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PRODUCTION PLANNING IN THE PULP AND PAPER INDUSTRY1 

This paper examines the short term production planning problem encountered in the fine-
paper industry. The paper proposes a tight mixed-integer programming formulation of the
problem It is showed that real size problem instances can be solved with commercial
solvers. Furthermore, we show that by adding some simple valid inequalities to the
proposed formulation, major improvements to the solution time can be achieved.

Introduction 

The pulp and paper industry is one of the most important industries of Canada in terms of
contribution to its balance of trade. In 2001, it represented 3% of Canada’s GDP (FPAC 2002). The
expertise of the Canadian pulp and paper industry is well renowned. Over the years, the industry
has been confronted with different market pressures and competitiveness is growing very strong.
To be able to compete, companies need to streamline their operation costs. In this paper, we tackle
short term production planning problems encountered in the fine-paper industry. In this industry,
the production process can be decomposed in four main stages. The first stage (the chips mill)
transforms logs into chips. The second stage (the pulp mill) transforms chips and chemicals into
pulp. The third stage (the paper mill) transforms pulp into paper rolls. The paper mill is usually
composed of a set of parallel paper machines and these machines are often the bottleneck of the
production system. This is why production plans are usually defined in terms of this bottleneck.
Finally, the last stage (conversion mill) converts paper rolls into smaller rolls or sheets which are
demanded by external customers. Figure 1 illustrates the material flows within an integrated pulp
and paper mill. As can be seen, some production stages can be partially or completely bypassed
through external provisioning of intermediate products. 

Paper machines can run 24 hours a day during the whole year, but they can also be stopped
(or slowed down) from time to time to adapt to low market demand or for maintenance purposes. A
small number of intermediate products (IP) is manufactured by each parallel paper machine and
the processing sequence of these products on the machine is fixed by engineering constraints. Also,
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a changeover time is required to change products on a paper machine, which means that capacity is
lost when there is a production switch. In the succeeding stages, the intermediate products are
transformed into a large number of finished products (FP). It is assumed that conversion stages are
not capacity constrained. This is realistic in the fine-paper industry because it is always possible to
subcontract part of the finishing operations if additional capacity is required. The planning
challenge is to synchronize the material flow as it moves through the paper making and conversion
stages, to meet customer demand and to minimize operations costs. The aim of the paper is to
propose a mathematical programming model to support this planning process.

Figure 1:  Processes and Material Flows in an Integrated Pulp and Paper Mill

 The paper is organized as follows. In the next section, the problem is defined more
precisely and the relevant literature on multi-item capacitated lot-sizing problems is reviewed. The
mathematical model formulation is derived in section 3 and valid inequalities which can be added
to the model to facilitate its solution are proposed in section 4. Finally, section 5 presents the
results of our numerical tests.

Problem Definition

In this section, the problem studied is defined more precisely and the related literature is
reviewed. The problem is essentially to plan the production and the inventory levels of multiple
finished products and intermediate products over a finite planning horizon. Although the demand
for products is partly planned and partly random, it is assumed, as is customary for ERP and APS
systems, that it is deterministic and time-varying (dynamic). The demand is based on orders
received and on forecasts, and it is assumes that the safety stocks required as protection against the
randomness of demand are determined exogenously, prior to the solution of our problem. No
inventory of intermediate products is kept, but the finished products can be stocked at the plant
before they are shipped. In order to prepare adequate production plans, the relationships between
the IP lot-sizes and the FP inventories and demands must be considered explicitly. Time periods
represent days, shifts or other time buckets depending on production, inventory and customer
service policies. The specific production context considered is illustrated in Figure 2.
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Figure 2: Flow Coordination Context for the Production-distribution of Paper

Without loss of generality, the finished product production lead time is assumed to be
product independent. Production involves an intermediate bottleneck stage and an infinite capacity
finishing stage. In the bottleneck stage, a small group of intermediate products (ex: rolls of various
paper grades) are manufactured on multiple parallel machines with limited capacity. A
predetermined production sequence must be maintained on each of the parallel machines. In the
finishing stage, the intermediate products are converted into a possibly large number of finished
products (ex: different sizes, quality and packaging of paper sheets), and it is assumed that any
given finished product is made from a single intermediate product (divergent BOM). Moreover, it
is assumed that at most one production changeover is allowed per paper machine per planning
period. This is reasonable provided that the planning periods used are relatively short (a day or a
shift). It is also assumed that it is not necessary to use the total capacity available in a given time
period.

The production planning problem studied is related to the multi-item capacitated dynamic
lot-sizing problem. A recent survey of the lot-sizing literature covering these problems is found in
Rizk and Martel (2001). Under the assumptions that there is a single production stage, that set-up
costs and times are sequence independent and that capacity is constrained by a single resource,
three formulations of this problem have been studied extensively: the Capacitated Lot-Sizing
Problem (CLSP), the Continuous Setup Lot-Sizing Problem (CSLP) and the Discrete Lot-Sizing
and Scheduling Problem (DLSP). The CLSP involves the elaboration of a production schedule for
multiple items on a single machine over a planning horizon, in order to minimize total set-up,
production and inventory costs. The main differences between the CLSP and the CSLP are that in
the latter, at most one product is produced in a period and a changeover cost is incurred only in the
periods where the production of a new item starts. In the CLSP, several products can be produced
in each period and, for a given product, a set-up is necessary in each period that production takes
place. For this reason, CLSP is considered as a large time bucket model and CSLP as a small time
bucket model. DLSP is similar to CSLP in that it also assumes at most one item to be produced per
period. The difference is that in DLSP, the quantity produced in each period is either zero or the
full production capacity.
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Florian et al., (1980) and Bitran and Yanasse (1982) showed that CLSP is NP-hard even
when there is a single product and Trigeiro et al. (1989) proved that when set-up times are
considered, even finding a feasible solution is NP-hard. Exact mixed integer programming solution
procedures to solve different versions of the problem were proposed by Barany et al. (1984),
Gelders et al. (1986), Leung et al. (1989) and Diaby et al. (1992). Heuristic methods based on
mathematical programming were proposed by Thizy and Wassenhove (1985), Trigeiro et al.
(1989), Lasdon and Terjung (1971) and Solomon et al. (1993). Specialized heuristics were also
proposed by Eisenhut (1975), Lambrecht and Vanderveken (1979), Dixon and Silver (1981),
Dogramaci et al. (1981), Günther (1987), and Maes and Van Wassenhove (1988). When set-up
costs are sequence dependent, the sequencing and lot-sizing problems must be considered
simultaneously and the problem is more complex. This problem is known as lot sizing and
scheduling with sequence dependent set-up and it has been studied by only a few authors (Haase,
1996; Haase and Kimms, 1996). Particular cases of the problem were also examined by Dilts and
Ramsing (1989) and by Dobson (1992). 

 The problem studied in this paper can be considered as an extension of the CSLP to the
case of several parallel machines with a predetermined production sequence, and with a two level
(IP and FP) product structure. The multi-item CSLP has been studied by Karmarkar and Scharge
(1985) who presented a Branch and Bound procedure based on Lagrangean relaxation to solve it.
An extension to the basic CSLP that considers parallel machines was studied by De Matta and
Guignard (1989) who proposed a heuristic solution method based on Lagrangean relaxation. The
DLSP, which is also related to our problem, has been studied mainly by Solomon (1991).

Mathematical Model

In this section, we propose a mathematical programming model for the simultaneous
planning of the lot-sizes of intermediate products on all the paper machines in a mill, as well as the
production and inventory planning of its finished products. Let gii’ be the number of units of IP i
required to produce one unit of FP i’, taking any waste incurred in the transformation process into
account. Since each FP is made form a single IP product, the set of FP can be partitioned according
to the IP it is made of. In addition, recall that a standard production sequence of IP must be
maintained for each machine m = 1,..., M, and that at most one product type can be produced in a
given time period. Let em denote the index of the IP in the eth position in machine m production
sequence, so that em = 1m,..., fm, where fm represents the product in the final position in machine m
production sequence. Thus, when e < f, product (e+1)m can be produced on machine m only after
product em has finished its production batch. The production resource consumption for
intermediate products is assumed to be concave, that is, a fixed resource capacity consumption is
incurred whenever production switches from one IP to another (changeover time), and linear
resource consumption is incurred during the production of a batch of IP (see Figure 3). Inventory
holding costs are assumed to be linear. The notation required to formulate the model is summarized
in Table 1 and Table 2.

The mathematical programming model required to plan the production of intermediate and
finished products in a paper mill is the following:
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Figure 3: Example of a Production Plan for Paper Machine m 
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Table 1:  Decision Variables

Quantity of finished product  added to the mill inventory for the beginning of 
period t

Quantity of intermediate product  produced with machine m during period t

Inventory level of finished product  on hand in the mill at the end of period t

Binary variable equal to 1 if a new production batch of product i is started on machine m 
at the beginning of period t and to 0 otherwise

Binary variable equal to 1 if product i is made on machine m in period t and to 0 
otherwise
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Table 2:  Indexes, Parameters and Sets

In model P, (P.1) and (P.2) are the flow conservation constraints of IP and FP products at
the manufacturing location. Constraints (P.3) ensure that production capacity is respected.
Constraints (P.4) and (P.5) make sure that the production sequence is respected for each machine.
For a given machine m, when e < f, constraint (P.4) enforces the number of product (e+1)m
changeovers to be less than or equal to the number of product em changeovers for any given period
of time. Hence, it forces product (e+1)m production to start only after the production batch of
product em is completed. Constraints (P.5) do the same job for product fm which has the
particularity of being last in the machine m production sequence. Thus, after its production batch,
machine m has to switch production to product 1m and start another sequence. Constraints (P.6)
make sure that at most one product is manufactured per period of time for each machine. Finally,
constraints (P.7) restrict the changeovers on a machine to the periods in which there is some
production. 

Valid Cuts

In this section, valid inequalities to strengthen the proposed formulation (P) are proposed.
The use of cuts to improve the solution of lot-sizing problems was first introduced by Barany, Van
Roy and Wolsey (1984) and is gaining in popularity. In this paper, three valid inequalities are
proposed for model (P). The first proposition is based on a general valid inequality proposed by
Barany et al. (1984). The other two propositions, however, are derived from the specific properties
of our problem.

T Number of planning periods in the planning horizon 

t A planning period (t = 1,..., T)

IP Set of intermediate products ( )

FP Set of finished products ( )

i, i’ Product type indexes ( )

m A paper machine for the production of IP (m = 1,..., M)

Mi The set of machines m that manufactures product i ( )

IPm The set of intermediate products manufactured by machine m ( )

Number of intermediate products manufactured on machine m (i.e. ).

em The eth item in the production sequence of machine m, em = 1m, …, fm ( )

τ Planned production lead-time

Effective demand at the mill for product i during period t 

Production capacity of machine m in period t (in time units)

Changeover time required at the beginning of period t to produce  on machine m  

Product i changeover cost on machine m in period t ( )

Inventory holding cost of product i at the mill in period t 

gii’ Number of product i units required to produce one unit of product i’ 

Machine m capacity consumption rate of product  in period t 

Set of finished products manufactured with intermediate product i (SCi = {i’ | gii’ > 0}) 
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Proposi ti on  1

For a finished product  and a period , the inequalities

(Cut 1)

are valid for (P). 

Proposi ti on  2

For an intermediate product  and a period , the inequalities

       (Cut 2)

where ,

are valid cuts for (P).

Proof: Since  and  for all , .

If we multiply both sides by , we obtain . A sum

across all  leads to the aggregate inequality:

. 

We know that  and . Thus,

 

and hence:

 

where .

Since the coefficients and variables of the last inequality left side are integer, it is seen that (Cut
2) are valid inequalities 

Based on the total demand of a given product during a time interval and the available
production capacity, (Cut 2) forces a tight lower bound on the number of set-ups needed to satisfy
demand during the time interval.

Proposi ti on  3

For each machine , each product , and each period t, the following inequalities
are valid cuts for (P):

(Cut 3)

Proof: For a given  there exists  such that . Based on constraints

(P.4) and (P.5)  is given by  (if  then

). Thus, . Since , (Cut. 2)

are valid inequalities 

 (Cut.3) simply states that a product i changeover must occur at the beginning of period t if
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a new production process for this product is initiated (  and ) at the
beginning of the same period.

Experimental Testing

Test Application

The models proposed in this paper were developed in the context of a project with Domtar
Inc., a large pulp and paper company, and our numerical tests and comparisons are based on data
obtained from that company. Domtar is the second largest producer of uncoated free sheet in North
America and the third largest in the world. The Domtar Windsor plant has two paper machines.
The two machines use different types of pulp to produce three different grades of papers
( ). Business grade papers, as its name indicates, are used in business offices and
personal computers. Printing and publishing grade papers are used for publications and glossy
publications. Specialty and technical grade papers are highly specialized papers used mainly in
flexible packaging and in industrial applications. Every time a paper machine switches its
production to a different grade, there are losses of paper sheets that vary depending on which grade
was being produced before (i.e: changeover costs are sequence dependent). Changeover costs are
estimated based on the paper sheet losses. Unit inventory holding costs are the same for all finished
products and are time independent. 

Experimental Design

This section describes our computational experiments on using the valid cuts introduced in
the previous section for solving the production problem with a branch and cut algorithm. All
experiments were performed on a 1.66 GHz Pentium III workstation with 1 GB of main memory,
using the callable libraries of CPLEX 8.1, with two hours time limit. Based on the data obtained
from Domtar, four different instances of the production planning problem were created by varying
the length of the planning horizon (T) and the number of finished products (FP). The
characteristics of the four instances are summarized in Table 3.

Adding valid inequalities to a problem formulation may have a positive or a negative
impact on its solution time. Therefore, different experiments to measure the effectiveness of
adding different combinations of the valid inequalities proposed were performed. The Cplex MIP
solver also adds Gomory cuts, among several other classes of general cuts, to the formulation. To
isolate the impact of the valid cuts proposed in this paper from those of Gomory cuts, two sets of
experiments were performed. The first set is with Gomory cuts; the second is without Gomory
cuts. The results of these experiments are summarized in Table 3, where the averages for the
elapsed CPU time in seconds without Gomory cuts (w/o-Gcuts) and with Gomory cuts (w-Gcuts)
are reported. Each entry in the table corresponds to the average solution time for the four instances
described in Table 3. 

Our results show that out of the three valid cuts proposed, Cut 2) is the most effective in
improving problem (P) solution time. The marginal contribution of adding (Cut 1) and (Cut 3) on
top of (Cut 2) doesn’t seem to be significant. In Table 4 we report the impact of adding all valid
cuts to (P) without and with Gomory cuts respectively. The (Improv%) columns show the
percentage by which the solution time is reduced when adding the proposed valid cuts. These
results show that the contribution of the proposed valid inequalities is more considerable when
added on top of Gomory cuts. The average solution time is reduced by more than a half.

πi t 1–( ) 0= πit 1=

IP 1 2 3, ,{ }=



Table 3: Experiments with Different Combinations of Valid Cuts

Table 4: Experiments without Gomory Cuts

Conclusion

This paper proposes a mathematical programming formulation of a multi-stage production
planning problem where a sequence of intermediate products has to be maintained. It also proposes
valid inequalities that can be added to the original formulation to further improve its solution time,
when solved with commercial mixed-integer programming libraries.

The computational experiments with realistic size problems suggest that the mathematical
model proposed can be used to solve real cases in reasonable times. Furthermore, adding valid
inequalities can be very effective in further improving the problem solution time. For future
research directions, one may pursue the development of more effective valid inequalities, as well
as the potential of exploiting binary variables special structures such as Special Ordered Sets
(SOS) as defined by Beale and Tomlin [1970]. 
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