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Résumé

Les réseaux de neurones profonds ont démontré un fort impact dans de nombreuses applications

du monde réel et ont atteint des performances prometteuses dans plusieurs domaines de recherche.

Cependant, ces gains empiriques sont généralement difficiles à déployer dans les scénarios du monde

réel, car ils nécessitent des données étiquetées massives. Pour des raisons de temps et de budget, la

collecte d’un tel ensemble de données d’entraînement à grande échelle est irréaliste.

Dans cette thèse, l’objectif est d’utiliser le distribution matching pour développer de nouvelles ap-

proches d’apprentissage profond pour la prédiction de peu de données étiquetées. En particulier, nous

nous concentrons sur les problèmes d’apprentissage multi-tâches, d’apprentissage actif et d’adaptation

au domaine, qui sont les scénarios typiques de l’apprentissage à partir de données étiquetées limitées.

La première contribution consiste à développer l’approche principale de l’apprentissage multi-tâches.

Concrètement, on propose un point de vue théorique pour comprendre le rôle de la similarité entre les

tâches. Basé sur les résultats théoriques, nous re-examinons l’algorithme du Adversarial Multi-Task

Neural Network, et proposons un algorithme itératif pour estimer le coefficient des relations entre les

tâches et les paramètres du réseaux de neurones.

La deuxième contribution consiste à proposer une méthode unifiée pour les requêtes et les entraînements

dans l’apprentissage actif profond par lots. Concrètement, nous modélisons la procédure interactive

de l’apprentissage actif comme le distribution matching. Nous avons ensuite dérivé une nouvelle

perte d’entraînement, qui se décompose en deux parties : l’optimisation des paramètres du réseaux de

neurones et la sélection des requêtes par lots. En outre, la perte d’entraînement du réseau profond est

formulée comme un problème d’optimisation min-max en utilisant les informations des données non

étiquetées. La sélection de lots de requêtes proposée indique également un compromis explicite entre

incertitude et diversité.

La troisième contribution vise à montrer l’incohérence entre le domain adversarial training et sa

correspondance théorique supposée, basée sur laH-divergence. Concrètement, nous découvrons que la

H-divergence n’est pas équivalente à la divergence de Jensen-Shannon, l’objectif d’optimisation dans

les entraînements adversaires de domaine. Pour cela, nous établissons un nouveau modèle théorique

en prouvant explicitement les bornes supérieures et inférieures du risque de la cible, basées sur la

divergence de Jensen-Shannon. Notre framework présente des flexibilités inhérentes pour différents
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problèmes d’apprentissage par transfert. D’un point de vue algorithmique, notre théorie fournit une

guidance de l’alignement conditionnel sémantique, de l’alignement de la distribution marginale et de la

correction du label-shift marginal.

La quatrième contribution consiste à développer de nouvelles approches pour agréger des domaines

de sources avec des distributions d’étiquettes différentes, où la plupart des approches récentes de

sélection de sources échouent. L’algorithme que nous proposons diffère des approches précédentes

sur deux points essentiels : le modèle agrège plusieurs sources principalement par la similarité de la

distribution conditionnelle plutôt que par la distribution marginale ; le modèle propose un cadre unifié

pour sélectionner les sources pertinentes pour trois scénarios populaires, l’adaptation de domaine avec

une étiquette limitée sur le domaine cible, l’adaptation de domaine non supervisée et l’adaptation de

domaine non supervisée partielle par étiquette.
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Abstract

Deep neural networks have demonstrated a strong impact on a wide range of tasks and achieved

promising performances. However, these empirical gains are generally difficult to deploy in real-world

scenarios, because they require large-scale hand-labeled datasets. Due to the time and cost budget,

collecting such large-scale training sets is usually infeasible in practice.

In this thesis, we develop novel approaches through distribution matching to learn limited labeled data.

Specifically, we focus on the problems of multi-task learning, active learning, and domain adaptation,

which are the typical scenarios in learning from limited labeled data.

The first contribution is to develop a principled approach in multi-task learning. Specifically, we

propose a theoretical viewpoint to understand the importance of task similarity in multi-task learning.

Then we revisit the adversarial multi-task neural network and propose an iterative algorithm to estimate

the task relation coefficient and neural-network parameters.

The second contribution is to propose a unified and principled method for both querying and training

in deep batch active learning. We model the interactive procedure as distribution matching. Then we

derive a new principled approach in optimizing neural network parameters and batch query selection.

The loss for neural network training is formulated as a min-max optimization through leveraging the

unlabeled data. The query loss indicates an explicit uncertainty-diversity trade-off batch-selection.

The third contribution aims at revealing the incoherence between the widely-adopted empirical domain

adversarial training and its generally assumed theoretical counterpart based on H-divergence. Con-

cretely, we find thatH-divergence is not equivalent to Jensen-Shannon divergence, the optimization

objective in domain adversarial training. To this end, we establish a new theoretical framework by

directly proving the upper and lower target risk bounds based on the Jensen-Shannon divergence.

Our framework exhibits flexibilities for different transfer learning problems. Besides, our theory

enables a unified guideline in conditional matching, feature marginal matching, and label marginal

shift correction.

The fourth contribution is to design novel approaches for aggregating source domains with different

label distributions, where most existing source selection approaches fail. Our proposed algorithm

differs from previous approaches in two key ways: the model aggregates multiple sources mainly

through the similarity of conditional distribution rather than marginal distribution; the model proposes
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a unified framework to select relevant sources for three popular scenarios, i.e., domain adaptation with

limited label on the target domain, unsupervised domain adaptation and labels partial unsupervised

domain adaption.
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Introduction

Modern machine learning systems such as deep neural networks have demonstrated a strong impact on

a wide range of real-world applications and achieved state-of-the-art performances for computer vision

(Krizhevsky et al., 2012), natural language processing (Bahdanau et al., 2014) and speech recognition

(Yu and Deng, 2014). However, these empirical gains are generally difficult to deploy to real-world

scenarios, because they usually require large scale hand-labeled datasets. Moreover, it is usually not

practically feasible to collect such a large training dataset due to the time and cost budget (Roh et al.,

2019).

To address this, various research directions have been proposed to address the label annotation scarcity,

such as labeling the most informative data for training (Active Learning) (Dasgupta, 2011)), learning

multiple similar tasks with the limited labels by extracting the common knowledge (Multi-Task

Learning) (Zhang and Yang, 2017), or using the information from a reference task (i.e. source task)

with sufficient data (Transfer Learning/Domain Adaptation) (Pan and Yang, 2009). Based on these

settings, learning from limited label data becomes theoretically and practically feasible.

In this thesis, we will develop novel and principled representation learning approaches to learn limited-

label tasks. In particular, we will introduce the scenarios of multi-task learning, active learning, and

domain adaptation, which are the typical scenarios of learning with limited labeled data.

Throughout the thesis, we will use distribution matching (Sugiyama and Kawanabe, 2012) as the tool

in analysis that has been widely applied in enormous deep learning regimes such as deep generative

models (Goodfellow et al., 2014; Kingma and Welling, 2013), transfer learning (Ganin et al., 2016).

The core idea is to learn an embedding function (representation) to obtain the invariant features between

two distributions.

The rest of the introductory chapter will consist of three parts: (1) a brief introduction to the learning

scenarios in this paper, (2) the research objective of this paper, and (3) the structure of the paper.

Scenarios of learning from limited labeled data

Multi-task learning Multitask learning aims at solving a set of related tasks simultaneously by using

shared knowledge to improve performance on each task. Under various assumptions, multitasking
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has been shown to reduce the number of labeled examples required per task to achieve acceptable

performance.

Active Learning Active learning has proposed an alternative solution to reduce the data annotation

overhead. The learning system seeks the most informative data points for labeling from a pool of

unlabeled examples to maximize the prediction performance.

Domain Adaptation Domain Adaptation is based on the motivation that learning a new task is easier

after learning a similar task. Adopting the inductive bias from a set of related source domains and

then using the shared knowledge when learning the target domain can significantly improve prediction

performance.

Research Objective

This thesis focuses on three specific scenarios with a series of new theoretical and practical contributions.

Briefly, the first contribution is to understand multi-task learning through task similarity information.

The second contribution is a novel principled training and query strategy in deep active learning. The

third contribution is the novel theoretical analysis through Jensen-Shannon Divergence for domain

adaptation. The fourth contribution is to understand label shift in multi-source domain adaptation. In

the following, the aims of this thesis and research questions will be detailed.

Objective 1. Understanding Similarity-Based Multi-Task Learning. The success of multitask

learning approaches lies in assumptions of shared knowledge among different tasks. One possible

strategy is to adopt the task similarity as an inductive bias to understand multi-task learning, shown in

Fig. 0.1.

MNIST

USPS

SVHN

Figure 0.1 – Task similarity based multi-task learning. Compared with dataset SVHN, the MNIST and
USPS datasets are semantically similar without noisy background.
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Fig. 0.1 illustrates the intuition of using similarity-based multi-task learning. Assuming three tasks in

digit recognition: MNIST (LeCun et al., 1998), USPS (Pan and Yang, 2009) and SVHN (Netzer et al.,

2011), intuitively, the MNIST and USPS dataset are more similar since SVHN has a relative noisy

background and different digit configurations. Therefore, in the algorithm design, MNIST and USPS

tasks should be processed in a similar way to ensure good performance.

The work associated with this objective aims at answering the following research questions:

1. What is the theoretical and empirical benefit of considering task similarity information?

2. How to derive practical algorithm through using task similarity information?

Objective 2. Unified Method for Query and Training in Deep Active Learning The key to

successful active learning is to properly design the query algorithms. For instance, using the uncertainty

principle (e.g., maximum entropy principle) to conduct the query, which can lead to biased sampling in

a subset of the dataset. To mitigate this effect, recent works have considered obtaining a diverse set

(Sener and Savarese, 2018) of samples to capture the global data distribution information. However,

this can be problematic in a small query budget for ensuring a subset that covers the whole data.

The work associated with this objective aims at answering the following research questions:

1. Is there a principled query strategy that simultaneously considers the uncertainty and diversity

criteria?

2. In the context of deep learning, the available large set of unlabeled samples may be helpful to

construct a good feature representation that would potentially improve performance. In order to

further promote better results, can we additionally design a loss for optimizing DNN’s weights

that would leverage the unlabeled samples during training?

Objective 3. Domain Adaptation Theory With Jensen-Shannon Divergence Domain Adapta-

tion (DA) theory is crucial to the fundamental understanding and practical development of relevant

algorithms. Conventionally, such theoretical guarantees were typically based on the notion of H-

divergence (Ben-David et al., 2007, 2010a) and its subsequent variants, where it requires a small

H-divergence between source-target and small joint risk. In the context of deep learning,H-divergence

is minimized via the well-known domain adversarial training (Ganin et al., 2016), which is a stimulat-

ing topic. Despite domain adversarial training being widely successful in various DA problems such as

open set DA (Panareda Busto and Gall, 2017; Cao et al., 2018; You et al., 2019) or label shift (Li et al.,

2019b), the generally assumed theoretical counterpartH-divergence itself is rather limited to explain

these working principles, which hampers the further practical advancement.

The work associated with this objective aims at answering the following research questions:

1. It has been noted that the inherent principle of domain adversarial training is analog to GANs

(Goodfellow et al., 2014), which is equivalent to minimizing the Jensen-Shannon divergence
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(Nowozin et al., 2016) of two distributions. Therefore, can we derive a domain adaptation theory

directly on the Jensen-Shannon divergence?

2. What are the novel theoretical and practical implications of Jensen-Shannon divergence-based

theory?

Objective 4. Multi-Source Domain Adaptation Approach Under Label Shifts One implicit as-

sumption in most transfer learning algorithms is that the label proportions remain unchanged across

different domains (Du Plessis and Sugiyama, 2014) (i.e., S(y) = T (y)). In many real-world appli-

cations, the label distributions can vary markedly (i.e., label shift) (Wen et al., 2014; Lipton et al.,

2018; Li et al., 2019b). For instance, in disease diagnostics, the portions of different diseases can vary

dramatically, whereas existing approaches cannot guarantee a small target generalization error.

Moreover, domain adaptation becomes even more challenging when transferring knowledge from

multiple sources to build a model for the target domain, as this requires an effective selection and

leveraging the most useful source domains when label shift occurs (S(y) 6= T (y)). This is not only

theoretically interesting but also commonly encountered in real-world applications.

For example, (Liu et al., 2004) pointed out the ratio of coronary heart disease (CHD) varies among

different provinces in China. If we consider the task of CHD diagnosing in a province without sufficient

labeled data or even unlabeled data, how can we leverage the information from other provinces

with abundant data to help the diagnosing? Furthermore, in the intelligent health, due to different

demographics, the disease proportion generally varies over countries (Geiss et al., 2014).

Motivated by this real-world practice: the work associated with this objective aims at answering the

following research question:

Can we derive new theories and practices in multisource domain adaptation when label shift occurs?

Thesis Structure

The outline of the thesis is shown in Fig.0.2. Chapter 1 deals with the foundations and background of

the thesis. Chapter 2 introduces the novel approach of similarity-based multi-task learning. Chapter 3

presents the principled approach to query and training in Deep Active Learning. Chapter 4 presents a

theory of domain adaptation through Jensen-Shannon divergence with new practical and theoretical

insights. Chapter 5 presents a novel approach for handling label shift in multi-source domain adaptation.
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Figure 0.2 – Thesis Structure
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Chapter 1

Background

This chapter is divided into two parts. In the first part, an overview of different scenarios for learning

limited labels is proposed. In the second part, distribution matching is presented as the mathematical

tool used in these scenarios.

1.1 Brief Introduction to Deep Multi-Task Learning

Traditional machine learning focused mainly on developing learning algorithms for single problems.

While significant progress has been made in applied and theoretical research, in such a context, a large

amount of labeled data is still required to achieve a small generalization error. In practice, this can

be very costly, for example, in modeling user preferences for products (Murugesan and Carbonell,

2017), classifying multiple objects in computer vision (Long et al., 2017), or analyzing patient data in

computational medicine (Wang and Pineau, 2015). In the multi-task scenario (MTL), an agent learns

the shared knowledge between a set of related tasks. Under various assumptions about task relations,

MTL has been shown to reduce the number of labeled examples required per task to achieve acceptable

performance.

At the same time, constructing models for the different tasks raises new problems that do not arise in

single-task learning. Specifically, negative transfer often occurs in the MTL regime because different

tasks have different or even conflicting goals. If we only enforce loss minimization for all tasks, the

minority tasks are generally neglected by the learning algorithm, which can lead to undesirable social

and ethical problems. For this reason, the main goal of the MTL framework is to promote performance

for each task while avoiding a negative transfer.

From a practical point of view, several empirical approaches have been proposed to mitigate negative

transfer, such as developing specific losses and studying task relationships in optimization, which are

presented in the following sections.
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Multi-Task
Learning

Active
Learning

Domain
Adaptation

Distribution
Matching

Figure 1.1 – Structure of Chapter 1. We will first present the brief introduction on the scenarios of
learning limited label tasks: multi-task learning, active learning and domain adaptation. Then on the
level of methodology, we will introduce distribution matching, the common tool in analyzing these
scenarios.

Task 1
Parameter

Task 2
Parameter

Task t
Parameter

Task T
Parameter

Shared Parameter

Input

Figure 1.2 – A typical Deep Multi-Task Network Structure. It consists of two main components, the
shared parameter θshare and the task-specific parameter θt. Specifically, the role of θshare is to extract
the common representation among all tasks, while θt aims to model specific task information.

1.1.1 MTL Approaches: An optimization perspective

The deep multi-task learning can be broadly viewed as an optimization procedure over the parameters

on each task (task parameters) and parameters for all tasks (shared parameters) (Zhang and Yang, 2017),

shown in Fig. 1.2.

Based on this structure, we aim to design losses to learn θshare and θt for promoting shared information

and neglecting negative transfer. A common strategy is to define weighted losses for each task,

formulated as:
T∑
t=1

wtLt(θt, θshare),

where wt > 0 represents the task weights and Lt(θt, θshare) =
∑

(xt,yt)∼Dt `(θt, θshare; (xt, yt)) is the

loss for task t. Therefore, the MTL problem is equivalent to determining the importance of each task.

To address this problem, Murugesan and Carbonell (2017); Murugesan et al. (2016) used some heuristics

such as the norm of the gradient wt ≈ ‖∇Lt‖. Later, Sener and Koltun (2018) treated the optimization

procedure as a multi-objective optimization that aims to seek Pareto optimal solutions by optimizing

wt. However, the main technical challenge of multi-objective optimization-based approaches is the

high computational complexity of finding the optimal Pareto value in the deep network, which is still

an open question.
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Task 1 Task t Task T Auxiliary
Task 

Shared Parameter

Input

Figure 1.3 – Deep Multi-Task Learning through an auxiliary task. The role of the auxiliary task (e.g,
adversarial loss) generally aims at balancing the task loss for ensuring all the tasks being learned.

ML System

Unlabeled Pool Oracle (Expert)

Querying System Update

Label Annotation

Figure 1.4 – A high-level illustration of Batch Active Learning. It consists of three main components:
the machine learning system, unlabeled data pool and oracle.

1.1.2 MTL Approaches: Task relation perspective

An alternative approach to find wt is to use task relations. Intuitively, we assign similar weights to

similar tasks. Following this line of research, Pentina and Lampert (2017); Liu et al. (2017); Li et al.

(2018b) measured task similarity and assigned weights through an auxiliary task, as shown in Fig. 1.3.

The auxiliary task can be either adversarial learning (Goodfellow et al., 2014) or a data reconstruction

task (Kingma and Welling, 2013), where the general goal is to estimate task relationships. In adversarial

training, for example, we have developed a discriminator that evaluates the similarity of tasks based

on the difficulty of distinguishing them. One contribution of our work is to derive a novel theoretical

analysis of the role of auxiliary tasks in MTL.

1.2 Brief Introduction to Deep Active Learning

An alternative perspective in learning limited labeled data is only to select important samples in the

training (i.e., active learning). We showed a general protocol of deep active learning (AL) in Fig 1.4,

which aims to query the most informative samples from the unlabeled data pool. Then the Oracle (or

expert) annotates for the labeling to maximize the prediction performance.
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40% 10% 5% 40%5%

Figure 1.5 – Sampling bias of uncertainty in Active Learning (Dasgupta, 2011). Consider one-
dimensional binary classification problem (prediction red/green), the data generation distribution
consists of four uniform intervals. The Red/Green dots are the initial observations; dotted line are the
estimated decision boundary from the initial samples; The triangles are querying samples according
to the uncertainty based strategies w.r.t. current decision boundary. Clearly, the uncertainty based
approach falls into a sub-optimal solution with prediction error 10% rather than the global optimal 5%.

1.2.1 Uncertainty and Diversity Query

Uncertainty Since the performance of AL depends on the selected samples, a key question is to

search the most informative samples in the context of the deep neural network (DNN). A common

solution is to apply the DNN output confidence score as the uncertainty acquisition function (Settles,

2012; Gal et al., 2017; Haussmann et al., 2019). For example, denote the output of the classifier as

S(x, y), which is a function containing the probability of different classes y, given input x.1 Then

the uncertainty aims at searching the unsure samples such as maximum entropy w.r.r. S(x, y) or least

confident score maxy S(x, y), showing in Fig 1.6.

However, a well-known issue for uncertainty-based sampling in AL is the so-called sampling bias (Das-

gupta, 2011): the current labeled points are not representative of the underlying distribution. For

example, as shown in Fig. 1.5, assuming that the few initial labeled samples lie in the two extreme

regions. Then based on an uncertainty approach, the queried samples are nearest to the currently

estimated decision boundary, which will lead to a final suboptimal risk of 10% instead of the true

optimal risk of 5%. This issue will be more severe in high-dimensional and complex datasets, where

DNNs are commonly deployed.

Diversity An alternative solution is to query a diverse set 2 of samples for training DNN to reduce

the sampling bias. I.e, if the queried samples are the most representative of the whole dataset (e.g, the

centers of the clusters of the dataset), the queries samples will be informative. In other words, if the the

queried dataset is Q(x), then the diversity suggests queried data should be resemble the whole dataset

D(x): Q(x) ≈ D(x), showing in Fig 1.6.

For example, Sener and Savarese (2018) constructed the core-sets through solving the K-center

problem. However, searching the core-set is still computationally expensive as it requires constructing

a large distance matrix of unlabeled samples. More importantly, it might not be a proper approach,
1Clearly we have

∑
y S(x, y) = 1.

2In some studies, diversity criteria is also referred to as representative criteria, with the same purpose: to query the
samples to reflect their underlying distribution.
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(a) Uncertainty Criteria (Gal et al., 2017)
(b) Diversity Criteria (Sener and Savarese,
2018)

Figure 1.6 – Uncertainty v.s diversity criteria. (a) The Uncertainty criteria aims to query the most
unsure samples near the current decision boundary. However, the current samples are not representative
of the whole dataset, which is consistent with Fig.3.2. (b) The Diversity criteria aims to query the most
representative samples from the the whole data: the centers of the clusters within the dataset.

particularly for a large-scale unlabeled pool and a small query batch, which it is hard to cover the entire

data (Ash et al., 2019).

Instead of solely focusing on uncertainty or diversity samples during the query, a hybrid strategy

might be more appropriate. For example, Yin et al. (2017) heuristically selected a portion of samples

according to the uncertainty score for exploitation and random sampling in the remaining portion for

exploration. Ash et al. (2019) collected samples whose gradients span a diverse set of directions by

implicitly considering these two criteria. Since such hybrid strategies empirically showed improved

performance, an interesting direction is to derive the querying approach with explicitly considering the

uncertainty-diversity trade-off from a principled viewpoint.

1.2.2 Training Rules in Deep AL

Besides, in the context of deep AL, the available large set of unlabeled samples may be helpful to

construct a good feature representation that would potentially improve performance. To further promote

better results, the question is how we can additionally design a loss for optimizing DNN’s weights that

would leverage from the unlabeled samples during the training.

To address this, a promising line of work is to integrate the training with a deep generative model

which naturally focuses on the unlabeled data information (Goodfellow et al., 2014; Kingma and

Welling, 2013). Only a few works strode in this direction. Notably, Sinha et al. (2019) empirically

adopted a β-VAE to construct the latent variables. Then they adopted the intuition from (Gissin and

Shalev-Shwartz, 2019), which searched the diverse unlabeled batch for samples that do not look like

the labeled samples, through adversarial training. Despite some good performance, this approach still

concentrated on empirically designing the training loss and the formal justifications remain elusive,

Therefore, in our thesis, the second contribution is to derive a principled approach of both query and

training in a deep active learning approach.
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Source Domain
S(x, y)

Shared
Knowledge

Target Domain
T (x, y)

Figure 1.7 – Illustration of Domain Adaptation. The shared knowledge (inductive bias) is learned from
the sources, and then transferred to the target.

1.3 Brief Introduction to Domain Adaptation

Domain Adaptation (DA) or Transfer Learning proposes another prospect to learn a target task with

limited or even no labels. The success of DA lies in extracting the shared knowledge between two

domains, shown in Fig.1.7. To this end, the system can learn the target with limited data.

Unsupervised DA Unsupervised Domain Adaptation is one popular scenario, where we want to

learn the source domain S(x, y) and leverage the knowledge to the unlabeled target domain T (x).

Unsupervised DA is impossible if no additional assumption between the source and target is added.

Therefore, a core question in unsupervised DA is to explore the working conditions. Ben-David et al.

(2006) proposed a series of theoretical works to explore the possibility of a successful DA.

H-divergence and Unsupervised DA theory

Suppose the data is defined in input space X and label space Y = {−1, 1}. The source and target tasks

on X are different, denoting as the source domain S with probability density S(x, y) and target domain

T with probability density T (x, y). 3 In unsupervised DA, we aim to learn a model on the labeled

source dataset S that are i.i.d. sampled from S and unlabeled target dataset T that is i.i.d. sampled

from target domain T :

S = {(xi, yi)}ni=1 ∼ (S)n T = {(xi)}Ni=n+1 ∼ (T )n
′

with N = n + n′ being the total number of samples. The goal is to build a classifier h : X → Y ,

h ∈ H with a small target risk

RT (h) = P(x,y)∼T (h(x) 6= y)

without label information in the target domain.

To address the domain adaptation, the motivation is to upper bound the target prediction error by the

source prediction error plus a term which evaluates the similarity between source and target. Intuitively,

if two domains are similar, it is easier to leverage the knowledge from the source domain. Formally,
3Throughout this thesis, S(x) and T (x) are denoted as the marginal distribution rather than the specific evaluation at

point x.
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Ben-David et al. (2006) introducedH-divergence to measure the similarity and derived the following

theoretical results.

Definition 1.1 (H-divergence (Ben-David et al., 2006, 2010a)). Consider two distributions P(x)

and Q(x) over X , and hypothesis set H, which is a set of binary classifier η : X → {0, 1}. Then

H-divergence between P(x) and Q(x) is defined as:

dH(P(x),Q(x)) = 2 sup
η∈H
|Px∼P(η(x) = 1)− Px∼Q(η(x) = 1)|

Intuitively,H-divergence depends on the capacity of the hypothesis setH to distinguish between the

samples generated from P andQ. Ben-David et al. (2006) further pointed out that for a hypothesis class

H, we can compute empiricalH-divergence between two samples P ∼ (P(x))m and Q ∼ (Q(x))m

as:

d̂H(P,Q) = 2

(
1−min

η∈H

[
1

m

m∑
i=1

1{η(xi) = 0}+
1

m

2m∑
i=m+1

1{η(xi) = 1}
])

where {xi}mi=1 is the source samples and {xi}2mi=m+1 are the target samples, 1{·} is the indicator

function, which equals to 1 if prediction is true and 0 otherwise. Ben-David et al. (2006, 2010a)

demonstrated a PAC (Probability Approximately Correct) bound to estimate the gap between the

expected and empiricalH-divergence.

Proposition 1.1. LetH be a hypothesis space on X with VC dimension d. If P and Q are samples of

size m from P and Q respectively and d̂H(P,Q) is the empiricalH-divergence between samples, then

for any δ ∈ (0, 1), with probability at least 1− δ:

dH(P(x),Q(x)) ≤ d̂H(P,Q) + 4

√
d log(2m) + log(2

δ )

m

The proposition shows that the empiricalH-divergence between two samples from distributions P and

Q converges uniformly to the trueH-divergence for hypothesis classH of finite VC dimension.

Based onH-divergence, the target source risk can be bounded through Theorem 1.

Theorem 1.1. LetH be a hypothesis class with VC dimension d, with high probability over the choice

of source samples S ∼ (S(x))n and unlabeled target samples T ∼ (T (x))n, for ∀h ∈ H, we have:

RT (h) ≤ R̂S(h) + d̂H(S, T ) +

√
4

n
(d log(

2en

d
) + log(

4

δ
)) + 4

√
1

n
(d log(

2n

d
) + log(

4

δ
)) + β,

where β = infh?∈H[RS(h?) +RT (h?)] is the optimal risk on both domain and the empirical source

risk R̂S(h) = 1
n

∑n
i=1 1{h(xi) 6= yi}.

Theorem 1.1 shows that the target risk is upper bounded by the source risk, theH divergence between

source and target, as well as the optimal classification error. Besides, to ensure a small upper bound, a
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Figure 1.8 – General framework of domain adversarial neural network. The network consists three main
components: the feature extractor g, the classifier and the critic function φ. The min-max optimization
is conducted between φ and g, where the critic function φ aims to differentiate from source and target
and enforces g to learn the invariant representation.

small joint optimal classification error β is necessarily. Otherwise, optimizing the upper bound for an

arbitrary large β can not guarantee a small target risk.

It is also worth mentioning that Ben-David et al. (2010a) illustrated that the H-divergence based

theory is inaccurate. Actually, the H-divergence should be H∆H divergence. However, in practice,

H∆H divergence is impossible to estimate from the data. Then Ben-David et al. (2010a) still adopted

the H-divergence to approximate H∆H divergence. Thus, in this thesis, we will treat H and H∆H
divergence interchangeably throughout the paper.

Given a small β, Ganin et al. (2016) designed a domain adversarial neural network to realize the

unsupervised DA, shown in Fig 1.8.

The domain adversarial network consists of three parts: the feature extractor g that maps the data to

the latent space z = g(x), the classifier h that predicts the output y = h(z) and the critic (domain

discriminator) function φ that aims at differentiating the source and target distribution. Therefore, the

loss in the deep domain adaptation can be expressed as:

min
h,g

max
φ

E(xs,ys)∼SLclf(h ◦ g(xs), ys)︸ ︷︷ ︸
Source Classification loss

+λ
[
Exs∼S(x) log(φ ◦ g(xs)) + Ext∼T (x) log(1− φ ◦ g(xt))

]︸ ︷︷ ︸
Domain Adversarial Loss

The aforementioned loss consists of two parts: the source classification loss that corresponds to the first

term of Theorem 1.1, and the domain adversarial loss that corresponds to the second term of Theorem

1.1. Specifically, the adaptation procedure is trained in an adversarial way, that the representation

learning function g learns features that are domain-invariant, while the critic function φ discriminates

between features from source and target. Through this adversarial training, the feature extractor g

learns the domain-invariant feature from the source and target.
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1.4 Distribution Matching and Statistical Divergence

We have introduced domain adversarial training that aims at learning a domain invariant representation

through distribution matching, which is a popular tool in deep generative modeling (Kingma and

Welling, 2013; Goodfellow et al., 2014) and transfer learning (Ganin et al., 2016).

In general, we have two distribution functions P(x) and Q(x) with x ∈ X , P(x) 6= Q(x). The

distribution matching aims to learn a transformation function g(x) : X → Z such that maps x ∈ X
into a new variable z ∈ Z . Then the goal is to find a good transformation function g to achieve

P(z) = Q(z) on the latent space, ∀z ∈ Z .

In practice, we adopt a statistical divergenceD to measure the “similarity” of two distributionD(P‖Q).

Generally, the statistical divergence requires:

1. The divergence is non-negative with D(P‖Q) ≥ 0

2. D(P‖Q) = 0 if and only if identical distributions P = Q.

We list several popular statistical divergences for machine learning.

1.4.1 f -Divergence

The information theoretical f -divergence is characterized by a convex function f with f(1) = 0, then

f -divergence of distribution P and Q (probability density function p(x) and q(x)) is defined as:

Df (P‖Q) =

∫
x
f

(
p(x)

q(x)

)
q(x)dx

We also propose several common f -divergence, shown in Tab. 1.1.

Table 1.1 – Popular f -divergence

Divergence Name f(x) Df (P‖Q)

Kullback-Leibler Divergence x log(x) DKL(P‖Q) = Ep[log(p(x)
q(x) )]

Total Variation 1
2 |x− 1| 1

2

∫
x |p(x)− q(x)|

χ2 Divergence (x− 1)2
∫
x

(p(x)−q(x))2

q(x)

Squared Hellinger distance (1−√x)2
∫
x(
√
p(x)−

√
q(x))2

Jensen-Shannon Divergence x log( 2x
x+1) + log( 2

x+1) DKL(P‖P+Q
2 ) +DKL(Q‖P+Q

2 )

Variational f -divergence One advantage of introducing f -divergence is that it can be efficiently

estimated through the variational form. Specifically, if we define the convex conjugates of f as

f?(y) = sup
x

[xy − f(x)]

Then the variational term of f -divergence can be expressed as:

Df (P‖Q) = sup
d:X→R

EP [d(x)]− EQ[f?(d(x))].
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Example (TV distance) By using f(x) = 1
2 |x− 1|, we have

dTV(P‖Q) = sup
d

EP [d(x)]− EQ[d(x)].

Therefore, in deep learning approaches, f -divergence can be efficiently estimated by introducing a

statistical critic function d to maximize the dual term of f -divergence.

1.4.2 Integral Probability Metrics: IPM

Another popular distribution similarity metric is the Integral Probability Metrics (IPM). Given two

probabilities P and Q, and a real valued function family f ∈ F , then IPM can be defined as:

IPM(P‖Q) = sup
f∈F
|EPf(x)− EQf(x)|.

We also propose several common IPM metrics on different families F .

• Wasserstein Distance (Villani, 2009). If we set f as 1-Lipschitz function with |f(x)− f(y)| ≤
‖x − y‖2, ∀x, y, denoted as F := {f : ‖f‖L ≤ 1}. Then the IPM is equivalent to the

Wasserstein-1 distance.

• Total Variation Distance. If the function is bounded by 1 with supx∈X |f(x)| ≤ 1, then IPM

recovers the Total Variation distance.

• Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). We set F = {f : ‖f‖H ≤
1}, where H represents a reproducing kernel Hilbert space (RKHS). Then IPM recovers the

Maximum Mean Discrepancy.

1.4.3 Hypothesis-Based Divergence

Apart from the statistical divergence, an alternative way is to adopt a hypothesis familyH to estimate

the divergence between two distributions such as the aforementionedH-divergence. In this part, we

will introduce other popular hypothesis-based divergences.

Discrepancy Distance Analogue toH-divergence, the discrepancy distance can be estimated from

finite samples with data-dependent bound on Rademacher Complexity. In addition, compared with

H-divergence, the discrepancy distance can be used for comparing distributions for more general

scenarios, including regression and general loss functions.

Definition 1.2 (Mansour et al. (2009a); Cortes et al. (2019)). Let H be a set of functions mapping

the input x ∈ X to output y ∈ Y with h ∈ H, and let L : Y × Y → R+ be the loss function. The

discrepancy distance discL between two distributions P and Q is:

discL(P,Q) = max
h,h′∈H

|Ex∼PL(h(x), h
′
(x))− Ex∼QL(h(x), h

′
(x))|

Then we can prove the uniform convergence property of discrepancy distance.
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Proposition 1.2 (Mansour et al. (2009a)). Let H be a hypothesis set bounded by some M > 0 for

the loss function is q-quadratic loss with Lq(h(x), h
′
(x)) = |h(x)− h′(x)|q and Lq(h, h

′
) ≤M , for

all hypothesis pair h, h ∈ H. Let P be a distribution over X and P the corresponding empirical

distribution, and let Q be a distribution over X and Q the corresponding empirical distribution. Then

for any δ > 0, with probability at least 1− δ over samples P̂ of size m drawn according to P and Q̂ of

size n drawn according to Q:

discLq(P,Q) ≤ discLq(P̂ , Q̂) + 4q(R̂P (H) + R̂Q(H)) + 3M

(√
log(4/δ)

2m
+

√
log(4/δ)

2n

)
,

Where R̂P (H) represents the Rademacher Complexity w.r.t. the empirical observationP = (x1, . . . , xm),

which is defined as R̂P (H) = 2
mEσi [suph∈H |

∑m
i=1 σih(xi)| |P = (x1, . . . , xm)]. Where σi is the

Rademacher variable that follows Bernoulli distribution with probability 0.5: σi ∼ Ber(0.5).

1.4.4 Generalized Distribution Matching Network

Apart from introducing the auxiliary (adversarial) task to learn domain invariant features, one can

directly learn the domain invariant feature by distribution matching. In fact, the Theoretical result in

Theorem 1.1 can be extended to other divergences with the following form:

RT (h) ≤ RS(h) + d(S, T ) + β,

where RS(h) represents the source prediction risk. d(·, ·) represents several metrics such as Wasser-

stein distance (Shen et al., 2017), Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) and

discrepancy distance (Mansour et al., 2009a). The β term represents the discrepancy of source-target

ground-truth labeling function, which can be viewed as a sufficient condition for ensuring a successful

DA algorithm. Inspired by this general domain adaptation theory, we can design the generalized

distribution matching network, shown in Fig 1.9.

The matching network consists of two parts: the feature extractor g that maps the data into the latent

space z = g(x), the classifier h that predicts the output y = h(z). Therefore, the loss for generalized

distribution matching can be expressed as:

min
h,g

E(xs,ys)∼SLclf(h ◦ g(xs), ys)︸ ︷︷ ︸
Source Classification loss

+λ d(S(g(x))‖T (g(x)))︸ ︷︷ ︸
Distribution Matching Loss

,

where d represents distribution distance metrics which measure the similarity of two distributions on

the latent space Z , and λ > 0 is the hyper-parameter. For example,

• If we adopt MMD (Gretton et al., 2012) with a specific kernel K(·, ·), then we have

MMD2(S‖T ) = Ex,x′∼S K(x, x′) + Ey,y′∼T K(y, y′)− 2Ex∼S,y∼T K(x, y),

• If we adopt TV distance, then we have:

dTV(S‖T ) = ‖S(X)− T (X)‖1 =

∫
x
|S(x)− T (x)|dx,
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Figure 1.9 – Generalized Distribution Matching Network. The generalized matching aims to match the
source and target distribution in the embedding space.

In general, these distribution metrics can be directly estimated from the data. Therefore, the deep learn-

ing algorithms aim at align the source and target features to learn the domain-invariant representation.
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Chapter 2

Principled Approach for Learning Task
Similarity in MTL

Original title of the article: A Principled Approach for Learning Task Similarity in Multitask
Learning

Résumé

Dans ce chapitre, nous proposons un nouveau point de vue théorique pour comprendre la similarité des

tâches dans l’apprentissage multitâche. Nous proposons d’abord une borne supérieure sur l’erreur de

généralisation de l’apprentissage multitâche, en montrant l’avantage de la explicite et implicite de la

similarité des tâches. Nous dérivons systématiquement les bornes supérieures du risque cible en nous

basant sur deux métriques de similarité des tâches : la divergenceH et la distance de wasserstein. À

partir des résultats théoriques, nous revisitons le réseau neuronal multi-tâches adversarial, en proposant

un nouvel algorithme pour apprendre les coefficients de relation de tâche et les paramètres du réseau

de manière itérative. Nous évaluons le nouvel algorithme sur plusieurs benchmarks, ce qui indique

non seulement des relations de tâches robustes, mais aussi des performances supérieures à celles des

baselines.

Abstract

In this chapter, we propose a novel theoretical view in understanding task similarity in Multi-Task

Learning. We first provide an upper bound on the generalization error of multitask learning, showing

the benefit of explicit and implicit task similarity knowledge. We systematically derive the target risk

upper bounds based on two task similarity metrics: H-divergence and Wasserstein distance. From the

theoretical results, we revisit the Adversarial Multi-Task Neural Network, proposing a new training

algorithm to learn the task relation coefficients and neural network parameters iteratively. We assess
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the new algorithm on several benchmarks, which not only indicates robust task relations, but also

outperforms the baselines.

2.1 Introduction

Understanding the theoretical assumptions of the task relationship plays a key role in designing a good

MTL algorithm. It determines which inductive bias should be involved during the learning. Recently,

many successful algorithms relied on task similarity information, which assumes the Probabilistic Lip-

schitzness (PL) condition (Urner and Ben-David, 2013) as the inductive bias. For instance, Murugesan

and Carbonell (2017); Murugesan et al. (2016); Pentina and Lampert (2017) minimized a weighted

sum of empirical loss in which similar tasks are assigned similar weights. These approaches explicitly

estimate the task similarities through a linear model. Since these approaches are estimated in the

original input space, it is difficult to handle the large covariate shift problem, e.g source and target have

different support. Therefore, many neural network based approaches started to explore implicitly tasks

similarities: Liu et al. (2017); Li et al. (2018b) used adversarial loss by feature adaptation, minimizing

the distribution distance between the tasks to construct a shared feature space. Then, the hypothesis for

the different tasks are learned over this adapted feature space.

The implicit similarity learning approaches are inspired from the idea of Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014). However, the fundamental implications of incorporating

task similarity information in MTL algorithms are unclear. The two main questions remain elusive:

why should we combine explicit and implicit similarity knowledge in the MTL framework and how

can we properly handle it.

Previous works either consider explicit or implicit similarity knowledge separately, or heuristically

combine these two in some specific applications. In contrast, the main goal in this chapter is to (1)

propose a rigorous analysis of the benefits of task similarities, (2) derive an algorithm which properly

uses this information. We start by deriving an upper bound on the generalization error of MTL under

different similarity metrics (or adversarial loss). These theoretical results show the benefits of using

adversarial loss in MTL: control the generalization error in MTL. Then we derive a new procedure

to update the relationship coefficients from these theoretical guarantees. This procedure allows us

to bridge the gap between the explicit and implicit similarities, which have been previously seen as

disjointed or treated in an ad hoc manner. We derive a new algorithm to train the Adversarial Multitask

Neural Network (AMTNN) and empirically validate on two benchmarks: digit recognition and Amazon

sentiment analysis. The results show that our method not only highlights some interesting relations, but

also outperforms the previous baselines, reaffirming the benefits of the theory in algorithm design.
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2.2 Problem Set-up

Considering a set of T tasks {D̂t}Tt=1, in which the observations are generated by the underlying

distributionDt overX and the real target is determined by the underlying labeling functions ft : X → Y
for {(Dt, ft)}Tt=1. Then, the goal of MTL is to find T hypothesis: h1, . . . , hT over the hypothesis space

H to control the average expected error of all tasks:

1

T

T∑
t=1

Rt(ht),

where Rt(ht) ≡ Rt(ht, ft) = Ex∼Dt`(ht(x), ft(x)) is the expected risk at task t and ` is the loss

function. Throughout the theoretical part, the loss is `(ht(x), ft(x)) = |ht(x) − ft(x)|, which is

coherent with (Pentina and Lampert, 2017; Li et al., 2018b; Ben-David et al., 2010a; Ganin et al., 2016;

Redko et al., 2017). If h, f are the binary mappings with output in {−1, 1}, it recovers the typical

zero-one loss.

We also assume that each task has mt examples, with
∑T

t=1mt = m examples in total. Then for each

task t, we consider a minimization of weighted empirical loss for each task. That means we define

a simplex αt ∈ ∆T = {αt,i ≥ 0,
∑T

i=1 αt,i = 1} for the corresponding weight for task t. Then the

weighted empirical error w.r.t. the hypothesis h for task t can be written as:

R̂αt(h) =

T∑
i=1

αt,iR̂i(h),

where R̂i(h) = 1
mi

∑mi
j=1 `(h(xj),yj) is the average empirical error for task i. Intuitively, in the

proposed loss, each task risk is controlled by a weighted sum of other tasks. By leveraging the other

tasks, the current task can be learned with limited data.

2.2.1 Similarity Measures

As we illustrated in the previous section, we are interested in task similarity metrics in MTL. Therefore,

the first element to determine is how to measure the similarity between two distributions. For this, we

introduce two metrics: H∆H-divergence (Ben-David et al., 2010a) and Wasserstein distance (Arjovsky

et al., 2017), which are widely used in machine learning.

H∆H-divergence Given an input space X and two probability distributions Di and Dj over X , let

H be a hypothesis class on X . We define theH∆H-divergence of two distributions as

dH∆H(Di,Dj) = sup
h,h′∈H

|Ri(h, h′)−Rj(h, h′)|.

The empiricalH∆H-divergence corresponds to:

dH∆H(D̂i, D̂j) = sup
h,h′∈H

|R̂i(h, h′)− R̂j(h, h′)|.
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Wasserstein distance We assume X is the measurable space and denote P(X ) as the set of all

probability measures over X . Given two probability measures Di ∈ P(X1) and Dj ∈ P(X2), the

optimal transport (or Monge-Kantorovich) problem can be defined as searching for a probabilistic

coupling γ refined as a joint probability measure over X1 ×X2 with marginals Di and Dj for all x,y

that are minimizing the cost of transport w.r.t. some cost function c:

argminγ

∫
X1×X2

c(x,y)pdγ(x,y),

s.t. PX1#γ = Di; PX2#γ = Dj ,

where PX1 is the projection over X1 and # denotes the push-forward measure. The Wasserstein

distance of order p between Di and Dj for any p ≥ 1 is defined as:

W p
p (Di,Dj) = inf

γ∈Π(Di,Dj)

∫
X1×X2

c(x,y)pdγ(x,y),

where c : X ×X → R+ is the cost function of transportation of one unit of mass x to y and Π(Di,Dj)
is the collection of all joint probability measures on X × X with marginals Di and Dj . Throughout

this paper, we only consider the case of p = 1, i.e., Wasserstein-1 distance.

2.3 Theoretical Guarantees in Multi-Task Learning

Based on the definition of the distribution similarity metric, we demonstrate that the generalization

error in multitask learning can be upper bounded by the following result:

Theorem 2.1. Let H be a hypothesis family with VC dimension d. Assume T tasks generated by

the underlying distribution and labeling function {(D1, f1), . . . , (DT , fT )} with observation numbers

m1, . . . ,mT . If we adopt H divergence as a similarity metric, then for any fixed simplex αt ∈ RT+,

and for δ ∈ (0, 1), with probability at least 1− δ, for h1, . . . , hT ∈ H, we have:

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

R̂αt(ht)︸ ︷︷ ︸
Weighted empirical loss

+C1

T∑
t=1

(√√√√ T∑
i=1

α2
t,i

βi

)
︸ ︷︷ ︸

Coefficient regularization

+
1

T

T∑
t=1

T∑
i=1

αt,id̂H∆H(Dt,Di)︸ ︷︷ ︸
Empirical distribution distance

+ C2 +
1

T

T∑
t=1

T∑
i=1

αt,iλt,i︸ ︷︷ ︸
Complexity term and optimal expected loss

Where βi = mi
m , C1 = 2

√
2(d log( 2em

d
)+log( 16T

δ
))

m and C2 = 2 mini,j

√
2d log(2mi,j)+log(32T/δ)

mi,j
with

mi,j = min{mi,mj}, and λi,j = infh∈H{Ri(h) +Rj(h)} the joint expected minimal error w.r.t. H.

Discussion Theorem 1 illustrates that the upper bound on the generalization error in our MTL settings

can be decomposed into the following terms:
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1. The empirical loss and empirical distribution similarities control the weights (or task relation

coefficient) α1, . . . ,αT . For instance, for a given task t, if task i has a small empirical distance

dH∆H(D̂t, D̂i) and hypothesis ht has a small empirical loss R̂i(ht) on task i, it means that task i

is very similar to t. Hence, more information should be borrowed from task i when learning t

and the corresponding coefficient αt,i should have high values.

2. Simultaneously, the coefficient regularization term prevents the relation coefficients locating

only on the αt,t, in which it will completely recover the independent MTL framework. Then the

coefficient regularization term proposed a trade-off between learning the single task and sharing

information from the others tasks.

3. The complexity and optimal terms depend on the setting hypothesis family H. Given a fixed

hypothesis family such as neural network, the complexity is constant. As for the optimal

expected loss, throughout this paper we assume λt,i is much smaller than the empirical term,

which indicates that the hypothesis familyH can learn the multiple tasks with a small expected

risk. This is a natural setting in the MTL problem since we want the predefined hypothesis family

to learn well for all of the tasks. While a high expected risk means such a hypothesis set cannot

perform well, which contradicts our assumption.

Proof Sketch The complete proof is delegated in Appendix Sec.A.2, which consists of three main

steps.

1. Expected Transfer Risk. We bound the expected risk in MTL by using the task similarity

information.

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

Rαt(ht) +
1

T

T∑
t=1

T∑
i=1

αt,idH∆H(Dt, Di) +
1

T

T∑
t=1

T∑
i=1

αt,iλt,i

2. Generalization bound expected and empirical H-divergence. In the second step, we upper

bound the expectedH-divergence, which is related to the empiricalH-divergence and a sample

complexity term.

1

T

T∑
t=1

T∑
i=1

αt,idH∆H(Dt,Di) ≤
1

T

T∑
t=1

αt,id̂H∆H(St, Si) + 2

√
2d log(2m?) + log(32T/δ)

m?

Where m? = argminmi,j

√
2d log(2mi,j)+log(32T/δ)

mi,j

3. Generalization bound expected and empirical risk. In the third step, the expected risk can be

upper bounded by its empirical counterpart and a sample complexity term.

1

T

T∑
t=1

Rαt(ht) ≤
1

T

T∑
t=1

R̂αt(ht) + 2

√
2(d log(2em

d ) + log(16T
δ ))

m

T∑
t=1

(√√√√ N∑
j=1

α2
t,j

βj

)
Combining the results in steps 1-3, we have the aforementioned theoretical results.
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In theorem 2.1, we have derived a bound based on theH divergence and applied for the classification.

Then we proposed another bound based on the Wasserstein distance, which can be applied in the

classification and regression problem.

Theorem 2.2. Let H be a hypothesis family from X to [0, 1], with pseudo-dimension d and each

member h ∈ H is K Lipschitz. Consider T tasks generated by the underlying distribution and labeling

function {(D1, f1), . . . , (DT , fT )} with observation numbers m1, . . . ,mT . If we adopt Wasserstein-1

distance as a similarity metric with cost function c(x,y) = ‖x− y‖2, then for any simplex αt ∈ ∆T ,

and for δ ∈ (0, 1), with a probability at least 1− δ, for h1, . . . , hT ∈ H, we have:

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

R̂αt(ht)︸ ︷︷ ︸
Weighted empirical loss

+C1

T∑
t=1

(√√√√ T∑
j=1

α2
t,j

βj

)
︸ ︷︷ ︸

Coefficient regularization

+
2K

T

T∑
t=1

T∑
i=1

αt,iW1(D̂t, D̂i)︸ ︷︷ ︸
Empirical distribution distance

+ C2 +
1

T

T∑
t=1

T∑
i=1

αt,iλt,i︸ ︷︷ ︸
Complexity term and optimal expected loss

where βi = mi
m , C1 = 2

√
2(d log( 2em

d
)+log( 16T

δ
))

m , C2 = 2K
T

∑T
t=1

∑T
i=1 γt,i with γt,i = µtm

−1/s
t +

µim
−1/s
i +

√
log(2T

δ )(
√

1
mt

+
√

1
mi

) and s and µ· are some specified constants. and λi,j =

infh∈H{Ri(h) +Rj(h)} the joint expected minimal error.

The proof w.r.t. the Wasserstein-1 distance is analogous to the proof in the H-divergence but under

different assumptions. The complete proof is delegated in Appendix Sec. A.3.

Remark The MTL generalization error bound indicates that we should not only minimize the

weighted empirical loss, but also minimize the empirical distribution divergence between each task.

Based on this, in the neural networks based MTL, these conclusions provide a theoretical support for

understanding the role of adversarial losses, which exactly minimize the distribution divergence.

2.4 Adversarial Multitask Neural Network (AMTNN)

From the generalization error upper bound, we developed a new training algorithm for the Adversarial

Multitask Neural Network (AMTNN). It consists of multiple training steps by iteratively optimizing

the parameters in the neural network for a given fixed relation coefficient α1, . . . ,αT and estimating

the relation coefficient, given fixed neural network weights.

Moreover, we have three types of parameters in AMTNN: θf , θd· and θh· , corresponding to the parameter

for feature extractor, adversarial loss (distribution similarity) and task prediction loss, respectively.

To simplify the problem, we assume that each task has the same number of observations, i.e., βi = 1
T ,

and the regularization will recover l2 norm of ‖αt‖2.
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2.4.1 Neural Network Parameters Update

Given a fixed α1, . . . ,αT , according to the theoretical bound, we want to minimize the weighted

empirical error 1
T

∑T
t=1 R̂αt(θ

f ,θht ) and the empirical distribution “distance” d̂(Dt,Di) with t, i =

1, . . . , T . Inspired by (Ganin et al., 2016), the minimization of the distribution “distance” is equivalent

to the maximization of the adversarial loss Êt,i(θf ,θdt,i) (defined below). Overall, we have the

following loss function with a trade-off coefficient ρ:

min
θf ,θh1 ,...,θ

h
t

max
θdt,i

T∑
t=1

R̂αt(θ
f ,θht ) + ρ

T∑
i,t=1

αt,iÊt,i(θ
f ,θdt,i). (2.1)

It should be noted that for a given task t, the sum loss is 1
T

∑T
i=1 αt,i

∑
x∈D̂i `((x, y),θf ,θht ), with `

being the cross entropy loss. This means that the empirical loss is a weighted sum of all of the task

losses, determined by task relation coefficient αt. This is coherent with (Murugesan et al., 2016),

which does not provide theoretical explanations.

In addition, the adversarial loss Êt,i(θf ,θdt,i) is a symmetric metric for which we need to compute Êt,i
only for t < i. Motivated by (Ganin et al., 2016), the neural network will output for a pair of observed

unlabeled tasks (D̂t, D̂i) a score in [0, 1] to predict from which distribution it comes. Supposing the

output function is gt,i(x, (θf ,θdt,i)) ≡ gt,i(x), the adversarial loss will be the following under different

distance metrics:

H∆H divergence We adopt theH-divergence as the approximation ofH∆H divergence:

Êt,i =
∑
x∈D̂t

log(gt,i(x)) +
∑
x∈D̂i

log(1− gt,i(x));

Wasserstein-1 distance Since the primal form has a high computational complexity, we adopted the

same strategy as (Arjovsky et al., 2017) by estimating the empirical Kantorovich-Rubinstein duality of

Wasserstein-1 distance, which is equivalent to

W1(D̂t, D̂i) =
1

K
sup
‖f‖≤K

(Ex∈D̂t [gt,i(x)]− Ex∈D̂i [gt,i(x)]).

Combining with the result of Theorem 2.2, we can derive

Êt,i = Ex∈D̂t [gt,i(x)]− Ex∈D̂i [gt,i(x)].

2.4.2 Task Relation Coefficients Estimation

After updating the neural network parameters, we need to reestimate the coefficients α1, . . . ,αT when

giving fixed θf ,θh· ,θ
d
· . According to the theoretical guarantees, we need to solve the following convex

constraint optimization problem.
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Figure 2.1 – General framework of Adversarial Multitask Neural Network (AMTNN).

min
α1,...,αT

T∑
t=1

R̂αt(θ
f ,θht ) + κ1

T∑
t=1

‖αt‖2 + κ2

T∑
i,t=1

αt,id̂t,i(θ
f ,θdt,i),

s.t. ‖αt‖1 = 1, αt,i ≥ 0 ∀t, i, (2.2)

where κ1 and κ2 are hyper-parameters and d̂· is the estimated distribution “distance”. This distribution

“distance” may have different forms according to the similarity metric used:

1. H∆H-divergence. According to (Pentina and Lampert, 2017; Ben-David et al., 2010a; Ganin

et al., 2016), the distribution “distance” is proportional to the accuracy of the discriminator θd· ,

i.e., we applied gt,i(x) to predict x coming from distribution t or i. The prediction accuracy

reflects the difficulty to distinguish two distributions. Hence, we set d̂t,i as the accuracy of

the discriminator gt,i(x); We notice the adversarial training is essentially the approximation of

H-divergence, which is slightly different fromH∆H divergence.

2. Wasserstein-1 distance. According to (Arjovsky et al., 2017), the approximation d̂t,i = −Êt,i
is adopted.

We also assume d̂t,t = 0 since the discriminator cannot distinguish two identical distributions. More-

over, the expected loss αtλt,· is omitted since we assume that λt,· is much smaller than the empirical

term. Then, we only use the empirical parts to reestimate the relationship coefficient.

As it is mentioned in the theoretical part, the L2 norm regularization aims at preventing all of the

relation coefficients from being concentrated on the current task αt,t. The theoretical bound proposes

an elegant interpretation for training AMTNN, which is shown in Algorithm 1.

2.4.3 Proposed algorithm

The general framework of the neural network is shown in Fig. 2.1. We propose a complete iteration

step on how to update the neural network parameters and relation coefficients in Algorithm 1. When
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Algorithm 1 AMTNN updating algorithm

Require: Samples from different tasks {D̂t}Tt=1, initial coefficients {αt}Tt=1 and learning rate η
Ensure: Neural network parameters θf , θh· , θd· and relationship coefficient α1, . . . ,αT

1: for mini-batch of samples {(xbt ,ybt)} from {D̂t}Tt=1 do
2: For each distribution pair (t, i) with t < i, compute the adversarial loss Êt,i(θf ,θdt,i).
3: For each task t, define the empirical loss matrix R̂t,i =

∑
(xbi ,y

b
i )∈D̂i

`((xbi ,y
b
i ),θ

f ,θht ) and
compute the label loss:

R̂αt =

T∑
i=1

αt,iR̂t,i

4: Update θf ,θht :

θht = θht − η
∂R̂αt

∂θht

θf = θf − η

 T∑
t=1

∂R̂αt

∂θf
+

T∑
t,i:t<i

(αt,i + αi,t)
∂Êt,i
∂θf


5: Update θdt,i (t < i): θdt,i = θdt,i + η

(
(αt,i + αi,t)

∂Êt,i
∂θdt,i

)
)

6: end for
7: Re-estimate {αt}Tt=1 by optimizing Eq. (2.2).

updating the feature extraction parameter θf , we applied gradient reversal (Ganin et al., 2016) in the

training procedure. We also add the gradient penalty (Gulrajani et al., 2017) to improve the Lipschitz

property when training with the adversarial loss based on Wasserstein distance.

It is worth mentioning that the proposed algorithm can potentially have the task collapsing: if one task

is rather different from others, the proposed approach could have the risk of ignoring this task and

learning the easier tasks. To this end, we need to assign a strong task coefficient regularization. By

imposing a stronger regularization of the uniform weights, the different tasks are enforce to be learned

for avoiding the task collapsing.

2.5 Experiments

We evaluate the modified AMTNN method on two benchmarks, that is the digits datasets and the

Amazon sentiment dataset. We also consider the following approaches as baseline to make comparisons:

1. MTL_uni: the vanilla MTL framework where 1
T

∑T
t=1 R̂t(θ

f ,θht ) is minimized;

2. MTL_weighted: minimizing 1
T

∑T
t=1 R̂αt(θ

f ,θht ), computation of αt depending on R̂t,i (Mu-

rugesan et al., 2016);

3. MTL_disH and MTL_disW: we apply the same type of loss function but with two different

adversarial losses (H∆H divergence and Wasserstein distance) and a general neural network

(Liu et al., 2017). It is worth mentioning that the original baselines are designed for the NLP
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Figure 2.2 – Estimated task relation coefficients matrix (ranging from 0− 1) from the two proposed
algorithms, with 8K samples on training set.

3K 5K 8K
Approach MNIST MNIST_M SVHN Average MNIST MNIST_M SVHN Average MNIST MNIST_M SVHN Average

MTL_uni 93.23 76.85 57.20 75.76 97.41 77.72 67.86 81.00 97.73 83.05 71.19 83.99
MTL_weighted 89.09 73.69 68.63 77.13 91.43 74.07 73.81 79.77 92.01 76.69 73.77 80.82
MTL_disH 89.91 81.13 70.31 80.45 91.92 82.68 73.27 82.62 92.96 85.04 78.50 85.50
MTL_disW 96.77 80.38 68.40 81.85 95.47 83.48 72.66 83.87 98.09 84.13 74.37 85.53
MTL_MOB 97.54 76.50 54.51 76.18 98.22 80.22 61.22 79.89 98.48 82.81 69.92 83.40
AMTNN_H 97.47 77.87 71.26 82.20 97.94 76.28 76.06 83.43 98.28 82.75 76.63 85.89
AMTNN_W 97.20 80.70 76.93 84.95 97.67 82.50 76.36 85.51 98.01 82.53 79.97 86.84

Table 2.1 – Average test accuracy (in %) of MTL algorithms on the digits datasets.

application. I.e, the LSTM and GRU are adopted, we just simply replace it by MLP or CNN.

4. MTL_MOB: (Sener and Koltun, 2018) The deep multitask learning problem as multi-objective

optimization;

5. AMTNN_H and AMTNN_W: proposed approaches with two different adversarial losses, H
divergence and Wasserstein distance respectively.

The additional experimental details can be found in Appendix Sec. A.4.

2.5.1 Digit recognition

We first evaluate our algorithm on three benchmark datasets of digit recognition: MNIST, MNIST_M

Ganin et al. (2016), and SVHN. The MTL setting is to jointly allow a system to learn to recognize the

digits from the three datasets, which can differ significantly. To show the effectiveness of MTL, only a

small portion of the original dataset is used for training (i.e., 3K, 5K and 8K for each task).

We use the LeNet-5 architecture and define the feature extractor θf as the two convolutional layers of

the network, followed by multiple blocks of two fully connected layers as label prediction parameter θh·
and discriminator parameter θd· . Five repetitions are conducted for each approach, and the average test

accuracy (%) is reported in Table 2.1. We also show the estimated coefficient {αt}3t=1 of AMTNN_H

and AMTNN_W, in Fig. 2.2.
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1000 examples 1600 examples
Approach Book DVDs Kitchen Elec Average Book DVDs Kitchen Elec Average

MTL_uni 81.31 78.44 87.07 84.57 82.85 81.35 80.14 86.54 87.50 83.88
MTL_weighted 81.88 79.02 86.91 85.31 83.28 80.72 81.20 87.60 88.12 84.41
MTL_disH 81.23 78.12 87.34 84.82 82.88 81.92 79.86 87.79 87.31 84.22
MTL_disW 81.13 78.38 87.11 84.82 82.86 81.88 79.81 87.07 87.69 84.11
MTL_MOB 81.58 78.65 87.18 84.53 82.99 81.05 80.76 87.01 87.59 84.10
AMTNN_H 82.36 79.24 87.42 85.53 83.64 80.82 81.54 88.27 88.17 84.70
AMTNN_W 81.68 79.38 87.27 85.66 83.50 81.20 80.38 87.69 88.46 84.44

Table 2.2 – Average test accuracy (in %) of MTL algorithm in the sentiment dataset.

Figure 2.3 – t-SNE in the feature space of task MNIST in AMTNN_W for 8K. Red: MNIST dataset;
blue: MNIST_M dataset; green: SVHN dataset.

Discussion Reported results show that the proposed approaches outperform all baselines in the task

average and in most single tasks. Particularly for the AMTNN_W, it outperforms the baselines with

1.0% ∼ 2.9% in the test accuracy. The reason can be that the Wasserstein-1 distance is more efficient

for measuring the high dimensional distribution, which has been verified theoretically (Redko et al.,

2017). Moreover, theH∆H divergence-based approach (AMTNN_H) outperforms the baselines with

increment performance (< 0.3%). The reason may be that the VC-dimension withH∆H divergence is

not a good metric for measuring a high dimensional complex dataset, which is consistent with (Li et al.,

2018b).

As for the coefficients αt, the proposed algorithm appears robust in estimating these task relationships

with almost identical values under different similarity metrics. Moreover, in contrast to the previous

approaches, we obtain a non-symmetric matrix with a better interpretability. For instance, when

learning the MNIST dataset, only information from MNIST_M is used, which is reasonable since these

two tasks have the same digit configurations with different background, while SVHN is different in

most ways (i.e., digits taken from street view house numbers). However, when learning MNIST_M,

the information from SVHN is beneficial because it provides some information on the background,

which is absent from MNIST but similar to MNIST_M. Therefore, the information of both tasks are

involved in training for MNIST_M.
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To show the role of the weighted sum, we use t-SNE to visualise in Fig. 2.3 the embedded space of the

MNIST task from the training data. Information from SVHN is not relevant for learning MNIST as

α1,2 = 0 (see Fig. 2.2), such that SVHN data is arbitrarily distributed in the embedded space without

influence on the final result. At the same time, information from MNIST_M is used for training on the

MNIST task (α1,3 = 0.28), which can be seen by a slight overlap in the embedded space. From that

perspective, the role of weighted loss, which helps us to achieve some reasonable modifications of the

decision boundary, is trained by the relevant and current tasks jointly. For a small scale task (typically

the MTL scenario), during the test procedure, the agent predicts the labels by borrowing its neighbors

(relevant task) information. This is coherent with the Probabilistic Lipschitzness condition (Urner and

Ben-David, 2013).

2.5.2 Sentiment analysis

We also evaluate the proposed algorithm on Amazon reviews datasets. We extract reviews from four

product categories: Books, DVD, Electronics and Kitchen appliances. Reviews datasets are pre-

processed with the same strategy proposed by Ganin et al. (2016): 10K dimensional input features of

uni-gram/bi-gram occurrences and binary output labels {0, 1}, Label 0 is given if the product is ranked

less than 3 stars, otherwise label 1 is given for products above 3 stars. Results are reported for two

sizes of labelled training sets, that is 1000 and 1600 examples in each product category.

The output of the first fully connected layers as feature extractor parameters θf and several sets of

two fully-connected layers are given as discriminator θd· and label predictor θh· , with test accuracy (%)

reported in Table 2.2 as an average over 5 repetitions.

Discussions We found the proposed approaches outperform all baselines in the task average and

also in most tasks. Meanwhile, we observed that the role of adversarial loss (MTL_disH, MTL_disW,

AMTNN_H and AMTNN_W) is not statistically significant (gains < 0.25%), compared to the results

on the digits datasets. The possible reason is that we applied the algorithm on the preprocessed feature

instead of the original feature, making the discriminator θd· less powerful in the feature adaptation.

On the contrary, adding the weighted loss can improve performance by 0.4% ∼ 0.9%, enhancing the

importance of the role of explicit similarity, which is coherent with (Murugesan et al., 2016).

2.6 Conclusion

In this chapter, we propose a principle approach for using the task similarity information in the MTL.

We first derive an upper bound of the generalization error in the MTL. Inspired by the theoretical

results, we design a new training algorithm on the Adversarial Multi-Task Neural Network (AMTNN).

Finally, the empirical results on the benchmarks are showing that the proposed algorithm outperforms

the baseline, reaffirming the benefits of theoretical insight in the algorithm design.
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Chapter 3

Unified and Principled Method for Query
and Training in Deep Active Learning

Original title of the article: Deep active learning: unified and principled method for query and
training.

Résumé

Dans ce chapitre, nous proposons une méthode unifiée sur des principes pour les requêtes et les

entraînements dans l’apprentissage actif profond par lots. Nous proposons un point de vue théorique à

partir de l’intuition de modéliser la procédure interactive dans l’apprentissage actif comme distribution

matching, en adoptant la distance de Wasserstein.

Nous avons dérivé une nouvelle perte de l’entraînement. De plus, la perte pour la formation d’un réseau

neuronal profond est naturellement formulée comme un problème d’optimisation min-max en exploitant

les informations des données non étiquetées. De plus, les principes proposés indiquent également

un compromis incertitude-diversité dans la sélection des lots de requêtes. Enfin, nous évaluons

notre méthode proposée sur différents benchmarks, qui démontrent des performances empiriques

constamment meilleures et une stratégie de requête plus efficace en termes de temps, par rapport aux

baselines.

Abstract

In this chapter, we propose a unified and principled method for both querying and training in deep batch

active learning. We are providing theoretical insights from the intuition of modeling the interactive

procedure in active learning as distribution matching, by adopting the Wasserstein distance.

We derived a new training loss from the theoretical analysis, which is decomposed into optimiz-
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ing deep neural network parameters and batch query selection through alternative optimization. In

addition, the loss for training a deep neural network is naturally formulated as a min-max optimiza-

tion problem through leveraging the unlabeled data information. Moreover, the proposed princi-

ples also indicate an explicit uncertainty-diversity trade-off in the query batch selection. Finally,

we evaluate our proposed method on different benchmarks, which demonstrates consistently bet-

ter empirical performances and the better time-efficient query strategy compared to the baseline.

3.1 Introduction

As we previously discussed the query and training are two key components in deep Active Learning.

We proposed a unified and principled approach for both a fast querying and a better training procedure

in deep AL, relying on the use of labeled and unlabeled examples. We derived the theoretical analysis

through modeling the interactive procedure in AL as distribution matching by adopting the Wasserstein

distance. We further analytically reveal that the Wasserstein distance is better at capturing the diversity

in AL, compared to the most commonH-divergence in the distribution matching. From the theoretical

result, we derived the loss from the distribution matching, which is naturally decomposed into two

stages: optimization of DNN parameters and query batch selection, through alternative optimization.

For the stage of training DNN, the derived loss indicates a min-max optimization problem by leveraging

the unlabeled data. More precisely, this involves a maximization of the critic function to distinguish

the labeled and unlabeled empirical distributions based on the Wasserstein distance, while the feature

extractor function aims, on the contrary, to confound the distributions (minimization of empirical

distribution divergence). In the query stage, the loss for batch selection explicitly indicates the

uncertainty diversity trade-off. For the uncertainty, we want to find the samples with low prediction

confidence over two different interpretations: the highest prediction confidence score and the uniform

prediction score (Section 3.3.4). As for the diversity, we want to find the unlabeled batch holding a

larger transport cost w.r.t. labeled set under Wasserstein distance (i.e. samples that looks different from

the current labeled ones), which has been shown as a good metric for measuring diversity.

We tested our proposed method on different benchmarks, showing a consistently improved performance,

particularly in the initial training, and a much faster query strategy compared to the baseline. The

results reaffirmed the benefits and potential of deriving unified principles for Deep Active Learning.

We also hope it will open up a new avenue for rethinking and designing query efficient and principled

Deep Active Learning algorithms in the future.

3.2 Active Learning as Distribution Matching

In supervised learning, observations D̂ are i.i.d. generated by the underlying distribution D and a

ground truth labeling function h?, i.e. {(xi, h?(xi))}Ni=1 with xi ∼ D. However in AL, the querying
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sample is not an i.i.d. procedure w.r.t. D— otherwise it will be simple random sampling. Thus we

assume in AL that the query procedure is an i.i.d. empirical process from another distribution Q 6= D.

For example, in the disagreement based approach (Balcan et al., 2009), Q can be regarded as a uniform

distribution over the disagreement region. Then the interactive procedure can be viewed as estimating a

proper Q to control the generalization error w.r.t. (D, h?).

3.2.1 Preliminaries

We define the hypothesis h ∈ H : X → Y over X ⊆ Rd and Y ∈ [0, 1], and loss function

` : Y × Y → R+. The expected risk w.r.t. D is RD(h) = Ex∼D`(h(x), h?(x)) and empirical risk

R̂D(h) = 1
N

∑N
i=1 `(h(xi), yi). P(X ) is the set of all probability measures over X . We assume that the

loss ` is symmetric, L-Lipschitz and M -upper bounded and ∀h ∈ H is at most H-Lipschitz function.

Wasserstein Distance Given two probability measures D ∈ P(X ) and Q ∈ P(X ) defined on Ω, the

optimal transport (or Monge-Kantorovich) problem can be defined as searching for a probabilistic

coupling (joint probability distribution) γ ∈ P(Ω× Ω) for xD ∼ D and xQ ∼ Q that are minimizing

the cost of transport w.r.t. some cost function c:

argminγ

∫
X×X

c(xD, xQ)pdγ(xD, xQ),

s.t. P+#γ = D; P−#γ = Q,

where P+ and P− is the marginal projection over Ω× Ω and # denotes the push-forward measure.

The p-Wasserstein distance between D and Q for any p ≥ 1 is defined as:

W p
p (D,Q) = inf

γ∈Π(D,Q)

∫
X×X

c(xD, xQ)pdγ(xD, xQ),

where c : X × X → R+ is the cost function of transportation of one unit of mass x to y and Π(D,Q)

is the collection of all joint probability measures on X × X with marginals D and Q. Throughout

this paper, we only consider the case of p = 1, i.e. the Wasserstein-1 distance and the cost function as

Euclidean (`2) distance.

Labeling Function Assumption Some theoretical works show that AL cannot improve the sample

complexity in the worst case, thus identifying properties of the AL paradigm is beneficial (Urner and

Ben-David, 2013). For example, Urner et al. (2013) defined a formal Probabilistic Lipschitz condition,

in which the Lipschitzness condition is relaxed and formalizes the intuition that under suitable feature

representation, the probability of two close points having different labels is small (Urner and Ben-David,

2013). We adopt the Joint Probabilistic Lipschitz property, which can be viewed as an extension of

(Pentina and Ben-David, 2018) and also coherent with (Courty et al., 2017).

Definition 3.1. Let φ : R → [0, 1]. We say labeling function h? is φ(λ)-(D,Q) Joint Probabilistic

Lipschitz if supp(Q) ⊆ supp(D) and for all λ > 0 and all distribution couplings γ ∈ Π(D,Q):

P(xD,xQ)∼γ [|h?(xD)− h?(xQ)| > λ‖xD − xQ‖2] ≤ φ(λ), (3.1)
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where φ(λ) reflects the decay property. Urner et al. (2013) showed that the faster the decay of φ(λ)

with λ→ 0, the better the labeling function and the easier it is to learn the task.

3.2.2 Theoretical results related to Querying Distribution

In this part, we will derive the relation between the querying and the data generation distribution.

Theorem 3.1. Supposing D is the data generation distribution and Q is the querying distribution. If

the loss ` is symmetric, L-Lipschitz and bounded; ∀h ∈ H is at most H-Lipschitz and the underlying

labeling function h? is φ(λ)-(D,Q) Joint Probabilistic Lipschitz; then the expected risk w.r.t. D can be

upper bounded by:

RD(h) ≤ RQ(h) + L(H + λ)W1(D,Q) + Lφ(λ). (3.2)

From Eq. (3.2), the expected risk ofD is upper bounded by the expected risk w.r.t. the query distribution

Q, the Wasserstein distanceW1(D,Q), and the labeling function property φ(λ). That means a desirable

query should hold a small expected risk with a better matching to the original distribution D (diversity).

Proof Sketch The complete proof is delegated in Appendix Sec. B.1, which mainly consists of two

steps.

1. Transfer Risk Upper Bound, we upper bound the gap between the true distribution and query

distribution:

RD(h)−RQ(h) ≤ L
∫

Ω×Ω
|h?(xD)−h?(xQ)|dγ(xD, xQ)+LH

∫
Ω×Ω
||xD−xQ||2dγ(xD, xQ)

2. Using Joint Probabilistic Lipschitz to upper bound
∫

Ω×Ω |h?(xD)− h?(xQ)|dγ(xD, xQ), then

we have: ∫
Ω×Ω
|h?(xD)− h?(xQ)|dγ(xD, xQ) ≤ LλW1(D,Q) + Lφ(λ)

Combining these two intermediate conclusion, we have the aforementioned theoretical result.

Non-Asymptotic Analysis Moreover, we can extend the non-asymptotic analysis of Theorem 1 since

we generally have finite observations. The proof adopted the standard uniform convergence to bound

the empirical risk and empirical Wasserstein distance.

Corollary 3.1. Supposing we have the finite observations which are i.i.d. generated from D and Q:

D̂ = 1
N

∑N
i=1 δ{xiD} and Q̂ = 1

Nq

∑Nq
i=1 δ{xiQ} with Nq ≤ N . Then with high probability ≥ 1 − δ,

∀h ∈ H, the expected risk w.r.t. D can be further upper bounded by:

RD(h) ≤ R̂Q(h) + L(H + λ)W1(D̂, Q̂) + Lφ(λ) + 2LRadNq(H) + κ(δ,N,Nq),

where κ(δ,N,Nq) = O(N−1/sd +N
−1/sq
q +

√
log(1/δ)

N +
√

log(1/δ)
Nq

) is the sample complexity term

under big-O notation. Specifically, sd > 1 and sq > 1 are some positive constants that are related to
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Figure 3.1 – H-divergence vs. Wasserstein distance for D-Q distribution matching. The desirable
query distribution should be more diverse (first row) for avoiding sampling bias (second row). The
computational result shows thatH-divergence is not a proper metric to measure query diversity while
Wasserstein is.

the covering number of the hypothesis setH. RadNq(H) = ES∼QNqEσNq1

[suph∈H
1
Nq

∑Nq
i=1 σih(xi)]

is the expected Rademacher complexity where σi is the random variable follows Bernoulli distribution

σi ∼ Ber(0.5).

3.2.3 Why Wasserstein Distance

In the context of deep active learning, current work such as (Gissin and Shalev-Shwartz, 2019; Sinha

et al., 2019) generally explicitly or implicitly adopted the idea of H-divergence (Ben-David et al.,

2010a): dH(D,Q) = 1−2ε, with ε the prediction error when training a binary classifier to discriminate

the observations sampled from the query and original distribution. Thus a smaller error facilitates the

separation of the two distributions with largerH-divergence and vice versa.

However, we notice that in AL, supp(Q) ⊆ supp(D), thus H-divergence may not be a good metric

for indicating the diversity property of the querying distribution. On the contrary, Wasserstein distance

reflects the optimal transport cost for moving one distribution to another. A smaller transport cost

means a better coverage of the distribution D.

For a better understanding of this problem, we give an illustrative example by computing the exact

H-divergence and Wasserstein-1 distance in one dimension, shown in Fig. 3.1. Specifically, we have

three uniform distributions: D1 the original data distribution, D2, D3 two different query distributions:

D1 ∼ U
(
[−2a,−a] ∪ [a, 2a]

)
,

D2 ∼ U
(
[−x0 −

b

2
,−x0 +

b

2
] ∪ [x0 −

b

2
, x0 +

b

2
]
)
,

D3 ∼ U
(
[x0 − b, x0 + b]

)
.

Where a > 2b > 0 and x0 ∈ (a, 2a).

In AL, we can further assume supp(D2) ⊆ supp(D1), supp(D3) ⊆ supp(D1) and a > b > 0. For

H-divergence, we set the classifier as a threshold function f(x) = 1{x ≥ p}. Then we can compute
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the exact dH(·, ·) and W1(·, ·):

dH(D1,D2) = dH(D1,D3)

min
x0

W1(D1,D3) > max
x0

W1(D1,D2)
(3.3)

From Eq. (3.3), theH-divergence indicates the same divergence result where Wasserstein-1 distance

exactly captures the property of diversity: more diverse query distributionQmeans smaller Wasserstein-

1 distance W1(D,Q).

3.3 Practical Deep Batch Active Learning

We have discussed the interactive procedure as the distribution matching and showed that Wasserstein

distance is a proper metric for measuring the diversity during distribution matching. Based on the afore-

mentioned analysis, in the batch active learning problem, we have labelled data L̂ = 1
L

∑L
i=1 δ{xli}

and its labels {yli}Li=1, unlabelled data Û = 1
U

∑U
i=1 δ{xui } and total distribution D̂ = L̂ ∪ Û with

partial labels {yli}Li=1. The goal of AL at each interaction is: 1) find a batch B̂ = 1
B

∑B
i=1 δ{xbi} with

xbi ∈ Û during the query; 2) find a hypothesis h ∈ H such that:

min
B̂,h

R̂L̂∪B̂(h) + µW1(D̂, L̂ ∪ B̂). (3.4)

Where µ > 0 is the hyper-parameter to control the trade-off between uncertainty and diversity.

Eq.(3.4) follows the principles (upper bound) from Theorem 3.1 and Corollary 3.1. Moreover, if we fix

the hypothesis h, the sampled batch simultaneously holds two requirements:

1. Minimize the empirical error. We will show later it is related to uncertainty based sampling.

2. Minimize the Wasserstein-1 distance w.r.t. original distribution, which encourages a better distribu-

tion matching of D̂.

3.3.1 Min-Max Problem in DNN

Based on Eq.(3.4), we can extend the loss to the deep representation learning scenario, since directly

estimating the Wasserstein-1 distance through solving optimal transport for complex and large-scale

data is still a challenging and open problem.

Inspired by (Arjovsky et al., 2017), we then adopt the min-max optimizing through training the DNN.

Namely, according to Kantorovich-Rubinstein duality, the Wasserstein distance W1(P,Q) can be

expressed as:

W1(P,Q) = max
‖g‖L≤1

Ex∼P [g(x)]− Ex∼Q[g(x)]

Where ‖g‖L ≤ 1 is the statistic critic function that is restricted within 1-Lipschitz function. The dual

term suggests that the estimation of Wasserstein-1 distance can be realized by introducing a statistic

critic function g. In the context of deep learning, we denote θf , θh, θd are parameters corresponding
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to the feature extractor, task predictor and distribution critic; R̂ is the prediction loss (the first term

in Eq.(3.4)) and Ê is the adversarial (min-max) loss in estimating Wasserstein-1 distance (the second

term in Eq.(3.4)). Then Eq. (3.4) motivates the following loss in deep active learning:

min
θf ,θh,B̂

max
θd

R̂(θf ,θh) + µÊ(θf ,θd), (3.5)

We further denote the parametric task prediction function h(x, y, (θf ,θh)) ≡ h(x, y) : X×Y → (0, 1]

with
∑

y h(x, y) = 1 and the parametric critic function g(x, (θf ,θd)) ≡ g(x) : X → [0, 1] with

restricting g(x) to the 1-Lipschitz function (Kantorovich-Rubinstein duality). Then each term in

Eq. (3.5) can be expressed as:

R̂(θf ,θh) = E(x,y)∼L̂∪B̂`(h(x, y)),

Ê(θf ,θd) = Ex∼D̂[g(x)]− Ex∼L̂∪B̂[g(x)].

3.3.2 Two-stage Optimization

Through some computation, we can decompose Eq. (3.5) into three terms:

min
θf ,θh,B̂

max
θd

1

L+B

∑
(x,y)∈L̂

`(h(x, y))

︸ ︷︷ ︸
Training: Prediction Loss

+µ
( 1

L+ U

∑
x∈Û

g(x)− (
1

L+B
− 1

L+ U
)
∑
x∈L̂

g(x)
)

︸ ︷︷ ︸
Training: Min-max Loss

+
1

L+B

∑
(x,y?)∈B̂

`(h(x, y?))− µ

L+B

∑
x∈B̂

g(x)

︸ ︷︷ ︸
Query

,

(3.6)

where the critic function g(x) is 1-Lipschitz and L, U , B are the size of labeled, unlabeled, and

query data. y? is called the agnostic-label, since it is not available during the query stage. Then from

Eq. (3.3.2), each interaction of AL can be naturally decomposed into two stages (optimizing DNN and

batch selection), through alternating optimization.

3.3.3 Training DNN

In the training stage, we used all observed data to optimize the neural network parameters:

min
θf ,θh

max
θd

1

L+B

∑
(x,y)∈L̂

`(h(x, y)) + µ
( 1

L+ U

∑
x∈Û

g(x)− (
1

L+B
− 1

L+ U
)
∑
x∈L̂

g(x)
)
, (3.7)

by restricting g(x) to the 1-Lipschitz function. Instead of only minimizing the prediction error, the

proposed approach naturally leverages the unlabeled data information through a min-max training.

More intuitively, the critic function g aims to evaluate how probable it is that the sample comes from
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the labeled or unlabeled parts1. According to the loss, given a fixed g, when g(x)→ 1 meaning that it

is highly probable that the samples come from the unlabeled set x ∈ Û and vice versa. 2 Since B < U ,

thus 1
L+B − 1

L+U > 0, indicates that the proposed adversarial loss is always valid.

Based on Eq. (3.7), we call this framework the Wasserstein Adversarial Active Learning (WAAL) in

our deep batch AL. The labeled L̂ and unlabeled data Û pass a common feature extractor, then L̂ will

be used in the prediction and L̂, Û together will be used in the min-max (adversarial) training. In the

practical deep learning, we apply the cross entropy loss: `(x, y) = − log(h(x, y))3.

Redundancy Trick One can directly apply gradient descent to optimize Eq. (3.7) on the whole

dataset. Actually, we generally apply the mini-batch-based SGD approach in training the DNN4. While

a practical concern during the adversarial training procedure is the unbalanced label and unlabeled data

during the training procedure. Thus we propose the redundancy trick to solve this concern. For abuse

of notation, we denote the unbalanced ratio γ = U
L and the query ratio α = B

L , with the adversarial

loss simplified as:

µ′
( 1

U

∑
x∈Û

g(x)− 1

γ

γ − α
1 + α

1

L

∑
x∈L̂

g(x)
)
,

with µ′ = γ
1+γµ.

Then following the redundancy trick for optimizing the adversarial loss, we keep the same mini-batch

size S for labelled and unlabeled observations. Due to the existence of the unbalanced data, we simply

conduct a replacement sampling to construct the training batch for the labeled data, then divided by the

unbalanced ratio γ. For each training batch, the adversarial loss can be rewritten as:

min
θf

max
θd

µ′
( 1

S

∑
x∈ÛS

g(x)− C0
1

S

∑
x∈L̂S

g(x)
)
, (3.8)

where Ûs L̂s are unlabeled and labeled training batch and C0 = 1
γ2

γ−α
1+α is the “bias coefficient” in deep

active adversarial training. For example, if there exist 1K labeled samples, 9K unlabeled samples and a

current query batch budget of 1K, then we can compute C0 ≈ 0.05 so as to control excessive reusing

of the labelled dataset.
1We should point out that this is the high-level intuition. More specifically, the critic parameter θd of g tries to maximize

and the feature parameter θf of g tries to minimize the adversarial loss according to the Wasserstein metric. Moreover
the proposed min-max loss differs from the standard Wasserstein min-max loss since they hold different weights (“bias
coefficient”)

2This can be alternatively explained by assuming g is the discriminator to differentiate labeled and unlabeled dataset.
Thus g(x) = 1 means the x comes from unlabeled data.

3Although the cross entropy loss does not satisfy the exact assumptions in the theoretical analysis, our later experiments
suggest that the proposed algorithm is very effective for cross-entropy loss.

4We have referred to this as the training/mini batch to avoid any confusion with the querying batch mentioned before.
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3.3.4 Query Strategy

The second stage over the unlabeled data aims to find a queried batch such that:

argminB̂⊂Û
1

L+B

∑
(x,y?)∈B̂

`(h(x, y?))− µ

L+B

∑
x∈B̂

g(x), (3.9)

where y? is the agnostic label.

Agnostic-label upper bound loss indicates uncertainty Since we do not know y? during the query,

we can instead optimize an upper bound of Eq. (3.9). In the classification problem with cross entropy

loss, suppose that we have {1, . . . ,K} possible outputs with
∑

y∈{1,...,K} h(x, y) = 1, then we

have upper bounds Eq. (3.10) and (3.11), which both reflect the uncertainty measures with different

interpretations.

1. Minimizing over the single worst case upper bound indicates the sample with the highest least

prediction confidence score:

min
x
`(h(x, y?)) ≤ min

x
max

y∈{1,...,K}
− log(h(x, y)). (3.10)

For example, we have two samples with a binary decision score h(x1, ·) = [0.4, 0.6] and h(x2, ·) =

[0.3, 0.7]. Since maxy − log(h(x1, y)) < maxy − log(h(x2, y)), we will choose x1 as the query

since the least prediction label confidence 0.4 is higher. Intuitively such a sample seems uncertain

since the least label prediction confidence is high.

It is worth mentioning that in the binary classification setting, it recovers the least prediction

confidence score approach (Baseline 2), which is a common strategy in AL. Notably, it can

be problematic in the multi-classification setting. E.g, consider h(x1, ·) = [0.3, 0.3, 0.4] and

h(x2, ·) = [0.29, 0.36, 0.35], then according to the rule, x1 will be selected. However, x2 is more

uncertain since the prediction is more uniform, which can lead to potential issues. To this end, we

further consider the L1 norm as the upper bound without this issue as the uncertainly criteria.

2. Minimizing over `1 norm upper bound indicates the sample with a uniformly of prediction confidence

score:

min
x
`(h(x, y?)) ≤ min

x

∑
y∈{1,...,K}

− log(h(x, y)). (3.11)

Intuitively if the sample’s prediction confidence trend is more uniform, the more uncertain the

sample will be. We can also show the min arrives when the output score is uniform, as shown in the

supplementary material.

We would like to point out that the upper bounds proposed in Eq. (3.10,3.11) are additive, i.e. we can

apply any convex combination of these two losses as the hybrid uncertain query strategy.

Critic output indicates diversity As for the critic function g(x) : X → [0, 1] from the adversarial

loss, if the critic function output trends to g(x)→ 1, it means x ∈ Û and vice versa. Then according
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Method LeastCon Margin Entropy K-Median DBAL Core-set DeepFool WAAL

Time 0.94 0.95 0.95 33.98 9.25 45.88 124.46 1

Table 3.1 – Relative Average querying time, assuming the query time of WAAL as the unit.

to the query loss, we want to select the batch with higher critic values g(x), meaning they look more

different than the labelled samples under the Wasserstein metric.

If the unlabeled samples look like the labeled ones (small g(x) with x ∈ Û ), then under some proper

conditions (such as Probabilistic Lipschitz Condition in def. 3.1), such examples can be more easily

predicted because we can infer them from their very near neighbours’ information.

On the contrary, the unlabeled samples with high g(x) under the current assumption cannot be

effectively predicted by the current labeled data (far away data). Moreover, the g(x) is trained through

Wasserstein distance-based loss, shown as a proper metric for measuring the diversity. Therefore, the

query batch with higher critic value (g(x)) means a larger transport cost from the labeled samples,

indicating that it is more informative and represents diversity.

Remark The aforementioned two terms in the query strategy indicate an explicit uncertainty and

diversity trade-off. Uncertainty criteria can reduce the future empirical risk while inducing a potential

sampling bias. While the diversity criteria can improve the exploration of the distribution, it might be

inefficient for a small query batch. Our query approach naturally combines these two for choosing the

samples with prediction uncertainty and diversity. Moreover, since Eq. (3.9) is additive, we can easily

estimate the query batch through the greedy algorithm.

3.3.5 Proposed Algorithm

Based on the previous analysis, our proposed algorithm includes a training stage [Eq. (3.7,3.8)]

and a query stage [Eq. (3.9), (3.10) and (3.11)] for solving Eq. (3.5) or (3.3.2). We only show the

learning algorithm for one interaction in Algorithm 2, then the remaining interactions will be repeated

accordingly.

Since the discriminator function g should be restricted in 1-Lipschitz, we add the gradient penalty term

such as (Gulrajani et al., 2017) to g to restrict the Lipschitz property.

3.4 Experiments

We start our experiments with a small initial labeled pool of the training set. The initial observation

size and the budget size range from 1%− 5% of the training dataset, depending on the task. Following

Alg. 2, the selected batch will be annotated and added into the training set. Then the training process

for the next iteration will be repeated on the new formed labeled and unlabeled set from scratch.
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Algorithm 2 WAAL: one interaction

Require: Labeled samples L̂, unlabeled samples Û , query budget B and hyper-parameters (learning
rate η, trade-off rate µ, µ′)

Ensure: Neural network parameters θf , θh, θd

1: . . . DNN Parameter Training Stage / / /
2: for mini-batch of samples {(xui )}Si=1 from Û do
3: Constructing minibatch {(xli, yli)}Si=1 from L̂ through sampling with replacement (redundancy

trick).
4: Updating θh: θh = θh − η

S

∑
(xl,yl)

∂`(h((xl,yl))
∂θh

5: Updating θf : θf = θf − η
S

(∑
(xl,yl)

∂`(h((xl,yl))
∂θf

+ µ′{∑xu
∂g(x)
∂θf
− C0

∑
xl

∂g(x)
∂θf
}
)

6: Updating θd: θd = θd + ηµ′

S {
∑

xu
∂g(x)
∂θd
− C0

∑
xl

∂g(x)
∂θd
}

7: end for
8: . . . Querying Stage / / /
9: Applying the convex combination of Eq. (3.10) and (3.11) to compute uncertainly score U(xu);

Computing diversity score g(xu);
Ranking the score U(xu) − µg(xu) with xu ∈ Û , choosing the smallest B samples, forming
querying batch B̂

10: . . . Updating / / /
11: L̂ = L̂ ∪ B̂, Û = Û \ B̂

We evaluate our proposed approach on three object recognition tasks, namely Fashion-MNIST (image

size: 28 × 28) (Xiao et al., 2017), SVHN (32 × 32) (Netzer et al., 2011), CIFAR-10 (32 × 32)

(Krizhevsky et al., 2009) and STL10. For each task, we split the whole data into training, validation,

and testing parts. We evaluate the performance of the proposed algorithm for image classification

task by computing the prediction accuracy. We repeat all experiments 5 times and report the average

value. The details of the experimental settings (dataset description, train/validation/test splitting,

detailed implementations, hyper-parameter settings and choices) and additional experimental results

are provided in the supplementary material.

Baselines We compare the proposed approach with the following baselines: (1) Random sampling;

(2) Least confidence (Culotta and McCallum, 2005); (3) Smallest Margin (Scheffer and Wrobel, 2001);

(4) Maximum-Entropy sampling (Settles, 2012); (5) K-Median approach (Sener and Savarese, 2018):

choosing the points to be labelled as the cluster centers of K-Median algorithm ; (6) Core-set approach

(Sener and Savarese, 2018); (7) Deep Bayesian AL (DBAL) (Gal et al., 2017); and (8) DeepFoolAL

(Mayer and Timofte, 2018).

Implementations For the proposed approach, differing from baselines, we train the DNN from la-

beled and unlabeled data without data-augmentation. For the tasks on SVHN, CIFAR-10 we implement

VGG16 (Simonyan and Zisserman, 2014) and for task on Fashion MNIST we implement LeNet5

(LeCun et al., 1998) as the feature extractor. On top of the feature extractor, we implement a two-layer

multi-layer perceptron (MLP) as the classifier and critic function. For all tasks, at each interaction we

set the maximum training epoch as 80. For each epoch, we feed the network with mini-batch of 64
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Figure 3.2 – Empirical performance on Fashion MNIST, SVHN, CIFAR-10 and STL-10 over five
repetitions. All the approaches are implemented without data-augmentation.

samples and adopt SGD with momentum (Sutskever et al., 2013) to optimize the network. We tune the

hyper-parameter through grid search. In addition, in order to avoid over-training, we also adopt early

stopping (Caruana et al., 2001) techniques during training.

3.4.1 Results

We demonstrate the empirical results in Fig. 3.2. Exact numerical values and standard deviations are

reported in the supplementary material. The proposed approach (WAAL) consistently outperforms

all of the baselines during the interactions. We noticed that WAAL shows a large improvement

(> 5%) in the initial training procedure since it efficiently constructs a good representation through

leveraging the unlabeled data information. For the relatively simple input task Fashion MNIST, the

simplest uncertainty query (Smallest Margin/Least Confidence) finally achieved almost the same

level performance with WAAL under 6K labeled samples. Moreover, we observed that for the small

or middle sized queried batch (0.5K-2K) in the relatively complex dataset (SVHN, CIFAR-10), the

baselines show similar results in deep AL, which is coherent with previous observations (Gissin and

Shalev-Shwartz, 2019; Ash et al., 2019). On the contrary, our proposed approach still shows a good
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Figure 3.3 – Ablation study (a) CIFAR-10, (b) SVHN, the baselines are all trained by leveraging
the unlabeled information throughH-divergence. All the approaches are implemented without data-
augmentation.

improved empirical result, emphasizing the benefits of properly designing loss by considering the

unlabeled data in the context of deep AL.

It is worth mentioning that the reported performances are actually lower than the reported results in

(Sener and Savarese, 2018). Because we did not adopt any data augmentation in training, whereas this

trick can significantly improve the performance in the limited labeled data such as active learning.

We also report the average query time for the baselines and the proposed approach on SVHN dataset

in Tab. 3.1. The result indicates that WAAL holds the same querying time level with the standard

uncertainty based strategies since they are all end-to-end strategies without knowing the internal

information of the DNN. However some diversity-based approaches such as Core-set and K-Median

require the computation of the distance in the feature space and finally induce a much longer query

time.

3.4.2 Ablation Study: Advantage of Wasserstein Metric

In this part, we empirically show the advantage of considering the Wasserstein distance in the ablation

study. Specifically, for the whole baselines we adoptH-divergence based adversarial loss for training

DNN. That is, we set a discriminator and we used the binary cross entropy (BCE) adversarial loss to

discriminate the labeled and unlabeled data (Gissin and Shalev-Shwartz, 2019). Then in the query we

still apply the different baselines strategies to obtain the labels. We tested in the CIFAR-10 dataset and

report the performances in Fig. 3.3. We present a brief introduction, exact numerical values, and more

results in the appendix.

From the results, we observed that the gap between the initial training procedure has been reduced from

about 8% to 5% because of introducing the adversarial based training. However, our proposed approach

(WAAL) still consistently outperforms the baseline. The reason might be that theH-divergence based
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1K 2K 3K 4K 5K 6K

Accuracy 72.9% 85.4% 86.7% 91.2% 91.8% 92.8%

Macro-F1 63.2% 77.6% 78.7% 85.3% 86.3% 87.5%

Table 3.2 – Results of WAAL on SVHN (by accuracy and Macro-F1)

adversarial loss is not a good metric for the Deep AL as we formally analyzed before. The results

indicate the practical potential of adopting the Wasserstein distance for the Deep Active Learning

problem.

3.4.3 Performance under other performance metrics

Apart from the prediction accuracy, we also evaluate WAAL under other metrics, such as Macro-F1

score (Fawcett, 2006), shown in Tab. 3.2. The results indicate similar trends in other performance

metrics.

3.5 Conclusion

In this chapter, we proposed a unified and principled method for both querying and training in deep

Active Learning. We analyzed the theoretical insights from the intuition of modeling the interactive

procedure in AL as distribution matching. Then we derived a new training loss for jointly learning

hypothesis and query batch searching. We formulated the loss for DNN as a min-max optimization

problem by leveraging the unlabeled data. As for the query for batch selection, it explicitly indicates

the uncertainty-diversity trade-off. The results on different benchmarks showed a consistent better

accuracy and faster efficient query strategy. The analytical and empirical results reaffirmed the benefits

and potentials for reflecting on the unified principles for deep active learning.
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Chapter 4

Domain Adaptation Theory With
Jensen-Shannon Divergence

Original title of the article: A New Domain Adaptation Theory With Jensen-Shannon Divergence

Résumé

Dans ce chapitre, nous révélons l’incohérence entre l’entraînement adversarial de domaine et son

équivalent théorique généralement supposé, basé sur la divergenceH. Concrètement, nous découvrons

que la divergenceH n’est pas équivalente à la divergence de Jensen-Shannon, l’objectif d’optimisation

de domain adversarial training. Pour cela, nous élaborons un nouveau cadre théorique en prouvant

directement les bornes supérieure et inférieure du risque cible basées sur la divergence de Jensen-

Shannon distributionnelle conjointe.

Nous dérivons également des bornes supérieures bidirectionnelles pour les transferts marginaux et con-

ditionnels. Notre modèle présente une flexibilité inhérente pour différents problèmes d’apprentissage

par transfert, ce qui le rend utilisable dans divers scénarios. D’un point de vue algorithmique, notre

théorie permet un guide générique des principes unifiés de l’appariement conditionnel sémantique, de

distribution matching marginal et de la correction de la distribution marginale des étiquettes. Nous

appliquons des algorithmes pour chaque principe et validons empiriquement les avantages de notre

cadre sur des jeux de données réels.

Abstract

In this chapter, we reveal the incoherence between the widely adopted empirical domain adversarial

training and its generally assumed theoretical counterpart based on H-divergence. Concretely, we

find thatH-divergence is not equivalent to Jensen-Shannon divergence, the optimization objective in
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domain adversarial training. To this end, we establish a new theoretical framework by directly proving

the upper and lower target risk bounds based on the joint distributional Jensen-Shannon divergence.

We further derive bidirectional upper bounds for marginal and conditional shifts. Our framework

exhibits inherent flexibility for different transfer learning problems, which is usable for various

scenarios. From an algorithmic perspective, our theory enables a generic guideline of the unified

principles of semantic conditional matching, feature marginal matching, and label marginal shift

correction. We employ algorithms for each principle and empirically validate the benefits of our

framework on real datasets.

4.1 Introduction

Domain Adaptation (DA) theory is crucial to the fundamental understanding and practical development

of relevant algorithms. Conventionally, such theoretical guarantees were typically established based

on the notion of H-divergence (Ben-David et al., 2007, 2010a) and its subsequent variants (Redko

et al., 2020), where it requires a small H-divergence between source-target and small joint risk. In

the context of representation learning, this quantity (H-divergence) is minimized via the well-known

domain adversarial training (Ganin et al., 2016; Long et al., 2015; Tzeng et al., 2017), which is a

stimulating topic in current research.

Domain adversarial training is widely successful in various DA problems such as open set DA

(Panareda Busto and Gall, 2017; Cao et al., 2018; You et al., 2019) or conditional shift (Li et al.,

2019b), however, the generally assumed theoretical counterpartH-divergence itself is rather limited to

explain these working principles, which hampers the further practical advancement. It has been noted

that the inherent principle of domain adversarial training is analogous to GANs (Goodfellow et al.,

2014), which is equivalent to minimize Jensen-Shannon divergence (Nowozin et al., 2016) between

two distributions. Therefore, a DA theory established directly on the Jensen-Shannon divergence would

provide a thorough understanding of adversarial training and help overcome the limitations imposed by

the use ofH-divergence.

In this work, we reveal that H-divergence is not consistent with the Jensen-Shannon divergence,

indicating the improper adoption of H-divergence theory to explain domain adversarial training

practice. Then we build a DA theoretical framework directly based on Jensen-Shannon divergence.

We establish that the upper bound of the target risk is determined by the source error and the Jensen-

Shannon divergence of the two joint distribution (Sec. 4.3.1). Moreover, we derive the upper bounds

of bidirectional shifts (Sec. 4.3.2), including (a) Feature Marginal Shift (T (x) 6= S(x)) and Label

Conditional Shift (T (y|x) 6= S(y|x)); (b) Label Marginal Shift (T (y) 6= S(y)) and Semantic (Feature)

Conditional Shift (T (x|y) 6= S(x|y)). The theory provides a unified understanding of domain shifts,

with covariate shift and label shift being its special cases, which can provide intriguing theoretic
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insights and effective practice guidelines:

Theoretical Insights Jensen-Shannon divergence enables us to analyze the factors of label space

that influence the transfer procedure, which remains elusive in theH-divergence. Specifically, (I) we

reveal that the intrinsic error of learning in the target-domain is controlled by the label-space size, the

source domain intrinsic error and the similarity of the two domains (Sec. 4.3.3). (II) we also reveal

why transfer learning is challenging if the label space of source and target are not identical (a.k.a. open

set DA). We formally show that a smaller overlap over the label space leads to a more difficult transfer

(Sec. 4.3.3).

Practical Implications Our theory motivates new DA practice for representation learning, which

is missing inH-divergence. More concretely, we propose unified principles to control the target risk

(Sec. 4.4.2): (I) re-weighted semantic conditional matching, to control the feature conditional shift

DJS(T (x|y)‖S(x|y)); (II) label marginal shift correction, as the way to eliminate the label marginal

shift DJS(T (y)‖S(y)); (III) constraining the feature marginal shift, an approach to prevent poor target

pseudo label predictions (i.e. predicted labels), a common phenomena that can lead to negative transfer

in semantic conditional matching. The proposed guideline enables us to select existing algorithms for

each principle. The empirical results on real datasets verify the benefits of unified principles (Sec. 4.6).

4.2 H-Divergence based DA Theory

In this chapter, we suppose to have the source distribution S and target distribution T over the joint

input and output space X × Y . According to (Ben-David et al., 2007, 2010a), if the data is generated

by a marginal distribution and underlying labeling function pair (D, h?), then the upper bound of the

target risk error w.r.t. ∀h ∈ H is:

RT (h) ≤ RS(h) + dH(T (x),S(x)) + β, (4.1)

where RD(h) = Ex∼D|h(x) − h?(x)|, dH denotes the H-divergence for measuring the marginal

distribution similarities between S(x) and T (x) w.r.t. x, β is the optimal joint risk over the two

domains. 1

As pointed out by Ben-David et al. (2007), it is generally impossible to exactly estimate the H-

divergence. Hence, this measure is approximated as a binary classification task where we are discrim-

inating the source and the target samples. More specifically, the H-divergence is approximated by

distance dA = 2(1 − 2ε), with ε corresponding to the discrimination generalization error. Inspired

by this intuition, Ganin et al. (2016) and subsequent approaches empirically adopted adversarial loss
1For the sake of convenience, we denote S(x) as the marginal distribution w.r.t. x. And S(y|X = x) as the conditional

distribution w.r.t. y, given a specified X = x. Then dist(S(x), T (x)) simply denotes the statistical distance w.r.t. variable x.
dist(S(y|x), T (y|x)) is denoted as the statistical distance w.r.t. variable y, which depends on X = x (essentially a function
of x).
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Figure 4.1 – DJS(T (x)‖S(x)) cannot be viewed as the approximation of dH(S(x), T (x)): (a) for two
uniform distributions with different supports, there exists dH(T (x),S(x))� DJS(T (x)‖S(x)) if 0 <
ξ � 1; (b) while for two distributions with different probability mass, there exists DJS(T (x)‖S(x)) <
dH(T (x),S(x))

(Goodfellow et al., 2014) between the domain classifier d and feature extractor function g in the context

of representation learning:

min
g

max
d

Ex∼S(x) log(d ◦ g(x)) + Ex∼T (x) log(1− d ◦ g(x)),

= min
g
DJS(S(g(x))‖T (g(x))),

(4.2)

where Eq. (4.2) is the dual term of Jensen-Shannon divergence (Nowozin et al., 2016)

It is worth mentioning that the sup on Jensen-Shannon divergence is defined on the all measurable

functions d. In practice, we adopt a predefined family of function d ∈ D during the optimization,

which is actually lower than the ground truth Jensen-Shannon divergence. i.e,

DJS(S(g(x))‖T (g(x)) ≥ max
d∈D
{Ex∼S(x) log(d ◦ g(x)) + Ex∼T (x) log(1− d ◦ g(x))}

However, if we further assume the function family has the rich expressive power (e.g, D is the deep

neural network), the maximization will approach the true Jensen-Shannon divergence with a small

approximation error.

4.2.1 Jensen-Shannon Divergence is not consistent withH-Divergence

From Eq. (4.2), domain adversarial training is essentially in learning representation to minimize the

Jensen-Shannon divergence. However a DJS is not equivalent to dH in Eq. (4.1). We find these two

metrics can be very different and present two counterexamples to illustrate it, shown in Fig. 4.1.

For the sake of simplicity, we design all examples over one dimensional space and use the threshold

functionsH = {ht : t ∈ R} as the hypothesis class. That is, for any t ∈ R, the threshold function is

defined by ht(x) = 1 for x < t and ht(x) = 0 otherwise.

Counterexample 1 We adopt the example of (Ben-David et al., 2010b), showed in Fig.4.1(a), with a

small fixed ξ ∈ (0, 1). Let the target T (x) be the uniform distribution over {2kξ : k ∈ N, 2kξ ≤ 1} and

the source S(x) be the uniform distribution over {(2k+1)ξ : k ∈ N, (2k+1)ξ ≤ 1}. We can compute

dH(T (x),S(x)) ≈ dA(T (x),S(x)) = ξ while DJS(T (x)‖S(x)) = 1 since the two distributions
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have disjoint supports. Then dH(T (x),S(x)) � DJS(T (x)‖S(x)) when ξ � 1, indicating a small

H-divergence can correspond to a very large Jensen-Shannon divergence.

Counterexample 2 Fig. 4.1 (b) further illustrates that Jensen-Shannon divergence is not the upper

bound ofH-divergence. We assume the source S(x) be the uniform distribution over {1, 2, 3} and let

the target T (x) be the distribution on the same support with different probability mass {T (x = 1) =

1/4, T (x = 2) = 1/2, T (x = 3) = 1/4}. Then Jensen-Shannon divergence can be even smaller than

H-divergence: DJS(T (x)‖S(x)) < dH(T (x),S(x)).

Due to these differences,H-divergence is not a proper theoretical tool for analyzing the practice that

minimizes the Jensen-Shannon divergence (e.g. domain adversarial training and its variants such as

Ganin et al. (2016)).

4.3 DA Theory with Jensen-Shannon Divergence and Theoretical
Insights

4.3.1 Upper and Lower Risk Bound

Slightly different from the settings in (Ben-David et al., 2010a), we assume the data (x, y) ∈ X × Y is

generated from a joint distribution D and denote the hypothesis and loss function as h : X × Y → R
and L : R→ R, where the hypothesis h ∈ H actually outputs a confidence score of an observation

(x, y). We also denote RD(h) the expected risk w.r.t. distribution D: RD(h) = E(x,y)∼D L(h(x, y)).

Theorem 4.1 (Upper Bound). Supposing the prediction loss L is bounded within an interval G:

G = max(L)−min(L), then for all the hypothesis h the expected risk w.r.t. the target domain can be

upper bounded by:

RT (h) ≤ RS(h) +
G√

2

√
DJS(T ‖S),

where DJS(T ‖S) = 1
2 [DKL(S‖M) + DKL(T ‖M)] with M = 1

2(T + S) is the Jensen-Shannon

divergence between the joint distribution S(x, y) and T (x, y).

The complete proof is demonstrated in Appendix Sec. C.2.

Discussions We notice Ben-David et al. (2010a) analogously proposed the dH∆H divergence to

measure domain discrepancy. However, as it pointed out (in Sec. 7.2 of (Ben-David et al., 2010a)),

it is also impossible to exactly estimate this discrepancy. As a consequence, (Ben-David et al.,

2010a) still adopted dA distance to approximate, recovering the same empirical strategy as H di-

vergence. In addition, it seamlessly connects the well-known assumptions in DA. When the covari-

ate shift assumption holds (T (y|X = x) = S(y|X = x)), the upper bound can be expressed

as RT (h) ≤ RS(h) + G√
2

√
DJS(T (x)‖S(x)). Besides, when the label shift assumption holds

(T (x|Y = y) = S(x|Y = y)), the upper bound can be alternatively expressed as RT (h) ≤
RS(h) + G√

2

√
DJS(T (y)‖S(y)).
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Tab 4.1 illustrates the comparisons between the proposed Jensen-Shannon divergence and the H-

divergence.

Extension to Unbounded loss The proposed upper bound can be further extended to the unbounded

loss with sub-Gaussian or sub-Gamma property (Boucheron et al., 2013).

Corollary 4.1 (Sub-Gaussian Upper Bound). If the loss function satisfies σ-Sub Gaussian w.r.t. distri-

bution P : ∀λ > 0: logEP e[λ(`(z)−EP `(z))] ≤ λ2σ2

2 , then the expected risk in the target domain can be

upper bounded by:

RT (h) ≤ RS(h) + σ
√

2DJS(T ‖S)

Corollary 4.2 (Sub-Gamma Upper Bound). If the loss function satisfies (σ, a)-Sub Gamma property:

logEP e[λ(`(z)−EP `(z))] ≤ λ2σ
2(1−a|λ|) , for 0 < |λ| < 1

a . Then the expected risk in the target domain can

be upper bounded by:

RT (h) ≤ RS(h) + (σ + 1)
√

2DJS(T ‖S) + 2aDJS(T ‖S)

The extended upper bounds can be tighter than the conclusion in Theorem 4.1, particularly when the

loss is in a large range with a small variance.

Theorem 4.2 (Lower Bound). If we assume the loss L as zero-one binary loss, then for any h, we can

prove the target risk is lower bounded by:

RT (h) ≥ RS(h)−
√
DJS(T ‖S).

The proof is shown in Appendix Sec.C.3. The lower bound provides the insights of the easy transfer

(Hanneke and Kpotufe, 2019) scenario: learning the target domain can be easier than the source domain,

and the gap is controlled (smaller than) by their distribution distance. For example, if we assume

RS(h) = 0.2, DJS(T ‖S) = 2 × 10−4, then the target risk is also bounded: RT (h) ∈ [0.186, 0.21].

This indicates RT (h) can be smaller than RS(h) but not an arbitrary large gap.

4.3.2 Bi-Directional Marginal/Conditional Shifts

We can decompose the joint Jensen-Shannon divergence into bi-directional marginal and conditional

shift upper bounds, according to the information theoretical chain rule (Polyanskiy and Wu, 2019).

Table 4.1 – Different DA Theories for classification.

Divergence Data Generation Non-binary Loss

H-divergence (Ben-David et al., 2010a) x ∼ D(x), y = h?(x)
|Y| = 2

×
Discrepancy (Mansour et al., 2009a)

√

Jensen-Shannon
x ∼ D(x), y ∼ D(y|x)

|Y| ≥ 2

√
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Corollary 4.3. The upper bound in Theorem 4.1 can be further decomposed as:

RT (h) ≤ RS(h) +
G√

2

√
DJS(T (x)‖S(x))︸ ︷︷ ︸

Feature Marginal Shift

+
G√

2

√
Ex∼S(x)DJS(T (y|x)‖S(y|x))︸ ︷︷ ︸

Label Conditional Shift

+
G√

2

√
Ex∼T (x)DJS(T (y|x)‖S(y|x))︸ ︷︷ ︸

Label Conditional Shift

(4.3)

RT (h) ≤ RS(h) +
G√

2

√
DJS(T (y)‖S(y))︸ ︷︷ ︸
Label Marginal Shift

+
G√

2

√
Ey∼S(y)DJS(T (x|Y = y)‖S(x|Y = y))︸ ︷︷ ︸

Semantic (Feature) Conditional Shift

+
G√

2

√
Ey∼T (y)DJS(T (x|Y = y)‖S(x|Y = y))︸ ︷︷ ︸

Semantic (Feature) Conditional Shift

(4.4)

The derivation is delegated in Appendix Sec. C.4. In particular, Eq. (4.4) provides an alternative

direction for understanding DA. The target risk bound is alternatively controlled by the label marginal

shift and the semantic (feature) conditional distribution shift. Generally, the source and target label

marginal distribution, as well as the semantic (feature) conditional distributions are both different. For

example, in the classification of different digit datasets (e.g., MNIST, USPS), when conditioning on the

certain digit Y = y, it is clear that S(x|Y = y) 6= T (x|Y = y), indicating the necessity of considering

semantic information in DA.

4.3.3 Theoretical Applications

One fundamental challenge in DA is to discover the relations and inherent properties of learning tasks,

that ensure a successful transfer (Ben-David et al., 2010b). Jensen-Shannon divergence enables us

to analyze the factor of label space that influences the transfer procedure, illustrated in two concrete

scenarios.

Application I: Target Intrinsic Error In DA

To characterize the inherent difficulty in the learning a task, we adopt the conditional entropy

H(YD|XD) = Ex∼D(x)H(Y |X = x) as the intrinsic error, an error in predicting the labels given

that the underlying data distribution D is known (Achille and Soatto, 2018; Zhang et al., 2020a).

For example, if X does not provide any information for the label Y such that Y ⊥⊥ X , then the

conditional entropy arrives its maximum: H(Y |X) = H(Y ), indicating the impossibility to guarantee

a small prediction error. However, in the context of H-divergence (Ben-David et al., 2010a), this

property can not be analyzed since the label is determined by a fixed labeling function, such that

H(Y |X) = Ex∼D(x)H(h?(x)|X = x) ≡ 0.

50



Target Intrinsic Error: Upper Bound In the context of DA, our goal is to ensure a small target risk,

i.e., a small target intrinsic error is necessary. However, we never have the full target distribution

T (x, y), indicating the impossibility to directly estimate target intrinsic errorH(Yt|Xt). In contrast, we

can have the information of source distribution, as well as the relations of source and target distribution.

Then we can derive the target intrinsic error is controlled by the label space size, as well as the source

intrinsic error and Jensen-Shannon divergence of two distributions. This result is also consistent with

our intuition and the lower bound derived by Fano’s inequality (Polyanskiy and Wu, 2019): a smaller

label space |Y| is generally easier to learn, if the other conditions are identical.

Theorem 4.3. If we have:

1. Small source intrinsic error: H(Ys|Xs) ≤ ε,
2. Marginal distributions defined in Eq. (4.3) are close: DJS(S(x)‖T (x)) ≤ δ1,

3. Conditional distributions defined in Eq. (4.3) are close: DJS(S(y|X = x)‖T (y|X = x)) ≤ δ2,

∀x,

Then the target intrinsic error can be upper bounded by:

H(Yt|Xt) ≤ ε+

√
δ2

2
+

√
δ1

2
log |Y|.

Application II: Inherent Difficulty in Learning Open Set DA

Our theory also proposes the analysis to understand when and what is difficult to transfer in Open Set

DA, i.e., the source and target domain share only a portion of label space (Cao et al., 2018; You et al.,

2019; Panareda Busto and Gall, 2017).

The key observation in the Open Set DA is that supp{T (y)} ∩ supp{S(y)} 6= ∅. We suppose a small

semantic conditional shift (∀y, DJS(S(x|y)‖T (x|y)) ≤ δ for a small δ > 0), and a uniform label

distributions over two different label spaces Y1 and Y2 such that S(y) ∼ Unif(Y1), T (y) ∼ Unif(Y2),

|Y1| = |Y2| = N . We further assume the number of shared classes is |Y1 ∩ Y2| = αN , 0 < α < 1.

Then if the loss is binary and based on Theorem 4.2 and Eq. (4.4), the target risk can be bounded:

RS(h)−
(√

1− α+ 2
√
δ
)
≤ RT (h) ≤ RS(h) +

1√
2

(√
1− α+ 2

√
δ
)
.

When α→ 1, DJS(T (y)‖S(y))→ 0, the source risk is approaching the target risk from the two sides,

then simply minimizing the source risk and further semantic conditional matching (see Sec. 4.4) can

effectively control the target risk. On the contrary, if α→ 0, the gap between target and source risk

is large, indicating that a small source risk and semantic conditional shift no more guarantee a small

target risk. From the practical perspective, less label overlapping means that it is harder to transfer the

exact corresponding semantic conditional information from the source to the target.
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Table 4.2 – Empirical Methods for Bi-Directional Marginal/Conditional Shifts

Corollary 4.3 Source Marginal Shift Conditional Shift

Eq.(4.3)
Term RS(h) DJS(T (z)‖S(z)) DJS(T (y|z)‖S(y|z))

Method ERM Feature Marginal Matching N/A

Eq.(4.4)
Term RS(h) DJS(T (y)‖S(y)) DJS(T (z|y)‖S(z|y))

Method Label Marginal Shift Correction Semantic Distribution Matching

4.4 Practical Principles for Unsupervised DA

In this section, we instantiate our theoretical framework with practical principles for designing unsu-

pervised DA algorithms in deep learning. We would like to point out that our theory is based on the

labelled data information and the practical principle can be applied in the unsupervised scenario. In

addition, our results not only reaffirm the principles induced byH-divergence, but also motivate new

DA practice in the representation learning.

We introduce a feature learning function g : X → Z and denote latent variable (feature) z = g(x).

Our objective is to find a representation function g and classifier h, following the principles in Tab. 4.2.

We also denote Ŝ(x, y) = {(xis, yis)}Nsi=1, T̂ (x) = {xit}Nti=1 as the observed (empirical) distribution.

4.4.1 Inherent Practical Difficulty for Controlling Label Conditional Shift

Equation (4.3) in Corollary 4.3 recovers the principles induced by H-divergence. Specifically, the

domain adversarial training is equivalent to minimize the dual form of Jensen-Shannon divergence

(Nowozin et al., 2016) i.e. mingDJS(T̂ (z)‖Ŝ(z)).

However, domain adversarial training cannot guarantee a small upper bound in Corollary 4.3. To

this end, we can prove that merely minimizing DJS(T̂ (z)‖Ŝ(z)) can lead to an increase in the label

conditional shift DJS(T̂ (y|z)‖Ŝ(y|z)), which is illustrated as the following:

Ez∼T̂ (z)DJS(Ŝ(y|z)‖T̂ (y|z)) + Ez∼Ŝ(z)DJS(Ŝ(y|z)‖T̂ (y|z))

≥ 2

(√
DJS(T̂ (y)‖Ŝ(y))−

√
DJS(Ŝ(z)‖T̂ (z))

)2

The aforementioned inequality indicates that the third term in Eq.4.3 is lower bounded by the gap

between DJS(T̂ (y)‖Ŝ(y)) and DJS(Ŝ(z)‖T̂ (z)), then merely minimizing DJS(Ŝ(z)‖T̂ (z)) will be

problematic if their label distributions are significantly different.

Moreover, controlling the label condition shift is practically difficult. Because it requires two identical

continuous and high dimensional features such that zs = zt with zs ∈ Ŝ(z), zt ∈ T̂ (z), then

minimizing DJS(T̂ (y|Z = zs)‖Ŝ(y|Z = zt)). Generally, it is not trivial to find such feature pairs

zs = zt, only from finite observational samples.
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4.4.2 Novel Practice

According to Eq. (4.4) in Corollary 4.3, the target risk can be alternatively bounded by RS(h), label

marginal shift DJS(T (y)‖S(y)), and semantic (feature) conditional shift DJS(T (z|y)‖S(z|y)), which

enables us to consider new principles in DA.

(I) Semantic Conditional Distribution Matching Different from the controlling the label condi-

tional shift DJS(T̂ (y|Z = z)‖Ŝ(y|Z = z)), controlling the semantic (feature) conditional shift

DJS(T̂ (z|Y = y)‖Ŝ(z|Y = y)) is practically more efficient, since labels are usually categorical

variables with the finite classes, comparing with continuous latent variable Z. However, there are no

ground truth labels on the target domain, inducing the main issue in semantic conditional matching in

DA. For addressing this concern, target pseudo labels Yp, estimated from the classifier, are introduced

as the approximation of the real target label. Then following insights of the third term in Eq. (4.4), the

semantic conditional loss can be expressed as:∑
y

(Ŝ(y) + T̂p(y))DJS

(
T̂ (z|Yp = y)‖Ŝ(z|Y = y)

)
, (4.5)

where T̂p(y) is the target pseudo distribution predicted by the neural network. We notice that Long

et al. (2018) alternatively encoding the label prediction information h ◦ g(x) as the conditional domain

adversarial training, to implicitly minimize the conditional distribution divergence. However, semantic

conditional matching requires relative good pseudo-label prediction. Otherwise the incorrect semantic

(feature) feature alignment will lead to a negative transfer procedure for the target domain during the

learning phase.

(II) Label Marginal Shift Correction Is the semantic conditional matching sufficient to control the

target risk? From Eq. (4.4), the target risk is also controlled by label marginal shift. We can further

extend this conclusion in the representation learning: if the semantic conditional distribution is matched,

then the target risk is still controlled by the label marginal shift.

Theorem 4.4. If any classifier h, feature learner g, and label y ∈ Y = {−1,+1} such that semantic

conditional distribution is matched, DJS(S(z|y), T (z|y)) = 0, then the target risk can be bounded:

RS(h ◦ g)−
√

2DJS(S(y), T (y)) ≤ RT (h ◦ g) ≤ RS(h ◦ g) +
√

2DJS(S(y), T (y)),

where RS(h ◦ g) = RS(h(g(x), y)) is the expected risk over the classifier h and feature learner g.

The proof is delegated in Appendix Sec. C.7.1. As Theorem 4.4 suggests, we need to control label

marginal shift DJS(T (y)‖S(y)). Therefore we adopt the popular label re-weighted loss (Cortes et al.,

2010):

R̂αS(h ◦ g) =
∑

(xs,ys)∼Ŝ(x,y)

α(ys)L(h(g(xs), ys))

with α(y) = T (y)
S(y) . In addition, we can further prove the empirical re-weighted loss converges to

RT (h ◦ g), if DJS(S(z|y), T (z|y)) = 0 (see Appendix for details). As for estimating label weight α̂
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from the data, several approaches have been proposed, e.g. Black Box Shift Learning (BBSL) (Lipton

et al., 2018) or Regularized Learning under Label Shift (RLSS) (Azizzadenesheli et al., 2019).

(III) Feature Marginal Matching as the Constraint Although the aforementioned principles are

theoretically appealing, we practically use the pseudo label Yp for the semantic conditional matching

DJS(T̂ (z|Yp = y)‖Ŝ(z|Y = y)), which can lead to negative transfer in the training loop if we face

poor pseudo label predictions.

Can we derive a principle to recognize poor pseudo label prediction during learning? Theorem 4.5

reveals one consequence of poor target pseudo label prediction: it can lead to a large empirical feature

marginal divergence DJS(Ŝ(z)‖T̂ (z)) (in Eq. (4.3)), under mild conditions.

Theorem 4.5. We denote Ŝp(y), T̂p(y) as the prediction output (pseudo-label) distributions. If we

have such a “bad” pseudo label prediction such that DJS(T̂ (y)‖T̂p(y)) = P , small source predic-

tion error DJS(Ŝ(y)‖Ŝp(y)) ≤ ε1 and small label ground truth empirical distribution divergence

DJS(Ŝ(y)‖T̂ (y)) ≤ ε2, then the feature marginal divergence on the latent space Z can be lower

bounded by:

DJS(Ŝ(z)‖T̂ (z)) ≥ (
√
P −√ε1 −

√
ε2)2.

The proof is delegated in Appendix Sec. C.7.3. From Theorem 4.5, if P → 1 and ε1, ε2 are small,

DJS(Ŝ(z)‖T̂ (z)) can be very large. Therefore we add the constraint DJS(Ŝ(z)‖T̂ (z)) ≤ κ as a broad

adaptation step, to prevent the poor pseudo-label prediction (a.k.a. a large P ).

Practical Guideline Based on these three principles, we propose a generic and iterative practical

framework, where parameter optimization and pseudo-label prediction steps are conducted iteratively.

Moreover, we would like to emphasize that the realization of each principle is flexible. For example,

the distribution matching can be done through either adversarial training by introducing the auxiliary

domain discriminator d or parametric distribution matching (e.g. statistical moment matching approach).

More empirical choices can be found in the Appendix.
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Parameter Optimization Step (fixed Pseudo-Labels) classifier h and feature extractor g:

min
h,g

R̂α̂S(h(g(x), y))︸ ︷︷ ︸
(I)

+
∑

y
(Ŝ(y) + T̂p(y))DJS

(
T̂ (g(x)|Yp = y)‖Ŝ(g(x)|Y = y)

)
︸ ︷︷ ︸

(II)

s.t. DJS(T̂ (g(x))‖Ŝ(g(x))) ≤ κ︸ ︷︷ ︸
(III)

(I) Label marginal shift correction: R̂α̂S(h(g(x), y)) =
∑

(xs,ys)∼Ŝ α̂(ys)L(h(g(xs), ys));

(II) Semantic conditional matching, aligning the semantic feature; (III) Feature marginal

matching as the constraint, a broad adaptation step to prevent a poor initialization of pseudo

label prediction.

Pseudo-Label Prediction Step (fixed Parameters): yp, α̂, T̂p(y)

yp,T̂p(y) are pseudo-labels and distributions on the target domain. α̂ is the reweighting coeffi-

cient.

4.5 Related Work

DA theory An important aspect in DA is to establish the proper theory to understand how it influences

the target risk. The most popular approach is based onH-divergence (Ben-David et al., 2010a), which

is set on the deterministic labeling function and binary loss. Then, variants of hypothesis based

discrepancy have been proposed such as distribution discrepancy (Cortes et al., 2019), Margin disparity

discrepancy (Zhang et al., 2019), etc. However, these theoretical results mainly focus on the relation

of feature marginal discrepancy d(S(x)‖T (x)) and the difficulty to analyze various scenarios such as

target shift, open-set DA, etc.

An alternative is to adopt the statistical divergence. Mansour et al. (2009b) proposed Rényi-α divergence

to measure the feature marginal discrepancy. Then Germain et al. (2016); Hoffman et al. (2018)

analyzed Rényi divergence on the joint source target distribution, with binary and cross entropy loss,

respectively. However, they generally focus on covariate shift settings by assuming S(y|x) = T (y|x).

Moreover, the aforementioned theories did not discuss the inspired practice under the representation

learning, which restricts its utility in deep learning. Another popular choice is the Wasserstein distance

such as (Shen et al., 2018), but still focus on the feature marginal distance W1(S(x)‖T (x)), since the

chain rule generally does not hold on Wasserstein distance, then it is difficult to derive the label shift

and semantic conditional shift simultaneously.

DA principles for the representation learning Deriving principles for DA problems in the repre-

sentation learning is crucial for the real-world applications. From the conventional DA theories such as

(Ben-David et al., 2010a,b; Ben-David and Urner, 2014; Germain et al., 2013; Johansson et al., 2019),
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a small joint optimal risk β is important to ensure a small target risk. Therefore, different empirical

approaches have speculated various ideas to control a small β. From the theoretical prospective, (Zhao

et al., 2019a) adopted Jensen-Shannon divergence to derive the lower bound of β, indicating necessarily

of considering the target shift. However, it is still not clear how the algorithms explicitly guarantee a

small β. Indeed, our work can further extend this by proving a new theoretical upper bound through

target shift and feature conditional shift, which enable the possible practice to explicitly control the

target risk.

We also notice that Zhang et al. (2013); Gong et al. (2016) analyzed feature conditional shift from

the causal prospective in RKHS space, which is generally difficult to adapt in the large-scale dataset.

From empirical aspects, Li et al. (2019b); Tan et al. (2019); Long et al. (2013); Saito et al. (2017);

Chen et al. (2019a); Xie et al. (2018); Cai et al. (2019) proposed various strategies for eliminating

conditional shift, which speculated one or two principles to improve the prediction performance. We

formally demonstrate the unified three principles, as a way to control the target risk. In addition, our

DJS analysis provides justifications to explain these empirical success e.g, Cai et al. (2019), which

in fact are not particularly focused on previous theories but already achieved meaningful results for

current deep DA problems.

4.6 Experiments

We validate the proposed guideline by realizing each principle. We aim to show whether applying the

unified principles is better than merely considering only one or two of them.

4.6.1 Experimental Settings

We evaluate the proposed framework on digit recognition and the Office-31 dataset.

Digits Recognition. It includes 3 domains: MNIST, SVHN (Netzer et al., 2011) and USPS (Hull,

1994) dataset. MNIST is composed of grey images of size 28× 28, USPS contains 16× 16 grey digits;

and SVHN consists of 32× 32 color digit images, which are more challenging and can contain more

than one digit in each image. We randomly sample 7K samples for each task. We evaluate our method

by using the three typical adaptation tasks: USPS↔MNIST (two tasks) and SVHN→MNIST (one

task).

Office-31 dataset (Saenko et al., 2010). It consists of 4,652 images and 31 categories collected from

three different domains: Amazon (A) from amazon.com, Webcam (W) and DSLR (D), taken by web

camera and digital SLR camera in different environmental settings, respectively.

We further visualize the label distribution of digits and Office-31, showing in Fig. 4.2. We observe

the non-uniform label distributions over these two tasks. We implement the digits dataset based on

the LeNet5 (LeCun et al., 1998). All digit images are resized to 28× 28 for fair comparisons. As for

Office-31 task, we implement it on the Pre-trained AlexNet (Krizhevsky et al., 2012). We use the same
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Figure 4.2 – Label distribution on two Datasets

hyper-parameter training strategy with DANN (Ganin et al., 2016). We illustrate our practical pipeline

in the attached source code. We update the neural network parameters and α̂, iteratively (frequency:

source batch number×100). We compare the baselines of merely considering feature marginal (DANN

(Ganin et al., 2016)), conditional matching (CDAN (Long et al., 2018)), and our principles. We repeat

the experiments five times and report the average and std.

4.6.2 Algorithm Design

The proposed principles consist three components:

Source re-weighting loss We use the cross-entropy function as the prediction loss. We estimate the

α̂ by BBSL approach (Lipton et al., 2018) with

α̂ = Ĉ−1T̂p,

where Ĉ is source prediction confusion matrix with Ĉ[i, j] = P(h(g(xs)) = i, ys = j). In practice,

we iteratively update α̂ and network parameters.

Semantic Conditional Matching DJS(Ŝ(z|y)‖T̂ (z|y)). For each label Y = y, we align its first-

order statistics (feature mean matching). i.e, we aim at optimizing∥∥∥∥∥∥ 1

|#ys = y|
∑

(xs,ys)

δ{ys=y}g(xs)−
1

|#ypt = y|
∑

(xt,y
p
t )

δ{ypt=y}g(xt)

∥∥∥∥∥∥
2

,

where |#ys = y| is the number of ys = y, which is the approximation of dTV, the upper bound of DJS.
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Algorithm 3 Jensen-Shannon Principles in Unsupervised DA

Require: Labeled source Ŝ , Unlabelled Target T̂
Ensure: Label distribution ratio α̂. Feature Learner g, Classifier h, Statistic critic function d1, . . . , dT ,

class centroid for source Cy
s and target Cy (∀y ∈ Y).

1: . . . DNN Parameter Training Stage (fixed α̂) / / /
2: for mini-batch of samples (xS ,yS) ∼ Ŝ, (xT ) ∼ T̂ do
3: Predict target pseudo-label ȳT = argmaxyh(g(xT ), y)
4: Compute source confusion matrix for each batch (un-normalized)

CŜ = #[argmaxy′h(z, y′) = y, Y = k]
5: Compute the batched class centroid for source Cys and target Cy.
6: Moving Average for update source/target class centroid:
7: Source class centroid update

Cy
s = ε1 ×Cy

s + (1− ε1)× Cys , ∀y ∈ {1, . . . ,Y}
8: Target class centroid update

Cy = ε1 ×Cy + (1− ε1)× Cy
9: Computing the approximation semantic conditional loss

∑
y(Ŝ(y) + T̂p(y))‖Cy

s −Cy‖22
10: Updating g, h, d (SGD and Gradient Reversal), to minimize the loss.
11: end for
12: . . . Estimation α̂ / / /
13: Compute the global(normalized) source confusion matrix

CŜ = Ŝ[argmaxy′h(z, y′) = y, Y = k] (t = 1, . . . , T )
14: Solve α (denoted as {α′}Tt=1).
15: Update α by moving average: α = ε1 × α+ (1− ε1)× α′

Table 4.3 – Accuracy (%) on Digits Dataset

Method SVHN→MNIST MNIST→ USPS USPS→MNIST

Without DA 62.1±1.2 87.1±0.9 78.1±0.6
DANN (Ganin et al., 2016) 73.8±1.8 89.1±0.6 83.0±0.8
CDAN (Long et al., 2018) 86.7±0.8 93.2±0.6 93.0±0.5
(I + III) 76.7±0.8 89.4±0.7 84.6±1.4
(I + II) 87.3±0.6 94.6±0.7 94.7±0.5
(II + III) 88.6±0.9 95.5±0.8 95.5±0.7
(I + II + III) 89.6±1.1 96.5±0.6 97.0±0.6

Feature marginal matching DJS(T̂ (z)‖Ŝ(z)) as the constraint. We adopt the Lagrangian relax-

ation for treating the constraint as the regularization, with κ as the hyper-parameter. We use the

dual term of DJS in Eq. (4.2) to estimate the JS divergence. Thus this term can be rewritten as

maxd κ[Exs∼S(x) log(d ◦ g(xs)) + Ext∼T (x) log(1 − d ◦ g(xt))]. In the experiments, we denote

κ = 0.01.

4.6.3 Results and Analysis

We report the empirical performances in Tab.4.3 and 4.4. The empirical results indicate the improved

performance of the unified principles, comparing with merely one or two principles. We observe that
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Table 4.4 – Accuracy (%) on Office-31 Dataset

Method A→ D A→W D→W W→ D W→ A D→ A Ave

Without DA 63.8±0.5 61.6±0.5 95.4±0.3 99.0±0.2 49.8±0.4 51.1±0.6 70.1
DANN (Ganin et al., 2016) 72.3±0.3 73.0±0.5 96.4±0.3 99.2±0.3 51.2±0.5 52.4±0.4 74.1
CDAN (Long et al., 2018) 76.3±0.1 78.3±0.2 97.2±0.1 100.0±0.0 57.5±0.4 57.3±0.2 77.7
(I + III) 72.6±0.4 73.5±0.4 96.2±0.2 99.3±0.5 51.4±0.2 52.8±0.5 74.3
(I + II) 75.3±0.7 79.4±1.1 97.1±0.5 97.5±0.5 58.2±0.9 61.8±0.8 78.2
(II + III) 75.7±0.1 79.2±0.7 96.8±0.1 99.8±0.1 59.5±0.4 58.7±0.3 78.3
(I + II + III) 76.7±0.4 80.8±0.4 97.5±0.2 99.8±0.1 59.8±0.4 62.3±0.2 79.5
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Figure 4.3 – Analysis of proposed principles. (a) Office-31, Domain A→D. Evolution of each loss
during the training. (b) Office-31, Domain A→D. Evolution of accuracy during the training.

the empirical benefit of semantic conditional matching (II) is most notable.

Fig. 4.3 further reveals the properties of the proposed principles. Specifically, Fig. 4.3(a) shows the

evolution of each principle (loss) during the training, which is coherent with the goals in the guideline.

The semantic conditional shift (Principle II) and the weighted source classification error (Principle

I) gradually diminish and DJS(T̂ (z)‖Ŝ(z)) (Principle III) restricts within a small value. In addition,

we trace the target domain prediction accuracy of different principles combinations in Fig. 4.3(b),

for demonstrating the impact of each principle. The results indicate the importance of considering

semantic (feature) conditional distribution matching (II), with a significant performance influence

(∼ 4.2%). On the other hand, the influences of principle (I) and (III) are relatively modest (∼ 1.3%).

Fig. 4.4(c) revealed estimated α̂ and its ground truth value, which verified the correctness of the

proposed principle.

Ablation Study: Label-drifted DA To further elaborate the role of proposed principles, we simulate

a significant label drifting in DA.

In Office-31 (A→W dataset), we randomly drop out 25% samples in the first half of classes within

source, and 25% samples in latter half of classes in target. We visualize result in Fig.4.4 (b), which

verifies the strong practical benefits of semantic conditional matching (principle II, with improvement

∼ 5.8− 9.4%). Besides, principle (III) empirically offers a coarse adaptation step to improve pseudo-
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Figure 4.4 – Ablation Study: Label-drifted DA. (a) Office-31. Label distribution of drifted A→W. (b)
Label drifted A→W. Evolution of accuracy of different principles during the training. (c) In digits
dataset, we visualize the estimated α̂ (red dot curve) and ground truth value (bar plot). (d) Label drifted
Digits, SVHN→MNIST. Evolution of accuracy under different label drifts.

label prediction. E.g., in Fig.4.4 (b), introducing principle (III) improves the prediction performance

by ∼ 1.1% In Digits dataset (SVHN→MNIST), based on (Li et al., 2019b), we randomly drop out

different portion % of samples in latter half of classes (i.e digits 5− 9) in source domain. To show the

role of label shift correction, we visualize the results in Fig.4.4 (c). We observe that in a relative large

label drift, the re-weighted loss (principle I) improves ∼ 3% performance.

4.7 Conclusion

We proposed a new theoretical framework based on Jensen-Shannon divergence for analyzing DA

problems. Our theory established bi-directional marginal/conditional shifts for the target risk bound.

We further demonstrated its flexibility in various theoretical and algorithmic applications. It is worth

mentioning that our theoretical framework is not only suitable for DA, but also extendable to analyzing

the real shift problems such as fair representation learning (Louizos et al., 2015; Edwards and Storkey,

2015), individual treatment effect estimation (Shalit et al., 2017).
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Chapter 5

Aggregating From Multiple
Target-Shifted Sources

Original title of the article: Aggregating From Multiple Target-Shifted Sources

Résumé

L’adaptation à un domaine multisource vise à exploiter les connaissances de plusieurs tâches pour

prédire un domaine cible connexe. Par conséquent un aspect crucial consiste à combiner correctement

différentes sources en fonction de leurs relations. Dans cet article, nous avons analysé le problème de

l’agrégation de domaines sources avec différentes distributions d’étiquettes, où la plupart des approches

récentes de sélection de sources échouent. L’algorithme que nous proposons diffère des approches

précédentes sur deux points essentiels: le modèle agrège plusieurs sources principalement par la

similarité de la distribution conditionnelle sémantique plutôt que par la distribution marginale; le

modèle propose un cadre unifie pour sélectionner les sources pertinentes pour trois scénarios populaires,

à savoir l’adaptation de domaine avec une étiquette limitée sur le domaine cible, l’adaptation de

domaine non supervisée et l’adaptation de domaine non supervisée partielle par étiquette. Nous

évaluons la méthode proposée par des expériences. Les résultats empiriques surpassent de manière

significative les résultats de base en particulier pour l’adaptation partielle du domaine.

Abstract

Multi-source domain adaptation aims at leveraging the knowledge from multiple tasks for predicting

a related target domain. Hence, a crucial aspect is to properly combine different sources based on

their relations. In this paper, we analyzed the problem for aggregating source domains with different

label distributions, where most recent source selection approaches fail. Our proposed algorithm

differs from previous approaches in two key ways: the model aggregates multiple sources mainly
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through the similarity of semantic conditional distribution rather than marginal distribution; the model

proposes a unified framework to select relevant sources for three popular scenarios, i.e., domain

adaptation with limited label on target domain, unsupervised domain adaptation and label partial

unsupervised domain adaption. We evaluate the proposed method through extensive experiments.

The empirical results significantly outperform the baselines, especially for partial domain adaptation.

5.1 Introduction

In various real-world applications, we want to transfer knowledge from multiple sources (S1, . . . ,ST )

to build a model for the target domain, which requires an effective selection and leveraging the most

useful sources. Clearly, solely combining all the sources and applying one-to-one single DA algorithm

can lead to undesired results, as it can include irrelevant or even untrusted data from certain sources,

which can severely influence the performance (Zhao et al., 2020).

To select related sources, most existing works (Zhao et al., 2018; Peng et al., 2019; Li et al., 2018a;

Wen et al., 2020) used the marginal distribution similarity (St(x), T (x)) to search the similar tasks.

However, this can be problematic if their label distributions are different. As illustrated in Fig. 5.1, in a

binary classification, the source-target marginal distributions are identical (S1(x) = S2(x) = T (x)),

however, using S2 for helping predict target domain T will lead to a negative transfer since their

decision boundaries are rather different. This is not only theoretically interesting but also practically

demanding. For example, in medical diagnostics, the disease distribution between the countries can

be drastically different (Liu et al., 2004; Geiss et al., 2014). Thus applying existing approaches for

leveraging related medical information from other data abundant countries to the destination country

can be problematic.

Figure 5.1 – Limitation of merely considering marginal distribution P(x) in the source selection.
Consider the uniform distributions on x, with Unif[0, 2]. In binary classification, we have S1(x) =
S2(x) = T (x) = Unif[0, 2], however adopting S2 is worse than S1 for predicting target T due to
different decision boundaries.
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In this work, we aim to address multi-source deep DA under different label distributions with St(y) 6=
T (y),St(x|y) 6= T (x|y), which is more realistic and challenging. In this case, if the label information

on T is absent (unsupervised DA), it is known as a underspecified problem and unsolvable in the general

case (Ben-David et al., 2010b; Johansson et al., 2019). For example, in Figure 5.1, it is impossible to

know the preferable source if there is no label information on the target domain. Therefore, a natural

extension is to assume few labeled samples on target domain, which is commonly encountered in

practice and a stimulating topic in recent research (Mohri and Medina, 2012; Wang et al., 2019a; Saito

et al., 2019; Konstantinov and Lampert, 2019; Mansour et al., 2020). Based on this, we propose a novel

DA theory with limited labeled data on T (Theorem 5.1, 5.2), which motivates a novel source selection

strategy by mainly considering the similarity of semantic conditional distribution P(x|y) and source

re-weighted prediction loss.

Moreover, in the specific case, the proposed source aggregation strategy can be further extended to the

unsupervised scenarios. Concretely, in our algorithm, we assume the problem satisfies the Generalized

Label Shifted (GLS) condition (Combes et al., 2020), which is related to the cluster assumption

and feasible in many practical applications, as shown in Sec. 5.5. Based on GLS, we simply add a

label distribution ratio estimator, to assist the algorithm in selecting related sources in two popular

multi-source scenarios: unsupervised DA and unsupervised label partial DA (Cao et al., 2018) with

supp(T (y)) ⊆ supp(St(y)) (i.e., inherently label distribution shifted.)

Compared with previous work, the proposed method has the following benefits:

Better Source Aggregation Strategy We overcome the limitation of previous selection approaches

when the label distributions are different by significant improvements. Notably, the proposed approach

is shown to simultaneously learn meaningful task relations and label distribution ratio.

Unified Method We provide a unified perspective to understand the source selection approach in

different scenarios, in which previous approaches regarded them as separate problems. We show their

relations in Fig. 5.2.

5.2 Related Work

Multi-Source DA Multi-source DA has been investigated in previous literature with different aspects

to aggregate source datasets. In the popular unsupervised DA, Zhao et al. (2018); Li et al. (2018b); Peng

et al. (2019); Wen et al. (2020); Hoffman et al. (2018) adopted the marginal distribution d(St(x), T (x))

ofH-divergence (Ben-David et al., 2007), discrepancy (Mansour et al., 2009a) and Wasserstein distance

(Arjovsky et al., 2017) to estimate domain relations. These works provided theoretical insights through

upper bounding the target risk by the source risk, domain discrepancy of P(x) and an un-observable

term η – the optimal risk on all the domains. However, as the counterexample indicates, relying on

P(x) does not necessarily select the most related source. Therefore, Konstantinov and Lampert (2019);

Wang et al. (2019a); Mansour et al. (2020) alternatively consider the divergence between two domains
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with limited target label by using Y-discrepancy, which is commonly faced in practice and less focused

in theory. However, we empirically show it is still difficult to handle target-shifted sources.

Target-Shifted DA Target-Shifted DA (Zhang et al., 2013) is a common phenomenon in DA with

S(y) 6= T (y). Several theoretical analysis has been proposed under label shift assumption with

St(x|y) = T (x|y), e.g. Azizzadenesheli et al. (2019); Garg et al. (2020). Redko et al. (2019) proposed

optimal transport strategy for the multiple unsupervised DA by assuming St(x|y) = T (x|y). How-

ever, this assumption is restrictive for many real-world cases, e.g., in digits dataset, the conditional

distribution is clearly different between MNIST and SVHN. In addition, the representation learning

based approach is not considered in their framework. Therefore, Wu et al. (2019); Combes et al. (2020)

analyzed DA under different assumptions in the embedding space Z for one-to-one unsupervised deep

DA problem but did not provide guidelines of leveraging different sources to ensure a reliable transfer,

which is our core contribution. Moreover, the aforementioned works focus on one specific scenario,

without considering its flexibility for other scenarios such as partial multi-source unsupervised DA,

where the label space in the target domain is a subset of the source domain (i.e., for some classes

St(y) 6= 0; T (y) = 0) and class distributions are inherently shifted.

5.3 Problem Setup and Theoretical Insights

Let X denote the input space and Y the output space. We consider the predictor h as a scoring function

(Hoffman et al., 2018) with h : X × Y → R and predicted loss as ` : R→ R+ is positive, L-Lipschitz

and upper bound by Lmax. We also assume that h is K-Lipschitz w.r.t. the feature x (given the

same label), i.e. for ∀y, ‖h(x1, y) − h(x2, y)‖2 ≤ K‖x1 − x2‖2. We denote the expected risk w.r.t

distribution D: RD(h) = E(x,y)∼D `(h(x, y)) and its empirical counterpart (w.r.t. a given dataset D̂)

R̂D(h) =
∑

(x,y)∈D̂ `(h(x, y)).

In this work, we adopt the commonly used Wasserstein distance as the metric to measure domains’

similarity, which is theoretically tighter than the previously adopted TV distance Gong et al. (2016)

and Jensen-Shnannon divergence. Besides, based on previous work, a common strategy to adjust

the imbalanced label portions is to introduce label-distribution ratio weighted loss with RαS(h) =

E(x,y)∼S α(y)`(h(x, y)) with α(y) = T (y)/S(y). We also denote α̂(y) as its empirical counterpart,

estimated from the data.

Besides, in order to measure the task relations, we define a simplex λ (λ[t] ≥ 0,
∑T

t=1 λ[t] = 1) as the

task relation coefficient vector by assigning higher weights to the more related task. I.e, if the source Si
is more related to target T , then we assign higher λ[i]. Then we prove Theorem 5.1, which proposes

theoretical insights of combining source domains through properly estimating λ.

Theorem 5.1. Let {Ŝt = {(xi, yi)}NSti=1 }Tt=1 and T̂ = {(xi, yi)}NTi=1, respectively be T source and

target i.i.d. samples. For ∀h ∈ H withH the hypothesis family and ∀λ, with high probability ≥ 1− 4δ,

the target risk can be upper bounded by:
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RT (h) ≤
∑
t

λ[t]R̂α̂tSt (h)︸ ︷︷ ︸
(I)

+Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N︸ ︷︷ ︸
(II)

+ LK
∑
t

λ[t]Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))︸ ︷︷ ︸
(III)

+ Lmax sup
t
‖αt − α̂t‖2︸ ︷︷ ︸

(IV)

+ Comp(NS1 , . . . , NST , NT , δ)︸ ︷︷ ︸
(V)

,

where N =
∑T

t=1NSt and βt = NSt/N and dsup
∞ = maxt∈[1,T ],y∈[1,Y] αt(y) the maximum true label

distribution ratio value. W1(·‖·) is the Wasserstein-1 distance with L2-distance as the cost function.

Comp(NS1 , . . . , NST , NT , δ) is a function that decreases with larger NS1 , . . . , NT , given a fixed δ

and hypothesis familyH. (See Appendix for details)

Proof Sketch

The details of the proof can be found in the Appendix Sec. D.3, and Theorem 1 consists of three main

steps.

Step 1: Expected Transfer Risk

Lemma 5.1. If the prediction loss is assumed as L-Lipschitz and the hypothesis is K-Lipschitz w.r.t.

the feature x (given the same label), i.e. for ∀Y = y, ‖h(x1, y)− h(x2, y)‖2 ≤ K‖x1 − x2‖2. Then

the target risk can be upper bounded by:

RT (h) ≤
∑
t

λ[t]RαtS (h) + LK
∑
t

λ[t]Ey∼T (y)W1(T (x|Y = y)‖S(x|Y = y))

Step2: Bounding Empirical and Expected Risk According to the statistical learning theory, with

high probability ≥ 1− 2δ, we have:

∑
t

λ[t]RαtS (h) ≤
∑
t

λ[t]R̂α̂tS (h)+2R̄(`, h)+Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N
+Lmax sup

t
‖αt−α̂t‖2

Where R̄(`, h) is the Rademacher Complexity.

Step 3: Bounding the Empirical and Expected Wasserstein Distance∑
t

λ[t]Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)) ≤
∑
t

λ[t]Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

Cmax

√2 log(2|Y|)
NT

+

√
log(T/δ)

2NT
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Where Cmax is a positive constant. Then combining the conclusion in three steps, we have the

aforementioned results in Theorem 5.1.

Discussions (1) In (I) and (III), the relation coefficient λ is decided by α̂t-weighted loss R̂α̂tSt (h) and

conditional Wasserstein distance Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)). Intuitively, a higher λ[t]

is assigned to the source t with a smaller weighted prediction loss and a smaller weighted semantic

conditional Wasserstein distance. In other words, the source selection depends on the similarity of the

conditional distribution P(x|y) rather than P(x).

(2) If each source has equal samples (βt = 1), then term (II) will become ‖λ‖2, a regularization term

for the encouragement of uniformly leveraging all sources. Term (II) is meaningful in the selection,

because if several sources are simultaneously similar to the target, then the algorithm tends to select a

set of related domains rather than only one most related domain (without regularization).

(3) Considering (I,II,III), we derive a novel source selection approach through the trade-off between

assigning a higher λ[t] to the source t that has a smaller weighted prediction loss and similar semantic

distribution with smaller conditional Wasserstein distance, and assigning balanced λ[t] for avoiding

concentrating on one source.

(4) ‖α̂t − αt‖2 (IV) indicates the gap between ground-truth and empirical label ratio. Therefore, if we

can estimate a good label distribution ratio α̂t, these terms can be small. Comp(NS1 , . . . , NST , NT , δ)

(V) is a function that reflects the convergence behavior, which decreases with larger observation

numbers. If we fixH, δ, N and NT , this term can be viewed as a constant.

Analysis in the Representation Learning Apart from Theorem 5.1, we further drive theoretical

analysis in the representation learning, which motivates practical guidelines in the deep learning

regime. We define a stochastic embedding function g and we denote its conditional distribution w.r.t.

latent variable Z (induced by g) as S(z|Y = y) =
∫
x g(z|x)S(x|Y = y)dx. Then we have:

Theorem 5.2. Assume the loss, the hypothesis families are the same with Theorem 5.1. We further

denote the stochastic feature learning function g : X → Z , and the hypothesis h : Z × Y → R. Then

∀λ, the target risk is upper bounded by:

RT (h, g) ≤
∑
t

λ[t]RαtSt (h, g) + LK
∑
t

λ[t]Ey∼T (y)W1(St(z|Y = y)‖T (z|Y = y)),

where RT (h, g) = E(x,y)∼T (x,y)Ez∼g(z|x)`(h(z, y)) is the expected risk w.r.t. the function g, h.

The proof is delegated in D.4. Theorem 5.2 motivates the practice of deep learning, which requires to

learn an embedding function g that minimizes the weighted conditional Wasserstein distance and learn

(g, h) that minimizes the weighted source risk RαtSt .
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[a]Optimizing
g, h

[b]Optimizing
λ

[c]Estimation
α̂t

Realizing GLS

Optimization

Figure 5.2 – Illustration of proposed algorithm (WADN) and relation with other scenarios. WADN
consists of three components: [a] learning embedding function g and classifier h; [b] source aggregation
through properly estimating λ; [c] label distribution ratio (α̂t) estimator. (1) If target labels are
available, then WADN only requires [a,b] without gradually estimating α̂t (dashed arrows). (2) In
the unsupervised scenarios, if we only have one source, WADN only contains [a,c] and recovers the
single DA problem with label proportion shift, which can be solved under specific assumptions such
as GLS (Li et al., 2019b; Combes et al., 2020) or (Wu et al., 2019). (3) If there are multiple sources
in the unsupervised DA, WADN gradually selects the related sources through interacting with other
algorithmic components. (shown in blue).

5.4 Practical Algorithm in Deep Learning

From the aforementioned theoretical results, we derive novel source aggregation approaches and

training strategies, which can be summarized as follows.

Source Selection Rule Balance the trade-off between assigning a higher λ[t] to the source t that has a

smaller weighted prediction loss and semantic conditional Wasserstein distance, and assigning balanced

λ[t].

Training Rules (1) Learning an embedding function g that minimizes the weighted conditional

Wasserstein distance, learning classifier h that minimizes the α̂t-weighted source risk; (2) Properly

estimate the label distribution ratio α̂t.

Based on these ideas, we proposed Wasserstein Aggregation Domain Network (WADN) to automatically

learn the network parameters and select related sources, where the high-level protocol is illustrated in

Fig. 5.2.

5.4.1 Training Rules

Based on Theorem 2, given a fixed label ratio α̂t and fixed λ, the goal is to find a representation

function g : X → Z and a hypothesis function h : Z × Y → R such that:

min
g,h

∑
t

λ[t]R̂α̂tSt (h, g) + C0

∑
t

λ[t]Ey∼T̂ (y)W1(Ŝt(z|Y = y)‖T̂ (z|Y = y))

Explicit Conditional Loss One can explicitly solve the conditional optimal transport problem with

g and h for a given Y = y. However, due to the high computational complexity in solving T × |Y|
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optimal transport problems, the original form is practically intractable. To address this, we can

approximate the conditional distribution on latent space Z as Gaussian distribution with identical

Covariance matrix such that Ŝt(z|Y = y) ≈ N (Cy
t ,Σ) and T̂ (z|Y = y) ≈ N (Cy,Σ). Then we have

W1(Ŝt(z|Y = y)‖T̂ (z|Y = y)) ≤ ‖Cy
t −Cy‖2. Intuitively, the approximation term is equivalent to

the well known feature mean matching (Sugiyama and Kawanabe, 2012), which computes the feature

centroid of each class (on the latent space Z) and aligns them by minimizing their L2 distance.

Implicit Conditional Loss Apart from the approximation, we can derive a dual term for facilitating

the computation, which is equivalent to the reweighted Wasserstein adversarial loss by the label

distribution ratio.

Lemma 5.2. The weighted conditional Wasserstein distance can be implicitly expressed as:∑
t

λ[t]Ey∼T (y)W1(St(z|Y = y)‖T (z|Y = y)) = max
d1,··· ,dT

∑
t

λ[t][Ez∼St(z)ᾱt(z)dt(z)− Ez∼T (z)dt(z)],

where ᾱt(z) = 1{(z,y)∼St}αt(Y = y), and d1, . . . , dT : Z → R+ are the 1-Lipschitz domain

discriminators (Ganin et al., 2016).

The proof is delegated in Appendix Sec. D.6. Lemma 5.2 reveals that one can train T domain

discriminators with weighted Wasserstein adversarial loss. When the source and target distributions

are identical, this loss recovers the conventional Wasserstein adversarial loss (Arjovsky et al., 2017).

In practice, we adopt a hybrid approach by linearly combining the explicit and implicit matching, in

which empirical results show its effectiveness.

Estimation α̂ When the target labels are available, α̂t can be directly estimated from the data with

α̂t(y) = T̂ (y)/Ŝ(y) and α̂t → αt can be proved from asymptotic statistics. As for the unsupervised

scenarios, we will discuss in Sec. 5.5.1.

5.4.2 Estimation Relation Coefficient λ

Inspired by Theorem 1, given a fixed α̂t and (g, h), we estimate λ through optimizing the derived upper

bound.

min
λ

∑
t

λ[t]R̂α̂tSt (h, g) + C1

√√√√ T∑
t=1

λ2[t]

βt
+ C0

∑
t

λ[t]Ey∼T̂ (y)W1(T̂ (z|Y = y)‖Ŝ(z|Y = y))

s.t ∀t,λ[t] ≥ 0,
T∑
t=1

λ[t] = 1

In practice, R̂α̂tSt (h, g) is the weighted empirical prediction loss and Ey∼T̂ (y)W1(T̂ (z|Y = y)‖Ŝ(z|Y =

y)) is approximated by the dynamic form of the critic function from Lemma 5.2. Then, solving λ can

be viewed as a standard convex optimization problem with linear constraints.
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5.5 Extension to Unsupervised Scenarios

In this section, we extend WADN to the unsupervised multi-source DA, which is known as unsolvable

if the semantic conditional distribution (St(x|y) 6= T (x|y)) and label distribution (St(y) 6= T (y)) are

simultaneously different and no specific conditions are considered (Ben-David et al., 2010b; Johansson

et al., 2019).

In the WADN algorithm, this challenge is equivalent to properly estimate conditional Wasserstein

distance and label distribution ratio α̂t(y) to help estimate λ. According to Lemma 5.2, estimating

the conditional Wasserstein distance can be viewed as an α̂t-weighted adversarial loss, thus if we

can correctly estimate label distribution ratio such that α̂t → αt, then we can properly compute the

conditional Wasserstein-distance through the adversarial term.

Therefore, the problem turns to properly estimate the label distribution ratio. To this end, we assume

the problem satisfies the Generalized Label Shift (GLS) condition (Combes et al., 2020), which has

been theoretically justified and empirically evaluated in the single source unsupervised DA. The GLS

condition states that in unsupervised DA, there exists an optimal embedding function g? ∈ G that can

ultimately achieve St(z|y) = T (z|y) on the latent space. Combes et al. (2020) further pointed out that

the clustering assumption on Z is one sufficient condition to reach GLS, which is feasible for many

practical applications.

Based on the achievability condition of GLS, the techniques of (Lipton et al., 2018; Garg et al., 2020)

can be adopted to gradually estimate α̂t during learning the embedding function. Following this spirit,

we add an distribution ratio estimator for {α̂t}Tt=1, shown in Sec. 5.5.1.

5.5.1 Estimation of α̂t

Unsupervised DA We denote S̄t(y), T̄ (y) as the predicted t-source/target label distribution through

the hypothesis h, and also define CŜt [y, k] = Ŝt[argmaxy′h(z, y′) = y, Y = k] is the t-source

prediction confusion matrix. According to the GLS condition, we have T̄ (y) = T̄α̂t(y), with T̄α̂t(Y =

y) =
∑Y

k=1CŜt [y, k]α̂t(k) the constructed target prediction distribution from the t-source information.

(See Appendix for justification). Then we can estimate α̂t through matching these two distributions by

minimizing DKL(T̄ (y)‖T̄α̂t(y)), which is equivalent to solving the following convex optimization:

min
α̂t

−
|Y|∑
y=1

T̄ (y) log(

|Y|∑
k=1

CŜt [y, k]α̂t(k))

s.t ∀y ∈ Y, α̂t(y) ≥ 0,

|Y|∑
y=1

α̂t(y)Ŝt(y) = 1

(5.1)

Unsupervised Partial DA If we have supp(T (y)) ⊆ supp(St(y)), αt will be sparse due to the

non-overlapped classes. Thus, we impose such prior knowledge by adding a regularizer ‖α̂t‖1 to the

objective of Eq. (5.1) to induce the sparsity in α̂t.
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Algorithm 4 WADN (unsupervised scenario, one epoch)
Ensure: Label ratio α̂t and task relation λ. Feature Learner g, Classifier h, statistic critic function

d1, . . . , dT , class centroid for source Cy
t and target Cy.(t = 1, . . . , T ), hyper-parameter ε > 0.

1: . DNN Parameter Training Stage (fixed αt and λ) /
2: for mini-batch of samples (xS1 ,yS1) ∼ Ŝ1, . . . , (xST ,yST ) ∼ ŜT , (xT ) ∼ T̂ do
3: Target predicted-label ȳT = argmaxyh(g(xT ), y)
4: Compute unnormalized source confusion matrix on current batch CŜt [y, k].
5: Compute feature centroid for source Cyt and target Cy on current batch; Use moving average to

update source and target class centroid Cy
t and Cy.

6: Updating g, h, d1, . . . , dT , by optimizing:

min
g,h

max
d1,...,dT

∑
t
λ[t]R̂α̂t

St (h, g)︸ ︷︷ ︸
Classification Loss

+εC0

∑
t
λ[t]Ey∼T̄ (y)‖Cy

t −Cy‖2︸ ︷︷ ︸
Explicit Conditional Loss

+ (1− ε)C0

∑
t
λ[t][Ez∼Ŝt(z)ᾱt(z)d(z)− Ez∼T̂ (z)d(z)]︸ ︷︷ ︸

Implicit Conditional Loss

7: end for
8: . Estimation α̂t and λ /
9: Compute normalized source confusion matrix; Solve {α̂t}Tt=1 w.r.t. current training epoch through

Sec.5.5.1 ; Update global α̂t through moving average.
10: Solve λ through Sec.5.4.2 w.r.t. current training epoch; Update global λ through moving average.

min
α̂t

−
|Y|∑
y=1

T̄ (y) log(

|Y|∑
k=1

CŜt [y, k]α̂t(k)) + ‖α̂t‖1

s.t ∀y ∈ Y, α̂t(y) ≥ 0,

|Y|∑
y=1

α̂t(y)Ŝt(y) = 1

In training the neural network, the non-overlapped classes will be automatically assigned with a small

or zero α̂t, then (g, h) will be less affected by the classes with small α̂t.

5.5.2 Algorithm implementation and discussion

We give an algorithmic description of Fig. 5.2, shown in Algorithm 4. The high-level protocol is

analogue to the Expectation-Maximization (EM) algorithm, which iteratively optimizes the neural-

network parameters to gradually realize GLS condition with g → g? and dynamically update λ, α̂t
to better estimate conditional distance and aggregate the sources. The GLS assumes the achievability

of existing an optimal g?. Similar to EM algorithm, our proposed algorithm can achieve a stationary

solution, but due to the high non-convexity of the deep network, converging to the global optimal is not

necessarily guaranteed.
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Concretely, we update the α̂t and λ on the fly through a moving averaging strategy. Within one training

epoch over the mini-batches, we fix the α̂t and λ and optimize the network parameters g, h. Then at

each training epoch, we re-estimate the α̂t and λ by using the proposed estimator. When computing

the explicit conditional loss, we empirically adopt the target pseudo label. For reducing the influence of

possible initial poor predictions in the early training epochs, we assign a small weight for the explicit

loss and gradually increase its weight during training. As for the optimization of λ and αt, it is a

standard convex optimization problem and we use package CVXPY.

As for WADN with limited target label, we do not require the label distribution ratio component and

directly compute α̂t.

5.6 Experiments

In this section, we compare the proposed approach with several baselines on the popular tasks. For all

the scenarios, the following multi-source DA baselines are evaluated:

(I) Source method applied with only labeled source data to train the model.

(II) DANN (Ganin et al., 2016). We follow the protocol of Wen et al. (2020) to merge all the source

dataset as a global source domain.

(III) MDAN (Zhao et al., 2018). A baseline that adopts the multiple domain discriminators to estimate

task similarity. Then assigning weights for similar tasks.

(IV) MDMN (Li et al., 2018b). A baseline that adopts pairwise domain discriminators. Different from

MADN, MDMN naturally computes the similarity between the pair of source domains then aggregate

the source weights for the target.

(V) M3SDA (Peng et al., 2019) adopted maximizing classifier discrepancy (Saito et al., 2018) in the

multi-source scenario. Then the task similarity is estimated from the classifier discrepancy.

(VI) DARN (Wen et al., 2020). The recent baselines that adopt marginal distribution similarity and

source prediction risk to select the relevant sources. This baseline is quite similar to ours, where the

key differences lie in estimating the similarity through the lens of conditional distribution.

For the multi-source with limited target label and partial unsupervised multi-source DA, we additionally

add specific baselines. All baselines are reimplemented in the same network structure for fair compar-

isons. The detailed network structures, hyper-parameter settings, and training details are delegated in

Appendix Sec. D.11.

We evaluate the performance on three different datasets:

(1) Amazon Review. (Blitzer et al., 2007) It contains four domains (Books, DVD, Electronics, and

Kitchen) with positive and negative product reviews. We follow the common data preprocessing
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Table 5.1 – Unsupervised DA: Accuracy (%) and standard deviation (%) over five repeats (with the
form Average±standard deviation) on Source-Shifted Amazon Review.

Target Books DVD Electronics Kitchen Average
Source 68.15±1.37 69.51±0.74 82.09±0.88 75.30±1.29 73.81
DANN 65.59±1.35 67.23±0.71 80.49±1.11 74.71±1.53 72.00
MDAN 68.77±2.31 67.81±2.46 80.96±0.77 75.67±1.96 73.30
MDMN 70.56±1.05 69.64±0.73 82.71±0.71 77.05±0.78 74.99
M3SDA 69.09±1.26 68.67±1.37 81.34±0.66 76.10±1.47 73.79
DARN 71.21±1.16 68.68±1.12 81.51±0.81 77.71±1.09 74.78
WADN 73.72±0.63 79.64±0.34 84.64±0.48 83.73±0.50 80.43

Table 5.2 – Unsupervised DA: Accuracy (%) and standard deviation (%) over five repeats (with the
form Average±standard deviation) on the Source-Shifted Digits.

Target MNIST SVHN SYNTH USPS Average
Source 84.93±1.50 67.14±1.40 78.11±1.31 86.02±1.12 79.05
DANN 86.99±1.53 69.56±2.26 78.73±1.30 86.81±1.74 80.52
MDAN 87.86±2.24 69.13±1.56 79.77±1.69 86.50±1.59 80.81
MDMN 87.31±1.88 69.84±1.59 80.27±0.88 86.61±1.41 81.00
M3SDA 87.22±1.70 68.89±1.93 80.01±1.77 86.39±1.68 80.87
DARN 86.98±1.29 68.59±1.79 80.68±0.61 86.85±1.78 80.78
WADN 89.07±0.72 71.66±0.77 82.06±0.89 90.07±1.10 83.22

strategies as (Chen et al., 2012) to form a 5000-dimensional bag-of-words feature. Note that the label

distribution in the original dataset is uniform. To show the benefits of the proposed approach, we create

a label distribution drifted task by randomly dropping 50% of the negative reviews of all the sources

while keeping the target unchanged.

(2) Digits. It consists of four digits recognition datasets including MNIST, USPS (Hull, 1994), SVHN

(Netzer et al., 2011) and Synth (Ganin et al., 2016). We also create a label distribution drift for the

sources by randomly dropping 50% samples on digits 5-9 and keep target domain unchanged.

(3) Office-Home Dataset (Venkateswara et al., 2017). It contains 65 classes for four different domains:

Art, Clipart, Product and Real-World. We used the ResNet50 (He et al., 2016) pretrained from ImageNet

in PyTorch as the base network for feature learning and put a MLP for the classification. The label

distributions in these four domains are different and we did not manually create a label drift.

5.6.1 Unsupervised Multi-Source DA

In the unsupervised multisource DA, we evaluate the proposed approach on all three datasets. We use a

similar hyper-parameter selection strategy as in DANN (Ganin et al., 2016). All reported results are

averaged over five runs. The detailed experimental settings are illustrated in Appendix. The empirical

results are illustrated in Tab. 5.1, 5.2 and 5.3. Since we did not change the target label distribution

throughout the whole experiment, we still report the target accuracy as the metric. We report the
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Figure 5.3 – Label distribution visualization. (a) One example in Amazon Review dataset with sources:
Book, Dvd, Electronic and target: Kitchen. We randomly drop 50% of the negative reviews in all the
sources while keeping target label distribution unchanged. (b) One example in Digits dataset with
Sources: MNIST, USPS, SVHN and Target Synth. We randomly drop 50% data on digits 5-9 in all
sources while keeping target label distribution unchanged. (c) Office-Home dataset. The original label
distribution is non-uniform.

means and standard deviations for each approach. The best approaches based on a two-sided Wilcoxon

signed-rank test (significance level p = 0.05) are shown in bold.

The empirical results reveal a significantly better performance (≈ 2%− 6%) on different benchmarks.

For understanding the aggregation principles of WADN, we visualize the task relations in digits

(Fig. 5.4(a)) with demonstrating a non-uniform λ, which highlights the importance of properly choosing

the most related source rather than simply merging all the data. For example, when the target domain

is SVHN, WADN mainly leverages the information from SYNTH, since they are more semantically

similar, and MNIST does not help too much for SVHN, which is also observed by Ganin et al. (2016).

Besides, Fig. 5.4(b) visualizes the evolution of λ between WADN and recent principled approach

DARN (Wen et al., 2020), which utilized the P(x) information and dynamic updating to find the

similar domains. Compared with WADN, λ in DARN is unstable during updating under drifted label
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Table 5.3 – Unsupervised DA: Accuracy (%) and standard deviation (%) over five repeats (with the
form Average±standard deviation) on Office-Home

Target Art Clipart Product Real-World Average
Source 49.25±0.60 46.89±0.61 66.54±1.72 73.64±0.91 59.08
DANN 50.32±0.32 50.11±1.16 68.18±1.27 73.71±1.63 60.58
MDAN 67.93±0.36 66.61±1.32 79.24±1.52 81.82±0.65 73.90
MDMN 68.38±0.58 67.42±0.53 82.49±0.56 83.32±1.93 75.28
M3SDA 63.77±1.07 62.30±0.44 75.85±1.24 79.92±0.60 70.46
DARN 69.89±0.42 68.61±0.50 83.37±0.62 84.29±0.46 76.54
WADN 73.78±0.43 70.18±0.54 86.32±0.38 87.28±0.87 79.39

Table 5.4 – Multi-source Transfer: Accuracy (%) and standard deviation (%) over five repeats (with
the form Average±standard deviation) on Source-Shifted Amazon Review

Target Books DVD Electronics Kitchen Average
Source + Tar 72.59±1.89 73.02±1.84 81.59±1.58 77.03±1.73 76.06

DANN 67.35±2.28 66.33±2.42 78.03±1.72 74.31±1.71 71.50
MDAN 68.70±2.99 69.30±2.21 78.78±2.21 74.07±1.89 72.71
MDMN 69.19±2.09 68.71±2.39 81.88±1.46 78.51±1.91 74.57
M3SDA 69.28±1.78 67.40±0.46 76.28±0.81 76.50±1.19 72.36
DARN 68.57±1.35 68.77±1.81 80.19±1.66 77.51±1.20 73.76
MME 69.66±0.58 71.36±0.96 78.88±1.51 76.64±1.73 74.14
RLUS 71.83±1.71 69.64±2.39 81.98±1.04 78.69±1.15 75.54
WADN 74.83±0.84 75.05±0.62 84.23±0.58 81.53±0.90 78.91

distribution.

Besides, we conduct the ablation study through evaluating the performance under different levels of

source label shift in Amazon Review dataset (Fig. 5.5(a)). The results show strong practical benefits

for WADN in the larger label shift. The additional analysis and results can be found in Appendix.

5.6.2 Multi-Source DA with Limited Target Labels

We adopt Amazon Review and digits in the multi-source DA with limited target samples, which have

been widely used. In the experiments, we still use shifted sources. We randomly sample only 10%

labeled samples (w.r.t. target dataset in unsupervised DA) as training set and the rest 90% samples as

the unseen target test set. We adopt the same hyper-parameters and training strategies with unsupervised

DA. We specifically add two recent baselines RLUS (Konstantinov and Lampert, 2019) and MME

(Saito et al., 2019), which also considered DA on the labeled target domain.

The results are reported in Tab. 5.4, which also indicates strong empirical improvement. Interestingly,

on the Amazon review dataset, the previous aggregation approach RLUS is unable to select the related

source when the label distribution varies. To show the effectiveness of WADN, we tested various

portions of labelled samples (1% ∼ 10%) on the target. The results in Fig. 5.5(b) on USPS dataset
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Figure 5.4 – (a,b) The evolution of λ ∈ R3 with three sources of Amazon dataset (B=Books, D=DVD,
E=Electronics, K=Kitchen) during the training epoch. For instance, B indicates the target is Books and
the domain weights for other three sources (D,E and K). We compare with a recent principle approach
DARN, which uses P(x) to measure the similarity and dynamically update the λ. The results verifies
the limitation of DARN under changing label distributions with relative unstable results.

show consistently better than the baseline, even in the few target samples scenarios such as 1− 3%.

5.6.3 Partial Unsupervised Multi-Source DA

In this scenario, we adopt the Office-Home dataset to evaluate our approach, as it contains a large

number of classes (65). We do not change the source domains and we randomly choose 35 classes from

the target. We evaluate all the baselines on the same selected classes and repeat 5 times. All reported

results are averaged from 3 different sub-class selections (15 runs in total), shown in Tab. 5.6. We

additionally compare PADA (Cao et al., 2018) approach by merging all sources and use a one-to-one

partial DA algorithm. We adopt the same hyper-parameters and training strategies in unsupervised DA

scenario.

The reported results are also significantly better than the current multi-source DA or one-to-one partial

DA approach, which again emphasizes the benefits of WADN: properly selecting the related sources by

using semantic information.
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Table 5.5 – Multi-source Transfer: Accuracy (%) and standard deviation (%) over five repeats (with
the form Average±standard deviation) on the Source-Shifted Digits

Target MNIST SVHN SYNTH USPS Average
Source + Tar 79.63±1.74 56.48±1.90 69.64±1.38 86.29±1.56 73.01

DANN 86.77±1.30 69.13±1.09 78.82±1.35 86.54±1.03 80.32
MDAN 86.93±1.05 68.25±1.53 79.80±1.17 86.23±1.41 80.30
MDMN 77.59±1.36 69.62±1.26 78.93±1.64 87.26±1.13 78.35
M3SDA 85.88±2.06 68.84±1.05 76.29±0.95 87.15±1.10 79.54
DARN 86.58±1.46 68.86±1.30 80.47±0.67 86.80±0.89 80.68
MME 87.24±0.95 65.20±1.35 80.31±0.60 87.88±0.76 80.16
RLUS 87.61±1.08 70.50±0.94 79.52±1.30 86.70±1.13 81.08
WADN 88.32±1.17 70.64±1.02 81.53±1.11 90.53±0.71 82.75

Table 5.6 – Unsupervised Partial DA: Accuracy (%) and standard deviation (%) over five repeats (with
the form Average±standard deviation) on Office-Home (#Source: 65, #Target: 35)

Target Art Clipart Product Real-World Average
Source 50.56±1.42 49.79±1.14 68.10±1.33 78.24±0.76 61.67
DANN 53.86±2.23 52.71±2.20 71.25±2.44 76.92±1.21 63.69
MDAN 67.56±1.39 65.38±1.30 81.49±1.92 83.44±1.01 74.47
MDMN 68.13±1.08 65.27±1.93 81.33±1.29 84.00±0.64 74.68
M3SDA 65.10±1.97 61.80±1.99 76.19±2.44 79.14±1.51 70.56
DARN 71.53±0.63 69.31±1.08 82.87±1.56 84.76±0.57 77.12
PADA 74.37±0.84 69.64±0.80 83.45±1.13 85.64±0.39 78.28
WADN 80.06±0.93 75.90±1.06 89.55±0.72 90.40±0.39 83.98

Besides, if we change the number of selected classes (Fig 5.5(c)), the proposed WADN still indicates

consistent better results by a large margin, which indicates the importance of considering α̂t and λ. In

contrast, DANN shows unstable results on average in selected classes. Beside, WADN shows a good

estimation of the label distribution ratio (Fig 5.6) and has correctly detected the non-overlapping classes,

which verifies the effectiveness of the label distribution estimator and indicates its good explainability.

5.7 Conclusion

In this paper, we proposed a novel algorithm WADN for multi-source domain adaptation problem

under different label proportions. WADN differs from previous approaches in two key prospects: a

better source aggregation approach when label distribution changes; a unified empirical framework for

three popular DA scenarios. We evaluated the proposed method by extensive experiments and showed

its strong empirical results.
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Figure 5.5 – Ablation study on different scenarios. (a) Visualization of λ on digits datset, each row
corresponds to a target domain, which indicates a non-uniform and non-symmetric task relations. (b)
Unsupervised DA with Amazon Review dataset. Accuracy under different levels of label shifted
sources (higher dropping rate means larger label drift). The results are reported on the average of all
the domains, see the results for each domain in Appendix. (c) Multi-Source DA with limited target
label in digits task with target USPS. The performance (mean ± std) of WADN is consistently better
under different target samples (smaller portion indicates fewer target samples). (d) Partial Multi-source
DA in office-home dataset with target domain Product. Performance (mean ± std) of different number
of selected classes on the target, where WADN shows a consistent better performance under different
selected sub-classes.
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Conclusion

In this thesis, we proposed novel and principled approaches through distribution matching for learning

from limited labeled data. We particularly focus on three scenarios: deep multitask learning, deep active

learning, and domain adaptation. Although we focused on these three scenarios throughout this thesis,

the proposed theoretical and practical insights can be nevertheless extended to broader settings, e.g.

learning fair and transferable features in algorithmic fairness (Zemel et al., 2013; Louizos et al., 2015;

Edwards and Storkey, 2015), and individual treatment effect estimation in causal inference (Shalit

et al., 2017). Below we will present the highlights and potential impacts of our proposed theories and

practice.

Understanding Similarity-Based Multi-Task Learning

In Chapter 2, we proposed a theoretical analysis of the benefits of considering task similarities in

MTL and further derived an algorithm that used task similarity information. Specifically, we have the

following interesting insights and impacts from this research:

• Characterizing and formulating task relations. Our algorithm proposed a principled approach

to characterize the task relations. We adopted simplex vectors αt to explicitly express the task

relations. Different from previous works (Zhang and Yeung, 2010; Ciliberto et al., 2015), the

extracted task relations in our algorithm are non-symmetric and robust w.r.t. different similarity

metrics, which better reflects the real-world scenarios. For instance, in healthcare applications,

our proposed algorithm has been applied for estimating the similarity between different Parkinson

patients (Zhou et al., 2020a). Geden et al. (2020) used similar ideas in predictive student modeling

in educational games.

Besides, the proposed idea has inspired new approaches in the related fields, for example, Cai

et al. (2020) followed the same research line to estimate task similarity in meta-learning; Wu

et al. (2020a) extended the similarity measure by using nonlinear task relations and Zhang et al.

(2020b) investigated the negative transfer problem through the proposed task relations.

Unified Method for Query and Training in Deep Active Learning

In Chapter 3, we proposed novel query and training algorithms in deep active learning, which is simple

and scalable for the large-scale dataset. Specifically, we have the following interesting insights and
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potential impacts from this research:

• Novel explicit query strategy. Compared with recent works such as (Ash et al., 2019; Sener and

Savarese, 2018), we proposed a principled query strategy with explicitly considering uncertainty

and diversity trade-off through optimizing the derived upper bound. This idea has motivated

several recent active learning papers, e.g, Cui and Sato (2020) replaced the Wasserstein-1 distance

by a general discrepancy distance for obtaining a tighter bound in AL. Besides, a recent survey

paper of deep active learning such as (Ren et al., 2020; Liu et al., 2021) highlighted the benefits

of our proposed explicit query.

• Leveraging the unlabeled information in active learning. Compared with previous work

(Gissin and Shalev-Shwartz, 2019), our approach investigated the benefits of leveraging unlabeled

information in AL. Moreover, this idea has been recently discussed and extended in other related

domains, e.g, Zhou et al. (2020b) followed a similar research line in active learning for domain

adaptation, Mundt et al. (2020) associated this idea with continual learning and Popordanoska

et al. (2020) discussed this idea in human-machine interactive learning.

Domain Adaptation Theory with Jensen-Shannon Divergence

In Chapter 4, we proposed a novel Domain Adaptation (DA) theory with Jensen-Shannon divergence

and illustrated its practical and theoretical benefits. Specifically, we have the following interesting

insights from this research:

• Jensen-Shannon divergence in theory. We proposed a novel DA theory through information-

theoretic Jensen-Shannon divergence. We notice that Jose and Simeone (2020); Azizzadenesheli

(2020) extended this idea to transfer learning with weighted ERM rule. Asatryan et al. (2020)

analogously adopted Jensen-Shannon divergence for analyzing the distribution shift.

• Label shift correction and semantic conditional distribution matching. Our paper also

reveals the importance of considering different label distributions Y , which remains elusive

fromH-divergence. As we mentioned in Chapter 5, this idea can be applied in distribution shift

problems, e.g., Zhou et al. (2021) extended this principle to the multitask learning problem,

which showed significantly better performance when label shift occurs among different tasks.

We do think the proposed principles are towards solving practical motivated distribution-shifted

problems such as algorithmic fairness, privacy, and transparent machine learning.

Unified Methods for Multi-Source Domain Adaptation under Target-Shift

In Chapter 5, we extend the direction in Chapter 4 by proposing unified approaches in multisource

domain adaptation when label shifts occur. Specifically, we have the following interesting insights

from this research:

• Novel algorithm in label shift in multi-source domain adaptation. In this work, we first

proposed a novel theoretical analysis on the label shifts without assuming the identical semantic
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conditional distribution, i.e., S(x|Y = y) 6= T (x|Y = y). We adopted Wasserstein-1 distance,

which is more computationally efficient compared to existing related theories such as (Mansour

et al., 2020; Wang et al., 2019a), where they adopted Y-discrepancy (Mohri and Medina, 2012) in

the theoretical analysis, which is difficult to be estimated for a multiclass classification problem.

Besides, we first analyze the principles in representation learning and propose a new guideline in

learning the embedding function.

• Unified practical framework. Different from the previous practical framework, we focused on

the unified approaches for three common transfer scenarios: domain adaptation with limited

target label (Pan and Yang, 2009), unsupervised domain adaptation (Ganin et al., 2016), and

label partial unsupervised domain adaptation (Cao et al., 2018). In our paper, these scenarios can

be treated under the same protocol, we also believe it is an important and interesting direction

since it reveals their inherent relations and different assumptions among these scenarios.

Limitations

We have derived several methods for learning limited labeled data through distribution matching. This

thesis simultaneously remains several limitations.

Only for classification The thesis mainly focused on the classification setting with accuracy as the

only metric. In contrast, a number of real world practice is involved with other metrics such as AUC

curve. It is still opening and promising to extend the distribution matching for the regression and

multi-label settings.

Understanding the influence of pseudo-label The proposed approaches in unsupervised domain

adaptation generally involve with pseudo-labels. i.e, we treat the algorithm’s output as the proxy of true

label in the conditional distribution matching. Clearly, the conditional distribution matching depends

on the pseudo-label. And the conditional distribution will reversely influence the algorithm, which

induces a cycle scenario. In this thesis, we proposed several strategies to address the potential poor

pseudo-labels, whereas the formal theoretical support still remains unclear.

Future Directions

In this thesis, we focused on the problem of learning the limited labeled dataset through distribution

matching approaches. Specifically, we analyzed three common scenarios and showed novel practical

and theoretical implications. Simultaneously, there exist various interesting aspects to be explored in

the future.

Extending the concept of task similarity. We mainly focused on the task with the same label space

(e.g., digit recognition problem in different contexts). It will be highly interesting to consider the theory

and practice of two tasks with completely different label spaces. For instance, how to measure the
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distance between digits and alphabet datasets? In contrast, the proposed theoretical results in this thesis

(such asH-divergence) can measure the distance only on the observations (i.e X ) without considering

the causal information P(y|x), which may be restrictive for many practical scenarios. Besides, the

proposed semantic information P(x|y) (anti-causal direction) can not handle this new scenario because

of the non-overlapped label space. (e.g., in measuring similarity between digits and alphabet dataset,

we cannot measure d(P1(x|y)‖P2(x|y)) because Y are completely different.) Therefore it is essential

to develop novel theoretical and practical results in this prospect, which can be potentially adapted for

various distribution shift problems such as transfer learning, fairness, meta-learning, and continual

learning.

Other scenarios of label shift problems. We have explored the label shift problem in transfer

learning. A natural question is whether these techniques can be extended to other scenarios. For

instance, in active learning, if the label distributions of the initial dataset are highly different from

the unlabeled pools, the query strategy may be biased rather than properly capturing the whole data

information. Hence, a label shift correction may be necessary. Another example is in continual learning,

the imbalanced data will consistently change the decision boundary, which will surely influence the

performance. As label shift commonly occurs in many practical scenarios, extending our theoretical

and practical results will be beneficial for solving these real-world problems.

Understanding algorithmic fairness through the lens of distribution matching It has been ob-

served that conventional machine learning algorithms exhibit the prediction disparities among different

subgroups, due to the distribution shift. To this end, it will be quite interesting to adopt distribution

matching for a better understanding the algorithmic fairness.

From a general viewpoint, this thesis focused on the principled approach in learning with limited

labeled data. We studied various scenarios with theoretical and practical support, which has motivated

a series of recent works in theory and practice. For a broader impact, we think such analysis will be

beneficial in designing intelligent systems in the real world with smaller label annotations.
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Appendix A

Details of Chapter 2

A.1 Theoretical tools

In this section, we will list the theoretical tools, which will be applied multiple times in the later proof.

A.1.1 Transfer bounds

In this section, we will analyze the relations of the expected risk on the distributions.

Lemma A.1. Ben-David et al. (2010a) LetH be the hypothesis space with VC dimension d. For two

tasks with marginal w.r.t x generation distribution Di and Dj , and every h ∈ H, we have:

Rj(h) ≤ Ri(h) + dH(Di, Dj) + λi,j , (A.1)

where λi,j = infh∈H{Ri(h) +Rj(h)}.

A.1.2 Concentration bounds between empirical and expected divergence

Lemma A.2. LetH be the hypothesis space on X with VC dimension d. Si and Sj are the i.i.d samples

with size mi and mj , respectively. We also define the empirical divergence d̂H(Di,Dj) w.r.t. S1 and

S2, then for any δ ∈ (0, 1), with probability at least 1− δ, we have:

dH(Di,Dj) ≤ d̂H(Di,Dj) + 2

√
2d log(2mij) + log(2

δ )

mij
, (A.2)

where mij = min{mi,mj}.

The bound is slightly different from Ben-David et al. (2010a), because the original paper supposed the

equal number of observations between two distributions. However, the proof is also a simple plugging

in the conclusion of Kifer et al. (2004) .
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Proof. From the Theorem 3.4 of Kifer et al. (2004), we have:

P [|dH(Di,Dj)− d̂H(Di,Dj)| ≥ ε] ≤ (2mi)
de−miε

2/16 + (2mj)
de−mjε

2/16 (A.3)

We consider the function f(x) = (2x)d exp(−xε2/16), then we compute the gradient w.r.t x, we have

f ′(x) = (2x)d−1 exp(−xε2/16)(2d− 2xε2/16) < 0. When ε2 ≥ 16d/mi,j , we have f(mj), f(mj)

can both be upper bounded by f(mi,j).

Hence we can verify the R.H.S. in equation (A.3) can be upper bounded by 2(2mi,j)
de−mi,jε

2/16. Then

we set this value as δ, we have ε2 ≥ 16
log(2/δ)+d log(2mi,j)

mi,j
.

Under this condition, we have the conclusion shown in the Lemma. Moreover, the divergence is defined

for theH hypothesis set, then the VC dimension is 2d for such a hypothesis set.

A.1.3 Concentration bounds between empirical and expected risk

Another useful inequality is to bound the difference between the empirical and the expected error in the

weighted loss.

Lemma A.3. For each task index j = {1, . . . , T}, let Sj be a labeled sample of size βjn generated

from distributionDj and labeled according to the function fj . For any fixed α, and all binary classifiers

h ∈ H : X → {−1, 1} with VC dimension d, with a probability greater than 1− δ, we have:

Rαt(h) ≤ R̂αt(h) + 2

√√√√ T∑
j=1

α2
t,j

βj

√
2(d log(2en

d ) + log(8
δ ))

n
(A.4)

Proof. The proof is analogue to the proof of the uniform convergence bound. We first apply the

symmetrization trick by generating ghost samples. For the notation simplification, we define R̂′αt is the

empirical risk induced by Z ′1, Z
′
2, . . . by sampling from the same distribution (but we never know it, so

we called ghost sample).

From the symmetrization lemma, we have, for ε ≥
√

2/n:

P
(

sup
h∈H
|Rαt(h)− R̂αt(h)| ≥ ε

)
≤ 2P

(
sup
h∈H
|R̂αt(h)− R̂′αt(h)| ≥ ε

2

)
(A.5)

Then we prove the modified VC-bound, defining V = HZ1,...,Zn,Z′1,...,Zn
. For any v ∈ V , we can write

R̂αt(h)− R̂′αt(h) = 1
n

∑n
j=1 vj −

∑2n
j=n+1 vj

P
(

sup
h∈H
|R̂αt(h)− R̂′αt(h)| ≥ ε

2

)
≤ 2P

(
max
v∈V
| 1
n

n∑
j=1

vj −
2n∑

j=n+1

vj | ≥
ε

2

)
(A.6)

Then we have:

≤ 2Π(2n)P
(
| 1
n

n∑
j=1

vj −
2n∑

j=n+1

vj | ≥
ε

2

)
(Union Bound)
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By introducing the Rademacher variable σj , we have:

≤ 4Π(2n)P
(
| 1
n

n∑
j=1

σjvj | ≥
ε

4

)
(Introducing the Rademacher variable)

According the Hoeffding’s inequality, we have:

≤ 8Π(2n) exp(− nε2

8
∑T

j=1(
αt,j
βj

)2
) (Hoeffding’s inequality)

Then we have at probability at least 1− δ:

Rαt(h) ≤ R̂αt(h) + 2

√√√√ T∑
j=1

α2
t,j

βj

√
2(d log(2en

d ) + log(8
δ ))

n
(Sauer’s lemma)

This bound can also be proved with Mcdiarmid inequality and Rademacher complexity with sight loose

results.

A.2 Proof of Theorem 2.1

A.2.1 Three-steps proof

In this section, we make connections between the similarity measuring and the expected risk. For a pair

of distributions (Di,Dj), we define h?i,j ∈ argminh∈H{Ri(h) + Rj(h)} the joint expected minimal

error for the hypothesis classH.

Step 1: For one task t we have:

|Rαt(h)−Rt(h)| = |
T∑
i=1

αt,iRi(h)−Rt(h)| ≤
T∑
i=1

αt,i|Ri(h)−Rt(h)| (A.7)

According to the triangle inequality of the loss function, we have

≤
T∑
i=1

αt,i

(
|Ri(h)−Ri(h, h?i,t)|+ |Ri(h, h?i,t)−Rt(h, h?i,t)|+ |Rt(h)−Rt(h, h?i,t)|

)
(A.8)

According to the triangle inequality and definition of the distribution discrepancy, we have:

|Ri(h)−Ri(h, h?i,t)| ≤ Ri(h?i,t)

|Ri(h, h?i,t)−Rt(h, h?i,t)| ≤ dH(Di, Dj)

|Rt(h)−Rt(h, h?i,t)| ≤ Rt(h?i,t)
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Plugging in (A.8), we have:

≤
T∑
i=1

αt,i(Ri(h
?
i,t) +Rt(h

?
i,t) + dH∆H(Di, Dj))

=

T∑
i=1

αt,i(λt,i + dH∆H(Di, Dj))

(A.9)

=
T∑
i=1

αt,iλt,i +
T∑
i=1

αt,idH∆H(Di, Dj) (A.10)

Finally, for t = 1, . . . , T tasks, the expected risk can be upper bounded by:

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

Rαt(ht) +
1

T

T∑
t=1

T∑
i=1

αt,idH∆H(Dt, Di) +
1

T

T∑
t=1

T∑
i=1

αt,iλt,i (A.11)

The next step is to find the high probability bound to measure the expected and empirical terms.

Step 2: With probability at least 1− δ/2, the expected discrepancy can be upper bounded by:

1

T

T∑
t=1

T∑
i=1

αt,idH∆H(Dt,Di) ≤
1

T

T∑
t=1

αt,id̂H∆H(St, Si) + 2

√
2d log(2m?) + log(32T/δ)

m?
,

(A.12)

where m? = argminmi,j

√
2d log(2mi,j)+log(32T/δ)

mi,j

Proof. For task t, from Corollary A.2, we have with probability less than δ′:

dH∆H(Dt,Di) ≥ d̂H∆H(St, Si) + 2

√
2d log(2mti) + log(2/δ′)

mti

Then we have

αt,idH∆H(Dt,Di) ≥ αt,id̂H∆H(St, Si) + 2αt,i

√
2d log(2mti) + log(2/δ′)

mti
(A.13)

Then we set δ′ = δ/(4T ), then apply the union bound, we know ∃h, such that

T∑
i=1

αt,idH∆H(Dt,Di) ≥
T∑
i=1

αt,id̂H∆H(St, Si) +

T∑
i=1

2αt,i

√
2d log(2mt?) + log(8T/δ)

mt?
(A.14)

=
T∑
i=1

αt,id̂H∆H(St, Si) + 2

√
2d log(2mt?) + log(8T/δ)

mt?
,

where mt? = argminmt,i

√
2d log(2mti)+log(8T/δ′)

mti
, is the mt,i which has the smallest complexity term.
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Then we again apply the union bound over t, finally there exists a hypothesis h with probability smaller

than δ/2, holding the following bound:

1

T

T∑
t=1

T∑
i=1

αt,idH∆H(Dt,Di) ≥
1

T

T∑
t=1

αt,id̂H∆H(St, Si)+2

√
2d log(2m?) + log(32T/δ)

m?
(A.15)

Where m? = argminmi,j

√
2d log(2mi,j)+log(32T/δ)

mi,j
is the mi,j which has the smallest complexity term.

Finally, we have (A.12) under high probability 1− δ/2.

Step 3: Applying the union bound and we have the high probability at least 1− δ
2 , we have:

1

T

T∑
t=1

Rαt(ht) ≤
1

T

T∑
t=1

R̂αt(ht) + 2

√
2(d log(2em

d ) + log(16T
δ ))

m

T∑
t=1

(√√√√ N∑
j=1

α2
t,j

βj

)
(A.16)

Step 4: Combining previous conclusions, we have at high probability at least 1− δ:

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

R̂αt(ht) + C1

T∑
t=1

(√√√√ T∑
i=1

α2
t,i

βi

)
+

1

T

T∑
t=1

T∑
i=1

αt,id̂H∆H(St, Si)

+ C2 +
1

T

T∑
t=1

T∑
i=1

αt,iλt,i

Where C1 = 2

√
2(d log( 2em

d
)+log( 16T

δ
))

m , C2 = 2
√

2d log(2m?)+log(32T/δ)
m?

A.3 Proof of Theorem 2.2

Theorem A.1. Let H be a hypothesis family from X to [0, 1], with pseudo-dimension d and each

member h ∈ H is K Lipschtiz. We have T tasks generated by the underlying distributions and labeling

functions {(D1, f1), . . . , (DT , fT )} with observation numbers m1, . . . ,mT . We adopt Wasserstein-1
1 distance as a similarity metric with cost function c(x,y) = ‖x − y‖2, then for any fixed simplex

αt ∈ RT+, and for δ ∈ (0, 1), with probability at least 1− δ, for h1, . . . , hT ∈ H, we have:

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

R̂αt(ht)︸ ︷︷ ︸
Weighted empirical loss

+C1

T∑
t=1

(√√√√ T∑
j=1

α2
t,j

βj

)
︸ ︷︷ ︸

Coefficient regularization

+
2K

T

T∑
t=1

T∑
i=1

αt,iW1(D̂t, D̂i)︸ ︷︷ ︸
Empirical distribution distance

+ C2 +
1

T

T∑
t=1

T∑
i=1

αt,iλt,i︸ ︷︷ ︸
Complexity term and optimal expected loss

1This bound can be extended to any Wasserstein p > 1 distance with restricting the hypothesis satisfies K Hölder
condition.
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Where βi = mi
m , C1 = 2

√
2(d log( 2em

d
)+log( 16T

δ
))

m , C2 = 2K
T

∑T
t=1

∑T
i=1 γt,i with γt,i = µtm

−1/s
t +

µim
−1/s
i +

√
log(2T

δ )(
√

1
mt

+
√

1
mi

) and s and µ· are some specified constants.

The proof is analogue to the previous proof with different assumptions.

A.3.1 Transfer bounds

The proof extends the work of Redko et al. (2017) where the hypothesis is only restricted in the unit

ball of RKHS. We extend this result to any hypothesis with Lipschitz function.

Lemma A.4. Let Di and Dj be two probability measures on X . Assume that:

1. Cost function is the Euclidean distance, with the form c(x,y) = ‖x− y‖
2. The hypothesis setH satisfies K-Lipschitz continuous: ∀h ∈ H, h is K-Lipschtiz continuous.

Then we have the following result:

Rj(h, h
′) ≤ Ri(h, h′) + 2KW1(Di,Dj) (A.17)

for any hypothesis h, h′ ∈ H

Proof. According to the definition of the expected risk, we have:

Rj(h, h
′) = Rj(h, h

′) +Ri(h, h
′)−Ri(h, h′)

≤ Ri(h, h′) + |Rj(h, h′)−Ri(h, h′)|
≤ Ri(h, h′) + |Ey∼Dj |h(y)− h′(y)| − Ex∼Di |h(x)− h′(x)||

By defining φ(x) = |h(x)− h′(x)|, we have:

= Ri(h, h
′) + |

∫
X
φd(Dj −Di)|

= Ri(h, h
′) + |

∫
X×X

φ(x)− φ(y)dγ(x, y)|

For any joint measure γ(x, y), we have:

≤ Ri(h, h′) +

∫
X×X

|φ(x)− φ(y)|dγ(x, y)

Thus it will also satisfy the minimal w.r.t γ(x, y):

≤ Ri(h, h′) + min
γ(x,y)∈Π(Di,Dj)

∫
X×X

|φ(x)− φ(y)|dγ(x, y)

We also have |φ(x)− φ(y)| = ||h(x)− h′(x)| − |h(y)− h′(y)|| ≤ |h(x)− h′(x)− h(y) + h′(y)| ≤
2K‖x− y‖, plugging in we have:

Rj(h, h
′) ≤ Ri(h, h′) + 2KW1(Di,Dj)
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Remark If the function satisfies (C, p)-Hölder condition with |h(x)− h(y)| ≤ C‖x− y‖p, then the

conclusion can be extended to any p-Wasserstein distance.

A.3.2 Concentration bounds between empirical and expected divergence

There exists several concentration bounds such as Bolley et al. (2007); Weed and Bach (2017), we adopt

the conclusion from Weed and Bach (2017) and apply to bound the empirical measures of Wasserstein

distance.

Lemma A.5. Weed and Bach (2017) [Definition 3,4] Given a measure µ on X , the (ε, τ)-covering

number on a given set S ⊆ X is:

Nε(µ, τ) := inf{Nε(S) : µ(S) ≥ 1− τ}

and the (ε, µ)-dimension is:

dε(µ, τ) :=
logNε(µ, ε)
− log ε

Then the upper Wasserstein dimensions can be defined as:

d?p(µ) = inf{s ∈ (2p,+∞) : lim sup
ε→0

dε(µ, ε
− sp
s−2p ) ≤ s}

Lemma A.6. Weed and Bach (2017)[Theorem 1, Proposition 20] For p ≥ 1 and s ≥ d?p(µ), there

exists a positive constant C with probability at least 1− δ, we have:

W p
p (µ, µ̂n) ≤ Cn−1/s +

√
1

2n
log(

1

δ
)

A.3.3 Concentration bounds between empirical and expected risk

In the regression problem, we suppose the hypothesis familyH is a set of continuous mapping with

pseudo-dimension d. Then we can directly apply the conclusion of (A.4). The procedure is analogue to

the proof inH divergence but under different assumptions.

Step 1: For a pair of distribution (Di,Dj), for the task t we have:

|Rαt(h)−Rt(h)| = |
T∑
i=1

αt,iRi(h)−Rt(h)| ≤
T∑
i=1

αt,i|Ri(h)−Rt(h)|

≤
T∑
i=1

αt,i

(
|Ri(h)−Ri(h, h?i,t)|+ |Ri(h, h?i,t)−Rt(h, h?i,t)|+ |Rt(h)−Rt(h, h?i,t)|

)
According to the triangle inequality and the previous lemma, we have:

|Ri(h)−Ri(h, h?i,t)| ≤ Ri(h?i,t)

|Ri(h, h?i,t)−Rt(h, h?i,t)| ≤ 2KW1(Di,Dj)
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|Rt(h)−Rt(h, h?i,t)| ≤ Rt(h?i,t)

Plugging in, we have:

≤
T∑
i=1

αt,i(Ri(h
?
i,t) +Rt(h

?
i,t) + 2KW1(Di, Dj)) =

T∑
i=1

αt,i(λt,i + 2KW1(Di, Dj)) (A.18)

=
T∑
i=1

αt,iλt,i + 2K
T∑
i=1

αt,iW1(Di, Dj) (A.19)

Summing over the t = 1, . . . , T :

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

Rαt(ht) +
2K

T

T∑
t=1

T∑
i=1

αt,iW1(Dt, Di) +
1

T

T∑
t=1

T∑
i=1

αt,iλt,i (A.20)

Step 2: The next step is to bound the expected and the empirical Wasserstein distance. According to

the triangle inequality of Wasserstein distance, we have:

W1(Dt, Di) ≤W1(Dt, D̂t) +W1(D̂t,Di) ≤W1(Dt, D̂t) +W1(D̂t, D̂i) +W1(D̂i,Di) (A.21)

According to the concentration lemma, we have with probability 1− δ′/2:

W1(Dt, Di) ≤W1(D̂t, D̂i) + Ctm
−1/s
t + Cim

−1/s
i +

√
1

2
log(

2

δ′
)(

√
1

mt
+

√
1

mi
(A.22)

Then setting δ′ = δ
T 2 and applying union bound, we have the following with probability at least

1− δ/2:

1

T

T∑
t=1

T∑
i=1

αt,iW1(Dt, Di) ≤
1

T

T∑
t=1

T∑
i=1

αt,iW1(D̂t, D̂i) +
1

T

T∑
t=1

T∑
i=1

γt,i (A.23)

Where

γt,i = CtN
−1/s
t + CiN

−1/s
i +

√
log(

2T

δ
)(

√
1

Nt
+

√
1

Ni
)

Step 3: Then the next step is to bound the empirical and expected errors. Since here is the regression
problem, we suppose the hypothesis familyH is a set of continuous mapping with pseudo-dimension d.
Then we combine with the previous lemma, with probability at least 1− δ, the expected error can be
upper bounded by:

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

R̂αt
(ht)+C1

T∑
t=1

(√√√√ T∑
j=1

α2
t,j

βj

)
+

2K

T

T∑
t=1

T∑
i=1

αt,iW1(D̂t, D̂i)+C2+
1

T

T∑
t=1

T∑
i=1

αt,iλt,i

(A.24)

Where C1 = 2

√
2(d log( 2en

d
)+log( 16T

δ
))

n , C2 = 2K
T

∑T
t=1

∑T
i=1 γt,i with γt,i = Ctm

−1/s
t +Cim

−1/s
i +√

log(2T
δ )(
√

1
mt

+
√

1
mi

)
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Remark The bound proposed in (A.24) is analogue to the bound in theH Divergence measure with

completely different assumptions. For example, the Wasserstein bound is derived from the real output

function, which can be naturally applied in the regression problem.

A.4 Experiment details

A.4.1 Digits recognition

In the digit recognition, we used three different kinds of digits: Mnist (LeCun et al., 1998), MnistM

(Arbelaez et al., 2011; Ganin et al., 2016) and SVHN (Netzer et al., 2011). As we described in the the

paper, we only sample 3K, 5K and 8K examples for each task. The input image dimension is 28× 28.

We used a modified LeNet-5 architecture for training the digit datasets.

• Feature extractor: with 2 convolution layers.

’layer1’: ’conv’: [1, 32, 5, 1, 2], ’relu’: [], ’maxpool’: [3, 2, 0],

’layer2’: ’conv’: [32, 64, 5, 1, 2], ’relu’: [], ’maxpool’: [3, 2, 0]

• Task prediction: with 2 fc layers.

’layer3’: ’fc’: [*, 128], ’act_fn’: ’elu’,

’layer4’: ’fc’: [128, 10], ’act_fn’: ’softmax’

• Discriminator part: with 2 fc layers.

reverse_gradient()

’layer3’: ’fc’: [*, 128], ’act_fn’: ’elu’,

’layer4’: ’fc’: [128, 10], ’act_fn’: ’softmax’

Hyper-parameter setting We set the ρ = 1
T , with T the number of the task. κ1 = 1 and tuning the

hyper-parameter κ2 from 0.2 to 2 through grid search. In the Wasserstein-1 distance-based approach,

we set the gradient penalty weight as 1.

As for the configurations for training the neural networks, we used SGD optimizer with learning rate

0.01 and momentum 0.9. The maximum training epoch is 100 for the proposed approach and baselines.

A.4.2 Amazon reviews

We also evaluate the proposed algorithm in Amazon reviews datasets. We extract reviews from four

kinds of product (book, dvd disks, electronics and kitchen appliances). Reviews datasets are pre-

processed with the same strategy from Ganin et al. (2016): 10K dimensional input features and binary

output labels {0, 1}, "0" if the product is ranked less equal than 3 stars, and "1" if higher than 3 stars.

For each task we have 1000 and 1600 labelled training examples, respectively.

We used the standard MLP architecture for training the preprocessed dataset.

• Feature extractor: with 2 fc layers.
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’layer1’: ’fc’: [10000, 256], ’act_fn’: ’elu’,

’layer2’: ’fc’: [256,128], ’act_fn’: ’elu’,

• Task prediction: with 2 fc layers.

’layer3’: ’fc’: [128, 64], ’act_fn’: ’elu’,

’layer4’: ’fc’: [64, 1], ’act_fn’: ’sigmoid’

• Discriminator part: with 2 fc layers.

reverse_gradient()

’layer3’: ’fc’: [128, 64], ’act_fn’: ’elu’,

’layer4’: ’fc’: [64, 1], ’act_fn’: ’sigmoid’

Hyper-parameter tuning We set the ρ = 1
T , with T the number of the task. κ1 = 1 and tuning the

hyper-parameter κ2 from 0.2 to 1 through grid search. In the Wasserstein-1 distance-based approach,

we set the gradient penalty weight as 1.

As for the configurations for training the neural networks, we used SGD optimizer with learning

rate 0.005 and momentum 0.9. The maximum training epoch is 100 for the proposed approach and

baselines.
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Appendix B

Details of Chapter 3

B.1 Theorem 3.1: Proof

Theorem B.1. Supposing D is the data generation distribution and Q is the querying distribution, if

the loss ` is symmetric, L-Lipschitz; ∀h ∈ H is at most H-Lipschitz function and underlying labeling

function h? is φ(λ)-(D,Q) Joint Probabilistic Lipschitz, then the expected risk w.r.t. D can be upper

bounded by:

RD(h) ≤ RQ(h) + L(H + λ)W1(D,Q) + Lφ(λ)

B.1.1 Notations

We define the hypothesis h : X → Y = [0, 1] and loss function ` : Y × Y → R+, then the expected

risk w.r.t. D is RD(h) = Ex∼D`(h(x), h?(x)) and empirical risk R̂D(f) = 1
N

∑N
i=1 `(h(xi), yi). We

assume the loss ` is symmetric, L-Lipschitz and bounded by M .

B.1.2 Transfer risk

The first step is to bound the the gap RD(h)−RQ(h):

RD(h)−RQ(h) ≤ |RD(h)−RQ(h)| = |Ex∼D`(h(x), h?(x))− Ex∼Q`(h(x), h?(x))|

= |
∫
x∈Ω

`(h(x), h?(x))d(D −Q)|
(B.1)

From the Kantorovich - Rubinstein duality property and combing Eq. (B.1), for any distribution
coupling γ ∈ Π(D,Q), with D ∈ Ω and Q ∈ Ω we have:

= |
∫

Ω×Ω

(
`(h(xD), h?(xD))− `(h(xQ), h?(xQ))

)
dγ(xD, xQ)|

≤
∫

Ω×Ω

|`(h(xD), h?(xD))− `(h(xQ), h?(xQ))|dγ(xD, xQ)

≤
∫

Ω×Ω

|`(h(xD), h?(xD))− `(h(xD), h?(xQ))|+ |`(h(xD), h?(xQ))− `(h(xQ), h?(xQ))|dγ(xD, xQ)
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Since we assume ` is symmetric and L-Lipschitz, then we have:

≤ L
∫

Ω×Ω
|h?(xD)− h?(xQ)|dγ(xD, xQ) + L

∫
Ω×Ω
|h(xD)− h(xQ)|dγ(xD, xQ) (B.2)

From Eq.(B.2) the risk gap is controlled by two terms, the property of labeling function and property of

predictor. Moreover, we assume the learner is H-Lipschitz function, then we have:

≤ L
∫

Ω×Ω
|h?(xD)− h?(xQ)|dγ(xD, xQ) + LH

∫
Ω×Ω
||xD − xQ||2dγ(xD, xQ)

Labeling function assumption As mentioned before, the goodness of the underlying labeling func-

tion decides the level of risk. (Urner et al., 2013) formalize the such a property as Probabilistic Lipschitz

condition in AL, in which relaxes the condition of Lipschitzness and formalizes the intuition that under

suitable feature representation the probability of two close points having different labels is small (Urner

and Ben-David, 2013). We adopt the joint probabilistic Lipschitz property, which is coherent with

(Courty et al., 2017).

Definition B.1. The labeling function h? satisfies φ(λ)-(D,Q) Joint Probabilistic Lipschitz if supp(Q) ⊆
supp(D) and for all λ > 0:

P(xD,xQ)∼γ [|h?(xD)− h?(xQ)| > λ‖xD − xQ‖2] ≤ φ(λ) (B.3)

Where φ(λ) reflects the decay rate. (Urner et al., 2013) showed that the faster the decay of φ(λ) with

λ→ 0, the nicer the distribution and the easier it is to learn the task.

Combining with Eq.(B.3), the labeling function term can be decomposed and upper bounded by:

≤ L
∫

Ω×Ω
1{|h?(xD)− h?(xQ)| ≤ λ‖xD − xQ‖2}|h?(xD)− h?(xQ)|dγ(xD, xQ)

+ L

∫
Ω×Ω

1{|h?(xD)− h?(xQ) > λ‖xD − xQ‖2}|h?(xD)− h?(xQ)|dγ(xD, xQ)

≤ Lλ
∫

Ω×Ω
‖xD − xQ‖2dγ(xD, xQ) + Lφ(λ)

The first term is upper bounded through the probability of this event at most 1 and second term adopts

the definition of Joint Probabilistic Lipschitz with restricting the output space h?(·) ∈ [0, 1]. Plugging

in the aforementioned results, we have:

≤ L(H + λ)

∫
Ω×Ω
‖xD − xQ‖2dγ(xD, xQ) + Lφ(λ)

Since this inequality satisfies with any distribution coupling γ, then it is also satisfies with the optimal

coupling, w.r.t. the Wasserstein-1 distance with the cost function `2 distance: ‖ · ‖2. Then we have:

RD(h)−RQ(h) ≤ L(H + λ) inf
γ

∫
Ω×Ω
‖xD − xQ‖2dγ(xD, xQ) + Lφ(λ)

Finally we can derive:

RD(h) ≤ RQ(h) + L(H + λ)W1(D,Q) + Lφ(λ) (B.4)
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B.2 Corollary 3.1: Proof

B.2.1 Basic statistical learning theory

According to the standard statistical learning theory such as (Mohri et al., 2018), w.h.p. 1 − δ/2,

∀h ∈ H we have:

RD(h) ≤ R̂D(h) + 2LRadN (h) + κ1(δ,N) (B.5)

Where RadN (h) = ES∼DNEσN1 [suph
1
N

∑N
i=1 σih(xi)] is the expected Rademacher complexity with

RadN (h) = O(
√

1
N ), and κ1(δ,N) = O(

√
M log(2/δ)

N ) is the confidence term.

In the Active learning, the goal is to control the generalization error w.r.t. (D, h?), thus from Eq.B.5

we have:

RD(h) ≤ (RD(h)−RQ(h)) + R̂Q(h) + 2LRadNq(h) + κ1(δ,Nq)

Combining with Eq.(B.4), we have

RD(h) ≤ R̂Q(h) + L(H + λ)W1(D,Q) + Lφ(λ) + 2LRadNq(h) + κ1(δ,Nq)

In general we have finite observations (suppose we have the sample i.i.d. sampled from the query

distributionQ) with Dirac distribution: D̂ = 1
N

∑N
i=1 δ{xiD} and Q̂ = 1

Nq

∑Nq
i=1 δ{xiQ} with Nq ≤ N .

Several recent works show the concentration bound between empirical and expected Wasserstein

distance such as (Bolley et al., 2007; Weed and Bach, 2017). We just adopt the conclusion from (Weed

and Bach, 2017) and apply to bound empirical measures in Wasserstein-1 distance.

Lemma B.1. (Weed and Bach, 2017) [Definition 3,4] Given a measure µ on X , the (ε, τ)-covering

number on a given set S ⊆ X is:

Nε(µ, τ) := inf{Nε(S) : µ(S) ≥ 1− τ}

and the (ε, µ)-dimension is:

dε(µ, τ) :=
logNε(µ, ε)
− log ε

Then the upper Wasserstein-1 dimensions can be defined as:

d?1(µ) = inf{s ∈ (2,+∞) : lim sup
ε→0

dε(µ, ε
− s
s−2 ) ≤ s}

Lemma B.2. (Weed and Bach, 2017)[Theorem 1, Proposition 20] For p = 1 and s ≥ d?1(µ), there

exists a positive constant C with probability at least 1− δ, we have:

W1(µ, µ̂N ) ≤ CN−1/s +

√
1

2N
log(

1

δ
)

Since s > 2 thus the convergence rate of Wasserstein distance is slower than O(N−1/2), also named as

weak convergence. Then according to the triangle inequality of Wasserstein-1 distance, we have:

W1(D,Q) ≤W1(D, D̂) +W1(D̂,Q) ≤W1(D, D̂) +W1(D̂, Q̂) +W1(Q̂,Q) (B.6)
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Combing the conclusion with Lemma 2, there exist some constants (Cd, sd) and (Cq, sq) we have with

probability 1− δ/2:

W1(D,Q) ≤W1(D̂, Q̂) + CdN
−1/sd + CqN

−1/sq
q +

√
1

2
log(

2

δ
)(

√
1

N
+

√
1

Nq
) (B.7)

Combining Eq.B.7 and Eq.B.5, we have

RD(h) ≤ R̂Q(h) + L(H + λ)W1(D̂, Q̂) + Lφ(λ) + 2LRadNq(h) + κ(δ,N,Nq)

Where κ(δ,N,Nq) = O(N−1/sd +N
−1/sq
q +

√
log(1/δ)

N +
√

log(1/δ)
Nq

)

B.3 ComputingH-divergence and Wasserstein distance

B.3.1 H divergence

dH(D1,D3) We can discuss the discrepancy with different values of p, since D3 ⊆ D1 then we have

x0 ∈ [a+ b, 2a− b]:

1. If p ≤ x0 − b, then the area of mis-classification will be (2a− p) + 2b. If we select p = x0 − b,
then the optimal mis-classification area will be 2a+ 2b− x0 ≥ 2a+ 2b− 2a+ b = 3b

2. If p ∈ [x0 − b, x0 + b], then the area of mis-classification will be (2a− p) + (p− (x0 − b)) =

2a+ b− x0 ≥ 2a+ b− 2a+ b = 2b

3. If p ≥ x0 + b, then the area of mis-classification will be 2b + max(0, 2a − p), if we select

p ≥ 2a, then the optimal mis-classification area will be 2b.

Then the minimal mis-classification area is 2b, corresponding the optimal risk b
a+b , then dH(D1,D3) =

b
a+b

dH(D1,D2) We can discuss the discrepancy with different values of p, since D2 ⊆ D1, then we have

x0 ∈ [a+ b/2, 2a− b/2]:

1. If p ≤ −x0 − b/2, then the mis-classification area will be a+ max(0, p+ a) + 2b with optimal

value 2a+ b/2− x0 + 2b ≥ a+ 2b;

2. If p ∈ [−x0− b/2,−x0 + b/2], then the mis-classification area will be p− (−x0− b/2)+(−a−
p) + a+ b = x0 + 3b/2 ≥ a+ 2b;

3. If p ∈ [−x0 + b/2, x0 − b/2], then the mis-classification area will be b+ a;

4. If p ∈ [x0−b/2, x0+b/2], then the mis-classification area will be b+p−(x0−b/2)+(2a−p) =

2a+ 3b/2− x0 ≥ 2a+ b/2− 2a+ b/2 + b = 2b

5. If p ≥ x0 + b/2, then the mis-classification area will be 2b+ max(0, 2a− p) ≥ 2b

Then the minimal mis-classification area is 2b, corresponding the optimal risk b
a+b , then dH(D1,D2) =

b
a+b .

From the previous example dH(D1,D2) = dH(D1,D3), we show the H divergence is not a good
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metric for measuring the representative in the data space. Since we want the query distribution more

diverse spread in the space, thenH may not be a good indicator.

B.3.2 Wasserstein-1 distance

We can also estimate the distribution distance through Wasserstein-1 metric. From (Wasserman, 2019)

we have:

W1(P,Q) =

∫ 1

0
|F−1(z)−G−1(z)|dz

where F (z) and G(z) is the CDF (cumulative density function) of distribution P and Q, respectively.

CDF of D1, D2 and D3

1.

F1(z) =


1
2a(z + 2a) −2a ≤ z ≤ −a
1
2 −a ≤ z ≤ a
1
2az a ≤ z ≤ 2a

F−1
1 (z) =


2a(z − 1) 0 ≤ z < 1/2

[−a, a] z = 1/2

2az 1/2 < z ≤ 1

2.

F2(z) =


1
2b(z + x0 + b/2) −x0 − b/2 ≤ z ≤ −x0 + b/2

1
2 −x0 + b/2 ≤ z ≤ x0 − b/2
1
2b(z − x0 + 3b/2) x0 − b/2 ≤ z ≤ x0 + b/2

F−1
2 (z) =


2bz − x0 − b/2 0 ≤ z < 1/2

[−x0 + b/2, x0 − b/2] z = 1/2

2bz + x0 − 3b/2 1/2 < z ≤ 1

3.

F3(z) =
1

2b
(z − x0 + b) z ∈ [x0 − b, x0 + b]

F−1
3 (z) = 2bz + x0 − b z ∈ [0, 1]

Computing W1(D1,D2) According to the definition, we can compute

W1(D1,D2) =

∫ 1/2

0
|2a(z − 1)− 2bz − x0 −

b

2
|dz +

∫ 1

1/2
|2az − 2bz − x0 +

3

2
b|dz
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We firstly compute
∫ 1/2

0 |2a(z − 1) − 2bz − x0 − b
2 |dz, since 2a(z − 1) − 2bz − x0 − b

2 < 0 for

z ∈ [0, 1/2] (since −a− b− x0 − b/2 < 0. Then we have:∫ 1/2

0
|2a(z − 1)− 2bz − x0 −

b

2
|dz =

∫ 1/2

0
{−2a(z − 1) + 2bz + x0 +

b

2
}dz

=
3

4
a+

1

2
x0 +

1

2
b

Then we compute the second part:∫ 1

1/2
|2az − 2bz − x0 +

3

2
b|dz

=

∫ z0

1/2
{(x0 −

3

2
b)− 2(a− b)z}dz +

∫ 1

z0

{2(a− b)z − x0 +
3

2
b}dz

=
1

2(a− b)(x0 −
3

2
b)2 − 3

2
(x0 −

3

2
b) +

3

4
(a− b)

with z0 = x0−3b/2
2(a−b) . Therefore, we can compute the wasserstein-1 distance between distribution D1 and

D2:

=
1

2(a− b)(x0 −
3

2
b)2 − x0 + 2b+

3

2
a

With x0 ∈ [a+ b/2, 2a− b/2]. If we take x0 = 2a− b/2, we can get the maximum:

max
x0

W1(D1,D2) =
3

2
a− b

2

Computing W1(D1,D3) According to definition, we can compute

W1(D1,D3) =

∫ 1/2

0
|2a(z − 1)− 2bz − x0 + b|dz +

∫ 1

1/2
|2az − 2bz − x0 + b|dz

We firstly compute
∫ 1/2

0 |2a(z−1)−2bz−x0 +b|dz, since 2(a−b)z−2a−x0 +b ≤ 0 for z ∈ [0, 1/2].

(easy to verify: 2(a− b)z − 2a− x0 + b ≤ (a− b)− 2a− x0 + b = −a− x0 < 0), then∫ 1/2

0
|2a(z − 1)− 2bz − x0 + b|dz =

∫ 1/2

0
(x0 + 2a− b)− 2(a− b)zdz

=
1

2
(x0 + 2a− b)− 1

4
(a− b) =

3

4
a+ x0 −

1

4
b

Then we compute the second term
∫ 1

1/2 |2az − 2bz − x0 + b|dz, we define z0 = x0−b
2(a−b) and we can

verify that z0 ∈ [1/2, 1], then this term can be decomposed as we can rewrite it as:∫ z0

1/2
−2(a− b)z + (x0 − b)dz +

∫ 1

z0

2(a− b)z − (x0 − b)dz

=
(x0 − b)2

2(a− b) −
3

2
(x0 − b) +

5

4
(a− b)
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Then W1(D1,D3) = (x0−b)2
2(a−b) − 3

2(x0− b) + 5
4(a− b) + 1

2x0 + 3
4a− b

4 = 1
2(a−b)(x0− b)2−x0 + 2a =

1
2(a−b)(x0 − b)2 − x0 + 2a since x0 ∈ [a+ b, 2a− b], then we have:

min
x0

W1(D1,D3) =
(x0 − b)2

2(a− b) − (a+ b) + 2a =
a2

2(a− b) + a− b

We can verify: a2

2(a−b) + a− b > 3
2a− b

2 when a > b, then we have:

min
x0

W1(D1,D3) > max
x0

W1(D1,D2)

which means in Wasserstein-1 distance metric, the diversity of two distribution can be much better

measured.

B.4 Developing loss in deep batch active learning

We have the original loss:

min
θf ,θh,B̂

max
θd

E(x,y)∼L̂∪B̂`(h(x, y)) + µ
(
Ex∼D̂[g(x)]− Ex∼L̂∪B̂[g(x)]

)
. (B.8)

Since L̂, B̂ and D̂ are Dirac distributions, then we have:

1

L+B

∑
(x,y)∈L̂∪B̂

`(h(x, y)) + µ
( 1

L+ U

∑
x∈D̂

g(x)− 1

L+B

∑
x∈L̂∪B̂

g(x)
)

=
1

L+B

∑
(x,y)∈L̂

`(h(x, y)) +
1

L+B

∑
(x,y?)∈B̂

`(h(x, y?))

+ µ
( 1

L+ U

∑
x∈L̂

g(x) +
1

L+ U

∑
x∈Û

g(x)− 1

L+B

∑
x∈L̂

g(x)− 1

L+B

∑
x∈B̂

g(x)
)

=
1

L+B

∑
(x,y)∈L̂

`(h(x, y)) +
1

L+B

∑
(x,y?)∈B̂

`(h(x, y?))

+ µ
( 1

L+ U

∑
x∈Û

g(x)− (
1

L+B
− 1

L+ U
)
∑
x∈L̂

g(x)
)
− µ

L+B

∑
x∈B̂

g(x)

=
( 1

L+B

∑
(x,y)∈L̂

`(h(x, y)) + µ
( 1

L+ U

∑
x∈Û

g(x)− (
1

L+B
− 1

L+ U
)
∑
x∈L̂

g(x)
)

︸ ︷︷ ︸
Training Stage

)

+
( 1

L+B

∑
(x,y?)∈B̂

`(h(x, y?))− µ

L+B

∑
x∈B̂

g(x)

︸ ︷︷ ︸
Querying Stage

)

We note that x ∈ D̂ means enumerating all samples from the observations (empirical distribution).
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B.5 Redundancy trick: Computation

µ
( 1

L+ U

∑
x∈Û

g(x)− (
1

L+B
− 1

L+ U
)
∑
x∈L̂

g(x)
)

= µ
( γ

1 + γ

1

U

∑
x∈Û

g(x)− (
1

1 + α
− 1

1 + γ
)

1

L

∑
x∈L̂

g(x)
)

= µ′
( 1

U

∑
x∈Û

g(x)− 1

γ
(
1 + γ

1 + α
− 1)

1

L

∑
x∈L̂

g(x)
)

= µ′
( 1

U

∑
x∈Û

g(x)− 1

γ

γ − α
1 + α

1

L

∑
x∈L̂

g(x)
)

B.6 Uniform Output Arrives with the Minimal loss

For the abuse of notation, we suppose the output of classifier h(x, ·) = [p1, . . . , pK ] ≡ p with pi > 0

and
∑K

i=1 pi = 1. Then we tried to minimize

min
p

K∑
i=1

− log pi

By applying the Lagrange Multiplier approach, we have

min
p,λ>0

K∑
i=1

− log pi + λ(
K∑
i=1

pi − 1)

Then we do the partial derivative w.r.t. pi, then we have ∀i:
−1

pi
+ λ = 0 → pi =

1

λ

Given
∑K

i=1 pi = 1, then we can compute pi = 1
K arriving at the minimal, i.e the uniform distribution.

B.7 Experiments

B.7.1 Dataset Descriptions

Dataset #Classes Train + Validation Test Initially labelled Query size Image size
Fashion-MNIST (Xiao et al., 2017) 10 40K + 20K 10K 1K 500 28× 28

SVHN (Netzer et al., 2011) 10 40K + 33K 26K 1K 1K 32× 32

CIFAR10 (Krizhevsky et al., 2009) 10 45K + 5K 10K 2K 2K 32× 32

STL10* (Coates et al., 2011) 10 8K + 1K 4K 0.5K 0.5K 96× 96

Table B.1 – Dataset descriptions

*We used a variant instead of the original STL10 dataset by arranging the training size to 8K (each

class 800) and validation 1K and test 4K. We do not use the unlabeled dataset in our training or test

procedure.
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B.7.2 Implementation details

FashionMNIST For the FashionMNIST dataset, we adopted the LeNet5 as the feature extractor,

then we used two-layer MLPs for the classification (320-50-relu-dropout-10) and critic function

(320-50-relu-dropout-1-sigmoid).

SVHN, CIFAR10 We adopt the VGG16 with batch normalization as the feature extractor. then we

used two-layer MLPs for the classification (512-50-relu-dropout-10) and critic function (512-50-relu-

dropout-1-sigmoid).

STL10 We adopt the VGG16 with batch normalization as the feature extractor. then we used

two-layer MLPs for the classification (4096-100-relu-dropout-10) and critic function (4096-100-relu-

dropout-1-sigmoid).

B.7.3 Hyper-parameter setting

Dataset lr Momentum Mini-Batch size µ Selection coefficient Mixture coefficient**
Fashion-MNIST 0.01* 0.5 64 1e-2 5 0.5

SVHN 0.01* 0.5 64 1e-2 5 0.5
CIFAR10 0.01* 0.3 64 1e-2 10 0.5

STL10 0.01* 0.3 64 1e-3 10 0.5

Table B.2 – Hyper-parameter setting

* We set the initial learning rate as 0.01, then at 50% epoch we decay to 1e-3, after 75% epoch we

decay to 1e-4.

** The mixture coefficient means the convex combination coefficient in the two uncertainty-based

approaches.

B.7.4 Detailed results with numerical values

We report the accuracy in the form of percentage (%), showing in Tab. B.3, B.4, B.5, B.6.

B.8 Ablation study

In this part, we will conductH-divergence based adversarial training for the parameters of DNN.

min
θf ,θh

max
θd

∑
(x,y)∈L̂

`(h(x, y))− µ
(∑
x∈Û

log(g(x)) +
∑
x∈L̂

log(1− g(x))
)

(B.9)

Where g is defined as the discriminator function 1. In the adversarial training, the discriminator

parameter aims at discriminating the empirical unlabeled and labeled data via the binary classification,
1This notation is slightly different from the critic function (Arjovsky et al., 2017)
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Random LeastCon Margin Entropy KMedian DBAL Core-set DeepFool WAAL

1K 58.03±2.81 57.93±1.62 57.81±2.19 57.40±1.75 57.62±2.5 58.01±2.75 58.14±2.19 58.19±2.4 72.29±1.16
1.5K 66.81±1.02 64.24±2.49 65.61± 2.5 66.37±0.62 67.13±2.87 66.53±2.5 68.79±1.99 66.21±1.78 76.99±1.05
2K 71.21±2.35 68.36±1.09 70.05±2.77 69.70±0.88 71.57±0.79 69.77±0.93 71.22±1.38 70.14±1.32 79.85±0.49

2.5K 73.12±2.1 71.68±1.67 72.74±1.55 71.60±1.42 73.84±0.98 72.60±0.60 72.61±1.16 71.77±1.49 81.08±0.68
3K 75.80±0.64 75.03±1.56 76.55±1.01 74.84±1.29 75.79±0.44 74.75±1.04 73.77±1.74 73.69±1.21 82.04±0.58

3.5K 77.34±0.67 77.73±1.04 78.99±1.11 76.66±1.26 77.44±0.97 75.86±1.02 75.10±1.11 74.00±0.71 82.74±0.79
4K 78.68±0.41 79.26±0.47 81.77±0.51 79.00±0.24 77.97±0.65 77.02±0.42 76.28 ±0.98 74.93±2.05 83.25±0.62

4.5K 79.58±0.47 80.08±0.82 82.32±0.47 79.89±0.78 79.49±0.7 77.90±0.58 77.30±0.61 76.64±0.97 83.96±0.54
5K 80.02±0.45 81.32±0.64 83.89±0.84 80.85±0.87 79.97±0.59 78.87±0.58 78.34±0.37 77.24±0.69 84.45±0.45

5.5K 80.93±0.33 83.21±0.42 84.87±0.18 82.26±0.77 81.11±0.41 79.47±2.9 78.42±0.66 77.72±0.57 85.20±0.44
6K 81.30±0.25 84.50±0.73 85.52±0.27 83.66±0.98 81.86±0.6 80.43±0.76 79.66±0.34 78.99±0.33 85.99±0.43

Table B.3 – Result of FashionMNIST (Average ± std)

Random LeastCon Margin Entropy KMedian DBAL Core-set DeepFool WAAL

1K 63.97±2.04 63.40±2.16 63.10±2.3 63.49±2.79 63.50±2.53 63.76±0.73 63.90±1.07 63.62±2.34 75.18±1.41
2K 75.85±1.16 74.86±2.44 75.27± 1.7 72.78±3.15 76.17±3.2 77.07±1.57 77.9±1.25 76.29±1.62 80.69±2.00
3K 80.83± 1.04 81.87± 0.64 80.9± 2.22 80.88± 1.26 81.36± 1.29 81.17± 1.72 81.7 ± 0.84 80.92± 0.79 83.89± 2.08
4K 82.70±1.18 84.00±0.88 83.10±1.38 83.19±0.95 83.41±1.58 83.95±1.87 84.81±1.3 83.79±0.64 86.82±1.11
5K 85.10±0.73 85.68±0.94 85.02±1.1 84.75±0.83 84.93±0.94 86.34±1.1 86.52±0.95 85.32±0.58 88.71±1.08
6K 86.20±0.48 87.23±0.97 87.53±0.63 87.51±0.50 87.04±0.45 87.61±0.72 88.00 ±0.44 87.02±0.64 89.71±0.83

Table B.4 – Result of SVHN (Average ± std)

Random LeastCon Margin Entropy KMedian DBAL Core-set DeepFool WAAL

2K 46.33±3.18 46.43±3.17 46.69±3.87 46.79±3.62 46.53±3.39 46.48±3.11 46.38±4.03 46.54±3.77 55.00±0.40
4K 56.33±3.40 53.26±3.84 55.52± 2.69 53.13±2.99 53.58±2.57 56.18±2.37 56.09±3.89 54.48±1.62 62.32±0.36
6K 59.63± 4.17 59.00± 2.19 63.05± 1.78 62.63± 1.29 61.25±1.76 62.48± 1.38 59.56 ± 1.17 60.80± 0.70 66.67± 0.60
8K 62.85±3.37 66.46±1.33 66.44±1.85 65.23±1.89 63.73±1.34 65.84±0.78 65.84±1.27 64.87±1.98 69.33±1.47
10K 68.13±2.53 68.91±1.10 69.86±0.24 69.72±1.53 68.92±2.33 68.94±1.96 69.11±0.80 69.39±0.47 72.39±1.21
12K 70.41±1.02 71.90±1.35 72.25±0.68 71.58±0.77 72.65±0.64 72.25±1.24 72.60 ±0.79 71.17±1.03 75.11±0.49

Table B.5 – Result of CIFAR10 (Average ± std)

Random LeastCon Margin Entropy KMedian DBAL Core-set DeepFool WAAL

0.5K 41.78±2.42 41.69±3.22 41.81±2.27 41.12±1.67 41.24±1.41 41.30±1.45 41.41±2.30 41.82±2.67 47.01±1.09
1K 48.24±1.37 47.05±1.42 46.7±0.85 46.38±2.31 46.45±1.11 47.45±3.71 47.58±2.06 45.15±0.74 52.47±1.62

1.5K 51.78± 2.5 50.87± 1.24 50.44± 2.57 50.24± 1.21 49.91±1.74 52.53± 1.29 51.2 ± 1.63 48.64± 2.43 57.25± 1.78
2K 56.52±1.78 56.25±1.58 55.54±1.09 55.15±2.13 54.92±2.19 57.54±1.70 58.13±1.57 54.26±2.40 60.08±1.63

2.5K 58.42±1.42 58.49±2.05 57.62±1.42 57.81±2.87 57.87±1.51 59.25±2.89 57.66±1.79 57.05±2.53 62.58±1.44
3K 61.13±1.67 60.80±2.64 59.42±1.49 60.88±0.72 60.00±0.65 62.11±1.65 61.02 ±0.48 59.74±1.74 65.42±1.33

Table B.6 – Result of STL10 (Average ± std)

while the feature extractor parameter aims at not being correctly classified. In this manner, the unlabeled

dataset will be used for constructing a better feature representation in the adversarial training. As for

the query part, we directly used the baseline strategies. The numerical values will show in Tab. B.7.

Moreover, we also evaluated the ablation study for the SVHN dataset, shown in Tab. B.8.
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Random LeastCon Margin Entropy KMedian DBAL Core-set DeepFool WAAL

2K 49.85±0.32 50.00±1.81 49.8±2.28 49.92±1.08 49.31±2.76 49.58±1.05 49.87±4.03 49.85±1.36 55.00±0.40
4K 56.63±3.27 59.11±0.85 61.93± 2.12 59.15±0.41 60.6±0.72 58.55±1.99 60.97±1.62 58.80±2.59 62.32±0.36
6K 62.30± 2.54 63.15± 2.21 63.04± 1.98 63.74± 0.94 64.73±1.37 63.82± 2.33 64.95 ± 1.66 64.80± 1.4 66.67± 0.60
8K 66.97±0.76 64.32±2.58 68.30±1.02 67.67±1.04 65.98±1.45 66.65±1.00 67.54±2.16 67.65±1.27 69.33±1.47
10K 69.23±1.97 69.74±2.52 69.98±0.25 69.92±1.17 70.95±1.93 69.96±1.74 70.62±0.74 70.55±0.80 72.39±1.21
12K 71.78±1.34 71.60±1.25 71.56±1.53 72.90±1.37 72.56±1.39 73.53±1.71 71.83 ±1.20 71.86±0.33 75.11±0.49

Table B.7 – Ablation study of CIFAR10 (Average ± std)

Random LeastCon Margin Entropy KMedian DBAL Core-set DeepFool WAAL

1K 68.34±0.96 70.3±1.75 68.88±1.19 68.94±1.17 68.38±0.92 68.54±3.65 69.29±0.71 70.14±1.84 75.18±1.41
2K 76.63±3.14 75.21±2.45 74.55± 3.16 73.55±2.49 78.35±1.63 76.97±1.19 77.17±1.8 76.74±2.15 80.69±2.00
3K 80.36± 0.46 80.14±1.66 78.66± 1.54 76.10± 1.46 79.16± 1.47 78.99± 1.57 79.87 ± 0.33 80.10± 1.27 83.89± 2.08
4K 82.62±1.15 82.81±0.66 83.13±1.01 83.27±0.18 82.89±0.73 82.65±1.61 84.33±0.72 83.47±0.74 86.82±1.11
5K 84.27±0.77 85.59±0.74 84.36±0.75 86.15±0.23 85.10±0.57 84.18±0.25 86.74±0.34 84.75±0.57 88.71±1.08
6K 85.36±0.36 86.44±0.93 86.15±0.89 86.72 ± 0.66 87.21±0.52 86.77±1.26 87.31±0.71 85.42 ±0.55 89.71±0.83

Table B.8 – Ablation study of SVHN (Average ± std)
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Appendix C

Details of Chapter 4

C.1 H-Divergence v.s. Jensen-Shannon Divergence

C.1.1 Counterexample One

We take the example proposed by (Ben-David et al., 2010b) (Example 6), which has already computed

the dH(S(x), T (x)) = ξ. However, since supp(S(x)) ∩ supp(T (x)) = ∅, DJS(S(x)‖T (x)) = 1.

C.1.2 Counterexample Two

We have S = Unif{1, 2, 3} and T = {P(X = 1) = 1
4 ,P(X = 2) = 1

2 ,P(X = 3) = 1
4}.

Computing dH It is also related to the optimal classification error.

err(h) =


1/2 if t < 1, t > 3

11/24 if 1 < t < 2

13/24 if 2 < t < 3

Then theH divergence is dH(T (x),S(x)) = 1− 2 minh[err(h)] = 1
12 ≈ 0.0833

Computing DJS(T (x)‖S(x)) Since the two distributions hold the same support, we can compute

the mixture distributionM = {P(X = 1) = 7
24 ,P(X = 2) = 5

12 ,P(X = 3) = 7
24}, We can compute

the Jensen-Shannon divergence:

D(S‖M) = 1
3 log( 1/3

7/24) + 1
3 log( 1/3

5/12) + 1
3 log( 1/3

7/24) ≈ 0.02110

D(T ‖M) = 1
4 log( 1/4

7/24) + 1
2 log( 1/2

5/12) + 1
4 log( 1/4

7/24) ≈ 0.02032

Then DJS(T (x)‖S(x)) = 1
2(0.0211 + 0.02032) = 0.0207. In this scenario, the DJS(T (x)‖S(x)) <

dH(T (x),S(x)), therefore, the DJS can not be viewed as an upper bound of dH.
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C.2 Domain Adaptation: Upper Bound (Theorem 4.1)

We first prove an intermediate lemma:

Lemma C.1. Let Z ∈ Z be the real valued integrable random variable, let P and Q be two

distributions on a common space Z such that Q is absolutely continuous w.r.t. P . If for any function

f and λ ∈ R such that EP [eλ(f(z)−EP (f(z))] <∞, then we have:

λ(EQf(z)− EP f(z)) ≤ DKL(Q‖P ) + logEP [eλ(f(z)−EP (f(z))]

Where DKL(Q‖P ) is the Kullback–Leibler divergence between distributions Q and P , and the

equality arrives when f(z) = EP f(z) + 1
λ log(dQdP ).

Proof. We let g be any function such that EP [eg(z)] <∞, then we define a random variable Zg(z) =
eg(z)

EP [eg(z)]
, then we can verify that EP (Zg) = 1. We assume another distribution Q such that Q (with

distribution density q(z)) is absolutely continuous w.r.t. P (with distribution density p(z)), then we

have:

EQ[logZg] = EQ[log
q(z)

p(z)
+ log(Zg

p(z)

q(z)
)]

= DKL(Q‖P ) + EQ[log(Zg
p(z)

q(z)
)]

≤ DKL(Q‖P ) + logEQ[
p(z)

q(z)
Zg]

= DKL(Q‖P ) + logEP [Zg]

Since EP [Zg] = 1 and according to the definition we have EQ[logZg] = EQ[g(z)]−EQ logEP [eg(z)] =

EQ[g(z)]− logEP [eg(z)] (since EP [eg(z)] is a constant w.r.t. Q) and we therefore have:

EQ[g(z)] ≤ logEP [eg(z)] +DKL(Q‖P ) (C.1)

Since this inequality holds for any function g with finite moment generation function, then we let

g(z) = λ(f(z)− EP f(z)) such that EP [ef(z)−EP f(z)] <∞. Therefore ∀λ and f we have:

EQλ(f(z)− EP f(z)) ≤ DKL(Q‖P ) + logEP [eλ(f(z)−EP f(z)]

Since we have EQλ(f(z)− EP f(z)) = λEQ(f(z)− EP f(z))) = λ(EQf(z)− EP f(z)), therefore

we have:

λ(EQf(z)− EP f(z)) ≤ DKL(Q‖P ) + logEP [eλ(EQf(z)−EP f(z))]

As for the attainment in the equality of Eq.(C.1), we can simply set g(z) = log( q(z)p(z)), then we can

compute EP [eg(z)] = 1 and the equality arrives. Therefore in Lemma 1, the equality reaches when

λ(f(z)− EP f(z)) = log(dQdP ).
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In the classification problem, we define the observation pair z = (x, y). We also define the loss function

`(z) = L ◦ h(z) with deterministic hypothesis h and prediction loss function L. Then for abuse of

notation, we simply denote the loss function `(z) in this part.

Supposing the prediction loss L is bounded with interval G with G = max(L)−min(L), then the

expected risk in the target domain can be upper bounded by:

RT (h) ≤ RS(h) +
G√

2

√
DJS(T ‖S)

Where DJS = 1
2

[
D(T ‖1

2(T + S)) +D(S‖1
2(T + S))

]
is the joint Jensen-Shannon divergence.

Proof. According to Lemma 1, ∀λ > 0 we have:

EQf(z)− EP f(z) ≤ 1

λ
(logEP e[λ(f(z)−EP f(z))] +DKL(Q‖P )) (C.2)

And ∀λ < 0 we have:

EQf(z)− EP f(z) ≥ 1

λ
(logEP e[λ(f(z)−EP f(z))] +DKL(Q‖P )) (C.3)

Then we introduce an intermediate distributionM(z) = 1
2(S(z) + T (z)), then supp(S) ⊆ supp(M)

and supp(T ) ⊆ supp(M), and let f = `. Since the random variable ` is bounded through G =

max(L) −min(L), then according to (Wainwright, 2019)(Chapter 2.1.2), ` − EP ` is sub-Gaussian

with parameter at most σ = G
2 , then we can apply Sub-Gaussian property to bound the log moment

generation function:

logEP e[λ(`(z)−EP `(z))] ≤ log e
λ2σ2

2 ≤ λ2G2

8
.

In Eq.(C.2), we let Q = T and P =M, then ∀λ > 0 we have:

ET `(z)− EM `(z) ≤ G2λ

8
+

1

λ
DKL(T ‖M) (C.4)

In Eq.(C.3), we let Q = S and P =M, then ∀λ < 0 we have:

ES `(z)− EM `(z) ≥ G2λ

8
+

1

λ
DKL(S‖M) (C.5)

In Eq.(C.4), we denote λ = λ0 > 0 and λ = −λ0 < 0 in Eq.(C.5). Then Eq.(C.4), Eq.(C.5) can be

reformulated as:

ET `(z)− EM `(z) ≤ G2λ0

8
+

1

λ0
DKL(T ‖M)

EM `(z)− ES `(z) ≤
G2λ0

8
+

1

λ0
DKL(S‖M)

(C.6)
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Adding the two inequalities in Eq.(C.6), we therefore have:

ET `(z) ≤ ES `(z) +
1

λ0

(
DKL(S‖M) +DKL(T ‖M)

)
+
λ0

4
G2 (C.7)

Since the inequality holds for ∀λ0, then by taking λ0 = 2
G

√
DKL(S‖M) +DKL(T ‖M) we finally

have:

ET `(z) ≤ ES `(z) +
G√

2

√
DJS(T ‖S) (C.8)

C.2.1 Extension to the unbounded loss

The proposed theory can be naturally extended to the unbounded loss.

Corollary C.1 (Sub-Gaussian Upper Bound). If the loss function satisfies σ-Sub Gaussian property:

logEP e[λ(`(z)−EP `(z))] ≤ λ2σ2

2 , then the expected risk in the target domain can be upper bounded

by:

RT (h) ≤ RS(h) + σ
√

2DJS(T ‖S)

Proof. The proof is trivial by simply plugging in the Sub-Gaussian condition in the moment generation

function.

Corollary C.2 (Sub-Gamma Upper Bound). If the loss function satisfies (σ, a)-Sub Gamma prop-

erty: logEP e[λ(`(z)−EP `(z))] ≤ λ2σ
2(1−a|λ|) , for 0 < |λ| < 1

a . Then the expected risk in the target

domain can be upper bounded by:

RT (h) ≤ RS(h) + (σ + 1)
√

2DJS(T ‖S) + 2aDJS(T ‖S)

Proof. For the same step for the moment generation function, by taking λ0 ∈ (0, 1
a), then analogously

we have:

ET `(z)− EM `(z) ≤ λ0σ

2(1− aλ0)
+

1

λ0
DKL(T ‖M)

EM `(z)− ES `(z) ≤
λ0σ

2(1− aλ0)
+

1

λ0
DKL(S‖M)

Therefore we have

ET `(z)− ES `(z) ≤
λ0σ

(1− aλ0)
+

1

λ0
(DKL(T ‖M) +DKL(S‖M))

=
λ0σ

(1− aλ0)
+

1

λ0
(2DJS(T ‖S))

107



We let λ0 =

√
2DJS(T ‖S)

σ+a
√

2DJS(T ‖S)
∈ (0, 1

a) and we can simplify the upper bound as:

ET `(z)− ES `(z) ≤ (σ + 1)
√

2DJS(T ‖S) + 2aDJS(T ‖S)

The extended upper bounds can be much tighter than the conclusion in Theorem 1, particularly when

the loss is in a large range with a small variance.

C.3 Domain Adaptation Theory: Lower Bound (Theorem 4.2)

We firstly introduce several information theoretical tools:

Lemma C.2 (Pinsker’s inequality). If P and Q are two probability distribution on the measurable

space (Ω,F), then

TV(P,Q) ≤
√

2DKL(P‖Q)

Where DKL(P‖Q) is the Kullback–Leibler divergence between distribution P and Q and TV (P‖Q) =∑
z |P (z)−Q(z)|

Lemma C.3. (Polyanskiy and Wu, 2019)[f -divergence data processing inequality] Consider a channel

that produces Y given X on the deterministic function g. If PY is the distribution of Y when X

is generated by PX and QY is the distribution of Y when X is generated by QX , then for any

f -divergence Df (·‖·):

Df (PY ‖QY ) ≤ Df (PX‖QX)

If we restrict the zero-one loss L ∈ {0, 1}, then we can prove the target risk be lower bounded by:

RT (h) ≥ RS(h)−
√
DJS(T ‖S)

Proof. Again we denote the observation pair z = (x, y). For abuse of notation, we simply denote the

loss function ` = L ◦ h with ` ∈ {0, 1}.

According to f -divergence data processing inequality, if we set the deterministic function g as g(Z) =

1E(Z) for any event E, then Y is Bernoulli distribution with parameter P (E) or Q(E) and the data

processing inequality becomes:

Df (Bern(P (E))‖Bern(Q(E))) ≤ Df (PZ‖QZ)

If we define the event E as we make an error in the prediction (a.k.a l(z) = 1), then P (E) =

P (making an error) = EP1{making an error} = EP [`(z)]. Therefore we have:

Df (Bern(EP [`(z)])‖Bern(EQ[`(z)])) ≤ Df (PZ‖QZ)

108



Again we introduce the intermediate distributionM = 1
2(S + T ). According to the data processing

inequality on the expectation of random variables, if we adopt KL divergence by letting f(t) = t log(t),

then we have:

DKL(Bern(ET [`(z)])‖Bern(EM[`(z)])) ≤ DKL(T ‖M)

DKL(Bern(ES [`(z)])‖Bern(EM[`(z)])) ≤ DKL(S‖M)

We notice ET (`(z)) ∈ [0, 1], ES(`(z)) ∈ [0, 1]. Then we can adopt Pinsker’s inequality by treating the

expected value as the Bernoulli distribution parameters. Then we can compute their Total Variation

(TV) distance.

TV(Bern(p),Bern(q)) = |p− q|+ |1− p− 1 + q| = 2|p− q|

Then we have:

2|ET [`(z)]− EM[`(z)]| = TV(Bern(p),Bern(q))

≤
√

2DKL(Bern(ET [`(z)])‖Bern(EM[`(z)]))

≤
√

2DKL(T ‖M)

Similarity we have 2|ES [`(z)]− EM[`(z)]| ≤
√

2DKL(S‖M). Adding these two item together we

have:

2|ES [`(z)]− EM[`(z)]|+ 2|ET [`(z)]− EM[`(z)]| ≤
√

2DKL(T ‖M) +
√

2DKL(S‖M)

We adopt the inequality
√
a+
√
b ≤

√
2(a+ b) with a ≥ 0 and b ≥ 0, then we have√

DKL(T ‖M) +
√
DKL(S‖M) ≤ 2

√
DJS(T ‖S).

We also have

2|ES [`(z)]− EM[`(z)]|+ 2|ET [`(z)]− EM[`(z)]|
≥ 2|ES [`(z)]− EM[`(z)]− ET [`(z)] + EM[`(z)]|
= 2|ES [`(z)]− ET [`(z)]|

Given the aforementioned results, we have the following the two side inequality:

|ES [`(z)]− ET [`(z)]| ≤
√
DJS(T ‖S)

We have−
√
DJS(T ‖S) ≤ ET [`(z)]−ES [`(z)] ≤

√
DJS(T ‖S) and finally we have the lower bound:

ET [`(z)] ≥ ES [`(z)]−
√
DJS(T ‖S)

Remark We should point out the derived upper bound is looser and more restrictive than that we

derived from Theorem 1, with a scale 1√
2

when we restrict the loss in {0, 1} and Theorem 1 can be

extended to any bounded loss while this proof cannot.
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C.4 Joint Jensen-Shannon Divergence Decomposition (Corollary 4.3)

In this section, we will provide an upper bound of the chain rule in Jensen-Shannon divergence.

According to the definition of Jensen-Shannon divergence and the chain rule of KL divergence we

have:

2DJS(T (x, y)‖S(x, y)) = DKL(T (x, y)‖M(x, y)) +DKL(S(x, y)‖M(x, y))

= DKL(T (x)‖M(x)) + Ex∼T (x)DKL(T (y|x)‖M(y|x))

+DKL(S(x)‖M(x)) + Ex∼S(x)DKL(S(y|x)‖M(y|x))

= 2DJS(T (x)‖S(x)) + Ex∼T (x)DKL(T (y|x)‖M(y|x))

+ Ex∼S(x)DKL(S(y|x)‖M(y|x))

In general, for continuous random variable, the DKL divergence does not exist an exact upper bound.

While we can simple upper bound these by adding two complementary terms.

Ex∼T (x)DKL(T (y|x)‖M(y|x)) ≤ Ex∼T (x)DKL(T (y|x)‖M(y|x)) + Ex∼T (x)DKL(S(y|x)‖M(y|x))

= 2Ex∼T (x)DJS(T (y|x)‖S(y|x))

Ex∼S(x)DKL(T (y|x)‖M(y|x)) ≤ Ex∼S(x)DKL(T (y|x)‖M(y|x)) + Ex∼S(x)DKL(S(y|x)‖M(y|x))

= 2Ex∼S(x)DJS(T (y|x)‖S(y|x))

Plugging in the results, we have the following conditional upper bound√
DJS(T (x, y)‖S(x, y)) ≤

√
DJS(T (x)‖S(x)) +

√
Ex∼T (x)DJS(T (y|x)‖S(y|x))

+
√

Ex∼S(x)DJS(T (y|x)‖S(y|x))

We can derive the analogue result conditioned on y:√
DJS(T (x, y)‖S(x, y)) ≤

√
DJS(T (y)‖S(y)) +

√
Ey∼T (y)DJS(T (x|y)‖S(x|y))

+
√
Ey∼S(y)DJS(T (x|y)‖S(x|y))

C.5 Target Intrinsic Error Upper Bound

If H(Ys|Xs) ≤ ε, the source target marginal and conditional distribution are close

DJS(S(x)‖T (x)) ≤ δ1, ∀x, we have DJS(S(y|x)‖T (y|x)) ≤ δ2. Then the target distribu-

tion conditional entropy can be upper bounded by:

H(Yt|Xt) ≤ ε+

√
δ2

2
+

√
δ1

2
log |Y|
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Proof. Since 1
2TV(P,Q)2 ≤ DJS(P‖Q) ≤ TV (P,Q) (Thekumparampil et al., 2018), then for ∀x we

have:

‖S(y|x)− T (y|x)‖1 ≤
√

2δ2

Then for conditional entropy for the target distribution, we have:

H(Yt|Xt) = Ex∼T (x)H(Yt|Xt = x)

= Ex∼T (x)H(Yt|X = x)− Ex∼T (x)H(Ys|X = x) + Ex∼T (x)H(Ys|X = x)

≤ Ex∼T (x)|H(Yt|X = x)−H(Ys|X = x)|+ Ex∼T (x)H(Ys|X = x)

Since the Entropy function is 1
2 Lipschitz w.r.t. L1 norm, then we have

Ex∼T (x)|H(Yt|X = x)−H(Ys|X = x)| ≤ Ex∼T (x)
1

2
‖T (y|x)− S(y|x)‖1 ≤

√
δ2

2

Then we need to bound Ex∼T (x)H(Ys|X = x),

Ex∼T (x)H(Ys|X = x) = Ex∼S(x)H(Ys|X = x) + Ex∼T (x)H(Ys|X = x)− Ex∼S(x)H(Ys|X = x)

≤ ε+ Ex∼T (x)H(Ys|X = x)− Ex∼S(x)H(Ys|X = x)

We still adopt the conclusion when we proof Theorem 1, i.e the transport inequality of the gaps of

same function under different marginal distribution measures by assuming z = x. We can compute

G = H(Ys|X = x) ≤ H(Ys) ≤ log |Y|, then we have:

Ex∼T (x)H(Ys|X = x) ≤ ε+
log |Y|√

2

√
DJS(T (x)‖S(x))

≤ ε+

√
δ1

2
log |Y|

Putting all them together we have the aforementioned conclusion.

C.6 Inherent Difficulty for Controlling Label Conditional Shift

C.6.1 Extension to the Representation Learning

The upper bound in Theorem 4.1 can be further decomposed as:

RT (h) ≤RS(h) +
G√

2

√
DJS(T (x)‖S(x))

+
G√

2

√
Ex∼T (x)DJS(T (·|x)‖S(·|x)) + Ex∼S(x)DJS(T (·|x)‖S(·|x))

(C.9)

Inspired by (Johansson et al., 2020), we set the representation function g : X → Z and h the hypothesis

defined on the (x, z). Then we consider learning twice-differentiable, invertible representations:

g : X → Z where g−1 is the inverse representation, such that g−1(g(x)) = x for all x. Then these

assumptions for g(x), we have P (g(X) = z) = P (X = g−1(z)).
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We can therefore extend the result in the representaion learning:

RT (h ◦ g) ≤RS(h ◦ g) +
G
√
Ag√
2

√
DJS(T (z)‖S(z))

+
G√

2

√
Ex∼T (x)DJS(T (·|z)‖S(·|z)) + Ex∼S(x)DJS(T (·|z)‖S(·|z))

Where Ag = supz |Jg−1(z)|, is the maximum value of the Jacobian of the representation inverse

function g−1.

As we mentioned in this and previous paper (Wu et al., 2020b; Zhao et al., 2019a; Johansson et al.,

2019; Wu et al., 2019), only controlling the first two terms by learning a bad representation can lead to

the third term much larger.

Proof. According to the definition of f -divergence and define z = g(x), under the aforementioned

assumptions, we have:

Df (P (x)‖Q(x)) =

∫
x
q(x)f(

p(x)

q(x)
)dx

=

∫
z
q(g(x))f(

p(g(x))

q(g(x))
)|Jg−1(z)|dz

≤ AgDf (P (z)‖Q(z)),

where Ag = supz |Jg−1(z)|, is the maximum value of the Jacobian of the representation inverse

function g−1.

C.6.2 Lower Bound of Label Conditional Shift

We can prove the label-conditional shift can be lower bounded by:

Ez∼T̂ (z)DJS(Ŝ(y|z)‖T̂ (y|z)) + Ez∼Ŝ(z)DJS(Ŝ(y|z)‖T̂ (y|z))

≥ 2

(√
DJS(T̂ (y)‖Ŝ(y))−

√
DJS(Ŝ(z)‖T̂ (z))

)2

We notice the square form of Jensen-Shannon divergence is a valid statistical distance. Then we have:

√
DJS(T̂ (y)‖Ŝ(y)) =

√√√√DJS

(∑
z

T̂ (y|z)T̂ (z)‖
∑
z

Ŝ(y|z)Ŝ(z)

)

≤

√√√√DJS

(∑
z

T̂ (y|z)Ŝ(z)‖
∑
z

Ŝ(y|z)Ŝ(z)

)
+

√√√√DJS

(∑
z

T̂ (y|z)Ŝ(z)‖
∑
z

T̂ (y|z)T̂ (z)

)

≤
√

Ez∼Ŝ(z)DJS

(
Ŝ(y|z)‖T̂ (y|z)

)
+

√
DJS

(
Ŝ(z)‖T̂ (z)

)
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We derive the inequality according to (1) Jensen-Shannon distance is a valid statistical metric; (2)

The convex property of the Jensen-Shannon divergence w.r.t. the empirical distribution; (3) The

f -divergence data-processing inequality.

Ez∼Ŝ(z)DJS(Ŝ(y|z)‖T̂ (y|z)) ≥
(√

DJS(T̂ (y)‖Ŝ(y))−
√
DJS(Ŝ(z)‖T̂ (z))

)2

We can analogously derive:

Ez∼T̂ (z)DJS(Ŝ(y|z)‖T̂ (y|z)) ≥
(√

DJS(T̂ (y)‖Ŝ(y))−
√
DJS(Ŝ(z)‖T̂ (z))

)2

Finally, the third term can be lower bounded by:

Ez∼T̂ (z)DJS(Ŝ(y|z)‖T̂ (y|z)) + Ez∼Ŝ(z)DJS(Ŝ(y|z)‖T̂ (y|z))

≥ 2

(√
DJS(T̂ (y)‖Ŝ(y))−

√
DJS(Ŝ(z)‖T̂ (z))

)2

Which exactly recovers the result of (Zhao et al., 2019a): over-matching the marginal distribution

divergence to zero can increase this lower bound of the third term.

C.7 Novel Practice

RT (h) ≤RS(h) +
G√

2

√
DJS(T (y)‖S(y))︸ ︷︷ ︸
Label Marginal Shift

+
G√

2

√
Ey∼T (y)DJS(T (x|y)‖S(x|y)) + Ey∼S(y)DJS(T (x|y)‖S(x|y))︸ ︷︷ ︸

Semantic (Covariate) Conditional Shift

(C.10)

In this section, we firstly prove the lower bound in the context of conditional distribution matching. We

demonstrate that in the presence of conditional distribution matching, we still need to control the label

shift term to control a small lower bound.

C.7.1 Necessity of Considering Label Shift (Theorem 4.4)

In this section, we suppose there exists a more general stochastic representation learning function g

with a conditional probability distribution g(z|x). 1 Then the marginal distribution and conditional

distribution w.r.t. latent variable can be reformulated as:

S(z) =

∫
x
g(z|x)S(x)dx S(z|y) =

∫
x
g(z|x)S(x|Y = y)dx

1The deterministic representation learning function can be viewed as a special case such that fixed g(z|x) = z for a
given x
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If ∀ classifier h, feature function g, and label y ∈ Y = {−1,+1} such that semantic conditional

distribution is matched: DJS(S(z|y), T (z|y)) = 0, then the target risk can be bounded:

RS(h ◦ g)−
√

2DJS(S(y), T (y)) ≤ RT (h ◦ g) ≤ RS(h ◦ g) +
√

2DJS(S(y), T (y)) (C.11)

Where RS(h ◦ g) = RS(h(g(x), y)) the expected risk over the classifier h and feature learner

g.

Proof. For simplifying the analysis, we only focus on the binary classification with margin style loss

with L(h(z), y) = L(yh(z)), including 0− 1 loss, hinge loss, logistic loss, etc). Throughout the whole

analysis, we will simply adopt the 0− 1 loss. We additionally define the following distributions:

µS(z) = S(Y = 1, Z = z) = S(Y = 1)S(Z = z|Y = 1)

πS(z) = S(Y = −1, Z = z) = S(Y = −1)S(Z = z|Y = −1)

µT (z) = T (Y = 1, Z = z) = T (Y = 1)T (Z = z|Y = 1)

πT (z) = T (Y = −1, Z = z) = T (Y = −1)T (Z = z|Y = −1)

Then in the source distribution and target distribution for the common feature extractorQ and hypothesis

h, we have:

RS(h ◦ g) = ES1{yh(z) ≤ 0}

RT (h ◦ g) = ET 1{yh(z) ≤ 0}

According to (Nguyen et al., 2009), the risk can be reformulated as

RS(h ◦ g) =
∑
z

1{h(z) ≤ 0}µS(z) + 1{h(z) > 0}πS(z)

RT (h ◦ g) =
∑
z

1{h(z) ≤ 0}µT (z) + 1{h(z) > 0}πT (z)

Then we have:

RT (h ◦ g)−RS(h ◦ g) =
∑
z

1{h(z) ≤ 0}
(
µT (z)− µS(z)

)
+ 1{h(z) > 0}(πT (z)− πS(z))

≥
∑
z

min{µT (z)− µS(z), πT (z)− πS(z)}

If we define the conditional distribution matching as there exists a distribution ∃g such that S(z|y) =

T (z|y) = D(z|y), then we can simplify as
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∑
z

min{µT (z)− µS(z), πT (z)− πS(z)}

≥ −|S(y = 1)− T (y = 1)|
∑
z

max{D(z|y = 1),D(z|y = −1)}

= −1

2
dTV(S(y), T (y))

1

2
(1 + dTV(D(z|y = 1),D(z|y = −1))

≥ −1

2
dTV(S(y), T (y))

1

2
(1 + 1) = −1

2
dTV(S(y), T (y)) ≥ −

√
2DJS(S(y), T (y))

As for the upper bound, since we have:

RT (h ◦ g)−RS(h ◦ g) =
∑
z

1{h(z) ≤ 0}
(
µT (z)− µS(z)

)
+ 1{h(z) > 0}(πT (z)− πS(z))

≤
∑
z

max{µT (z)− µS(z), πT (z)− πS(z)}

Given the conditional shift, we have:∑
z

max{µT (z)− µS(z), πT (z)− πS(z)}

≤ |S(y = 1)− T (y = 1)|
∑
z

max{D(z|y = 1),D(z|y = −1)}

=
1

2
dTV(S(y), T (y))

1

2
(1 + dTV(D(z|y = 1),D(z|y = −1)))

≤ 1

2
dTV(S(y), T (y))

1

2
(1 + 1) =

1

2
dTV(S(y), T (y)) ≤

√
2DJS(S(y), T (y))

Finally we have the two side bound:

RS(h ◦ g)−
√

2DJS(S(y), T (y)) ≤ RT (h ◦ g) ≤ RS(h ◦ g) +
√

2DJS(S(y), T (y))

C.7.2 Labeling Shift Correction: Theoretical Result

As our previous theoretical results indicate the necessarily of label shift correction. If the semantic

(covariate) conditional distribution is matched DJS(T (z|y)‖S(z|y)) = 0, we adopt the popular label

re-weighted loss strategy: R̂αS(h ◦ g) =
∑

(xs,ys)∈Ŝ α(ys)L(h(g(xs), ys)) with α(y) = T (y)
S(y) . Then for

∀h ∈ H, we have:

|R̂αS(h)−RT (h)| ≤ O(

√
DJS(T (y)‖S(y))

NS
)

Proof. According to the Lemma 4 of (Azizzadenesheli et al., 2019), for a given hypothesis class H,

under N data points we have:

sup
h∈H
|R̂αS(h)−RT (h)| ≤ O(

√
d2(T (y)‖S(y)) log(2/δ)

N
)
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with probability at least 1− δ.

Since d2(T (y)‖S(y)) = 2D2(T (y)‖S(y)) with D2 (T (y)‖S(y)) is the Rényi-2 divergence. Then ac-

cording to the (Sason and Verdú, 2015; Thekumparampil et al., 2018), there exists a positive constant

C ′ such that:

D2(T (y)‖S(y)) ≤ log(1 + C ′dTV (T (y),S(y))) ≤ log(1 + C ′DJS(T (y)‖S(y)))

Plugging in the model, we have:

sup
h∈H
|R̂αS(h)−RT (h)| ≤ O(

√
DJS(T (y)‖S(y))

NS
)

C.7.3 Detecting Poor Pseudo-Labels

We can prove that if we have a poor pseudo-label, the marginal divergence can be very large. If

we assume DJS(T̂ (y)‖T̂p(y)) = P , and small source prediction error DJS(Ŝ(y)‖Ŝp(y)) ≤ ε1

and small source target ground truth distribution DJS(Ŝ(y)‖T̂ (y)) ≤ ε2, then we can prove

DJS(Ŝ(z)‖T̂ (z)) ≥ (
√
P −√ε1 −

√
ε2)2

Proof. Since in the DA, we adopt the same classifier h to predict both domains, the empirical label

prediction output distribution (pseudo-label distribution) is defined as:

Ŝp(y) =
∑
z

h(y|z)Ŝ(z) T̂p(y) =
∑
z

h(y|z)T̂ (z)

According to the f -divergence data-processing inequality, we have:

DJS(Ŝ(z)‖T̂ (z)) ≥ DJS(Ŝp(y)‖T̂p(y))

Since Jensen-Shannon distance is a valid statistical distance, then we have:√
DJS(Ŝp(y)‖T̂p(y)) +

√
DJS(Ŝp(y)‖Ŝ(y)) +

√
DJS(Ŝ(y)‖T̂ (y)) ≥

√
DJS(T̂ (y)‖T̂p(y)) =

√
P

Since we have a small source prediction error, a small empirical label shift, then we have:√
DJS(Ŝp(y)‖T̂p(y)) ≥

√
P −√ε1 −

√
ε2

Combining together we have DJS(Ŝ(z)‖T̂ (z)) ≥ (
√
P −√ε1 −

√
ε2)2
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C.8 Practical Guidelines

Parameter Optimization Step (fixed Pseudo-Labels) classifier h and feature extractor g:

min
h,g

R̂α̂S(h(g(xs), ys))︸ ︷︷ ︸
(I)

+
∑
y

(Ŝ(y) + T̂p(y))DJS

(
T̂ (g(xt)|Yp = y)‖Ŝ(g(xs)|Y = y)

)
︸ ︷︷ ︸

(II)

s.t. DJS(T̂ (g(xt))‖Ŝ(g(xs))) ≤ κ︸ ︷︷ ︸
(III)

(I) Labeling shift correction:R̂α̂S(h(g(xs), ys)) = 1
NS

∑NS
i=1 α(yi)L(h(g(xi), yi)); (II) Semantic

conditional matching, to align the semantic feature; (III) Covariate marginal distribution matching

as the constraint, as the adaptation step to obtain a good initialization pseudo-label prediction.

Pseudo-Label Estimation Step (fixed Parameters): yp, α̂, T̂p(y)

yp,T̂p(y) are pseudo-labels and distributions on the target domain. α̂ label reweighting coefficient.

C.8.1 Semantic Conditional Distribution Matching (Principle II)

As we illustrated in the paper, the first component is to match the covariate conditional distribution

divergence. Then we have:∑
y

(Ŝ(y) + T̂p(y))DJS(T̂ (·|y)‖Ŝ(·|y)) ≤
∑
y

(Ŝ(y) + T̂p(y))dTV(T̂ (·|y)‖Ŝ(·|y))

≤ C
∑
y

(Ŝ(y) + T̂p(y))‖T̂ (·|y)− Ŝ(·|y)‖2
(C.12)

In the representation learning, we simply approximate the empirical distribution as the surrogate of the

conditional distribution. We therefore denote:

Ŝ(g(xs)|y) ≈ 1

|#ys = y|
∑

(xs,ys)

δ{ys=y}g(xs) T̂ (g(xt)|y) ≈ 1

|#ypt = y|
∑

(xt,y
p
t )

δ{ypt=y}g(xt)

Therefore the conditional matching term can be approximated as:

R̂cond(g) =
∑
y

(Ŝ(Y = y) + T̂p(Y = y))‖Ŝ(g(xs)|Y = y)− T̂ (g(xt)|Yp = y)‖22 (C.13)

Remark We would like to emphasize that we propose one feasible solution. The covariate conditional

distribution matching can be naturally extended to the conditional adversarial training (Long et al.,

2018), matching higher statistical moments (Cai et al., 2019) or infinite orders as MMD distance (Long

et al., 2015).
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C.8.2 Marginal Covariate Distribution Matching as the Constraint (Principle III)

Since a relative accurate pseudo-label estimation is important in the iterative algorithm, we introduce

the marginal covariate distribution matching as the training constraint. The main goal is to keep a good

pseudo-label initial estimation. We just adopt the most popular Jensen-Shannon domain adversarial

training (the dual term of linear shift Jensen-Shannon divergence)

R̂adv(d, g) = Exs∼Ŝ(x) log(d ◦ g(xs)) + Ext∼T̂ (x) log(1− d ◦ g(xt)) (C.14)

As for the constraints, we adopt Lagrangian relaxation approach and treat the constraint as a small

regularization term, where κ is the hyper-parameter.

C.8.3 Labeling Marginal Shift Correction (Principle I)

We adopt the cross entropy as classification loss, then we have:

R̂α̂S(f, g) = − 1

NS

∑
(xs,ys)∼Ŝ

α̂(ys) log(h ◦ (g(xs), ys)) (C.15)

Estimation α̂ and Target label distribution We follow the popular Black Box Shift Learning

(BBSL) estimator. We first construct a source prediction confusion matrix Ĉ ∈ |Y| × |Y| with

Ĉ[i, j] = P(argmaxy h(g(xs), y) = i, ys = j). The target pseudo-label yp and target pseudo-

label distribution T̂p can be directly estimated from the neural network. Then the label re-weighting

coefficient can be estimated as:

α̂ = Ĉ−1T̂p

C.8.4 Practical Loss

We consider the whole aforementioned components and derive the following training strategy.

Parameter Optimization

min
f,g

max
d
R̂(f, d, g) = R̂α̂S(f, g) + λ0R̂adv(d, g) + λ1R̂cond(g)

Pseudo-Label Estimation

α̂ = Ĉ−1T̂p

The source confusion matrix Ĉ, target pseudo-label yp and target pseudo-label distribution T̂p
can be directly estimated from the neural network.
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Appendix D

Details of Chapter 5

D.1 Additional Related Work

Multi-source transfer learning Practice has been proposed from various perspective. The key idea

is to estimate the importance of different sources and then select the most related ones, to mitigate the

influence of negative transfer. In the multi-source unsupervised DA, (Sankaranarayanan et al., 2018;

Balaji et al., 2019; Pei et al., 2018; Zhao et al., 2019b; Zhu et al., 2019; Zhao et al., 2020, 2019b;

Stojanov et al., 2019; Li et al., 2019b; Wang et al., 2019b; Lin et al., 2020) proposed different practical

strategies in the classification, regression and semantic segmentation problems. In the presence of

target labels, Hoffman et al. (2012); Tan et al. (2013); Wei et al. (2017); Yao and Doretto (2010);

Konstantinov and Lampert (2019) used generalized linear model to learn the target. Christodoulidis

et al. (2016); Li et al. (2019a); Chen et al. (2019b) focused on deep learning approaches and Lee et al.

(2019) proposed an ad-hoc strategy to combine to sources in the few-shot target domains. These ideas

are generally data-driven approaches and do not analyze the why the proposed practice can control the

generalization error.

Label-Partial Transfer Learning Label-Partial can be viewed as a special case of the label-shift.
1 Most existing works focus on one-to-one partial transfer learning (Zhang et al., 2018; Chen et al.,

2020; Bucci et al., 2019; Cao et al., 2019) by adopting the re-weighting training approach without a

formal understanding. In our paper, we first rigorously analyzed this common practice and adopt the

label distribution ratio as its weights, which provides a principled approach in this scenario.

D.1.1 Other scenarios related to Multi-Source Transfer Learning

Domain Generalization The domain generalization (DG) resembles multi-source transfer but aims

at different goals. A common setting in DG is to learn multiple sources but directly predict on the

unseen target domain. The conventional DG approaches generally learn the distribution invariant

features (Balaji et al., 2018; Saenko et al., 2010; Motiian et al., 2017; Ilse et al., 2019) or conditional
1Since supp(T (y)) ⊆ supp(St(y)) then we naturally have T (y) 6= St(y).
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distribution invariant features (Li et al., 2018c; Akuzawa et al., 2019). However, our theoretical results

reveal that in the presence of label shift (i.e αt(y) 6= 1) and outlier tasks then learning conditional or

marginal invariant features can not guarantee a small target risk. Our theoretical result enables a formal

understanding about the inherent difficulty in DG problems.

Few-Shot Learning The few-shot learning (Finn et al., 2017; Snell et al., 2017; Sung et al., 2018)

can be viewed as a very specific scenario of multi-source transfer learning. We would like to point out

the differences between the few-shot learning and our paper. (1) Few-shot learning generally involves a

very large set of source domains T � 1 and each domain consists of modest number of observations

NSt . In our paper, we are interested in the a modest number of source domains T but each source

domain including a sufficient large observations (NSt � 1). (2) In the target domain, the few-shot

setting generally used K-samples (K is very small) for each class for the fine-tuning. We would like to

point out this setting generally violates our theoretical assumption. In our paper, we assume the target

data is i.i.d. sampled from D(x, y). It is equivalently viewed that we first i.i.d. sample y ∼ D(y), then

i.i.d. sample x ∼ D(x|y). Generally the D(y) is non-uniform, thus few-shot settings are generally

not applicable in our theoretical assumptions.

Multi-Task Learning The goal of multi-task learning (Zhang and Yang, 2017) is to improve the

prediction performance of all the tasks. In our paper, we aim at controlling the prediction risk of a

specified target domain. We also notice some practical techniques are common such as the shared

parameter (Zhang and Yeung, 2012), shared representation (Ruder, 2017), etc.

D.2 Table of Notation

Table D.1 – Table of Notations

RD(h) = E(x,y)∼D`(h(x, y)) Expected Risk on distribution D w.r.t. hypothesis h
R̂D(h) = 1

N

∑N
i=1 `(h(xi, yi)) Empirical Risk on observed data {(xi, yi)}Ni=1 that are i.i.d. sam-

pled from D.
α and α̂t True and empirical label distribution ratio α(y) = T (y)/S(y)

R̂αS(h) = 1
N

∑N
i=1 α(yi)`(h(xi, yi)) Empirical Weighted Risk on observed data {(xi, yi)}Ni=1.

S(z|y) =
∫
x g(z|x)S(x|Y = y)dx Conditional distribution w.r.t. latent variable Z that induced by

feature learning function g.
W1(St(z|y)‖T (z|y)) Conditional Wasserstein distance on the latent space Z

D.3 Proof of Theorem 5.1

Proof idea The proof of Theorem 5.1 consists three steps:
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Lemma D.1. If the prediction loss is assumed as L-Lipschitz and the hypothesis is K-Lipschitz w.r.t.

the feature x (given the same label), i.e. for ∀Y = y, ‖h(x1, y)− h(x2, y)‖2 ≤ K‖x1 − x2‖2. Then

the target risk can be upper bounded by:

RT (h) ≤
∑
t

λ[t]RαtS (h) + LK
∑
t

λ[t]Ey∼T (y)W1(T (x|Y = y)‖S(x|Y = y)) (D.1)

Proof. The target risk can be expressed as:

RT (h(x, y)) = E(x,y)∼T `(h(x, y)) = Ey∼T (y)Ex∼T (x|y)`(h(x, y))

By denoting α(y) = T (y)
S(y) , then we have:

Ey∼T (y)Ey∼T (x|y)`(h(x, y)) = Ey∼S(y)α(y)Ex∼T (x|y)`(h(x, y))

Then we aim to upper bound Ex∼T (x|y)`(h(x, y)). For any fixed y,

Ex∼T (x|y)`(h(x, y))− Ex∼S(x|y)`(h(x, y)) ≤ |
∫
x∈X

`(h(x, y))d(T (x|y)− S(x|y))|

Then according to the Kantorovich-Rubinstein duality, for any distribution coupling γ ∈ Π(T (x|y),S(x|y)),

then we have:

= inf
γ

∣∣∣∣∫
X×X

`(h(xp, y))− `(h(xq, y))dγ(xp, xq)

∣∣∣∣
≤ inf

γ

∫
X×X

|`(h(xp, y))− `(h(xq, y))| dγ(xp, xq)

≤ L inf
γ

∫
X×X

|h(xp, y))− h(xq, y)| dγ(xp, xq)

≤ LK inf
γ

∫
X×X

‖xp − xq‖2dγ(xp, xq)

= LKW1(T (x|Y = y)‖S(x|Y = y))

The first inequality is obvious; and the second inequality comes from the assumption that ` is L-

Lipschitz; the third inequality comes from the hypothesis is K-Lipschitz w.r.t. the feature x (given the

same label), i.e. for ∀Y = y, ‖h(x1, y)− h(x2, y)‖2 ≤ K‖x1 − x2‖2.

Then we have:

RT (h) ≤ Ey∼S(y)α(y)[Ex∼S(x|y)`(h(x, y)) + LKW1(T (x|y)‖S(x|y))]

= E(x,y)∼Sα(y)`(h(x, y)) + LKEy∼T (y)W1(T (x|Y = y)‖S(x|Y = y))

= RαS(h) + LKEy∼T (y)W1(T (x|Y = y)‖S(x|Y = y))

Supposing each source St we assign the weight λ[t] and label distribution ratio αt(y) = T (y)
St(y) , then by

combining this T source target pair, we have:

RT (h) ≤
∑
t

λ[t]RαtSt (h) + LK
∑
t

λ[t]Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))

121



Then we will prove Theorem 1 from this result, we will derive the non-asymptotic bound, estimated

from the finite sample observations. Supposing the empirical label ratio value is α̂t, then for any

simplex λ we can prove the high-probability bound.

D.3.1 Bounding the empirical and expected prediction risk

Proof. We first bound the first term, which can be upper bounded as:

sup
h
|
∑
t

λ[t]Rαt

St (h)−
∑
t

λ[t]R̂α̂t

St (h)| ≤ sup
h
|
∑
t

λ[t]Rαt

St (h)−
∑
t

λ[t]R̂αt

St (h)|︸ ︷︷ ︸
(I)

+ sup
h
|
∑
t

λ[t]R̂αt

St (h)−
∑
t

λ[t]R̂α̂t

St (h)|︸ ︷︷ ︸
(II)

Bounding term (I) According to the McDiarmid inequality, each item changes at most |2λ[t]αt(y)`
NSt

|.
Then we have:

P ((I)− E(I) ≥ t) ≤ exp(
−2t2∑T

t=1
4

βtN
λ2[t]αt(y)2`2

) = δ

By substituting δ, at high probability 1− δ we have:

(I) ≤ E(I) + Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N

Where Lmax = suph∈H `(h) and N =
∑T

t=1NSt the total source observations and βt =
NSt
N the fre-

quency ratio of each source. And dsup
∞ = maxt=1,...,T d∞(T (y)‖S(y)) = maxt=1,...,T maxy∈[1,Y] αt(y),

the maximum true label shift value (constant).

Bounding E sup(I), the expectation term can be upper bounded as the form of Rademacher Complexity:

E(I) ≤ 2EσEŜT1 sup
h

T∑
t=1

λ[t]
∑

(xt,yt)∈Ŝt

1

TN
(αt(y)`(h(xt, yt))

≤ 2
∑
t

λ[t]EσEŜT1 sup
h

∑
(xt,yt)∈Ŝt

1

TN
(αt(y)`(h(xt, yt))

≤ 2 sup
t

EσEŜt sup
h

∑
(xt,yt)∈Ŝt

1

TN
[αt(y)`(h(xt, yt))]

= sup
t

2Rt(`,H) = 2R̄(`,H)

Where R̄(`,H) = suptRt(`,H) = supt suph∼H EŜt,σ
∑

(xt,yt)∈Ŝt
1
TN [αt(y)`(h(xt, yt))], repre-

sents the Rademacher complexity w.r.t. the prediction loss `, hypothesis h and true label distribution

ratio αt.
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Therefore with high probability 1− δ, we have:

sup
h
|
∑
t

λ[t]RαtS (h)−
∑
t

λ[t]R̂αtS (h)| ≤ R̄(`, h) + Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N

Bounding Term (II) For all the hypothesis h, we have:

|
∑
t

λ[t]R̂αtSt (h)−
∑
t

λ[t]R̂α̂tSt (h)| =

∣∣∣∣∣∣
∑
t

λ[t]
1

NSt

NSt∑
i

(α(y(i))− α̂(y(i)))`(h)

∣∣∣∣∣∣
=
∑
t

λ[t]
1

NSt

∣∣∣∣∣∣
|Y|∑
y

(α(Y = y)− α̂(Y = y))¯̀(Y = y)

∣∣∣∣∣∣
Where ¯̀(Y = y) =

∑NSt
i `(h(xi, yi = y)), represents the cumulative error, conditioned on a given

label Y = y. According to the Holder inequality, we have:

∑
t

λ[t]
1

NSt
|
|Y|∑
y

(αt(Y = y)− α̂t(Y = y))¯̀(Y = y)| ≤
∑
t

λ[t]
1

NSt
‖αt − α̂t‖2‖¯̀(Y = y)‖2

≤ Lmax

∑
t

λ[t]‖αt − α̂t‖2

≤ Lmax sup
t
‖αt − α̂t‖2

Therefore, ∀h ∈ H, with high probability 1− δ we have:

∑
t

λ[t]RαtS (h) ≤
∑
t

λ[t]R̂α̂tS (h)+2R̄(`, h)+Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N
+Lmax sup

t
‖αt−α̂t‖2

D.3.2 Bounding empirical Wasserstein Distance

Then we need to derive the sample complexity of the empirical and true distributions, which can be

decomposed as the following two parts. For any t, we have:

Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))− Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

≤ Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))− Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))︸ ︷︷ ︸
(I)

+ Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))− Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))︸ ︷︷ ︸
(II)
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Bounding (I) We have:

Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))− Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

=
∑
y

T (y)
(
W1(T (x|Y = y)‖St(x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)

)
≤ |
∑
y

T (y)| sup
y

(
W1(T (x|Y = y)‖St(x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)

)
= sup

y

(
W1(T (x|Y = y)‖St(x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)

)
≤ sup

y
[W1(St(x|Y = y)‖Ŝt(x|Y = y)) +W1(Ŝt(x|Y = y)‖T̂ (x|Y = y))

+W1(T̂ (x|Y = y)‖T (x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))]

= sup
y
W1(St(x|Y = y)‖Ŝt(x|Y = y)) +W1(T̂ (x|Y = y)‖T (x|Y = y))

The first inequality holds because of the Holder inequality. As for the second inequality, we use the

triangle inequality of Wasserstein distance. W1(P‖Q) ≤W1(P‖P1) +W1(P1‖P2) +W1(P2‖Q).

According to the convergence behavior of Wasserstein distance (Weed et al., 2019), with high probability

≥ 1− 2δ we have:

W1(St(x|Y = y)‖Ŝt(x|Y = y)) +W1(T̂ (x|Y = y)‖T (x|Y = y)) ≤ κ(δ,Ny
St , N

y
T )

Where k(δ,Ny
St , N

y
T ) = Ct,y(N

y
St)
−st,y + Cy(N

y
T )−sy +

√
1
2 log(2

δ )(
√

1
Ny
St

+
√

1
Ny
t

), where Ny
St is

the number of Y = y in source t and Ny
T is the number of Y = y in target distribution. Ct,y, Cy

st,y > 2, sy > 2 are positive constant in the concentration inequality. This indicates the convergence

behavior between empirical and true Wasserstein distance.

If we adopt the union bound (over all the labels) by setting δ ← δ/|Y|, then with high probability

≥ 1− 2δ, we have:

sup
y
W1(S(x|Y = y)‖Ŝ(x|Y = y)) +W1(T̂ (x|Y = y)‖T (x|Y = y)) ≤ κ(δ,Ny

St , N
y
T )

where κ(δ,Ny
St , N

y
T ) = Ct,y(N

y
St)
−st,y + Cy(N

y
T )−sy +

√
1
2 log(2|Y|

δ )(
√

1
Ny
St

+
√

1
Ny
T

)

Again by adopting the union bound (over all the tasks) by setting δ ← δ/T , with high probability

≥ 1− 2δ, we have:

∑
t

λ[t]Ey∼T (y)W1(T (x|Y = y)‖S(x|Y = y))−
∑
t

λ[t]Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝ(x|Y = y))

≤ sup
t
κ(δ,Ny

St , N
y
T )

Where κ(δ,Ny
St , N

y
T ) = Ct,y(N

y
St)
−st,y + Cy(N

y
T )−sy +

√
1
2 log(2T |Y|

δ )(
√

1
Ny
St

+
√

1
Ny
T

).
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Bounding (II) We can bound the second term:

Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))− Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

≤ sup
y
W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))|

∑
y

T (y)− T̂ (y)|

≤ Ctmax|
∑
y

T (y)− T̂ (y)|

Where Ctmax = supyW1(T̂ (x|Y = y)‖Ŝ(x|Y = y)) is a positive and bounded constant. Then we

need to bound |∑y T (y)− T̂ (y)|, by adopting MicDiarmid’s inequality, we have at high probability

1− δ:

|
∑
y

T (y)− T̂ (y)| ≤ ET̂ |
∑
y

T (y)− T̂ (y)|+
√

log(1/δ)

2NT

= 2EσET̂
∑
y

σT̂ (y) +

√
log(1/δ)

2NT

Then we bound EσET̂
∑

y σT̂ (y). We use the properties of Rademacher complexity [Lemma 26.11,

(Shalev-Shwartz and Ben-David, 2014)] and notice that T̂ (y) is a probability simplex, then we have:

EσET̂
∑
y

σT̂ (y) ≤
√

2 log(2|Y|)
NT

Then we have |∑y T (y)− T̂ (y)| ≤
√

2 log(2|Y|)
NT

+
√

log(1/δ)
2NT

Then using the union bound and denoting δ ← δ/T , with high probability ≥ 1− δ and for any simplex

λ, we have:∑
t

λ[t]Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)) ≤
∑
t

λ[t]Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

Cmax(

√
2 log(2|Y|)

NT
+

√
log(T/δ)

2NT
)

where Cmax = suptC
t
max.

Combining together, we can derive the PAC-Learning bound, which is estimated from the finite samples

(with high probability 1− 4δ):

RT (h) ≤
∑
t

λtR̂
α̂t
St (h) + LH

∑
t

λtEy∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝ(x|Y = y))

+ Lmaxd
sup
∞

√√√√ T∑
t=1

λ2
t

βt

√
log(1/δ)

2N
+ 2R̄(`, h) + Lmax sup

t
‖αt − α̂t‖2

+ sup
t
κ(δ,Ny

St , N
y
T ) + Cmax(

√
2 log(2|Y|)

NT
+

√
log(T/δ)

2NT
)
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Then we denote Comp(NS1 , . . . , NT , δ) = 2R̄(`, h) + supt κ(δ,Ny
St , N

y
T ) + Cmax(

√
2 log(2|Y|)

NT
+√

log(T/δ)
2NT

) as the convergence rate function that decreases with larger NS1 , . . . , NT . Bedsides,

R̄(`, h) = suptRt(`,H) is the re-weighted Rademacher complexity. Given a fixed hypothesis

with finite VC dimension, it can be proved R̄(`, h) = minNS1 ,...,NST O(
√

1
NSt

) i.e (Shalev-Shwartz

and Ben-David, 2014).

D.4 Proof of Theorem 5.2

We first recall the stochastic feature representation g such that g : X → Z and scoring hypothesis h

h : Z × Y → R and the prediction loss ` with ` : R → R. Note this definition is different from the

conventional binary classification with binary output, and it is more suitable in the multi-classification

scenario and cross entropy loss (Hoffman et al., 2018). For example, if we define l = − log(·) and

h(z, y) ∈ (0, 1) as a scalar score output. Then `(h(z, y)) can be viewed as the cross-entropy loss for

the neural-network.

Proof. The marginal distribution and conditional distribution w.r.t. latent variable Z that are induced

by g, which can be reformulated as:

S(z) =

∫
x
g(z|x)S(x)dx S(z|y) =

∫
x
g(z|x)S(x|Y = y)dx

In the multi-class classification problem, we additionally define the following distributions:

µk(z) = S(Y = k, z) = S(Y = k)S(z|Y = k)

πk(z) = T (Y = k, z) = T (Y = k)T (z|Y = k)

Based on (Nguyen et al., 2009) and g(z|x) is a stochastic representation learning function, the loss

conditioned a fixed point (x, y) w.r.t. h and g is Ez∼g(z|x)`(h(z, y)).

An alternative understanding the loss is based on the Markov chain. In this case it is a DAG with

Y
S(y|x)←−−−− X g−→ Z,X

S(y|x)−−−−→ Y
h−→ S

h←− Z g←− X

where S is the output of the scoring function. Then the expected loss over the all random variable can

be equivalently written as∫
P(x, y, z, s) `(s) d(x, y, z, s) =

∫
P(x)P(y|x)P(z|x)P(s|z, y)`(s) d(x, y, z, s)

=

∫
P(x, y)P(z|x)P(s|z, y)`(s)d(x, y)d(z)d(s)

Since the scoring S is determined by h(x, y), then P(s|y, z) = 1. According to the definition we have

P(z|x) = g(z|x), P(x, y) = S(x, y), then the loss can be finally expressed as ES(x,y)Eg(z|x)`(h(z, y)).
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Then taking the expectation over the S(x, y) we have:

RS(h, g) = E(x,y)∼S(x,y)Ez∼g(z|x)`(h(z, y))

=

|Y|∑
k=1

S(y = k)

∫
x
S(x|Y = k)

∫
z
g(z|x)`(h(z, y = k))dzdx

=

|Y|∑
k=1

S(y = k)

∫
z
[

∫
x
S(x|Y = k)g(z|x)dx]`(h(z, y = k))dz

=

|Y|∑
k=1

S(y = k)

∫
z
S(z|Y = k)`(h(z, y = k))dz

=

|Y|∑
k=1

∫
z
S(z, Y = k)`(h(z, y = k))dz

=

|Y|∑
k=1

∫
z
µk(z)`(h(z, y = k))dz

Intuitively, the expected loss w.r.t. the joint distribution S can be decomposed as the expected loss on

the label distribution S(y) (weighted by the labels) and conditional distribution S(·|y) (real valued

conditional loss).

Then the expected risk on the S and T can be expressed as:

RS(h, g) =

|Y|∑
k=1

∫
z
`(h(z, y = k))µk(z)dz

RT (h, g) =

|Y|∑
k=1

∫
z
`(h(z, y = k))πk(z)dz

By denoting α(y) = T (y)
S(y) , we have the α-weighted loss:

RαS(h, g) =T (Y = 1)

∫
z
`(h(z, y = 1))S(z|Y = 1) + T (Y = 2)

∫
z
`(h(z, y = 2))S(z|Y = 2)

+ · · ·+ T (Y = k)

∫
z
`(h(z, y = k))S(z|Y = k)dz

Then we have:

RT (h, g)−RαS(h, g) ≤
∑
k

T (Y = k)

∫
z
`(h(z, y = k))d|S(z|Y = k)− T (z|Y = k)|

Under the same assumption, we have the loss function `(h(z, Y = k)) is KL-Lipschitz w.r.t. the cost

‖ · ‖2 (given a fixed k). Therefore by adopting the same proof strategy (Kantorovich-Rubinstein duality)

in Lemma 2, we have

≤ KLT (Y = 1)W1(S(z|Y = 1)‖T (z|Y = 1)) + · · ·+KLT (Y = k)W1(S(z|Y = k)‖T (z|Y = k))

= KLEy∼T (y)W1(S(z|Y = y)‖T (z|Y = y))
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Therefore, we have:

RT (h, g) ≤ RαS(h, g) + LKEy∼T (y)W1(S(z|Y = y)‖T (z|Y = y))

Based on the aforementioned result, we have ∀t = 1, . . . , T and denote S = St and α(y) = αt(y) =

T (y)/St(y):

λ[t]RT (h, g) ≤ λ[t]RαtSt (h, g) + LKλ[t]Ey∼T (y)W1(St(z|Y = y)‖T (z|Y = y))

Summing over t = 1, . . . , T , we have:

RT (h, g) ≤
T∑
t=1

λ[t]RαtSt (h, g) + LK
T∑
t=1

λ[t]Ey∼T (y)W1(St(z|Y = y)‖T (z|Y = y))

D.5 Approximating W1 distance

According to Jensen inequality, we have

W1(Ŝt(z|Y = y)‖T̂ (z|Y = y)) ≤
√

[W2(Ŝt(z|Y = y)‖T̂ (z|Y = y))]2

Supposing Ŝt(z|Y = y) ≈ N (Cy
t ,Σ) and T̂ (z|Y = y) ≈ N (Cy,Σ), then we have:

[W2(Ŝt(z|Y = y)‖T̂ (z|Y = y)]2 = ‖Cy
t −Cy‖22 + Trace(2Σ− 2(ΣΣ)1/2) = ‖Cy

t −Cy‖22

We would like to point out that assuming the identical covariance matrix is more computationally

efficient during the matching. This is advantageous and reasonable in the deep learning regime: we

adopted the mini-batch (ranging from 20-128) for the neural network parameter optimization, in each

mini-batch the samples of each class are small, then we compute the empirical covariance/variance

matrix will be surely biased to the ground truth variance and induce a much higher complexity to

optimize. By the contrary, the empirical mean is unbiased and computationally efficient, we can simply

use the moving the moving average to efficiently update the estimated mean value (with a unbiased

estimator). The empirical results verify the effectiveness of this idea.

D.6 Proof of Lemma 5.2

For each source St, by introducing the duality of Wasserstein-1 distance, for y ∈ Y , we have:

W1(St(z|y)‖T (z|y)) = sup
‖d‖L≤1

Ez∼St(z|y)d(z)− Ez∼T (z|y)d(z)

= sup
‖d‖L≤1

∑
z

St(z|y)d(z)−
∑
z

T (z|y)d(z)

=
1

T (y)
sup
‖d‖L≤1

T (y)

St(y)

∑
z

St(z, y)d(z)−
∑
z

T (z, y)d(z)

128



Then by defining ᾱt(z) = 1{(z,y)∼St}
T (Y=y)
St(Y=y) = 1{(z,y)∼St}αt(Y = y), we can see for each pair

observation (z, y) sampled from the same distribution, then ᾱt(Z = z) = αt(Y = y). Then we have:∑
y

T (y)W1(St(z|y)‖T (z|y)) =
∑
y

sup
‖d‖L≤1

{
∑
z

αt(y)St(z, y)d(z)−
∑
z

T (z, y)d(z)}

= sup
‖d‖L≤1

∑
z

ᾱt(z)St(z)d(z)−
∑
z

T (z)d(z)

= sup
‖d‖L≤1

Ez∼St(z)ᾱt(z)d(z)− Ez∼T (z)d(z)

We propose a simple example to understand ᾱt: supposing three samples in St = {(z1, Y =

1), (z2, Y = 1), (z3, Y = 0)} then ᾱt(z1) = ᾱt(z2) = αt(1) and ᾱt(z3) = αt(0). Therefore,

the conditional term is equivalent to the label-weighted Wasserstein adversarial learning. We plug in

each source domain as weight λ[t] and domain discriminator as dt, we finally have Lemma 1.

D.7 Derive the label ratio loss

We suppose the representation learning aims at matching the conditional distribution such that T (z|y) ≈
St(z|y),∀t, then we suppose the predicted target distribution as T̄ (y). By simplifying the notation, we

define f(z) = argmaxyh(z, y) the most possible prediction label output, then we have:

T̄ (y) =

Y∑
k=1

T (f(z) = y|Y = k)T (Y = k) =

Y∑
k=1

St(f(z) = y|Y = k)T (Y = k)

=
Y∑
k=1

St(f(z) = y, Y = k)αt(k) = T̄αt(y)

The first equality comes from the definition of target label prediction distribution, T̄ (y) = ET (z)1{f(z) =

y} = T (f(z) = y) =
∑Y

k=1 T (f(z) = y, Y = k) =
∑Y

k=1 T (f(z) = y|Y = k)T (Y = k).

The second equality T (f(z) = y|Y = k) = St(f(z) = y|Y = k) holds since ∀t, T (z|y) ≈ St(z|y),

then for the shared hypothesis f , we have T (f(z) = y|Y = k) = St(f(z) = y|Y = k).

The term St(f(z) = y, Y = k) is the (expected) source prediction confusion matrix, and we denote its

empirical (observed) version as Ŝt(f(z) = y, Y = k).

Based on this idea, in practice we want to find a α̂t to match the two predicted distribution T̄ and T̄α̂t .
If we adopt the KL-divergence as the metric, we have:

min
α̂t

DKL(T̄ ‖T̄α̂t) = min
α̂t

Ey∼T̄ log(
T̄ (y)

T̄α̂t(y)
) = min

α̂t
−Ey∼T̄ log(T̄α̂t(y))

= min
α̂t
−
∑
y

T̄ (y) log(

Y∑
k=1

St(f(z) = y, Y = k)α̂t(k))

We should notice the nature constraints of label ratio: {α̂t(y) ≥ 0,
∑

y α̂t(y)Ŝt(y) = 1}. Based on this

principle, we proposed the optimization problem to estimate each label ratio. We adopt its empirical
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counterpart, the empirical confusion matrix CŜt [y, k] = Ŝt[f(z) = y, Y = k], then the optimization

loss can be expressed as:

min
α̂t

−
|Y|∑
y=1

T̄ (y) log(

|Y|∑
k=1

CŜt [y, k]α̂t(k))

s.t. ∀y ∈ Y, α̂t(y) ≥ 0,
∑
y

α̂t(y)Ŝt(y) = 1

D.8 Label Partial Multi-source unsupervised DA

The key difference between multi-conventional and partial unsupervised DA is the estimation step of

α̂t. In fact, we only add a sparse constraint for estimating each α̂t:

min
α̂t

−
|Y|∑
y=1

T̄ (y) log(

|Y|∑
k=1

CŜt [y, k]α̂t(k)) + C2‖α̂t‖1

s.t. ∀y ∈ Y, α̂t(y) ≥ 0,
∑
y

α̂t(y)Ŝt(y) = 1

(D.2)

Where C2 is the hyper-parameter to control the level of target label sparsity, to estimate the target label

distribution. In the paper, we denote C2 = 0.1.

D.9 Explicit and Implicit conditional learning

Inspired by Theorem 2, we need to learn the functions g : X → Z and h : Z × Y → R to minimize:

min
g,h

∑
t

λ[t]R̂α̂tSt (h, g) + C0

∑
t

λ[t]Ey∼T̂ (y)W1(Ŝt(z|Y = y)‖T̂ (z|Y = y))

This can be equivalently expressed as:

min
g,h

∑
t

λ[t]R̂αtSt (h, g) + εC0

∑
t

λ[t]Ey∼T̂ (y)W1(Ŝt(z|Y = y)‖T̂ (z|Y = y))

+ (1− ε)C0

∑
t

λ[t]Ey∼T̂ (y)W1(Ŝt(z|Y = y)‖T̂ (z|Y = y))

Due to the explicit and implicit approximation of conditional distance, we then optimize an alternative

form:

min
g,h

max
d1,...,dT

∑
t

λ[t]R̂α̂tSt (h, g)︸ ︷︷ ︸
Classification Loss

+ εC0

∑
t

λ[t]Ey∼T̂ (y)‖C
y
t −Cy‖2︸ ︷︷ ︸

Explicit Conditional Loss

+ (1− ε)C0

∑
t

λ[t][Ez∼Ŝt(z)ᾱ
t(z)d(z)− Ez∼T̂ (z)d(z)]︸ ︷︷ ︸

Implicit Conditional Loss

(D.3)

Where
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Feature	Extractor

Critic

Classifier

Figure D.1 – Network Structure of Proposed Approach. It consists three losses: the weighted Classifi-
cation losses; the centroid matching for explicit conditional matching; the weighted adversarial loss for
implicit conditional matching, showed in Eq. (D.3)

• Cy
t =

∑
(zt,yt)∼Ŝt 1{yt=y}zt the centroid of label Y = y in source St.

• Cy =
∑

(zt,yp)∼T̂ 1{yp=y}zt the centroid of pseudo-label Y = yp in target St. (If it is the

unsupervised DA scenarios).

• ᾱt(z) = 1{(z,y)∼St}α̂t(Y = y), namely if each pair observation (z, y) from the distribution,

then ᾱt(Z = z) = α̂t(Y = y).

• d1, · · · , dT are domain discriminator (or critic function) restricted within 1-Lipschitz function.

• ε ∈ [0, 1] is the adjustment parameter in the trade-off of explicit and implicit learning. Based on

the equivalence form, our approach proposed a theoretical principled way to tuning its weights.

In the paper, we assume ε = 0.5.

• T̂ (y) empirical target label distribution. (In the unsupervised DA scenarios, we approximate it

by predicted target label distribution T̄ (y).)

Gradient Penalty In order to enforce the Lipschitz property of the statistic critic function, we adopt

the gradient penalty term (Gulrajani et al., 2017). More concretely, given two samples zs ∼ St(z) and

zt ∼ T (z) we generate an interpolated sample zint = ξzs + (1− ξ)zt with ξ ∼ Unif[0, 1]. Then we

add a gradient penalty ‖∇d(zint)‖22 as a regularization term to control the Lipschitz property w.r.t. the

discriminator d1, · · · , dT .

D.10 Algorithm Descriptions

We propose a detailed pipeline of the proposed algorithm in the following, shown in Algorithm 5 and

6. As for updating λ and αt, we iteratively solve the convex optimization problem after each training

epoch and updating them by using the moving average technique.

For solving the λ and αt, we notice that frequently updating these two parameters in the mini-batch

level will lead to an instability result during the training. 2 As a consequence, we compute the
2In the label distribution shift scenarios, the mini-batch datasets are highly labeled imbalanced. If we evaluate αt over
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accumulated confusion matrix, weighted prediction risk, and conditional Wasserstein distance for the

whole training epoch and then solve the optimization problem. We use CVXPY to optimize the two

standard convex losses. 3

Comparison with different time and memory complexities. We discuss the time and memory

complexity of our approach.

Time complexity: In computing each batch we need to compute T re-weighted losses, T domain

adversarial losses and T explicit conditional losses. Then our computational complexity is still O(T )

during the mini-batch training, which is comparable with recent SOTA such as MDAN and DARN.

In addition, after each training epoch we need to estimate αt and λ, which can have time complexity

O(T |Y|) with each epoch. (If we adopt SGD to solve these two convex problems). Therefore, the our

proposed algorithm is time complexity O(T |Y|). The extra Y term in time complexity is due to the

approach of label shift in the designed algorithm.

Memory Complexity: Our proposed approach requires O(T ) domain discriminators and O(T |Y|)
class-feature centroids. By the contrary, MDAN and DARN require O(T ) domain discriminator and

M3SDA and MDMN require O(T 2) domain discriminators. Since our class-feature centroids are

defined in the latent space (z), then the memory complexity of the class-feature centroids can be much

smaller than domain discriminators.

the mini-batch, it can be computationally expensive and unstable.
3The optimization problem w.r.t. αt and λ is not large scale, then using the standard convex solver is fast and accurate.
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Algorithm 5 Wasserstein Aggregation Domain Network (unsupervised scenarios, one iteration)

Require: Labeled source samples Ŝ1, . . . , ŜT , Target samples T̂
Ensure: Label distribution ratio α̂t and task relation simplex λ. Feature Learner g, Classifier h,

Statistic critic function d1, . . . , dT , class centroid for source Cy
t and target Cy (∀t = [1, T ], y ∈ Y).

1: . . . DNN Parameter Training Stage (fixed αt and λ) / / /
2: for mini-batch of samples (xS1 ,yS1) ∼ Ŝ1, . . . , (xST ,yST ) ∼ ŜT , (xT ) ∼ T̂ do
3: Predict target pseudo-label ȳT = argmaxyh(g(xT ), y)
4: Compute source confusion matrix for each batch (un-normalized)

CŜt = #[argmaxy′h(z, y′) = y, Y = k] (t = 1, . . . , T )
5: Compute the batched class centroid for source Cyt and target Cy.
6: Moving Average for update source/target class centroid: (We set ε1 = 0.7)
7: Source class centroid update Cy

t = ε1 ×Cy
t + (1− ε1)× Cyt

8: Target class centroid update Cy = ε1 ×Cy + (1− ε1)× Cy
9: Updating g, h, d1, . . . , dT (SGD and Gradient Reversal), based on Eq.(D.3)

10: end for
11: . . . Estimation α̂t and λ / / /
12: Compute the global(normalized) source confusion matrix

CŜt = Ŝt[argmaxy′h(z, y′) = y, Y = k] (t = 1, . . . , T )
13: Solve αt (denoted as {α′t}Tt=1) by Equation (5.1) (Or Eq.(D.2)) in the partial scenario).
14: Update αt by moving average: αt = ε1 × αt + (1− ε1)× α′t
15: Compute the weighted loss and weighted centroid distance, then solve λ (denoted as λ′) from Sec.

2.3.
16: Updating λ by moving average: λ = 0.8× λ + 0.2× λ′

D.11 Dataset Description and Experimental Details

D.11.1 Amazon Review Dataset

We used the amazon review dataset (Blitzer et al., 2007). It contains four domains (Books, DVD,

Electronics, and Kitchen) with positive (label "1") and negative product reviews (label "0"). The data

size is 6465 (Books), 5586 (DVD), 7681 (Electronics), and 7945 (Kitchen). We follow the common

data pre-processing strategies Chen et al. (2012): use the bag-of-words (BOW) features then extract the

top-5000 frequent unigram and bigrams of all the reviews.

We also noticed the original data-set are label balancedD(y = 0) = D(y = 1). To enhance the benefits

of the proposed approach, we create a new dataset with label distribution drift. Specifically, in the

experimental settings, we randomly drop 50% data with label "0" (negative reviews) for all the source

data while keeping the target identical, showing in Fig (D.2).

We choose the MLP model with

• feature representation function g: [5000, 1000] units

• Task prediction and domain discriminator function [1000, 500, 100] units,

We choose the dropout rate as 0.7 in the hidden and input layers. The hyper-parameters are chosen
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Algorithm 6 Wasserstein Aggregation Domain Network (Limited Target Data, one iteration)

Require: Labeled source samples Ŝ1, . . . , ŜT , Target samples T̂ , Label shift ratio αt
Ensure: Task relation simplex λ. Feature Learner g, Classifier h, Statistic critic function d1, . . . , dT ,

class centroid for source Cy
t and target Cy (∀t = [1, T ], y ∈ Y).

1: . . . DNN Parameter Training Stage (fixed λ) / / /
2: for mini-batch of samples (xS1 ,yS1) ∼ Ŝ1, . . . , (xST ,yST ) ∼ ŜT , (xT ) ∼ T̂ do
3: Compute the batched class centroid for source Cyt and target Cy.
4: Moving Average for update source/target class centroid: (We set ε1 = 0.7)
5: Source class centroid update Cy

t = ε1 ×Cy
t + (1− ε1)× Cyt

6: Target class centroid update Cy = ε1 ×Cy + (1− ε1)× Cy
7: Updating g, h, d1, . . . , dT (SGD and Gradient Reversal), based on Eq.(D.3).
8: end for
9: . . . Estimation λ / / /

10: Solve λ by Sec. 2.3. (denoted as λ′)
11: Updating λ by moving average: λ = ε1 × λ + (1− ε1)× λ′

based on cross-validation. The neural network is trained for 50 epochs and the mini-batch size is 20

per domain. The optimizer is Adadelta with a learning rate of 0.5.

Experimental Setting We use the amazon Review dataset for two transfer learning scenarios (limited

target labels and unsupervised DA). We first randomly select 2K samples for each domain. Then we

create a drifted distribution of each source, making each source ≈ 1500 and target sample still 2K.

In the unsupervised DA, we use these labeled source tasks and unlabelled target task, which aims to

predict the labels on the target domain.

In the conventional transfer learning, we random sample only 10% dataset (≈ 200 samples) as the

target training set and the rest 90% samples as the target test set.

We select C0 = 0.01 and C1 = 1 for these two transfer scenarios. In both practical settings, we set the

maximum training epoch as 50.

D.11.2 Digit Recognition

We follow the same settings of Ganin et al. (2016) and we use four-digit recognition datasets in the

experiments MNIST, USPS, SVHN, and Synth. MNIST and USPS are the standard digits recognition

task. Street View House Number (SVHN) Ganin et al. (2016) is the digit recognition dataset from house

numbers in Google Street View Images. Synthetic Digits (Synth) Ganin et al. (2016) is a synthetic

dataset by transforming the SVHN dataset.

We also visualize the label distribution in these four datasets. The original datasets show an almost

uniform label distribution on the MNIST as well as Synth, (showing in Fig. D.4 (a)). In our paper,

we generate a label distribution drift on the source datasets for each multi-source transfer learning.

Concretely, we drop 50% of the data on digits 5-9 of all the sources while we keep the target label
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Figure D.2 – Amazon Review dataset (a) Original Label Training Distribution; (b) Label-Shifted
distribution with sources tasks: Book, Dvd, Electronic, and target task Kitchen. We randomly drop
50% of the negative reviews for all the source distribution while keeping the target label distribution
unchanged.

distribution unchanged. (Fig. D.4 (b) illustrated one example with sources: Mnist, USPS, SVHN, and

Target Synth. We drop the labels only on the sources.)

MNIST and USPS images are resized to 32 × 32 and represented as 3-channel color images to match

the shape of the other three datasets. Each domain has its own given training and test sets when

downloaded. Their respective training sample sizes are 60000, 7219, 73257, 479400, and the respective

test sample sizes are 10000, 2017, 26032, 9553.

The model structure is shown in Fig. D.3. There is no dropout and the hyperparameters are chosen

based on cross-validation. It is trained for 60 epochs and the mini-batch size is 128 per domain. The

optimizer is Adadelta with a learning rate of 1.0. We adopted γ = 0.5 for MDAN and γ = 0.1 for

DARN in the baseline (Wen et al., 2020).

Experimental Setting We use the Digits dataset for two transfer learning scenarios (limited target

labels and unsupervised DA). Notice the USPS data has only 7219 samples and the digits dataset is

relatively simple. We first randomly select 7K samples for each domain. We create a drifted distribution

of each source, making each source ≈ 5300, and the target sample still 7K.

In the unsupervised DA, we use these labeled source tasks and unlabelled target task, which aims to

predict the labels on the target domain.

In the transfer learning with limited data, we randomly sample only 10% dataset (≈ 700 samples) as

the target training set and the rest 90% samples as the target test set.

We select C0 = 0.01 and C1 as the maximum prediction loss C1 = maxtR
αt(h) as the hyper-

parameters across these two scenarios. The maximum training epoch is 60.
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1. Feature extractor: with 3 convolution layers.
’layer1’: ’conv’: [3, 3, 64], ’relu’: [], ’maxpool’: [2, 2, 0],
’layer2’: ’conv’: [3, 3, 128], ’relu’: [], ’maxpool’: [2, 2, 0],
’layer3’: ’conv’: [3, 3, 256], ’relu’: [], ’maxpool’: [2, 2, 0],

2. Task prediction: with 3 fully connected layers.
’layer1’: ’fc’: [*, 512], ’act_fn’: ’relu’,
’layer2’: ’fc’: [512, 100], ’act_fn’: ’relu’,
’layer3’: ’fc’: [100, 10],

3. Domain Discriminator: with 2 fully connected layers.
reverse_gradient()
’layer1’: ’fc’: [*, 256], ’act_fn’: ’relu’,
’layer2’: ’fc’: [256, 1],

Figure D.3 – Neural Network Structure in the digits recognition (Ganin et al., 2016)
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Figure D.4 – One example in Digits dataset with Sources: MNIST, USPS, SVHN and Target Synth. We
randomly drop 50% data on digits 5-9 in all sources while keeping target label distribution unchanged.

D.11.3 Office-Home dataset

To show the dataset in the complex scenarios, we use the challenging Office-Home dataset (Venkateswara

et al., 2017). It contains images of 65 objects such as a spoon, sink, mug, and pen from four different

domains: Art (paintings, sketches, and/or artistic depictions), Clipart (clipart images), Product (images

without background), and Real-World (regular images captured with a camera). One of the four datasets

is chosen as an unlabelled target domain and the other three datasets are used as labeled source domains.

The dataset size is 2427 (Art), 4365 (Clipart), 4439 (Product), 4357 (Real-World). We follow the same

training/test procedure as (Wen et al., 2020). We did not re-sample the source label distribution to

uniform distribution in the data pre-processing step. All the baselines are evaluated under the same

setting.

We use the ResNet50 (He et al., 2016) pretrained from the ImageNet in PyTorch as the base network

for feature learning and put an MLP with the network structure shown in Fig. D.6.
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Experimental Settings We use the original Office-Home dataset for two transfer learning scenarios

(unsupervised DA and label-partial unsupervised DA). We use SGD optimizer with learning rate 0.005,

momentum 0.9 and weight_decay value 1e-3. It is trained for 100 epochs and the mini-batch size is 32

per domain. As for the baselines, MDAN use γ = 1.0 while DARN use γ = 0.5. We select C0 = 0.01

and C1 as the maximum prediction loss C1 = maxtR
αt(h) as the hyper-parameters across these two

scenarios.

In the multi-source unsupervised partial DA, we randomly select 35 classes from the target (by repeating

3 samplings), then at each sampling we run 5 times. The final result is based on these 3 × 5 = 15

repetitions.

Figure D.5 – Samples Images From Office-Home dataset (Venkateswara et al., 2017), which consists
four domains with non-uniform label distribution.

1. Feature extractor: ResNet50 (He et al., 2016),
2. Task prediction: with 3 fully connected layers.

’layer1’: ’fc’: [*, 256], ’batch_normalization’, ’act_fn’: ’Leaky_relu’,
’layer2’: ’fc’: [256, 256], ’batch_normalization’, ’act_fn’: ’Leaky_relu’,
’layer3’: ’fc’: [256, 65],

3. Domain Discriminator: with 3 fully connected layers.
reverse_gradient()
’layer1’: ’fc’: [*, 256], ’batch_normalization’, ’act_fn’: ’Leaky_relu’,
’layer2’: ’fc’: [256, 256], ’batch_normalization’, ’act_fn’: ’Leaky_relu’,
’layer3’: ’fc’: [256, 1], ’Sigmoid’,

Figure D.6 – Neural Network Structure in the Office-Home

D.12 Analysis of Unsupervised DA

D.12.1 Ablation Study: Different Dropping Rate

To show the effectiveness of our proposed approach, we change the drop rate of the source domain,

showing in Fig.(D.7). We observe that in task Book, DVD, Electronic, and Kitchen, the results

are significantly better under a large label-shift. In the initialization with almost no label shift, the

state-of-the-art DARN illustrates a slightly better (< 1%) result.

137



10% 20% 30% 40% 50%
Dropped %

64

66

68

70

72

74

76

78

80

A
C

C

Target: Books

WADN
DARN
DANN

(a) Target: Book

10% 20% 30% 40% 50%
Dropped %

66

68

70

72

74

76

78

80

82

A
C

C

Target: DVD

WADN
DARN
DANN

(b) Target: DVD

10% 20% 30% 40% 50%
Dropped %

80

81

82

83

84

85

86

87

A
C

C

Target: Electronics

WADN
DARN
DANN

(c) Target: Electronics

10% 20% 30% 40% 50%
Dropped %

72

74

76

78

80

82

84

86

A
C

C

Target: Kitchen

WADN
DARN
DANN

(d) Target: Kitchen

Figure D.7 – Different label drift levels on Amazon Dataset. Larger dropping rate means higher label
shift.

D.12.2 Additional Analysis on Amazon Dataset

We present two additional results to illustrate the working principles of WADN, showing in (D.8).

D.12.3 Additional Analysis on Digits Dataset

We show the evolution of α̂t on WADN, which verifies the correctness of our proposed principle. Since

we drop digits 5-9 in the source domains, the results in Fig. (D.9) illustrate a higher α̂t on these digits.

D.13 Partial multi-source Unsupervised DA

From Fig. (D.10), WADN is consistently better than other baselines, given different selected classes.

Besides, when fewer classes are selected, the accuracy in DANN, PADA, and DARN is not drastically

dropping but maintaining a relatively stable result. We think the following possible reasons:

• The reported performances are based on the average of different selected sub-classes rather
than one sub-class selection. From the statistical perspective, if we take a close look at the

variance, the results in DANN are much more unstable (higher std) induced by the different
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Figure D.8 – Amazon Dataset. WADN approach: evolution of α̂t during the training. Darker indicates
higher Value. Since we drop y = 0 in the sources, then the true αt(0) > 1 will be assigned with higher
value.

139



samplings. Therefore, the conventional domain adversarial training is improper for handling the

partial transfer since it is not reliable and negative transfer still occurs.

• In multi-source DA, it is equally important to detect the non-overlapping classes and find the

most similar sources. Comparing the baselines that only focus on one or two principles shows

the importance of unified principles in multi-source partial DA.

• We also observe that in the Real-World dataset, the DANN improves the performance by a

relatively large value. This is due to the inherent difficultly of the learning task itself. In fact,

the Real-World domain illustrates a much higher performance compared with other domains.

According to the Fano lower bound, a task with smaller classes is generally easy to learn. It is

possible the vanilla approach showed improvement but still with a much higher variance.

Fig (D.11), (D.12) showed the estimated α̂t with different selected classes. The results validate the

correctness of WADN in estimating the label distribution ratio.
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Figure D.9 – Digits Dataset. WADN approach: evolution of α̂t during the training. Darker indicates
higher value. Since we drop digits 5− 9 on source domain, therefore, αt(y), y ∈ [5, 9] will be assigned
with a relative higher value.
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Figure D.11 – We select 15 classes and visualize estimated α̂t (the bar plot). The "X" along the x-axis
represents the index of dropped 50 classes. The red curves are the ground-truth label distribution ratio.
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Figure D.12 – We select 35 classes and visualize estimated α̂t (the bar plot). The "X" along the x-axis
represents the index of dropped 30 classes. The red curves are the ground-truth label distribution ratio.
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