

© Charles Poitras, 2022

Phonetic normalization as a means to improve toxicity
detection

Mémoire

Charles Poitras

Maîtrise en informatique - avec mémoire

Maître ès sciences (M. Sc.)

Québec, Canada

Phonetic normalization as a means to improve
toxicity detection

Mémoire

Charles Poitras

Sous la direction de:

Richard Khoury, directeur de recherche

Résumé

À travers le temps et en présence des avancements de la technologie, l’utilisation de cette tech-
nologie afin de créer et de maintenir des communautés en ligne est devenue une occurrence
journalière. Avec l’augmentation de l’utilisation de ces technologies, une tendance négative
peut aussi se faire identifier; il y a une quantité croissante d’utilisateurs ayant des objectifs
négatifs qui créent du contenu illicite ou nuisible à ces communautés. Afin de protéger ces
communautés, il devient donc nécessaire de modérer les communications des communautés.
Bien qu’il serait possible d’engager une équipe de modérateurs, cette équipe devrait constam-
ment grandir afin de pouvoir modérer l’entièreté du contenu. Afin de résoudre ce problème,
plusieurs se tournent vers des techniques de modération automatique. Deux exemples de
techniques sont les “whitelists” et les “blacklists”. Malheureusement, les utilisateurs néfastes
peuvent facilement contourner ces techniques à l’aide de techniques subversives. Une des
techniques populaires est l’utilisation de substitution où un utilisateur remplace un mot par
un équivalent phonétique, ou une combinaison visuellement semblable au mot original. À
travers ce mémoire, nous offrons une nouvelle technique de normalisation faisant usage de
la phonétique à l’intérieur d’un normalisateur de texte. Ce normalisateur recrée la pronon-
ciation et infère le mot réel à partir de cette normalisation, l’objectif étant de retirer les
signes de subversion. Une fois normalisé, un message peut ensuite être passé aux systèmes de
classification.

ii

Abstract

Over time, the presence of online communities and the use of electronic means of communica-
tion have and keep becoming more prevalent. With this increase, the presence of users making
use of those means to spread and create harmful, or sometimes known as toxic, content has
also increased. In order to protect those communities, the need for moderation becomes a
critical matter. While it could be possible to hire a team of moderators, this team would
have to be ever-growing, and as such, most turn to automatic means of detection as a step in
their moderation process. Examples of such automatic means would be the use of methods
such as blacklists and whitelists, but those methods can easily be subverted by harmful users.
A common subversion technique is the substitution of a complete word by a phonetically
similar word, or combination of letters that resembles the intended word. This thesis aims to
offer a novel approach to moderation specifically targeting phonetic substitutions by creating
a normalizer capable of identifying how a word should be read and inferring the obfuscated
word, nullifying the effects of subversion. Once normalized phonetically, the messages are
then sent to existing means of classification for automatic moderation.

iii

Contents

Résumé ii

Abstract iii

Contents iv

List of Tables vi

List of Figures viii

Thanks ix

Introduction 1

1 Related Works 3
1.1 Online Harm and Subversion . 3
1.2 Character Based Phonetic Normalization 4

2 Text Normalization 8
2.1 Methodology . 8
2.2 Normalization Network . 10
2.3 Datasets . 11
2.4 Data Processing . 18
2.5 Conclusion . 20

3 Text Normalization Results 21
3.1 Evaluation of the Generated Words and IPAs 21
3.2 Normalization Experiments . 22
3.3 Results . 24
3.4 Conclusion . 39

4 Harmfulness Detection 40
4.1 Methodology . 40
4.2 Running the Tests . 47
4.3 Conclusion . 48

5 Harmfulness Detection Results 49
5.1 Introduction . 49
5.2 Network Architecture and Data Processing 49

iv

5.3 Results . 51
5.4 Conclusion . 60

Conclusion 62

A Ratio of Word and IPA Length in Datasets 63
A.1 Word Length Ratio for Text-to-IPA Experiments 63
A.2 Word Length Ratio for IPA-to-Text Experiments 64

B Notable Architectural Data 67
B.1 Notable Architectural Data for the fairseq networks 67
B.2 Notable Architectural Data for the RoBERTa network 68

Bibliography 69

v

List of Tables

1.1 Encodings of various words under different phonetic systems. Soundex, Meta-
phone, New York State Immunization Information System (NYSIIS), Match
Rating algorithm (MRA), Caverphone and International Phonetic Alphabet
(IPA) . 6

2.1 Some words beginning with "abb" and various pronunciations 16
2.2 Potential substitutions for word segments and characters 16

3.1 Dataset statistics and information on elements used to evaluate the experiments 24
3.2 Results on the Tweet dataset using the various neural networks 25
3.3 Results on EMNLP dataset using the various neural networks 25
3.4 Results on [18] dataset using the various neural networks 25
3.5 Results on Tweet dataset using for the transformers experiments 25
3.6 Results on EMNLP dataset using for the transformers experiments 26
3.7 Results on [18] dataset for the transformers experiments 26
3.8 Results obtained when training the lightconv_wmt_en_de network on the

IPA-to-Text task . 31
3.9 Results on Tweet dataset using the transformers experiments 32
3.10 Results on EMNLP dataset using the transformers experiments 32
3.11 Results on [18] dataset the transformers experiments 32
3.12 Results on EMNLP dataset using for the transformers experiments 37

4.1 Comment . 44
4.2 Substitution group for the letter group ack" . 45

5.1 Loss at Best Epoch for the Bi-LSTM Neural Networks 52
5.2 Loss at Best Epoch for the RoBERTa Neural Networks 53
5.3 Accuracy for all labels for the Bi-LSTM neural networks 55
5.4 Accuracy for all labels for the RoBERTa neural networks 55
5.5 Accuracy for all labels for the Bi-LSTM neural networks on the Duplication

Dataset . 56
5.6 Accuracy for all labels for the RoBERTa neural networks on the Duplication

Dataset . 57
5.7 Accuracy for all labels for the Bi-LSTM neural networks on the Removal Dataset 57
5.8 Accuracy for all labels for the RoBERTa neural networks on the Removal Dataset 57
5.9 Accuracy for all labels for the Bi-LSTM neural networks on the Substitution

Dataset . 57
5.10 Accuracy for all labels for the RoBERTa neural networks on the Substitution

Dataset . 58

vi

5.11 Accuracy for all labels for the Bi-LSTM neural networks on the Combined Dataset 58
5.12 Accuracy for all labels for the RoBERTa neural networks on the Combined Dataset 58

B.1 Notable Architectural Data of the fairseq Convolutional network 67
B.2 Notable Architectural Data of the fairseq LightConv networks 67
B.3 Notable Architectural Data of the fairseq Transformers 68
B.4 Notable Architectural Data of the RoBERTa network 68

vii

List of Figures

2.1 Normalization process for any message . 12
2.2 Data flow in a transformers library network 13

3.1 Average edit distance based on the input word length for the Text-to-IPA ex-
periments with fairseq on the Tweet Dataset 26

3.2 Average edit distance based on the input word length for the Text-to-IPA ex-
periments with fairseq on the EMNLP Dataset 27

3.3 Average edit distance based on the input word length for the Text-to-IPA ex-
periments with fairseq on the [18] Dataset . 27

3.4 Average edit distance based on the input IPA length for the Text-to-IPA ex-
periments with fairseq on the Tweet Dataset 28

3.5 Average edit distance based on the input IPA length for the Text-to-IPA ex-
periments with fairseq on the EMNLP Dataset 28

3.6 Average edit distance based on the input IPA length for the Text-to-IPA ex-
periments with fairseq on the [18] Dataset . 29

3.7 Average edit distance based on the input IPA length for the IPA-to-Text ex-
periments with fairseq on the Tweet Dataset 33

3.8 Average edit distance based on the input IPA length for the IPA-to-Text ex-
periments with fairseq on the EMNLP Dataset 33

3.9 Average edit distance based on the input IPA length for the IPA-to-Text ex-
periments with fairseq on the [18] Dataset . 34

3.10 Average edit distance based on the input word length for the IPA-to-Text ex-
periments with fairseq on the Tweet Dataset 34

3.11 Average edit distance based on the input word length for the IPA-to-Text ex-
periments with fairseq on the EMNLP Dataset 35

3.12 Average edit distance based on the input word length for the IPA-to-Text ex-
periments with fairseq on the [18] Dataset . 35

3.13 Tokenization of English-IPA Character Pairs for Normalization 37

5.1 Concatenating embeddings for the hybrid inputs 51
5.2 Average Loss per Epoch on the Validation set for the Bi-LSTM neural networks 53
5.3 Average Loss per Epoch on the Validation set for the RoBERTa neural networks 54

A.1 Word length ratio for the training sets used in the Text-to-IPA experiments . . 63
A.2 IPA length ratio for the test sets used in the Text-to-IPA experiments 64
A.3 IPA length ratio for the training sets used in the IPA-to-Text experiments . . . 65
A.4 Generated IPA length ratio for the test sets used in the IPA-to-Text experiments 66

viii

Thanks

I would like to extend my thanks to my research director, Richard Khoury for the instrumental
help offered throughout this research and for the opportunity to take part in it. Thanks also
go out to the team at Two Hat Security for offering a place to do research and use this
research on real-world examples. Finally, I would like to thank Marc-André Larochelle for
the suggestions he offered to guide my research.

ix

Introduction

With the ever-growing presence of online communications, social media and other inter-
connected services, it is an undeniable fact that these tools have become an important part of
daily life. With that come many boons, such as an increased reach in who we can communi-
cate with. Unfortunately, that very boon is also a curse in the way that is allows undesirables
to get into contact with us and others. While getting rid of those people might be as simple
as hitting the block button, some vulnerable people might not even be aware of that it’s an
option, or not realize that the person they are in contact with is toxic. Among those vulner-
able people we often find children of impressionable ages. A popular method of protecting
those individuals is to create communities specially targeted towards them. This, however,
also means that these new communities are prime targets for toxic individuals and measures
must be put in place in order to stifle their nefarious actions. This is a necessary thing to do
if we want the protected communities to thrive and be safe from minor things like offensive
language, as well as major and harmful actions like grooming.

Many methods currently exist to enforce policies and protect communities. Examples of those
methods include, but are not limited to: blacklists, whitelists and rule-based text analysis
similar to expert systems. These can be powerful tools in the fight against online harm, but
unfortunately they are all saddled with an important flaw: the large amount of work required
to maintain and update them. Languages evolve to better fit the needs of the population
using them and better represent the reality of the times. This fact is also true for online
communications where this evolution is greatly sped up. Be it to shorten words and sentences,
to visually change the words or to invent words representing new phenomena, online users
evolve their common language faster than most people can keep up; entire websites have
sprung up to help catalogue online lingo.

Another major part of the ever-evolving landscape that needs to be taken into account is
that harmful users can try to bypass existing rules by slightly altering the words they use.
This strategy is called subversion, as the harmful user is said to be subverting the rules of
the community. These alterations can take many forms, from dropping certain letters, to
multiplying them and replacing them by characters that are outside of the English alphabet,
there are countless ways harmful users can try and bypass filters. A simple way to prevent

1

abuse of this sort could be to simply disallow words that are not part of a dictionary, but
this approach is flawed as normal users making typos or using innocuous alterations to words,
such as “2morrow” instead of “tomorrow”, might find themselves unable to communicate and
leave the community. This is an especially flagrant flaw when it comes to younger or less
educated users that simply don’t know, or don’t care about, how every word is written. Since
the goal is to maintain a safe and thriving community, this might lead to an early demise.
One solution to this poor grammar issue could be to allow common substitutions in the filters,
but this comes back to the inordinate amount of work required to maintain and update the
filters.

An alternative solution to this problem is to enhance filter-based systems by giving them the
ability to automatically correct out-of-vocabulary (OOV) words to their English counterparts.
This process is called normalization. Done correctly, it would allow unrestricted healthy
conversations while making it impossible to disguise harmful speech to circumvent filters.

In this thesis, I aim to create a system that will allow for the normalization of words through
phonetics. The decision to use phonetics is based on the fact that modifications to words
are often made so that the modified word can be read out loud and pronounced similarly to
the correct word. Consequently, a two-part system capable first of figuring out how an OOV
word sounds should then be able to figure out what the intended word was. Designing and
testing this two-part system is the main contribution of this thesis.

Two sets of experiments will be used to validate this work. The first will be normalization
experiments, to see if the phonetic normalization system can recover the correct intended
words. The second will be harm detection experiments, to see if phonetic normalization can
help a classifier solve the subversive harm challenge.

The goal of the research is to, through the use of a novel normalizer making use of character-
level analysis and phonetics, offer a way to help reduce the effects of subversion in the context
of online communications.

The results of our experimentation and research are presented in three different sections and
five different chapters. Chapter 1 covers the related works we found throughout our research,
and makes up the first section of this thesis. The second section covers the methodology and
reasoning used in the creation of our normalizer in Chapter 2, along with the normalization
experiments and results in Chapter 3. Lastly, the third section studies our use-case, the
resilience our normalizer offers against the problem of subversion. This is presented in Chapter
4, along with experimental results in Chapter5.

2

Chapter 1

Related Works

1.1 Online Harm and Subversion

1.1.1 Harmful Content

Harmful content, sometimes also known as online toxicity or toxic content, is broadly defined
as content that can bring online harm. According to the Fair Play Alliance’s Framework
Disruption and Harms in Online Gaming [19], harmful actions in video games can be sum-
marized as disruptive behaviours that stray from the intended goal of the online game. If we
broaden this definition to cover all online communications, harmful content is anything that
would go against the concept of a healthy conversation.

However, as pointed out in [22], such a definition is extremely broad, and what is considered
healthy by some might be harmful to others for reasons such as culture, age, lived experiences
or belief systems.

According to a 2020 survey done by the ADL [7], 81% of individuals surveyed reported having
been exposed to some form of harassment. According to [19], this is only one of many harmful
behaviours. Harmful behaviours relevant to online conversations include hate, extremism,
sharing of inappropriate content, criminal or predatory conduct, dangerous speech, abuse,
antisocial actions, purposeful disruption, aggravation and harassment.

Due to the large variation in how online harm can be presented, the many forms it can take,
and the high level of subjectiveness that can be present in both how it is represented and how
it is received, we believe the best way to describe harmful behaviours would be to define it
as any action taken in order to voluntarily disrupt someone’s state in a negative manner, or
to take actions that could result in such consequences. Those behaviours are not necessarily
limited to a single interaction and can be spread over large periods of time, such as in the
case of cyberbullying.

Given this definition of harmful behaviour, harmful content is anything created in the process

3

of executing harmful behaviours, which can result in online harm.

1.1.2 Subversion

The dictionary definition of subversion is the systematic attempt to overthrow or undermine
a system by persons working from within. In the context of online harm detection, subversive
users are individuals trying to circumvent the rules of a community through the use of tactics
aimed at the flaws in the systems.

Attempts at subversion can take many forms and they constantly evolve along with the
systems they try to subvert. Some users might resort to using “1337 sp33k” (leet speek) while
others may add odd punctuation or spacing in their words as listed in [26]. Those techniques
are fairly simple and can be prevented by the use of filtering techniques like whitelists, but even
a system as simple as a whitelist can be broken in imaginative manners. Two simple examples
would be the twisting of definitions by describing anatomical parts as "trouser snakes," or the
use of phonetic alterations to create words, such as “as whole.”

Subversion evolves so rapidly that more complex community management systems such as
Community Sift 1 offer large amounts of customizations to allow for the rapid iteration in the
system rules to catch and prevent subversive actions.

Subversion does come with one large issue, however, and that is the intentionality that is
involved in it. We do not believe it is possible to infer intent by simply looking at a message.
For this reason, detecting subversion is extremely difficult. This does not signify that it is
impossible to detect subversive elements, even if that task is difficult due to the rapid evolution
of subversion tactics that harmful users make use of. The simplest way to accomplish this task
would be to consider anything that isn’t a word or a common typo as potentially subversive
and act upon this information, but even this approach could not catch everything cases like
“trouser snake” would simply be outside of that scope.

1.2 Character Based Phonetic Normalization

While there have been a few attempts at normalizing text using phonetics, we found no
system that was designed to identify phonetics and then recreate an English word using the
International Phonetic Alphabet (IPA).

1.2.1 Phonetic Representation

There are multiple different ways to represent the phonetic content of a word, including both
different levels of pronunciation details and different representations of the sounds. The three

1https://www.twohat.com/community-sift/

4

main representations are alphabetic representations, iconic representations and analphabetic
representations.

Alphabetic Systems

Alphabetic systems are systems designed to use either a language’s own alphabet or a new
alphabet in order to represent pronunciations in a way that can be read and understood by
someone familiar with the system. While this is not a feature unique to this type of system,
it is still an important part.

Most alphabetic systems use an algorithm to create the phonetic form of words. An example
of such an algorithm would be the one within the American Soundex system [9], which is
designed to phonetize surnames in order to help analyze census data. The way this is done is
by taking a last name and turning it into a four-character code comprised of a single letter
and three digits. The characters contained within this code are obtained by taking the first
letter of the name and, by following a few selection rules, converting consonants into to a
number and selecting the first three numbers. As can be infered from this process, quite a
few words will have identical codes. We call those repeated encoding results, collisions. Along
with the American Soundex, being itself a variation of the Russel Soundex [27], we can also
find other variations of the core principles in the Daitch-Mokotoff Soundex [6] and Cologne
phonetics [25] offering other similar encodings, both with varied amounts of collisions and
aiming to solve different or broader issues.

Other algorithms such as Metaphone[4], New York State Identification and Intelligence System
(NYSIIS) [8], Match Rating Approach (MRA) [5] and Caverphone [1] also exist and generally
offer fewer collisions within the encodings. While their algorithms are slightly more complex
than the one for the Soundex system, they allow for greater flexibility since there are fewer
collisions between the phoneticized words. Some of them, such as the metaphone algorithm,
are already being used in some spell-checking software to help identify which word was actually
intended by comparing the phonetic encoding with a database of other encodings.

Since, in many languages, an alphabet letter can represent multiple sounds, alphabetic systems
often use a non-ambiguous phonetic alphabets, such as the International Phonetic Alphabet
(IPA). This alphabet was introduced as a way to accurately represent how a word sounds.
This was done by creating a large alphabet containing many different characters each repre-
senting a different phoneme. Its accuracy has allowed it to become the main way to represent
pronunciations within many dictionaries. While it is already very accurate, there are also
some variations such as Ext-IPA [10] or VoQS [11].

Examples of encodings with the various algorithms, including some collisions, are included
in the table 1.1. While the last three examples were carefully selected to show examples of
collisions, it demonstrates that no system is perfect. The case of “carry” and “Kira” shows

5

Soundex Metaphone NYSIIS MRA Caverphone IPA
Elephant E415 ELFNT ELAFAD ELPHNT ALFNT11111 /El @ f@nt/

Alphabet A411 ALFBT ALFBT ALPHBT AFPT111111 /"ælf@bEt/

Kira K600 KR CAR KR KRA1111111 /"kI@r@/

Carry C600 KR CARY CRY KRA1111111 /"kærI/

Carrey C600 KR CARY CRY KRA1111111 /"kærI/

Table 1.1: Encodings of various words under different phonetic systems. Soundex, Meta-
phone, New York State Immunization Information System (NYSIIS), Match Rating algorithm
(MRA), Caverphone and International Phonetic Alphabet (IPA)

flaws in some of the simpler systems and an example of where the IPA prevails when it comes
to differentiating the two pronunciations. In the case of “carry” and “Carrey”, there are
collisions across the board, even in IPA form.

Iconic and analphabetic systems

While using an alphabetic phonetic representation is by far the most common approach, two
alternatives do exist.

Iconic systems represent a word’s pronunciation using some sort of graphical representation of
the sounds. An example of an iconic system would be the Visible Speech system[21] which aims
to represent phonemes with pictograms representing a side view of a mouth pronouncing them.
This makes it an interesting and useful tool when learning to pronounce words, particularly
for deaf people.

Analphabetic systems are probably the most uncommon way to represent phonetics as they
can become extremely complex. An example of such a system would be the system designed
by Keneth Pike [24]. This system aims to decompose each sound into all of its components,
ranging from the way the air flows in the lungs and mouth to the phonetic functionallity of
the sound. Due to high level of complexity of those systems, they will be ignored for this
research.

1.2.2 Phonetic Normalization

While there have been many novel systems designed to approach the task of normalizing text,
such as the work done in [29] where the soundex system was used, or the work done in [18]
where a custom system of phonetic signatures was built, we believe the closest normalization
system to what we propose in this thesis is the one created by [28].

Their normalizer uses the g2p-seq2seq 2 network, a transformer-based neural network that
generates phonemes based on the CMUDict3 dictionary. This dictionary uses a phoneme set

2https://github.com/cmusphinx/g2p-seq2seq
3https://github.com/cmusphinx/cmudict

6

based on the ARPAbet[20] symbol set. The authors, using the phonemes, then build a set
of potential words for each word present which is then used to reconstruct a sentence based
on phonetic similarity and next-word probability to rebuild the most likely intended sentence
based on how it sounds.

Their system differs from the system we propose in the way the messages are reconstructed
in two different aspects. First, our proposed solution is made up of two different sequence-
to-sequence models. One for the original phoneticization, and one to recreate the word. The
second difference is their system uses next-word probability to guess the intended message,
whereas we normalize words in a vacuum.

1.2.3 Character Based normalization

In [26] we find a system similar to what we propose in the way they use character based
normalization. Their system, broadly aimed at most types of word-level subversion, uses a
RoBERTa model to do character-level analysis and recreate a word that should be contained
in the English dictionary, offering a system capable of directly normalizing a word that po-
tentially contains subversive elements. Their system is also capable of doing sentence-level
analysis by grouping multiple sets of tokens together and treating them as a single word.

When compared to our system, this character-based normalizer differs mainly in the fact that
it does not aim to identify the phonetics of a word as a part of the normalization process.

In each of [28] and [26] we find a high similarity to the goal we are trying to achieve, even
moreso if we combine both of their work together. However, their research was done in parallel
to ours, and by the time we became aware of their work, ours was either already ongoing or
in its finalization phase. As such, no input from their work is found in ours.

7

Chapter 2

Text Normalization

In this chapter, we will present the work we did on text normalization. Among the topics
that will be discussed will be the reason behind the use of phonetics and the International
Phonetic Alphabet (IPA), the datasets and how they are built, and the various networks that
we trained. The next chapter will analyze the results of the experiments we will set up here.

2.1 Methodology

The underlying intuition behind our work is that, while online users can generate nearly
endless spelling variations of words, either accidentally (e.g. typos) or deliberately (to write
faster, add a personal flavour to their message, etc.), they do so in a way that creates words
that would sound nearly identically to their correct counterparts if they were read out loud.
For instance, misspelled words like “luv”, “any1”, “togedar”, can still be pronounced correctly.

Following this idea, the text normalization system we propose is composed of two different
deep neural networks working in tandem to generate phonetic versions for Out-of-Vocabulary
(OOV) words, and use the generated pronunciation to discover In-Vocabulary (IV) words that
sound similar or identical to what was written in the message.

2.1.1 Phonetic translation

The underlying idea guiding the development of our system is to analyze the way an OOV
word is written on a character level and generate a phonetic representation that will then
be used to build the IV word that was intended by the author. Our approach is similar to
what is done in machine translation. For that challenge, one takes a word, an entire sentence,
or a set of sentences, in a source language and feeds them through a network to obtain the
equivalent content in a target language. In our case we have three languages. The first one
is Internet English, the unedited version of English people use online. The second language
is the phonetic representation of the same, which uses a different alphabet altogether. And

8

the third language is proper English. We will thus have two translation tasks, from Internet
English to phonetics, and from phonetics to English.

For our work, we start by translating an individual OOV, which we will treat as a sentence
composed of characters. Our intuition is that each character can translate to a pronunciation
from a set of possible pronunciations it can take, and picking the correct one depends on the
context (the surrounding characters), in much the same way as a word can translate to one
of several possible words in a target language based on the context of surrounding words. In
turn, the phonetic translation of the OOV word is taken as a sentence of characters and each is
translated into the most likely English letter given the context of the surrounding characters.
This translation task is what we hope the networks can learn and use to normalize words. An
additional optional final step could be to put the output of the English translation through a
spellchecker system to make sure the word recovered is real and written correctly. However,
as our research focuses on the phonetic normalization network, this additional step is outside
the scope of our work.

2.1.2 Limitations

The underlying assumptions of our system are that there is a 1-to-1 correspondence of OOV
and IV words, and that the OOV words are phonetically similar to the IV words they corre-
spond to. As a result, our proposed approach will not be able to handle forms of OOV word
spellings found online that violate these assumptions.

To begin, acronyms cannot be handled by our system. For example, writing “LOL” instead
of “laugh out loud” is not phonetically similar at all, and thus violates both our assumptions.
Likewise, while the acronym “IOU” is phonetically similar to the phrase “I owe you” it rep-
resents, our network is designed to output individual words and would not be able to recover
the phrase.

Likewise, OOV words created by splitting an IV word into multiple words using spaces cannot
be handled by our methodology. Our system will simply see each portion as a separate word
and try to recover an IV word for it.

While our method may be able to handle missing individual letters, it cannot account for
entire missing syllables in words. For example, it would not be able to normalize “bday” to
“birthday” as it has no way to recover the deleted phonetic information.

Finally, our system is designed to normalize to the English language, which means it cannot
handle URLs, usernames, hashtags, and other non-English strings often found in messages.
It also cannot handle messages in other languages, although it would be possible to retrain
our system to handle any language that uses a phonographic alphabet (logographic alpha-
bets violate our basic assumptions). Our system cannot handle messages that mix multiple

9

languages. Fixing that issue would be a non-trivial problem, as different languages will pro-
nounce the same letters differently. The simplest solution to this problem may be to add a
pre-processing step to pinpoint the span of each language in the multilingual message.

2.2 Normalization Network

2.2.1 Network Libraries

In this research, we experiment with two different deep neural architectures. The first one is
the fairseq 1 architecture by Facebook, and the second one is the transformers 2 architec-
ture offered by Huggingface.

The first library, fairseq, offers a command-line API that allows users to directly feed sen-
tences to it. In our case, the sentences are the various words used to train the networks for
normalization. The networks of this library were designed with translation in mind, so no
modifications were required on our part.

We initially opted to use the fairseq library due to the ease that existes in using the embed-
dings generated by the fasttext library. After a while, due in part by the rise in popularity
of the transformers library, and the desire to test out more networks, we added a second
library.

The second library, transformers, offers a set of neural networks that overlaps with the
ones offered in fairseq, but it is mostly aimed at classification and question-answering and
offers no direct way to do sequence to sequence (seq2seq) operations. In order to do those
operations, we modified the networks by adding an output layer that generates character
sequences. In addition to this alteration to the network itself, we implemented a tokenizer
to tokenize each word’s letters and characters by themselves.

In our early testing stages, we found that the RoBERTa models edged out the other models by
a slight margin for the same amount of epochs. Consequently, every model trained using this
library was based on the RoBERTa architecture.

The RoBERTa [23] architecture is a neural network architecture based on the BERT [16] archi-
tecture, which is itself based on the basic transformer architecture [30]. The main changes
are the tuning of hyperparameters, removing the next-sentence prediction objective and the
dynamic change of the sequence masking patterns of the BERT architecture.

1https://github.com/pytorch/fairseq
2https://github.com/huggingface/transformers

10

2.2.2 General Architecture

In order to implement our proposed normalization system, we have to properly deconstruct
the two different translation problems. This was done by using two different networks, one for
the Internet English to Phonetic task, or the English-to-IPA network, and a second one for
the Phonetic to Normal English task, or the IPA-to-English network. Both of these networks
work in tandem to normalize the messages. The general architecture we settled on, along
with the broad steps necessary for normalization are shown in Figure 2.1. The steps are as
follows:

1. Split a message into multiple words

• For each word in the message:

a) Tokenize the word into characters
b) Feed the characters into the English-to-IPA network to generate the equivalent

IPA word
c) Tokenize the predicted IPA word into characters
d) Feed the characters into the IPA-to-English network to generate the equivalent

English word

2. Combine the words to form the normalized message

When passing words to a neural network using the fairseq library, other than requiring each
word to be split character-wise, no additional steps are required, and no alterations need to
be made to the network architecture. However, when using the transformers library, none
of the architectures offered include a sequence output layer. Consequently, we add this layer
to the various base architectures we train and test. This layer had to accept the output vector
from the base architecture and create a prediction matrix describing the most likely character
for each position in a word. Once that matrix is created, we select the character with the
highest weight as the predicted character. The resulting process is represented by Figure 2.2.

2.3 Datasets

In order to conduct our experiments, we create two training datasets and obtain three test
datasets.

2.3.1 Clean and Condensed Datasets

The main dataset we create we call the “clean dataset”. This dataset is comprised of English-
IPA word pairs scraped from TheFreeDictionary website3. This dictionary includes multiple

3https://www.thefreedictionary.com/

11

Figure 2.1: Normalization process for any message

12

Figure 2.2: Data flow in a transformers library network

13

pronunciations for each word when variations exist. Examples of multiple pronunciations
are the various ways to say “potato” (/p@-t‘t/ and /p@"teIt@u/), and “tomato” (/t@-m‘t/ and
/t@"mA:t@u/) and other regionalisms. In cases where there are multiple ways to write a word
(e.g. “color” vs. “colour”), they are not merged and are treated as separate words. The fact
that many words possess multiple pronunciations is an issue when trying to train a neural
network with the goal of creating a unique output for each word it is given. This is due to the
fact that during the backpropagation step, if there are multiple conflicting pronunciations,
the weights will be “pulled” in conflicting directions. This effect will be compounded for each
word with multiple pronunciations, preventing the network from converging to the unique
output we desire. In order to prevent this, we preprocess the clean dataset into what we
call the “condensed dataset”. This is a condensed version of the clean dataset that contains
a single pronunciation for each word. To select the best pronunciation, we experiment with
four different methods which are as follows:

• Select a random English-IPA pair for each word.

• Use a preliminary version of our Phonetic-to-English network to recover the word for
each IPA string, and select the IPA with the smallest Levenshtein distance between the
correct word and the generated word.

• Sort the IPAs for each word in a pseudo-alphabetical order, and select the first IPA
for each word. By “pseudo-alphabetical” we mean that the words are sorted in spelling
order, as they would be in alphabetical order, but using IPA characters instead of the
English alphabet.

• Use the most common pronunciation of each syllable.

The first method, the random selection, is the least biased method and, given a large enough
sample size, allows for the greatest variation in grapheme to phoneme pairings.

The second method presents an additional challenge, namely the initial selection of English-
IPA pairs to train the Phonetic-to-English model. While it is true that we could use the
neural networks offered in the g2p-seq2seq4 repository used by [28], there is a large overlap
in the training datasets and a bias towards certain English-IPA pairs would still be present.
For this reason, we settle on using the same set of random pairs used in the first method in
hopes that the grapheme to phoneme variations will allow for the best generalization. Once
trained, this preliminary network is used to convert each possible IPA string of a word to
English, and the best IPA string was selected as the one that generates the English word
with the lowest Levenshtein distance to the real word. For example, if the pronunciations for

4https://github.com/cmusphinx/g2p-seq2seq

14

“tomato”, /t@-m‘t/ and /t@"mA:t@u/, predicted“"tomayt” and “tomahtoe” respectively, the
first pronunciation would be included in the condensed dataset.

The third method, contrary to the first two, favours the selection of similar IPAs for similar
words but introduces the most bias in the grapheme to phoneme selection. The problem
this method tries to solve is that there is a large variation in the number of pronunciation
for each syllable. This might slow down, or prevent, the neural networks from converging
during training. By purposefully biasing the pronunciations we select by sorting them pseudo-
alphabetically and keeping the first one, we create a simpler condensed dataset containing
fewer variations for syllables occurring at the beginning of words. This sorting creates a bias
because it will force cases where there are multiple similar ways to write IPAs to favour specific
beginnings in the IPAs. For example, the word “glue” has two pronunciations starting with a
different sound for the “g”, and , and in pseudo-alphabetical order the first one will
be selected. The same decision will be made for other words beginning with the syllable “glu”,
leading to uniformity in the dataset and simplifying the learning process. Other examples of
this kind of variation in the spelling of the IPAs can be seen in Table 2.1, which contains a
few words beginning in “abb” that have multiple IPAs and multiple ways to pronounce that
syllable. As can be observed, biasing the IPAs by sorting pseudo-alphabetically does push
towards a reduction in the variety of first characters, but it does not remove it completely as
there are cases where specific pronunciations do not exist, or a rare pronunciation comes first
in pseudo-alphabetical order and takes precedence over the more common pronunciation. In
order to sort the IPAs the built-in methods provided in Python 3 on a machine with English
as the default language was used.

The fourth method consists in picking the most common pronunciation for each syllable,
based on observed frequency in TheFreeDictionary, and using it to create the IPA for each
word. However, not every word in the clean dataset has syllable demarcations, complicating
the implementation of this solution. Moreover, there is a large variation in how syllables are
pronounced via their stress or emphasis, which would in turn create a lot of variation in our
condensed dataset. Consequently, we opt not to explore this approach for the construction of
the condensed dataset.

2.3.2 Augmented Dataset

Since our goal is to normalize incorrectly-written online text, it is important to have a dataset
of words containing characters that are outside of the English alphabet, along with typos and
other mistakes. In order to generate this dataset, we apply a set of substitutions to our clean
dataset. A subset of the substitutions can be seen in the Table 2.2, and the complete list
of 885 substitutions is made available as a Github Gist5. As can be observed in the table,
substitutions are applied both to individual characters and to character groups. In cases like

5Substitutions: https://gist.github.com/chpoit/e5cb454bbd38ad7fe05cb8636dd569f4

15

Word Existing IPAs IPAs without stress Selected IPAs
abbado /@bAd@u/ /@bAd@u/ /@bAd@u/

abbas /"æb@s/ /æb@s/ /æb@s/

abbasid

/@"bæsId/

/æb"@-sId"/

/"æb@sId/

/@-bæs"Id"/

/"æb @ sId/

/ @"bæs Id/

/æb@sId/

/@bæsId/
/æb@sId/

abbe

/"æbI/

/"æbeI/

/æ-beI"/

/æ"beI/

/"æb eI/

/"a:b@/

/æbI/

/ab@/
/ab@/

abbot /"æb@t/

/æb"@t"æb/ /@t/
/æb@t/ /æb@t/

abbott
/"æb@t/

/"æb @t/

/æb"@t/

/æb@t/ /æb@t/

Table 2.1: Some words beginning with "abb" and various pronunciations

Initial characters Substitution
a 4, , ,
cause cauz, cos, cuz, kuz
N |\|
ate 8,
ait 8
to, two 2

Table 2.2: Potential substitutions for word segments and characters

the substitution of "8" for " ", we have a phonetic substitution, but in other cases like
the use of "|\|" instead of "N", the change is visual. Cases like substitutions for "a" are both
phonetic and visual. Some visual cases were added to the substitutions to represent common
subversion techniques.

In addition to these substitutions, we also doubled and removed letters at random to represent
common typos.

The algorithm to build the corpus of augmented words is the following:

1. For every substitution in the substitution list, try every possible substitution on each
word in the original list of words

16

a) If a substitution can be made, apply it as many times as possible in a word. Add
the new version of the word to a temporary list of augmented words.

2. Create an intermediate list containing the temporary list of augmented words.

3. For every element in the temporary list and the original list do the following:

a) Iterate over the letters in the words, skipping the first and last letters, and add a
copy of the word to the intermediate list without that letter.

b) Iterate over the letters in the words and add a version of the word containing two
copies of that letter to the intermediate list.

4. Create a final list containing every original word

5. For every altered word in the intermediate list:

a) If the altered word is in the original list of words, throw it out

b) If the altered word in not in the original list of words, add it to the final list.

6. Keep every unique entry in the final list.

Applying these steps builds a very large dataset of augmented words with many possible
alterations. The order of these steps was chosen to allow for typos within augmented words.
When dropping letters, the decision not to drop the first and last letters was made to avoid the
addition of too many invalid pronunciations, which we define as the case where a transformed
word becomes a different real word which should have a different pronunciation, but due to
our corpus construction will still be paired to the original word’s IPA string. An example of
this would be the transformation of “factual” into “actual” or “completed” into “complete”.
For the same reason, we also remove every altered word that turns into another one, such as
“rifle” becoming “rife” or “rile”. We can note, however, that we do not filter for combinations
of alterations resulting in an invalid pronunciation, such as for example the case where an
augmented word such as “r1fle” has the “f” or “l” removed to become “r1le” or “r1fe”. So,
while we limit the spread of invalid pronunciations, they are not completely absent from our
dataset.

Furthermore, while this dataset represents some of the common substitutions found in online
text, it remains an artificial construction. To build a real dataset of online text would require
us to collect text from a real online source such as Twitter, filter out correct English words and
non-analyzable text (usernames, URLs, acronyms, etc.), and to label the correct IV English
word for each remaining OOV word. While the first steps are easy to do, the labelling step
represents a non-trivial workload, which is why we opted for generating a synthetic dataset
instead.

17

2.3.3 Test Datasets

Along with our two training datasets, we also use three different testing datasets. The first
one is the one used by [18] to test their algorithm, the second one is a dataset provided by
EMNLP 6 and the last one is a set of tweets and their normalized form available from [2]. These
datasets contain various mistakes in the words, including some mistakes that the networks are
not designed to fix, such as the previously mentioned case of acronyms like “LOL”, “lmao”
and “idk”. Those datasets, along with how they are pre-processed, are presented in section
3.2.1 of chapter 3.

2.4 Data Processing

2.4.1 Alphabets

Considering the steps needed to normalize the messages, we see a total of three different
alphabets that will be in use through the normalization process. These alphabets are as
follow:

• Input English Alphabet: This alphabet is the internet-English alphabet that contains
every unique character found in the input datasets.

• Phonetic Alphabet: This alphabet contains every character found within the IPAs.

• Output English Alphabet: This alphabet contains every unique character in the dataset
that the network needs to predict.

The first alphabet is the alphabet used as an input for the first neural network, the English
to IPA network. Two versions of this alphabet exist. The first version, the Basic English
Alphabet, is very similar to the output alphabet and contains only the original characters
found in the non-augmented datasets. The second version, the Augmented English alphabet,
contains both the characters in the Basic English Alphabet and every character introduced
via the previously mentioned substitutions of the augmented dataset. The decision to have
two versions of the alphabet was made to better separate the experiments with and without
the augmentations in the input dataset and to reduce the number of parameters in the neural
networks. The Basic English Alphabet contains 112 characters compared to the 848 found in
the Augmented English Alphabet.

The second alphabet, the Phonetic Alphabet, is the alphabet containing the IPA characters
found within the various English-IPA pairs. It is used both as the output of the first neural
network and as the input of the second one, the IPA to English network. This alphabet

6A copy of the dataset is made available here: https://gist.github.com/chpoit/
4c12d4d3edced66b6f946ca3f1747e0f

18

does not contain every single character within the International Phonetic Alphabet. This
is because the missing IPA characters were not present within the IPAs we obtained in our
dataset. Those sounds are not represented in our dataset either because they are too rare in
the English language, or because they do not exist within it. In total, 56 characters are used.

The last alphabet, the Output English Alphabet, is an alphabet which contains the set of
characters that makes up clean English words. This alphabet is built using the characters
from the IV words contained in the clean dataset and the test datasets. This means that it is
almost identical to the Basic English Alphabet. However, when compared to the Augmented
English Alphabet, this alphabet is indeed a reduced set of characters. The reason behind
wanting a smaller set of characters is simply because normal English does not contain a
plethora of odd characters, and since we want to normalize words in a form that is as close
to normal English as possible, we want the Output English Alphabet to be as close to the
normal alphabet as possible. This alphabet contains the 26 letters of the alphabet along with
some diacritics, as well as numerals and some other characters which are found in our test
datasets. The final character count is 112 (note that they are not the same set as the 112
characters of the Basic English Alphabet).

The three different alphabets are made available in a Github Gist. 7

2.4.2 Data Formatting and Tokenization

In order to feed the data to the fairseq library, each word was split into a set of letters and
fed to the various neural networks through the provided command-line API. Tokenization
for this library is unaltered from the default behaviour. The process for the transformer
library was more complicated. In order to be able to feed the words to the embedding layer,
they had to be tokenized. As mentioned previously, we wrote a tokenizer to accomplish
this task. This was done because the tokenizers provided by the library tokenize words in a
sentence by extracting elements of the words and sentences. As such, they are incompatible
with our design as we want the networks to learn relations between characters, and not the
segments of characters and sentences. The result of this tokenization gives us a vector of
indices representing every character of a word. The same tokenization was done for the IPAs.
Writing a custom tokenizer allows us to keep a certain consistency between each experiment
by reusing the same index table between each alphabet. This custom tokenizer also allows us
to perform a special tokenization which will be explained in Section 3.3.3. As was done in the
default tokenizers, we also add tokens representing the beginning and the end of each word to
allow the neural network to infer that some parts of the word vectors are of no importance.
In most cases, we let the network learn the embeddings at the same time as it is training.

7Alphabets: https://gist.github.com/chpoit/6c7e7c0325366f8ef258eca794200d3a

19

2.5 Conclusion

In this chapter, we presented our use of a dual neural network architecture in order to normal-
ize OOV words. Those two neural networks accomplish two separate tasks. The first task, the
phoneticization of an OOV word using the International Phonetic Alphabet, is accomplished
by the first neural network, the Text-to-IPA neural network. The second task, accomplished
by the IPA-to-Text neural network, recreates an IV English word using the phoneticized form
generated by the first network. Combined together, those two networks allow for the normal-
ization of OOV words used for the broader task of normalizing messages comprised of both IV
and OOV words. Using the principles and processes laid out in this chapter, the next chap-
ter will go over the experiments that we performed to create and validate our normalization
system.

20

Chapter 3

Text Normalization Results

This chapter will give a detailed presentation of our experiments using the processes and
architectures described in the previous chapter, and will present and analyze in detail the
results obtained in these experiments.

3.1 Evaluation of the Generated Words and IPAs

In order to evaluate the quality of the words and the IPAs we opt to use the Levenshtein
distance to compare the original word or IPA to what was generated by our system. In
addition, when comparing models, we count how many words are generated without errors.
Based on those two metrics, we can select the models that gives the most accurate predictions.
Every operation used to calculate the Levenshtein distance has a cost of 1, meaning that a
substitution is only treated as one operation.

In order to not bias results, we compute the averages of the Levenshtein distances by excluding
perfect results. So for example, if a system has 100 entries with errors and 100 without, the
average would only be computed on the 100 entries with errors. In order to evaluate the
number of errors in IPAs, we base our results on the IPAs we previously scraped from the
web and use these IPAs as the expected results. To calculate the errors in the IV English
words, we use the matching words contained in the respective dataset. For example, if we
had initially fed the word “tomato” to the neural networks and we had received “tomto” as
the output, it would be compared to the original word “tomato”.

We are aware that in some cases, the matching word for a specific input conflicts with what
someone would expect. An example of such a conflict is found within the EMNLP dataset
where an expected normalization would have us normalize the word “untalented” into “tal-
ented.” This expected normalization, as we call it, is the way the dataset expects the word to
be normalized to remove errors contained within. It may be the case that, within the context
of how the dataset was built this normalization is correct; however our system does not take

21

context into account and, looking only at the word, this normalization is wrong. Nonetheless,
we opt not to go over every entry to make it what we felt it should be.

3.2 Normalization Experiments

We perform five different sets of normalization experiments. The first two are the Text-to-IPA
and the IPA-to-Text experiments, to test their respective networks independently. The next
three experiments explore variations of our system. They are the IPA-to-IPA experiments,
the Text+IPA-to-Text experiments, and the transfer learning experiments.

We will train multiple architectures from the fairseq and transformers libraries, which
we list below. Unless specified, and other than for vocabulary and vocabulary size, every
experiment is run using the default parameters for each architecture.

fairseq The networks trained via fairseq are:

• Convolutional [17]

– fconv_wmt_en_de

• LightConv [32]

– lightconv_wmt_en_de

– lightconv_wmt_en_fr_big

– lightconv_wmt_en_de_big

• Transformer [30]

– transformer_vaswani_wmt_en_de_big

– transformer_wmt_en_de

– transformer_wmt_en_de_big_t2t

While we did train the lightconv_wmt_en_fr_big neural network, we do not include it in
the results as it is a carbon copy of the lightconv_wmt_en_de_big neural network, and both
the parameters and results were identical.

Specific data on the makeup of the seven different neural networks are available in Section
B.1 of Annex B.

22

transformers As mentioned previously, we decided to use the RoBERTa architecture for
most of our experiments. The experiments we ran while using the transformer library and
that architecture are:

• Train the network under the default parameters (768d embeddings)

• Train with pre-trained 2d embeddings

• Train with pre-trained 100d embeddings

• Train the networks with the augmented dataset

An important point to note is that the amount of attention heads for the networks has to
be a factor of the embedding size. As such, instead of the default 12 attention heads used
for the 768d embeddings, 2 heads and 10 heads were used respectively for the 2d and 100d
embeddings. The reason those numbers were selected was simply because they were the
highest number of heads that fit the above requirements, while still being under the default
12 heads.

Both the 2d and 100d pre-trained embeddings are embeddings trained using fastText’s [13]
Word Vector system. They both represent each character in our alphabets using vectors with
a length of 2 or 100. The neural networks are modified to use those pre-trained embeddings
instead of creating embeddings as it learns from the datasets.

3.2.1 Preprocessing for the Test Datasets

As mentioned in the previous chapter, some of the words in the test datasets contain characters
that are not found in the normal English alphabet. In addition to that, some of the words
were not part of the English-IPA pairs that were originally obtained. Due to these two facts,
it is not possible to directly obtain proper IPAs for those entries in the test dataset. To resolve
this issue, we opt to not take those entries into account when calculating the metrics for the
Text-to-IPA experiments.

In addition to this, some of the expected outputs were capitalized in the original test sets.
Since our networks do not take capitalization into account, those entries were changed to
lowercase.

Another change was made to the contents of the datasets by removing the entries that were
not words. This includes URLs, username mentions, hashtags, and various lone characters
such as punctuation signs. As mentioned previously in Section 3.1, some entries contain
conflicting expected normalizations, but those entries were kept in the datasets.

Table 3.1 contains the statistics representing which proportion of each dataset was used or
ignored.

23

Tweet Dataset EMNLP Dataset [18] Dataset
Total words 10203 41181 3593
Words without matching phonetics 3825 5109 619
OOV words 667 0 1
Words used for Text-to-IPA 5711 36072 2973
Words used for IPA-to-Text 9536 41181 3592

Table 3.1: Dataset statistics and information on elements used to evaluate the experiments

3.3 Results

3.3.1 Text to IPA

In this section, we present the results obtained with our trained Text-to-IPA neural networks.
The tests we run in this section are used to evaluate the performance of the first half of the
normalizer, converting the initial OOV English, or dirty inputs, into IPA intermediate forms.

Since there are differences between the two libraries we experiment with, the results obtained
are split into different subsections. However, the testing methodology does not vary.

Over the course of our research, improvements were made to the datasets and the IPA extrac-
tion algorithm to improve the quality of the training data and to remove erroneous entries.
As such, not every experiment presented here was done using the same version of the dataset.
Generally speaking, the fairseq experiments were done with older versions of the datasets
while experiments done with the transformers library used the improved versions of the
datasets.

As is standard in machine learning, we split our training dataset into training and validation
portions. This split is random and reset at each experiment, but remains fixed within each
experiment at an 80/20 ratio.

The results for all the experiments are broken down into four statistics: the number of words
correctly converted to their IPA form, the number of IPAs generated with mistakes, the ratio
of correct predictions to the total number of words, and the average edit distance on IPAs
with incorrect predictions.

fairseq

The following three tables, tables 3.2, 3.3 and 3.4, contain the results obtained when gener-
ating IPAs using the different test datasets when using the fairseq library.

24

fairseq Network Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
fconv_wmt_en_de 565 5146 5.54 2.02
lightconv_wmt_en_de 1846 3865 18.09 1.97
lightconv_wmt_en_de_big 544 5167 5.33 2.12
transformer_vaswani_wmt_en_de_big 406 5305 3.98 7.77
transformer_wmt_en_de 427 5284 4.19 2.45
transformer_wmt_en_de_big_t2t 510 5201 5.00 2.04

Table 3.2: Results on the Tweet dataset using the various neural networks

fairseq Network Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
fconv_wmt_en_de 917 35155 2.23 3.35
lightconv_wmt_en_de 3476 32596 8.44 2.62
lightconv_wmt_en_de_big 1004 35068 2.44 3.34
transformer_vaswani_wmt_en_de_big 984 35088 2.39 4.22
transformer_wmt_en_de 975 35097 2.37 3.59
transformer_wmt_en_de_big_t2t 948 35124 2.30 3.33

Table 3.3: Results on EMNLP dataset using the various neural networks

fairseq Network Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
fconv_wmt_en_de 79 2894 2.20 3.17
lightconv_wmt_en_de 301 2672 8.38 2.67
lightconv_wmt_en_de_big 97 2876 2.70 3.12
transformer_vaswani_wmt_en_de_big 83 2890 2.31 10.34
transformer_wmt_en_de 88 2885 2.45 4.51
transformer_wmt_en_de_big_t2t 86 2887 2.39 3.23

Table 3.4: Results on [18] dataset using the various neural networks

transformers

The following three tables, tables 3.5, 3.6 and 3.7 contain the results obtained when generating
IPAs using the different test datasets when using the transformers library.

Experiment Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Pretrained 100d embeddings 2659 3052 26.06 1.68
Pretrained 2d embeddings 0 5711 0.00 N/A
Augmented dataset 498 5213 4.88 2.52
Default Parameters 3020 2691 29.60 1.73

Table 3.5: Results on Tweet dataset using for the transformers experiments

Combined results for the Text-to-IPA experiments

When looking at both sets of results, Tables 3.2, 3.3 and 3.4 for the fairseq results and Ta-
bles 3.5, 3.6 and 3.7 for the transformers results, we note that one network in each library
outperforms the others in every dataset. They are lightconv_wmt_en_de for the fairseq
library and the RoBERTa transformer using the default parameters for the transformers li-
brary. We claim that fact based on our use of the Lehvenstein distance used to evalute the
predictions. Since our goal is to find the best neural network capable of creating pronuncia-
tions, we select the ones with the lowest amount of errors and the smallest difference between
what was predicted and what was expected to be generated, based on our testing dataset.

25

Experiment Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Pretrained 100d embeddings 3484 32588 8.46 2.49
Pretrained 2d embeddings 0 36072 0.00 N/A
Augmented dataset 1705 34367 4.14 3.12
Default Parameters 4058 32014 9.85 2.43

Table 3.6: Results on EMNLP dataset using for the transformers experiments

Experiment Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Pretrained 100d embeddings 301 2672 8.38 2.55
Pretrained 2d embeddings 0 2973 0.00 N/A
Augmented dataset 205 2768 5.71 2.95
Default Parameters 357 2616 9.94 2.56

Table 3.7: Results on [18] dataset for the transformers experiments

When we dig deeper into these results, we find a correlation between the length of an input
word and the average edit distance. We can observe this correlation in the aggregate results
given in Figures 3.1 to 3.6. The first three figures, 3.1, 3.2 and 3.3 present the relationship
between the average edit distance between the generated IPAs an the expected result in
relation to the amount of letters present in the input for the fairseq models. The remaining
three, 3.4, 3.5 and 3.6, contain the same results for the transformers models.

Figure 3.1: Average edit distance based on the input word length for the Text-to-IPA exper-
iments with fairseq on the Tweet Dataset

26

Figure 3.2: Average edit distance based on the input word length for the Text-to-IPA exper-
iments with fairseq on the EMNLP Dataset

Figure 3.3: Average edit distance based on the input word length for the Text-to-IPA exper-
iments with fairseq on the [18] Dataset

27

Figure 3.4: Average edit distance based on the input IPA length for the Text-to-IPA experi-
ments with fairseq on the Tweet Dataset

Figure 3.5: Average edit distance based on the input IPA length for the Text-to-IPA experi-
ments with fairseq on the EMNLP Dataset

28

Figure 3.6: Average edit distance based on the input IPA length for the Text-to-IPA experi-
ments with fairseq on the [18] Dataset

The increase in the amount of errors contained in the predictions is especially obvious in the
EMNLP dataset, as seen in figures 3.5 and 3.2, where the increase in the number of errors
is mostly linear for words between 4 and 9 characters, which is where the large majority of
words sit, but the average number of errors increases at a non-linear rate outside of that range.
Similar observations can also be made when looking at the results of the other dataset. We
focus on this expected linearity as we would expect the amount of errors in a prediction to
scale with the amount of letters in a word; a word with only two characters should not contain
over 20 errors. The same conclusion can be pulled for the longer words, and we believe that
this increase is linked to the small makeup of words of those lengths present in the training
datasets. The exact proportion of words in relation to their length is available in section A.1
of annex A.

In figures 3.1, 3.2, 3.3, and 3.6 we can observe some odd outliers in the results, namely words
with more errors than the amount of letters they contain. This is caused by the absence of
predicted start and end of the words, meaning that should the neural network generate an
IPA containing a large amount of superfluous data after the end of the intended end of a word,
there is no way for it to indicate that anything past a specific character should be ignored.
This leads to some of short character IPAs to be generated with a large amount of noise. The
same effect can be seen for the words with longer IPAs. This, once more, is a consequence
from the underrepresentation of the shorter or longer words in the training dataset. This
means that, in theory, the upper bound on the number of errors in a generated word would

29

be 220 characters, since this is the maximum number of characters allowed in a word.

Improving Text to IPA results

During our experiments, we noticed a fairly high amount of noise within the generated IPAs.
In order to try to correct those IPAs, we decided to introduce a third network in the middle
of our normalization architecture. We intended it to be an IPA-to-IPA network, which would
correct erroneous outputs from the Text-to-IPA network before inputting them to the IPA-
to-Text network.

We implemented this network using the RoBERTa architecture and trained it using pairs of
incorrectly-generated IPAs and their correct targets. Unfortunately, the network failed to
learn to correct the IPAs, and only ever produced IPAs worse than those given as an input.
For this reason, we quickly rejected this idea.

3.3.2 IPA to Text

This section presents and analyzes the results obtained when adding the second half of our sys-
tem, the neural networks capable of reconstructing an English words from the IPA generated
by the Text-to-IPA networks.

Similarly to the Text-to-IPA results, the results in this section will be separated by library.

An important point to note for the results presented here is that the IPA used as a source for
the inputs of the IPA-to-Text neural networks are the IPAs generated by the best performing
Text-to-IPA neural network, our RoBERTa transformer using the Default parameters. This
is done for four main reasons. The first reason is to simulate real-world use of the system,
where we would naturally use the best-performing version of each component. The second
reason is to allow for words that were not originally scraped from online dictionaries to have a
simulated pronunciation when normalizing them back into English. The third reason is that
doing it this way allows us to best simulate an end-to-end use of our normalizer and allows us
to evaluate the system as a whole at the same time as we test our IPA-to-Text component.
Finally, we believe this is an important point to mention because it is a discrepancy from
how the IPA-to-Text neural networks were trained, namely, using only clean IPAs scraped
from online dictionaries. This gives us our final reason, avoiding the need to retrain our IPA-
to-Text neural networks whenever we make a slight change to our Text-to-IPA networks, or
whenever we wish to test a new variation of those networks.

Since the IPAs used for testing are generated, the concern with entries without proper IPAs
raised in the Text-to-IPA section can be ignored and every entry was used in measuring the
different metrics.

As in the previous section, the experiments were done on different versions of the datasets

30

over time. The experiments presented in this section are paired with the corresponding
experiment presented in the Text-to-IPA section, apart from the fairseq neural networks
where only the best performing network, lightconv_wmt_en_de, was reused, as we deemed
the other underperforming networks to not be worth retraining.

Similarly to the Text to IPA results, all results are presented using four statistics: the number
of IPAs correctly converted back to English, the number of words with mistakes, the ratio of
correct predictions to the total number of words, and the average edit distance of the incorrect
predictions.

fairseq

The following table, Table 3.8, contains the results obtained when generating words using
the fairseq library’s lightconv_wmt_en_de network. This network is the one found to give
the best results in our previous experiments in Tables 3.2, 3.3 and 3.4. Shortly after setting
up this experiment, we made the decision to switch to the transformers library instead.
Consequently, we only trained a single fairseq network to completion. The results from the
training are presented in the following table, table 3.8.

Dataset Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Tweet Dataset 2383 7153 23.36 2.44
EMNLP Dataset 5239 35942 12.72 2.47
[18] Dataset 404 3188 11.24 2.79

Table 3.8: Results obtained when training the lightconv_wmt_en_de network on the IPA-
to-Text task

Unfortunately, the results themselves are not good. While the results obtained with the IPA-
to-Text neural network are slightly better than those obtained on the equivalent Text-to-IPA
neural network, they do not achieve our goal of recreating English words from their phonetics
with a sufficient accuracy.

transformers

The following three tables, tables 3.9, 3.10 and 3.11, contain the results obtained when gen-
erating a word from an IPA using the transformers library.

Since only the Text-to-IPA neural networks can use the Augmented dataset as input and no
IPA is modified in augmenting the dataset, there is no need to train an IPA-to-Text network
on the augmented dataset, as it would give the same results as the default RoBERTa model.
As such, only the default RoBERTa network and those using the pre-trained embeddings are
trained for this task.

When observing the results, we once again see that the default network and the 100d network
have similar results and both perform better on different aspects, sometimes offering a lower

31

Experiment Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Pretrained 100d embeddings 3596 5940 35.25 2.20
Pretrained 2d embeddings 0 9536 0.00 N/A
Default Parameters 4046 5490 39.66 2.35

Table 3.9: Results on Tweet dataset using the transformers experiments

Experiment Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Pretrained 100d embeddings 6034 35147 14.65 2.35
Pretrained 2d embeddings 0 41181 0.00 N/A
Default Parameters 5999 35182 14.57 2.30

Table 3.10: Results on EMNLP dataset using the transformers experiments

Experiment Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Pretrained 100d embeddings 456 3136 12.69 2.66
Pretrained 2d embeddings 0 3592 0.00 N/A
Default Parameters 445 3147 12.39 2.61

Table 3.11: Results on [18] dataset the transformers experiments

overall accuracy in favor of a lower average distance or the opposite. Once again however,
in a similar fashion to the Text-to-IPA results in Section 3.3.1, this type of insight does not
allow us to identify the best neural network.

In a similar fashion to the Text-to-IPA results, we explore the reasons for those low results.
However, unlike with the Text-to-IPA networks, we cannot find a correlation between the
number of errors per input length and the proportion of IPAs with that length making up
the training dataset. This lack of correlation can be seen in figures 3.7, 3.8 and 3.9 for the
fairseq experiments, and figures 3.10, 3.11 and 3.12 for the transformers experiments. We
believe that the low performance is rather due to the lack of variety in output words compared
to input IPA strings found in the test sets. Indeed, multiple input IPA strings, resulting from
different misspellings and alterations of a word, all correspond to the same output word. This
makes training the network to recognize the pronunciation of words very difficult. In a similar
fashion to the Text-to-IPA results, the exact proportion of the word length in the datasets
can be found in Section A.2 of Annex A.

32

Figure 3.7: Average edit distance based on the input IPA length for the IPA-to-Text experi-
ments with fairseq on the Tweet Dataset

Figure 3.8: Average edit distance based on the input IPA length for the IPA-to-Text experi-
ments with fairseq on the EMNLP Dataset

33

Figure 3.9: Average edit distance based on the input IPA length for the IPA-to-Text experi-
ments with fairseq on the [18] Dataset

Figure 3.10: Average edit distance based on the input word length for the IPA-to-Text exper-
iments with fairseq on the Tweet Dataset

34

Figure 3.11: Average edit distance based on the input word length for the IPA-to-Text exper-
iments with fairseq on the EMNLP Dataset

Figure 3.12: Average edit distance based on the input word length for the IPA-to-Text exper-
iments with fairseq on the [18] Dataset

Not unlike the results in Section 3.3.1, we can observe words with more errors than letters in

35

figures 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12. This is caused, once again, by the lack of a signal to
mark the start and the end of a generated word.

In addition, at least a portion of the errors of our system are due to the odd and impossible
expected normalizations found in the test dataset, which we discussed previously. Without
the context of the message they were found in, which we do not have access to and do not use
in our system, some of the normalizations in the datasets are impossible to resolve correctly.

Finally, it is important to highlight the fact that the generated IPAs used as input are quite
noisy and incorrect. This naturally makes it difficult for the IPA-to-text network to correctly
recognize the corresponding English words. The fact the network was trained using correct
IPA strings only compounds this problem.

The results are still significant when it comes to selecting the best performing IPA-to-Text
network, which, once again, is the RoBERTa transformer with default parameters. This network
outperforming every other network both in average edit distance and correct predictions.

3.3.3 Text + IPA to Text

In order to obtain better results when converting from phonetics to English, we consider using
both the input word and generated IPAs as input. This was done by combining the vectors
of the word and the IPA and feeding this combined vector to the neural network. In order
to implement this, the tokenizer was modified to create a combined index that represents the
paired characters to create a new set of tokens. An example of the combination can be seen
in Figure 3.13. This network was trained using the Augmented dataset.

This approach initially seemed fruitful, as the network trained well and gave positive results
on the validation dataset, reaching an average edit distance of 0.0054 within the first epoch.
However, performance degraded on new test data, as can be seen in Table 3.12. We believe
that this is due to overfitting caused by including in the input an encoded form of the output
we desire. Taking the example presented in Figure 3.13, we see that the different letter pairings
all give a specific tokenized value once merged. Our goal was to allow the neural network to
learn those pairings and identify frequent English-IPA pairs that would then be normalized
back into proper English. What we found during testing is that the network learned to make
predictions based on the English characters alone, ignoring the IPA information entirely. We
believe the issue is that, instead of learning the normalization task, the network learned to
decode the merged tokens and recover the English tokens they encoded. This in turn made it
good at recognizing words it trained on, but incapable of handling unseen words, even those
very similar to words it trained on. The exceedingly high accuracy of the Tweet dataset when
compared to the others, or any result obtained in this chapter, is explained by the buildup
of the dataset, where the great majority of the content is expected to be normalized as the
unormalized input itself. This, in part, confirms our theory that there is an overreliance on

36

Figure 3.13: Tokenization of English-IPA Character Pairs for Normalization

the encoded input values.

Experiment Correct Predictions Incorrect Predictions Correct Prediction Ratio % Average Edit Distance
Tweet Dataset 6683 3519 66.51 0.66
EMNLP Dataset 78 41103 0.19 1.62
[18] Dataset 2 3591 0.055 2.13

Table 3.12: Results on EMNLP dataset using for the transformers experiments

We also considered different variations of this architecture. One alternative would have used
the two tokenized vectors as two separate inputs to the system. However, given the overfitting
issues observed with the merged token vector and the fact splitting the vectors would only
make it easier for the network to overfit to the English characters, that idea was dismissed.
Another design relied on increasing the number of variations and misspellings in the training
vocabulary to improve the network. However, as we observed no difference in the network’s

37

treatment of correct and mistaken words - it relied on the English tokens in both cases - we
also discarded that idea.

However, we should note that the fact this network was unable to normalized unseen words
using text information, while the IPA-to-text network was capable of doing it, demonstrates
that there is valuable information in the IPAs and validates the fundamental hypothesis of
this research.

3.3.4 Transfer Learning

As was mentioned before, in addition to typos and grammatical errors, online texts can often
use characters and symbols outside of the regular alphabet. Given a network that would be
able to generate phonetics for normal clean words, like the ones in the training corpus of the
Text-to-IPA experiments, it should be possible to alter the models and use them for transfer
learning by using the augmented dataset.

To do so, we took the best-performing models from the Text-to-IPA experiments and froze
them, put in a new embedding layer and a new output layer, and retrained the output layer.

Unfortunately, after over a week of training, the network failed to converge and the experiment
was considered a failure.

The most likely issue is the increased size of the input vocabulary, which went from 100
characters in the previous version to over 900 characters in this experiment. This massively-
increased input size, combined with the frozen layers, seems to have made it impossible for the
network to rebuild the known associations between characters, since the weights tied between
the embedding layer and the first layer were erased when the first layer and the original
embedding layer were removed.

Future work may explore variations of this idea, for example by tweaking which layers are
frozen in order to facilitate retraining. However, this exploration was judged beyond the score
of our research.

Since the augmented dataset is built from a list of substitutions, it may be possible to build
initial embeddings for the substituted characters that were originally outside of the original
un-augmented alphabet. For example, should the letter “a” be replaced by the character
“α”, we could rebuild an initial embeddings dataset by copying the embedding the neural
network had originally created for the letter “a” and using it as the original embedding of
the character “α”, and doing the same for each of the newly added characters. Doing so
could help jumpstart the transfer process by allowing the neural network to keep altering the
embedding layer to obtain better vectors for the new characters. This would not be a perfect
solution in cases where a single character is replaced by multiple characters, or in cases where
a known character is substituted by another known character, but it may resolve some of the

38

issues causing our experiment to fail due to a lack of learning, should it not cause a large
amount of overfitting if the neural network fails to alter the embeddings enough.

3.4 Conclusion

In this chapter we studied the results of the normalization experiments we conducted with
the systems we presented in the previous chapter. Our results show that the networks trained
with the transformers library edged out the other networks. Even though the performance
was not as good as we had hoped, it still demonstrates that there is merit to our hypothesis
that phonetic information can be used to understand and correct poorly-written text. In
the next chapter, this normalization system will be applied to a real-world challenge, namely
harmful speech detection.

39

Chapter 4

Harmfulness Detection

As we covered in the Introduction of this thesis, misspelled words online do not only originate
from honest errors or attempts at personalizing messages. Some ill-intentioned online users
misspell harmful words and messages to disguise them and circumvent harm filters; a process
known as subversion [14]. One of the objectives of our work is to determine if the use of
phonetic normalization can help counter this attack.

In order to ascertain whether or not our normalization system can be used to help improve
harmful speech detection systems. By correcting misspellings in online messages, in particular
those due to subversive harm, our system could improve the quality of the inputs given to the
systems charged to classify the messages into different types and levels of harmfulness. In this
chapter, we will cover the experiments we designed as well as the harm classifiers we created
to verify the use of the normalization system. Throughout both this chapter and chapter
5, the use of the terms classifier and harm classifier will be used interchangeably to
represent harmful speech detection systems as a whole.

4.1 Methodology

As we presented in chapters 2 and 3, our best performing normalizer was the one made up of
two RoBERTa neural networks. In order to properly test how this normalization system can
benefit a harm detection system, we devised two sets of tests. The first is the classifier input
test, which will measure the benefit of normalization when different types of input are given
to a harmfulness classifier. The second set of tests is the subversion test, and it evaluates the
effect of the normalization on harm classification given different levels of subversion in the
messages before normalization.

We believe that combining those two sets of tests will allow us to properly identify the
conditions in which our normalization system will perform best.

40

4.1.1 Dataset

The dataset we opt to use in order to train our classifiers is the dataset provided for the
Kaggle competition created by Jigsaw [3] which was aimed specifically at harm detection.

This dataset is split into two subsets, a training and a testing dataset, respectively containing
159,571 and 153,164 entries. Due to the way the test set labels are set up, only 63,978 test
entries are actually usable to validate the training and compare the networks. This loss of
around 90,000 test entries is because those entries do not have proper labels, all of them being
set with a value of “-1”. It is explained on the competition page that those entries were simply
not used for scoring, and as such, no proper labels were provided. The entries in both subsets
are made up of comments and their labels, or classes.

Both datasets are labelled with up to six classes representing different types of harm. Those
labels are toxic, severe_toxic, obscene, threat, insult and identity_hate. To those
labels, we add a seventh, has_toxicity which represents the presence of potentially harmful
content. This label was added to identify comments which contain harmful elements, but are
not inherently harmful. An example of such a comment would be “OH DEAR OH DEAR,
HOW FUKIN SAD. I WILL REGRET THIS FOR THE REST OF MY LIFE!!” where
the original commenter used the word “FUKIN” which led the comment to be classified as
obscene, but not toxic. On the surface, such a label is not extremely useful as it can be
inferred from the other classes. However, we see it as a way to measure wether the normalizer
is able to properly normalize messages or if it is creating data that the classifiers cannot
analyze properly. It is also used to help us identify cases where the existence of harm is not
lost through normalization, but where the specific type of harm would be.

4.1.2 Training datasets

We have a total of four types of inputs we used to train the different neural networks. They are
the original dataset provided in the Kaggle Competition, along with the normalized, phonetic,
and combined datasets derived from it.

In order to build the three derived datasets, we compile a list of every unique word found in
the original dataset. In order to find unique words, every comment is tokenized with [12]’s
TweetTokenizer, as mentioned in Section 4.1.6.

We create our phonetic input dataset by replacing each word in a message with its phonetic
equivalent, as determined by the text-to-IPA portion of our normalizer. Then we created
our normalized input dataset by replacing each phonetic word in the phonetic input message
with its normalized equivalent, as determined by the IPA-to-text portion of our normalizer.
Punctuation signs, numbers, and other special characters in the original message were left
unchanged in both transformed versions. Finally, the fourth dataset is obtained by pairing

41

together both the phonetic and normalized messages.

A limitation of our normalizer is that it can only handle words up to a maximum length of
62 characters. Consequently, longer words were excluded from the process described above
and left “as is” in the transformed messages. These longer words are jumbles of characters
and long URLs, so they should not affect our experiments.

4.1.3 Classifier Input Types

In order to evaluate the effectiveness of normalization on classification results, we designed
four different groups of neural networks, each one trained on one type of input. Each network
will thus provide a different insight:

• Unmodified input: Classifiers trained using this input type will be used as our baseline
for each experiment.

• Normalized input: The use of normalized data as an input for a classifier is meant to
represent systems that were built using our normalizer as a pre-processing step.

• Phonetic input: In chapter 2 we described how we generate an alternate normalized
form of words, their IPAs. We will train neural networks using these normalized IPAs
as input instead of the normalized words. These classifiers will allow us to test if it
would be better to only use phonetic version of the words, and whether the conversion
of phonetics back to English is beneficial for harm detection.

• Both inputs: Finally, we decided to train classifiers using both normalized and phonetic
forms of the words as input, to see if it might improve classification results.

Taken together, the results of the experiments using these four different input types will help
us properly evaluate the usefulness of our normalizer for this task. Comparing the results of
the experiments with the first two types of inputs, unmodified and normalized, will allow us
to evaluate the effectiveness of the normalizer, and the additional two types will allow us to
evaluate whether additional useful information can be gleamed from the pronunciation of a
word.

In total, we train eight neural networks for these experiments, namely four using the Bi-LSTM
architecture and four using the RoBERTa architecture.

4.1.4 Normalization Test Datasets

In order to test how much the normalization improves the performance of harm classification,
we devise a series of alterations to apply on the original test dataset to simulate the use

42

of subversive harm. In total, we have fifteen dataset versions, five unormalized ones, five
phoneticized and five normalized ones. These datasets are as follows:

• Original test set: This is the original unaltered test set. It contains some elements that
could already be seen as subversive, such as the removal of some letters. This dataset
gives us our baseline performance evaluation. It contains various levels of harmful
content and subversive elements which were not altered or removed.

• Substitution test set: This dataset is built by applying letter substitutions to the words
in a message. More details are given in the subsection below.

• Letter removal test set: This dataset is created by randomly removing one letter from
each word found in a message.

• Letter duplication test set: Similarly to the previous dataset, this dataset is created by
randomly duplicating one letter from each word found in a message.

• Combined subversion dataset: This dataset is built by taking the substitution test set
and randomly adding or removing a random letter from each word.

Each of these five datasets was then run through our normalization system to create a nor-
malized dataset and a phoneticized dataset. Examples of the altered comments in the new
datasets of some comments can be found in table 4.1.

It is important to note that the three versions of the datasets, meaning the unnormalized
version, the phoneticized version and the normalized versions are different from the five types
of datasets presented here. Each dataset has three different versions of itself.

Due to how we seeded and used randomness during dataset creation, removal and duplication
of letters occurs for the same characters in both datasets. A similar behaviour is seen in
the combined dataset. However, the letter affected by the removal or duplication diverges
due to the added randomness in selecting the transformation, and the potential presence of a
substitution in a word.

As can also be gleaned from the data in table 4.1, we do not specifically target words which
are harmful, or which could be part of a harmful conversation. We opted not to target words
that are harmful for two reasons. The first being that the context surrounding a word is
often very important in determining harm, and the second reason being that, since some of
the messages contained in the dataset were not all written in proper english, we believed that
adding subversion throughout the entire messages would be a better test of our normalizer
since we built it to be agnostic of the context it is used in, both by design, and as a consequence
of it normalizing messages word by word.

43

Dataset Message
Original Thank you for understanding. I think very highly of

you and would not revert without discussion.
Substitution Thank you for understanding. I think very highly of

you and wld not revert without discussion.
Letter Removal Thak yu fr undersanding. I tink vry hghly of yu ad

wold nt revet wihout discussin.
Letter Duplication Thannk yoou foor understtanding. I thhink veery hi-

ighly of yoou annd wouuld noot reverrt witthout dis-
cussioon.

Combined Thannk yoou fr understaning. I thiink vry highhly of
yu ad wd nt rvert wthout discussioon.

Original Phoneticized ðæk ju fC And@rstændI. aI ðIk vEri haIli Af ju ænd wudd

nAt rIv3rt wIðhut dIskAf@n.

Letter Removal Phoneticized ðæk ju fr And@rsændI. aI tIk vri hflI Af ju æd would nnt

rIvEt wIhaut dIskAsIn.

Letter Duplication Phoneticized ðækk ju fCrr And@rstændI. aI ðIk vîrI haIgi Af ju ænd

wud d nut rIv3rt wIthaut dIskAf@n.

Substitution Phoneticized ðæk ju fC And@rstændI. aI ðIk vEri haIli Af ju ænd wul

nAt rIv3rt wIðhuu dIskAf@n.

Combined Phoneticized ðækk ju fr And@rsteII. aI ðIIk vri haIlii Af ju æd udd nnt

rv3rt h0haut dIskAf@n.

Original Normalized thank you for understanding. iye think very hilhey off
you annl woodeed not revert withhoot discussion.

Letter Removal Normalized thack you fre undersanding. eye tink vrie hshley off you
ad wold kent revet wihhout discussin.

Letter Duplication Normalized thankk you foure undherstanding. eye thinnk veery
hyggi off you andd wooed d nootka revert whithoutt
discussion.

Substitution Normalized thank you for understanding. eye think very higey off
you andd wool not revert withhooo discussion.

Combined Normalized thankk you fre understating. eye thienk vrie hilhl off
you ad uddled kent rvert hahehott discussion.

Table 4.1: Examples of alterations and normalization on the comment with id
0001ea8717f6de061

The normalized versions of the datasets were created by using the same process we explained
in Section 4.1.2.

Creating the datasets

In order to create the substitution test set, special consideration has to be taken in order
to avoid exponential growth in the size of the dataset. Since we use the same substitution

1We opted to only include the first subversive transformation of the comments for both the Substitution
and Combined Subversion datasets to not overfill the table.

44

list we described in Section 2.3.2, we would end up with an absurdly large and meaningless
dataset if we applied every possible substitution. Instead, we define a substitution group
as a list of substitution pairs for an original group of letters, and we define a substitution
pair as the mapping between a letter group and the letter group with which it is getting
replaced. An example of a substitution pair would be the pairing between “ack” and “ak”,
and a substitution group would be the group made up of the four substitutions found for the
letter group “ack”, which are presented in Table 4.2.

Letter Group Substitution
ack ak
ack ck
ack k
ack ac

Table 4.2: Substitution group for the letter group ack"

To resolve this issue, we opt to randomly select one substitution group present in each message
and create new versions of the message with every substitution we have for that group. Each
new version will apply one of the substitutions, but it will be applied to all instances of the
group found in the message. We will thus end up with as many new messages as there are
substitutions for the group.

A second reason for creating fewer substitutions in this dataset, compared to what we did for
the augmented dataset in Section 2.3.2, is that the best-performing normalizer we trained was
only trained on English words found in a dictionary. Consequently, an overwhelming number
of substitutions would hinder its performance. We considered the idea of creating multiple
datasets with varying amounts of substitutions, but we opted against it for the same reason.

A similar concern exists for the letter removal and letter duplication datasets. To avoid
creating large datasets, we opt to only apply one transformation at random per word in each
comment, giving new datasets of the same size as the original test set. Out of concern for the
integrity of the words, the first and last letters were always left untouched.

The final dataset, the combined subversion dataset, is created by combining these approaches.
First the substitution rule is applied to the message to create new messages. Then we ran-
domly pick a character to duplicate or remove in each word of the new message. The same
limitations used for the substitutions and the character duplication and removal are also
applied here.

4.1.5 Harm Detection Systems

For our experiments, we will train two different harm detection network architectures. The
reasons are to validate that our results are not somehow tied to one specific network archi-
tecture, and that our normalizer can benefit multiple different harm detection systems.

45

The first network is based on the most popular kernel offered on the same Kaggle competition
that the dataset is from1. This network is composed of two Bi-LSTM layers followed by two
linear layers on which a ReLU function is applied, and a final linear layer used for classification.

The second network is a RoBERTa-based classifier using the transformers library. We opt
to use it because the RoBERTa network gave the best results in our previous experiments in
Chapter 3.

In both cases, the neural network was trained from scratch with no pretraining for each type
of input.

4.1.6 Tokenization

Tokenization is an important part of preprocessing text for its use in natural language process-
ing. In order to properly run our experiments, we used three different tokenizer algorithms.
The first one, TweetTokenizer from [12], was used when creating the various datasets. The
other two, the Keras tokenizer from [15] and the huggingface tokenizer2 from [31], were
used respectively by the Bi-LSTM and RoBERTa neural networks to process the neural network
inputs.

We opt to use TweetTokenizer for the task of tokenizing the dataset because it was designed
to tokenize tweets, a form of online communication akin to the short messages found in our
datast. It also tokenizes the messages into words, unlike other tokenizers that may split
suffixes and prefixes from the root of a word. This type of tokenization allows us to get words
that are similar to the data we originally trained the normalizer with. Once the words are
obtained from the messages, we phoneticize them to obtain the phoneticized list of words.
Due to how our normalizer works, some phoneticized words have spaces in them. While
our normalizer is only trained to deal with one word at a time, we opt to treat those space-
separated phoneticized words as multiple words. A list of unique phoneticized words was built
from the generated phonetic words, and each of these unique phonetic words was transformed
back to English using our normalization system.

While we can use the TweetTokenizer to build the datasets, neither of the networks we use
as harm detectors originally used this tokenizer. In the case of the Bi-LSTM networks, we
need to train the Keras tokenizer on the dataset whenever we run an experiment. Even if it
was retrained every time, this tokenizer was constant for each dataset. This gives us three
distinct tokenizers, one for the original dataset, one for the phoneticized dataset, and one
for the normalized dataset. The RoBERTa neural network, on the other hand, uses its own
tokenizer, the huggingface tokenizer, which was pre-trained on a dataset different from ours.

1https://www.kaggle.com/thousandvoices/simple-lstm
2https://github.com/huggingface/tokenizers

46

We opt to use each network’s original tokenizer to stay as close as possible to the original
design and functioning of the neural networks.

Typical behavior for a tokenizer that encounters an unknown word is to either mark that
word as unknown or to remove it. The Keras tokenizer removes unknown tokens. However,
the huggingface tokenizer does not mark unknown tokens as such, but instead attempts to
split them into multiple known sub-tokens. For example, should the token “beginninging” be
seen, it would get split into both “beginning” and “ing”, if it is seen as a valid way to split
the token. If it is not, the token is marked as unknown.

We do, however, in the case of the RoBERTa neural networks, make a change to how the
huggingface tokenizer is used. Instead of using the pretrained tokenizer, we train a new
tokenizer for each of input type. This means retraining the English tokenizer, in addition to
the training the normalized and phoneticized tokenizers. This was done to have an equivalent
tokenizer for each type of dataset. We deem this to be a necessary step because the default
English tokenizer provided in the tokenizer library might be aware of additional vocabulary.
This additional vocabulary leads to a tokenizer containing more unique tokens than what is
contained in our original dataset. Combined with the token-splitting behavior, the original
tokenizer might have biased the results of the subversion tests in favor of the neural networks
making use of it when compared to the phonetic, normalized or hybrid models. To avoid any
issues, we decided that training a new tokenizer using only our original dataset is the best
solution to avoid bias.

In addition to this tokenization, every comment is left-padded up to a certain length. In the
case of the Bi-LSTM, the comments are padded up to 220 tokens, the original value used
in the Kaggle kernel. The RoBERTa neural net is padded up to 150 tokens. This is due to
a technical limitation, namely the lack of memory in our GPUs. We should note that the
average and median number of tokens per message in our datasets are 90.6 and 50 respectively,
so the difference between a maximum input length of 150 or 220 tokens has little impact in
practice.

4.2 Running the Tests

Putting it all together, the next chapter will present results using our 5 different datasets and
their three different versions different used in the training and testing of eight neural network
variations, covering two different neural network architectures and the performance of our
normalizer accross those two.

In order to avoid spending excessive time training eight neural networks, we did not train them
until they converged to a local maximum, but instead stopped the training after 100 epochs.
As the graphs found in Section 5.3.1 present, this number of epochs was likely excessive.

47

Unless specified otherwise, all networks were trained for that number of epochs, to keep the
comparison fair.

4.3 Conclusion

In this chapter, we presented our test cases to evaluate the usefulness of our normalizer on
the task of subversive harm detection. We designed a variety of tests that will allow us to
evaluate the quality of harm detection using the normalized messages, and tests that evaluate
which normalized data type is most useful. We believe we have created a complete test suite
to validate the performance of our normalizer for our purpose of subvertive harm detection.
The next chapter will, using the tests laid out in this chapter, present the results obtained
and offer our conclusions based on those results.

48

Chapter 5

Harmfulness Detection Results

5.1 Introduction

This chapter presents the results of the experiments described in the previous chapter. It will
also present our conclusion as to whether or not our phonetic normalizer can help improve
the results obtained by a harmful message classifier, and answer the broader question of
the influence of phonetic normalization on an increased amount of subversive elements in
messages.

5.2 Network Architecture and Data Processing

This section covers the pre-processing of the data and the alterations we made to the default
architectures in order to use the different input types.

As mentionned in Section 4.1.6, we use different tokenizers for each of the architecture type.
In the case of the Bi-LSTM models, we use the Keras tokenizer, and we use the huggingface
tokenizer for the RoBERTa models.

5.2.1 Architectural Alterations

In order for the harm detection networks to predict 7 classes per message, as defined in Section
4.1.1, we have to modify their architecture.

In the case of the Bi-LSTM, the change is to allow auxiliary outputs for the network. Doing
so also allows us to use a Binary Cross-Entropy with Logits loss function, or BCEWithLogits
loss, to train the neural network. The auxiliary outputs are additional outputs that can be
used to gain or predict additional data without affecting the primary output. In our case,
the auxiliary output is a single linear layer parallel to our primary output making predictions
on the 6 non-primary labels. It is used to allow for independent training of the final output
layers. The use of the auxiliary output allows for the use of a Binary Cross-Entropy loss

49

because we now need to solve a multi-label problem. It would also have been possible to alter
the primary output to predict on the 7 classes, but we opted to separate them as our goal
was to focus on the broader presence of toxicity and use the additional data to inform our
analysis.

The changes we make to the RoBERTa network are a little more complicated. We use version
2.6.0 of the transformers library, which has no network implementation that supports multi-
class or multi-label classification. Consequently, we modified the forward methods of the
classes to use a BCEWithLogits loss instead of the MSE, or CrossEntropy loss functions. The
effective result of this alteration is the same as if a newer version of the library had been
used, but we deemed it a better solution than to try and update the library and all of the
subdependencies, such as pytorch and CUDA.

Hybrid Inputs

As we mentioned in Section 4.1.1, we also train neural networks that use both the phoneticized
and normalized inputs. The networks that use this input have been updated to receive two
different embedding layers, one for each type of input, which are then concatenated together
as one larger input embedding. This concatenation was done at the token (word) level. This
means that while the tokens may not perfectly line up, either because one token is normalized
to multiple tokens or because of how the different tokenizers split the message, the general
“sense” of the comments should not be lost when sent to the Bi-LSTM or attention layers.
An example of the process is presented in Figure 5.1. We did not measure the impact of the
token misalignment nor take any measures to alleviate its effects. Given that the misalignment
can come from either the normalization or tokenization process, or both, we feel that adding
functionalities to track it down and correct it would greatly complexify the system.

This concatenation does cause an issue, namely the doubling of the length of the embedding
vectors. In the case of the Bi-LSTM this meant an increase in the length of the embedding from
300 to 600. To resolve this issue, we shrink the embedding vector back down to 300 in the first
Bi-LSTM layer, bringing us back to padded vectors of length 220 containing word embeddings
with a length of 300. This does not represent a significant increase in the overall number of
parameters when compared to the Bi-LSTM harm detector that do not use hybrid inputs. In
the case of the RoBERTa model, however, since the default embedding size is 768, the final
embedding size would have been 1536. In that case, we instead generate embeddings with a
size of 384 by configuring the embedding layer to have 384 parameters, and then combining
them back into a single, larger embedding with the original 768 parameters. We opt to do
this because the doubling of the embedding size would have either forced us to rewrite the
model to allow for the reduction of the hidden dimension within the attention layers, or use
1536 as our hidden dimension throughout the model, which we saw as way too large of a
departure for the 768 used for the other RoBERTa models, due to the large number of interim

50

Figure 5.1: Concatenating embeddings for the hybrid inputs

layers when compared to the Bi-LSTM, which is only made up of five layers, compared to the
12 layers and 12 attention heads of the RoBERTa models.

It would have been possible to use other setups to handle the combined input types besides
the ones described above, such as by having a different stack of LSTM or attention layers and
combining the results before classification, or by using a linear layer to reduce the size of the
embeddings. However, our approach is appropriate for our goal of showing the effectiveness
of our normalization approach for the task of harm detection. Alternatives could be studied
in follow-up research, to compare their strengths and weaknesses.

5.3 Results

In this section, we cover the results of both the Classifier Input test and the Normalization
Performance tests.

5.3.1 Classifier Input Tests

This section covers the results we obtain when training the two different harm detection neural
network architectures with the four different input types. Before going over the results, we
will quickly cover how we selected the checkpoints, or epochs, used to obtain those results.
Those same checkpoints are also used in the subversion tests. While a checkpoint generally
refers to a saved snapshot of a model’s weights at a point in time, and an epoch refers to an

51

iteration of training of the neural network, they are essentially the same in our use case and
both words will be used interchangeably.

Neural Network Checkpoint Selection

In order to select the checkpoints that will be used for both tests for each network when
trained with each dataset, we use the average loss we obtain on the validation set used during
training. The loss for both types of neural networks for every input type can be found in
Figure 5.2 for the Bi-LSTM neural networks and in Figure 5.3 for the RoBERTa neural networks.

As can be observed in Figure 5.2, it is clear that the Bi-LSTM network tends to plateau
between the 10th and the 15th epoch. In this figure, we only present the first 50 epochs. We
did train the network for 100 epochs; however the remaining 50 epochs continue the same
plateau and presenting them makes the figure less legible. A similar pattern was observed
when looking at the training loss. As can be seen from the same figure, the Bi-LSTM classifier
trained using only the original training dataset outperforms all three of our alternative input
types with respect to the validation loss. Out of our three normalized input types, the best
performing type for this class of classifier is the hybrid input.

The exact numerical value of the loss at the best epoch is presented in Table 5.1. Accordingly,
the checkpoint that was selected for each neural network is the one with the best loss. This
was done for two reasons. The first reason is to avoid performing excessive training that could
lead to overfitting. The second reason is that, while we are comparing all the classifiers, each
one is actually independent of the others and its performance should be evaluated separately.

Input Type Best Epoch Loss at Best Epoch
Default 7 0.06059
Phonetic 11 0.06229
Normalized 11 0.06364
Hybrid 9 0.06160

Table 5.1: Loss at Best Epoch for the Bi-LSTM Neural Networks

The validation results for the RoBERTa neural network, shown in Figure 5.3, offer a much less
clear picture than those for the Bi-LSTM neural network. We see that the phonetic inputs
performed better than the others. We also note the odd behavior of the loss, which fluctuates
instead of converging, and which we will come back to further down. Similarly to the Bi-LSTM
neural networks, these networks were only trained for 100 epochs, but the results past the
50th epoch follow a similar pattern to what is presented in the previously mentionned figure,
and as such only the first 50 epoch are shown. The best loss and associated epoch can be
found in Table 5.1. For the first three networks, the epoch selected for the experiments was
the one with the best loss. For the fourth network with hybrid inputs, we find that the best
loss of 0.16863 at epoch 98 only narrowly beats a few of the earlier epochs by a value of

52

Figure 5.2: Average Loss per Epoch on the Validation set for the Bi-LSTM neural networks

0.00001-0.00003, and these earlier epochs have a lower risk of overfitting on the training set.
Consequently, the epoch we select is epoch 31 with a loss of 0.16865.

Input Type Best Epoch Loss at Best Epoch
Default 2 0.11634
Phonetic 2 0.06618
Normalized 25 0.16153
Hybrid 98 0.16863

Table 5.2: Loss at Best Epoch for the RoBERTa Neural Networks

When looking at the validation loss graph of Figure 5.3 and the best loss values of Table 5.4, we
see that the behavior of the network differs from what we would normally see when observing
this metric. Normally, a neural network would gradually converges to a local minimum, as the
Bi-LSTM did. We link this odd behavior to the fact that the RoBERTa network is designed to
train using massive datasets with millions of different entries, while we used a relateively small
dataset comprised of slightly less than 160k entries. Furthermore, we performed no hyper-

53

Figure 5.3: Average Loss per Epoch on the Validation set for the RoBERTa neural networks

parameter tuning. We believe this led to an almost immediate overfitting on the dataset. This
overfitting behavior could be alleviated by reducing our learning rate, or by increasing the
decay in the loss scheduler. However, since our goal is to create a harm classifier to test and
evaluate our normalization system with, and not to create the best possible harm classifier,
we decided that such hyper-parameter tuning of the classifiers was out of scope.

Looking at the training loss for all of those networks also shows that it stays mostly constant
past the first epoch, varying by a few hundredths around the best epoch value, with the only
exception being the Phonetic input neural network that sees its training loss go up to 0.16

by the fifth epoch. This means that even though the neural network is able to learn (as
demonstrated by its results in table 5.4), it fails to converge, as shown by the combination of
the best epoch loss and the behavior of the validation loss in figure 5.3.

54

Prediction Accuracy Results

This section presents and discusses the accuracy of the predictions made by the classifiers
on each of their respective test sets. Since our goal in this first experiment is to evaluate
the performance of the classifiers on different input types, and not different levels or types of
text alterations or subversion, only the Original test set is used, in the form adapted for each
network. This means that results for the Default networks will use the unaltered dataset, the
Phonetic networks will use the phoneticized form of the Original test set, and so on.

The accuracy of the Bi-LSTM networks is presented in Table 5.3, while the results obtained
with the RoBERTa networks are presented in Table 5.4.

Input Type has_toxicity toxic severe_toxic obscene threat insult identity_hate All Valid
Default 91.26 91.91 99.14 95.45 99.67 95.22 98.89 86.20
Phonetic 91.72 92.16 99.25 95.49 99.67 95.32 98.89 86.89
Normalized 91.81 92.27 99.19 95.47 99.67 95.16 98.89 87.06
Hybrid 90.97 91.52 99.16 95.28 99.67 95.04 98.89 85.93

Table 5.3: Accuracy for all labels for the Bi-LSTM neural networks

Input Type has_toxicity toxic severe_toxic obscene threat insult identity_hate All Valid
Default 91.59 91.81 99.43 95.30 99.67 95.19 98.89 90.68
Phonetic 92.50 92.53 99.43 95.93 99.67 95.55 98.89 88.70
Normalized 90.24 90.48 99.43 94.23 99.67 94.64 98.89 90.24
Hybrid 90.24 90.48 99.43 94.23 99.67 94.64 98.89 90.24

Table 5.4: Accuracy for all labels for the RoBERTa neural networks

As we can observe from both result sets, the networks all have extremely similar results, and
sometimes identical results as in the case of the identity_hate and threat labels, implying
that the “markers”, the elements that help identify labels, are distinctive enough for those
labels that they are unaffected by the normalization process. Likewise, in the case of the
RoBERTa network, the normalized and hybrid inputs have identical results, which implies that
the phonetic part of the hybrid input was essentially ignored by the harm classifier.

On the other hand, the results show that the Bi-LSTM harm classifier achieves better results
overall using phonetic or normalized input, and the RoBERTa classifier achieves its best results
using the phonetic input. This indicates that our phonetic normalizer does slightly improve
harm detection given normal online messages as input.

5.3.2 Subversion Tests

Next, we study the effects of our phonetic normalization on the performance of harm classifi-
cation in the presence of subversion. The results are separated according to the four different
types of subversion datasets we have. For each subversion dataset, we further present test

55

results using each of our two harm detection neural networks, and each network was trained
using five different training corpora. Each neural network trained for the classifier input tests
in Section 5.3.1 use their respective test sets. The baseline for each subversion dataset and
neural network classifier is the test using the un-normalized dataset, the entry named "Default
(baseline)." Each of the tables presented in the rest of the section is presented in the same
manner. For each modified dataset, a total of five results are presented as follows:

• Default (baseline): Using the neural network trained on the unmodified dataset, this
network classifies the un-normalized version of the subversive dataset.

• Default (Normalized): Using the neural network trained on the unmodified dataset, this
network classifies the normalized version of the subversive dataset.

• Phonetic: Using the neural network trained on the phonetic version of the unmodified
dataset, this network classifies the phoneticized version of the subversive dataset.

• Normalized: Using the neural network trained on the normalized version of the unmod-
ified dataset, this network classifies the normalized version of the subversive dataset.

• Hybrid: Using the neural network trained on the hybrid inputs, this network classifies
the hybrid form of the dataset made up of both the phoneticized and normalized for
version of the subversive dataset.

Each of these setups thus represents a different scenario. The Default (baseline) version
of the neural network represents a normal classifier working with no normalization, and is
the baseline we will compare our systems to to demonstrate the impact of normalization.
The Default (normalized) setup represents the use of our normalizer as input to a harm
classifier that has not been retrained, and thus checks if our normalized text can be used
as plain text by a system. The Normalized, Phonetic and Hybrid results represent our
normalizer being used in different contexts and paired with harm classifiers trained on the
same data to account for changes in input.

Duplication Dataset

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 87.56 87.95 99.42 94.13 99.67 94.52 98.89
Default (normalized) 74.72 77.24 99.22 93.38 99.67 92.19 98.89
Phonetic 88.30 88.88 99.37 94.84 99.67 93.76 98.89
Normalized 85.84 86.68 99.35 93.70 99.67 93.30 98.89
Hybrid 83.70 85.03 99.31 94.36 99.67 94.06 98.89

Table 5.5: Accuracy for all labels for the Bi-LSTM neural networks on the Duplication Dataset

56

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 90.60 90.84 99.43 94.55 99.67 94.83 98.89
Default (normalized) 91.30 91.53 99.43 95.10 99.67 95.09 98.89
Phonetic 90.54 90.67 99.43 95.34 99.67 95.17 98.89
Normalized 90.24 90.48 99.43 94.23 99.67 94.64 98.89
Hybrid 90.24 90.48 99.43 94.23 99.67 94.64 98.89

Table 5.6: Accuracy for all labels for the RoBERTa neural networks on the Duplication Dataset

Removal Dataset

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 88.05 88.76 99.42 94.12 99.67 94.55 98.89
Default (normalized) 67.88 71.27 99.37 93.04 99.67 91.91 98.89
Phonetic 88.30 88.87 99.41 94.77 99.67 94.32 98.89
Normalized 88.53 89.04 99.39 94.20 99.67 94.15 98.89
Hybrid 87.89 88.69 99.40 94.55 99.67 94.54 98.89

Table 5.7: Accuracy for all labels for the Bi-LSTM neural networks on the Removal Dataset

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 90.51 90.75 99.43 94.48 99.67 94.79 98.89
Default (normalized) 90.83 91.06 99.43 94.75 99.67 94.85 98.89
Phonetic 90.14 90.34 99.43 95.11 99.67 94.99 98.89
Normalized 90.24 90.48 99.43 94.23 99.67 94.64 98.89
Hybrid 90.24 90.48 99.43 94.23 99.67 94.64 98.89

Table 5.8: Accuracy for all labels for the RoBERTa neural networks on the Removal Dataset

Substitution Dataset

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 90.02 90.57 99.09 94.71 99.62 94.60 98.70
Default (normalized) 86.04 86.95 98.97 93.67 99.62 93.33 98.70
Phonetic 89.78 90.19 99.17 94.56 99.62 94.14 98.70
Normalized 90.03 90.42 99.11 94.10 99.62 93.84 98.70
Hybrid 89.77 90.29 99.08 94.59 99.62 94.27 98.70

Table 5.9: Accuracy for all labels for the Bi-LSTM neural networks on the Substitution Dataset

57

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 90.36 90.62 99.35 94.53 99.62 94.62 98.70
Default (normalized) 90.49 90.75 99.35 94.67 99.62 94.54 98.70
Phonetic 91.31 91.41 99.35 95.22 99.62 94.93 98.70
Normalized 89.06 89.33 99.35 93.49 99.62 94.00 98.70
Hybrid 89.06 89.33 99.35 93.49 99.62 94.00 98.70

Table 5.10: Accuracy for all labels for the RoBERTa neural networks on the Substitution
Dataset

Combined Dataset

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 86.37 86.86 99.34 93.39 99.62 93.88 98.70
Default (normalized) 70.98 73.43 99.23 92.59 99.62 91.58 98.70
Phonetic 86.94 87.52 99.32 94.18 99.62 93.32 98.70
Normalized 86.03 86.72 99.28 93.13 99.62 93.04 98.70
Hybrid 85.14 86.12 99.29 93.59 99.62 93.56 98.70

Table 5.11: Accuracy for all labels for the Bi-LSTM neural networks on the Combined Dataset

Neural Network has_toxicity toxic severe_toxic obscene threat insult identity_hate
Default (baseline) 89.32 89.59 99.35 93.72 99.62 94.13 98.70
Default (normalized) 89.88 90.14 99.35 94.17 99.62 94.36 98.70
Phonetic 89.40 89.61 99.35 94.49 99.62 94.49 98.70
Normalized 89.06 89.33 99.35 93.49 99.62 94.00 98.70
Hybrid 89.06 89.33 99.35 93.49 99.62 94.00 98.70

Table 5.12: Accuracy for all labels for the RoBERTa neural networks on the Combined Dataset

Analysis

We begin this analysis by looking at the difference in the accuracy between the original,
subversion-less, datasets found in Tables 5.3 and 5.4 and the accuracy of the various subversion
setups presented in Tables 5.5 to 5.12.

The first result we can observe is the impact of subversion on harm detection. By comparing
the results of Tables 5.3 and 5.4 to the Default (baseline) results, we can confirm that the
addition of subversive elements in messages reduces the overall performance of harm classifiers.
This is shown in the fact the detection accuracy of almost all the predictions, apart from the
three under-represented labels, severe_toxic, threat and identity_hate goes down by a
few percentage points. The behavior seen with the under-represented labels, a very minor
change downwards or an unchanged accuracy, is explained by overfitting due to the relatively
small proportion those labels represent in the training dataset. An additional odd behavior
in the case of the severe_toxic label on both the duplication and removal datasets, when
using the Bi-LSTM classifiers, in the form of a small increase in the accuracy can be observed.

58

This behavior can be explained by the simple fact that both of these transformations create
or remove noise in the messages. This slight increase is reflected in the combined dataset, but
to a lesser degree, which we can attribute to the presence of substitutions.

Next, we consider the effect of normalizing the input before harm classification, by comparing
the Default (baseline) and Default (normalized) results. In this comparison, we notice
a striking difference between the Bi-LSTM and RoBERTa classifiers. The latter benefits from
our normalization, and even achieves its best results on the has_toxicity and toxic labels
with that setup. On the other hand, the Bi-LSTM has the opposite behaviour and achieves
some of its worst performances with that setup, including a staggering 21% drop in accuracy
on the removal set for the has_toxicity label in Table 5.7. This indicates that our normalizer
does have an effect on the input text, but for that effect to be positive or negative depends
on the harm detection architecture being used afterwards. The transformed messages cannot
be used blindly as input for any system.

This observation is confirmed by our next experiment, the comparison using the normalized
input and the harm detection classifier re-trained on normalized data. In this case, we compare
the Default (baseline) and Default (normalized) results to the Default (baseline)
and Normalized results. Once again, the result depends on the harm classifier being used.
In this case, the Bi-LSTM improves and achieves some of its best performances. Notably, the
accuracy on the removal dataset for the has_toxicity label in Table 5.7 goes from the worst
performance when using normalized inputs and the default classifier to the best performance
when using normalized inputs and the retrained classifier. The RoBERTa classifier again has
the opposite behavior, and while its performance using the retrained classifier does not drop
precipitously, it remains consistently lower than or equal to that of the default classifier with
either inputs.

Finally, we can compare the performance of the retrained network using the three different
forms of our normalized input, the Normalized, Phonetic, and Hybrid inputs. There are
improvements to be seen in the results, however there is no clear benefit to one method
over the other two. Instead, the benefits seem to vary from situation to situation, with
some harm labels performing better with one normalization setup. For example, we can
generally observe a positive relationship between the use of phonetic inputs and the detection
of the has_toxicity label, while that input hinders the detection of insult when using the
Bi-LSTM classifier. Likewise, we can observe relationships between certain types of subversion
and normalization. For example, the hybrid input performs worse in the presence of removal
and duplication type of subversion, which may be due to the added or missing letters messing
up the alignment between the text and phonetic content of the concatenated input.

Putting all our results together, we can draw some conclusions on the use of our normalizer
for subversion detection. The main conclusion, when looking at overall toxicity detection (the

59

has_toxicity label), is that one form or another of our normalizer always performs better
than not using the normalizer. Using the RoBERTa classifiers, the Default (normalized)
and the Phonetic setup both outperform the baseline when subversive elements are present.
For the Bi-LSTM classifier, the best performing setup is usually the Phonetic classifier, with
the only real exception being on the Substitution dataset (Table 5.9), where the Normalized
setup outperforms it.

As an aside, in Tables 5.9, 5.10, 5.11 and 5.12, a slight drop in the accuracy of the labels
threat and identity_hate can be seen when compared to all other results obtained on those
labels in this chapter. This is caused by the way the Substitution and Combined datasets are
created. As explained in Section 4.1.4, we have multiple copies of the different messages in
the dataset with different substitutions. The amount of copies for each message varies based
on how many pairs are present in a substitution group. As such, the drop in accuracy is
caused by the fact that, for those labels, the messages with more duplication pairs are those
on which the classifier ends up predicting the wrong class due to overfitting on those labels.
An identical behaviour can be seen for the severe_toxic label with the RoBERTa classifiers.

While the results show that using our phonetic normalization has some benefits in our use-
case, the improvement is neither as high nor as uniform as we might have hoped. It is
interesting to ponder why that is the case.

As mentioned in the beginning of our research, our underlying assumption is the spelling
of words is being transformed in a way that does not affect their pronunciation, such as
the substitution “2day”, the repetition “yyyeeeessssss” or the removal “wat”. However, the
algorithm we used to augment the dataset, described in Section 2.3.2, did not have this
constraint. It could transform words into different-sounding words, for example by removing
the letter “r” from the word “army” turning it into “amy”, or duplicating the “e” in “bet”
turning it into “beet”. When harmful words are transformed in this way for our subversion
experiments, it eliminates, not subverts nor masks, its harmful content. Unfortunately, it
seems a much more precise algorithm to generate subversive content would be needed to
improve our experimental procedure.

5.4 Conclusion

Considering the experimental results presented in this chapter, we can conclude that phonetic
normalization does offer improvements for harm detection. Using a sophisticated enough harm
detector, such as the RoBERTa model, it can even be applied as a preprocessing step without
modifying or retraining the subsequent detection system. Moreover, given a real-world setting
such as the one sampled in the Kaggle Jigsaw dataset, detecting harmful content in the
phonetic form of messages gives better results than using the plain text messages. Finally,
given an increased level of subversive harm in the messages, we also find that our normalizer

60

helps in detecing the disguised harmful content.

61

Conclusion

Throughout this thesis we presented our implementations along with the results obtained
through our various experimental phases. In order to properly conclude our thesis, it is
necessary to reflect on our work within the context of the goals we originally set out to
achieve.

The goal of our research, and of this thesis, was to design and implement a novel text nor-
malization technique that could infer the phonetic form of OOV words and make use of that
information to discover the corresponding IV English words, and to use that system to im-
prove harm detection in the specific context of subversive users. This would allow harmful
content detection systems to perform their duties as they were originally designed to in an
ever-changing online environment. In Chapters 2 and 3 we presented our phonetic normalizer,
a two-part system made up of two sequence-to-sequence transformers capable of producing
phonetics in the form of words made up of characters from the International Phonetic Al-
phabet (IPAs) from any word, in-vocabulary or out-of-vocabulary, and to convert those IPAs
back into words that are contained in the English language. In Chapters 4 and 5, we used
several variations of this normalizer and paired them with two different harm detectors in
order to measure their effects in filtering out different forms of subversive harm.

The phonetic normalizer we produced is capable of improving the classification results when
compared to a baseline harm classifier, both using normal online messages and messages we
corrupted with heavy subversion. Even though the results showed only a modest improvement
and were not uniform in all situations, we did show that our approach works, and that there
is a fundamental benefit to using phonetic information to process online text.

62

Appendix A

Ratio of Word and IPA Length in
Datasets

A.1 Word Length Ratio for Text-to-IPA Experiments

Figure A.1: Word length ratio for the training sets used in the Text-to-IPA experiments

63

Figure A.2: IPA length ratio for the test sets used in the Text-to-IPA experiments

A.2 Word Length Ratio for IPA-to-Text Experiments

64

Figure A.3: IPA length ratio for the training sets used in the IPA-to-Text experiments

65

Figure A.4: Generated IPA length ratio for the test sets used in the IPA-to-Text experiments

66

Appendix B

Notable Architectural Data

B.1 Notable Architectural Data for the fairseq networks

fconv_wmt_en_de
Encoder Convolutional
Encoder Layers 20
Encoder Hidden Dimension 768
Decoder Convolutional
Decoder Layers 20
Decoder Hidden Dimension 768
Hidden Layers 15
Hidden Dimensions 512 (9 Layers), 1024 (4 layers), 2048 (2 layers)
Attention Each Decoder layer

Table B.1: Notable Architectural Data of the fairseq Convolutional network

lightconv_wmt_en_de lightconv_wmt_en_fr_big lightconv_wmt_en_de_big
Activation Function ReLU ReLU ReLU
Encoder Convolutional Convolutional Convolutional
Encoder Layers 7 7 7
Encoder Hidden Dimension 512 1024 1024
Encoder FFN Dimension 2048 4096 4096
Encoder Attention Heads 8 16 16
Decoder Convolutional Convolutional Convolutional
Decoder Layers 6 6 6
Decoder Hidden Dimension 512 1024 1024
Decoder FFN Dimension 2048 4096 4096
Decoder Attention Heads 8 16 16

Table B.2: Notable Architectural Data of the fairseq LightConv networks

67

transformer_wmt_en_de transformer_vaswani_wmt_en_de_big transformer_wmt_en_de_big_t2t
Activation Function ReLU ReLU ReLU
Encoder Layers 6 6 6
Encoder Hidden Dimension 512 1024 1024
Encoder FFN Dimension 2048 4096 4096
Encoder Attention Heads 8 16 16
Decoder Layers 6 6 6
Decoder Hidden Dimension 512 1024 1024
Decoder FFN Dimension 2048 4096 4096
Decoder Attention Heads 8 16 16

Table B.3: Notable Architectural Data of the fairseq Transformers

B.2 Notable Architectural Data for the RoBERTa network

RoBERTa
Activation Function GELU
Hidden Dimension 768
Hidden Layers 12
Intermediate Size 3072
Attention Heads 12

Table B.4: Notable Architectural Data of the RoBERTa network

68

Bibliography

[1] Caverphone. URL https://xlinux.nist.gov/dads/HTML/caverphone.html.

[2] Lexical Normalisation for English Tweets. URL https://noisy-text.github.io/
norm-shared-task.html#resource.

[3] Toxic Comment Classification Challenge. URL https://kaggle.com/c/
jigsaw-toxic-comment-classification-challenge.

[4] metaphone. URL https://xlinux.nist.gov/dads/HTML/metaphone.html.

[5] Accessing individual records from personal data files using non-unique identifiers /
Gwendolyn B. Moore ... [et al.] ; prepared for the Institute for Computer Sciences
and Technology, National Bureau of Standards, Washington, D.C : Moore, Gwen-
dolyn B : Free Download, Borrow, and Streaming : Internet Archive. URL https:
//archive.org/details/accessingindivid00moor.

[6] Daitch-Mokotoff Soundex System, . URL https://www.avotaynu.com/soundex.htm.

[7] Free to Play? Hate, Harassment and Positive Social Experience in Online Games 2020,
. URL https://www.adl.org/free-to-play-2020.

[8] NYSIIS. URL https://xlinux.nist.gov/dads/HTML/nysiis.html.

[9] soundex. URL https://xlinux.nist.gov/dads/HTML/soundex.html.

[10] Martin J. Ball. Further to Articulatory Force and the IPA Revisions. Journal
of the International Phonetic Association, 23(1):39–41, June 1993. ISSN 1475-
3502, 0025-1003. doi: 10.1017/S0025100300004783. URL https://www.cambridge.
org/core/journals/journal-of-the-international-phonetic-association/
article/abs/further-to-articulatory-force-and-the-ipa-revisions/
3EAFD5C249A65974F1BB94CF4E599074.

[11] Martin J. Ball, John Esling, and Craig Dickson. The VoQS System for
the Transcription of Voice Quality. Journal of the International Pho-
netic Association, 25(2):71–80, December 1995. ISSN 1475-3502, 0025-
1003. doi: 10.1017/S0025100300005181. URL https://www.cambridge.

69

org/core/journals/journal-of-the-international-phonetic-association/
article/abs/voqs-system-for-the-transcription-of-voice-quality/
47F4EBC4BD5E393F28BCF1F8FD7D153C.

[12] Bird, Steven, Edward Loper, and Ewan Klein. Natural Language Processing with Python.
O’Reilly Media Inc, 2009.

[13] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017. ISSN 2307-387X.

[14] Eloi Brassard-Gourdeau and Richard Khoury. Subversive Toxicity Detection using Sen-
timent Information. In Proceedings of the Third Workshop on Abusive Language Online,
pages 1–10, Florence, Italy, August 2019. Association for Computational Linguistics. doi:
10.18653/v1/W19-3501. URL https://www.aclweb.org/anthology/W19-3501.

[15] François Chollet et al. Keras. https://keras.io, 2015.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs], May 2019. URL http://arxiv.org/abs/1810.04805. arXiv:
1810.04805.

[17] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional Sequence to Sequence Learning. arXiv:1705.03122 [cs], July 2017. URL
http://arxiv.org/abs/1705.03122. arXiv: 1705.03122.

[18] Vincent Jahjah, Richard Khoury, and Luc Lamontagne. Word normalization using
phonetic signatures. In Canadian Conference on Artificial Intelligence, pages 180–185.
Springer, 2016.

[19] Kathy. Framework. URL https://fairplayalliance.org/framework/.

[20] Aldebaro Klautau. Arpabet and the timit alphabet. URL: https://web. archive.
org/web/20160603180727/http://www. laps. ufpa. br/aldebaro/papers/ak_arpabet01.
pdf, 2001.

[21] George Adams Kopp, Harriet C Green Kopp, and Angelo Angelocci. Visible speech
manual. Wayne State University Press, 1967.

[22] Marc-André Larochelle, Éloi Brassard-Gourdeau, Zeineb Trabelsi, Richard Khoury, Sehl
Mellouli, Liza Wood, and Chris Priebe. Protecting online communities from harmful
behaviors. MÉDIAS SOCIAUX, page 149.

70

[23] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs], July 2019. URL http:
//arxiv.org/abs/1907.11692. arXiv: 1907.11692.

[24] Kenneth L Pike. Phonetics: A critical analysis of phonetic theory and a technic for the
practical description of sounds. 1972.

[25] Hans Joachim Postel. Die kölner phonetik. ein verfahren zur identifizierung von perso-
nennamen auf der grundlage der gestaltanalyse. IBM-Nachrichten, 19:925–931, 1969.

[26] Tobias Renwick and Denilson Barbosa. Detection and Identification of Obfuscated Ob-
scene Language with Character Level Transformers. Proceedings of the Canadian Con-
ference on Artificial Intelligence, June 2021. URL https://caiac.pubpub.org/pub/
5uqi2h7k/release/1.

[27] C Russell Robert. The soundex coding system. Patent No. US1261167, 1918.

[28] José Carlos Rosales Núñez, Djamé Seddah, and Guillaume Wisniewski. Phonetic
Normalization for Machine Translation of User Generated Content. In Proceedings
of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 407–416,
Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-5553. URL https://www.aclweb.org/anthology/D19-5553.

[29] Ranjan Satapathy, Claudia Guerreiro, Iti Chaturvedi, and Erik Cambria. Phonetic-
based microtext normalization for twitter sentiment analysis. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW), pages 407–413. IEEE, 2017.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
arXiv:1706.03762 [cs], December 2017. URL http://arxiv.org/abs/1706.03762.
arXiv: 1706.03762.

[31] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pages 38–45, Online, October 2020. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

71

[32] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. PAY LESS
ATTENTION WITH LIGHTWEIGHT AND DYNAMIC CONVOLUTIONS. page 14,
2019.

72

