We briefly summarize the Integral Probability Metrics, f -Divergence and Hypothesis-based
Divergences.

Integral Probability Metrics

A family of popular distribution distance measure is the Integral Probability Metrics (IPM) (Sri-
perumbudur et al., 2009) : For two distributions Di and Dj , and for a real valued function
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Divergence f(x) Df (Di‖Dj)

Kullback-Leibler (KL) Divergence x log(x) DKL(Di‖Dj) = Epi [log( pi(x)
pj(x))]

Total Variation Distance 1
2 |x− 1| 1

2
∫
x |pi(x)− pj(x)|

Jensen-Shannon (J-S) Divergence x log( 2x
x+1 + log( 2

x+1)) DKL(Di‖Di+Dj2 ) +DKL(Dj‖Di+Dj2 )

Table 1.3 – The f -divergences used in our work.

family f ∈ F , then the IPM metric could be computed as,

IPM(Di,Dj) = sup
f∈F
|EDif(x)− EDjf(x)| (1.4)

In the literature, the following divergences are used,

— Wasserstein Distance (Villani, 2009) : Let f(x) be 1-Lipschitz such that f(x)− f(x′) ≤
||x− x′||2 and F := {f : ||f ||L ≤ 1}, then we have the Wasserstein-1 distance :

W1(Di,Dj) = sup
||f ||L<1

Ex∈Dif(x)− Ex′∈Djf(x′) (1.5)

— Total Variation Distance 1 (Lin, 1991) : Let supx |f(x)| ≤ 1, then we have the Total
Variation Distance :

dTV (Di,Dj) = 1
2 |Di −Dj | (1.6)

— Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) : Denote H by a reproducing
kernel Hilbert space and let F = {f : ‖f‖H ≤ 1}, then the IPM recovers the MMD :

DMMD(DS ,DT ) = ‖ 1
|XS |

∑
xsi∈XS∼DS

ψ(xsi )−
1
|XT |

∑
xti∈XT∼DT

ψ(xti)‖ (1.7)

The Information f-Divergence

f -divergence family (Sason and Verdú, 2016) is characterized by a convex function f s.t.
f(1) = 0, then the f -divergence between two distributions Di and Dj , with which the
probability density functions pi(x) and pj(x), respectively, can be defined as,

Df (Di‖Dj) =
∫
x
f( pi(x)
pj(x))pj(x)dx (1.8)

To define different function f(x), we can have different kind of divergences widely used in the
literature. We summarize some f -divergence used in our work (Chapter 5 and Chapter 6) in
Table 1.3.

1. It can also be viewed as a kind of f -Divergence.
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One property of f -divergence is that it can be efficiently estimated via its variations form (Wan
et al., 2020) by define a convex conjugate of f as,

f?(x′) = sup
x

[xx′ − f(x)] (1.9)

Let d(x) be a function such that d : X → R, then the variational term of f -divergence is
estimated by

Df (Di‖Dj) = sup
d:X→R

EDi [d(x)]− EDj [f ′(d(x))] (1.10)

Then, by adopting different f(x), we can have different dual term of the f -divergence. For
example, let f(x) = 1

2 |x− 1|, we have the total variation distance as,

dTV (Di,Dj) = sup
d:X→R

EDi [d(x)]− EDj [d(x)] (1.11)

To solve Eq. 1.11, we can introduce a critic function d(x) to maximize the dual term of
f -divergence. In the deep learning setting, this then inspires us with an adversarial training
scheme. We will further elaborate this in Chapter 3, Chapter 4 as well as Appendix A.1.

Hypothesis-based Divergences

Another kind of divergence to measure the divergences between different distributions is
the hypothesis-based divergences. For example, H-divergence is a widely used measure for
domain adaptation (Ben-David et al., 2010a; Zhao et al., 2019a) and multi-task learning
approaches (Mao et al., 2020).

Definition 1.3. H divergence (Ben-David et al., 2010a) : Given two domain distributions
Di(x) and Dj(x) over X , and a hypothesis class H, the H divergence between Di(x) and Dj(x)
is

dH(Di,Dj) = 2 sup
h∈H
|Px∼Di [h(x) = 1]− Px∼Dj [h(x) = 1]| (1.12)

From Eq. 1.12, we note that H-divergence depends on the richness of the hypothesis class
H (Shalev-Shwartz and Ben-David, 2014) to discriminate the samples from Di and Dj . The
H-divergence then inspires many theoretical analysis in the transfer learning methodologies in
domain adaptation (Ganin et al., 2016; Zhang et al., 2019c; Saito et al., 2018) and multi-task
learning (Mao et al., 2020). Apart from the H-divergence, another distance adopted in the
literature is the Discrepancy Distance,

Definition 1.4. Discrepancy Distance (Mansour et al., 2009a) : Let H be a hypothesis
set of functions h ∈ H : X → Y, and denote ` : X × Y → R+ by a loss function over Y. The
discrepancy distance discL between two distributions Di and Dj is computed by,

discL(Di,Dj) = max
h,h′∈H

|Ex∈Di`(h(x), h′(x))− Ex∈Dj`(h(x), h′(x))| (1.13)
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The discrepancy distance then inspires many transfer learning approaches (Mansour et al.,
2009a; Kuroki et al., 2019; de Mathelin et al., 2021). Unlike the H-divergence, The discrepancy
distance is suitable to a more general scenarios, including regression, and general loss functions.

In chapter 3 and 4, we exploit the Wasserstein-1 distance since it could constrain labelled
source samples of the same class to remain close during the transportation process (Courty
et al., 2016), which quietly fit to the problem setting in those two chapters. Moreover, some
information theoretical metrics such as KL divergence is not capable to measure the inherent
geometric relations among the different domains (Arjovsky et al., 2017). In contrast, the
Wasserstein distance can exactly measure their corresponding geometry properties. Besides,
compared with (Ben-David et al., 2010a), Wasserstein distance has gradient property (Arjovsky
et al., 2017) and the promising generalization bound (Redko et al., 2017). The empirical
studies (Gulrajani et al., 2017; Shen et al., 2018) also demonstrated the effectiveness of the
Wasserstein adversarial training for extracting the invariant features to align the marginal
distributions of different domains (see also in Appendix A). In Chapter 5 and Chapter 6, we
exploit the family of f -divergence especially with the Jensen-Shannon Divergence and Total
Variation Distance, which were widely adopted in the GAN style adversarial training.

The MMD metric is usually implemented in kernel space, which is not sufficient for large-scaled
applications, and KL divergence is unbounded, which is also insufficient for a successful
measuring domain shift (Zhao et al., 2019a). Note that the Wasserstein-1 distance introduced
in Eq. 1.5 is not the original form of the optimal transport problems but the Kantorovich-
Rubinstein duality form, which is introduced in Appendix A.2.1.

With the background knowledge of the statistical distances in hand, we can introduce the
basic generalization bound explored in the literature that related to our work in the following
section 1.5.2.

1.5.2 Basic Generalization Bounds

The essential component of recent transfer learning, especially for the domain adaptation (DA)
approaches aims to measure the divergence between the source and target domain. Previous
works have proposed hypothesis based metrics such as H-divergence (Ben-David et al., 2010a),
distribution discrepancy (Cortes et al., 2019), margin disparity discrepancy (Zhang et al.,
2019c) and X -discrepancy (Kuroki et al., 2019), which only focus on the covariate marginal
distribution similarity.

An alternative way is to directly derive the statistical divergence based theory : information
theoretic Rényi divergence (Mansour et al., 2009c; Germain et al., 2016) and Wasserstein
distance (Redko et al., 2017), which can capture the joint distribution similarity. Those previous
works have reported lots of concentration inequalities in domain adaptation-related researches.
Such concentration bounds play an essential role in recent DA related works. In the following
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section, we introduce the representative ones using H-divergence, which then inspires to many
adversarial training (Ganin et al., 2016) based approaches, and the generalization bound using
Wasserstein distance, which inspires our work in Chapter 3 and Chapter 4.

Generalization Bound over Source and Target Distribution with H-divergence

H-divergence was firstly analyzed in Ben-David et al. (2006) for analyzing the concentration
equality between source and target domains. Then, Ben-David et al. (2010a) provided the
theoretical framework on learning from different domains using H divergence.

Theorem 1.1. (Ben-David et al., 2010a) Let H be the hypothesis space with VC dimension
d. For two distribution DS and DT . For every h ∈ H :

RT (h) ≤ RS(h) + dH(DS ,DT ) + λs,t (1.14)

where λs,t = infh∈H{RS(h) +RT (h)} and RS(h), RT (h) are the source and target risks.

Here the term λs,t = infh∈H{RS(h) +RT (h)} is not observable in the unsupervised domain
adaptation tasks since the learner has no access to the labels in the target domain. Zhao et al.
(2019a) analyzed the conditional shift problem using the Ĥ divergence and show that risk on
the target task can be decided by the source risk, the marginal distribution divergence, and
disagreement between the two labelling distribution :

RT (h) ≤ RS(h) + dĤ(DS ,DT ) + min{EDS

[∣∣fS − fT ∣∣],EDT

[∣∣fS − fT ∣∣]} (1.15)

Here RT (h), RS(h) and f refers to target risk, source risk and labeling function, respectively.
We can see the term min{EDS

[∣∣fS − fT ∣∣],EDT

[∣∣fS − fT ∣∣]} refers to the labelling function and
is also an non-observable term in the unsupervised domain adaptation. We further investigate
this problem using active learning and the results are illustrated in Chapter 3.

Many DA approaches widely investigated the concentration bound by Ben-David et al. (2010a)
reflected by Eq. 1.14 (e.g. Ganin et al., 2016), which works as a principled neural network-based
architecture in DA. However, the H-divergence can not be directly minimized, and typically it
should be computed by approximation. For example, in the literature, J − S divergence is
widely used for approximating the H-divergence (e.g. Pu et al., 2017; Xu et al., 2018). However,
such approximations don’t have many theoretical insights and is not a good choice.

We adopt the example by Ben-David et al. (2010b) and Shui et al. (2020a) illustrated in
Fig. 1.10 to show the difference between H-divergence and the J-S divergence. First fix a small
ξ ∈ (0, 1). Let the target DT (x) be the uniform distribution over {2kξ : k ∈ N, 2kξ ≤ 1} and let
the source distribution DS(x) be the uniform distribution over {(2k+1)ξ : k ∈ N, (2k+1)ξ ≤ 1}.
We can compute dH(DT ,DS) = ξ while DJS(DT ‖DS) = 1 since the two distributions have
disjoint support. Then we have dH(DT ,DS) � DJS(DT ‖DS) when ξ � 1, indicating those
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Figure 1.10 – Counter Example to show the differences between the J-S divergence and
H-divergence. Figure referred from Ben-David et al. (2010b).

metrics can be very different. This aforementioned example indicates the different properties
between these two metrics. Since in practice we broadly applied Jensen-Shannon divergence
based loss for designing the algorithm (e.g. Li et al., 2018c; Wu et al., 2019; Wen et al., 2020),
thus adopting the H-divergence based theory for explaining the theoretical insights generally
is not adequate.

Recently, Redko et al. (2017) and Shen et al. (2018) implemented Wasserstein Distance as
a measure in adversarial training for DA. We now report the generalization bound w.r.t

Wasserstein Distance.

Generalization Bound over Source and Target Distribution with Wasserstein
Distance

As stated before, Wasserstein Distance, together with Optimal Transport theory, has played
an important role in recent computer vision applications (e.g. Wasserstein GAN by Arjovsky
et al. (2017)). We follow the strategy of Redko et al. (2017) and Shen et al. (2018) to analyze
the domain discrepancy with Wasserstein Distance with Lipshciz-continuous functions.

Theorem 1.2. (Shen et al., 2018) Let DS ,DT be two probability measures, assume ∀h ∈ H
are k-Lipschitz continuous functions and cost function for OT is the Euclidean distance
ρ(x,y) = ‖x− y‖. Then we have that :

RT (h, h′) ≤ RS(h, h′) + 2kW1(DS ,DT ) + λ

for every hypothesis h, h′ ∈ H and λ is the combined error of the ideal hypothesis h? that
minimizes the combined error RS(h) +RT (h).

The main idea of the proof is symmetric to Lemma 1 of Redko et al. (2017), while they
restricted all the hypothesis within an unit ball in the Reproduced Hilbert Space, following
the work of Shen et al. (2018), it can be extended to k − Lipschiz continuous functions.
This Wassertein Distance based bound inspires some practical methods and showed a good
practical performance, where they proposed Wasserstein Distance Guided Representation
Learning (WDGRL) algorithm (details are displayed in Appendix A.3). This algorithm is also
a fundamental tool of our work in Chapter 3 and 4.
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Theoretical Analysis Type of `S(h) Divergence D(DT (x)‖DS(x)) Non-observable term

Ben-David et al. (2010a) Binary H-divergence infh∈H{RS(h) +RT (h)}

Shen et al. (2018) Binary Wasserstein-1 infh∈H{RS(h) +RT (h)}

Zhao et al. (2019a) Binary H̃-divergence min{ES [|fS − fT |],ET [|fS − fT |]}

Peng et al. (2019b) Binary Moment Matching Distance minh∈H{RT (h) +Rj(h)}

Table 1.4 – Brief comparisons of different unsupervised domain adaptation. Type of `S(h) : the
type assumptions on the loss ; D(DT (x)‖DS(x)) metrics for measuring marginal distribution
similarities ; Non-observable term : the underlying assumption for ensuring a success transfer.
No matter applying which theoretical divergence, there is always a non-observable term.

Contributions Problem setup Source data Target data Objective

Zhou et al. (2021c) Single source Transfer
(Domain Adaptation) DS(x, y) DT (x) 1. OT Feature Alignment

2. AL for Conditional Shift

Zhou et al. (2021b) Multi-source Transfer
(Domain Generalization) {Di(x, y)}mi=1 N/A

1. OT Feature Alignment
2. Metric Learning Class-level
Alignment

Zhou et al. (2021a) Multi-source Transfer
(Multi-task Learning) {Di(x, y)}mi=1 {Di(x, y)}mi=1

1. Semantic Shift
2. Label Shift
3. Limited data

Zhou et al. (2021d) Multi-source Transfer
(Domain Generalization) {Di(x, y)}mi=1 N/A 1. Semantic Shift

2. Label Shift

Table 1.5 – A brief summary of our contributions towards the thesis.

These theoretical results above are usually based on an underlying assumption that there exists
a hypothesis that can minimize both the source and target risk. However, the target risk is not
observable (Zhao et al., 2019a) since we don’t have the target labels under the unsupervised
domain adaptation setting. Table 1.4 shows compression of recent domain adaptation theory
where there is especially focus on the non-observable term which may lead to the conditional
shift problem (Zhao et al., 2019a). From this table, we can see that, no matter applying
which theoretical divergence, there is always a non-observable term, which may lead to the
conditional shift problem. We will discuss this issue in detail in Chapter 3.

1.6 Overview of Objective and Methodology

Before introducing the related works and our main contributions in details, it is helpful to
take an overview of the research objectives and methodologies involved in this thesis.

As aforementioned, we have devoted to leveraging the transferable features from different
domains by focusing on some specific learning scenarios to solve the conditional shift problems,
semantic matching and label distribution shift problems in transfer learning with different
settings. We illustrate a brief summary of our contributions in Table 1.5 to show the main
research objectives of each contribution. In this thesis, we aim to figure out how to extract
the transferable features from some source domains and then implementing some advanced
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techniques to enhance the transfer process. One key idea in such a transferring process is to
learn transferable and domain invariant features then adapting them to another domain.

Previous works have proposed a large number of approaches to align the marginal feature
distribution (D(x)) and showed an impressive performance for real-world applications (Tzeng
et al., 2014; Isola et al., 2017; Saito et al., 2018), especially with the help of adversarial training
techniques (Ganin et al., 2016). Such approaches usually ignored the conditional distribution
shifting and assumed that the conditional distribution (D(y|x)) remains unchanged during
the transferring process. However, such assumptions may not hold in some cases (Zhao et al.,
2019a), and the conditional or label distribution may shift during the transfer process, which
may hinder the learning performance (Zhao et al., 2019a). To alleviate this difficulty, in Zhou
et al. (2021c) we investigated the conditional shift problem in DA and theoretically analyzed
the conditional shift problems with Wasserstein distance and thereafter the discriminative
active learning for addressing this issue, which will be elaborated in Chapter 3.

Another issue involved in the marginal-only training method (Ganin et al., 2016) is that the
labelling and category information will be neglected. Due to the similar problem setting between
DA and DG, many previous works have directly applied the adversarial training method of
DA for DG. However, this may still lead to the semantic misalignment problems in DG (Dou
et al., 2019). The semantic misalignment problems usually refers to the situation that the
semantic distributions (D(x|y)) were not correctly aligned during the transfer learning process.
To address this issue, in Zhou et al. (2021b), we investigate the value of category relations
in domain generalization problems via adopting the metric learning objective to leverage the
category similarity relations of the instances to encourage a clear decision boundary, and
achieve the state-of-the-art performances for domain generalization problems. We show the
detailed results of this work in Chapter 4.

Then, we focused on the semantic matching problems in Zhou et al. (2021a) by bounding the
task error with semantic distributions D(x|y) divergence across all the tasks, where we provide
the first theoretical results for controlling the semantic divergence in MTL. This theoretical
result then inspired us the Semantic Multi-task Learning algorithm, which can help to alleviate
the label shift problems and showing state-of-the-art performances. Details are introduced in
Chapter 5.

Lastly, in Zhou et al. (2021d), we extend the learning objectives in another multi-source
transfer learning task, i.e., explore the value of label and semantic information in the domain
generalization problems, in which we provide a concrete theoretical framework to understand
the generalization property by bounding the target domain risk with the label and semantic
divergences. Our results reveal that to control the target risk, one should jointly control
the source errors that are weighted according to label information and align the semantic
conditional distributions between different source domains. The proposed theoretical analysis
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then leads to an efficient algorithm to control the label distributions while matching the
semantic conditional distributions. We also consider evaluating the algorithm performances
under label distribution shift problems in domain generalization learning paradigms. The
results showed that our method could outperform most of the baselines, and could handle the
label shift problems which could not be solved by several principled approaches. We introduce
this work in Chapter 6.

In terms of methodologies, we have studied the adversarial training with distribution matching
methods from different aspects. In Chapter 3, we explore the conditional shift problems in
domain adaptation with the Wasserstein adversarial training and active learning objectives. In
Chapter 4, we explore the category relations in domain generalization with the Wasserstein
adversarial training together with the metric similarity learning objective. In Chapter 5, we
theoretically studied the semantic information in multi-task learning with a concrete algorithm
to match the semantic distributions together with the label distributions for each task, which
is lastly extended to the domain generalization problems in Chapter 6.

1.7 Discussion and Conclusion

In this chapter, we quickly introduced the preliminaries of the learning paradigms tackled
in this thesis, namely, domain adaptation, domain generalization and multi-task learning
problems. The core methodology in our work is to match the data distributions among different
domains. We present the comparison of some related distribution measures and also discuss
the benefits and disadvantages of these kind of measures, which then inspire our work using
the Wasserstein distance in Chapter 3 and Chapter 4, and the family of f -divergence used in
Chapter 5 and Chapter 6. Now, based on these preliminaries of the transfer learning problems
involved in this thesis, we survey the state-of-the-art works in the next Chapter 2.
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Chapitre 2

Literature Review

This thesis is devoted to learning transferable features from different domains. In this chapter.
we start by summarizing the transfer learning methods, then the single source transfer problems,
i.e., domain adaptation (DA) methods, and lastly, the multi-source transfer learning methods,
including domain generalization (DG) and multi-task learning (MTL) methods related to our
work.

We present in Fig. 2.1 a basic structure of this literature review chapter to show the contents
and connections of each section. More specifically, we first show the related works of the general
transfer learning problems in section 2.1, which are the early-stage approaches in transfer
learning and are essential to the following works for DA, DG and MTL. Then, we present the
state-of-the-art works on DA in section 2.2, which is mostly relative to our contribution (Zhou
et al., 2021c) introduced in Chapter 3.

After that, we present the literature review on the multi-source transfer learning problems,
including the MTL problems, which is mostly connected to our contribution (Zhou et al.,
2021a) introduced in Chapter 5, as well as the literature of DG problems, which is most related
to our contributions (Zhou et al., 2021b,d).

Below we start by introducing the general transfer learning approaches.

2.1 Reviews on Traditional Transfer Learning Approaches

Transfer Learning aims to transfer the knowledge learned from a source domain to a new
target domain (Pan and Yang, 2009). We focus here on traditional transfer learning, of which
the brief summary is represented in Table 2.1. Specifically, as proposed by Weiss et al. (2016),
we can categorize the traditional transfer learning approaches into several groups including
the instance-based (section 2.1.1) and mapping-based approaches (section 2.1.2). As a new
trend, model-based methods for meta-transfer learning have been investigated in recent years,
and we also present a quick summary on this area in section 2.1.3.
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Figure 2.1 – The Structure of the Literature Review chapter.

Then, we summarize in section 2.2 the related works on single-source transfer learning, a.k.a.
the domain adaptation problems, and we present in section 2.3 the state-of-the-art works on
multi-source transfer learning problems.

2.1.1 Transferring the knowledge of instances

The main idea of such an instance-based method is to assign an instance-specific weight to
compute the objective loss function. This kind of approaches are based on the assumption
that although the source domain knowledge couldn’t be reused directly on the target domain,
some parts of the source data could still be reused with few labelled target instances (Pan and
Yang, 2009).

As introduced in section 1.2.1, the instance-weighting-based transfer learning approach played
an important role at the early stage of transfer learning (e.g. Dai et al., 2007; Ma et al., 2012)
and also domain adaptation (e.g. Long et al., 2014; Li et al., 2016b). This kind of method was
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Category Description Example
Instance-based assign a weight to the source do-

main instances
Boosting based Methods : TrA-
daBoost (Dai et al., 2007), On-
line Boosting Wang and Pineau
(2015), GapBoost (Wang et al.,
2019a)

Mapping-based mapping data from different do-
mains into a latent space and then
apply the classification on this ex-
tracted space

Mean-Max Discrepancy (Tzeng
et al., 2014)

Network-based use the network (pre-trained on
source domain) then fine-tuning
on the target domain

Fine-tuning on the trained mo-
dels (Sun et al., 2019)

Table 2.1 – A brief categorization of transfer learning. Transfer Learning approaches usually
could be categorized into 1) instance-based, 2) mapping-based, 3) network-based and 4)
adversarial based transfer learning. Categorization methodology borrowed from Weiss et al.
(2016).

firstly adopted in natural language processing problems (e.g. Jiang and Zhai, 2007; Alyafeai
et al., 2020) and then for computer vision problems (e.g. Wang et al., 2019a; Soleimani and
Nazerfard, 2021; Niu et al., 2020).

The instance based transfer method was usually combined with boosting method, of which the
key idea is also to assign weights for different instances. When applying the boosting method
into transfer learning, one can assume that even though the distributions of source and target
are different, they still satisfy the basic assumption that some of the source instances may be
useful in transferring the knowledge to the target domain while the other instances may be
harmful.

For example, TrAdaBoost, proposed by Dai et al. (2007), is an AdaBoost based method for
transfer learning, which took advantage of the nature of Boosting methods which could help
to reduce the effect of ’useless’ instances in the source domain and encourage the effect of
useful instances in the source domain to transfer the knowledge to the target domain.

Jiang and Zhai (2007) proposed to heuristically remove the ‘misleading’ source instances by
evaluation the conditional probabilities between source Ds(y|x) and target Dt(y|x). As the
conditional distribution stands for the labelling function f in different domains, this kind
of evaluation also can be used for addressing the conditional shift problem in unsupervised
domain adaptation problems (see our contribution (Zhou et al., 2021c) presented in Chapter 3).

Recently, Wang et al. (2019a) also considered the situation where some of the target labels
are available in the target domain and adopt the Y-Discrepancy (Mehryar et al., 2018) for
measuring the discrepancies between the source and target domain in case where some target
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labels are given. With the target labels in hand, the learner can measure the weights of the
source instances and apply the boosting method for transferring the knowledge. The notion of
performance gap proposed by Wang et al. (2019a) enables us to measure the divergence between
domains in transfer learning by exploiting the label information in the target domain. The
performance gap then encouraging some theoretical analysis for instance weighting. It could
be used to analyze other forms of transfer learning like a parameter or feature transfer (Wang
and Pineau, 2015). It could also have some connections with knowledge transfer strategies for
other learning paradigms such as meta-learning (Sun et al., 2019; Franceschi et al., 2018) or
lifelong learning (Ruvolo and Eaton, 2013).

2.1.2 Transferring feature using mapping-based methods

The mapping-based method refers to the approaches mapping the source and target information
to a new space (Pan and Yang, 2009), and aligning the source and target features in that space.
As introduced in section 1.2.2, this kind of method usually adopts a distribution distance
measure, e.g. the Mean Max Discrepancy (MMD) metric introduced the in section 1.5, to align
the source and target features (see also in Fig. 1.9 in section 1.5.) in the latent space. The
mapping-based transfer learning methods were widely used in SVM or shallow model-based
approaches before the era of deep learning (Yang and Gao, 2013; Muandet et al., 2013).

A remarkable work of mapping-based transfer learning approach is the Transfer Component
Analysis (TCA) by Pan et al. (2010). TCA focuses on finding a transferable invariant feature
representation in the Reproducing Kernel Hilbert Space (RKHS) with Maximum Mean
Discrepancy. It assumes that the distributions and the transferable components (i.e., the
underlying transferable features) are close to each other w.r.t. MMD. With the development of
deep learning, the traditional SVM or shallow model were extended to a deep neural network
model while also extending the MMD to compare the distributions in a deep model with the
help of an extra domain confusion loss. For example, the discrepancy based domain adaptation
method (see section 2.2.2) was based on this kind of transfer learning approach.

In the same context, Muandet et al. (2013) implemented MMD as a distribution regularizer
and proposed the kernel-based domain invariant component analysis (DICA) algorithm. DICA
minimizes the distribution mismatch by minimizing MMD regularizer across domains. Yang
and Gao (2013) proposed a model based on canonical correlation analysis with MMD to
regularize the differences among domains for generalization to a new domain.

These mapping-based transfer learning approaches then inspired many DA and DG approaches.
We will present them in section 2.2.2 and section 2.3.1.
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2.1.3 Model Agnostic Meta Learning-based Approaches

In previous sections, we focus on the task setting where the source domain and target domain
information are provided to the learner at the same time. However, this situation may not hold
in many practical scenarios. For example, consider a robot vision system used for navigation ;
it’s not possible to train algorithm with all the navigation environments at one time. A more
practical setting is to train the model in an online setting (Mancini et al., 2018; Dou et al.,
2019; Li and Hospedales, 2020), a sequential setting (Balaji et al., 2018) or the continual
learning setting (Parisi et al., 2019), from which the model could fast adapt to task N+1 based
on the trained task N (Finn et al., 2017). Recent works have proposed to use a meta-learning
based transfer learning setting (Sun et al., 2019, 2020).

Meta-learning (a.k.a. learning to learn) is a long-standing topic exploring the training of a
meta-learner that learns how to train particular models (Aiolli, 2012; Sahoo et al., 2018).
Most of the recent meta-learning approaches were rooted in the fundamental Meta-Learning
paradigm, namely, Model Agnostic Meta-Learning (MAML by Finn et al. (2017)). MAML
was proposed to learn an internal feature that is broadly applicable to all tasks in a task
distribution, rather than a single task (Sun et al., 2019). In the same context, Soh et al. (2020)
proposed to leverage the parameters for internal learning then exploit the external training
loop inside the meta-transfer training method to handle the super-resolution for few-shot
learning. Park et al. (2020) proposed to learn the transferable features from one class to
another with a meta-training framework.

The meta-learning method is also applied in the domain generalization problems by leveraging
the meta-train and meta-test framework, as introduced in section 2.3.1. In our contribu-
tions (Zhou et al., 2021b,a), we compared our method and this kind of meta-learning approach
to confirm the effectiveness of our contribution.

In next section, we introduce the domain adaptation (DA) approaches, which are most related
to our contribution (Zhou et al., 2021c).

2.2 Related Works on Single Source Transfer Learning

In this section, we summarize the single source transfer learning problem involved in our work,
i.e., the domain adaptation problem. Generally, the DA approach can be splited into several
parts, including :

1. Reconstruction based approach, which usually reconstructs the data of the source or
target domain using an auxiliary task to learn the shared features (Ghifary et al., 2015b).

2. Discrepancy based approach, which usually focuses on fine-tune the model with the
unlabelled target data to overcome the domain shift (Zhuang et al., 2015).
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2. Adversarial based approach, which leverage the power of the adversarial train scheme to
achieve the distribution alignment (Ganin et al., 2016).

We present a brief structure of the DA approaches in Fig. 2.2. The early-stage approaches
on DA majorly leveraged the reconstruction and discrepancy based approaches. Latterly, the
adversarial training based approaches have attracted more attentions and showed state-of-the-
art performances (Wang et al., 2018; Zhao et al., 2020b).

In this section, we briefly introduce the reconstruction and discrepancy based approaches in
section 2.2.1 and section 2.2.2, respectively. After that, we focus on the adversarial based
approaches in section 2.2.3. Note that our contribution (Zhou et al., 2021c) and (Zhou et al.,
2021b) were most inspired by the adversarial based method. Finally, we will present the work
with semi-supervised DA related to our work, especially the active learning method enhanced
DA approaches in section 2.2.4. Furthermore, we also notice some more recent works that
combine some new methods for DA including the contrastive training (Thota and Leontidis,
2021; Song et al., 2021b; Wang et al., 2021b), image generation (Yang and Soatto, 2020) for
domain randomization training (Volpi et al., 2021) and self-training (Yang et al., 2021) etc.
Even though they are not directly related to the methodologies involved in this thesis, we
summarize some interesting works in section 2.2.5 to show some new trends in this area.

Domain Adaptation

Adversarial
based approach

Generative
model based

Non-generative
model based

Discrepancy
based approach

Reconstruction
based approach

Autoencoder
reconstruction
based approach

Adversarial
reconstruction
based approach

Figure 2.2 – Domain Adaptation Taxonomy.

2.2.1 Reconstruction based approaches

The reconstruction based DA approach usually reconstructs the data of the source or target
domain using an auxiliary task to learn the shared features (Wang et al., 2018). This kind of
approach typically adopts the autoencoder reconstruction or adversarial reconstruction. The
autoencoder model uses an encoder-decoder framework (Bengio, 2009) and explores the power
of reconstruction loss to learn the feature relation (Ghifary et al., 2016). And the adversarial
reconstruction approaches usually estimate the reconstruction loss by a GAN model (e.g., the
dual GAN (Yi et al., 2017), cycle GAN (Zhu et al., 2017) etc.) Notice that the adversarial
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reconstruction methods also have connections to the adversarial based approaches introduced
in section 2.2.3.

Under the DA settings, the encoder is trained to learn a shared encoding function that maps
the inputs from source and target to a shared feature space while keeping the domain-specific
features by the reconstruction loss between the source and target, while the decoder is trained
for data reconstruction (Ghifary et al., 2015a).

A recent work by Glorot et al. (2011) adopted the denoising autoencoder (SDA) to reconstruct
the data from different domains with the same network, which can learn the high-level
representations for both the source and target domain. Together with SDA process, a linear
classifier is then trained to make predictions for both the source and target domain. Notice
that the framework by Glorot et al. (2011) required large amount of computational costs and is
limited by the scale of the high-dimensional features. This is why Chen et al. (2012) proposed
the marginal SDA approach to marginalize the noise for the model, which then improved the
computational efficiencies.

After that, Ghifary et al. (2015b) proposed an autoencoder model to jointly learn the self-
reconstruction for the data from source domain and between-domain reconstruction for
cross-domain features. Another stream of reconstruction based approach is the adversarial
reconstruction based approach, which usually jointly trains an adversarial objective with a
reconstruction objective (Wang et al., 2018). This stream of research is closely connected to
the general adversarial based approaches presented in section 2.2.3.

2.2.2 Discrepancy based approaches

The discrepancy based approach usually focuses on fine-tuning the model with the unlabelled
target data to overcome the domain shift. Recall that the domain shift problems usually refer
to the scenario where the data distribution change between the training sets (see Fig. 0.1).
This stream of approach played an important role in the early stage DA researches, which
usually focused on transferring the features via minimizing the discrepancies or learn the kernel
mappings of the representations (Ben-David et al., 2006). The discrepancy based approach
usually focuses on aligning the statistical discrepancy between source and target by minimizing
the statistical distribution measure introduced in section 1.5. For example, by diminishing
the domain distribution shift using the MMD (Tzeng et al., 2014; Long et al., 2015a), KL
divergence (Zhuang et al., 2015) or discrepancy distance (Mansour et al., 2009b) between
domains.

Typically, a statistical distribution distance (e.g., the ones introduced in section 1.5.1) is
adopted to measure the divergence between source and target domain. We present a general
framework of this kind of approach in Fig. 2.3. The source and target data are processed by the
source and target feature extractors, respectively, which typically share the model parameters
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Figure 2.3 – General scheme of the discrepancy based domain adaptation approach. The
source and target feature extractors typically share the model parameters with each other. The
classifier computes the classification loss. The discrepancy loss is computed with the features
from both source and target domain using the statistical distance (see section 1.5.1). The
invariant feature is learned by minimizing the discrepancy loss. Dataset images are drawn
from PACS dataset (Li et al., 2017b).

with each other. Then, there follows the classifier, which computes the classification loss. The
discrepancy loss is computed with the features from both source and target domain using the
statistical distance. The invariant feature is learned by minimizing the discrepancy loss.

In the early stage of DA researches, MMD has been used as a metric for computing the
distance between two datasets. For instance, Ghifary et al. (2014) proposed a single hidden
layer model using the MMD metric to compute the representations from source and target
to minimize the domain distance. This work was limited by the single hidden layer network
and was not able to handle with complex features or raw image inputs. Then, Tzeng et al.
(2014) and Long et al. (2015b) extended the method of Ghifary et al. (2014) with a deep
CNN model to extract the input features. After that, Long et al. (2017b) adopted the joint
MMD metric in the joint adaptation network (JAN) to align the shift in the joint distributions
of both features and the corresponding labels.

As discussed in section 1.5.1, the methods with MMD metrics usually need to map the input to
the kernel space, which will limit the performance of the model. Recently, Wang et al. (2021c)
proposed to rethink the value of the MMD metric in DA and propose a novel discriminative
MMD metric to restrain the degradation of feature discriminability. Besides, this discriminative
MMD can also help to control the expansion of intra-class distance, which cannot be handled
by the original MMD metric.

Another kind of method adopted in the discrepancy based approach is the correlation alignment
(CORAL) method (Sun et al., 2017), which aims to measure the covariance of the source
and target domain features. For example, Zhang et al. (2018) adopted the general Euclidean
distance for covarainces of source and target domains. Recently, Chen et al. (2020a) adopted
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a monument matching distance (Peng et al., 2019a) to measure the high-order statistics of
the source and target features. In fact, this kind of approach usually relies on computing the
high-order statistics of the source and target features, which will increase the computational
costs. This made this kind of approach less attractive.

Except the MMD metric measures or the covariance discrepancies between the source and
target domains, other approaches were proposed to to directly minimize the discrepancies by
aligning the statistics of certain network layers. For example, Carlucci et al. (2017) proposed
to automatically choose the layers to align based on the statistics of model layers trained on
the source and target data. Then, Li et al. (2018g) proposed to align the mean and variance
of the classifier’s batch normalization layers with the estimated mean and variance from the
unlabelled target data. This kind of method explicitly manipulates the neural network layers,
so it will be more time-efficient than those methods which need to compute the MMD or
other discrepancy distances. However, to directly change the statistics of certain layers cannot
guarantee the invariant features since the feature distributions are usually aligned by both the
feature extractor and classifier rather than some certain layers.

To summarize, the performance of the discrepancy based DA approaches are usually limited
since they are constrained to map the features to a kernel space or only to align part of
the model layer statistics. In recent years, lots of adversarial training based approaches have
been proposed. The adversarial based method is connected to our work (Zhou et al., 2021c)
introduced in Chapter 3. We introduce them in the next part.

2.2.3 Adversarial based approach

The adversarial training method of domain adaptation was first inspired by the theoretical
work of Ben-David et al. (2010a). As we introduced in section 1.5.2 (Eq. 1.14), the results
of Ben-David et al. (2010a) demonstrated that the target domain error is bounded by the
source domain error, the divergence between source and target domain, as well as the joint
prediction error between source and target, which is assumed as a small constant.

Based on this theoretical result, Ganin et al. (2016) proposed the domain adversarial training
network (DANN), which jointly learns to minimize the classification error and achieve a domain
invariant feature learning via a gradient reversal layer in the discriminator. This framework
then inspired some following adversarial training based works in domain adaptation. We
provide a detailed introduction of DANN model in the Appendix A.1.

To the best of our knowledge, most recent approaches inspired by DANN typically could be
summarized as represented in Fig. 2.4. The model could contain three main parts : feature
extractor, discriminator and classifier. Many methods differ from each other based on different
objective functions. Generally, the objective functions are trained adversarial by the gradient
reversal or GAN style losses. In the following, we elaborate more on these kinds of approach
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Figure 2.4 – General scheme of recent adversarial training based DA methods. Usually there
are source feature extractor and target feature extractor to take the inputs from both source and
target domain. The source and target feature extractors typically share the model parameters.
Depending on specific task, discriminator is trained with different objective functions (see
section 2.2.3 for detailed discussion). The classifier is trained with labelled source domains
under a supervised mode. Figure modified from Tzeng et al. (2017). Dataset images are drawn
from PACS dataset (Li et al., 2017b).

since they are closely connected to our work (Zhou et al., 2021c,b).

The discriminative adversarial method usually relies on a discriminator to distinguish the
extracted feature if it is from the source or target domain. For example, the discriminator model
of DANN is trained to predict a binary output on discriminating the data from the source and
target domain. Then, Tzeng et al. (2017) combined the DANN method with the GAN training
method to aligning the marginal distribution (D(x)) between the source and target domain.
After that, Long et al. (2017c) proposed to aligning the conditional distribution (D(y|x))
across domains to leverage the cross-covariance between features and classifier predictions.
Recently, Liu et al. (2019b) proposed to not only aligning the features between source and
target domain but also to generate some transferable examples so that the classifier could
learn a better classification boundary.

There are also recent approaches that implemented consistency loss (Hoffman et al., 2018)
to ensure the generative model’s ability to capture the pixel level features of the inputs (Wu
et al., 2019; Wang and Deng, 2021). This can be viewed as a stream of combination with
the reconstruction loss based approach (see section 2.2.1) since the input data are recons-
tructed during the adversarial training process by aligning the image pixels, i.e., pixel-level
alignment. Hoffman et al. (2016) first proposed to align not only the domain level features
but also the image pixel-level information. The pixel-level alignment is achieved by a pixel
adversarial loss to apply the category-specific constrains, e.g., the pixel percentage histograms
in the source and target domain data. Then, Bousmalis et al. (2017) proposed an unsupervised
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DA method and focuses on pixel-level alignment with the generative models. The intuition
behind that is to achieve invariant features via a content similarity loss to make the source
domain feature appears as those drawn from the target domain.

In the same vein, the content similarity loss is extended to the content consistent loss (Zhu
et al., 2017) to ensure the image pixel-level alignment. The intuition of Zhu et al. (2017) is
that an image from the source domain is still identical to itself after a cycle of the adaptation
process. Based on this content consistent loss, Hoffman et al. (2018) proposed the cycle
consistent adversarial domain adaptation method mixing both image-pixel information and
the domain features. Similar to the reconstruction based approach, this consistency loss based
adversarial training approach is limited due to the computational costs. For example, the
training procedure of the cycle consistency loss requires an aligned pair of images, which made
the adaptation become less effective.

Some Optimal Transport (OT) (Courty et al., 2016; Redko et al., 2019) based approaches (Redko
et al., 2017; Shen et al., 2018; Stan and Rostami, 2021) with Wasserstein adversarial training
(see section A.2) have also been proposed for transfer learning especially for domain adapta-
tion (Xu et al., 2020; Dhouib et al., 2020). As explained in section 1.5.1, the optimal transport
technique with Wasserstein adversarial training could capture the geometry properties of
the data distributions. Besides, compared with the adversarial training methods promoted
by Ganin et al. (2016); Tzeng et al. (2017); Wang and Deng (2021) and benefits from the
advantages of Wasserstein distance by its gradient property (Arjovsky et al., 2017) and the
promising generalization bound (Redko et al., 2019). The empirical studies (Gulrajani et al.,
2017; Shen et al., 2018) also demonstrated the effectiveness of OT for extracting the invariant
features to align the marginal distributions of different domains.

In this thesis, we also adopt the Wasserstein adversarial training method (Zhou et al., 2021c,b)
when finding the invariant features. In Zhou et al. (2021c), we implement the Wasserstein
adversarial learning method to train a critic model for measuring the diversity of the target
instances (see Chapter 3), and in Zhou et al. (2021b), we implement similar kinds of pair-wise
adversarial training methods for all the source domain instances to achieve domain invariant
features (see Chapter 4).

In the following part, we will briefly summarize the active learning methods for domain
adaptation, which are closely connected to our contributions in Zhou et al. (2021c).

2.2.4 Active Learning for Domain Adaptation

We also noticed that some DA methods are equipped with Active Learning (AL) for enhancing
the adaptation process, which is closely related to our work (Zhou et al., 2021c). Persello and
Bruzzone (2012) proposed a two-direction AL algorithm for DA : query the most informative
from the target domain and remove the most strange features out of the source domain. Wang
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et al. (2014) proposed the active transfer technique for the model shift problem while assuming
the shifts are smooth. Based on this assumption, Wang et al. (2014) implemented conditional
distribution matching algorithm and off-set algorithm to modelling the source and target
tasks by comparing the Gaussian Distributions. Zhang et al. (2013) proposed a distribution
correction algorithm over kernel embeddings to handle the target shift.

The last two methods held on the assumption that there existed an affine transformation of
conditional distribution from the source to the target. In fact, these methods were based on
an SVM classifier or kernel matching technique, which are somehow difficult to implement
for large-scale applications. Li et al. (2021a) proposed a semi-supervised domain adaptation
approach that randomly query some target domain instances. This random selection method
can not control the uncertainty and diversity of the target domain instances.

The most similar approach related to our work is the active adversarial domain adaptation
(AADA) (Su et al., 2020) that proposed an active learning method using H divergence and
the importance sampling technique to query the target instances. However, the importance
sampling, query strategy they adopted assumed that the data support of target domain is
a subset of the data support of the source domain (supp(T ) ⊆ supp(S)), which may not
hold in many DA settings (Prabhu et al., 2020) while our work (Zhou et al., 2021c) directly
estimates the uncertainty and diversity using the model’s output, which doesn’t require such
kind assumption (see section 3.3.2). Furthermore, as discussed in section A.2 and Appendix A,
the Wasserstein adversarial training method we adopt could predict a constant critic score.
On the contrary, in the AADA method, the discriminator was trained under the domain
adversarial training method (Ganin et al., 2016) where the domain label is trained under a
binary classification model to distinguish the instances from source or target domain, which
restricts the power of active training. In our contribution (Zhou et al., 2021c), we exhaustively
investigate the work on active learning-based domain adaptation with both theoretical analysis
and extensive empirical demonstrations.

2.2.5 Some other approaches

Besides the approaches summarized above, we also notice some new methods have been
proposed in recent years. Most of them were combined with some new techniques e.g., domain
randomization with meta training (Volpi et al., 2021), Fourier image generation (Yang and
Soatto, 2020; Issar et al., 2021), constrastive training (Thota and Leontidis, 2021; Song et al.,
2021b; Wang et al., 2021b) etc. Those methods appear new to the community and are hard to
be categorized to a certain principled approach mentioned in section 2.2.1 to section 2.2.3.
Besides, they are not directly closed to our method, so we summarize some of them here to
show some potential new trends in this area.

One approach is to implement the meta learning method which splits the training data into
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meta-train and meta-test subset to simulate the domain shift(see also 2.1.3). Volpi et al.
(2021) adopted the meta-learning objective to generate some intermediate meta-domains with
the randomized image manipulations. Yue et al. (2021) proposed a self-supervised learning
framework for the few-shot DA problem. This work not only aligns the cross-domain features
but also captures the category-wise semantic structure of the source and target domain features
through the self-supervised learning process.

Similar to our work (Zhou et al., 2021b), learning the class-level information is also attractive
in the recent DA approaches. In this context Kang et al. (2019) proposed the first constrastive
learning method for domain adaptation, where they proposed to minimize the intra-class
discrepancy and maximize the inter-class discrepancy. Similarly, Thota and Leontidis (2021)
proposed the contrastive domain adaptation method in which several recent contrastive
learning frameworks were studied to tackle the DA problems. More recently, Wang et al.
(2021b) proposed a method where for an anchor image from a domain, minimizing the distance
with samples from the same class no matter which domain they come from. Since the target
domain label is not accessible during training, this method assigns a pseudo label to the target
domain instances. The contrastive learning methods have become more and more popular in
recent years, and it might be a trend to implement some new contrastive approaches in all
areas of transfer learning.

Another interesting stream of work aims to implement a Fourier transform to generate new
images for DA method. Yang and Soatto (2020); Issar et al. (2021) adopt the Fourier image
generation method to solve the image segmentation problems. The Fourier image generation
method reduces the domain alignment, which is not relying on learning the transferable
features but only use the Fourier transform and its inverse to generate some new data for
improving the adaptation performance. This kind of approach has nothing with knowledge
transfer, and consequently is less related to our work.

Recent DA works also show promising performance on some real-world applications. For
example, Li et al. (2021a) implemented the DA method for animal pose estimation tasks. Jiang
et al. (2021) tackles the keypoint detection problems using a regressive adaptation net-
work. Zhang et al. (2021) adopted the DA methods together with the scale and range informa-
tion of images for handling a 3D objection detection problem. Chen et al. (2021) implemented
a semi-supervised DA approach together with a double-level domain mixing method to solve
the semantic segmentation problems. Bai et al. (2021) adopted the unsupervised DA method
for person re-identification tasks. Yi et al. (2021) implemented an adversarial DA method
for handling the sparse point cloud LiDAR labelling problems. Finally, Song et al. (2021a)
proposed the spatio-temporal contrastive DA method to the video recognition problems. Those
recent DA applications have shown promising performances. They could drive to more applied
works in the future.
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Figure 2.5 – Comparison of multi-source transfer problems involved in our work. We consider
the Domain Generalization (DG) and Multi-task Learning (MTL) problems. For the DG
problems, we train the model on several source domains and test it on the unseen target
domain. For the MTL problems, we train the model with limited data on several different
tasks and test it on the same tasks. Dataset images are drawn from PACS dataset (Li et al.,
2017b).

Now we start to survey the multi-source transfer learning problems, which is prevalent in
recent researches, as well as relating to our contributions (Zhou et al., 2021a,b,d)

2.3 Related Works on Multi-source Transfer Learning

In previous sections, we mainly focused on the situation where we have a single source domain
and aim to adapt it to a single target domain. When the amount of data in one source is not
sufficient, we could not expect a successful adaptation performance (Peng et al., 2019b). For
example, consider the adaptation task in Office-31 dataset D (Dslr)→ A (Amazon). The total
size in domain D is 498, and the total number of images in domain A is 2817, indicating that
the target domain has richer information than the source domain. Besides, we also observe that
the images in A are more diverse than those in D, i.e., the data support of the source domain
is a subset of the data support of the target domain (supp(S(x)) ⊆ supp(T (x))). From our
preliminary results, we notify that the unsupervised single-to-single adaptation process is not
very useful (low accuracy on the target domain), confirming the problem mentioned above.

When the data from one source dataset is not enough , we may expect to leverage several
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different source datasets. In the previous Office-31 dataset example, the images in domain D
is not enough for successful adaptation to domain A In this case, we may combine the data
from domain D with domain W to learn more enough features for transferring the knowledge.

Multi-source transfer learning is a powerful extension where the labelled data may come
from multiple sources domains with different distributions (Zhao et al., 2019b). Many of
the recent multi-source transfer learning researches have been focusing on leveraging the
knowledge from multiple source domains and generalizing to a target domain. As stated in
table 1.1, we have investigated this kind of problem in several different aspects, including the
domain generalization problems and multi-task learning problems. In the following sections,
we will briefly summarize the works most related to our research in the context of domain
generalization and multi-task learning.

2.3.1 Domain Generalization (DG)

One learning paradigm of multi-source transfer learning we may start by the domain genera-
lization (DG). The general framework of domain generalization methods usually focuses on
extracting the transferable knowledge shared across domain distributions, which is committed
to generalize well on the unseen target domain. Similar to domain adaptation problems,
the underlying assumption of domain generalization is that there exists an invariant feature
distribution across all the domains, which consequently generalize well to an unseen target
domain (see also in Figure 1.1). Typically, there are several kinds of DG approaches. We could
summarize the recent literature into threefold :

1. Invariant representation learning approaches, which focus on adopts some discrepancy
minimization or adversarial training method to learn the invariant features for generali-
zation (Li et al., 2018c).

2. Episodic Training-based (meta-learning-based) approaches, which simulate the domain
shift by split the data into meta-train and meta-test subgroups (Balaji et al., 2018).

3. Augmentation-based approaches, which generate new data for learning diverse domain
features (Schmidt, 2021).

We firstly present the brief categorization of those DG approaches in Table 2.2.

The invariant representation learning approaches usually adopt the distribution matching
methods, which were majorly motivated by the domain adaptation theory (Ben-David et al.,
2010a; Redko et al., 2017). The domain distributions were aligned via some distribution
matching, distribution distance minimization or adversarial training methods to leverage the
shared knowledge. For example, maximum mean discrepancy (MMD) was implemented by Li
et al. (2018c) as a distribution regularizer together with the adversarial autoencoder (AAE) to
learn the invariant features. From this side, Muandet et al. (2013) proposed the kernel-based
Domain Invariant Component Analysis (DICA) algorithm, where a kernel-based optimization
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Category Methodology Remarks Examples

Invariant
Representation
Learning

Kernel
Matching

Implement kernel mapping
functions to transform the
original data into the
kernel space and then
matching the features in
the kernel space.

(Blanchard et al., 2011)
(Blanchard et al., 2021)
(Muandet et al., 2013)
(Li et al., 2018d)
(Erfani et al., 2016)

Feature
Alignment

Align the features across
domains by distribution
matching or feature
normalization.

Our work Zhou et al. (2021d)
fits this kind of approach

(Motiian et al., 2017c)
(Ghifary et al., 2015b)
(Jin et al., 2020)
(Jin et al., 2021)

Adversarial
Training

Implement adversarial
training technique to
learn domain invariant
features.

Our work Zhou et al. (2021b)
fits this kind of approach

(Li et al., 2018c)
(Jia et al., 2020)
(Li et al., 2018e)
(Sicilia et al., 2021)
(Rahman et al., 2020)

Invariant Risk
Minimization

Train an optimal classifier on
top of the representation
space to be the same across
domains.

(Arjovsky et al., 2019)
(Rosenfeld et al., 2021)

Model
Agnostic
Training

Meta
training

Split the data into meta-train
and meta-test to simulate the
data distribution shift.

(Dou et al., 2019)
(Balaji et al., 2018)
(Li et al., 2018a)

Data
Augmentation

Domain
Randomization

Generate new data to simulate
complex environments based on
the limited training samples to
increase the diversity of data.

(Tobin et al., 2017)
(Khirodkar et al., 2019)

Data
Generation

Implement some generative
models e.g. VAEs
or GANs to generate new
images

(Zhou et al., 2020c)
(Rahman et al., 2019)
(Wang et al., 2020b)

Table 2.2 – A brief categorization of the DG problems. We could summarize the recent
DG progresses into three major categories, including : 1. Domain Invariant Representation
Learning, 2. Model Agnostic Training and 3. Data Augmentation methods. For each category,
we summarize the major methodologies inside this kind of approach. For example, the category
of Domain Invariant Representation Learning could have four kinds of major methodologies,
including kernel matching, feature alignment, adversarial training and invariant risk minimiza-
tion. We briefly introduce the methodology in column Remarks and present the representative
works in that category in the last column. Discussions of those approaches are presented in
section 2.3.1.
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algorithm was implemented to learn a domain-invariant transformation by minimizing the
dissimilarities. Ghifary et al. (2015b) proposed to implement adversarial training techniques
to extract the domain-invariant features under a multi-task learning style setting. Li et al.
(2018f) proposed a DG approach by leveraging deep neural networks for domain-invariant
representation learning. Motiian et al. (2017b) proposed to minimize the semantic alignment
loss as well as the separation loss based on deep learning models.

Recently, there have been some approaches to cast the domain generalization problems into
a meta-learning manner via the episodic training paradigm. The general meta-train and
meta-test notions in meta-learning are used to simulate the distribution shift during each
training iteration on the source domain dataset. Specifically, MetaReg (Balaji et al., 2018)
was proposed as a regularization term with weighted L1 loss for the top classification layers.
Meta Agnostic Meta-Learning (MAML) (Finn et al., 2017) was adopted by Li et al. (2018b)
to back-propagate the gradient of the losses of the meta-test tasks (Dou et al., 2019). Du
et al. (2020) proposed to model the shared classifier model parameters as a probabilistic
meta-learning model. Sharifi-Noghabi et al. (2020) also adopted meta-learning to simulate
the domain shift and implemented an entropy-based loss to give pseudo-labels together with
class-level centroids to ensure the semantic properties. Gong et al. (2021) introduced a setting
where the target domain is assumed as a compound of several unknown domains, which is
treated as a sub-target domain. Then a meta-learning algorithm is implemented to fuse the
sub-target domain together with the MAML algorithm for handling the generalization process.

We also notice some recent work (Zhou et al., 2020b; Schmidt, 2021) start to implement some
data augmentation methods to generate new images for training. For example, Qiao et al.
(2020) adopts the Wasserstein Auto-Encoder for domain augmentation to handle the worst-case
generalization problems. This kind of work typically boosts the performance by relying more on
the new data rather than transferring the knowledge. In our contributions Zhou et al. (2021b)
and Zhou et al. (2021d), we compared our method with those other principled approaches and
showed state-of-the-art performances.

As introduced in Table 2.2, our work Zhou et al. (2021b) and Zhou et al. (2021d) were focusing
on learning the invariant representation features. The invariant representation based DG
approaches share the similar assumption with invariant representation based DA approaches,
where we assume there exists an underlying common feature space that can generalize from
source domains to target domain. To leveraging the invariant features, one can use the
the discrepancy based approach or adversarial training based approach. Similar with the
invariant representation based DA approaches, this kind of method in DA may neglect the
label information and lead to some feature misalignment problem (Dou et al., 2019). That’s
why we proposed to leverage the label similarities in Zhou et al. (2021b) (Chapter 4) and
explore the semantic relations in Zhou et al. (2021d) (Chapter 6). The meta-learning based
approaches usually simulate the domain shift process by the meta-train and meta-test split so
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Figure 2.6 – The MTL problems involved in our work. Dataset images are drawn from PACS
dataset (Li et al., 2017b).

that the model can learn and generalize the features. As pointed by (Dou et al., 2019), the
meta learning based approaches can capture the feature diversities. That’s also why this kind
of method was adopted into the randomization methods (Volpi et al., 2021) to generate some
sub-domain features for adaptation or generalization. However, the meta learning method
usually relies on the bi-level optimization (Finn et al., 2017), which may be time-inefficient.
The time efficiency is also verified in our work Zhou et al. (2021d) showing the meta-learning
based approach as less time-efficient (see Fig. 6.7 in section 6.4.3).

2.3.2 Multi-task Learning

Another important multi-source transfer learning paradigm is the multi-task learning (MTL).
MTL aims to learn multiple tasks simultaneously and improves learning efficiency by leve-
raging the shared features across the multiple tasks. It has been prevalent in lots of recent
machine learning topics (Li et al., 2014; Wang et al., 2016; Teh et al., 2017). Notice that our
contribution (Zhou et al., 2021a) in Chapter 5 is most related to the generalization theoretical
results of representation learning based approaches and the task relation approach in multi-task
learning.

In the context of theoretical contributions, several results have been proposed. For example, Bax-
ter (2000) utilize the notion of VC-dimension and covering numbers to investigate the generali-
zation bound of MTL, assuming that there exists a common hypothesis space for different tasks.
Latterly, Ando and Zhang (2005) provided a more general analysis of structural learning from
multiple tasks by leveraging both the labelled and unlabelled data based on the Rademacher
complexity. Then, with the Rademacher complexity, some other improved theoretical results
have been proposed based on the assumption that the tasks are related with each other
and they share a common linear operator chosen to the pre-processed data (Maurer, 2006)
or the linear model parameters in a low-dimensional subspace (Maurer et al., 2013, 2016).
Besides, the latter work (Maurer et al., 2016) firstly analyzed the generalization error of
representation-based approaches. From this side, Zhang (2015) and Liu et al. (2017b) focused
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on the algorithm-dependent bounds under the algorithmic stability framework.

In the context of representation learning, Chen et al. (2018) proposed to balance the joint
training of multiple tasks to ensure that all tasks are trained at approximately the same
rate. Latterly, Wu et al. (2020) investigated the theory for deep multi-task learning, in which
they proposed that whether or not tasks’ data are well-aligned can significantly affect the
performance of multi-task learning. Standley et al. (2020) investigated a task group learning
method to dynamically determine which tasks should be learned together while discarded
those that should not be learned together, which showed efficiency when learning a large
number of tasks. In the context of online MTL, Herbster et al. (2020) studied learning bound
under a non-stationary environment. Mao et al. (2020) investigated the theoretical guarantee
of MTL under an adversarial training scheme.

All those methods introduced above were mainly focused on how to learn the marginal
distribution D(x) for each task of MTL problems. The labelling information in each task
is usually neglected. Furthermore, those works also ignored the label shift problems (Garg
et al., 2020), which can hinder the learning performances. In our work (Zhou et al., 2021a), we
studied the generalization bounds of MTL on how to control the semantic and label divergence,
which demonstrated better performances, especially when label shift problem occurs.

In terms of the task relations aspects, some other approaches also leverage the relations of
data distributions of each task to improve the performance of MTL. Aurelio et al. (2019)
studied a weighted entropy function for different imbalanced datasets. Murugesan et al. (2016);
Pentina and Lampert (2017) approached the online and transductive learning problem by
MTL using a weighted summation of the losses. Wang et al. (2019a) analyzed the algorithmic
stability in MTL. For task relations learning, Zhang and Yeung (2010) and Cao et al. (2018a)
defined a convex optimization problem to measure relationships while Long et al. (2017a);
Kendall et al. (2018) investigated probabilistic models by constructing task covariance matrices
or estimate the multi-task likelihood via a deep Bayes model. Latterly, Mao et al. (2020)
combines the feature representation learning and task relations learning together and analyzed
generalization bound under the adversarial training scheme motivated by the domain adaptation
problems (Ben-David et al., 2010a; Shen et al., 2018), showing improved performances in
vision and language processing applications, respectively. In our work (Zhou et al., 2021a), we
propose to dynamically estimate the task relations during training which enables the model to
learn an optimal task combination that can minimize the task error.

Now, we summarize the semantic matching work for transfer learning, which is connected to
our work (Zhou et al., 2021a).
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Semantic Matching for Transfer Learning

Another aspect involved in our work is the semantic distribution matching methods in the
transfer learning problems. To learn and leverage the semantic distribution D(x|y) is an
important aspect in machine learning, which has been prevalent in some different topics
such as few-shot learning (Motiian et al., 2017a; Luo et al., 2017b), transfer learning (Long
et al., 2014) etc. In the context of domain adaptation, Zhang et al. (2019a) propose to learn
the class-specific prototype semantic information by a symmetric network to align semantic
features for unsupervised domain adaptation problems. Xie et al. (2018) theoretically analyzed
the semantic transfer method for domain adaptation problems with a pseudo label.

In the notion of MTL, leveraging the semantic information was investigated inconspicuously
through some matrix decomposition methods in the notion of tensor learning. For example, Zhuang
et al. (2017) proposed a non-negative matrix factorization-based approach to learn a common
semantic feature space underlying feature spaces of each task. Luo et al. (2017a) leveraged
the high-order statistics among tasks by analyzing the prediction weight covariance tensor of
them.

As many DG approaches were motivated by the adversarial training method in domain
adaptation, the semantic misalignment problems could hinder the generalization performance.
Aiming to solve this issue, Dou et al. (2019) adopted the triplet loss as an auxiliary learning
objective on top of the meta learning-based DG approach (Li et al., 2018b). Matsuura and
Harada (2020) proposed to adopt an unsupervised learning objective to explore the class-
level similarities to enhance the semantic separation. Our contribution Zhou et al. (2021b)
implemented the Wasserstein adversarial training (Shen et al., 2018) to achieve the domain
level alignment while exploring the class-level similarities to constrain the instances from the
same class to stay close and let the instances from the different category far from each other,
i.e., achieving the semantic separation with a metric learning objective.

2.4 Summary

In this chapter, we summarized the related works on the transfer learning problems involved
in our work, including the domain adaptation, domain generalization and multi-task learning
problems, which are essential to our researches. With these related works in hand, we could
show our contributions in the following chapters.
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Chapitre 3

Discriminative Active Learning for
Domain Adaptation

In this chapter, we show the main results of our work (Zhou et al., 2021c) where we explore
the conditional shift problems using a novel active query strategy that controls the diversity
and uncertainty principles to find out the most informative features in the target domain.

Résumé

L’adaptation de domaine qui vise à apprendre une caractéristique transférable entre des
domaines différents mais connexes a bien été étudiée et a démontré d’excellentes performances
empiriques. Les travaux précédents se sont principalement concentrés sur la mise en correspon-
dance des distributions marginales des caractéristiques à l’aide des méthodes d’apprentissage
adversarial tout en supposant que les relations conditionnelles entre le domaine source et le
domaine cible restent inchangées, c’est-à-dire en ignorant le problème du décalage conditionnel.
Des travaux récents ont cependant montré qu’un tel problème de décalage conditionnel existe
et peut entraver le processus d’adaptation. Pour résoudre ce problème, il est nécessaire d’ex-
ploiter les données étiquetées du domaine cible, mais la collecte de données étiquetées peut être
coûteuse et peut prendre du temps. À cette fin, nous introduisons une approche d’apprentissage
actif discriminant pour l’adaptation de domaine permettant de réduire les efforts d’annotation
de données. Plus précisément, nous proposons un apprentissage actif adversarial de réseaux de
neurones en trois étapes : apprentissage invariant de l’espace de caractéristiques (première
étape), critères d’incertitude et de diversité et leur compromis pour la stratégie d’interrogation
(deuxième étape) et réentraînement avec les étiquettes cibles interrogées (troisième étape). Des
comparaisons empiriques avec les méthodes d’adaptation de domaine existantes sur quatre
ensembles de données de référence démontrent l’efficacité de l’approche proposée. De plus, en
comparant différentes stratégies d’interrogation, nous avons pu démontrer les avantages de
notre méthode.
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Abstract

Domain Adaptation aiming to learn a transferable feature between different but related
domains has been well investigated and has shown excellent empirical performances. Previous
works mainly focused on matching the marginal feature distributions using the adversarial
training methods while assuming the conditional relations between the source and target
domain remained unchanged, i.e., ignoring the conditional shift problem. However, recent
works have shown that such a conditional shift problem exists and can hinder the adaptation
process. To address this issue, we have to leverage labelled data from the target domain,
but collecting labelled data can be quite expensive and time-consuming. To this end, we
introduce a discriminative active learning approach for domain adaptation to reduce the efforts
of data annotation. Specifically, we propose three-stage active adversarial training of neural
networks : invariant feature space learning (first stage), uncertainty and diversity criteria and
their trade-off for query strategy (second stage) and re-training with queried target labels
(third stage). Empirical comparisons with existing domain adaptation methods using four
benchmark datasets demonstrate the effectiveness of the proposed approach. Furthermore, by
comparing different query strategies, we demonstrate the benefits of our method.

3.1 Introduction

As introduced in Chapter 1, this thesis aims at exploring the transferable features from the
different domains. One approach is the Domain Adaptation (DA), which aims to improve the
learning performance of a target domain by leveraging the unlabeled data in the target domain
as well as the labeled data from a different but related domain (source domain). As introduced
in section 1.5.1, most recent DA advancements (Ganin et al., 2016; Redko et al., 2017; Shen
et al., 2018) are mostly based on the basic Covariate Shift assumption (Redko et al., 2019)
that the marginal distributions of source and target domain change (DS(x) 6= DT (x)) while
the conditional distribution (predictive relation) is preserved (DS(y|x) = DT (y|x)) during the
adaptation process, where y refers to the corresponding label.

However, some recent works have revealed that this assumption may not hold, and in this
case, one may still need some labeled data from the target domain in order to successfully
transfer information from one domain to another. Specifically, Zhao et al. (2019a) discussed the
conditional shift problem showing that such a problem exists and can hinder the adaptation
process. Recall that conditional shift refers to the situation that (DS(y|x) 6= DT (y|x)). Zhao
et al. (2019a) proved that the risk on target domain is controlled by the source risk, the
marginal distribution divergence, and disagreement between the two labeling distributions :

RT (h) ≤ RS(h) + dĤ(DS ,DT ) + min{EDS

[∣∣fS − fT ∣∣],EDT

[∣∣fS − fT ∣∣]}︸ ︷︷ ︸
Impossible to measure in unsupervised DA

(3.1)
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Figure 3.1 – General workflow of active learning : typically the learner is trained with the
labelled pool and unlabelled pool. In the domain adaptation setting, we regard the labelled
pool as source domain while the unlabelled pool as the target domain. During training, the
learner can query some instances (a limited budget) from the oracle, which is regarded as an
expert who can give the labels of the queried unlabelled instances. After the oracle return the
labels of the queried instances, those data are pushed into the labelled pool for training and
updating the model again. Figure referred from (Ren et al., 2020).

Here RT (h), RS(h) and f refer to target risk, source risk and labeling function, respectively.
We will formally define the notations in section 3.2. In a typical unsupervised DA setting, it
is not possible to measure the third term in Eq. 3.1. Besides, as summarized in Table 1.4,
no matter which distribution divergence we used, there is always a non-observable term that
relies on the labelling function between the source and target domain.

One possible way to measure this term is to query some data labels from target domain so
that the learner can learn the conditional relations in the target domain. However, the label
annotations usually is expensive. Notice that the convergence rate at the disagreement term
would generally be O(1/

√
Nt) (Mohri et al., 2018) with slow convergence behaviour if the

label is i.i.d. sampled from the target set with size Nt, which is far sufficient to minimize the
last term.

To alleviate such difficulties, one can use Active Learning (AL) (Settles, 2009) technique for
DA so that the learner can reduce the cost of acquiring labels by requesting labeling from the
oracle. We show a general active learning process in Fig. 3.1. AL only tries to query the labels
of the most informative examples, and has been shown, in some optimal cases, to achieve
exponentially-lower label-complexity (number of queried labels) than passive learning (Cohn
et al., 1994). From this perspective, we tried to break the general i.i.d. sampling with limited
information in the target domain (a.k.a semi-supervised domain adaptation approach).

Aiming to address all the aforementioned issues, we proposed a three-stage discriminative active
domain adaptation algorithm, which aims to actively query the most informative instances
in the target domain to minimize the labeling disagreement term, under the same and small
querying label budget.

In the first stage, we adopted the Wasserstein Distance-based adversarial training tech-
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nique (Redko et al., 2017; Shen et al., 2018) for unsupervised DA through training a critic
function for learning the domain invariant feature. The critic is also used to discriminate the
target domain features for active querying. In the second stage, we derived a sample-efficient
and straightforward active query strategy based on the network structure, for sampling the
most informative samples in the target domain by controlling uncertainty and diversity for
selecting the target instances. Finally in the third stage, we deployed a re-weighting technique
based on the prediction uncertainty for determining the importance of queried samples to
retrain the network.

To summarize, our contributions in this chapter are two-folds :

1. We theoretically analyzed the conditional shift problem in domain adaptation using the
Wasserstein distance and provide an active query strategy to migrate the disagreement
term between the source and target domain

2. Based on the previous theoretical analysis, we then proposed the active query strategy
based on the Wasserstein critic and model classifier without requiring extra computations.

We then implemented extensive experiments on four benchmark datasets. The empirical results
showed that our proposed algorithm improves the classification accuracy with a small query
budget. When the query budget is small, the proposed approach can have better performance
than its i.i.d (random) selection counterparts (reported in Table 3.5). Furthermore, the
comparison with other query strategy based DA baselines also demonstrates the effectiveness
of our algorithm.

3.2 Problem Setup

For the notations and basic definitions, we follow the notations introduced in section 1.3.1. More
specifically, we consider a classification task and denote X and Y as the input and output space.
A learning algorithm is then provided with a labeled source dataset S = {(xi, yi)}Nsi=1 consisting
of Ns examples drawn i.i.d. from DS(x, y) and an unlabeled target dataset T = {xj}Ntj=1
consisting of Nt examples drawn i.i.d. from DT (x), where Ds(x, y) is the joint distribution
on x × y and DT (x) is the marginal target distribution on x, respectively. The expected
source and target risk of h ∈ H over DS (respectively, DT ), are the probabilities that h
errs on the entire distribution DS (respectively, DT ) : RS(h) = E(x,y)∼DS `(h(x), y) and
RT (h) = E(x,y)∼Dt`(h(x), y), where `(·) is the loss function. The goal of DA is to build a
classifier h ∈ H : X → Y training on source domain with a low target risk RT (h).

3.2.1 Optimal Transport and Wasserstein Distance

As introduced in section 1.5.1, we adopted the OT and Wasserstein adversarial training method,
which is implemented to align the feature distribution for the unsupervised domain adaptation
stage (first stage). OT can constrain labelled source samples from the same category to keep
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close with each other during the transportation process (Courty et al., 2016), which is helpful
to alleviate the semantic misalignment problem during the adversarial training process (Zhou
et al., 2021b). Besides, compared with some other information theoretical metrics, such as
KL divergence, which is not capable to measure the inherent geometric relations among the
different domains (Arjovsky et al., 2017), OT is capable to exactly measure their corresponding
geometry properties of each domain. Furthermore, compared with H divergence (Ben-David
et al., 2010a), Wasserstein distance has better gradient property. As discussed in section 1.5.1
and Appendix A.2, H divergence is dependent on the hypothesis class and has a high VC
dimension, which made it is difficult to optimize using neural network. On the contrary, the
OT and Wasserstein distance can be efficiently computed using the Kantorovich-Rubinstein
duality. Furthermore, H divergence can only deal with the marginal distribution D(x) while
the OT and Wasserstein distance can handle the label information D(y) (Arjovsky et al.,
2017), thus it can deal with the joint distribution D(x, y), which then leads to the promising
generalization bound (Redko et al., 2017).

For the OT and Wasserstein adversarial training method, we follow Redko et al. (2017) and
define c : X × X → R+ as the cost function for transporting one unit of mass x to x′, then
Wasserstein Distance is computed by

W p
p (Di,Dj) = inf

γ∈Π(Di,Dj)

∫
X×X

c(x,x′)pdγ(x,x′)

where Π(Di,Dj) is joint probability measures on X ×X with marginals Di and Dj referring to
all the possible coupling functions. Throughout this paper, we shall use Wasserstein-1 distance
only (p = 1). According to Kantorovich-Rubinstein theorem (see Appendix A.2), let f be a
Lipschiz-continous function ||f ||L < 1, we have

W1(Di,Dj) = sup
||f ||L<1

Ex∈Dif(x)− Ex′∈Djf(x′) (3.2)

In practice, we can implement a deep neural network to approximate function f . Then,
computing the sup in Eq. 3.2 is to the maximum of Wasserstein distance by arg max operator
through the general deep neural network optimizer (e.g. SGD (Bottou, 2010) or Adam (Kingma
and Ba, 2015) optimizer). This allows us to compute the Wasserstein distance efficiently and
the complexity w.r.t f(x) is only O(n+m).

3.2.2 Conditional Shift and Error Bound

As stated before, traditional DA researches (Ben-David et al., 2010a; Ganin et al., 2016;
Tzeng et al., 2017) typically assumed that the conditional relationships remain unchanged
during the adaptation process. From a probabilistic perspective, the general learning process of
most previous DA approaches is to learn the joint distribution of the target domain DT (x, y)
through source domain joint distribution DS(x, y). Note that DT (x, y) = DT (x|y)DT (x), to
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guarantee a successful transfer from source domain S to target domain T , the underlying
assumption is DS(y|x) 6= DT (y|x).

For the conditional shift situation, DS(y|x) 6= DT (y|x), Zhao et al. (2019a) theoretically
showed that such a conditional shift problem exists in many situations and that typically if
we only try to minimize the source error together with the domain distances, the target error
might increase, which shall hinder the adaptation process. Their analysis was based on Ĥ
divergence, which is somehow hard to compute in deep learning based methods. In order to be
coherent with our work, we now present the error bound using Wasserstein Distance with the
following Theorem 3.1.

Theorem 3.1. Let
〈
DS , fs

〉
and

〈
DT , ft

〉
be the source and target distributions and corres-

ponding labeling function, if the hypothesis h is 1-Lipschtiz and the loss function is 0− 1 loss,
then we have

RT (h) ≤ RS(h) + 2W1(DS ,DT ) + EDS

[∣∣fs − ft∣∣] (3.3)

The proof is illustrated in the Appendix B.1. This theorem showed that error on the target
domain is bounded by source domain error, Wasserstein Distance between source and target,
and the conditional distribution on both source and target domains. Here the third term is
not measurable in the unsupervised domain adaptation setting. If the conditional distribution
changes during the adaptation process, then the target error may diverge (Zhao et al., 2019a).
One direct approach to reduce the disagreement between fs and ft is to partially acquire the
labeling function ft, i.e., the labels in the target domain.

Besides, the Wasserstein distance between the source and target distribution (second term
in Eq. 3.3), is measured by total transportation cost between the source and target domain.
Denote DU and DL by the corresponding distributions of unlabeled and labeled datasets, then
the Wasserstein distance is denoted by :

W1(DU ,DL) = inf
γ∈Π(U ,L)

∫
X×X

c(xl,xu)dγ(xl,xu)

Intuitively, if we can query some instances in the target domain T (DU ) and move them from
target into the source domain S (DL), we can reduce the total transportation cost between
the two domains, i.e., the Wasserstein distance between the two domains.

Based on this, minimizing the RHS of Eq. 3.3 is equivalent to train a learner h ∈ H that :

1. Minimize the source error ;

2. Train a critic to estimate the empirical Wasserstein Distaince between the source and
target domain and approximately find a feature extractor that can minimize the total
transportation cost between the source and target domain in an adversarial way with
the critic ;
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3. Can query the labeling information in the target domain so that to minimize the
disagreement of labeling function between the source and target domain i.e.,the third
term of Eq. 3.3.

To train this kind of learner, we argue that if it can actively query labeling information in
the target domain, then, it can partially get the conditional information in the target domain.
With the minority of labeled target instances in hand, it can learn to jointly minimize the
error both on the source and target domain. Furthermore, to i.i.d. query the label is somehow
slow. In order to reduce the annotation expense, we may expect the learner to query some
informative instances using an active learning strategy. Also, if the queried instances in the
target domain are informative enough, they will have a better representative property on the
target domain. Then, the learner can have better generalization performance on the target
domain.

We then can bound the error after such active selection as referred by the following theorem,

Corollary 3.1. Assume the learner has a budget β of total target samples to query the oracle
for ground truth label. Let Xs and Xt be two sample sets with size Ns and Nt drawn i.i.d.

from DS and DT respectively. Let D̂S = 1
Ns

∑Ns
i=1 ∆s

xi and D̂T = 1
Nt

∑Nt
i=1 ∆t

xi be the associated
empirical measure. Then ∀d′ ≥ d and λ′ < λ there exists some constant N0 depending on d′

such that for any δ > 0 and min(Ns, Nt) ≥ N0 max(δ−(d′+2),1) with probability at least 1− δ
for all hypothesis h ∈ H, then, the following holds,

RT (h) ≤RS(h) + 2W1(D̂S , D̂T ) + EDS

[∣∣fs − ft∣∣]
+ 2

√
2 log(1

δ
)/λ′

(√ 1
Ns + βNt

+
√

1
Nt − βNt

) (3.4)

Note that Ns and Nt are constant since they are just depend on the source and target domains.
Corollary 3.1 extend Theorem 3.1 to the empirical errors and is free of the joint optimal
errors between the source and target domain. We also notice a latter work (Li et al., 2021b)
further investigates this kind of empirical error bound in the context of invariant risk and
feature learning, which also indicates the necessity to query the target labels for empirical
minimization.

Take those above into consideration, we can formally present the discriminative active domain
adaptation method.

3.3 Active Discriminative Domain Adaptation

The learning process mainly consists of three main stages. The three-stage scheme is designed
to firstly implement adversarial training to learn domain invariant features through OT. The
second stage is to actively query the most informative instances on the invariant feature space.
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Finally, those informative instances are used for retraining the network to reinforcing the
importance of the target features. We now introduce the three-stages in details.

3.3.1 Stage 1 : Domain Adversarial Training via Optimal Transport

For the first stage, we adopt Wasserstein Distance Guided Representation Learning (Shen
et al., 2018) method for adversarial training. The network receives a pair of instances from the
source and target domain. Denoted by F and C the feature extractor and classifier functions,
parameterized by θf and by θc, respectively. The feature extractor is trained to learn invariant
features, and the classifier is expected to learn the conditional prediction relations P(Y |X) for
predicting the instances from both source and target domain correctly. For the classification
loss, we employ the traditional cross-entropy loss : Lcls = −

∑m
i=1 yi log(P(C(F (xi)))).

Then, there follows the domain critic network φ, parameterized by θφ. It estimates the empirical
Wasserstein Distance between the source and target domain through a pair of batched instances
XS and XT ,

W1(XS ,XT ) = 1
ns

∑
xs∈XS

φ(F (xs))−
1
nt

∑
xt∈XT

φ(F (xt)) (3.5)

The feature extractor F is then trained to minimize the estimated Wasserstein Distance in an
adversarial manner with the critic φ. Then, goal of first stage training is described by

min
θf ,θc

max
θd
Lcls + λw(W1(XS ,XT )− Lgrad) (3.6)

where λw is a trade-off coefficient and Lgrad is the gradient penalty term suggested by Gulrajani
et al. (2017). When computing the gradient of such loss function, we use the gradient penalty
method suggested in Gulrajani et al. (2017) which can help to prevent gradient vanishing or
exploding problems caused by weight clipping.

Lgrad = (||∇F (X)φ(F (x))||2 − 1)2 (3.7)

Note that the ‘min-max’ computations in Eq. 3.6 is achieved by the adversarial training
process (see Appendix A.3). The source and target features (marginal distributions) can
be aligned via such an adversarial training process (Eq. 3.6). Then, based on this aligned
marginal distribution, we can implement the active strategy to query the most informative
target instances

3.3.2 Stage 2 : Active Query with Wasserstein Critic

For the second stage, we aim to have an active learner that can find out the most informative
features among the unlabeled target so that it can leverage from the labeling information of
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Figure 3.2 – Ac-DA workflow : feature extractor are trained to learn a domain invariant feature
space together with the critic. The learner selects the informative instances by measuring
uncertainty and diversity based on critic and classifier outputs.

the target domain. The informative features, intuitively, are the ones that are most different
from what the learner has already dealt with. The hardest instances to adapt are those with
least confidence (i.e. the most uncertain ones) to predict based on current classifier. As pointed
out in previous work (Dasgupta, 2011), only focusing on the uncertainty might lead to the
sampling bias. In order to reduce this bias, the active learner shall also search a diversity in
target samples. We therefore find the most informative target samples holding both uncertainty
and diversity properties.

Prediction Uncertainty The conditional prediction PT (Y |X) is learned by the classifica-
tion network. To measure the uncertainty, we can borrow the idea from Long et al. (2018) to
adopt entropy measure to quantify the uncertain of the classifier. The uncertainty entropy
measure over an instance xt is denoted by

U(yt|xt) = H(P̂(yt|xt)) (3.8)

where H(·) is the information entropy measure, P̂(yt|xt) is the output of classification network
P̂(yt|xt) = C(F (xt)).

Diversity by Critic Function If some instances, in terms of distribution distance measures,
are very far from the unknown labeled ones, then they should contain most informative and
diverse features from the known labelled ones. Recall that in the first stage, we match the
marginal distribution between the source and target domain to achieve a domain invariant
feature space with Wasserstein Distance. Then, for the target domain instances, the one with
highest critic score is the one that have the highest transportation cost.

Sinha et al. (2019) and Shui et al. (2020b) showed that such critic term φ(F (·)) : X → [0, 1]
indicates the diversity in the query process. Then, we can leverage from the trained Wasserstein
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Algorithm 1 The Active Discriminative Domain Adaptation (AcDA) Algorithm.
Input : Source and target domain input S, T ; Query budget β
Parameter : Feature extractor θf ; Classifier θc ; Critic θd.
Output : Optimized θ?f , θ?c , θ?d.

1: while Domain level adaptation not finish do
2: Sample batches (xs, ys) ∼ S, xt ∼ T ;
3: Train the network based on Eq. 3.6 until converge ;
4: end while ;
5: if Query budget is not empty then
6: Select the target instances {xq1, . . . ,x

q
Nq
} according to Eq. 3.9 and query the label

{yq1, . . . , y
q
Nq
} from oracle ;

7: else
8: Update the dataset Q = {(xq1, y

q
1), . . . , (xqNq , y

q
Nq

)}, S′ = S ∪Q, T ′ = T/Q ;
9: end if

10: Compute the uncertainty vector α = [α1, . . . , αC ]Cj=1 with Eq. 3.10
11: Train the network on new labeled and unlabeled dataset via domain adaptation techniques

with Eq. 3.11.
12: return solution

Critic network to evaluate and find out the most informative (diverse) target features on
the invariant feature space. That is, measuring the diversity of target instances via critic
score. Consider the critic output of a target instance xt, if φ(F (xt))→ 1, then xt is far, w.r.t.
Wasserstein Distance, from the source domain images and if φ(F (xt))→ 0, then xt is near to
the source images.

Based on those above, if we hope to find out the most informative (uncertain and diverse)
instances in the target domain, then we should query by controlling two terms :

— uncertainty score U = H(P̂(yt|xt)) defined by Eq. 3.8, which is indicates the uncertainty
of the classifier to predict a label y?

t given the instance xt in the target domain

— critic score φ(F (xt)) by the the Wasserstein critic function, which indicates the diversity
of the unlabeled target instance compared with the source labeled ones.

Then, we can have the following objective

argmaxxt∈XtU(y?
t |xt)− λdivφ(F (xt)) (3.9)

where λdiv is a coefficient to regularize the Wasserstein critic term. So, for a query budget β
and Nt of target set instances, the query process can be described as : looking for Nq = βNt

instances by solving Eq. 3.9 and query the labels of those Nq instance from the oracle. Denote
the queried set by Q = {(xq1, y

q
1), . . . , (xqNq , y

q
Nq

)}. Then, uniting such small batch instances
with the source domain and removing them from the target domain. The source and target
datasets shall be updated as : S′ = S ∪Q, T ′ = T/Q. We illustrate a general query workflow
in Fig. 3.2.
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3.3.3 Stage 3 : DA training with new dataset

The goal of our method is to leverage the most informative instances in the target domain to
reinforce the adaptation process. General adversarial training methods (see section 2.2.3) for
domain adaptation usually assign each instance with the same importance weight. In order to
enforce the uncertainty information to the classifier, we hope to give higher weights to the
instances with higher uncertainty scores during the supervised classification process.

Denote by a set of Nq queried instances {x(i), y(i)}Nqi=1, we shall re-weight the importance
of each instance class based on its uncertainty score. Denote by uncertainty vector α =
[α1 . . . αj . . . αC ]Cj=1 over all C classes. For each class j, the weight is computed by,

αj = Nj · U(yj |x)∑Nq
i=1 U(y(i)|x)

(3.10)

where Nj is the number of instances with label yj and U(·) is the uncertainty score defined in
Eq.3.8. For a batch of queried instances, the weighted cross-entropy loss is computed by

Lqw = αj(−
C∑
j=1

yj × logP(yj |x))

Then, objective function for the third stage is,

min
θf ,θc

max
θφ
Lqw + Lcls + λw(W1(X ′S ,X ′T )− Lgrad) (3.11)

where X ′S and X ′T are sampled from the updated source and target datasets, Lcls is the
classification loss on the original source set and Lqw is the weighted loss for the query set.
Finally, we illustrate our Active Discriminative Domain Adaptation (Ac-DA) algorithm in
Algorithm 1

3.4 Experiments and Results

In the experiments part, we aim to demonstrate the following aspects :

— Firstly, we would like to show that even randomly select a few amount of labelled target
data can improve the performance compared with the unsupervised counterparts.

— Secondly, we show that compared with the semi-supervised method, i.e., the random
(i.i.d.) selection, the active learning query strategy can have more benefits.

— Lastly, confirming the effectiveness of our method comparing with another active domain
adaptation method, and also other query strategies with certain query budget for further
analysis.

For the comparison with unsupervised DA methods, we evaluate the performance of the
proposed algorithm on four benchmark datasets and compared with some other approaches :
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Method M → MM M → U U → M avg.

LeNet5 56.1 67.4 65.3 60.3
DANN 74.2 77.1 73.2 74.6
WDGRL 80.3 81.1 74.2 76.2
ADDA 78.9 83.5 82.3 81.5

Rand. 92.4 95.7 95.8 94.7
Ac-DA 95.4 95.5 96.5 95.6

Table 3.1 – Classification accuracy (%) on digits datasets with different adaptation tasks.
The last two line are our method, Random refers to randomly query some instance while
Ac-DA is the proposed approach. Both two methods are restrict to 10% query budget.

Method A → W A → D D → A W → A avg.

ResNet50 68.6 69.3 61.1 60.7 64.9
DAN 80.5 78.6 63.6 60.7 62.7
DANN 81.3 79.2 68.2 67.4 74.0
WGDRL 79.2 80.2 69.3 69.1 74.5
Rand. 86.1 85.6 76.3 78.1 81.6
Ac-DA 86.6 87.7 78.5 80.2 83.3

Table 3.2 – Classification accuracy (%) on Office-31 dataset with different adaptation
settings with 10% query budget.

Wasserstein Guided Domain Adaptation (WDGRL (Shen et al., 2018)), Domain Adversarial
Neural Networks (DANN (Ganin et al., 2016)), Adversarial Discriminative Domain Adaptation
(ADDA (Tzeng et al., 2017)) and Conditional Adversarial Domain Adaptation (CDAN (Long
et al., 2018)). In order to show the benefits of active query method, we also compare the results
with random selection process (Rand.) when the query budget is the same. All experiments
are programmed by PyTorch.

3.4.1 Datasets and Implementations

We test our proposed algorithm on four benchmark datasets.
Digits Datasets : We test our algorithm on digits datasets with the experiments setting :
USPS (U)↔ MNIST (M) and MNIST → MNIST-M (MM). For USPS we resize the images
to size 28× 28. We train the network using training sets with size : MNIST/MNIST-M(60k),
USPS(7, 291) and testing sets with size : MNIST/MNIST-M (10k), USPS(2, 007).
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Office-31 dataset is a standard benchmark for domain adaptation evaluations. It contains
three different domains : Amazon (A), Dslr (D) and WebCam (W), with 31 categories in each
domain. We report the average results in Table 3.2.
Office Home dataset : is more challenging than Office-31, contains four different domains :
Art (Ar), Clipart (Cl), Prodcut (Pr) and Real World (Rw), with 65 categories in each domain.
We report the average results in Table 3.3.
Image-CLEF 2014 dataset contains three domains, which are Caltech-256 (C), ILSVRC-
2012 (I), and PascalVOC-2012(P), with 12 common shared catagories. We report the average
results in Table. 3.4

For digits datasets, we do not apply any data-augmentation. For Office-31, Office-Home and
Image-CLEF datasets, we follow the previous DA approaches (Long et al., 2018; You et al.,
2019), and apply the following pre-processing pipline : 1) for training set, firstly resize the
image to 256 × 256 then, apply RandomCrop downgrade the size to 224 × 224, after that,
apply the same random flipping strategy of You et al. (2019) ; 2) for testing set, resize the
images to 256× 256 then use CenterCrop to size 224× 224.

CNN Architecture and Implementations

For digits experiments, similar to the previous DA works (Wen et al., 2019b, 2020), we adopt
LeNet-5 (LeCun et al., 1998) as feature extractor and trained from scratch. For the rest three
real-world datasets, we implement ImageNet pretrained ResNet-50 as feature extractor. For
the digits experiments, we train the network with mini-batch size 64 and for the rest three
datasets with mini-batch size 16. We adopt Adam optimizer for training the network. For the
digits dataset, we empirically set the learning rate as 10−3 and also enable the weight-decay in
Adam optimizer. For the Office-31, Office-home and Image-CLEF datasets, we also enable
the weight-decay in Adam optimizer. For stable training, we set λw = 2

1+exp(−10·p) − 1, and
p is the training progress. This setting of λw has been used in many previous adversarial
training approaches (Wen et al., 2019b; Dou et al., 2019; Long et al., 2018), and has been
shown can stablize the adversarial training process. Also, we empirically set λdiv = 10 which
can demonstrate good performances. To avoid over-training, we also adopt early-stopping
technique. All hyper-parameters are validated and fine-tuned by grid search.

3.4.2 Results and Analysis

We use t-SNE visualizations (Van der Maaten and Hinton, 2008) in Fig. 3.3 since it allows us
to check the feature alignment performance of the adaptation method. We show the t-SNE
visualizations comparison of non-adaptation setting, and our proposed approach Ac-DA in
Fig. 3.3. We can observe that our method (right of Fig. 3.3) has a good alignment performance.
We report the average results of our algorithm and baselines using our data pre-processing
pipeline on Digits, Office-31, Office-Home and Image-CLEF datasets in Table 3.1, 3.2, 3.3 and
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Non-Adapted
mnist
mnist-m

Ac-DA

mnist
mnist-m

Figure 3.3 – t-SNE visualization between our proposed Active Discriminative Domain
Adaptation (right, with 5% query budget) and non-adapted setting (left) for MNIST →
MNIST-M adaptation task.

Digits Office-Home Image-CLEF
budget Rand. Ac-DA Rand. Ac-DA Rand. Ac-DA

5% 91.6 92.9(+1.3) 62.4 65.6(+3.2) 82.2 84.9(+2.7)
10% 94.7 95.6(+0.9) 68.6 72.7(+4.1) 87.1 88.9(+1.8)
15% 96.2 96.9(+0.7) 73.9 75.8(+1.9) 89.8 90.4(+0.6)

Table 3.5 – Comparison of different query budgets (5%, 10%, 15%) on three datasets. For each
query budget, we report the improvements by applying the active query strategy comparing
with the random query strategy in the parentheses.

3.4, respectively. In order to show the effectiveness of active query strategy, for a given budget,
we also implemented random (i.i.d.) selction method to query the labels for comparsion. The
name of such implementations are denoted by Rand. and Ac-DA in each table. In Table 3.5,
we also compared the performances under different budgets.

Value of Target Labels

From the tests results on the four benchmark datasets, we observe that to randomly select
some instances in the target domain is beneficial to the classification performance on the
target domain. Our method is rooted in WDGRL, comparing accuracy performance between
the random selection with WDGRL we observe improvements on those benchmarks, which
confirms the usefulness of label information for adaptation. Also, for each adaptation task on
every dataset, we can observe that the proposed Ac-DA algorithm outperforms the random
selection method in almost all the tasks. This also confirms that active query can outperform
i.i.d. selection.
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Effectiveness of Active Query

We then compared the performance between active query and random selection. We implement
the experiments with different query budgets (with 5%, 10% and 15%), the average on different
dataset is reported in Table 3.5. we can observe that the accuracy will increase as the query
budget increases. Also, with same query budget, we compare the accuracy of active query and
random selection. We can observe that active query method can outperform the random query
method with query budget 5% and 10%. That is, with smaller query budget, the active query
strategy can have better performance than random selection. This confirms the effectiveness
of active query strategy. When the query budget goes to 15%, the differences between the
random selection and active query become smaller. One interpolation is that as the query
budget increase, the more instances in the target domain will be labeled and those most
informative ones will be covered with high probability. When the query budget is relatively
small, the active strategy can exactly look for the most informative instances rather than
uniformly (random) selecting some instances.

Comparison with Different Query Strategies

In order to evaluate the effectiveness of our method, we compare our method with the active
domain adaptation baselines.

To the best of our knowledge, Adversarial Active Domain Adaptation (AADA) (Su et al., 2020)
is the only similar baseline to our proposed method during we develop our algorithm. AADA is
based on the DANN (Ganin et al., 2016) as the adversarial training mode, where the invariant
features are learned by fooling the domain discriminator φ(·) by a binary classification to predict
the instances are from source or target domain. Upon the submission of our article (Zhou
et al., 2021c) reflected in this chapter, the official codes release of AADA has not yet published.
We reproduced the baseline by rigorously following the original implementation while made
some adaptations to our setting for a fairer comparison. The original AADA implementation
selected certain target instances and retrain the model under a few-shot mode with several
query rounds. For a fairer comparison with our proposed method, we reproduced the AADA
with the similar setting with ours by selecting certain ratio of instances when the first stage of
adversarial training is stable.

The reproduced AADA model was based on the DANN implementations(see Appendix A.1).
We follow Su et al. (2020) to construct the uncertainty cue and diversity cue implementation
by scoring the instances with query strategy : score(x) = H(ŷ)w(z), where ŷ = C(F (x)) is the
model prediction and H(·) is the information entropy, while w(x) = (1− φ(z))/φ(z), where
z = F (x) is the extracted feature, involving the diversity cue. We compare the performance of
re-implemented AADA and our method on Office-home dataset with different query budget
and illustrate the performance of each adaptation task average accuracy in Table 3.6. As we
can see from Table 3.6, our method outperforms AADA with different query budget.
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(l) Real-World → Product.

Figure 3.4 – Comparison of different query strategies. We take random selection (set the
baseline accuracy to 0) as the baseline and report the relative accuracy difference with different
query strategies (1% ∼ 19%)

In order to evaluate the effectiveness of our query strategy, we compare the performance of the
active domain adaptation algorithm with different query strategies,i.e., we implement some
baselines by replacing the query strategy in Eq. 3.9 with the following query strategies :

— Random sampling (Rand.) : randomly select potential instances from the target domain.
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— Least confidence (Lst. Conf.) (Culotta and McCallum, 2005) : select the instances with
least confidence over the classifier.

— Smallest Margin (Marg.) (Scheffer and Wrobel, 2001) : select the instances via a defined
margin.

— Maximum-Entropy sampling (Ent.) (Settles, 2012) : selecting the instances with the
maximum entropy, i.e., the most uncertain ones.

— K-Median (K-Ms.) (Sener and Savarese, 2018) : choosing the points to be labelled as
the cluster centers of K-Median algorithm

We evaluate the empirical results of the Wasserstein adversarial training with different query
strategies and report the overall average of all tasks in Table 3.7. We then report the empirical
results on different adaptation task in Fig. 3.4 by choosing random selection as baseline (set
as 0) and show the differences. From the empirical results, we observe that our method always
outperforms the baseline query strategies under different query budgets w.r.t. the averaged
accuracy. The most diverse performance occurs on the task Ar ↔ Cl, this may due to the
features look similar with each other, when querying some diverse and uncertain features, it
may find some uncommon features which may hurt the learning performance. Besides, we also
notice that the performance of entropy sampling diverse a lot. Since entropy sampling means
the learner only select the instances with most uncertainty, this may lead the learner to find
some strange features, which may hurt the learning performance. Generally, our method has a
better averaged performance over all the query strategies under different query budgets.

3.5 Discussion and Conclusion

In this chapter, we presented a three-stage discrimative active algorithm to improve the domain
adaptation performance. The first stage adopts a general domain adversarial training. The
second stage proposed an end-to-end query strategy combining uncertainty and diversity
criteria to find out the most informative features in the target domain. Finally, the third
stage develops a re-weighting technique based on the prediction uncertainty for determining
the importance of the queried samples to retrain the network. The empirical results of this
three-stage method confirmed the effectiveness of our active domain adaptation algorithm
especially when the query budget is small. To this end, we exploited the benefits of optimal
transport with Wasserstein distance based adversarial training to achieve the feature alignment
as well as the power of the Wasserstein critic to measure the diversity score of the target
instances. We then adopt this kind of adversarial training method in the multi-source transfer
learning problems, which is introduced in the next chapter.
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Chapitre 4

Domain Generalization via Optimal
Transport with Metric Similarity
Learning

In this chapter, we introduce our work (Zhou et al., 2021b) in which we explored the class
similarities across domains for the domain generalization (DG) problem, where the learner
has access to labelled data from several source domains but has no target data during training.
We adopted the optimal transport based adversarial training methodology for learning invariant
features as well as the metric similarity learning objective to explore the class similarities to
improve the generalization performance.

Résumé

La généralisation des connaissances à des domaines non vus, où les données et les étiquettes
ne sont pas disponibles, est cruciale pour l’apprentissage automatique. Nous abordons ici
le problème de la généralisation de domaine pour apprendre de plusieurs domaines sources
et généraliser à un domaine cible avec des statistiques inconnues. L’idée consiste à extraire
les caractéristiques invariantes sous-jacentes dans tous les domaines. Les approches de géné-
ralisation de domaine existantes se sont principalement concentrées sur l’apprentissage de
caractéristiques invariantes et sur l’empilement des caractéristiques apprises de chaque domaine
source pour généraliser à un nouveau domaine cible tout en ignorant les informations en lien
avec les étiquettes. Cela mène généralement à des caractéristiques indiscernables avec une
frontière de classification ambiguë. Une solution possible est de contraindre la similarité des
étiquettes lors de l’extraction des caractéristiques invariantes et de tirer profit des similarités
des étiquettes pour assurer la cohésion entre les classes et la séparation des caractéristiques
entre les domaines. Dès lors, nous adoptons ici le transport optimal utilisant la distance de
Wasserstein, qui pour pourrait contraindre la similarité des étiquettes des classes, pour l’en-
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traînement adversarial. Nous déployons également un objectif d’apprentissage métrique pour
exploiter les informations en lien avec les étiquettes afin d’obtenir une frontière de classification
distincte. Nos résultats empiriques montrent que la méthode proposée est plus performante
que la plupart des méthodes de référence. De plus, des études d’ablation démontrent également
l’efficacité de chaque composante de notre méthode.

Abstract

Generalizing knowledge to unseen domains, where data and labels are unavailable, is crucial
for machine learning. We tackle in this chapter the domain generalization problem to learn
from multiple source domains and generalize to a target domain with unknown statistics. The
crucial idea is to extract the underlying invariant features across all the domains. Previous
domain generalization approaches mainly focused on learning invariant features and stacking
the learned features from each source domain to generalize to a new target domain while
ignoring the label information, this generally leads to indistinguishable features with an
ambiguous classification boundary. One possible solution is to constrain the label-similarity
when extracting the invariant features and take advantage of the label similarities for class-
specific cohesion and separation of features across domains. We adopt here the optimal transport
with Wasserstein distance, which could constrain the class label similarity, for adversarial
training. We also deploy a metric learning objective to leverage the label information for
achieving distinguishable classification boundary. Our empirical results show that our proposed
method could outperform most of the baselines. Furthermore, ablation studies also demonstrate
the effectiveness of each component of our method.

4.1 Introduction

As discussed in Chapter 1, this thesis focus on leveraging the transferable features from
different domains. In the previous Chapter 3, we explored transfer learning problems in the
context of domain adaptation where the learner has access to the source domain (data and
corresponding labels) as well as the target domain labels. In this chapter, we tackle the transfer
learning problem under the domain generalization (DG) paradigm, where the learner has
access to many source domains (data and corresponding labels), and aims at generalizing to
the new (target) domain, where neither data nor labels is accessible during training.

As introduced in section 1.4.1, the goal of DG aims to learn a prediction model on training
data from the seen source domains so that such model can generalize well on the unseen
target domain. An underlying assumption of DG is that there exists a common feature space
underlying the multiple known source domains and unseen target domain (Li et al., 2017a).
We have introduced the general process of DG in section 1.4.1, here we recall the DG process
with the an example in Fig.4.1.
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Training on source domains Deployment on source domains

Prediction

Figure 4.1 – Domain Generalization (DG) : A learner faces a set of labelled data from
several source domains, of which aims at extracting invariant features across them and learn to
generalize to an unseen domain. Data of each domain i is generated by a distribution Di. The
learner can measure the distance between the source domain distributions and thus finding
a common feature space, but has no information on the unseen target distribution. After
training on the source domains, the model is then deployed to a new domain DT for prediction.
Dataset images are drawn from PACS dataset (Li et al., 2017b).

A critical problem in DG and DA involves aligning the domain distributions, which typically are
achieved by extracting feature representations of each domain. As summarized in section 2.2,
previous DA works usually tried to minimize the domain discrepancies, such as Maximum
Mean Discrepancy (MMD) (Li et al., 2018c), or using adversarial training (Zhao et al., 2019a;
Chen et al., 2020b), to achieve domain distribution alignments (see also in section 1.5.1,
Appendix A.1 and Appendix A.3). Due to the similar problem setting between DA and DG,
some DA training methods were directly adopted to DG approaches. For example, the MMD
metric was adopted by Li et al. (2018c) as a cross-domain regularizer, and the KL divergence
was used to measure the domain shift by Li et al. (2017a) for domain generalization problems.
As we discussed in section 1.5.1, the MMD metric is usually implemented in the kernel space,
and is restrictive for large-scaled applications Similarly, KL divergence is unbounded, and thus
is also insufficient for a successful measuring domain shift (Zhao et al., 2019a).

Besides, previous domain generalization approaches (Ilse et al., 2020; Ghifary et al., 2015b; Li
et al., 2018f; D’Innocente and Caputo, 2018; Volpi et al., 2018) mainly focused on applying
similar DA technique to extract the invariant features and how to stack the learned features
from each domain for generalizing to a new domain. As previous noticed, these methods usually
ignore the label similarities in the source domains, which will sometimes make the features
became indistinguishable with ambiguous classification boundaries (Deng et al., 2020).

Based on the observations above, a successful generalization process should guide the learner
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to not only to align the feature distributions between each domain but also to discriminate
the samples using their similarities. That is, during the feature alignment process, samples
from the same class could lie close to each other while samples from different classes could
stay apart from each other, a.k.a. feature compactness (Kamnitsas et al., 2018).

As continuum to DG problems, we adopt the Optimal Transport (OT) with Wasserstein
distance (see section A.2 and Appendix A.3) to align the feature distribution for domain
generalization since it could constrain labelled source samples of the same class to remain close
during the transportation process (Courty et al., 2016). Besides, as discussed in section 1.5,
compared with (Ben-David et al., 2010a), OT benefits from the advantages of Wasserstein
distance by its gradient property (Arjovsky et al., 2017) and the promising generalization
bound (Redko et al., 2017; Shen et al., 2018). The empirical studies (Gulrajani et al., 2017; Shen
et al., 2018) also demonstrated the effectiveness of OT for aligning the marginal distributions
of different domains and then extracting the invariant features.

Notice that, although the optimal transport process could constrain the labelled samples of the
same class to stay close to each other, our preliminary results showed that just implementing
optimal transport for domain generalization is not sufficient for a cohesion and separable
classification boundary (see in section 1.4.1 and also in Fig. 4.3c). The model could still suffer
from indistinguishable features. In order to train the model to predict well on all the domains,
this separable classification boundary should also be achieved under a domain-agnostic manner.
That is, for a pair of instances, no matter which domain they come from, they should stay
close to each other if they are in the same class and away from each other if they are not from
the same class. To this end, we further promote metric learning as an auxiliary objective for
leveraging the label similarities in the source domains for a domain-independent distinguishable
classification boundary.

To sum up, we deployed the optimal transport technique with Wasserstein distance for domain
generalization for extracting the domain invariant features. To avoid ambiguous classification
boundary, we proposed to implement metric learning strategies to achieve a distinguishable
feature space. In this context, we proposed the Wasserstein Adversarial Domain Generalization
(WADG) algorithm.

In order to check the effectiveness of the WADG algorithm, we tested it on several benchmarks
and then compare its performance with some recent domain generalization baselines. Our
experiment results showed that our proposed algorithm outperform most of the baselines,
achieving the state-of-the-art performance, and this confirms the effectiveness of our proposed
algorithm. Furthermore, the ablation studies and the corresponding T-SNE visualizations also
demonstrated the contributions of each learning objective of our algorithm.
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4.2 Problem Setup

We first recall the problem settings and preliminaries of DG.

Notations and Definitions

Following the notations in section 1.4.1, suppose we havem known source domains {Di}mi=1, and
ith domain contains Ni labeled instances in total, denoted by {(x(i)

j , y
(i)
j )}Nij=1, where x(i)

j ∈ Rn

is the jth instance feature from the ith domain and y(i)
j ∈ {1, . . . ,K} are the corresponding

labels. For a hypothesis class H, the expected source and target risk of a hypothesis h ∈ H over
domain distribution Di is the probabilities that h wrongly predicts on the entire distribution
Di : Ri(h) = E(x,y)∼Di`(h(x, y)), where `(·) is the error function. The empirical loss is also
defined by : R̂i(h) = 1

Ni

∑Ni
j=1 `(h(xj , yj)).

In the setting of DG, we only have the access to the seen source domains Di but have no
information about the target domain. The learner is expected to extract the underlying
invariant feature space across the source domains and generalize to a new target domain.

Optimal Transport and Wasserstein Distance

We have introduced the general OT theory in section A.2. In this chapter, we continue to use
OT and Wasserstein distance based adversarial training method for extracting the features. To
learn domain invariant features, OT technique is implemented to achieve domain alignments
for extracting invariant features (details of this process are provided in Appendix A.3). Similar
to the previous Chapter 3, here we adopt Wasserstein-1 distance. Then, according to the
Kantorovich-Rubinstein duality (see Appendix A.2), let f be a Lipschiz-continous function
‖f‖ < 1, we have,

W1(Di,Dj) = sup
‖f‖L<1

Ex∈Dif(x)− Ex′∈Djf(x′) (4.1)

Since our goal is to not only align the marginal distribution via optimal transport but also to
leverage the label similarity information across domains for enhancing class-specific cohesion
and separation. We then introduce some basics of metric learning including pair similarity
and weighting techniques in the next section.

Metric Learning

For a pair of instances (xi, yi) and (xj , yj), the notion of positive pairs usually refers to
the condition where pair i, j have same labels (yi = yj), while the negative pairs usually
refers to the condition yi 6= yj . The central idea of metric learning is to encourage a pair of
instances who have the same labels to be closer, and push negative pairs to be apart from
each other (Manmatha et al., 2017).
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We adopt the general pair-weighting process of metric learning as proposed by Wang et al.
(2019c). Assuming the feature extractor f parameterized by θf projects the instance x ∈ Rn

to a d-dimensional normalized space : f(x; θf ) : Rn → [0, 1]d. Then, for two samples xi and
xj , the similarity between them could be defined as the inner product of the corresponding
feature vector :

Si,j := 〈f(xi; θf ), f(xj ; θf )〉 (4.2)

where 〈·, ·〉 refers to the inner product. We will further explain the similarity Si,j in section 4.3.

To leverage the across-domain class similarity information can encourage the learner to extract
the classification boundary that regardless of domains, which is an useful auxiliary information
for the learner. In order to discriminate the instances from all the domains correctly, the
feature classification boundary should be independent of the domains, i.e., learning invariant
features with domain-agnostic classification boundary such that for a pair of instance, no
matter which domain they come from, they should be mapped close with each other in the
feature space if they are from the same class while away from each other if they are not the
same class. We further elaborate this process in section 4.3.

4.3 Methodology

The overall idea of our WADG algorithm is to learn a domain-invariant feature space and
domain-agnostic classification boundary. Firstly, we align the marginal distribution of different
source domains using optimal transport by minimizing the Wasserstein distance to achieve
the domain-invariant feature space. And then, we adopt metric learning objective to guide
the learner to leverage the class similarities for a better classification boundary. A general
workflow of our method is illustrated in Fig. 4.2a. The model contains three major parts : a
feature extractor, a classifier and a critic function.

The feature extractor function F , parameterized by θf , extracts the features from different
source domain. For set of instances X(i) = {x(i)

j }
Ni
j=1 from domain Di, we can then denote the

extracted feature from domain i as Z(i) = F (X(i)). The classifier function C, parameterized
by θc, is expected to learn to predict labels of instances from all the domains correctly, i.e.,
for an input x, we compute C(F (x; θf ); θc) → y for making the predictions. For simplicity,
we omit the model parameters when displaying the formulas, then the model prediction is
computed by C(F (x)). The critic function φ, parameterized by θφ, aims to measure the
empirical Wasserstein distance between features from a pair of source domains. For the target
domain, all the instances and labels are absent during the training time.

The WADG algorithm aims to learn the domain-agnostic features with distinguishable classi-
fication boundary. During each train round, the network receives the labelled data from all
domains and train the classifier under a supervised mode with the classification loss LC . For
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the classification process, we use the typical cross-entropy loss for all m source domains :

LC = −
m∑
i=1

Ni∑
j=1

yj log(P(C(F (x(i)
j )))) (4.3)

The feature extractor F is then trained to minimize the estimated Wasserstein Distance in an
adversarial manner with the critic φ with an objective LD. We then adopt a metric learning
objective (namely, LMS) for leveraging the similarities for a better classification boundary.
Our full method then solve the joint loss function,

L = arg min
θf ,θc

max
θd
LC + LD + LMS , (4.4)

where LD is the adversarial objective function, and LMS is the metric learning objective
function. Note that the ‘min-max’ process in Eq. 4.4 is achieved by the adversarial training
process that introduced in section 1.4.1 and Appendix A.3.

In Eq. 4.4, we need to compute three learning objectives LC , LD and LMS . The classification
objective LC is the general cross-entropy loss introduced in Eq. 4.3. In the following sections,
we explain the last two objectives LD and LMS with more details.

Adversarial Domain Generalization using Optimal Transport

As previously introduced, we deploy the optimal transport technique with Wasserstein dis-
tance (Redko et al., 2017; Shen et al., 2018) for aligning the marginal feature distribution over
all the source domains. A brief workflow of the optimal transport for a pair of source domains
is illustrated in Fig. 4.2b.

The critic function φ estimates the empirical Wasserstein Distance between each source domain
through a pair of instances from the empirical sets x(i) ∈ X(i) and x(j) ∈ X(j). Follow Shen
et al. (2018), the dual term Eq. 4.1 of Wasserstein distance is computed by,

W1(X(i),X(j)) = max
( 1
Ni

∑
x(i)∈X(i)

φ(F (x(i)))− 1
Nj

∑
x(j)∈X(j)

φ(F (x(j)))
)

(4.5)

As in domain generalization setting, there usually exists several source domains, we can sum
all the empirical Wasserstein distance between each pair of source domains,

LD =
m∑
i=1

m∑
j=i+1

[ 1
Ni

∑
x(i)∈X(i)

φ(F (x(i)))− 1
Nj

∑
x(j)∈X(j)

φ(F (x(j)))
]

(4.6)

By optimizing LD, the learner could extract a domain-invariant feature space. We then
propose to apply metric learning approaches to leverage the class label similarity for domain
independent clustering feature extraction. We then introduce the metric learning for domain
agnostic clustering in the next section.
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Figure 4.2 – The proposed WADG method. (a) : The model mainly consists of three parts,
the feature extractor, the classifier and the critic function. During training, the model receives
all the source domains, and the feature extractor is trained to learn invariant features together
with the critic function in an adversarial manner. (b) : For each pair of source domains Di
and Dj , optimal transport process for aligning the features from different domains. (c) : For a
batch of all source domain instances, we first roughly mining the positive and negative pairs by
Eq. 4.7. Finally, the corresponding weights are computed using Eq. 4.11 and Eq. 4.12 compute
LMS so that the learner could leverage the metric learning objective.

Metric Learning for Domain Agnostic Classification Boundary

As aforementioned in section 4.1, only aligning the marginal features by adversarial training
(see section 1.5.2 and section 2.2) is not sufficient for DG since the label information is neglected
and the which can lead to the semantic misalignment problems (Dou et al., 2019). When
predicting on the target domain, the learner may still suffer from this ambiguous decision
boundary. To solve this issue, we propose to implement the metric learning techniques to help
cluster the instances and promote a better prediction boundary for better generalization.

To this end, except to the supervised source classification and alignment of the marginal
distribution across domains with the Wasserstein adversarial training defined above, we then
further encourage robust domain-independent local clustering by leveraging label information
using the metric learning objective. The brief workflow is illustrated in Fig. 4.2c. Specifically,
we adopt the metric learning objective (Wang et al., 2019c) to require the images regardless of
their domains to follow the two aspects :
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1 Instances from the same class are semantically similar, thereby should be mapped nearby
in the embedding space (semantic clustering).

2 Instances from different classes should be mapped apart from each other in embedding
space

Since goal of domain generalization aims to learn to hypothesis could predict well on all the
domains, the clustering should also be achieved under a domain-agnostic manner. That is, for
a pair of instances, no matter which domain they come from, they should stay close to each
other if they are in the same class and stay away from each other if they are not in the same
class.

To this end, we mix the instances from all the source domains together and encourage the
clustering for domain agnostic features using the metric learning techniques to achieve a
domain-independent clustering decision boundary. For this, during each training iteration,
for a batch of instances {x(i)

1 , y
(i)
1 , . . . ,x(i)

b , y
(i)
b }mi=1 from m source domains with batch size b,

we mix all the instances from each domain and denoted by {(xBi , yBi )}m′
i=1 with total size m′.

Follow (Wang et al., 2019c), we first measure the relative similarity between the negative and
positive pairs, i.e., the pair similarity mining process, which is introduced in the next part.

Pair Similarity Mining : Assume xBi is an anchor, a negative pair {xBi ,xBj } and a positive
pair {xBi ,xBj′} are selected if Sij and Si,j′ satisfy the negative condition S−i,j and the positive
condition S+

i,j , respectively :

S−i,j ≥ min
yi=yk

Si,k − ε, S+
i,j′ ≤ min

yi 6=yk
Si,k + ε (4.7)

where ε is a given margin. Through Eq. 4.7 and specific margin ε, we will have a set of
negative pairs N and a set of positive pairs P. This process (Eq. 4.7) could roughly cluster
the instances with each anchor by selecting informative pairs (inside of the margin, i.e.,
S+
i,j′ ≤ minyi 6=yk Si,k + ε), and discard the less informative ones (outside of the margin, i.e.,
S−i,j ≥ minyi=yk Si,k − ε).

With such roughly selected informative pairs N and P, we then assign the instance with
different weights. Intuitively, if a instance has higher similarity with an anchor, then it should
stay closer with the anchor and vice-versa. We introduce the weighting process in the next
section.

Pair Weighting : For instances of positive pairs, if they are more similar with the anchor,
then it should have higher weights while give the negative pairs with lower weights if they are
more dissimilar, no matter which domain they come from. Through this process, we can push
the instances into several groups by measuring their similarities.

For N instances, computing the similarity between each pair could result in a similarity matrix
S ∈ RN×N . Let Si,j be the ith row, jth column element of matrix S, then Si,j refers to the
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similarities between instance i and j. According to (Wang et al., 2019c), a loss function based
on pair similarity, it can usually be defined by F(S, y). Then, the gradient of F(S, y) w.r.t
the feature extractor θf could be computed by,

∂F(S, y)
∂θf

= ∂F(S, y)
∂S

∂S
∂θf

=
N∑
i=1

N∑
j=1

∂F(S, y)
∂Si,j

∂Si,j
∂θf

(4.8)

Eq. 4.8 could be reformulated into a new loss function LMS as,

LMS =
N∑
i=1

N∑
j=1

∂F(S, y)
∂Si,j

Si,j (4.9)

Eq.4.9 is achieved by the integration of RHS of Eq. 4.8 with θf , which defined the metric
learning objective w.r.t similarity matrix S and label y. The term ∂F(S,y)

∂Si,j
in Eq. 4.9 could be

treated as an constant scalar since it doesn’t contain the gradient of LMS w.r.t θf . When
training the model using back-propagation, we just need to compute the gradient term ∂Si,j

∂θf

for both the positive and negative pairs. Thus, Eq. 4.9 is transformed by the summation over
all the positive pair (yi = yj) and negative pairs (yi 6= yj),

LMS =
N∑
i=1

N∑
j=1

∂F(S, y)
∂Si,j

Si,j

=
N∑
i=1

 N∑
j=1,yj 6=yi

∂F(S, y)
∂Si,j

Si,j +
N∑

j=1,yj=yi

∂F
(
S, y)

∂Si,j
Si,j


=

N∑
i=1

 N∑
j=1,yj 6=yi

wi,jSi,j +
N∑

j=1,yj=yi
(−wi,j)Si,j


(4.10)

where wi,j =
∣∣∂Si,j
∂θf

∣∣ is regarded as the weight for similarity Si,j . Since our goal is to encourage
the positive pairs to be closer, then we can assume the weight for positive pairs is smaller than
0. Conversely, for a negative pair, we can assume the weight is larger than 0. The intuition is
that for a negative pair of instances, let the weight be positive, we can give it a higher loss
value. Then, the learner can learn to distinguish them. On the contrary, we can assign the
negative weights towards the positive pairs, which will guide the learner to not separate them
apart.

For each pair of instances i, j, we could assign different weights according to their similarities
Si,j . Then, we can denote w+

i,j and w
−
i,j as the weight of a positive or negative pairs’ similarity,

respectively. Previously, Yi et al. (2014) and Wang et al. (2019c) applied a soft function for
measuring the similarity. We then consider the similarity of the pair itself (i.e. self-similarity),
the negative similarity and the positive similarity. The weight of self-similarity could be
measured by exp(Si,j − λ) with a small threshold λ. For a selected negative pair {xBi ,xBj } ∈ N
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the corresponding weight (see Eq. 4.10) could be defined by the soft function of self-similarity
together with the negative similarity :

w−i,j = 1
exp(β(λ− Sij)) +

∑
k∈N exp(β(Si,k − λ))

= exp(β(Sij − λ))
1 +

∑
k∈N exp(β(Sik − λ))

(4.11)

Similarly, the weight of a positive pair {xBi ,xBj } ∈ P is defined by,

w+
i,j = 1

exp(−α(λ− Si,j)) +
∑
k∈P exp(−α(Si,k − Si,j))

(4.12)

Then, take Eq. 4.11 and Eq. 4.12 into Eq. 4.10, and integrate Eq. 4.10 with the similarity
mining Si,j , we have the objective function for clustering,

LMS = 1
m

m∑
i=1

{ 1
α

log[1 +
∑
k∈Pi

exp(−α(Sik − λ))] + 1
β

log[1 +
∑
k∈Ni

exp(β(Sik − λ))]
}

(4.13)

where λ, α and β are fixed hyper-parameters, we determine them in the empirical setting
section 4.4.2. Then, the whole objective of our proposed method is,

L = arg min
θf ,θc

max
θφ
LC + λdLD + λsLMS (4.14)

where λd and λs are coefficients to regularize Ld and LMS respectively, we show the setting of
them also in section 4.4.2.

Based on these components above, we propose the Wasserstein Adversarial Domain Generali-
zation (WADG) algorithm in Algorithm 2.

With the WADG algorithm in hand, we show the empirical results in the next section.

4.4 Experiments and Results

4.4.1 Datasets

In order to evaluate our proposed approach, follow the evaluation protocol of (Dou et al., 2019;
Matsuura and Harada, 2020; Li et al., 2017b), we implement experiments on three benchmarks :
VLCS (Torralba and Efros, 2011), PACS (Li et al., 2017a) and Office-home (Venkateswara
et al., 2017) dataset. The VLCS dataset contains images from 4 different domains : PASCAL
VOC2007 (V), LabelMe (L), Caltech (C), and SUN09 (S), where each domain includes five
classes : bird, car, chair, dog and person. PACS dataset is a recent benchmark dataset for
domain generalization. It consists of four domains : Photo (P), Art painting (A), Cartoon (C),
Sketch (S), with objects from seven classes : dog, elephant, giraffe, guitar, house, horse, person.
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Algorithm 2 The Wasserstein Adversarial Domain Generalization (WADG) algorithm
Input: Samples from different source domains {Di}Mi=1 ;
Output: Neural network parameters θf , θc, θφ

1: for mini-batch of samples {(x(i)
s , y

(i)
s )} from source domains ; do

2: Compute the classification loss LC over all the domains according to Eq. 4.3 ;
3: Compute the Wasserstein distance LD between each pair of source domains according

to Eq. 4.6 ;
4: Mix the pairs from different domains and compute the similarity by Eq. 4.2 ;
5: Roughly select the positive and negative pairs by solving Eq. 4.7 ;
6: Compute similarity loss LMS on all the source instances by Eq. 4.13 ;
7: Update θf , θc and 1d by solving Eq. 4.14 with learning rate η :

θf ← θf − η
∂(LC + λdLD + λsLMS)

∂θf
,

θc ← θc − η
∂(LC + λdLD + λsLMS)

∂θc
,

θφ ← θφ + η
∂LD
∂θφ

.

8: end for
9: Return the optimal parameters θ?f , θ?c and θ?φ.

Office-Home is a more challenging dataset, which contains four different domains : Art (Ar),
Clipart (Cl), Product (Pr) and Real World (Rw), with 65 categories in each domain.

Previous work showed that matter the adversarial model is trained under supervised (Long
et al., 2017a), semi-supervised (Zhou et al., 2021c) or unsupervised (Long et al., 2018) way, the
model will suffer from learning the diverse feature. To test our domain generalization model
on this dataset could also help to affirm the effectiveness of our approach.

4.4.2 Baselines and Implementation details

To show the effectiveness of our proposed approach, we compared our algorithm on the
benchmark datasets with the following recent domain generalization methods.

— Deep All : We follow the standard evaluation protocol of Domain Generalization to set
up the pre-trained model fine-tuned on the aggregation of all source domains with only
the classification loss.

— TF (Li et al., 2017b) : This method adopt a low-rank parameterized Convolution Neural
Network model which aims to reduce the total number of model parameters for an
end-to-end Domain Generalization training.

— CIDDG (Li et al., 2018f) : This work matches the conditional distribution by change
the class prior.
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— MLDG (Li et al., 2018b) : This one implements the meta-learning approach for domain
generalization. It runs the meta-optimization on simulated meta-train/ meta-test sets
with domain shift

— CCSA (Motiian et al., 2017b) : This work adopts the contrastive semantic alignment
loss for both the domain adaptation and domain generalization problem.

— MMD-AAE (Li et al., 2018c) : This approach adopts the Adversarial Autoencoder
model was adopted together with the Mean-Max Discrepancy to extract a domain
invariant feature for generalization.

— D-SAM (D’Innocente and Caputo, 2018) : This work aggregates the domain-specific
modules from each domain, and also stacks general and specific information from each
domain for generalization.

— JiGen (Carlucci et al., 2019) : It achieves domain generalization by solving the Jigsaw
puzzle through the unsupervised task.

— MASF (Dou et al., 2019) : A meta-learning style method which based on MLDG
and combined with Consitrastive Loss/ Triplet Loss to encourage domain-independent
semantic feature space.

— MMLD (Matsuura and Harada, 2020) : An approach that mixes all the source domains
by assigning a pseudo domain label for extract domain-independent cluster feature space.

To compare with the recent baselines, we following the general evaluation protocol of general
DG works (e.g. Dou et al., 2019; Matsuura and Harada, 2020) and first test our algorithm on by
using AlexNet (Krizhevsky et al., 2012) backbone of which the last layer was removed so that
we can use it as feature extractor. For preparing the dataset, we follow the train/validation/test
dataset split and the data pre-processing protocol of Matsuura and Harada (2020). As for the
classifier, follow the work of (You et al., 2019) we initialize a three-layers MLP whose input
has the same number of inputs as the feature extractor’s output and to have the same number
of outputs as the number of object categories. For the metric learning objective, we use the
output of the second layer of classifier network for computing the similarity.

We adopt the ADAM (Kingma and Ba, 2015) optimizer for training with learning rate ranging
from 5× 10−4 to 5× 10−5 for the whole model. For stable training, when optimizing the whole
learning objective Eq. 4.14 we set coefficient λd = 2

1+exp(−10p) − 1, where p is the training
progress. This regularization scheme λd has been used in adversarial training based domain
adaptation and generalization setting (e.g. Long et al., 2017a; Wen et al., 2019b; Matsuura
and Harada, 2020) and has been proved to help to stabilize the training process. For the value
of λs in Eq. 4.14, we follow the setting of (Dou et al., 2019) and set the value to 10−4. In
our preliminary validation results, the performance is not sensitive with λd ∈ [0, 1]. We also
tried to range λs from 10−3 to 10−6 by reverse validation and didn’t observe obvious differences.
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Method Art Cartoon Sketch Photo Avg.
Deep All 63.30 63.13 54.07 87.70 67.05
TF(Li et al., 2017b) 62.86 66.97 57.51 89.50 59.21
CIDDG(Li et al., 2018f) 62.70 69.73 64.45 78.65 68.88
MLDG (Li et al., 2018b) 66.23 66.88 58.96 88.00 70.01
D-SAM(D’Innocente and Caputo, 2018) 63.87 70.70 64.66 85.55 71.20
JiGen(Carlucci et al., 2019) 67.63 71.71 65.18 89.00 73.38
MASF(Dou et al., 2019) 70.35 72.46 67.33 90.68 75.21
MMLD(Matsuura and Harada, 2020) 69.27 72.83 66.44 88.98 74.38
Ours 70.21 72.51 70.32 89.81 75.71

Table 4.1 – Empirical Results (accuracy %) on PACS dataset with pre-trained AlexNet as
feature extractor. For each column, we refer the generalization taks as the target domain name.
For example, the third column ‘Cartoon’ refers to the generalization tasks where domain
Cartoon is the target domain while the model is trained on the rest three domains (Art, Sketch,
Photo).

For the hyper-parameters in LMS (see Eq. 4.7 and Eq. 4.13), we empirically set λ = 1.0,
ε = 0.1, α = 2.0, β = 40.0. Notice that ε is for roughly selecting the positive and negative pairs
and λ is a small margin parameters. Our validation results showed that when λ ∈ [0.5, 2.0], the
algorithm can have good performance. Besides, α and β are two parameters used for positive
and negative mining referred by Ustinova and Lempitsky (2016) in which α was set to 2.0 and β
was set to 50.0. In our validation results, we found the setting of β ∈ [30.0, 45.0] could guarantee
stable performance in our domain generalization problems rather 50.0 in the original (Ustinova
and Lempitsky, 2016). Notice that α ∈ [1.0, 5.0] could also have good performance. Based on
those findings we report the empirical results with α = 2.0 and β = 40.0.

Then, we examined our algorithm on the office-home benchmark, which is more challenging
than the previous PACS and VLCS datasets. We follow the setting of (Carlucci et al., 2019),
which is the most recent work who also evaluated on office-home dataset, to have a fair
comparison. For this Office-home dataset, we also used reverse validation to set the learning
rate as 2e− 4 for the whole model. For the remaining hyper-parameters, we keep the same
with PACS and VLCS experiments. To avoid over-training, we also adopt the early stopping
technique. All the experiments are programmed with PyTorch (Paszke et al., 2019).

4.4.3 Experiments Results

We first reported the empirical results on PACS and VLCS dataset using AlexNet as feature
extractor in Table 4.1 and Table 4.2, respectively. For each generalization task, we train the
model on all the source domains and test on the target domain and report the average of top 5
accuracy values. The empirical results refers to the average accuracy about training on source
domains while testing on the target domain.
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Method Caltech LabelMe Pascal Sun Avg.

Deep All 92.86 63.10 68.67 64.11 72.19
D-MATE (Ghifary et al., 2015b) 89.05 60.13 63.90 61.33 68.60
CIDDG (Li et al., 2018f) 88.83 63.06 64.38 62.10 69.59
CCSA (Motiian et al., 2017b) 92.30 62.10 67.10 59.10 70.15
SLRC (Ding and Fu, 2017) 92.76 62.34 65.25 63.54 70.97
TF (Li et al., 2017b) 93.63 63.49 69.99 61.32 72.11
MMD-AAE (Li et al., 2018c) 94.40 62.60 67.70 64.40 72.28
D-SAM (D’Innocente and Caputo, 2018) 91.75 56.95 58.95 60.84 67.03
MLDG (Li et al., 2018b) 94.4 61.3 67.7 65.9 73.30
JiGen (Carlucci et al., 2019) 96.93 60.90 70.62 64.30 73.19
MASF (Dou et al., 2019) 94.78 64.90 69.14 67.64 74.11
MMLD (Matsuura and Harada, 2020) 96.66 58.77 71.96 68.13 73.88
Ours 96.68 64.26 71.47 66.62 74.76

Table 4.2 – Empirical Results (accuracy %) on VLCS dataset with pre-trained AlexNet as
feature extractor.

Art Clipart Product Real-World Avg.

Deep All 52.15 45.86 70.86 73.15 60.51
D-SAM(D’Innocente and Caputo, 2018) 58.03 44.37 69.22 71.45 60.77
JiGen(Carlucci et al., 2019) 53.04 47.51 71.47 72.79 61.20

Ours 55.34 44.82 72.03 73.55 61.44

Table 4.3 – Empirical Results (accuracy %) on Office-home dataset with pre-trained ResNet-18
as feature extractor.

From the empirical results, we can observe our method outperforms the baselines both on
the PACS and VLCS dataset, indicating an improvement on benchmark performances. This
showed the effectiveness of our method. Then, we report the empirical results on Office-home
dataset in Table 4.3. As stated before, Office-home is a more larger and challenging dataset
contains more diverse features from 65 different classes. To evaluate the performance on this
dataset requires large amount of computational resources. Due to the limits, we follow the
evaluation protocol of Carlucci et al. (2019) to report the empirical results. From those results,
we could observe that our algorithm outperforms the previous Domain Generalization method,
this also confirm the effectiveness of our proposed method.

4.4.4 Further Analysis

To further show the effectiveness of our algorithm especially on more deep models, as suggested
by Dou et al. (2019), we also test our algorithm by using ResNet-18 backbone on PACS dataset.
The results are reported in Table 4.4.
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Method Art Cartoon Sketch Photo Avg.
Deep All 77.87 75.89 69.27 95.19 79.55
D-SAM(D’Innocente and Caputo, 2018) 77.33 72.43 77.83 95.30 80.72
JiGen(Carlucci et al., 2019) 79.42 75.25 71.35 96.03 80.51
MASF(Dou et al., 2019) 80.29 77.17 71.69 94.99 81.04
MMLD(Matsuura and Harada, 2020) 81.28 77.16 72.29 96.09 81.83
Ours 81.56 78.02 78.43 95.82 83.45

Table 4.4 – Empirical Results (accuracy %) on PACS dataset with pre-trained ResNet-18 as
feature extractor .

AlexNet ResNet-18
Ablation Art Carton Sketch Photo Avg. Art Carton Sketch Photo Avg.

Deep All 63.30 63.13 54.07 87.70 67.05 77.87 75.89 69.27 95.19 79.55
No LD 65.80 69.64 63.91 89.53 72.22 74.62 73.02 68.67 94.86 77.79
No LMS 66.78 71.47 68.12 88.87 73.65 78.25 76.27 73.42 95.68 80.91
LMS w.o. w+ 66.31 70.86 67.11 88.97 73.31 80.58 77.95 75.13 95.63 82.32
LMS w.o. w− 66.41 70.95 68.73 87.38 73.37 79.98 77.65 77.89 95.21 82.68
WADG-All 70.21 72.51 70.32 89.81 75.71 81.56 78.02 78.43 95.82 83.45

Table 4.5 – Ablation Studies on PACS dataset on all components of our proposed method
using AlexNet and ResNet-18 backbone

From Table 4.4, we observe that our method outperforms the baselines on most generalization
tasks with +1.6% accuracy improvement, achieving state-of-the-art performance.

Besides, we also conducted ablation studies on each component of our algorithm. We report
the empirical results of ablation studies in Table 4.5, where we test the ablation studies on
both the AlexNet backbone and ResNet-18 backbone. We conducted the ablations by :

1. Deep All : Train the model using feature extractor on source domain datasets with
classification loss only, that is, neither optimal transport nor metric learning techniques
is adopted ;

2. No LD : Train the model with classification loss and metric learning loss but without
adversarial training component ;

3. LMS w.o. w+ : omit the positive weighting scheme in LMS ;

4. LMS w.o. w− : omit the positive weighting scheme in LMS ;

5. No LMS : Train the model with classification loss and adversarial loss but without metric
learning component ;

6. WADG-All : Train the model with full objective Eq. 4.14.

From the ablation results in Table 4.5, we could observe that once we omit the adversarial
training, the accuracy would drop off rapidly (∼ 3.5% with AlexNet backbone and ∼ 5.8%
with ResNet-18 backbone). Comparing the ablations LMS w.o. w+ and LMS w.o. w−, we
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Source: Art
Source: Carton

source: Sketch
Target: Photo

(a) Deep All

Source: Art
Source: Carton

source: Sketch
Target: Photo

(b) No LD

Source: Art
Source: Cartoon

Source: Sketch
Target: Photo

(c) No LMS

Source: Art
Source: Carton

source: Sketch
Target: Photo

(d) WADG-All

Figure 4.3 – t-SNE visualization of ablation studies on PACS dataset for target domain as
Photo. Detailed analysis is presented in section 4.4.4.
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Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(a) Deep All

Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(b) No LD

Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(c) No LMS

Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(d) WADG-All

Figure 4.4 – t-SNE visualization of ablation studies on VLCS dataset for target domain as
Caltech. Detailed analysis is presented in section 4.4.4.

could observe almost similar accuracy. This indicates that the positive and negative weighting
scheme of the metric learning objective have equivalent contributions. Once we reduce the
metric learning objecitve, the performance will drop ∼ 2.1% and ∼ 2.5% with AlexNet and
ResNet-18 backbone, respectively.

In order to better understand the contribution of each component of our algorithm, the T-SNE
visualization of the ablation studies of each components on PACS and VLCS dataset are
represented in Fig. 4.3 for the generalization task of target domain Photo ; and Fig. 4.4 for the
generalization task of target domain Caltech, respectively. Since our goal is to not only align
the feature distribution but also encourage a cohesion and separable boundary, in order to
show the alignment and clustering performance, we report the t-SNE features of all the source
domains and target domain to show the feature alignment and clustering across domains.

For PASC dataset, as we can see in Fig. 4.3, the t-SNE features by Deep All (Fig. 4.3a) are
almost randomly displayed, which means the learner could neither project the instances from
different domains to align with each other nor to cluster the features into groups. Notice that
in the Deep All ablation, the learner neither align the marginal distribution nor leveraging
the similarities, so the features are not aligned at all, which is consistent with Fig. 4.3a. The
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t-SNE features by No LD (Fig. 4.3b) showed the metric learning loss could to some extent to
cluster the features, but without the adversarial training, the features could not be aligned well,
which confirms the necessity of adversarial training to align the features. The t-SNE features
by No LMS (Fig. 4.3c) showed that the adversarial training could help to align the features
from different domains but could not have a good clustering performance, which confirms the
effectiveness of metric learning objective on encouraging the classification boundary. Lastly,
the T-SNE features by WADG-All, of which the learner has both the Wasserstein adversarial
training and metric learning objective, showed that the full objective could help to not only
align the features from different domains but also could cluster the features from different
domains into several cluster groups, which confirms the effectiveness of our algorithm.

As for the VLCS dataset, as shown in Fig. 4.4, we could observe similar performance of
the T-SNE on the VLCS dataset while the features are somehow overlap with each other.
This is due to the features in Caltech domain is somehow easy to learn and predict. As also
analyzed in (Li et al., 2017a), a supervised model on Caltech domain could achieved ∼ 100%
accuracy, which also confirms that the features in Caltech domain is easy to learn indicating
the features might be more likely overlapping with each other. As we can see from Fig.4.4d,
the WADG method could help to separate the features with each other, which again confirms
the effectiveness of our proposed method.

4.5 Discussions and Conclusion

In this chapter, we proposed the Wasserstein Adversarial Domain Generalization algorithm, in
which we first adopted optimal transport with Wasserstein distance for aligning the marginal
distribution and then adopted the metric learning method to encourage a domain-independent
distinguishable feature space for a clear classification boundary. Our experimental results
showed that our approach outperforms most of the baseline methods on standard benchmark
datasets. Furthermore, the ablation studies and visualization of the t-SNE features also
confirmed the effectiveness of our algorithm. Besides, we also notice that the metric learning
objective involved in this chapter shares some common idea with the supervised contrastive
learning (Khosla et al., 2020), which can be an interesting direction in the future. The
methodology in this chapter started to investigate the class similarities across different data
distributions for multi-source transfer learning problems. In the next chapter, we further
investigate the label and semantic information in the multi-task learning problems.
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Chapitre 5

Multi-task Learning by Leveraging
the Semantic Information

In this chapter, we present our work (Zhou et al., 2021a), where we explored the semantic
and task relations in multi-task learning (MTL). We provide a complete theoretical framework
to understand the semantic and label distribution divergence in MTL and propose a concrete
algorithm showing state-of-the-art empirical performances on several benchmarks, especially
when dealing with label distribution shift.

Résumé

L’apprentissage multi-tâches vise à résoudre simultanément les tâches connexes en exploitant
les connaissances partagées pour améliorer les performances des tâches individuelles. Un
objectif crucial de l’apprentissage multi-tâche est d’aligner les distributions entre les tâches
afin que les informations entre elles puissent être transférées et partagées. Cependant, les
approches existantes se concentrent uniquement sur la correspondance de la distribution
marginale des caractéristiques tout en ignorant les informations sémantiques, ce qui peut
entraver les résultats de l’apprentissage. Pour résoudre ce problème, nous proposons d’exploiter
les informations des étiquettes dans l’apprentissage multi-tâches en explorant les relations
conditionnelles sémantiques entre les tâches. Tout d’abord, nous analysons théoriquement
la limite de généralisation de l’apprentissage multi-tâches en nous basant sur la notion
de divergence de Jensen-Shannon, ce qui apporte un nouvel aperçu de l’importance des
informations des étiquettes dans l’apprentissage multi-tâches. Notre analyse conduit à un
algorithme concret qui, conjointement, fait correspondre la distribution sémantique et contrôle
la divergence de la distribution des étiquettes. Pour confirmer l’efficacité de la méthode proposée,
nous comparons d’abord l’algorithme avec plusieurs baselines sur quelques benchmarks, puis
nous les testons dans des conditions de décalage dans l’espace des étiquettes. Les résultats
empiriques démontrent que la méthode proposée peut surpasser la plupart des baselines et

86



atteindre des performances de pointe, en montrant particulièrement les avantages sous les
conditions de décalage d’étiquette.

Abstract

Multi-task learning (MTL) aims to solve the related tasks simultaneously by exploiting shared
knowledge to improve individual task performance. One crucial objective of MTL is to align
distributions across tasks so that the information between them can be transferred and shared.
However, existing approaches only focused on matching the marginal feature distribution while
ignoring the semantic information, which may hinder the learning performance. To address
this issue, we propose to leverage the label information in multi-task learning by exploring the
semantic conditional relations among tasks. We first theoretically analyze the generalization
bound of multi-task learning based on the notion of Jensen-Shannon divergence, which provides
new insights into the value of label information in multi-task learning. Our analysis also leads
to a concrete algorithm that jointly matches the semantic distribution and controls label
distribution divergence. To confirm the effectiveness of our method, we first compare the
algorithm with several baselines on some benchmarks and then test the algorithms under label
space shift conditions. Empirical results demonstrate that our method could outperform most
baselines and achieve state-of-the-art performance, particularly showing the benefits under the
label shift conditions.

5.1 Introduction

As we discussed in section 1.4.2, general machine learning paradigms typically focus on
learning individual tasks. Even though significant progress has been achieved, recent successes
in machine learning, especially in the deep learning area, usually rely on a large amount of
labelled data to obtain a small generalization error. In practice, however, acquiring labelled
data could be highly prohibitive, e.g., when classifying multiple objects in an image (Long
et al., 2017a), when analyzing patient data in healthcare data analysis (Wang and Pineau,
2015), or when modelling users’ products preferences Murugesan and Carbonell (2017). Data
hungry has become a long-term problem for deep learning (Aggarwal et al., 2018).

Multi-task learning (MTL) aims at addressing this issue by simultaneously learning from
multiple related tasks and leveraging the shared knowledge across them. Many MTL ap-
proaches have been implemented in computer vision (Zhao et al., 2018), natural language
processing (Bingel and Søgaard, 2017), medical data analysis (Moeskops et al., 2016; Li
et al., 2018h), brain-computer interaction (Wang et al., 2020a) or cross-modality (Nguyen and
Okatani, 2019) learning problems. It has been shown with benefits that with MTL, one can
reduce the amount of annotated data per task to reach the desired performance.
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In the previous Chapter 4, we explored the domain generalization (DG) problems, where we
train the model on several source data distributions and then test it on an unseen target
domain. In the MTL problems, we train the model on several tasks using limited data and
test it on the same tasks with full data. A general framework of the MTL problems involved
in this chapter can be recalled with Fig. 1.8 in section 1.4.2.

The crucial idea behind MTL is to extract and leverage the knowledge and information shared
across the tasks to improve the overall performance (Wang et al., 2019b), and this can be
achieved by task-invariant feature learning (Maurer et al., 2016; Luo et al., 2017a) or task
relation learning (Zhang and Yeung, 2010; Bingel and Søgaard, 2017). As summarized in
section 2.3.2, one major issue with most of the existing feature learning approaches is that
they only align the marginal distributions D(x) to extract the shared features without taking
advantage of label information D(y) of the tasks, knowing that (x, y) reflects data and label,
respectively. Consequently, the features can lack discriminative power for supervised learning
even if their marginal features have been matched properly (Dou et al., 2019). Furthermore,
only aligning D(x) cannot address the MTL problems when the label space of each task differs
from each other, i.e., label shift problem (Redko et al., 2019).

As discussed in section 2.3.2, while a few algorithms have been proposed to use semantic
matching, i.e. alignment the semantic distributions D(x|y) over all the tasks, for MTL
by Zhuang et al. (2017) and Luo et al. (2017a), and have shown improved performances,
the theoretical justifications for the value of labels remain elusive. Most existing theoretical
results (Shui et al., 2019; Mao et al., 2020) for MTL were derived from the notion of H-
divergence (Ben-David et al., 2010a) or Wasserstein adversarial training (Redko et al., 2017;
Shen et al., 2018), and both did not take the label information into consideration. As a
result, Shui et al. (2019) and Mao et al. (2020)they usually require additional assumptions, e.g.,
assuming the combined error across tasks is small (Ben-David et al., 2010a) (see section 1.5.2)
to ensure the algorithms succeed, which may not hold in practice.

As we see semantic matching is important and we proposed a theoretical analysis for MTL
that considers it. Specifically, our results revealed that the MTL loss can be upper-bounded
in terms of the pair-wise discrepancy between the tasks, measured by the Jensen-Shannon
divergences of label distribution D(y) and semantic distribution D(x|y).

The contributions of our work in this chapter are trifold :

1. In contrast to previous theoretical results (Shui et al., 2019; Mao et al., 2020), which
only consider the marginal distribution discrepancy (e.g., H-divergence), we build a
complete MTL theoretical framework upon the joint distribution discrepancy based on
the Jensen-Shannon divergence. Thus, our result provides a deeper understanding of the
general problem of MTL and insight into how to extract and leverage shared knowledge
in a more appropriate and principled way by exploiting the label information D(y).

88



2. Our analysis also reveals how the label shift affects the learning procedure of MTL,
which was missing in previous results.

3. Our theoretical result leads to a novel algorithm, namely Semantic Multi-Task Learning
(SMTL) algorithm, which explicitly leverages the label information for MTL.

Specifically, the SMTL algorithm simultaneously learns task-invariant features and task
similarities to match the semantic distributions across the tasks and minimizes label distribution
divergence via a label re-weighting loss function. In addition, SMTL is based on a novel
centroid matching approach for task-invariant feature learning, which is more efficient than
other adversarial training based algorithms. To examine the effectiveness of the our algorithm,
we evaluated SMTL on several benchmarks. The empirical results show that our approach
outperforms the baselines achieving state-of-the-art performance. Besides, the experiment
results show that our algorithm can be more time-efficient than the adversarial baselines,
which confirms the benefits of our method. Furthermore, we also conduct a simulation of the
label distribution shift scenario showing that our algorithm could handle the label distribution
shift problems that cannot be properly addressed by other baselines.

5.2 Preliminaries

In this section, we first recall some necessary notations and preliminary problem setup, which
we have presented in section 1.4.2.

5.2.1 Problem setup

In the previous Chapter 4, we tackled the domain generalization problems where we trained
the model on several source domains and test it on the target domain. Here, in the MTL
problems, we train the model on several tasks with limited data on some data distributions
and then test this model on the same task data distributions.

Assuming a set of T tasks {D̂t}Tt=1, each of them is generated by the underlying distribution
Dt over X and by the underlying labelling functions ft : X → Y for {(Dt, ft)}Tt=1. A MTL
learner aims to find T hypothesis : h1, . . . , hT over the hypothesis space H to minimize the
average expected risk of all the tasks :

arg min
h∈H

1
T

T∑
i=1

Ri(hi),

where Ri(hi) ≡ Ri(hi, fi) = Ex∼Di`(hi(x), fi(x)) is the expected error of task t and ` is
the loss function. For each task i, assume that there are mi examples. For each task i,
we consider a minimization of weighted empirical loss for each task by defining a simplex
αj ∈ ∆T = {αi,j ≥ 0,

∑T
j=1 αi,j = 1} for the corresponding weight for task j. It could be

viewed as an explicit indicator of the task relations revealing how much information leveraged
from other tasks.
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The empirical loss w.r.t. the hypothesis h for task i could be defined as,

R̂αi(h) =
T∑
j=1

αi,jR̂j(h), (5.1)

where R̂i(h) = 1
mi

∑mi
j=1 `(h(xj), yj) is the average empirical error for task i.

Most of existing adversarial based MTL approaches, (e.g. Mao et al., 2020; Shui et al., 2019),
were motivated by the theory of Ben-David et al. (2010a) using the H divergence. However,
the H-divergence theory itself is limited in many scenarios. As we discussed in section 1.5,
H-divergence deals with the marginal feature distribution D(x). It will be prohibitive to use
H-divergence in some learning scenarios, e.g., when tackling the (semantic) conditional shifts
and understanding open set learning problems (Busto and Gall, 2017; Cao et al., 2018b; You
et al., 2019). In this work, we adopt the Jensen-Shannon Divergence (DJS, introduced in
section 1.5) to measure the differences of tasks and analyze its potentials for controlling the
semantic (covariate) relations D(x|y) i.e. measure the divergence between the tasks.

Definition 5.1 (Jensen-Shannon divergence). Let Di(x, y) and Dj(x, y) be two distribution
over X × Y, and letM = 1

2(Di +Dj), then the Jensen-Shannon (JS) divergence between Di
and Dj is,

DJS(Di‖Dj) = 1
2[DKL(Di‖M) +DKL(Dj‖M)]

where DKL(Di‖Dj) is the Kullback–Leibler divergence.

As summarized in section 1.5.1, Jensen-Shannon divergence has been implemented in adversarial
training based approaches in transfer learning (Dou et al., 2019; Matsuura and Harada, 2020;
Zhao et al., 2019a). In practice, we could compute the Total Variation distance (dTV ) since it
is an upper bound of JS divergence (Lin, 1991) :

dTV (Di,Dj) = 1
2 |Di −Dj | (5.2)

5.2.2 Leverage the semantic and label information

As aforementioned, previous MTL approaches (e.g. Mao et al., 2020; Shui et al., 2019)
mostly only matched the marginal distribution while neglecting the labelling information. A
successful MTL algorithm should take the semantic (covariate) conditional information into
consideration. For example, consider the classification of different digits dataset (e.g. MNIST
(Di) and SVHN (Dj)) using MTL, when conditioning on the certain digit Y = y, it is clear
that Di(x|Y = y) 6= Dj(x|Y = y), indicating the necessity of considering semantic information
in MTL problems.

Moreover, a long-neglected issue in existing MTL approaches is that most MTL approaches
all implicitly assumed that the label marginal distribution (D(y)) are the same. However,
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this may not hold. For example, in a medical diagnostics problem, if the data are collected
from different hospitals with different populations in that area, the label spaces for data
can vary from each other. As introduced in section 1.3.2, label shift refers to the situation
where the source and target distribution have different label distribution (Redko et al., 2019),
i.e., DJS(Di(y)‖Dj(y)) 6= 0. While this issue has been investigated in literature by transfer
learning (Busto and Gall, 2017; Geng et al., 2020; Azizzadenesheli et al., 2019), the analysis
towards label space shift in MTL is, however, still open.

We show, in next section, both theoretically and empirically, that the label space shift can
impair the MTL performance. Our theoretical and empirical results reveal that a successful
multitask learning algorithm should not only match the semantic distribution D(x|y) among
all the tasks via adversarial training with J-S divergence but also measure the label distribution
D(y) under a re-weighting scheme for all tasks. Specifically, we consider the label distribution
drift scenario, where the number of classes is the same to each other across the tasks while the
number of instances in each class has obvious shift.

5.3 Methodology and Insights

Intuitively, when aligning the distribution of different tasks, features from the same class
should be mapped near to each other in the feature space satisfying the semantic conditional
relations. We firstly analyzed the error bound with the notion of Jensen-Shannon divergence
based form to measure the tasks discrepancies. Then, we further extend the results to analyze
to control the label space divergence and the semantic conditional distribution divergence. All
the proofs of the theoretical results in this chapter are presented in Appendix B.2.

Theorem 5.1. Let H be the hypothesis class h ∈ H. Suppose we have T tasks generated by
the underlying distribution and labelling function {(D1, f1), . . . , (DT , fT )}. Assume the loss
function ` is bounded by L (max(`)−min(`) ≤ L). Then, with high probability we have

1
T

T∑
t=1

Rt(h) ≤ 1
T

T∑
t=1

Rαt(h) + λ0
4T L

2 + 2
λ0T

T∑
t=1

T∑
i=1

αt,iDJS(Dt(x, y)‖Di(x, y)) (5.3)

where λ0 > 0 is a constant.

Theorem 5.1 showed that the averaged MTL error is bounded by an averaged summation of
all the tasks, the averaged summation of task distribution divergence among all pair of tasks
and some constant value. Minimizing this bound is equivalent to minimizing the supervised
classification loss and aligning the distribution of all the tasks so that the divergence term is
also minimized.

Note that the bound in Theorem 5.1 indicates the joint distribution while we aim to leverage
the label (D(y)) and semantic (D(x|y)) information. To do that, we can then decompose the
aforementioned Theorem 5.1 into the following result,
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Corollary 5.1. Follow the setting of Theorem 5.1, we can further bound the overall task risk
by

1
T

T∑
t=1

Rt(h) ≤ 1
T

T∑
t=1

Rαt(h) + A DJS(Dt(y)‖Di(y))︸ ︷︷ ︸
Label distribution divergence

+ AEy∼Dt(y)DJS(Dt(x|y)‖Di(x|y))︸ ︷︷ ︸
Semantic distribution divergence

+ AEy∼Di(y)DJS(Dt(x|y)‖Di(x|y))︸ ︷︷ ︸
Semantic distribution divergence

+ λ0
4T L

2

(5.4)

where A ∈ RT×T is the corresponding matrix whose t-th row and i-th column element is
2
λ0T

∑T
t=1

∑T
i=1 αt,i

Remark : Different from previous theoretical results (Shui et al., 2019; Mao et al., 2020),
which were motivated by Ben-David et al. (2010a) and Redko et al. (2017), our theoretical
results reflected by Eq. 5.4 do not rely on extra assumption of the existence of the optimal
hypothesis to achieve a small combined error. Besides, our results also provide new insight by
taking advantage of label information and semantic conditional relations.

Corollary 5.1 implies that the averaged error over all tasks is bounded by the summation
of task errors (the first term in R.H.S. of Corollary 5.1), the label distribution divergence
(the second term), a constant term (the third term), and the semantic distribution divergence
term (the last two terms). The first term 1

T

∑T
t=1Rαt(h) can be easily optimized by a general

supervised learning loss (e.g. the cross-entropy loss). To minimize the remaining terms now
is equivalent to match the semantic distribution among the tasks by measuring the label
divergence. Since the labels of each task samples are available to the learner, we can leverage
the label and semantic information directly.

5.3.1 Label Re-weighting Loss

Corollary 5.1 indicates that the error is also controlled by the label divergence termDJS(Di(y)‖Dj(y)).
To reduce the influences caused by the label space shifts, we could adopt a label correction
re-weighting loss (Lipton et al., 2018) based on the number of instances in each class,

R̂βDi(h) =
∑

(xi,yi)∈D̂i

β(yi)`(h(xi), yi)) (5.5)

where β ∈ RK×1 is weight for each class, and βj is the weight for class yj . For task i with
total Ni instances, the weight of class k ∈ K (K is the total number of classes) is computed
by βk =

∑ |#y=yk|
Ni

. This re-weighting scheme guarantee the instances from different classes
could have equal probability to be sampled when training the model (see Fig. 5.1), which
re-weights the loss according to frequency of each class that occurs during training. By doing
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Figure 5.1 – Example of re-weighting scheme. Left : The number of instances (frequencies) in
each class between task 1 and task 2 are different. Right : After the re-weighting process, the
frequencies of each class becomes the same.

so, the learner will not neglect those classes who have fewer instances and therefore takes care
of label shift.

Note : the coefficient β is computed for re-weighting the loss from each task (as defined in
section 5.2.1) while α is a set of weights indicating the relations between each other, i.e. how
much information leveraged from other tasks.

When training the model, we maintain the task specific loss Li = R̂βDi(h) and compute the
total classification loss

LC =
T∑
i=1

αiR̂
β
Di(h) (5.6)

Semantic matching and task relation update

To compute Eq. 5.6, we still need to estimate the task relation coefficients α. As it indicates
the relations between tasks, we are not able to measure its value at the beginning. To a better
estimation, we need to update the coefficient α automatically during the training process.
Through Corollary 5.1, we could solve the coefficients via an convex optimization as

min
α1,...,αT

LC +
T∑

i,t=1
αt,i

∑
y
(D̂i(y) + D̂t(y)))Ei,t +

T∑
t=1
||αt||2

s.t.
∑
t

αt = 1
(5.7)

where Ei,t = DJS
(
D̂t(x|y)‖D̂t(x|y)

)
is the empirical semantic distribution divergence. To

align the semantic distribution, we adopt the centroid matching method by computing the
Euclidean distance between two centroids in the embedding space. Denote zkDi and z

k
Dj by two

feature centroids from class k of distribution Di and Dj respectively, it could be computed by,

Φ(zkDi , z
k
Dj ) = ||zkDi − z

k
Dj ||

2 (5.8)

Our goal is to match the semantic distribution across tasks. For this, we re-visited the moving
average centroid method proposed by Xie et al. (2018) where a global centroid matrix was
maintained to compute the semantic information between a labeled source and an unlabeled
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Algorithm 3 The Global Semantic Matching Method.
Input : Training set from each tasks.
Parameter : Feature extractor parameters θf ; decay parameter γ.
Output : The semantic loss.

1: for k=1 to K do
2: zkDi ←

1
|Dki |

∑
(xi,yi)∈Dki

F (xi) ;
3: zkDj ←

1
|Dkj |

∑
(xj ,yj)∈Dkj

F (xj) ;

4: ZkDi ← γzkDi + (1− γ)zkDi ;
5: ZkDj ← γzkDj + (1− γ)zkDj ;
6: LS ← LS + Φ(ZDi ,ZDj ) ;
7: end for
8: return LS .

target distribution for domain adaptation problem. Unlike Xie et al. (2018), however, we
explicitly measure the semantic distribution across all the tasks rather than through assigning
pseudo labels to compute them. We illustrate the modified moving average centroid method,
namely The Global Semantic Matching Method in Algorithm. 3.

Remark : Through Algorithm 3, the semantic loss LS is an approximation of the total varia-
tion distance (see Eq. 5.2) of the two centroids, which is an upper bound ofDJS (Di(x|y),Dj(x|y)).
Compared with adversarial training based method, this semantic matching process does not
need to train pair-wised discriminators, which may help to reduce the computational costs.
For example, for m tasks, Shui et al. (2019) needs to train m(m−1)

2 discriminators. When the
number of tasks increase, the training procedure may become time-inefficient.

Algorithm 4 The Semantic Multi-task Learning (SMTL) Algorithm.

Input: Samples from different tasks {D̂t}Tt=1, initial coefficients {αt}Tt=1 and learning rate η.
Output: Neural network θf , {θtc}Tt=1 and coefficient α1, . . . ,αT .

1: while Algorithm Not converge do
2: for min-batch {(xbt , ybt )} from task {D̂t}Tt=1 do
3: Compute the classification objective LC by Eq. 5.6 ;
4: Compute the semantic matching objective LS using Algorithm 3 ;
5: Update the network parameters θf ,θ

t
c by :

θf ← θf − η ∂LC+LS
∂θf

and θtc ← θtc − η ∂LC+LS
∂θtc

;
6: end for
7: Update {αt}Tt=1 by optimizing over Eq. (5.7).
8: end while

5.3.2 The full objective and algorithm

A general model architecture is provided in Fig. 5.2. The model learns multiple tasks jointly by
a shared feature extractor. For each task, we implement a task-specific classifier. The classifier
was trained under a re-weighting loss via measuring label distribution of each task, and we
also maintain the semantic loss to match the semantic distribution across tasks to achieve the
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Figure 5.2 – The overall model architecture of the SMTL method.

semantic transfer objective. The Semantic Multi-task Learning (SMTL) method is illustrated
in Algorithm 4

5.4 Experiments and Analysis
We examined our approach comparing with several baselines on Digits, PACS (Li et al.,
2017b), Office-31 (Saenko et al., 2010), Office-Caltech (Gong et al., 2012) and Office-
home (Venkateswara et al., 2017) dataset. For the Digits benchmark, we evaluate our al-
gorithms on MNIST, MNIST-M and SVHN simultaneously. The PACS dataset, which was
widely used in recent transfer learning researches, consists of images from four tasks : Photo
(P), Art painting (A), Cartoon (C), Sketch (S), with objects from 7 classes. Office-31 dataset is
a vision benchmark widely used in transfer learning related problems which consists of three
different tasks : Amazon, Dslr and Webcam ; Office-Caltech contains the 10 shared categories
between the Office-31 dataset and Caltech256 dataset, including four different tasks : Amazon,
Dslr, Webcam and Caltech ; Office-home is a more challenging benchmark, which contains four
different tasks : Art, Clipart, Product and Real World, with 65 categories in each task.

To evaluate the performance of our algorithm, we re-implement and compare our method with
the following principled approaches :

— Vanilla MTL : Learning all the tasks simultaneously while optimizing the average
summation loss : 1

T

∑T
t=1 R̂t(θf ,θtc), i.e., compute the loss uniformly.

— Weighted MTL : Learning a weighted summation of losses over different tasks :
1
T

∑T
t=1 R̂αt(θf ,θtc) ; an approach adapted from Murugesan et al. (2016).

— Adv.H : Using the same loss function of (Liu et al., 2017a) while training with H-
divergence as adversarial objective ; an approach adapted from Liu et al. (2017a).

— Adv.W : Replacing the adversarial loss of Adv.H by Wasserstein distance based adver-
sarial training method.

— Multi-Obj. : Casting the multi-task learning problem as a multi-objective problem ; an
approach adapted from Sener and Koltun (2018).

— AMTNN : Adapted from Shui et al. (2019), a gradient reversal layer with Wasserstein
adversarial training method.
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5.4.1 Experiments on Benchmark Datasets

We first evaluate the MTL algorithms on Digits dataset. In order to show the effectiveness of
MTL methods when dealing with small amount of labelled instances, we randomly selecting
3k, 6k and 8k instances of the training dataset and choose 1k dataset as validation set while
testing on the full test set. For the SVHN dataset, whose original image size is 32× 32, we
resize the images to 28 × 28 × 1, except for that, we do not apply any data-augmentation
towards to digits dataset. We used LeNet-5 model (LeCun et al., 1998) as the feature extractor
and deployed three 3-layer MLPs as task-specific classifiers. We extract the semantic feature
from the second layer of the classifier with size 128. We adopted the Adam optimizer Kingma
and Ba (2015) for training the model from scratch. The model is trained for 50 epochs while
the initial learning rate is set to 1× 10−3 and is decayed 5% for every 5 epochs. The results
are reported in Table 5.1.

For computer vision applications, we then test the SMTL algorithm comparing with the
baselines on PACS and Caltech datasests using the AlexNet by (Krizhevsky et al., 2012) as
feature extractor. For investigating the performance when limited amount labelled instances
are available, we evaluated our algorithms on PACS dataset randomly selecting 10%, 15% and
20% of the total dataset for training, respectively. Since the Office-Caltech dataset is relatively
small, we only test the dataset by using 20% of the total images to train the model. We use
the pre-trained AlexNet provided by PyTorch (Paszke et al., 2019) while removing the last FC
layers as feature extractor. On top of the feature extractor, we implemented several MLPs as
task-specific classifiers. Our test results are reported in Table 5.2 and Table 5.3, respectively.

After that, we evaluated our algorithm on Office-31 and Office-Home dataset by randomly
selecting 5%, 10% and 20% training samples with pre-trained ResNet-18 model of PyTorch
while removing the last FC layers as feature extractor. For these four vision benchmarks we
follow the pre-processing and train/val/test protocol proposed by Long et al. (2017a); Cao
et al. (2018a) and Li et al. (2017b). We adopt the Adam optimizer with initial learning rate
2 × 10−4 and decayed 5% every 5 epochs while totally training for 80 epochs. For stable
training, we also enable the weight-decay in Adam optimizer to enforce a L2 regularization.
The test results are reported in Table 5.4 and 5.5, respectively.

Discussion on our experimental results

From Table. 5.1∼ 5.5, we observe that our method outperforms the baselines and improve
the benchmark performances. Specifically, on the Digits dataset (Table 5.1), we observe that
the baseline some baselines have better performance on a specific task with a minor gap, for
example, the baseline Adv.H has better performances on MNIST-M but has poorly performance
on SVHN (almost 10% worse than ours). And we see from Table 5.1 that our method has
better-averaged performance across all the tasks, which is coherent to the goal of MTL to
improve the overall performance. The reason for the difference on MNIST-M and SVHN
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Method Amazon Caltech Dslr WebCam Average
Vanilla 84.2± 1.1 80.6± 0.8 90.8± 2.3 81.8± 0.9 84.3
Weighted 88.1± 0.2 81.5± 0.9 94.9± 0.2 94.2± 0.5 88.6
Adv.H 81.5± 0.5 73.8± 1.8 91.4± 2.1 86.1± 1.4 83.3
Adv.W 84.9± 0.4 80.9± 0.9 94.5± 2.2 87.5± 1.5 86.9
Multi-Obj. 82.3± 0.7 76.7± 2.4 91.2± 1.7 86.8± 0.9 84.3
AMTNN 89.3± 0.9 84.3± 0.6 98.4± 1.3 94.1± 0.7 91.7
Ours 90.9± 0.4 85.3± 0.5 98.1± 0.8 94.2± 0.6 92.1

Table 5.3 – Average test accuracy (in %) of MTL algorithms on Office-Caltech dataset with
pre-trained AlexNet as feature extractor.

between our methods with the baslines is that MNIST-M shares some commonalities with
MNIST (e.g. digit style) while having apparent semantic differences from SVHN, which leads
to the baselines’ poor performance on SVHN. Our method can learn D(y) and D(x|y) across
tasks, which helps to prevent overfitting on MNIST-M and have balanced performance. As
for the performance on the rest four computer vision benchmarks, we can observe that our
methods always outperform the baselines.

Effectiveness with Limited Data : Particularly, from Table. 5.1∼ 5.5, we found that
when there are only few of labelled instances (e.g. 5% or 10% of the total instances), our
method could have a large margin of improvements regarding the baselines. For example, when
we only train the model with 5% of the total instances, we have higher accuracy compared
with the baselines performance. These improvements confirm the effectiveness of our methods
when dealing with limited data.

5.4.2 Further Analysis

Ablation Studies We conduct ablation studies of our method on Office-31 dataset (20% of
total instances) with four ablations, namely :

1. Cls. only : remove all of the re-weighting scheme, semantic matching and the convex
optimization towards updating α ;

2. w.o. re-weighting : removing the re-weighting scheme inside the label weighting loss ;

3. w.o. sem. matching : omitting the semantic matching ;

4. w.o. cvx. opt. : omit the optimization procedure for updating α, i.e, Eq. (5.7).

The results of ablation studies are reported in Table 5.6. The ablations showed that the label
re-weighting scheme is crucial for the algorithm since the performance can drop with ∼ 2% if
we remove the re-weighting scheme. We also observe −1.0% drop when omitting the semantic
matching procedure, this also indicates the importance of controlling the semantic divergence.
As for the task relations update scheme ( Eq. 5.7), we observe −0.5% performance drop once
we omit the convex optimization procedure for α.
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Figure 5.3 – Relative time comparison (one training epoch) of the MTL algorithm on different
benchmarks.

Time Efficiency As our method doesn’t rely on adversarial training, it has better time
efficiency. We compare the time-efficiency of both our algorithm and baselines on Digits
(8k), PACS (20%), Office-31 (20%) and Office-home (20%) datasets, and report the time
comparison of one training epoch in a relative percentage bar chart in Fig. 5.3. The adversarial
based training methods (Adv.H, Adv.W and AMTNN ) take longer time for a training epoch,
especially on the Office-home dataset. Take the improved performance (Table 5.1∼5.5) into
consideration, we see that our method improves the benchmark accuracy performance while
reducing the time needed for training. This also demonstrates the benefits of algorithm in
terms of time-efficiency.

Performance under Label Shift We evaluated the performance of our MTL algorithm
and baselines under label shift situation where the label distribution drifts, i.e., the number
of classes keeps the same with original one while some classes drift by a certain percentage
for a specific task on Office-31 and Office-home dataset. The drift simulation is implemented
as keeping all the classes within all the tasks while simulating a significant label distribution

Method Amazon Dslr WebCam Average

Cls. only 79.4± 0.8 91.2± 1.0 93.1± 0.8 87.9
w.o. re-weighting 80.2± 0.7 94.7± 1.3 94.1± 0.8 89.6
w.o. sem. matching 79.8± 0.5 96.1± 0.3 95.4± 0.3 90.4
w.o. cvx opt. 80.7± 0.3 96.8± 0.5 95.3± 0.4 90.9
Full method 81.1± 0.2 96.5± 0.1 96.1± 0.2 91.2

Table 5.6 – Ablation studies on Office-31 dataset.
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Figure 5.4 – Performance comparison under label distribution drift scenario. Left : Evaluations
on Office-31 dataset with different drift ratio ; Right : Evaluations on Office-Home dataset
with different drift ratio.

drift by randomly drop out some part of the instances of certain tasks. For Office-31 dataset,
the task Amazon’s class 1 ∼ 10, task Dslr ’s class 10 ∼ 20 and task Webcam’s class 21 ∼ 30
are drifted with different ratios (10% ∼ 80%) while for Office-home dataset, we drift classes
1 ∼ 16 of Art, classes 17 ∼ 32 of Clipart, classes 33 ∼ 48 of Product, and classes 49 ∼ 64 of
Real World with different ratios (10% ∼ 80%).

In Fig. 5.4, we show the performance under label distribution drift ranging from 10% ∼ 80%
on Office-31 dataset (left) and on Office-Home dataset (right) . As we observe from Fig. 5.4,
when the label space drifts, all the algorithms drop off. As we see, our algorithm outperforms
the baselines with a large margin when label space shift. This demonstrates the benefits of our
algorithm for handling label shift problems.

5.5 Discussion and Conclusion

In this chapter, we proposed to leverage the labeling information across different tasks in multi-
task learning. We first theoretically analyze the generalization bound of multi-task learning
based on the notion of Jensen-Shannon divergence, which provides new insights into the value
of label information by exploiting the semantic conditional distribution in multi-task learning.
Our theoretical results also lead to a concrete algorithm that jointly matches the semantic
distribution and controls label distribution divergence. Our empirical results demonstrates
the effectiveness of our algorithm by improving the benchmark performance with better
time efficiency and particularly show the benefits when label distribution shift. In the next
chapter, we re-visit the domain generalization problems to investigate the theoretical insights
on controlling the semantic conditional distribution divergence and label shift problems.
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Chapitre 6

On the value of Label and Semantic
Distributions in Domain
Generalization

In this chapter, we present our work referred by Zhou et al. (2021d) in which we explored
the semantic and label distribution shift in domain generalization. We provide a theoretical
guarantee of successful transfer with a concrete algorithm. By doing so, we achieve the state-
of-the-art performance and showing better performance to handle with label shift problems.

Résumé

Apprendre des connaissances à partir de plusieurs domaines sources et les généraliser à un
domaine inconnu mais différent est un problème important dans l’apprentissage automatique
lié au monde réel. Dans ce travail (Zhou et al., 2021d), nous abordons les problèmes de
généralisation de domaine (DG) visant à apprendre un prédicteur universel sur plusieurs
domaines sources et à le déployer sur un domaine cible non déjà vu. De nombreuses approches
de généralisation de domaine ont été principalement motivées par les techniques d’adaptation
de domaine, qui n’alignent que la distribution marginale des caractéristiques mais ignorent les
relations conditionnelles et les informations des étiquettes dans les domaines sources. Bien
que certaines avancées récentes aient commencé à tirer parti des distributions sémantiques
conditionnelles, des justifications théoriques manquaient encore. Dans le présent travail, nous
étudions la garantie théorique d’un processus de généralisation réussi focalisant sur la manière
de contrôler l’erreur du domaine cible. Nos résultats révèlent que pour contrôler le risque de la
cible, il faut contrôler conjointement les erreurs de la source, qui sont pondérées en fonction des
informations du label, tout en alignant les distributions sémantiques conditionnelles entre les
différents domaines source. L’analyse théorique proposée conduit à un algorithme efficace pour
contrôler les distributions d’étiquettes ainsi que l’alignement des distributions conditionnelles
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sémantiques. Pour vérifier l’efficacité de notre méthode, nous l’évaluons par rapport à des
baselines récents sur plusieurs benchmarks. Nos résultats empiriques montrent que la méthode
proposée surpasse la plupart des baselines et présente des performances de pointe.

Abstract

Learning knowledge from multiple source domains and generalizing it to an unseen but
different domain is an important problem in real-world machine learning. In this work reflected
by Zhou et al. (2021d), we tackle the domain generalization (DG) problems aiming to learn a
universal predictor on several source domains and deploy it on an unseen target domain. Many
existing DG approaches were mainly motivated by the domain adaptation techniques, which
only aligned the marginal feature distribution but ignored conditional relations and label
information in the source domains. Although some recent advances started to take advantage
of conditional semantic distributions, theoretical justifications were still missing. In this work,
we investigate the theoretical guarantee for a successful generalization process by focusing on
how to control the target domain error. Our results reveal that to control the target risk, one
should jointly control the source errors that are weighted according to label information and
align the semantic conditional distributions between different source domains. The proposed
theoretical analysis then leads to an efficient algorithm to control the label distributions while
matching the semantic conditional distributions. To verify the effectiveness of our method, we
evaluate it against recent baseline algorithms on several benchmarks. Our empirical results
show that our method outperforms most of the baseline methods and shows state-of-the-art
performances.

6.1 Introduction

In the previous chapters, we have explored the domain adaptation (DA), domain generalization
(DG) and multi-task learning (MTL) problems from different aspects. Specifically, we leverage
the label similarities for DG problems in Chapter 4 and investigate the semantic and label shift
problems in MTL. Even though we have explored the label similarities in DG in Chapter 4
with a metric learning objective, however, the theoretical understanding on the guarantee
of controlling the label and semantic distribution shift is still elusive. To contribute to this
theoretical understanding, we re-visit the DG problems, which aims to extract the knowledge
from source domains that generalizes well to an unseen target (test) domain. The general
learning process of DG has been borrowed in section 1.4.1.

As discussed before, due to the similar problem settings with DA, many DA methodologies,
especially the adversarial training (Ganin et al., 2016) based approaches (Li et al., 2017a;
Dou et al., 2019), were borrowed for DG. However, these approaches only align the feature
distribution D(x) and rely on the theoretical results under the assumption that the combined
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error between the source and target domain is small (Ben-David et al., 2010a), and this is not
held in practice.

Zhao et al. (2019a) showed that conditional shift problems can degrade the prediction perfor-
mance. Besides, if we only align the feature distribution D(x) while ignoring the conditional
semantic D(x|y) and labelling D(y) distribution, the class information for each category among
different domains can be lost, which leads to indiscriminative features, a.k.a. semantic misali-
gnment problem (Dou et al., 2019; Zhou et al., 2021b). As a consequence, the model may suffer
from ambiguous classification boundaries (Dou et al., 2019), which hinders the generalization
performance. To address this issue, some recent studies, Dou et al. (2019) and Zhou et al.
(2021b) have leveraged the label information to explore the semantic relation for the DG.
However, the theoretical justifications for the benefits of semantic alignment remain elusive.
Existing theoretical results (Zhao et al., 2020a; Li et al., 2018f) only focused on minimizing
the conditional distribution divergences from an optimization perspective, while the analysis
for the generalization properties are still missing.

In this chapter, we aim to develop theoretical insights into how to ensure a successful genera-
lization process by investigating the test error on the target domain. Our results reveal the
necessity of controlling the semantic conditional distributions as well as the label distribution
divergence across all the source domains. The contributions in this chapter are three-fold :

1. We build a theoretical analysis framework to understand the domain generalization
process upon bounding the test error on the target domain with total variation distance,
which provides a deeper understanding of the role of semantic alignment for general DG
problems.

2. Our analysis also reveals the importance of controlling the label distribution divergence
for each domain to minimize the generalization error.

3. On the algorithmic side, our theoretical results inspire a novel DG algorithm that jointly
minimizes the source errors as well as semantic distribution matching for all the source
domains.

Specifically, our method simultaneously matches the semantic distributions via minimizing
the centroid statistics across distributions and controlling the label distribution losses. We
conduct extensive experiments and the results show that our algorithm outperforms various
strong baselines, especially when label shift occurs.

6.2 Preliminaries

We start by some preliminaries with notations and definitions, which we have introduced both
in section 1.4.1 and section 4.2. Then we analyze the importance of leveraging the label and
semantic distribution. After that, we show the harm of label and semantic distribution shift in
domain generalization.
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6.2.1 Notations and Definitions

Following the notations in section 1.4.1, let (x, y) ∈ X × Y be a training example drawn from
some distribution D, where x is the data point, and y is its label. A hypothesis is a function
h ∈ H that maps X to the set Y ′ sometimes different from Y, where H is a hypothesis class.
For a non-negative loss function ` : Y ′×Y 7→ R+, we denote by `(h(x), y) the loss of hypothesis
h at (x, y). Let S = {(xj , yj)}Nj=1 be a set of N training examples drawn independently from
D. The empirical loss of h on S and its generalization loss over D are defined, respectively, by
R̂(h) = 1

N

∑N
j=1 `(h(xj , yj)), and R(h) = E(x,y)∼D`(h(x), y).

In the context of DG, we are given m source tasks {Si}mi=1, where Si = {(x(i)
j , y

(i)
j )}Nij=1 is drawn

from a distribution Di. The objective of a DG algorithm is to learn a feature representation
that extracts the knowledge that can be shared across all the known source domains so that it
can also generalize well to an unseen target domain distribution DT .

6.2.2 Distribution Distance Measure

To measure the marginal and conditional distributions, we need a tool to measure the
distribution distances, and finding such a tool is crucial in domain adaptation or generalization
methodologies. In this chapter, we continue to adopt the Jensen-Shannon divergence in
our analysis. This divergence has been studied in recent literature in transfer learning with
adversarial training (Dou et al., 2019; Matsuura and Harada, 2020; Zhao et al., 2019a). Its
definition can be referred in section 1.5.1.

6.2.3 The Value of Label and Semantic Information

In the context of DG, a learner can only access the data from the source domains (seen),
and no target data is available during the training phase (unseen). As summarized in sec-
tion 2.3.1, early approaches (e.g. Li et al., 2018b,c; Carlucci et al., 2019) usually only focused
on aligning the feature distribution D(x) while ignoring the labeling D(y) and semantic
D(x|y) distributions. Previously, Dou et al. (2019) pointed out that only aligning the fea-
ture distribution via distribution matching or adversarial training can lead to the semantic
misalignment problems (Zhou et al., 2021b,a). Besides, our work (Zhou et al., 2021b) in
Chapter 4 also demonstrates the necessity of leverage the label information in DG. Though
some recent works (Dou et al., 2019; Matsuura and Harada, 2020) start to consider the label
and semantic relations, their theoretical justifications remain elusive. Our work provides a
complete framework to understand the generalization properties of DG which then enables us
to design an efficient semantic conditional matching algorithm.

Many of the current DG approaches assumed that the label distribution across all the domains
are the same (DJS(Di(y)‖Dj(y)) = 0,∀i, j). However, this assumption is not necessarily true
in practice. A long-neglected issue is the label shift problem, which has been explored in the
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Figure 6.1 – A example in semantic shift. The dashed arrow lines indicate the matching process.
Let the feature marginal distribution as the color of the instance while the label distribution
as positive (+) or negative (-), i.e., X = {red,blue}, Y = {+,−}. For the source distribution
S1, PS1(X = red|Y = +) = 1 while for the source distribution S2, PS2(X = red|Y = +) = 0.
We can see that if we only design the alignment process with marginal features, the source
and target distributions cannot matched correctly.

literature of multi-task learning and domain adaptation (Busto and Gall, 2017; Geng et al.,
2020; Azizzadenesheli et al., 2019) but missed in domain generalization. More formally, the
label shift between two domains Di and Dj indicates DJS(Di(y)‖Dj(y)) 6= 0 (Redko et al.,
2019; Zhou et al., 2021a).

We present an example to show the necessity of controlling semantic divergence in Fig. 6.1.
Suppose we have two source distributions S1(x, y) and S2(x, y), and hope to match to the
target distribution T (x, y). The feature marginal distribution is represented by the color
of the region while the label distribution is indicated by positive (+) or negative (-), i.e.,
X = {red, blue}, Y = {+,−}. For the source distribution S1, PS1(X = red|Y = +) = 1 while
for the source distribution S2, PS2(X = red|Y = +) = 0. In this case, if we only use the
general adversarial training or MMD based approaches to align the marginal distribution
(see the examples summarized in Table 2.2 in section 2.3.1), it will be difficult to fix the
semantic shift problem. We should also consider matching the semantic distributions for each
domain. Another practical example can be the multi-source generalization problems on the
digits problems. Let MNIST, which is a grey-scaled digits dataset, be Di, and let SVHN
dataset, which consists of colorful images of street numbers, be Dj . If we consider a specific
class Y = yk, we can easily see that Di(x|y) 6= Dj(x|y) since the color and digits styles are
obviously different from each other.

On the other hand, the label shift problem may also hurt the generalization performance. For
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example, for a health diagnostic learning task using DG (Liu et al., 2021), when collecting data
from different hospitals, the labels may vary from each other between different datasets. Since
the ultimate goal of DG is to align D(x, y) = D(x|y)D(y) between domains, if D(y) changes,
even if we can match D(x|y) properly for all the domains, the prediction of the classifier can
still diverge since the label distribution is not necessarily aligned during either the supervised
classification process or the semantic matching process.

All these examples indicate that we need to consider both the label and semantic distribution
alignments when designing DG algorithms. In the next section, we develop the theoretical
justifications for controlling the conditional semantic and label distributions. Moreover, our
results also lead to an efficient algorithm for DG problems.

6.3 Theoretical Analysis and Methodology

6.3.1 Theoretical Analysis

As introduced in section 1.4.1, one fundamental assumption of DG is that all the domains
are not far from each other in terms of distribution distances. More formally, among all the
source domains, let D? be the nearest one to the target domain, i.e., ε? , dTV (D?,DT ) ≤
dTV (Di,DT ),∀i, where dTV (·) is the total variation distance (see section 1.5.1). Then, it is
reasonable to assume that ε? is small for DG problems since if the distance between the
source and target is arbitrarily large, the learner will fail to generalize to the target domain.
We can also assume that D? and DT should satisfy a semantic conditional distance, i.e.,
dTV (D?(x|y),DT (x|y)) ≤ κ? where κ? is a constant that is not arbitrarily large. We show
a generalization process in Fig. 6.2 where we have several source domains, and the target
domain is unseen but assumed not to be far away from the source domains. Then, we can
bound the learning risk on the target domain RDT (h) as shown in Theorem 6.1. The proof of
the theoretical results in this chapter is presented in Appendix B.3.

Theorem 6.1. Suppose we have m source domains D1, . . .Dm, and D? is the nearest source
domain to the target DT , and ε? , dTV (D?,DT ).

Then the target domain risk is bounded by,

RDT (h) ≤ 1
m

m∑
i=1

RDi(h) + ε? + 1
m

∑
i

dTV (D?(x, y),Di(x, y)) (6.1)

Remark : The first term in Eq. 6.1 is the averaged source error which can be approximated
by the empirical risk minimization. The second term is a small constant. The third term can
also not be estimated directly since we don’t know which source domain is the nearest one to
the target. However, this term can be minimized by pair-wised distribution matching between
all source domains.
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Figure 6.2 – The domain generalization process where there are several source domains and
a target domain DT . In case we have limited number of source domains, there exists a source
domain D? that is the nearest to the target domain. At the training phase, we implement the
alignment process for all the source domains to learn the transferable features to generalize to
the target domain.

Theorem 6.1 bounds the target generalization error in terms of the joint distributions between
source domains. To motivate a more concrete DG algorithm that leverages the label (D(y))
and semantic conditional (D(x|y)) information, we derive the following Corollary.

Corollary 6.1. Following the assumptions of Theorem 6.1, then the target domain risk could
be bounded by,

RDT (h) ≤ 1
m

m∑
i=1

RDi(h) + ε?

+ 1
m

∑
i

[√
DJS(D?(y)||Di(y))︸ ︷︷ ︸

I

+
√
Ey∼D?(y)DJS(D?(x|y)||Di(x|y))︸ ︷︷ ︸

II

+
√
Ey∼Di(y)DJS(D?(x|y)||Di(x|y))︸ ︷︷ ︸

III

]
(6.2)

In order to minimize Eq. 6.2, except for minimizing the source domain risks 1
m

∑m
i=1RDi(h) we

need to consider the last three terms I : J-S distance between the label distribution D?(y) and
Di(y), as well as II and III, which are the J-S distance between the semantic distributions.

For I in Eq. 6.2, we could adopt a reweighted loss L̂α
Di (will be introduced in Eq. 6.6) to

balance the label distribution for each pair of source domains so that DJS(Di(y)||Dj(y)) = 0
for all the domain pairs i, j. In this case, term II and III will be identical to each other and
we can bound the generalization risk on the target domain as follows.

Corollary 6.2. Following the assumptions of Theorem 6.1 and assume the semantic distribu-
tion between the nearest source domain to the target domain is a constant, i.e., dTV (D?(x|Y =
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k),DT (x|Y = k) ≤ κ?. Let L̂α
Di(h) be the reweighted loss and the prediction loss function is

bounded by [0, 1], then the target domain risk could be bounded by,

RDT (h) ≤ 1
m

m∑
i=1

Ex∼DiL̂α
Di(h)︸ ︷︷ ︸

Re-weighted source risks

+ κ?︸︷︷︸
Constant

+ 1
K

K∑
k=1

[ 1
m

m∑
i=1

dTV (D?(x|Y = k),Di(x|Y = k))︸ ︷︷ ︸
Achieved by pair-wise semantic matching

] (6.3)

Remark : The first term is the balanced source errors that can help to handle the label
distributions shift. The second term is a small constant. The third term could be minimized
by a pair-wised semantic matching scheme, and we will elaborate on it in the next section.

Now, we show that by aligning the semantic conditional distributions D(x|y), we could also
align the marginal distributions D(x). We notice that, for a pair of source domain distributions
Di and Dj

Ex|Di(x)−Dj(x)| = Ex|Di(y)Di(x|y)−Dj(y)Dj(x|y)|

=
K∑
k=1
|Di(Y = k)Di(x|Y = k)−Dj(Y = k)Dj(x|Y = k)|

= 1
K

Ex|
∑
y

(Di(x|y)−Dj(x|y))|

≤ 1
K

∑
y

Ex|Di(x|y)−Dj(x|y)|

= 2
K

∑
y

dTV(Di(x|y),Dj(x|y))

(6.4)

Eq. 6.4 shows that by minimizing the total variation distance between the two semantic condi-
tional distributions Di(x|y) and Dj(x|y), we could also take care of the marginal distribution
of these two domains Di(x) and Dj(x). That is, when matching the semantic conditional
distributions, we could also align the marginal features simultaneously.

Now, based on the analysis above, we could summarize that to minimize the target risk, we
need to follow the two following principles :

— Minimizing the weighted source risks (will be introduced in Eq. 6.6).

— Matching the semantic divergences between each source domains (will be introduced in
Eq. 6.12).

These two principles are to come, before presenting these two principles, we can first introduce
our methodology in the next section.
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Reweighting loss according to label frequencies

ClassifierFeature Extractor

Features

ℙ(𝑥)

ℙ(𝑦) ℙ(𝑥|𝑦)

Figure 6.3 – The overall model architecture. The feature extractor is trained to find out the
shared features, and the extracted features are also used for computing the centroids of the
semantic distributions to compute the semantic objective. The classifier is trained using the
source domain data and is committed to performing well on the unseen target domain. For all
the domains, the model parameters are shared with each other and trainable on all the source
domains.

6.3.2 Methodology

The overview of our model

The model architecture of our DG algorithm is presented in Fig. 6.3. It consists of two parts :
feature extractor and classifier. The feature extractor function F , parameterized by θf , is
trained to extract both feature and semantic information that is shared across the sources
domains. Once the domains are aligned properly, the classifier function C, parameterized by
θc, is trained to make universal predictions for all the domains. When training the model,
the model predicts C(F (x; θf ); θc)→ y. For simplicity, we omit the model parameters when
displaying the model functions. For classification, we adopt the cross-entropy loss,

` = −
m∑
i=1

Ni∑
j=1

y
(i)
j log(P(C(F (x(i)

j )))) (6.5)

As analyzed before, to minimize the risk of the prediction on the target domain, we should
both control the semantic conditional distance and the label distribution divergence. In case
of the label distributions differ from each other, some minor classes may be regarded as noise,
and the minor classes will be neglected (Zhou et al., 2021a). In order to alleviate the impacts
of the source domains’ label space shifts, similar with the reweighting scheme introduced in
section 5.3.1, we can re-weigh the importance of each class to correct the loss based the total
instance number in that category (Lipton et al., 2018),
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L̂α
Di(h) =

∑
(xi,yi)∈D̂i

α(yi)`(h(xi), yi)) (6.6)

where α = [α1, . . . αk, . . . , αK ]T is the weighting vector for all K classes in each domain. For a
certain class k, suppose we have Nk instances in that category, we could compute the weight
by,

αk =
∑ |1[y = yk]|

Nk
(6.7)

Through Eq. 6.7, the cross-entropy loss is reweighted via the frequency of the number of
instances from a specific class, and this ensures the data from different classes among all
the domains to have the same probability to be sampled during training (see also in Fig. 5.1
for an example). By this process, the learner will be guided to pay attention to the classes
with few instances, and this in general help to handle the label distribution drift. Then, the
classification objective could be computed as

Lα
C =

m∑
i=1
L̂α
Di =

m∑
i=1

∑
(xi,yi)∈D̂i

α(yi)`(h(xi), yi)) (6.8)

Except for the reweighted loss, we also need to guide the learner to leverage the semantic
distributions D(x|y) across the domains. To this end, we adopt the extracted features zi from
domain i, to condition on the semantic distributions D(z|y).

To align the semantic conditional distributions, i.e., minimizing DJS(Di(x|y)‖Dj(x|y)) for
all domains pairs i, j, several solutions (e.g. conditional GAN training, moment matching,
etc.) are possible. We adopted an alternative yet popular approach : class-level feature mean
matching method, which is prevalent in the general machine learning literature (Dou et al.,
2019; Chopra et al., 2005; Xie et al., 2018).

Notice that the semantic minimization objective is computed across all the source domains.
We can take out the extracted features and compute the corresponding semantic centroids.
And we do that similarly with Dou et al. (2019), we condition the extracted features on each
class k to measure the semantic conditional distributions for instances from source domains
Si = {(xj , yj)}Nij=1 from all the categories k ∈ {1 . . .K}. Then, the empirical semantic centroid
is estimated by

ẑkci = 1
|Dki |

∑
xi∈Dki

zki = 1
|Dki |

∑
xi∈Dki

F (xj)

≈ EDi [F (xi)|Y = k]
(6.9)

Through this process, we compute the feature centroids. We then follow the strategy of (Xie
et al., 2018; Zhou et al., 2021a) to maintain a global matrix ZDi for each source domain to
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Algorithm 5 The Semantic Matching Domain Generalization (SMDG) algorithm
Input: Samples from different source domains {Di}mi=1 ;
Output: Neural network parameters θf , θc

1: for mini-batch of samples {(x(i)
s , y

(i)
s )} from source domains do

2: Compute the classification loss Lα
C over all the domains according to Eq. 6.8 ;

3: Mix the instances and compute the semantic matching objective LSem via Eq. 6.12 ;
4: Update θf , θc by solving Eq. 6.13 with learning rate η :

θf ← θf − η
∂(Lα

C + λsLSem)
∂θf

,

θc ← θc − η
∂(Lα

C + λsLSem)
∂θc

;

5: end for
6: Return the optimal model parameters θf and θc.

maintain the semantic centroids

ZkDi ← γẑkci + (1− γ)ẑkci (6.10)

Eq.6.10 defines a moving averaging method for the batch training of Z, where γ is a coefficient
to control the moving average process. Then, we could maintain a matrix Zi = [Z1

Di , . . . ,Z
K
Di ]

T

to trace the semantic relations between domains, through which we could match the semantic
distributions via minimize the Euclidean distance Φ(ZkDi ,Z

k
Dj ) between two centroids in the

embedding space, which is computed as

Φ(ZkDi ,Z
k
Dj ) = ||ZkDi −Z

k
Dj ||

2 (6.11)

Here the function Φ(ZkDi ,Z
k
Dj ) is the approximation of the total variation DTV (ZkDi ,Z

k
Dj ),

which is the upper bound of DJS(ZkDi ||Z
k
Dj ) (Lin, 1991). Then for each training epoch, the

semantic loss LSem is updated by,

LSem ← LSem + Φ(ZDi ,ZDj ) (6.12)

By minimizing the semantic objectives of all the domains, we could achieve semantic invariant
features.

Now, with the components described above, we could summarize the learning objective of our
method as

L = Lα
C + λsLSem (6.13)

where Lα
C is the modified classification objective defined in Eq. 6.8, LSem is the semantic

learning objective defined in Eq. 6.12 and λs is a coefficient to regularize the semantic learning
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objective. We show the whole learning process in Algorithm 5. The algorithm mainly consists
several parts : first to measure the label distributions and compute the reweighted classification
objective to enforce the class-level alignment, second to enforce the domain-level semantic
alignment for all the domains. We then evaluate the effectiveness of our method in the next
part.

6.4 Experiments and Results

We verify the effectiveness of our approach on several benchmarks, including the PACS,
VLCS and Office-home dataset, comparing with several baselines. We first evaluate the
results comparing with baselines showing the state-of-the-art performance on benchmarks.
To further understand the method, we then conduct the ablation studies, evaluations under
label distributions shift as well as time efficiency evaluations to confirm the effectiveness of
our method.

6.4.1 Datasets and Preparation

We compare our method with some baseline methods on VLCS, PACS and Office-home
dataset. The VLCS dataset (Torralba and Efros, 2011) consists of four domains of images
from LabelMe(L), PASCAL-VOC2007 (V), SUN-09 (S) and Caltech-101 (C) with total five
categories in each domain. Unlike some previous work (Li et al., 2018c; Dou et al., 2019),
which adopt the DeCAF model (Donahue et al., 2014) features (DeCAF6 features), we use the
original dataset with images so that the model can explore the semantic features. The PACS
dataset (Li et al., 2017a) is a recent standard benckmark for DG which consists of images from
four domains : Art (A), Cartoon (C), Photo (P) and Sketch (S). Office-Home (Venkateswara
et al., 2017) is a more challenging dataset, which has been widely investigated in recent DA
and DG researches (Wen et al., 2019b; Dou et al., 2019; Zhou et al., 2021c,b). This dataset
contains images from four different domains : Art (Ar), Clipart (Cl), Product (Pr) and Real
World (Rw). Images from all the domains have 65 categories. Previous work on supervised
multi-domain learning (Long et al., 2017a), semi-supervised learning (Zhou et al., 2021c) or
unsupervised learning (Long et al., 2018) have shown that the model can suffer from the diverse
features present in the different domains. Evaluating the algorithms on those benchmarks
generally affirm the effectiveness of our method.

6.4.2 Baselines and Implementation Details

We tested our algorithm on the benchmark datasets with the following principled domain gene-
ralization approaches. Specifically, we considered several principled approaches : 1) matching-
based approaches, 2) meta-learning-based approaches and 3) conditional alignment approaches.
Specially, we compared the following baselines on the benchmarks :
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Method Art Cartoon Sketch Photo Avg.
Deep All 63.30 63.13 54.07 87.70 67.05
CDANN 62.70 69.73 64.45 78.65 68.88
MLDG 66.23 66.88 58.96 88.00 70.01
D-SAM 63.87 70.70 64.66 85.55 71.20
JiGen 67.63 71.71 65.18 89.00 73.38
MMLD 69.27 72.83 66.44 88.98 74.38
Ours 67.87 72.14 70.16 90.45 75.16

Table 6.1 – Empirical results (accuracy %) on each target domain on PACS dataset.

— Deep All : This model trains the model on source domains only. We implement the
pre-trained AlexNet or ResNet-18 as the feature extractor and aggregate the classification
loss of all source domains as the learning objective ;

— CDANN (Li et al., 2018f) : This studies conditional alignment method by extracting
the conditional-invariant feature and varying the class prior so that the conditional
distributions among domains could be matched ;

— MLDG (Li et al., 2018b) : MLDG is a meta-learning based domain generalization
method. It simulates the domain shift by split the source data into meta-train and
meta-test datasets to learn the invariant features for generalization ;

— D-SAM (D’Innocente and Caputo, 2018) : It is a method that aggregates several domain-
specific modules, which allows the model to merge general and specific information from
all the domains to generalize to a new domain ;

— MMD-AAE (Li et al., 2018c) : This method is a Mean-Max Discrepancy (MMD)
approach mapping the latent features to kernel space for the MMD minimization. The
method is combined with the Adversarial AutoEncoder (AAE) model with shallow layers.
Later in this chapter, we adopt this MMD mapping with a deep model while relaxing
the reconstruction objective ;

— MixUp (Yan et al., 2020) : This method leverages the feature level consistency to
facilitate the inter-domain regularization.

— JiGen (Carlucci et al., 2019) : This one leverages the Jigsaw puzzle under an unsuper-
vised task to achieve domain invariant features for generalization.

— MASF (Dou et al., 2019) : MASF is also a meta-learning-based approach that combines
the MLDG with the constrictive loss and triplet loss to encourage the class-level alignment.

— WADG (Zhou et al., 2021b) : This one is our work (Zhou et al., 2021b) introduced
in Chapter 4. It combines the Wasserstein adversarial training with a metric similarity
learning objective to achieve both the domain-level and class-level alignment.

— MMLD (Matsuura and Harada, 2020) : MMLD is an approach mixing all the source
features together with an unsupervised objective to extract domain-independent feature
space.
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Method Caltech LabelMe Pascal Sun Avg.

Deep All 92.86 63.10 68.67 64.11 72.19
D-MATE 89.05 60.13 63.90 61.33 68.60
CDANN 88.83 63.06 64.38 62.10 69.59
TF 93.63 63.49 69.99 61.32 72.11
MMD-AAE 94.40 62.60 67.70 64.40 72.28
D-SAM 91.75 56.95 58.95 60.84 67.03
MLDG 94.4 61.3 67.7 65.9 73.30
JiGen 96.93 60.90 70.62 64.30 73.19
MMLD 96.66 58.77 71.96 68.13 73.88
Ours 97.54 63.41 69.36 65.63 73.98

Table 6.2 – Empirical results (accuracy %) on VLCS dataset with pre-trained AlexNet as
feature extractor.

— DGER (Zhao et al., 2020a) : DGER is an approach focusing on minimizing the prediction
entropy.

We first adopt the pre-trained AlexNet model as the feature extractor to evaluate the algorithms
on the PACS and VLCS datasets. The model is trained with Adam optimizer with a learning
rate 2×10−4 for a total 180 epochs. The results on PACS and VLCS benchmarks with AlexNet
are represented in Table. 6.1 and Table. 6.2, respectively. We refer to the results of the baseline
using the original value reported in their manuscripts. From the results, we could see that our
method could outperform the baselines on these two benchmarks by achieving state-of-the-art
performance. Besides, we also observe that on the VLCS dataset (see Table 6.2) that our
method has a small improvement comparing with the baseline MMLD (Matsuura and Harada,
2020), which is a recent method that exploit the semantic alignment using an unsupervised
learning objective. Since the number of images in VLCS datasets is relatively small and the
features are somehow simple, the improvement may become small. However, when it comes to
the PACS dataset (see Table 6.1 and Table 6.4), we observe that our method can have better
improvements than the baselines.

We then follow the evaluation protocols of Zhou et al. (2021b); Dou et al. (2019); Matsuura
and Harada (2020) to implement the experiments on PACS dataset and Office-home with
deeper backbones as the feature extractor to show the benefits of our method. We adopted the
pre-trained ResNet-18 model as the feature extractor and trained the model with mini-batch
size 64 and test batch size 16. The model is optimized with Adam optimizer with a learning
rate ranging from 2× 10−4 to 5× 10−5 on PACS and VLCS dataset while 3× 10−3 on the
Office-home dataset.

The test results on PACS and Office-Home benchmarks with ResNet-18 feature extractor
are reported in table 6.4 and Table 6.3, respectively. From the test result, we could observe

115



Art Clipart Product Real-World Avg.
Deep All 52.15 45.86 70.86 73.15 60.51
D-SAM 58.03 44.37 69.22 71.45 60.77
JiGen 53.04 47.51 71.47 72.79 61.20
WADG 55.34 44.82 72.03 73.55 61.44

Ours 58.76 45.49 72.46 75.21 62.98

Table 6.3 – Empirical results (accuracy %) on Office-home dataset with pre-trained ResNet-18
as feature extractor

Method Art Cartoon Sketch Photo Avg.
Deep All 77.87 75.89 69.27 95.19 79.55
D-SAM 77.33 72.43 77.83 95.30 80.72
JiGen 79.42 75.25 71.35 96.03 80.51
MASF 80.29 77.17 71.69 94.99 81.04
MMLD 81.28 77.16 72.29 96.09 81.83
DGER 80.70 76.40 7.177 96.65 81.38
WADG 81.56 78.02 78.42 95.82 83.45
Ours 81.10 79.66 78.92 95.87 83.89

Table 6.4 – Empirical results (accuracy %) on PACS dataset with pre-trained ResNet-18 as
feature extractor.

Benchmark PACS-AlexNet PACS-ResNet18 Office-Home

Ablation A P C S Avg. A P C S Avg. Ar Cl Pr Rw Avg.

Deep-All 63.30 87.7 63.13 54.07 67.05 77.87 95.19 75.89 69.27 79.55 52.15 45.86 70.86 73.15 60.51
No-sem. 64.40 87.37 67.55 65.36 71.71 80.08 94.68 79.26 76.75 82.69 57.37 43.37 71.51 73.93 61.54

No re-weight 64.55 86.55 68.33 68.70 72.03 79.17 94.91 78.85 76.71 82.41 58.35 45.06 72.21 75.05 62.67
Full 67.87 90.45 72.14 70.16 75.16 81.10 79.66 78.92 95.87 83.89 72.46 58.76 45.49 75.21 62.98

Table 6.5 – The ablation studies on PACS and Office-Home datasets.

an obvious improvement on the benchmarks performances achieving the state-of-the-art
performances. Furthermore, here we would like to note that, compared with the methods
based on the metric learning objectives (e.g. Dou et al., 2019), our method doesn’t require
a large batch size for the triplet property to achieve better performances. For example, on
the Office-Home benchmark, to ensure the triplet property, one needs a batch size of at least
195. When we adopt some deeper backbones (e.g., ResNet-50 or even more deeper) as feature
extractors, the computational cost will be prohibitive. This also confirms the effectiveness of
our method.

6.4.3 Further Analysis

Except for the standard benchmark evaluations, we then further investigate our method in
several aspects, including the t-SNE visualizations, ablation studies, performance under label
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Source: Art
Source: Cartoon

Source: Sketch
Target: Photo

(a) Deep All

Source: Art
Source: Cartoon

Source: Sketch
Target: Photo

(b) Our method

Figure 6.4 – t-SNE visualizations of our method on PACS dataset

shift and time efficiencies.

t-SNE Visualization We first show the t-SNE visualization of our method to show the
alignment performance on the PACS dataset comparing the source-only training only and full
method. The results on PACS is illustrated on Fig. 6.4. The results show that our method
could well align the features, which confirms the effectiveness of our method on domain level
alignment.

Ablation studies We also conducted ablation studies on each part of our algorithm. For
that, we implemented the following :

1. Cls. only : we only train the model on the source domains using the classification
objectives without the re-weighting technique ;

2. No Sem. We omit the semantic alignment objective while keeping the classification
objective with the re-weighting technique ;

3. No Re-weighting : We omit the re-weighting technique in the classification objective
while keeping the semantic matching and original cross-entropy classification objective.

In order to better evaluate the effectiveness of our method with depth understanding, we
implemented the ablations on PACS dataset using AlexNet and als ResNet-18 as feature
extractors. We also conduct ablation studies on Office-Home dataset with ResNet-18 as the
feature extractor. The results of ablation studies are presented in Table 6.5. As we could
observe from the ablation results, semantic domain alignment is crucial to our method. If we
omit the semantic alignment objective, there could be a rapid drop-off in the performance.
Besides, the label correction objective also helps to improve the performance compared with
the original cross-entropy learning objective.
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Figure 6.5 – Performance comparison under label shift situation on PACS dataset with
respect to the four target domains.

Performance under label distribution shift As our theoretical analysis presented in
section 6.3.1 demonstrates the necessity of controlling the label shift. Our algorithm is inspired
from this analysis and is committed to handling label distribution shift. To confirm the
effectiveness of overcoming label shift problems, we conducted the experiments to check the
DG algorithms’ performance under label shift scenarios where the label distributions from all
the domains drift from each other, i.e., we randomly remove a certain percentage of instances
from each domain. We implement the label drift process on PACS and Office-Home datasets.
Our method is compared with the following four principled methods :

— The conditional alignment method, namely the CDANN method (Li et al., 2018f) ;

— The meta learning-based method, namely the MLDG method (Li et al., 2018b) ;

— The Mean-Max Discrepancy (MMD) minimization based method (Li et al., 2017a) ;

— The MixUp method (Yan et al., 2020).

For the label shift simulations on PACS dataset, we removed a certain ratio (10% ∼ 90%) of
instances from 2 classes from each source domain. For the Office-Home dataset, for each source
domain, we remove a certain ratio (10% ∼ 90%) of instances randomly from 15 categories.
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Figure 6.6 – Performance comparison under label shift situation on Office-Home dataset with
respect to the four target domains for each generalization task.
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Figure 6.7 – Relative time comparison on PACS and Office-Home dataset.
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The compared results curves on PACS and Office-Home datasets with different target domains
are illustrated in Fig. 6.5 and Fig. 6.6, respectively.

From the results in Fig. 6.5 and Fig. 6.6, we observe that our method outperforms the baselines
under all the shift ratios. Specifically, on the PACS dataset, we see that the MLDG method
and MixUp method have a similar performance comparing with ours under certain shift ratios
when choosing Art and Sketch as the target domain. However, on the Office-Home dataset,
our method has obvious improvements compared with all the baselines, which confirmed its
effectiveness. Since the number of classes of the PACS dataset (7) is obviously smaller than
the number of classes of Office-Home dataset (65), the simulated label shift does not have
obvious changes to the data distribution, which may lead to similar performances on the shift
on PACS dataset. In addition, the number of instances in each domain of PACS dataset is
relatively bigger than the number of instances in each domain of the Office-Home dataset.
Thus, the baseline methods are more sensitive to label shift on the Office-Home benchmark
than PACS benchmark. This also confirms the effectiveness of our method when handling a
minor number of instances when the label shift problem occurs.

Time efficiency We then evaluate the time efficiency of our method, comparing it with the
four principled baselines on both the PACS and Office-Home benchmark to demonstrate the
effectiveness of our method. We demonstrate the time efficiency by comparing the relative
average time, setting our time as the unit time for one training round. The results are presented
as a relative percentage bar chart by setting the time costs of our method as a unit in Fig. 6.7.
From the results, we observe that our method has similar time efficiency with MMD and
MixUp methods while has better time efficiency than CDANN and MLDG. Considering the
improving performances on the benchmarks and the performances demonstrated under the
label shift situations, we conclude that our method reflects a better prediction accuracy with
better time efficiency, which confirms its effectiveness of our methods.

6.5 Discussion and Conclusion

In this chapter, we considered the generalization property in DG problems by exploring the
value of the label and semantic information across domains, which were mostly neglected by
the previous work. We investigated the theoretical guarantee for a successful generalization
process by focusing on how to control the target domain error. Our theoretical results revealed
that to control the target risk, we should jointly control the source errors that are weighted
according to label information while aligning the semantic conditional distributions between
different source domains. The theoretical analysis then inspired us for an efficient algorithm to
control the label distributions and match the semantic conditional distributions. The empirical
results showed that our method outperformed most of the baselines, achieving state-of-the-art
performances on the benchmarks. Furthermore, the time efficiency of our method showed
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that it achieve better benchmark performances with better time efficiencies. Besides, our
method also showed better performances under the label shift situations, which is generally
not perfectly handled by the baselines.
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Conclusion

In this chapter, we summarize our thesis with the main contributions and limitations as well
as an overview of the future works.

In this thesis, we worked on the problems of leveraging the knowledge from different domains
with different learning scenarios including domain adaptation (DA), domain generalization
(DG) and multi-task learning (MTL) in different aspects, we now summarize this thesis and
propose some future works.

Summary of Our Contributions

Explaining a Novel Method for Active Domain Adaptation

In Chapter 3, we focused on the conditional shift problem in domain adaptation. We theore-
tically analyzed the conditional shift problem in domain adaptation using the Wasserstein
distance for indicating an active query strategy to migrate the disagreement term between
the source and target domain. Based on this theoretical analysis, we then proposed an active
query strategy to control both the uncertainty and diversity of the data instances of the
target domain. The diversity score is measured from the critic model while the uncertainty
score is measured through the classifier. Our empirical results showed that our algorithm
improves the classification accuracy with a small query budget. When the query budget is
small, our approach can have better performance than its i.i.d. (random) selection counterparts.
Furthermore, the comparison with other query strategy based DA baselines also demonstrates
the effectiveness of our algorithm.

Exploring the Category Relations for Domain Generalization

In Chapter 4, we explored the category similarities in domain generalization (DG) to learn
from multiple source domains and then provide a generalization to a target domain with
unknown data distributions. As summarized in section 2.3.1, we found that previous DG
approaches mainly focused on learning marginal features and stacking the learned features
from each source domain to generalize to a new target domain. By doing so, they ignore the
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label information, and this leads to indistinguishable features with an ambiguous classification
boundary.

Therefore, we started to constrain the label-similarity when extracting the invariant features
for taking advantage of the label similarities for class-specific cohesion and separation of
features across domains. To this end, we adopt optimal transport with Wasserstein distance,
for constraining the class label similarity, for adversarial training. We also further deploy
a metric learning objective to leverage the label information for achieving distinguishable
classification boundary. Empirical results show that our proposed method outperforms most of
the baselines with achieving the state-of-the-art performances. Furthermore, ablation studies
and feature visualizations in section 4.4.4 also demonstrate the effectiveness of each component
of our method.

Using a Multi-task Learning Framework to Characterize Semantic and
Task Similarities

In Chapter 5, we explored a long-neglected problem in MTL, i.e., the absence of label and
semantic information. We provided the first theoretical analysis for MTL that considers
semantic matching. In this context, our results revealed that the MTL loss can be upper-
bounded in terms of the pair-wise discrepancy between the tasks, measured by the Jensen-
Shannon divergences of label distribution D(y) and semantic distribution D(x|y).

In contrast to previous theoretical results (Shui et al., 2019; Mao et al., 2020), which only
consider the marginal distribution discrepancy (e.g., H-divergence), we built a complete MTL
theoretical framework upon the joint distribution discrepancy. Our result provides a deeper
understanding of the general problem of MTL and insights on how to extract and leverage
shared knowledge in a more appropriate and principled way by exploiting the label information.

Understanding Domain Generalization through the Control of Label and
Semantic Relations

In Chapter 6, we focused on developing theoretical insights into how to ensure a successful
generalization process by investigating the test error on the target domain. Our results
reveal the necessity of controlling the semantic conditional distributions as well as the label
distribution divergence across all the source domains. Specifically, the theoretical side, we
provide a framework to understand the domain generalization process upon bounding the test
error on the target domain with total variation distance, thus providing a deeper understanding
of the role of semantic alignment for general DG problems.

On the algorithmic side, our theoretical results inspired a novel DG algorithm that jointly
minimizes the source errors as well as semantic distribution matching for all the source domains.
Precisely, we proposed to simultaneously match the semantic distributions via minimizing
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the centroid statistics across distributions and controlling the label distribution losses. The
empirical results demonstrate that the our algorithm outperforms various strong baselines,
especially when label shift occurs.

Discussions

In thesis, we have conducted both theoretically and empirically investigations on how to
effectively learn transferable features from different domains. From the theoretical aspects,
we implemented the statistical generalization analysis framework to explore the learning
guarantees for DA, DG and MTL with especially attention to the (semantic) conditional
and label distribution relations in different domains. The empirical evaluations have shown
improved performances which also confirm the benefits of our theoretical analysis.

Despite from the contributions, the accomplishments in this thesis still have some limitations.
As mentioned in Chapter 5 and Chapter 6, the theoretical analysis assume the number of
labels in each domain is same to each other, while in many practical scenarios, the number of
total labels in each domain may differ from each other, i.e., the open set learning problems.
Our preliminary results have shown that the proposed algorithms in this thesis can show better
performances than the baselines under the open set situations, however, the theoretical results
still open. Besides, our work introduced in Chapter 3 and Chapter 4 exploit the Wasserstein
adversarial training method, which we found may have oscillated performances. Similar with
the discussions in (Arjovsky et al., 2017; Gulrajani et al., 2017) we found the Wasserstein
adversarial training sometimes hard to converge. However, this kind of training can show
improved classification accuracy.

Possible Future Directions

In this thesis, we’ve focused on the learning problems of how to transfer the knowledge from
different domains through the distribution matching approaches. Specifically, we focused on
the DA, DG and MTL learning scenarios and showed novel theoretical insights as well as
the practical implications. Through the current accomplishments, we notice some further
directions that deserve to be explored :

Explore the Contrastive Learning for Transfer Learning

As a trend, we notice some contrastive learning techniques have been widely investigated for
exploring the similarities via both the unsupervised (Xie et al., 2021) or supervised (Khosla
et al., 2020) mode. Previous work (Chen et al., 2020c) has shown the potentials to apply
contrastive learning in transfer learning. As discussed in Chapter 4, our work (Zhou et al.,
2021b) shares some common idea with contrastive learning when leveraging the similarities.
This kind of contrastive learning work can either be implemented as an extra regularization
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objective to enhance the feature compactness. As a future direction, we plan to further explore
the contrastive learning method into multi-source transfer including domain generalization
and multi-task learning method.

Online or Sequential Learning Scenarios

Currently, we focused on the situation where the data are static to the learner, i.e., the offline
learning scenario. In the practical aspects, we can expect the data come to the learner one
by one under an online learning framework. For example, if we consider a life-long learning
problems in which the data is always feed to the learner time-step by time-step, then how to
figure out the most transferable knowledge between each time specific data and how long should
we keep the previous knowledge is interesting. Our current methodologies on distribution
matching can be transformed to this kind of online or life-long learning problems. However,
how to find out the useful information for future and how to ignore the useless information in
the past time-steps are desirable to explore.

Besides, it will be high interesting if the model can gradually learn from the sequential data.
For example, for a self-driving car system, we may pre-train the model with the perception
and decision abilities before it can be deployed in the real road driving. When operating, we
expect this model can learn on the fly to improve the learning performances as the car is
moving on the road. We may try to implement the accomplishments in this thesis to some
intelligent vehicle systems in the future.

Open Set Learning Problems

Another interesting directions will be the open set learning problems (Shu et al., 2021) involved
in the multi-source transfer learning problems. As discussed before, in Chapter 5 and Chapter 6,
we have explored the label shift problems in both MTL and DG, where we assume the number
of classes are equal to each other across domains. The open set transfer learning problem
aims at learning transferable features under the scenario that the number of labels from each
domain can differ with each other. As previously noticed, some practical approaches have
been devoted to the open set learning problems (Liu et al., 2019a; Shu et al., 2021), and
theoretical justifications (Fang et al., 2021a,b) for the open set domain adaptation. When
dealing with multi-source transfer learning problems, we need to find out how to ensure a
successful generalization process. The complete theoretical analysis and practical frameworks
still deserve further exploration. As a future direction, we plan to explore the contrastive
learning or some other unsupervised learning methods to enhance the feature alignment so
that we can reduce the problem of negative transfer in the open set learning problems.

125



Label Shift Problems in Other Learning Scenarios

In this thesis, we explored the label shift problems in transfer learning problems. However,
this kind of label distribution shift can also exists in other learning scenarios. For example,
it will be interesting to explore the label shift problems in active learning, where the query
(target) pool label distribution shift clearly from the current learning data (source). It will
also interesting to explore this kind of work in the similarity-based learning approaches. For
example, under the metric learning or constrastive learning framework, it will be interesting
to see how to design the distance so that we can neglect the abnormal labelled data to ensure
the triplet or constrastive property is an interesting area in the literature. We can explore this
kind approaches in the future.

To summarize, this thesis explored the distribution matching methodologies in learning the
transferable feature and knowledge from different data distributions. We’ve studied different
transfer learning scenarios from both theoretical and empirical aspects, and see how they can
be applied to some other learning scenarios. For a future perspective, we believe such kind of
accomplishments will be beneficial to the design of real-world learning systems.
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Annexe A

Preliminary Methods Involved in
Our Work

In this appendix chapter, we provide the background knowledge of Domain Adversarial Neural
Network and the Wasserstein Distance Guided Representation Learning, which are two previous
approaches involved in our work. We introduce them by referring their original publications to
show a background knowledge for these two methods.

A.1 Introduction to Domain Adversarial Neural Network

We firstly start by introducing the Domain Adversarial Network (DANN) (Ganin and Lem-
pitsky, 2015; Ganin et al., 2016), which is a well-known architecture of modern adversarial
domain adaptation approaches. For this, we mainly focus on re-producing the training process
of this proposed method. Based on that, we can then discuss the following substantial work
proposed by others.

As illustrated in Fig. A.1, the DANN contains three main parts, a feature extractor (FE)
is trained with a classification network on the source dataset under a supervised setting.
Then, a domain discriminator learns to distinguish if the images are from the source or from
the target domain with the help of a gradient-reversal layer. The gradient reversal layer
copies data without change at the forward step and then it multiplies the gradient by −λ at
back-propagation.

Now, we explain how this network is trained. Let’s consider a shallow Neural Network with
input X ∈ Rn. As shown in Fig. A.2. The hidden layer Gf learns a function Gf : X → RD,
parameterized by a weight matrix W1 and bias b1. The prediction layer learns a mapping
Gy : RD → [0, 1]L parameterized by W2 and b2 to predict the probability to one of the total
L classes.
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Figure A.1 – The framework of DANN mainly contains 3 network parts (feature extractor,
label classifier and domain classifier) and a grad-reversal layer. The training process could be
summarized as : 1. train feature extractor + class predictor on source data. 2. train feature
extractor + domain classifier on source and target data (with grad-reversal layer). 3. use
feature extractor + class predictor at test time. (Architecture of DANN is re-drawed from
Ganin et al. (2016)).

[x1, x2, ....xR]T
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Figure A.2 – A shallow MLP example for DANN

Then, the prediction layer outputs will be,

Gy(Gf (x);W2, b2) = softmax(W2Gf (x) + b2)

The classification loss function is negative log-probability of the correct label :

Ly(Gy(Gf (xi)), yi) = log 1
Gy(Gf (x))yi

With this classification loss, a generalized optimization objective regularized by term R(W,b)
is introduced by,

min
W1,W2,b1,b2

[ 1
n

n∑
i=1
Liy(W1,W2, b1, b2) + λ ·R(W,b)] (A.1)
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where W and b are the weights and biases of the whole model, respectively.

The heart of DANN is to design the domain regularizer derived from the domain divergence
measurements (here H- divergence). According to Ben-David et al. (2010a), the empirical
H-divergence of a hypothesis class H between samples S(Gf ) and T (Gf ) could be defined as :

d̂H(S(Gf ), T (Gf )) = 2(1−min
h∈H

[ 1
n

n∑
i=1

I[h(Gf (xi)) = 0] + 1
n′

N∑
i=n+1

I[h(Gf (xi)) = 1]])

where S(Gf ) = {Gf (x)|x ∈ S}; T (Gf ) = {Gf (x)|x ∈ T} are the source and target sample
representations. The ’min’ part is hard to exactly compute, Ganin et al. (2016) proposed to
estimate the min part by a domain classification layer Gd that learns a logistic regression
Gd : RD → [0, 1] parameterized by a vector-scalar pair (u, z) ∈ RD × R, which measures the
probability of a given input is from the source domain or the target domain :

Gd(Gf (x; u, z)) = sigm(uTGf (x) + z) (A.2)

Then the authors defined the loss function by :

Ld(Gd(Gf (xi)), di) = di log 1
Gd(Gf (xi))

+ (1− di) log 1
1−Gd(Gf (xi))

(A.3)

where di is a binary variable (domain label). If xi ∼ DXS ,then di = 0, if xi ∼ DXT , then di = 1.
It’s a surrogated loss to original H-divergence. Then, add the domain adaptation term into
the regularizer R(W,b) :

R(W,b) = max
u,z

[− 1
n

n∑
i=1
Lid(W,b,u, z)− 1

n′

N∑
i=n+1

Lid(W,b,u, z)]

Then, the full objective function is defined by :

E(W1,W2, b1, b2,u, z) = 1
n

n∑
i=1
Liy(W1,W2, b1, b2)

−λ( 1
n

n∑
i=1
Lid(W,b,u, z) + 1

n′

N∑
i=n+1

Lid(W,b,u, z))

With the general gradient descent optimizer, the network parameters could have the saddle
points :

(Ŵ1,Ŵ2, b̂1, b̂2) = arg min
W1,W2,b1,b2

E(W1,W2, b1, b2, û, ẑ)

(û, ẑ) = arg max
u,z

E(Ŵ1,Ŵ2, b̂1, b̂2,u, z)

Here, we notice that there is an arg max term in the second equation, this could be achieved
by the Domain Adversarial training method, which will be introduced in next part.
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Now, we show how this procedure could be implemented in the deep neural network-based
approach. We re-illustrate the main analysis process of Ganin et al. (2016) in the following
parts. To be consistent with the original work, we follow their notations. For a deep neural
network based adaptation task, typically we implement a feature extractor Gf (·; θf ) and source
label predictor Gy(·; θy) in supervised mode. Gd(·; θd) is the domain classifier. Then the label
prediction loss (Liy) and domain prediction loss Ld could be defined by :

Liy(θf , θy) = Ly(Gy(Gf (xi; θf ); θy), yi)

Lid(θf , θy) = Ld(Gy(Gf (xi; θf ); θd), di)

The objective function for the neural network is :

E(θf , θy, θd) = 1
n

n∑
i=1
Liy(θf , θy)− λ( 1

n

n∑
i=1
Lid(θf , θd) + 1

n′

n∑
i=1
Lid(θf , θd))

The network could be optimized by :

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d)

(θ̂d) = arg max
θd

E(θ̂f , θ̂y, θd)

Apply gradient descent, the updating rule will be :

θf ←− θf − µ(
∂Liy
∂θf
−λ∂L

i
d

∂θf
)

θy ←− θy − µ
∂Liy
∂θy

θd ←− θd − µ
∂Lid
∂θd

(A.4)

The term −λ∂L
i
d

∂θf
is achieved by the gradient reversal layer. Such gradient reversal layer

architecture is a powerful tool to achieve the adversarial training. It has inspired some recent
adversarial approaches for domain adaptation (e.g. Cao et al., 2018b, 2019; Wen et al., 2019a,b).
As stated before, the V C-dimension of H-divergence is high, which makes it hard to compute
in neural network-based approaches (Arjovsky et al., 2017). Recent work of the Wasserstein
Distance-based approach has been proposed by academia. We highlight this in the next section.

A.2 Optimal Transport and Wasserstein Metrics

Optimal Transport (OT) theory was firstly introduced by Monge (1781) to study the problem
of resource allocation with concern to transport the resources from one point to another with
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minimized transportation cost. It was then developed into a statistical learning task that tries
to minimize the distances between distributions (e.g. (Redko et al., 2017)).

As introduced in section 1.5.1, Wasserstein-1 distance is a kind of IPM metric, which can be
computed by,

W1(Di,Dj) = sup
||f ||L<1

Ex∈Dif(x)− Ex′∈Djf(x′) (A.5)

Eq. A.5 actually is known as the Kantorovich-Rubinstein duality of Wasserstein Distance, we
now show how we can derive this duality from the original OT theory.

We begin by illustrating the definition of Lipschitz Continuous functions and then introduce
the Wasserstein Distances as a distribution measure.

Definition A.1. Lipschiz Continuous Function (Shalev-Shwartz and Ben-David, 2014) :
Given a metric space (X , ρ), A function f : X → R is K-Lipschitz with respect to the metric ρ
if for every x1,x2 ∈ X , we have that |f(x1)− f(x2)| ≤ Kρ(x1 − x2)

We then use ||f ||Lip denote by the smallest K to satisfy the inequality above. Then, we will
have the definition of Wasserstein Distance as,

Definition A.2. Wasserstein Distance (Wainwright, 2019) : Given two probability distri-
bution Di and Dj on X , the Wasserstein Distance is measured by

Wp(Di,Dj) = sup
||f ||Lip≤1

[ ∫
fdDi −

∫
fdDj

]
(A.6)

As we can see in Eq. A.6, the ‘sup’ of the integration is not able to directly. Recent works (Courty
et al., 2016; Redko et al., 2017; Shen et al., 2018) adopt the Kantorovich-Rubinstein duality
of Wasserstein Distance to achieve the adversarial objective, we introduce them in the next
section.

A.2.1 Kantorovich-Rubinstein duality of Wasserstein Distance

The duality theory by Hanin (1992) showed that any Wasserstein Distance has an equivalent
coupling-function based distance. In this section, we introduce the well-known Kantorovich-
Rubinstein duality of Wasserstein Distance. Firstly, the coupling function is usually defined
by,

Definition A.3. Coupling function (Hanin, 1992) A distribution Π on X ×X is a coupling
of pair (Di,Dj), if the marginal distributions are coincided with Di and Dj.
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We follow the demonstration of Wainwright (2019) to show its relations to Wasserstein Distance.
Let f : X → R be any 1− Lipschiz function, denote Π by any coupling function, then,∫

ρ(x,x′)dΠ(x,x′) ≥
∫

(f(x)− f(x′))dΠ(x,x′)

=
∫
f(dDi − dDj)

(A.7)

According to the Kantorovich-Rubinstein duality, if we minimize the Wasserstein Distance
over all the possible couplings, then we will have the following equivalence :

sup
||f ||Lip≤1

[ ∫
fdDi −

∫
fdDj

]
= inf

Π

∫
X×X

ρ(x,x′)dΠ(x,x′) = inf
Π

E[ρ(X ,X ′)] (A.8)

where Π(Di,Dj) is a collection of all joint probability measures on X × X with marginals Di
and Dj . This duality function reflected by Eq.A.8 plays a fundamental role in many recent
works on Wasserstein Distance (e.g. Redko et al., 2017; Shen et al., 2018). The transportation
process can be described as assuming there are two resources of data that come from two
distributions Di and Dj . The goal of OT aims to move (push) the data with mass pi from Di
to Dj with a minimized cost.

Consider two probability distributions Di and Dj having densities pi and pj respectively. The
pi is typically considered as the initial density on source distribution Di over space X . And the
pj is the desired density of math in the target distribution. The term transportation cost could
be measured by moving a small incremental mass dx to dx′. Its quantity could be computed
by ρ(x,x′)dxdx′.

Denote π(x,x′) the joint distribution which is also known as Transportation Plan. It stands
for shifting the mass that pi is moved (push-forward) to pj .

Now, take those parts above into consideration, we can formulate the transportation cost as :∫
X×X

ρ(x, x′)π(x, x′)dxdx′ (A.9)

Then, by minimizing Eq. A.9, we have :

argminγ
∫
X1×X2

ρ(x,x′)pdγ(x,x′)

s.t.PX1#γ = Di; PX2#γ = Dj

Where PX1 is projection over X1 and # denotes the push-forward measure. This problem
admits an unique solution γ0 which allows to define the Wasserstein distance of order p between
Di and Dj for any p ≥ 1 :

W p
p (Di,Dj) = inf

γ∈Π(Di,Dj)

∫
X×X

ρ(x,x′)pdγ(x,x′)
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where ρ : X × X → R+ is the cost function for transporting one unit of mass x to x′. In
practice, we usually use the Wasserstein-1 distance, which is defined by,

W1(Di,Dj) = sup
||f ||L<1

Ex∈Dif(x)− Ex′∈Djf(x′) (A.10)

This kind of OT theory with Wasserstein distance then inspires many transfer learning
methods (Arjovsky et al., 2017; Redko et al., 2017). In our Chapter 3 and Chapter 4, we
adopt the adversarial training method, namely Wasserstein Distance Guided Representation
Learning (WDGRL), proposed by Shen et al. (2018). We further elaborate the method in
section 1.5.2 as well as Appendix A.3.

A.3 Domain Adversarial Training with Wasserstein Distance

Optimal Transport technique with Wasserstein adversarial training (Shen et al., 2018) has
been investigated in domain adaptation (Courty et al., 2016; Redko et al., 2019). We leveraged
the Wasserstein adversarial training method in our work (Zhou et al., 2021c,b), which were
represented in Chapter 3 and Chapter 4, respectively.

In this section, we present a brief introduction on Optimal Transport for Domain Adaptation
with Wasserstein Distance. We highlight the optimal transport based analysis by Courty et al.
(2016), which systemically introduced the optimal transport for domain adaptation and then
Redko et al. (2017) theoretically provide the concentration bounds using Wasserstein distance
to bound the transfer errors between the source and target domain. The theoretical analysis of
this work is based on kernel functions restricted in Reproduced Kernel Hilbert Space. This work
has been extended by Shen et al. (2018) extend the work to Lipschitz-continuous functions.

Theorem A.1. (Shen et al., 2018) Let DS ,DT be two probability measures, assume ∀h ∈ H
are K-Lipschitz continuous functions and cost function for OT is the Euclidean distance
ρ(x,y) = ‖x− y‖. Then we have that :

RT (h, h′) ≤ RS(h, h′) + 2KW1(DS ,DT ) + λ

for every hypothesis h, h′ ∈ H and λ is the combined error of the ideal hypothesis h? that
minimizes the combined error RS(h) +RT (h).

Based on this theoretical results, the authors proposed an adversarial training method for
domain adaptation, namely Wasserstein Distance Guided Representation Learning (WDGRL)
algorithm. Fig. A.3 illustrates the model workflow of WDGRL. The network receives a pair of
instances from the source and target domain. The feature extractor and classifier, parameterized
by θf and by θc are denoted by F and C respectively. The feature extractor is trained to learn
invariant features, and the classifier is expected to learn the conditional prediction relations
P(y|x) for predicting the instances from both source and target domain correctly.
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Figure A.3 – Workflow of Wasserstein Distance Guided Representation Learning (WDGRL)
method. The model consists of three major parts : feature extractor, classifier and domain
critic. The feature extractor could extract the features both from source and target domains.
The feature extractor and classifier are trained with labelled source instances while the domain
critic is trained to measure the empirical Wasserstein distance between the source and target
domain. The red dashed arrows stands for the back-propagation paths for the classification
loss while the green dashed lines stands for the back-propagation path for the critic loss.

Then, there follows the domain critic network φ, parameterized by θφ. This network takes both
the source domain and the target domain features ZS ,ZT as input and estimates the empirical
Wasserstein Distance between the source and target domain through a pair of batched instances
XS and XT ,

W1(XS ,XT ) = 1
ns

∑
xs∈XS

φ(F (xs))−
1
nt

∑
xt∈XT

φ(F (xt)) (A.11)

Since Wasserstein Distance is continuous and is differential almost everywhere, we can optimize
the parameters of the critic network together with the classifier. The feature extractor F is
then trained to minimize the estimated Wasserstein Distance in an adversarial manner with
the critic φ. Then, the goal of the adversarial training is described by

min
θf ,θc

max
θd
Lcls + λw(W1(XS ,XT )− Lgrad) (A.12)

where λw is a parameter to regularize the critic loss and Lgrad is gradient penalty method
suggested by Gulrajani et al. (2017) which can help to prevent gradient vanishing or exploding
problems caused by weight clipping.

Lgrad(h)(Z) = (||∇hf(h)||2 − 1)2 (A.13)

In previous works, we found that this approach is useful and can align the marginal feature
distribution perfectly. We use this method as a starting point for our proposed approach (Zhou
et al., 2021c) as well as (Zhou et al., 2021b).
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Annexe B

Proofs to Theoretical Results

In this chapter, we provide the proofs to the theoretical results proposed in our work.

B.1 Proof to Theoretical Results in Chapter 3

Proof to Theorem 3.1 The proof is based on Lemma 1 of Shen et al. (2018) and is
symmetric to the proof of Theorem 3 of Zhao et al. (2019a). We first give the Lemma 1 as
follows,

Lemma B.1. (Lemma 1 of Shen et al. (2018)) Let DS ,DT be two probability measures,
assuming that all the hypothesis ∀h ∈ H are 1-Lipschitz continuous functions. Then we have
that :

RT (h, h′) ≤ RS(h, h′) + 2W1(DS ,DT )

for every hypothesis h, h′ ∈ H.

We then could finish the proof of Theorem 3.1 by,

Proof. Based on Lemma B.1, let h′ = ft, we have

RT (h, ft) ≤ RS(h, ft) + 2W1(DS ,DT )

We noticed that

RS(h, ft) = Ex∼DS |h(x)− ft(x)|

≤ Ex∼DS |h(x)− hs(x)|+ Ex∼DS |hS(x)− fT (x)|

= RS(h) + E∼DS |hs(x)− ft(x)|

Plugging in we have the result.
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Proof to Corollary 3.1 To complete the proof of this corollary, first show the following
lemma.

Lemma B.2. (Theorem 2.1 of Bolley et al. (2007)) Let D be a probability measure in Rd

and satisfies the T1(λ) inequality. Denote D̂ = 1
N

∑N
i=1 ∆xi by the associated empirical defined

on a sample of independent variables {xi}Ni=1 drawn i.i.d from D. Then, for any d′ ≥ d and
λ′ ≤ min(Rs +Rt) there exists some constant N0 depending on d′ and some square exponential
moment of D s.t. for any ε > 0 and N ≥ N0 max(ε−(d+2), 1), we have

P[W1(D, D̂) > ε] ≤ exp(−λ
′

2 Nε
2) (B.1)

We shall refer the reader directly to Bolley et al. (2007) for the proof.

Now, we could give the proof of Theorem 2 in the following.

Proof. The proof of this corollary is similar to Theorem 4 in Redko et al. (2017). We borrow
the idea from them and extend it to our setting. Assume the learner have access to β of total
target samples. Then,

RT (h) ≤ RS(h) + 2W1(DS ,DT ) + EDS

[∣∣fS − fT ∣∣]
≤ RS(h) + EDS

[∣∣fS − fT ∣∣]+ 2[W1(DS , D̂S) +W1(D̂S ,DT )]

≤ RS(h) + EDS

[∣∣fS − fT ∣∣]+ 2[
√

2 log(1
δ

)/(Ns + βNt)λ′ +W1(D̂S , D̂T ) +W1(D̂T ,DT )]

≤ RS(h) + 2W1(D̂S , D̂T ) + EDS

[∣∣fS − fT ∣∣]+ 2
√

2 log(1
δ

)/λ′(
√

1
Ns + βNt

+
√

1
Nt − βNt

)

(B.2)

The first line is directly from Theorem 1, the second inequality is based from the triangle
inequality of Wasserstein distance, third and fourth inequalities are based on Theorem 2.1 of
Bolley et al. (2007) (Lemma B.2 above) and Theorem 2.1 of Courty et al. (2017). Besides,
the second and third inequality based on the assumption that the query samples drawn from
target set would not change the two distribution too much. This assumption can hold since if
the active selected samples can largely influence the distribution, then the labeling can cost
too much, which contradict to the goal of active learning. Then, we conclude the proof.

We shall notice that once the set Xs, Xt and the hypothesis class has been chosen, the last
three terms of Eq.B.2 are fixed. This theorem showed that the target error can be bounded
by the summation of Wasserstein distances between source domains and target domain, plus
some fixed term. So the learner shall get smaller target error by minimizing the Wasserstein
distance and source error.
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B.2 Proof to Theoretical Results in Chapter 5

To conclude our main results, we first show a lemma involved in the proof.

Lemma B.3. [Lemma of Shui et al. (2020a)] Let Z ∈ Z be the real valued integrable random
variable, let P and Q are two distributions on a common space Z such that Q is absolutely
continuous w.r.t. P . If for any function f and λ ∈ R such that EP [eλ(f(z)−EP (f(z))] <∞, then
we have :

λ(EQf(z)− EP f(z)) ≤ DKL(Q‖P ) + logEP [eλ(f(z)−EP (f(z))]

Where DKL(Q‖P ) is the Kullback–Leibler divergence between distribution Q and P , and the
equality arrives when f(z) = EP f(z) + 1

λ log(dQdP ).

Proof to Lemma B.3

Proof. Let g be any function such that EP [eg(z)] < ∞, then we define a random variable
Zg(z) = eg(z)

EP [eg(z)] , then, EP (Zg) = 1. Assume another distribution Q such that Q (with
distribution density q(z)) is absolutely continuous w.r.t. P (with distribution density p(z)),
then we have :

EQ[logZg] = EQ[log q(z)
p(z) + log(Zg

p(z)
q(z) )]

= DKL(Q‖P ) + EQ[log(Zg
p(z)
q(z) )]

≤ DKL(Q‖P ) + logEQ[p(z)
q(z)Zg]

= DKL(Q‖P ) + logEP [Zg]

Since EP [Zg] = 1 and according to the definition we have EQ[logZg] = EQ[g(z)]−EQ logEP [eg(z)] =
EQ[g(z)]− logEP [eg(z)] (since EP [eg(z)] is a constant w.r.t. Q) and we therefore have :

EQ[g(z)] ≤ logEP [eg(z)] +DKL(Q‖P ) (B.3)

Since this inequality holds for any function g with finite moment generation function, then we
let g(z) = λ(f(z)− EP f(z)) such that EP [ef(z)−EP f(z)] <∞. Therefore we have ∀λ and f we
have :

EQλ(f(z)− EP f(z)) ≤ DKL(Q‖P ) + logEP [eλ(f(z)−EP f(z)]

Since we have EQλ(f(z)− EP f(z)) = λEQ(f(z)− EP f(z))) = λ(EQf(z)− EP f(z)), therefore
we have :

λ(EQf(z)− EP f(z)) ≤ DKL(Q‖P ) + logEP [eλ(EQf(z)−EP f(z))]

As for the attainment in the equality of Eq.(B.3), we can simply set g(z) = log( q(z)p(z)), then
we can compute EP [eg(z)] = 1 and the equality arrives. Therefore in Lemma 1, the equality
reaches when λ(f(z)− EP f(z)) = log(dQdP ).
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Proof to Theorem 5.1 Now, we could prove the main results of Theorem 5.1. For task t
we have :

|Rt(h)−Rαt(h)| = |Rt(h)−
T∑
i=1

αt,iRi(h)|

≤
T∑
i=1

αt,i|Rt(h)−Ri(h)|

=
T∑
i=1

αt,i|EDt`(h)− EDi`(h)|

(B.4)

Now we bound EDt`(h)− EDi`(h). According to Lemma B.3, for two distribution P and Q,
we have

λ(EQf(z)− EP f(z)) ≤ DKL(Q‖P ) + logEP [eλ(f(z)−EP (f(z))]

∀λ > 0 we have :

EQf(z)− EP f(z) ≤ 1
λ

(logEP e[λ(f(z)−EP f(z))] +DKL(Q‖P )) (B.5)

And ∀λ < 0 we have :

EQf(z)− EP f(z) ≥ 1
λ

(logEP e[λ(f(z)−EP f(z))] +DKL(Q‖P )) (B.6)

Then we introduce an intermediate distributionM(z) = 1
2(Di(z) +Dt(z)), then supp(Di) ⊆

supp(M) and supp(Dt) ⊆ supp(M), and let f = `.

Since ` is bounded through L, then `− EP `, according to Wainwright (2019)(Chapter 2.1.2),
is sub-Gaussian with parameter at most σ = L

2 , then we can apply Sub-Gaussian property to
bound the log moment generation function :

logEP e[λ(`(z)−EP `(z))] ≤ log e
λ2σ2

2 ≤ λ2L2

8 .

In Eq.(B.5), we let Q = Dt and P =M, then ∀λ > 0 we have :

EDt `(z)− EM `(z) ≤ L2λ

8 + 1
λ
DKL(Dt‖M) (B.7)

In Eq.(B.6), we let Q = Di and P =M, then ∀λ < 0 we have :

EDi `(z)− EM `(z) ≥ L2λ

8 + 1
λ
DKL(Di‖M) (B.8)

In Eq.(B.7), we denote λ = λ0 > 0 and λ = −λ0 < 0 in Eq.(B.8). Then Eq.(B.7), Eq.(B.8)
can be reformulated as :

EDt `(z)− EM `(z) ≤ L2λ0
8 + 1

λ0
DKL(Dt‖M)

EM `(z)− EDi `(z) ≤
L2λ0

8 + 1
λ0
DKL(Di‖M)

(B.9)
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Adding the two inequalities in Eq.(B.9), we therefore have :

EDt `(z)− EDi `(z) ≤
1
λ0

(
DKL(Di‖M) +DKL(Dt‖M)

)
+ λ0

4 L
2 (B.10)

Then, plug Eq. (B.10) into Eq. (B.4), sum over t = 1, . . . , T and compute the average, and
noting DJS(Di‖Dj) = 1

2 [DKL(Di‖M) +DKL(Dj‖M)] we have

1
T

T∑
t=1

Rt(h) ≤ 1
T

T∑
t=1

Rαt(h) + λ0
4T L

2 + 2
λ0T

T∑
t=1

T∑
i=1

αt,iDJS(Dt(x, y)‖Di(x, y))

Proof to Corollary 5.1

Proof. We notice that,

2DJS(Dt(x, y)‖Di(x, y)) = DKL(Dt(x, y)‖M(x, y)) +DKL(Di(x, y)‖M(x, y))

= DKL(Dt(y)‖M(y)) + Ey∼Dt(y)DKL(Dt(x|y)‖M(x|y))

+DKL(Di(y)‖M(y)) + Ey∼Di(y)DKL(Di(x|y)‖M(x|y))

= 2DJS(Dt(y)‖Di(y)) + Ey∼Dt(y)DKL(Dt(x|y)‖M(x|y)) + Ey∼Di(y)DKL(Di(x|y)‖M(x|y))

Then, we provide two bounded term for the last two KL divergence based terms,

Ey∼Dt(y)DKL(Dt(x|y)‖M(x|y))

≤ Ey∼Dt(y)DKL(Dt(x|y)‖M(x|y)) + Ey∼Dt(y)DKL(Di(x|y)‖M(x|y))

= 2Ey∼Dt(y)DJS(Dt(x|y)‖Di(x|y))

Ey∼Di(y)DKL(Dt(x|y)‖M(x|y)) ≤ Ey∼Di(y)DKL(Dt(x|y)‖M(x|y)) + Ey∼Di(y)DKL(Di(x|y)‖M(x|y))

= 2Ey∼Di(y)DJS(Dt(x|y)‖Di(x|y))

DJS(Dt(x, y)‖Di(x, y)) ≤ DJS(Dt(y)‖Di(y))+Ey∼Dt(y)DJS(Dt(x|y)‖Di(x|y))+Ey∼Di(y)DJS(Dt(x|y)‖Di(x|y))

Plug into Theorem 5.1, we conclude the proof for Corollary 5.1.
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B.3 Proof to Theoretical Results in Chapter 6

In this section we provide the proof to Theorem 6.1, Corollary 6.1 and Corollary 6.2.

B.3.1 Proof to Theorem 6.1

Proof. Let’s first consider the risk on the target domain w.r.t to the nearest source domain
D?,

RDT (h) ≤ min
D1,...,Dm

RDi + dTV (DT ,Di) (B.11)

In the context of DG, the learner has no access to the target domain, so we have no idea
about which source domain is the nearest one to the target. In this case, we try to find out
the minimization over all the source domains,

RDT ≤ RD1(h) + dTV (DT ,D1) ≤ RD1 + dTV (D?,D1)

+ dTV (D?,DT )

. . .

RDT ≤ RDi(h) + dTV (DT ,Di) ≤ RDi + dTV (D?,Di)

+ dTV (D?,DT )

. . .

RDT ≤ RDm(h) + dTV (DT ,Dm) ≤ RDm + dTV (D?,Dm)

+ dTV (D?,DT )

(B.12)

Sum over all the source domain i, we have,

m ·RDT (h) ≤RD1,...,Dm(h) +m · dTV (D?,DT )

+
∑
i

dTV (D?,DT ) (B.13)

Then, we have,

RDT (h) ≤ 1
m
RD1,...,Dm(h) + dTV (D?,DT )

+ 1
m

∑
i

dTV (D?,DT )
(B.14)

Note dTV (D?,Dt) = ε? and 1
mRD1,...,Dm(h) is the averaged source errors, we conclude the

proof.

B.3.2 Proof to Corollary 6.1

Since Theorem 6.1 is represented by the joint distribution, in order to show the insights that
can motivate the benefits on controlling the semantic and label distribution, we can further
provide the proof of Corollary 6.1.
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Proof. Since dTV (D?,Di) ≤ 2
√
DJS(D?||Di), plug into Eq. 6.1, we have

RDT (h) ≤ 1
m

m∑
i=1

RDi(h) + ε? + 1
m

m∑
i

dTV (D?(x, y),Di(x, y))

≤ 1
m

m∑
i=1

RDi(h) + ε? + 2
m

m∑
i

[
√
DJS(D?(x, y)‖Di(x, y))]

(B.15)

Now we need to bound the third term of Eq. B.15. Similar with the proof to Corollary 5.1 (Zhou
et al., 2021a), we can introduce an intermediate distributionM(x) = 1

2(D?(x) +Di(x)), then
supp(Di) ⊆ supp(M) we notice that,

2DJS(D?(x, y)‖Di(x, y)) = DKL(D?(x, y)‖M(x, y))

+DKL(Di(x, y)‖M(x, y))

= DKL(D?(y)‖M(y)) + Ex∼D?(y)DKL(D?(x|y)‖M(x|y))

+DKL(Di(y)‖M(y)) + Ex∼Di(y)DKL(Di(x|y)‖M(x|y))

= 2DJS(D?(y)‖Di(y)) + Ex∼D?(y)DKL(D?(x|y)‖M(x|y))

+ Ex∼Di(y)DKL(Di(x|y)‖M(x|y))

(B.16)

Then, we provide two bounded term for the last two KL divergence based terms,

Ey∼D?(y)DKL(D?(x|y)‖M(x|y))

≤ Ey∼D?(y)DKL(D?(x|y)‖M(x|y)) + Ey∼D?(y)DKL(Di(x|y)‖M(x|y))

= 2Ey∼D?(y)DJS(D?(x|y)‖Di(x|y))

Similarly, we could also have,

Ey∼Di(y)DKL(D?(x|y)‖M(x|y))

≤ 2Ey∼Di(y)DJS(D?(x|y)‖Di(x|y))

Plug these two terms into Eq B.16, we have

DJS(D?(x, y)‖Di(x, y)) ≤ DJS(D?(y)‖Di(y))

+ Ey∼D?(y)DJS(D?(x|y)‖Di(x|y))

+ Ey∼Di(y)DJS(D?(x|y)‖Di(x|y))

(B.17)

Now we have √
R.H.S. of Eq. B.17 ≤

√
DJS(D?(y)||Di(y))

+
√
Ey∼D?(y)DJS(D?(x|y)||Di(x|y))

+
√
Ey∼Di(y)DJS(D?(x|y)||Di(x|y))

(B.18)

Plug Eq. B.18 into Eq. B.15, we conclude the proof.
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B.3.3 Proof to Corollary 6.2

Now we show the proof to Corollary 6.2.

Proof. First consider the risk in the testing phase, i.e., the prediction loss on the target
domain,

RDT (h) = 1
K

K∑
k=1

∫
x
DT (x|Y = k)L(h(x), y)

≤ 1
K

∑
k=1

[
Ex∼D?(x|Y = k)L(h(x), y)

+ dTV (D?(x|Y = k),DT (x|Y = k))
]

(B.19)

Similar with the proof of Theorem 6.1, we could bound the two items in Eq. B.19,

Ex∼D?L(h(x), y) ≤Ex∼D1L(h(x), y)

+ dTV (D?(x|Y = k),D1(x|Y = k))

. . .

Ex∼D?L(h(x), y) ≤Ex∼DiL(h(x), y)

+ dTV (D?(x|Y = k),Di(x|Y = k))

. . .

Ex∼D?L(h(x), y) ≤Ex∼DmL(h(x), y)

+ dTV (D?(x|Y = k),Dm(x|Y = k))

(B.20)

Sum this Eq. B.20 and plug into Eq. B.19, we have,

RDT (h) ≤ 1
K

K∑
k=1

[ 1
m

m∑
i=1

Ex∼DiL(h)

+ 1
m

m∑
i=1

dTV (D?(x|Y = k),Di(x|Y = k))

+ 1
m

m∑
i=1

dTV (D?(x|Y = k),DT (x)|Y = k)
]

≤ 1
m

m∑
i=1

Ex∼DiL̂α
Di(h) + κ?

+ 1
K

K∑
k=1

[ 1
m

m∑
i=1

dTV (D?(x|Y = k),Di(x|Y = k))
]

(B.21)

Then we could conclude the proof.
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