
 

© Mohammad Amin Haji Bagheri Fard, 2022 
 

 

Authorized and Rogue Device Discrimination Using 
Dimensionally Reduced RF-DNA Fingerprints for 

Security Purposes in Wireless Communication Systems 

Thèse 

Mohammad Amin Haji Bagheri Fard 

Doctorat en génie électrique 

Philosophiæ doctor (Ph. D.) 

Québec, Canada 
 





Résumé

La nature des réseaux de capteurs sans fil comme ZigBee, permettant la communication en-
tre différents types de nœuds du réseau, les rend très vulnérables à divers types de menaces.
Dans différentes applications des technologies sans fil modernes comme SmartHome, les in-
formations privées et sensibles produites par le réseau peuvent être transmises au monde
extérieur par des moyens filaires ou sans fil. Outre les avantages offerts, cette intégration
augmentera certainement les exigences en matière de protection des communications. Les
nœuds capteurs du réseau étant souvent placés à proximité d’autres appareils, le réseau
peut être plus vulnérable aux attaques potentielles. Cette recherche de doctorat a pour but
d’utiliser les attributs natifs distincts de radiofréquence RF-DNA sécurisés produits par le
processus d’empreinte numérique dans le but de fournir un support de communication sans
fil sécurisé pour les communications de réseau ZigBee. Ici, nous visons à permettre une
discrimination d’appareil en utilisant des préambules physiques (PHY) extraits des signaux
émis pas de différents appareils. Grâce à cette procédure, nous pouvons établir une dis-
tinction entre différents appareils produits par différents fabricants ou par le même fabri-
cant. Dans un tel cas, nous serons en mesure de fournir aux appareils des identifications
physiques de niveau binaire non clonables qui empêchent l’accès non autorisé des appareils
non autorisés au réseau par la falsification des identifications autorisées.
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Abstract

The nature of wireless networks like ZigBee sensors, being able to provide communication
between different types of nodes in the network makes them very vulnerable to various
types of threats. In different applications of modern wireless technologies like Smart Home,
private and sensitive information produced by the network can be conveyed to the outside
world through wired or wireless means. Besides the advantages, this integration will def-
initely increase the requirements in the security of communications. The sensor nodes of
the network are often located in the accessible range of other devices, and in such cases, a
network may face more vulnerability to potential attacks. This Ph.D. research aims to use
the secure Radio Frequency Distinct Native Attributes (RF-DNA) produced by the finger-
printing process to provide a secure wireless communication media for ZigBee network de-
vice communications. Here, we aim to provide device discrimination using Physical (PHY)
preambles extracted from the signal transmitted by different devices. Through this proce-
dure, we are able to distinguish between different devices produced by different manufac-
turers, or by the same one. In such cases, we will be able to provide devices with unclonable
physical bit-level identifications that prevent the unauthorized access of rogue devices to the
network through the forgery of authorized devices’ identifications.
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Introduction

Nowadays, wireless communications are becoming more vital in today’s modern life and ac-
cess to information is of crucial importance in the modern world. The most common wireless
technologies, such as deep-space radio communications, GPS, garage door controllers, wire-
less computer mice, and keyboards use radio communications. Wireless communications
allow the long-range signal transmission that is not possible with the wired communica-
tions. The growth of wireless networks has given us the opportunity to use personal devices
anywhere and anytime. Providing access to the Internet anywhere and anytime without
physical contact, medical health monitoring for inaccessible or hardly accessible areas, ur-
gent situations alerting for rapid support of medical and rescue plans in natural disasters are
some important advantages of this kind of network.

Besides all the advantages, wireless communication has let us face many threats such
as easy access of hackers to wireless signals, resulting in eavesdropping of transferred data.
Providing a security system for detection and rejection of unauthorized access in such a
growing network is of a great importance to reduce the risk of information leakage. Nowa-
days, different standards for wireless communication systems exist such as radio Frequency
(RF), light, visible and infrared (IR), ultrasonic short range communications, Wi-Fi, ZigBee,
and Bluetooth.

Proposing a comprehensive strategy for securing the wireless network is dependent on
the protocol which is used. Different protocols have different features, such as modulation
and data structure, which affect the performance in the suggested methodology. Due to the
low-cost and low-power performance, ZigBee (IEEE 802.15.4) is a popular technology in the
industry of smart homes and IoT devices, as an alternative for other wireless protocols, such
as Wi-Fi and Bluetooth [1]. Based on these features, and also due to the long battery life,
ZigBee is a good candidate to be widely used in different applications such as smart home
low-rate and short-range data transfer sensor networks, public bus transportation query
systems, traffic management, and real time air pollution monitoring networks [2]. Therefore,
the ZigBee technology is selected for the research in this thesis. In this manner, using a group
of ZigBee devices, it is intended to provide a rogue device detection system which grants
access to authorized devices and rejects unauthorized or rogue ones.
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Problem definition

As discussed above, hacking the wireless signals is possible for the hackers in real world
communication systems. Every day, a large amount of wireless signals are transferred and
received by different devices in different parts of the world. Some of these devices include
such important informations making security as one of the most crucial requirements in
wireless communication systems. The nature of wireless networks, in such a way that they
can be adopted easily with this technology, may result in various security threats. Researches
like [3] include the place in the network, where attacks happen, as an important component
into the target-based threat model. Referring to [4] (which focuses on ZigBee networks),
different attacks to wireless communication systems can be classified into six types:

• Eavesdropping: in this type of attack, the information extraction is done through lis-
tening to the channel without permission.

• Denial of service: during the denial of service (DoS) attack, attackers to the wireless
networks, such as ZigBee, emit the signals to interfere with the transmitted data in the
network. This kind of attack can be detected at the data link. The end goal of this kind
of attack is to disturb communication protocols, such as ZigBee [5].

• Node compromise: in this kind of attack, the attacker obtains the control over a legiti-
mate node in the network, through different methods like reprogramming [5].

• Sinkhole attacks: through broadcasting the false routing identification signals, the at-
tacker achieves access to the network and also to the transmitted information packets.

• Wormhole attacks: the attacker tries to confuse one or more nodes in the network
through receiving and transmitting the different packets in the network [5].

• Physical attack: the attacker earns access to the devices in the network, through the
wired connection. For example, in a Man-in-the-Middle (MitM) attack, the goal is to
receive the leakage information. Then, after changing the information, it is transmitted
back to the system. The changed information will fool the network and jeopardize its
performance [6].

In recent decades, different protocols have been introduced to provide the wireless net-
works with security. For instance, strong security protocols such as Wi-Fi Protected Access
(WPA), WPA2 [7], and WPA3 [8] have been created to protect and secure wireless signals.
Among the different types of attacks, physical layer attacking by rogue devices are con-
sidered from those kinds that affect the strength of underlying protocols considerably [9].
A rogue device is a node which was never been seen by the network previously, and at-
tempts to access to the wireless network by cloning the bit-level credentials of one of the
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known/authorized devices [10]. Physical layer attacks have a wide range from complicated
to very simple, low-cost techniques targeting unintentional information leakage [9]. In such
a case, the longer a system remains in operation, the greater the chance for unauthorized ac-
cess, and the robustness of stand-alone bit-level security remains a concern [11]. Nowadays,
production of smart low cost, short-range wireless devices expand to facilitate the realization
of the internet of things (IoT) in modern life. Therefore, security of transmitted information
in these networks relies on using the cryptographic keys. Then, the transmitted information
by these devices is as secure as those keys [12].

In addition to the vulnerability of these growing low-cost IoT wireless systems to the
complicated attacks, there is another problem here; the traditional cybersecurity protocols
are not very efficient in blocking the complex attacks [13]. Therefore, a physical layer attack
in these networks can really put the confidentiality of the transmitted signals in danger. In
such a case, an accurate and high quality system is needed to discriminate the sophisticated
malfunctioning and block the access. To reach such a goal, some cybersecurity systems rely
on the application of artificial intelligence to detect the unathorized access of the attacking
devices to increase the security level. Thus, this is the same approach which is selected in
this thesis for providing security in the physical layer.

Motivations

The mechanism of physical structure attacks on secure electronic systems has changed dur-
ing the last years, which makes it difficult for security systems to keep pace. The intended
type of threats in such a scenario can be done by the devices with the different manufacturer
or even the devices from the same family as the authorized devices. Therefore, proposing
an effective and accurate methodology for distinguishing and rejecting devices with close
enough physical characteristics to the authorized members of the network is a critical prob-
lem of a crucial importance. As mentioned above, the main idea in this thesis is to provide
a wireless network with the high level security in the physical layer level, to prevent the
unauthorized access to the network by rogue devices which copy the credential identity of
authorized ones in order to falsify the network.

In this thesis, ZigBee network is selected as the target system. Also, the methodology
proposed is based on the application of artificial intelligence and deep learning models fed
by physical layer fingerprints for increasing the physical layer security in these communica-
tion systems. Here, three main elements are ZigBee networks, physical layer fingerprinting,
and artificial intelligence. The reason to select each of these elements as a main part of re-
search subject in the thesis are described here.
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ZigBee networks

During the last years, different wireless protocols have been introduced, which differ in
power consumption, data transmission range, speed, etc. To have a better comparison be-
tween the ZigBee and other protocols, Bluetooth and Wi-Fi are discussed here.

Bluetooth technology has evolved over the years. This technology transfers the data
in low-band frequency and over short distances. Because of the level of security in Blue-
tooth networks, services provided in this kind of network are easy to use [14]. Despite all its
advantages, due to the high bandwidth which results in relatively power-hungry applica-
tions (which makes it not the best choice for many IoT applications), new technologies like
Bluetooth mesh has been introduced in recent years which take benefit from low energy use
and good network security. But the disadvantage of all Bluetooth networks (even Bluetooth
mesh structures) is their high latency [15].

The second protocol which is taken into account here is Wireless Fidelity (Wi-Fi). Wi-Fi
is a type of technology for wireless local area communications. In such a network, and due
to the mobility provided by Wi-Fi networks for communication systems, the requirement
for extending the security is essential. So, Wi-Fi Protected Access protocols WPA, WPA2,
and WAP3 [8] are considered as one of the most utilized protocols in wireless networks [16].
Other advantages of the Wi-Fi networks such as no need for a hub, low implementation cost,
and low power consumption, makes it a good choice for wireless communication systems.

The third type, ZigBee protocol, is reviewed here. ZigBee development started in 1998,
but not until December 2004, when the ZigBee Alliance published its first ratified specifi-
cation, did it become so popular. Fast communication, low interference, high potential for
scaling, and the ability to cover up to 65,000 nodes in a ZigBee network makes them good
choices for small range IoT connections like smart homes [17]. Beside these points, dynam-
ically reconfigurable mesh to repair or replace missing nodes, routing tables, address res-
olution, security, and up to two miles of ideal line-of-sight outdoor range are enumerated
as other outstanding features of ZigBee networks. Moreover, different ZigBee devices from
the same or various manufacturers can communicate which makes this protocol suitable
for home and industrial IoT applications [15]. Because of the low cost and low complex-
ity aspects of ZigBee networks, this kind of wireless communication systems constitutes an
attractive alternative for both commercial and military applications [18].

ZigBee in IoT Networks

ZigBee is a popular technology in the industry of smart homes and IoT. This wireless proto-
col was designed to transfer data in a short range, using the most connected low-power de-
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vices. Due to these features, it became one of the most fascinating technologies in industrial
application of IoT, such as smart homes and smart phones [19]. For instance, Hydro-Québec
uses the 2.4 GHz ZigBee communications devices through the Honeywell REXUniversal
meter platform to realize the smart grid of the future [1], Philips Hue connects its bulbs
with ZigBee devices, and Amazon implements the smart AI based Alexa for controlling the
smart home through application of ZigBee in Echo Plus [20]. These days, ZigBee is a hot
technology in smart meters to control the energy usage, local sensors for controlling the tem-
perature and moisture in toxic areas, personal shopping assistance and smart digital carts.
In addition, using the "dotdot" universal programming language of IoT devices, developed
by Alliance [21], ZigBee devices have the potential to communicate together in a network
and this characteristic, makes this technology able to grow faster.

To have a better comparison between Bluetooth, WiFi, and ZigBee wireless protocols,
Table 1 is presented here [17, 22–25]. In this table, these three technologies are compared in
terms of application, frequency bandwidth, battery Life, number of cell nodes in the net-
work, data rate, transmission range, topology, standby current, and memory.

Table 1: Comparison of Wi-Fi, ZigBee, and Bluetooth technologies [17, 22–25].

Features Wi-Fi IEEE 802.11 Bluetooth IEEE 802.15.1 ZigBee IEEE 802.15.4 

Application Wireless LAN Cable Replacement Control and Monitor 

Frequency Bands 2.4 GHz and 5.0 GHz 2.4 GHz 2.4 GHz, 868 MHz, 915 MHz 

Battery Life (Days) 0.1-5 1-7 100-7,000

Nodes Per Network 30 7 65,000 

Data Rate 2-100 Mbps 1 Mbps 20-250 kbps

Range (Metres) 1-100 1-10 1-75 and more

Topology Tree Tree 
Star, Tree, Cluster Tree, and 

Mesh 

Standby Current 31020  amps 
610200  amps 

6103  amps 

Memory 100 kB 100 kB 32-60 kB

Transposing the proposed methodology in this thesis to other wireless technologies

As indicated in this chapter, the focus in this thesis is on ZigBee devices. Based on this fact,
the discussion in this chapter is concentrated on the data acquisition from Wireless ZigBee
devices. The proposed approach is expandable to all other wireless technologies, such as
Wi-Fi, WiMAX, Bluetooth, etc. The main point is that the dataset acquisition methodology,
challenges, and solution presented in Chapter 3 focuses on ZigBee networks, but the main
idea is generalized to all other wireless technologies.
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Physical layer fingerprinting

The authentication used in wireless systems include high-level authentication mechanisms.
Universal subscriber identity module (USIM) [26], message authentication code (MAC) ad-
dresses [27], or service set identifiers (SSID) [28] are some examples of this kind of authen-
tication. However, because of the high possibility of copying the MAC and SSID by hack-
ers, other complicated cryptography-based algorithms, including elliptic curve cryptogra-
phy (ECC) [29] or one-way hash functions-based approaches [30] have been introduced in
recent years. In spite of high level of security provided with these algorithms, due to their
high complexity and cost, they are not suitable for generally low-cost networks of IoT de-
vices. In such a case, the radio frequency (RF) signal used by these devices to connect to
the wireless network contains unique features in the transmitted signal originated from the
manufacturing deviations during the production. These features, referred to as RF distinct
and native attributes (RF-DNA), are physical layer features which are unique, secure, less
expensive, and hard to copy, which makes RF signal a good candidate for providing security
in the wireless communication networks [31].

Artificial Intelligence

In recent years, the reports provided by the Information Technology (IT) companies shows
an increase of cyberattacks [32]; for instance, in the 2019 SIM IT Trends [33] and the Cisco
Cybersecurity [34] reports, cybersecurity is known as the most challenging IT management
problem. Due to the vulnerability of IoT devices to the complicated growing attacks, any IT
environment needs an effective security system which is more effective than traditional cy-
bersecurity systems which have failed to detect complex attacks. Consequently, to overcome
the security approaches (such as cryptographic key-based identitification) problems, some
cybersecurity systems rely on the application of artificial intelligence and machine learning
classifiers [10] and [35], because they provide the systems with more accurate attack deten-
tions from the attackers with complicated technologies. Therefore, in this thesis, motivated
by the success of deep learning methods at complex classification tasks (such as [36]), this
approach is selected for detection and rejection of the rogue devices.

Contributions of the thesis

In this thesis, we propose a mechanism for the classification of features extracted from Zig-
Bee devices, produced by the same or by different manufacturers. The main contributions of
our thesis are:
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1. Model design using deep neural networks The special kind of deep learning model,
based on autoencoders, leads to promising results for device classification. In this the-
sis, using an automated feature extraction structure implemented by an autoencoder
deep neural network, essential features from each preamble are extracted. Later on,
the extracted features are fed to a fully connected classifier to distinguish between the
authorized and rogue devices. Also, adding a long-short term memory layer to the au-
toencoder structure, the time-dependency of the signal is extracted which is used as an
important feature for increasing the accuracy in the neural networks classifier. In addi-
tion, with simultaneous training of the decoder and the classifier parts, it is guarantied
that the extracted features are meaningful enough for the classifier.

2. Designing a model for each device We present a basic structure for the separation
of one device from all other devices. This means that the goal of each model is to
distinguish one device from all others, known as one-vs-all strategy. Consequently, the
number of models in such a methodology is equal to the number of authorized devices.
Through this strategy, instead of multi-class classification, we can assign a model to
each authorized device. Therefore, the mission for each model is to discriminate a
specific device, from all other devices in the world which try to copy the identity of this
device. In such a case, if a model is responsible to learn a single and unique device, the
accuracy will be higher compard to the multi-class case. Then, the selected strategy in
this thesis is one-vs-all.

3. Domain transformation The analysis of classifiers is adapted from the time to the time-
scale domain using wavelet transform. In such a case, the wavelet transformation
can map the signal from the time domain to the time-scale domain. Using such a
transformation, it is possible to extract some features from the signal that can be used
for classification. In this thesis, using the Haar wavelet transformation to extract the
detail coefficients, the abrupt local changes of generated preambles (data points) by
each device are detected to be used in rogue and authorized device discrimination.

4. Testing the model with unseen devices We test the model with a subset of devices
which has never been seen by the model at the time of training. For such a purpose,
before training, the dataset is divided into three subsets, training, validation, and test-
ing. None of these three subsets have any data points in common. This is a main aspect
at the time of testing the model with new unseen data points, which is not present in
some of the works in the literature. Besides, the dataset which is fed to these models
is divided into three parts, including devices which are seen/unseen in the training
phase. Some of these unseen devices are from the family of training devices or com-
pletely new brands.

5. Focusing on the time-dependency of data points The time-dependency of preambles
in the dataset is an important factor which can be used for extraction of high accuracy
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features, resulting in a high classification rate. After adding a long-short term memory
layer to the autoencoder, which is responsible to extract the time-dependency features
of the preamble, if we compare the results of the correct classification rates between the
autoencoder structures with and without long-short term memory, we can see that the
area under the curve for the worst classification case has increased remarkably, after
adding this layer, which is a good factor which justifies its efficiency.

Thesis outline

The organization of this thesis is as follows. In Chapter 1, we review the different strategies
presented in the literature. By reviewing these methodologies, we can have a better picture
of the advantages and disadvantages of each approach.

In Chapter 2, the structure of the deep learning model used in this thesis is presented.
Feature extraction is an important step for delivering the maximum quality to the classi-
fication process. For such a purpose, the application of autoencoder and recursive neural
network structures are proposed and described in detail.

Chapter 3 describes the methodology used to acquire responses from ZigBee devices.
During the data acquisition, different distortions such as environmental noise, data transmis-
sion delay, and receiver demodulation frequency mismatch are possible to affect the signal
quality. The quality of the captured signals in the real environment from the wireless devices
is not high enough to make efficient databases. Therefore, the first step after capturing the
data is to do a preprocessing on the captured signal. Because the data acquisition and clean-
ing procedure is not described in detail in the literature, this procedure is described in this
chapter.

In Chapter 4, we propose a device classification method based on the autoencoders, as
a deep learning model for feature extraction. Using this type of feature extraction model,
we deliver a feature dataset with an acceptable level of accuracy in device discrimination,
resulting in high level classification rates. The main strategies of this chapter are the one-vs-all
device selection and the device allocation for the testing.

Next, in Chapter 5, the effect of adding a specific kind of deep layers to the autoencoder
is verified, which is suitable for feature extraction from signals with long-term time depen-
dencies, called long short-term memory (LSTM) layer. In addition, the strategies of one-vs-all
and the testing device allocation are repeated in this chapter.

Finally, a discussion and a conclusion are presented at the end of the thesis. In addition,
suggestions for future works are presented which can be used by researchers.
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Appendices A and B provide additional information about the model evaluation using
confusion matrix and receiver operating characteristic, and LSTM based autoencoders.
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Chapter 1

Literature Review on ZigBee Wireless
Network Security

In this chapter a review on ZigBee wireless networks security is presented. We will re-
view the methods which have been proposed for the application of security requirements
to ZigBee devices in previous years. Network security is defined as “assurance of a PC net-
work and its administrations from unauthorized modification, destruction, or disclosure”
[5]. Wireless technologies such as ZigBee devices, as a type of IoTs, focus on three main

factors, transmitting data, receiving data, and processing received data [37].

In such an environment, the different types of attacks can jeopardize the transmitted
information security, due to the lightweight security protocols used in IoT devices [13]. As
mentioned earlier, physical layer attacks jeopardize the strength of underlying security pro-
tocols, effectively [9], physical layer security is the most important type of security protocols,
since losing the security in other levels is tolerable, but failing at physical layer exposes the
information completely [38]. Attacks on physical layer signals existed before the invention of
computer networks, and evolved during the last years. Facing the different types of attacks
from simple information leakage to complicated eavesdropping approaches in the modern
communication systems, security professionals require to recognize the potential thread and
present relatively inexpensive and effective approaches such as locks to delay the attacks.

In smart home technologies, private and sensitive information produced by ZigBee net-
works can be conveyed to the outside world by means of different wired or wireless tech-
nologies. Therefore, this integration will definitely increase the requirements in ZigBee net-
works. Meanwhile, the sensor nodes of the network are often placed in the accessible range
of other devices, and in such a manner, the network may be more vulnerable to potential
attacks [4]. Security objectives of electronic information systems are determined with re-
spect to the type of threats and vulnerabilities that the system encounters. Here is a list of
important security requirements that need to be adopted by the system [5]:
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• Confidentiality - Preventing the disclosure of data transmitted through the network to
eavesdroppers.

• Integrity – Preventing edition of transmitted data in the network by rogue devices.

• Freshness – Guaranteeing the freshness of the data. By this concept, we ensure that the
node that the information delivered is the updated version.

• Availability – Guaranteeing that unauthorized persons or systems cannot apply the
disturbance during the access of authorized persons to the assets of the network.

• Authenticity - Affirming the genuine identity of system utilization.

Nowadays, IoT networks use the different wireless technologies such as ZigBee pro-
tocols. IoT networks, as a hot topic in industrial networking applications, like AI-based
smart devices at homes and vehicles, ease life in the modern era, but high dependency on
device-based security of transmitted information put us at risk. Technical report [26] shows
that IoT networks have become a vulnerable point for information leakage because of their
low efficiency of security protocols. In recent years, a combination of hardware-based and
encryption-based approaches has delivered a good performance for increasing the security
level in wireless networks [28], but a deeper overview on presented security strategies is
presented in this chapter, which clarifies the approach selected for research in this thesis. A
summary review is shown in Table 1.1 [39]- [40].

1.1 Review on ZigBee security enhancements

During the last years, in conjunction with the evolution of physical attacks over this pe-
riod, security strategies have emphasized the use of the uniqueness of inter-device process
variations. Previously, the physical-layer device detection methodologies used the physical
unclonable functions (PUFs) [41], [42], RF certificates of authenticity [43], and the RF finger-
printing of unique signal within intentional emissions produced by the wireless network-
ing [44], [45], [46] and RFID-based security enhancement technologies [47]. In the following,
we will present a short overview of some of the most important methologies among all the
proposed ones in previous related works.

1.1.1 Physical unclonable functions

Physical unclonable functions (PUF) techniques are divided into two main groups. Each
group employs a different approach for providing the access to the devices entering the net-
work. The first focuses on an integrated circuit (IC) using an internal measurement circuit.
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The duty of this circuit is on computing a function from the number of glitches or propaga-
tion delays [41, 48]. To have an overview on the different PUF based strategies, [1] proposes
a silicon based Ring-Oscillator PUF with 3 gates, to prevent any hardware trojan. [3] sug-
gests many advanced PUF based security protocols. The second method is the combination
of integrated sensors into the top metal layer of coating dopped dielectric layers of the ICs.
This coating needs the internal measurement of the response by an internal circuit [41].

1.1.2 RF certificates of authenticity

The RF certificates of authenticity (RF-COA) technique has a lot in common with the PUF,
with the exception that the measurement component is an external modified RFID reader
which extracts a fingerprint for computing a COA. In the RF-COA technique, the principle is
to attach a small shaped conductive or dielectric into a radio-frequency identification (RFID)
device [43].

[49] suggests an ultra-lightweight RFID security protocol. The application of this pro-
tocol is for realization of security in block chain systems. In such a network, combining
different security protocols with RFID increases the level of information confidentiality, con-
siderably. Due to the low computation complexity, suggested approach in [49] supposed to
deliver a high performance.

These days, RFID is a key tool for identification of remote object or people. Due to
the application of tags in such a structure, the reader can search through the database of
different registered tags and comparison of received tag within the RFID signal, the identity
if connecting device is extracted. Although the mentioned tag database provides a relative
security for such a network, the requirement to the storage is a challenge [49]. Over the last
years, different works such as [50] proposed lightweight security protocols, to be used in
low computational power wireless transmission IoT devices. A back end type of security
protocol focusing on the mutual RFID authentication protocol is presented in the works
such as [51]. The level of accuracy provided by such a protocol can be customized by the
user. Through this procedure, the level of computational power and complexity needed will
be adjusted to the required security level.

1.1.3 RF-DNA fingerprinting

RF fingerprinting which represents the main foundation of the security verification mech-
anism of this thesis, has been proposed as a physical-layer technique for increasing the se-
curity level in wireless communications (e.g., RFID [47], 802.11 Wi-Fi [52], 802.15 WPAN
(wireless personal area network) [45, 46], 802.16 WiMAX (Worldwide Interoperability for
Microwave Access) [53], GSM (Global System for Mobile communications) [54]). Beside
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the reported methods, another common approach is to use the RF fingerprinting focusing
on the transient response of a device. In [55], a classification research approach is proposed
which uses the RF fingerprinting extracted from the amplitude of the transient parts of the
Wi-Fi signal, received from 8 IEEE 802.11b Wi-Fi cards. The device fingerprinting methodol-
ogy developed herein is mainly based on previous RF-DNA (Radio Frequency DNA) works
in [44, 56]. The results in [57] shows a good security response in detection of authorized
devices/ICs. Comparing RF-DNA fingerprinting with PUF/RF-COA methodologies shows
its ability to absorb the device response without the use of any additional transmitter or au-
thenticate any IC without modification of the internal circuitry [57].

A common feature extraction approach for ZigBee devices is to obtain the statistical pa-
rameters such as the mean, variance, skewness, and kurtosis from the physical signal char-
acteristics (amplitude, phase, and frequency) [58–61]. Among all statistical features, phase
is the most appropriate physical characteristic for the classification purposes. Another ap-
proach for feature extraction is to analyze a fixed length header called preamble [10,62]. This
is the mechanism used in this thesis for feature extraction.

In contrast to the methods which focus on adding physically traceable components to
devices [63], [64], RF fingerprinting searches for the physical characteristic features of the de-
vice [46], [65], [66], [56]. Four special features are numerated for any kinds of RF fingerprint-
ing in communications devices; these features are universality, distinctiveness, permanence,
and collectability [65], [66]. Different RF fingerprinting procedures in the literature include
transient and steady state methods [56]. Steady-state approaches, focusing on the preambles
of the device, are of interest because of predefined device specified preamble standards. The
procedure of extraction of RF fingerprinting can be categorized as [67]:

1. Extracting the signal region of interest (ROI).

2. Extracting features from the ROI.

3. Computing fingerprints from these features.

4. Developing classifiers on these features.

In RF fingerprinting, some approaches use instantaneous amplitude only [67], while
others beside the amplitude, use instantaneous frequency and/or phase [65]. RF-DNA has
been used in the discrimination of devices from different and also the same manufactur-
ers. In the latter case, the devices are with the same model, but different serial numbers
[68]. However, RF-DNA considers many fingerprint features such as kurtosis, variance, and
skewness of amplitude, phase, and frequency.
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1.1.4 Deep learning classification methods

Computational hardware improvements during the last few years, have allowed the appli-
cation of artificial intelligence in different devices. In [69], a high performance classification
scheme using the convolutional neural networks (CNN) is presented which relies on the
time-domain signals. Moreover, in [70], a CNN for classification purposes in the IEEE 802.11,
802.15.4, and 802.15.1 protocols, is proposed. In the model presented by [70], the model is
fed by the channel frequency and the type of wireless technology.

Although the strategies focusing on a fixed length preamble, [58–61] and [71], presented
acceptable classification accuracies, one of the recent approaches for feature extraction pre-
sented by [35] used a deep learning model fed by the steady state component of the initial
transmitted data points.

The method presented in [35] does not focus on a priori knowledge about the trans-
mitted signal or the preamble. The extracted features are completely independent from
the received signal such as in [58–61] and [72]. This allows the network to learn the fea-
tures that best discriminate different devices from each other, without a priori knowledge
about these devices. In [35], for the first time, the authors used the frequency compen-
sation to increase the quality of the dataset for better classification accuracy in RF finger-
printing. Removing device-dependent carrier frequency offsets which may appear in low
signal-to-noise ratio (SNR) transmissions will enhance the accuracy of detection/rejection of
unauthorized/rogue/spoofing nodes, and decrease the probability of frequency variations
at baseband. While the results from [35] were promising, the training dataset, i.e. the dataset
used for training the model toward achieving its tasks, contained data points from devices
that were also included in the test set, i.e. the dataset used for evaluating the results of the
model. As the test set does not contain devices that were never used in training the model,
we cannot conclude on the performance of the model when facing new, unseen units. The
work of this thesis addresses this issue. The idea behind the proposed scenario of this work
is one-vs-all, which contains the work of [73], [10], and [62].

Why do we use one-vs-all instead of multi-class classification? Is the one-vs-all strategy
artificial for this work? Like the methodologies in [73], [10], and [62], due to the high
complexity of the dataset used in this thesis, using a multi-class classification approach is
not as efficient as needed. Therefore, designing a model for each device whose duty is to
distinguish between that specific device and all other devices is a good workaround. In
such a case, training a model with enough data points from a specific device as the positive
device and the data points from some other devices playing the role of rogue or attacking
units trying to falsifying the network by cloning the physical characteristics of the positive
device in the real world, makes us able to design an efficient enough network for rejection
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of all different attacking devices from having access to the network cloning the identity of
mentioned positive device. Through this procedure, we can increase the security level in
wireless communication systems.

1.1.5 Wavelet-based classification methods

Nowadays, the application of wavelet transform for signal processing is very popular in
medicine, communications, engineering, etc. For instance, [74] presents an approach using
wavelet transform for risk analysis in financial systems. Classification methods based on
wavelet transform [75] have shown successful RF fingerprinting performances in this field,
focusing on neural networks to design models of nonlinear power amplifiers and to perform
pre-distortion [76, 77]. Other works such as [65, 66] proposed a time-scale based wavelet
transform method for RF-DNA fingerprinting.

The main idea behind the transformation in this work is to provide a kind of feature
space providing the required separated enough classes in the dataset for the classification
network. Using this strategy, the classification is more successful in discrimination of the
different classes which leads in higher accuracy of the model. Using the wavelet transform,
the local properties of the signal are characterized, and the robust fingerprint features of
non-transient preamble are extracted [66], which can be used as an effective feature set for
the classifier.

Another methodology for security in physical layer was to propose a wavelet trans-
formed form of the randomly modulated signal [78]. The result of this combination was a
low bit error (BER) in the transmitted signal. In [79,80], an approach based on wavelet trans-
form for detecting false data injection attacks (FDIA), as a specific kind of cyber attacks, is
presented. In this work, using the wavelet singular entropy (WSE) of the current and volt-
age signals, the data correlation is extracted to calculate the error signal, with respect to the
base signal. The selected wavelet window in this work is the Haar window to extract the
detailed coefficients, due to its sensitivity to abrupt and high frequency local changes [81] of
the signal. Using such an approach presented a detection accuracy of over 96.5% through
simulations.

Other examples that focused on the application of the wavelet transform in recent years
are [56, 82] which focus on fault detection, [83] that presents the wavelet multi-resolution
analysis (MRA) method for fault detection, and [84] combining the fuzzy analysis and
wavelet transformation to extract the sharp local changes.

In this thesis, an approach combining the advantages of the time-scale features of the
wavelet transform, with feature extraction and classification using deep learning designs, is
presented.
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1.1.6 Other proposed approaches to improve security

In [39], the authors suggested a new set of scheme called WZ-lcp to increase the security
against attacks in wireless communication networks. The suggested scheme basically uses
a new method of encryption using an XOR calculation. In addition, this scheme also uses
the updating keys based on synchronization of time as a variable. By this mechanism, the
data obtained through eavesdrop will be useless. In [85], the authors proposed to use Zig-
Bee’s received signal strength (RSS) to prevent the ZigBee-based home networks from facing
the spoofing attacks for cloning the identity of an authorized device and experiencing inter-
ruption in the normal operation of the network. In [40], the increment of ZigBee networks
is realized though using the Ad hoc on-demand distance vector junior (AODVjr) routing
protocol. AODVjr is one of the most widely adopted routing algorithms in ZigBee proto-
col [86]. In this case, the part of routing information must be protected through the use of
new distribution schemes. By doing this, they claimed that the improvement can prohibit
a man-in-the-middle attack and also false routing information attacks during the routing
mechanism of networks. Later, [39] and [40] revised the mentioned scheme to improve the
security, while [85] used physical layer PHY information of the RSS ZigBee network to de-
tect and filter any malicious attack. Although the mentioned mechanisms load more tasks
on the nodes of the network, the rate of increment is still within an acceptable range and
it can be implemented in wireless networks such as ZigBee. Besides the mentioned stud-
ies, [39] and [40] focused on security at the nodes which requires efficiency and accuracy
in determining the presence of attacks. In other words, a pro-active mechanism before an
attack occurs while [85] is more passive in which it would only act if the attack happens.
However, [39], [85], [40] did specify another security need in ZigBee networks, the forward
security, which is also important in handling security of the device leaving the network. Us-
ing this idea, in [87], the authors focused on the problem that each device may leave the
network when it has either reached its aim, or when it is sent for maintenance, or when is
compelled to leave the network. Regardless of the case, a device that has left the network
should not have the capacity to get to any further information exchange within the inte-
rior devices. Therefore, a forward security requisite can increase the security level in these
systems.

1.2 Conclusion

In this chapter, we have presented a review of the current literature on the physical layer
security of wireless communication devices. As discussed, some of the approaches used in
the literature for device discrimination in ZigBee networks are the PUF techniques, using
the RF-COA, extracting the RF-DNA features, focusing on the deep learning models, etc.
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The strategy which is selected in this thesis is to use the one-vs-all concept for device time
domain and time-scale domain datasets allocation in training, validation, and testing. The
allocated dataset is fed to a deep neural network model for device discrimination purposes.
The dataset which is used for this purpose is captured from real ZigBee devices, and the
resulting performance of the model is evaluated through machine learning algorithms.
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Chapter 2

Deep Learning Models Structures and
Evaluation

In recent years, due to the improvement of hardware computational power, the application
of deeper learning models has increased. Modern hardware capabilities give us the abil-
ity to design and use more complicated and deep models resulting in higher performance
accuracy. For this reason, the application of two deep learning models are suggested here,
autoencoder and recurrent neural networks [88]. To have a better idea about the performance
of these systems, the data structure and the theoretical concept behind these networks is de-
scribed in the next three sections of this chapter. Finally, last two sections of this chapter are
allocated to model training and validation, and conclusion.

2.1 Dataset structure

Research in this thesis starts with data acquisition from real devices. However, signal ac-
quisition from physical environment requires impairment mitigation techniques to reduce
the effects of environmental noise and distortion, data transmission delay, receiver demod-
ulation frequency mismatch, and imperfect signal bursts synchronization. Therefore, the
experimental data need to be preprocessed and cleaned before being applied to the actual
proposed classifiers. This preprocessing procedure is explained in Chapter 3. After pre-
processing the acquired data, it is called the dataset and ready to be fed to the classifier.
The structure of the dataset is shown in Table 2.1. As seen, each of M devices (Dm for m ∈
{1, . . . , M}) has Nm data points, and the summation of the numbers of data points from
all devices is equal to dataset size (N). Also, each data point is a vector with K samples
xn,k for n ∈ {1, . . . , q, . . . , l, . . . , N}.
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Table 2.1: Dataset structure.
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2.2 Feature extraction model

In this thesis, a binary classification system is used to provide a mechanism of device dis-
crimination into 2 classes: legitimate devices and (unauthorized) rogue devices. The classifi-
cation strategy is one-vs-all where the system generates a model for each specific device and
considers the detection of all other devices other than the main target device. If a model is
made for a specific device, when any new device enters the network, this model tries to de-
tect if this device is an authorized device or not. If it is an authorized one, it will be granted
access to the network. If not, it will be rejected by the network. For this aim, the model
adopted is an autoencoder (AE) combined with a fully connected classifier. The model structure
is shown in Fig. 2.1.

The question that arises here is that why using an autoencoder for device classification?
Methods focusing on known RF-DNA features such as statistical parameters (mean, vari-
ance, skewness, and kurtosis) of amplitude, phase, and frequency [58–61], try to extract the
best features from the measured data, resulting in the maximum possible classification rate.
Among all RF-DNA features, phase is assigned as the most effective one for the classifica-
tion purposes in the literature. Based on this, the question that arises is about the feature
selection mechanism [10]. Should the feature extraction be limited to this known set of sta-
tistical information of PHY parameters, or is it possible to use other elements more effective
than those? The strategy used in this thesis focuses on the utilization of an autoencoder to
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Figure 2.1: Model symbolic representation.

extract the most dominant features of the input data, which give the maximum inter-class
and minimum intra-class distances [89].

Autoencoder

An autoencoder consists of two parts, an encoder and a decoder, as shown in Fig. 2.1. The
input vector, xn represents a data point:

xn ∈ {x1, x2, · · · , xN} (2.1)

where N is the total number of data points in the dataset. Vector xn contains K samples:

xn = [xn,1, xn,2, · · · , xn,k, · · · , xn,K]
⊺ (2.2)

The output of the encoder, xnF , is a simplified representation of xn. The decoder is
designed so that its output, x̂n, reproduces the original dataset, xn, from the encoder’s rep-
resentation, xnF , by minimizing the difference between xn and x̂n as illustrated in Fig. 2.1.
The mechanism for decreasing this difference is through the mean squared error (MSE). Eq.
(2.3) presents the output data point x̂n.

x̂n = [x̂n,1, x̂n,2, · · · , x̂n,k, · · · , x̂n,K]
⊺ (2.3)

Feature extraction by the encoder Feature extraction maps the high dimensional data to a
simplified low-dimensional space [90]. This transformation can be either linear or nonlinear.
Specifically, considering a given data point xn, feature extraction generates a new feature
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xnF . The encoder can be described as a function f (.) that maps an input xn to a hidden
representation xnF :

xnF = f (xn) = s f (Ωxn + bxn) (2.4)

where s f (.) is a linear or a nonlinear activation function. The encoder is parameterized by a
weight matrix Ω and a bias vector bxn ∈ Rn.

Input reconstruction by the decoder The decoder function g maps the hidden representa-
tion xnF back to a reconstruction (or reproduction) vector x̂n:

x̂n = g (xnF) = sg

(
Ω′xnF + b′

xnF

)
(2.5)

where sg(.) is the decoder’s activation function, typically either the identity (yielding linear
reconstruction) or a sigmoid (as non-linear function). The decoder’s parameters are a bias
vector b′

xnF
and a weight matrix Ω′.

Training an autoencoder involves finding parameter θ = (Ω, Ω′, bxn , b′
xnF

) using a loss
function that minimizes the difference between the original space xn and the reconstruction
space x̂n.

It is worth mentioning that the importance of the decoder is at the training stage, due
to the fact that simultaneous training of the decoder and classifier outputs guaranties that
the encoder part provides the classifier with the meaningful input features resulting in the
high classification accuracy. Therefore, at the testing stage, there is no need for the decoder
part, anymore, and it can be removed from the model to reduce the required computational
power for using the proposed model in the time of testing.

Classification

After extraction of the features from the input dataset, these extracted features are fed to
the classifier section depicted in Fig. 2.1. The typical classification structure used in the
literature involves two connected layers. However, such a structure may overfit the training
data, unless the training dataset is very large [91].

Since the classification strategy is one-vs-all, there are two classifier outputs, each pre-
senting the conditional probability of the data points belonging to either positive or negative
class. Wpos and Wneg represent the positive and negative (mutually exclusive) classes, respec-
tively, that is:

p
(
xn

∣∣Wpos
)
= 1 − p

(
xn

∣∣Wneg
)

(2.6)
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Figure 2.2: Model symbolic representation with LSTM layer.

2.3 Recurrent neural networks

An RNN (recurrent neural network) is a neural network that is specialized for processing
a sequence of values [88]. Each preamble that is captured from a ZigBee device is a signal
which has a time-dependency between the samples. An RNN has the ability to extract this
time-dependency and keeping this idea in mind, an RNN based network can scale to much
longer sequences than those used in the simple feedforward ones.

In Chapter 5 we will use a specific type of RNNs called long short-term memory (LSTM)
in the encoder part of the autoencoder, as shown in Fig. 2.2. The structure of the RNNs and
LSTM layers are described in detail in the next section. Through analyzing an RNN layer
using the mathematical equations, the real merit of addition of an LSTM layer for time-
dependency extraction, which is the main topic of Chapter 5, will be clarified.

2.3.1 RNN structures

In some sequences, the time-dependency of elements of a data point from a dataset is crucial.
For instance, in a single input data point vector xn consists of K samples, as shown in Eqs.
(2.2) and (2.3). Corresponding to each input sample, there is an output sample x̂n,k. It is
worth mentioning that the samples xn,k and x̂n,k (1 ≤ k ≤ K) are scalars. Referring to Fig.
2.4 [88], showing an RNN cell feedback loop, the input and output of the RNN, xRNN

n,k and
oRNN

n,k , can be interpreted as the input sample (scalar value) and output vector of the RNN
cell at time k, for 1 ≤ k ≤ KRNN ≤ K, as shown in Eq. (2.7). As can be seen, the input and
output of RNN cell after KRNN time steps are xRNN

n and ORNN
n (1 ≤ n ≤ N), respectively.

Based on the design of the autoencoder in Fig. (2.3), which will be used and described
in more detail in this chapter, xRNN

n and ORNN
n are the mapped versions of the input and
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Figure 2.3: Input and output for the RNN structure in an autoencoder.

output in Eq. (2.3), xn and x̂n (1 ≤ n ≤ N), respectively. As can be seen, the samples xRNN
n,k

and bj
n (1 ≤ n ≤ N, 1 ≤ k ≤ KRNN ≤ K and 1 ≤ j ≤ Nunit) are scalars, and the size of an

output from an RNN cell after KRNN time steps is dependent on a factor called Nunit, which
is the number of units in a cell.

xRNN
n =

[
xRNN

n,1 , xRNN
n,2 , · · · , xRNN

n,k , · · · , xRNN
n,KRNN

]⊺
= [a1, a2, · · · , ak, · · · , aKRNN ]

⊺

ORNN
n =



oRNN
n,1
...

oRNN
n,k
...

oRNN
n,KRNN


=



[b1
1, ..., bNunit

1 ]
...

[b1
k , ..., bNunit

k ]
...

[b1
KRNN

, ..., bNunit
KRNN

]


(2.7)

In the structure of Fig. 2.4, the Z block represents a delay block, hk is the current state of
the system at time k, which is a fixed length vector [88]. The size of this vector is dependent
on the structure of an RNN cell. As depicted, a feedback loop feeds the output of the previ-
ous time to the network, resulting in the current output. An expanded form of this model is
illustrated in Fig. 2.5 [88]. In each step, the input of the model is composed of the current
input and the previous output, as shown in Eq. (2.8).

oRNN
n,k = f (xRNN

n,k , oRNN
n,k−1) (2.8)

where xRNN
n,k is the input scalar to the network at time k, oRNN

n,k−1 is the output vector of the
network at time k − 1, and f (.) represents the network function.

The structures shown in Fig. 2.6 illustrates the simplest structure for an RNN network.
Different and more complicated structures are introduced in Chapter 10 of [88]. For instance,
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Figure 2.4: Self state loop feedback of an RNN network [88].
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the structures shown in Figs. 2.4 and 2.5 are special kinds of networks which use the feed-
back of hk−1:

oRNN
n,k = f (xRNN

n,k , hk−1) (2.9)

where hk−1 is the state of the system at time k − 1, f (.) is the network function, xRNN
n,k and

oRNN
n,k are the input sample and the output vector of the system at time n, respectively.

Simple RNN

The detailed structure of the cell in Fig. 2.4 is shown in Fig. 2.6 [92].
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Figure 2.6: Cell unit structure for a simple RNN at the time-step k [92].

The output vector state of all cell units of the network for the time-step k is [88]:

hk = fg(UgxRNN
n,k + Vghk−1 + bg) (2.10)

where Ug and Vg are the weight matrices, bg is the bias vector, and fg(.) is the function which
is applied to obtain the current state hk. As can bee seen in Eq. (2.10), the feedback from the
output vector state at time-step hk−1 to the output vector state at time-step hk provides the
loop feedback of the network.

The output vector oRNN
n,k of each step in the model is calculated as follows.

oRNN
n,k = fh(Vhhk + bh) (2.11)

where Vh is the weight matrix, bh is called the bias vector, and fh(.) is the system output
function.
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The most important point about Eqs. (2.10) and (2.11) is about the set of parameters
S =

[
Ug, Vg, Vh, bg, bh

]
. Recurrent networks share parameters through time, meaning that

each member of the output oRNN
n,k for 1 ≤ n ≤ N and 1 ≤ k ≤ KRNN is produced using the

same parameter set S applied to the previous outputs.

2.3.2 Long short-term memory

Compared to the cell unit structure of a simple RNN at the time-step k shown in Fig. 2.6, it is
preferred that the output of each unit cell (oRNN

n,k ) be a function of the current input (xRNN
n ),

the previous output (oRNN
n,k−1), and the previous state (hk−1). Adding a gate named "Output

Gate", we can control what information encoded in the cell state is sent to the network as
the input in the following time step. This is done via the output vector oRNN

n,k . The revised
version of Fig. 2.6 is shown in Fig. 2.7

Figure 2.7: Effect of the Output Gate on the cell units of an LSTM layer [93].

In this new structure, the current output (oRNN
n,k ) at time-step k of all cell units of the

LSTM layer is as follows [93]:

ok = σ
(

UoxRNN
n,k + VooRNN

n,k−1 + bo

)
jk = fh (Vhhk + bh)

(2.12)

oRNN
n,k = ok ⊙ jk

= fh (Vhhk + bh)⊙ σ
(

UoxRNN
n,k + VooRNN

n,k−1 + bo

) (2.13)

where ⊙ is the inner product of two vectors. Uo, Vo, and Vh are weight matrices, bo and bh

are the bias vectors.
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Vanishing Moment Problem

In the forward pass, a set of weight matrices (Ug, Vg, and Vh) are used to pass the input to
the output of the model. As described, the whole parameter set S is shared through time.
For simplicity, let us ignore the bias vectors (bg and bh) and redefine parameters set S as:

S =
[
Ug, Vg, Vh

]
(2.14)

In Eq. (2.14), each weighting matrices Ug, Vg, and Vh are referred to as Si for 1 ≤ i ≤
3. The output vector should minimize the error between the expected (oRNN

exn,k
) and the real

(oRNN
n,k ) outputs:

Error = (oRNN
exn,k

− oRNN
n,k )2 (2.15)

Keeping in mind that the set of weights which are selected in the first place are random
and need to be trained, a log likelihood cost function is defined as follows, which will be
used for updating the weights [88]:

Ln,k = −log
(

p
(

oRNN
n,k |xRNN

n,1 , ..., xRNN
n,k

))
(2.16)

The output vector error of the model at time k = 1, · · · , KRNN in Fig. 2.5 is:

Ln =
KRNN

∑
k=1

Ln,k = −
KRNN

∑
k=1

log
(

p
(

oRNN
n,k |xRNN

n,1 , . . . , xRNN
n,k

))
(2.17)

Here, the overall error for all N data points from the dataset is:

L =
N

∑
n=1

Ln (2.18)

After this step, the gradient of the weights for minimizing the cost function error is [94]:

∂L
∂Si

=
N

∑
n=1

KRNN

∑
k=1

∂Ln,k

∂Si
(2.19)

The weights are updated through the backpropagation procedure.

Si = Si − α
∂L
∂Si

(2.20)

Vanishing moment of LSTM The structure of an LSTM cell unit is shown in Fig. 2.7. The
output of "Forget Gate" in Fig. 2.7 controls the part of the information in the cell state which
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should be forgotten, given the new input to the network. In this structure, the new output
of the system is [93]:

fk = σ
(

U f xRNN
n,k + Vf oRNN

n,k−1 + b f

)
(2.21)

Therefore, the new state (hk) in this structure is:

hk = gk ⊙ ik ⊕ hk−1 ⊙ fk

= fg

(
UgxRNN

n,k + VgoRNN
n,k−1 + bg

)
⊙ σ

(
UixRNN

n,k + VioRNN
n,k−1 + bi

)
⊕ hk−1 ⊙ σ

(
U f xRNN

n,k + Vf oRNN
n,k−1 + b f

) (2.22)

where Ui, U f , Uo, Vi, Vf , and Vo, are weight matrices, bi, b f , and bo are the bias vectors.
Using Eq. (2.19) and the chain rule, we have:

∂Ln,k

∂Si
=

∂Ln,k

∂oRNN
n,k

×
∂oRNN

n,k

∂hk
× ∂hk

∂hk−1
× · · · × ∂h2

∂h1
× ∂h1

∂Si

=
∂Ln,k

∂oRNN
n,k

×
∂oRNN

n,k

∂hk
×

k

∏
j=2

(
∂hj

∂hj−1

)
× ∂h1

∂Si

(2.23)

Now,

∂hj

∂hj−1
= σ

(
U f xRNN

n,j + Vf oRNN
n,j−1 + b f

)
⊕ ∂

∂hj−1

[
fg

(
UgxRNN

u,j + VgoRNN
u,j−1 + bg

)
⊙ σ

(
UixRNN

u,j + VioRNN
u,j−1 + bi

)] (2.24)

which if σ
(

U f xRNN
n,j + Vf oRNN

n,J−1 + b f

)
(as the output of the "Forget Gate") is greater than 0,

guaranties that even for the specific type of the hyperbolic tangent function
(

fg(.) = tanh(.)
)

[93], which is often used, with the limits of the derivative of this function:

0 ⩽ tanh′(x) ⩽ 1 (2.25)

where tanh′(x) = ∂tanh(x)
∂x , for k ≫ 1 Eq. 2.24 does not converge to zero. Therefore, replacing

Eq. (2.24) in Eq. (2.23) results in:

∂Ln,k

∂Si
=

∂Ln,k

∂oRNN
n,k

×
∂oRNN

n,k

∂hk
×

k

∏
j=2

(
σ
(

U f xRNN
n,j + Vf oRNN

n,j−1 + b f

)
⊕ ∂

∂hk−1

[
fg

(
UgxRNN

n,k + VgoRNN
n,k−1 + bg

)
⊙ σ

(
UixRNN

n,k + VioRNN
n,k−1 + bi

)])
× ∂h1

∂Si

(2.26)
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∂hk
∂hk−1

does not vanish, even for deep RNN networks (equivalent to k ≫ 1):

∂Ln,k

∂Si
̸→ 0 (2.27)

As shown in Eq. (2.26), because of the fact that σ
(

U f xRNN
n,j + Vf oRNN

n,j−1 + b f

)
will not

converge to 0 for any values of k, regardless of the function selected as fg(.), or despite
the factor ∂

∂hj−1

[
fg

(
UgxRNN

n,j + VgoRNN
n,j−1 + bg

)
⊙ σ

(
UixRNN

n,j + VioRNN
n,j−1 + bi

)]
, the vanishing

moment phenomenon in Eq. (2.27) will never happen for the structure of the LSTM shown
in Fig. 2.7.

Finally, Eq. (2.20) will update the coefficients. Since σ
(

U f xRNN
n,k + Vf oRNN

n,k−1 + b f

)
is the

most important term, Eq. (2.26) means that the gradient behaves similarly to the "Forget
Gate", and if the "Forget Gate" decides that a certain piece of information should be remem-
bered, it will be open and have values closer to 1 to allow for information flow.

2.4 Model training and validation procedure

After model definition, the model is trained using the extracted dataset. During training of
the model, the part of the dataset of the devices assigned to training is fed to the classifier.
The output values of of the decoder and classifier should ideally converge to a unique so-
lution. The reconstructed data should approximate the input dataset as much as possible.
The MSE is used for assessing the output accuracy of the reconstruction shown in Fig. 2.1
during the training or the validation processes. The mean squared error (MSE) between the
input and the reconstructed data points, xn and x̂n, at the decoder output, and also the MSE
for the training/validation phases (MSEtr/val) are expressed as:

MSE(xn,x̂n) =
1
N

K−1

∑
k=0

(xn,k − x̂n,k)
2

MSEtr/val =
1

ntr/val
∑

ntr/val

MSE(xn,x̂n)

(2.28)

where n is the sample index of a single data point (either xn or x̂n), K is the number of samples
in a data point, and ntr/val and Ntr/val are the index and number of the training/validation
data points, respectively.

The MSE function should decrease at each iteration. At the same time, after training
the model at each iteration, the same should happen during the validation of the dataset,
and the decoder and classifier outputs should show a similar decrease in the MSE values.

After feeding the training/validation dataset to the model, it classifies these data points
and assigns the positive class label (+1) or the negative class label (−1) to the each of these
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data points. In an ideal case, the extracted labels by the model and the real labels of these
data points must be the same, but in the real world, there is a difference between these
two sets of labels. The binary cross-entropy (BCE) H(y, p) between the distribution of the
extracted labels y(xn) and the distribution of the input data point p(xn) from a dataset with
size Ntr/val is used to assess the accuracy of classifier output during the training process [88]:

H(y, p) = Ey [− log p]

= − 1
Ntr/val

× ∑
xn∈{x0,x1,··· ,xNtr/val−1}

[y(xn) log (p(y(xn))) + (1 − y(xn)) log (1 − p(y(xn)))]

(2.29)

Eq. (2.29) is called the binary cross-entropy (BCE) for the y(xn) ∈ {0, 1}. If the values
other than 0 and 1 are selected for the y(xn), it may produce negative cross-entropy (BCE)
values, but it will not essentially break down the convergence of loss function. The question
arising here is that why do we need training of the decoder? Can we just focus on the
classification training fed by the encoder output? The answer to this question is that the
mean square error in Eq. (2.28) and the binary cross-entropy (BCE) in Eq. (2.29) should
evolve simultaneously during training, to ensure that the accuracy of the decoder output
improves in such a way that it provides meaningful features for the classifier at the output
of the encoder and makes the label allocation more accurate.

Another aspect to consider is the decoder part required by the autoencoder model in
training phase. After training, during testing, the classification procedure just needs the
encoder and classifier parts, since the weights of the encoder and classifier are already set.

At the end of the training process, among all models, the one which has the minimum
validation loss function value (BCE) of the classifier’s output, is selected as the best model
for testing purposes.

2.5 Conclusion

In this chapter, the theoretical concept behind the selected deep learning models such as
autoencoder, RNN, LSTM, and the reason for selecting them for this thesis were explained.
In addition, the training approach for the autoencoder and classification parts in the thesis
are described in detail, clarifying the methodology for feeding the dataset to the model and
training the weights. On the other hand, the updating approach through using the mean
squared error (MSE) and binary cross-entropy (BCE) cost functions for model training in
decoder and classifier parts are presented in detail, respectively.
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Chapter 3

Dataset Generation for Authorized
and Rogue Device Discrimination for
Security Purposes in Wireless
Communication Systems

3.1 Introduction

Designing a secure network which rejects the access of rogue devices and accepts authorized
devices to enter the network begins with the capture of datasets from real devices. As dis-
cussed, the main focus in this thesis is on the ZigBee protocol (IEEE 802.15.4). For such a
goal, a set of ZigBee devices are collected and stimulated to produce responses. Based on
the IEEE 802.15.4, these responses includes a part called preamble which is later used in the
model training for each device in Chapters 4 and 5.

To generate a model with high classification accuracy, different factors are important.
These factors include a large enough high quality dataset, a model with enough complexity,
carefully selected model parameters for training the model, and testing the trained network.
In this chapter, we start with the first step, which is the dataset generation from ZigBee
devices. As mentioned, feeding the model with a high quality dataset is of high importance.

However, because of different factors such as distortion and environment noise signals,
the quality of the captured dataset from used devices decreases. On the other hand, the
received signal from a ZigBee device includes the transmitted messages. In this chapter, first,
the structure of a ZigBee signal is discussed in detail and the part which is appropriate for
model training is assigned. Next, the detailed mechanism of dataset generation is presented,
and the different challenges and their solutions are reviewed in detail.
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The selected devices for data transmission, from Texas Instruments (2 devices), RZUS-
Bstick (5 devices), and Digi XBee (1 device), are used in dataset generation. Signal capturing
is done using a Zynq XC7Z020 FPGA.

3.1.1 Why do we need to explain the data acquisition procedure in detail?

As mentioned, data acquisition and dataset making is one of the most important steps in the
selected methodology. In the environment, there are different negative factors such as dis-
tortion and environment noise which make the dataset acquisition a big challenge. On the
other hand, even without these external resources, the received data from a ZigBee device
suffers from some internal noise and distortions caused by the different factors such as the
defects generated during the production, due to the environmental or other conditions such
as temperature, humidity, etc. [95]. Some of these internal distortions are unique and helpful
in distinguishing the different devices from each other, but some have negative effects such
as delayed start of the preamble. Before doing the analysis, it is needed to clean the captured
signal to remove the environmental noise and distortions, and also unwilling distortions
caused by the device itself. Although the data capturing from ZigBee devices has been in-
vestigated in the literature (e.g. [96]) in recent years, however, it is a challenging procedure
due to the diversity of the problems in this area, and in some cases, neither these problems
(such as the distortions caused by the data transmission and reception) nor their solutions
(e.g. extraction of the real starting point of a preamble or phase or frequency compensation)
are presented in the literature, completely. In this chapter, all these possible problems and
their solutions for the data acquisition and cleaning are addressed in full detail.

The structure of this chapter is as follows. In Section 3.2, a detailed description of the
ZigBee burst (received signals from different devices which are going to be used for RF-DNA
extraction [97]) structure is given. In Sections 3.3 and 3.4, the procedures of data transmission
and reception are explained, respectively. Section 3.5 is devoted to preamble extraction,
which is the basis of RF-DNA generation from different devices. Section 3.6 presents how
convolution is used to find the beginning of a preamble. Finally, Section 3.7 concludes the
chapter.

3.2 ZigBee burst structure

Fig. 3.1 shows a sequence of successive bursts using ZigBee protocol IEEE 802.15.4. To
design a good model with high classification accuracy, it is important to feed it with a high
quality dataset, with a fixed repetitive pattern. By fixed repetitive pattern we mean that the
model must be fed with a dataset which is generated with the same pattern in real cases by
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Figure 3.1: Sequence of successive bursts (ZigBee protocol IEEE 802.15.4).

real devices. Thus, it is important to detect the structure of the transmitted signal.

A ZigBee device generates and transmits a train of successive bursts, containing the
transmitted information. Each burst includes a sequence of different kinds of headers and
ends with a data part. The structure of a burst is shown in Fig. 3.2. As illustrated, each
burst starts with a preamble. This preamble is an essential part for feature extraction from
the ZigBee device, which will be used in Chapters 4 and 5 for feeding the presented models.
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Figure 3.2: Structure of a single burst.
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Figure 3.3: Device and antenna in the shielded box (anechoic chamber).

3.3 Data transmission

3.3.1 Empirical data transmission procedure

In this section, the procedure for data transmission is described. This procedure can be
summarized as stimulating the device and capturing the response. However, it needs some
special requisites, which are as follows:

1. Programming the device
First, it should be noted that the transmitter device needs to be programmed. There-
fore, the appropriate driver should be uploaded on the device.

2. Shielding the device
Next is the data transmission procedure. In the case of data acquisition for dataset
generation in model training, it is optimistic to think that no environmental signal
contaminates the transmitted signal. Therefore, it is better to do the capturing in a
shielded box. For this aim, the antenna and the device (Fig. 3.3) can be both put
inside the shielded box, such as the anechoic chamber shown in Fig. 3.4. Obviously,
shielding the device is a case that is far from a real life scenario, but it is nevertheless a
good strategy for the purpose of this research.

3. Feeding the device
In the next phase, there should be a host which feeds the selected data to the device
to be transmitted. After connecting the device to the computer through a USB cable, a
software should manage the transmission of bursts through the connected port of the
computer to the device.
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Figure 3.4: Shielded box.

Figure 3.5: Real image of successive bursts from ZigBee device TI1 captured from the oscil-
loscope.

4. Bursts measurements
Now, the question that should be answered here is about the real form of the bursts. If
the transmitted bursts of the device are shown on an oscilloscope, the data train should
look like Fig. 3.5 (received signal from a Texas Instrument device). As can be seen, the
train of the bursts is similar to Fig. 3.1.

The successive bursts have almost equal amplitudes. In this experience the minimum
acceptable amplitude contributing to the quality of the signal in the model training
part is about 40 mV. Fig. 3.6 shows an enlarged part of each of the bursts depicted in
Fig. 3.5. As can be seen, the amplitude for this burst is almost 300 mV which is higher
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Figure 3.6: Enlarged bursts from the ZigBee device TI1 with amplitude higher than 40 mV.

than the minimum acceptable value (40 mV). Below that minimum amplitude, it is
possible to have problems in the feature extraction part.

3.3.2 Possible distortions caused by the transmission procedure

In some situations, because of different kinds of impairments which may have happened
in the procedure of signal transmission, the received signal’s quality may be altered. Data
mining that can be used to mitigate these imperfections is needed. These damages can be
enumerated in three different groups.

1. Distortions caused by the environment
This group of errors is mainly caused by working devices in the environment. In this
case, the received signal will suffer from serious distortions in the shape of the I and Q
components. As an example, it is worth pointing at environmental noise as one of the
most important causes. Shielding the receiver and the transmitter antennas is a good
solution, but sometimes in real cases, this is not a feasible strategy.

2. Distortions caused by the transmission procedure
As explained in Section 3.2 and depicted in Fig. 3.2, the structure of a burst in the
IEEE 802.15.4 protocol is composed of different parts such as the preamble, the start of
frame delimiter (SFD), the PHY header (PHR), and the PHY service data unit (PSDU).
It may seem that each preamble starts with a well shaped successive pattern exactly at
the beginning of each burst, but that is not always the case. The starting symbol of the
preamble in the burst can get damaged for different reasons. The two most important
cases are:

a) Delayed data transmission
In some cases, because of the delay in the performance of the operating system in
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the host which feeds the transmission devices (discussed in part 3) of Section 3.3.1,
the transmission of the preamble suffers from a delay in time. In this condition,
the starting samples at the beginning may seem to be a part of the preamble, but
they are not and the whole packet of the signal has a shift in time. If the duration
of packet transmission by the device is fixed, it may happen that part of the data
is lost from the end of the burst. On the other hand, if the amount of this shift is
too large, then it is highly probable not only to lose the data but also to miss a part
or the whole preamble.

The preamble extraction approach should be very efficient about finding the be-
ginning of the preamble (discussed in Section 3.5.1). In Fig. 3.7, the starting index
of the depicted preamble is about 30, which indicates the delay in the received
signal.

b) Transmission of signal during the device transition state
The transmitter device has a transition time at the beginning of each burst and
based on the device, the duration, type, and effect of this transition may differ.
Then, a specific kind of distortion arises as a result of this transition to the shape of
the signal emitted from the transmitter. As an example, for this kind of distortion,
a received signal from the ZigBee device RZUSBSTICK 1 (RZ1) is shown in Fig.
3.7. The most important thing about this distortion is that the shape deformation
at the beginning of each preamble is related to the transition characteristics of
the device, and it can be used as a unique signature in the procedure of feature
extraction from the device for classification. At the beginning of the preamble,
there is a part which is almost zero.
The extraction at the beginning of the preamble is discussed in more detail in
Section 3.5.1.

3.4 Data reception

The procedure of receiving the transmitted signal in the receiver is not straightforward in
practice. In other words, during data reception, various steps such as demodulation, pream-
ble extraction, and data discrimination should be done. Meanwhile, in each if these steps,
some different types of error may happen which need to be detected and compensated.

3.4.1 Data demodulation

As discussed in the previous section, when a device enters the network, it is stimulated to
broadcast a special response. The received signal is modulated by a PN/chip sequence. This
kind of response is received by the network and recorded for later computations and feature
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Figure 3.7: An example of data distortion at the beginning of the in-phase (I) component of
the transmitted preamble, from device RZ1.

extraction. Fig. 3.8 shows the signal of one burst received from device RZ1. As seen, the
signal is in a complex form and includes I and Q components. Also, the amplitude range of
the received signal is [−1860, 1860] for I, and [−1914, 1914] for Q, which are different from
the corresponding I and Q components in the transmitted one (in the range of [−300, 300]
for I and Q in Figs. 3.6 and 3.7). This difference is the result of applying the FPGA gain to
the received signal, described in more detail in Section 3.4.2 and Part 5 of 3.4.3. The first step
for making the data ready for feature extraction is demodulation.

3.4.2 Empirical data receiving procedure

The main element in the data receiving procedure is done in an FPGA module (Zynq XC7Z020).
This device is shown in Fig. 3.9.

For using the FPGA as a receiver, some steps should be followed:

1. Programming the FPGA
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Figure 3.9: FPGA used for receiving bursts.

First of all the FPGA should be programmed. For this, the FPGA should be connected
to the computer through a USB cable and the programming port, as shown in Fig.
3.10. Next, a program should manage the ports and memory allocated to the data
acquisition procedure. The programming code can be written on the FPGA using a
software development kit (SDK) program. Next, the programmed FPGA (confirmed
by the blue light in Fig. 3.11), is ready to capture the transmitted signals from the
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(a) (b)

Figure 3.10: Connection of the FPGA to the computer for programming through USB. The
programming ports of the FPGA are illustrated with circles in (a).

Figure 3.11: The blue light on the FPGA shows that it is programmed correctly.

device.

2. Down-conversion
The generated base-band bursts, before transmission, are up-converted to mid-band in
the modulation section. Then, the first step is to down-convert the bursts to the base-
band frequency. Also, as mentioned, different devices (such as RZUSBSTICKs, Texas
Instruments, XBEE Digi, etc.) focus on different channels defined in the IEEE 802.15.4
protocol. Therefore, during the down-conversion, this frequency difference should be
taken into account.

The last point is that in the case of down-conversion, since the clock of the demodu-
lator is slightly different from the modulator upconversion frequency, this frequency
difference can lead to a serious phase and frequency distortion of the received base-
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band burst. This case of distortion will be discussed in more detail in part 4 of Section
3.4.3.

3. Burst attenuation/amplification
After down-conversion, the quality of the received bursts in terms of amplitude is ver-
ified using the SDK software. If the received burst is attenuated/amplified too much
during the transmission procedure of the generated signals, it can be compensated
through increasing/decreasing the FPGA gain (the gain which is applied to the re-
ceived bursts by the FPGA). On the other hand, even though the amplitude of the
transmitted signal has remained unchanged during the transmission, amplifying the
signal using the FPGA is useful for feature extraction. However, it should be kept in
mind that increasing the gain should be done carefully, since strong receiving gains on
the FPGA can result in saturation of the bursts, which leads to damage in the received
data. This effect of saturation is going to be introduced in Part 5 of Section 3.4.3 in more
detail.

4. Saving the bursts
After making sure that the quality of the received bursts is acceptable, they can be
stored in memory for later use. The reception and storage of the bursts in the hard
drive from corresponding ports are done using MATLAB/Python codes. But before
running the MATLAB/Python programs, we have to make sure that no other program
is connected to the programming port of the computer.

5. Burst acquisition using MATLAB/Python
First, the MATLAB/Python program should be connected to the assigned communi-
cation port. Next, the code saves the bursts transmitted by the device one by one into
the hard drive.

3.4.3 Possible distortions caused by the receiving procedure

1. Zero record capture
As mentioned, during signal emission, a train of bursts is transmitted from the trans-
mitter and received by the receiver. These trains of bursts are saved in separate files,
during the collection of data from the devices. In some cases, because of the problems
in the receiving procedure, a part of the transmitted signal is missed and the corre-
sponding recording is just a flat zero signal.

2. Non-loadable records
This is a rare phenomenon. In some cases, because of problems in the procedure of
saving the recorded signal, despite the existence of data, the file is not loadable to the
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Figure 3.12: Example of phase shift in a preamble, from device RZ1.

memory for feature extraction. The receiving program should be aware of these faulty
recordings and eliminate them from the rest of the procedure.

3. Empty recording
In contrast to the previous cases, here the file does not contain any data, and the whole
received burst in the recording is missed.

4. Phase and frequency mismatch
In the case of a carrier frequency mismatch between the demodulator and the modu-
lator, there will be a linear shift in the phase of the received preamble. In this case, the
phase of received preambles has a shift which increases in time, linearly, as shown in
Fig. 3.12. In this figure, the result of the phase shift on a burst from RZ1 is illustrated.
It is possible to fit a regression line to the phase of preambles and compare it with the
phase of the reference preamble. As can be seen, there is a bias and a shift in the slopes
of the two regression lines (representing the reference phase and the received signal
phase). Through a compensation procedure, this slope should be eliminated from the
phase of the preamble to make it as close as possible to the phase of the reference
preamble. The mechanism of phase compensation is described in Section 3.5.2.

On the other hand, the effect of this phase shift on the preamble should be the same
as in Fig. 3.13. As can be seen, in some cases, the phase shift affecting the phase of
the preamble is up to 180 degrees which inverses completely the related PN sequence.
In this figure, the amplitude of the received signal is different from what is shown
in Figs. 3.7 and 3.8, since the amplitude of the reference preamble is in the range of
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Figure 3.13: Effect of phase shift deduced from modulation and demodulation frequency
mismatch on enlarged (a) I and (b) Q components of a received preamble, from device RZ1.

[−1, 1]. Therefore, the received preamble’s amplitude is normalized to provide a good
comparison in Fig. 3.13.

5. Burst saturation
The amplitude of the bursts transmitted by different devices may differ from one man-
ufacturer to another (e.g. the signals transmitted by Texas Instruments ZigBee devices
are stronger than what is transmitted by RZUSBSTICK devices). It is probable that the
appropriate FPGA gain for one device does not work for the others. If the used gain is
too high, a specific distortion will be applied to the peak values of the received pream-
ble’s symbols, as shown in Fig. 3.14. The illustrated in-phase (I) and quadrature (Q)
are measured from a burst of RZ1 device. Decreasing the transmitter or FPGA gain can
solve this problem.
Meanwhile, focusing on Fig. 3.14 and comparing it with Fig. 3.8, the difference of am-
plitudes of both figures (from 1860 in the I and 1914 in the Q components, to almost
2000 for both components) is a clue to show the higher FPGA gain in the latter case,
resulting in saturation of the received signals.
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Figure 3.14: Burst saturation as an effect of extra FPGA gain for device RZ1.

3.5 Preamble extraction

During the procedure of signal recording, if none of the errors mentioned above happens,
this means that the transmitted signal has been correctly captured by the receiver. In such a
case, the received bursts are ready for preamble extraction. However, if one or more of the
mentioned imperfections decrease the quality of the received burst, taking into account the
following steps is essential. As mentioned in part 2a of Section 3.3.2 and illustrated in Fig.
3.7, it is probable that the starting point of the burst (and consequently the preamble) in the
received signal is shifted in time. First, the starting index of the preamble should be extracted
and after that, one can see how much of the preamble is received correctly. According to this
information, one can decide if a burst is legitimate (and therefore should be kept) or not (so,
will be eliminated from the dataset).

1. Preamble starting index extraction
For extraction of the beginning of a preamble, the mechanism which is used is as fol-
lows.

a) Production of a single reference symbol and extracting its related phase
As described in Section 3.2, at the beginning of each burst, theoretically there
should be 8 successive symbols forming the preamble together (32 zero bits).

Based on [96], the PN sequence for each zero symbol (0000) is:

11011001110000110101001000101110
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Figure 3.15: Modulated I and Q components corresponding to the zero symbol.

and the corresponding modulated I and Q components are shown in Fig. 3.15.

This generated symbol can be used in determining the beginning of the preamble.

b) Finding the beginning of the preamble
After generating the reference symbol, the beginning of the received preamble is
extracted from the burst by convolving its phase and the phase of the reference
symbol. In other words, through sweeping the reference symbol’s phase along
the phase of the extracted burst and calculating the convolution, the points which
are the real beginning of the symbols (since there are 8 successive symbols in each
preamble) should lead to 8 equal maxima, located apart from each other with a
distance of exactly one symbol. In such a case, the first peak can be used as a
guide to find the starting index of the preamble. However, 2 points must be taken
into account.

i. Effect of transition on successive maximum convolution peaks
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Figure 3.16: Convolution of the reference symbol and the received burst. The first peak in the
convolution is distorted, compared to the other 7 remaining peaks. The region containing
the first peak is indicated as a 'convolution of faulty symbol'.

As mentioned in Part 2b of Section 3.3.2, and illustrated in Fig. 3.7, in most
of the cases, the first symbol is corrupted because of the transition response
of the device. Then, in most of the cases it is better to find 7 successive equal
maximum peaks instead of 8, and thus, the second peak will indicate the
starting index of the second symbol. As an example, the output resulting
from the convolution with 7 successive peaks is shown in Fig. 3.16, obtained
from device RZ1.

ii. Relationship between the maximum peaks and starting index of preambles
Before determining the most appropriate approach for finding the start of a
preamble, it is better to consider the concept of convolution, as presented in
Section 3.6. First, let us suppose that there are 8 good quality peaks in the
convolution result. As described in Section 3.6, the time of occurrence of the
first peak in the procedure of convolution calculation is always one window
(in this work, equal to the length of one symbol) away from the actual starting
moment of first symbol (and therefore the corresponding preamble). Also, 7
peaks are considered, thus the actual starting time of the preamble will be 2
symbols away from the occurrence of the second peak.
Keeping the above in mind, as shown in Fig. 3.16, if for example the second
peak happens at index 1310, this means that the starting index of the first
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Figure 3.17: Modulated I and Q components of the reference preamble.

symbol is:

Symbol length = 640

First symbol starting index = 1310 − 2 × 640

= 30

If the focus is on 8 successive bursts, and the first peak happens at index 670,
then the start of the preamble is just a symbol away from the first convolution
peak.

Preamble starting index = 670 − 640 = 30

Now, it is possible to extract the preamble. But, as mentioned in part 4 of Section
3.4.3, because of the mismatch in the down-converting frequency of the demod-
ulator and in the up-converting frequency of the modulator, there will be a fre-
quency and a phase shift, as shown in Fig. 3.12, which needs to be compensated.

2. Phase and frequency compensation
Each preamble contains a repetitive pattern of one symbol. A preamble is made up of
8 successive modulated I and Q zero symbols. Then, based on what was discussed in
Part 1a of Section 3.5 and shown in Fig. 3.15, the reference preamble is as depicted in
Fig. 3.17.

Fig. 3.18 shows the real and imaginary components, phase, and constellation diagrams
of a received preamble from ZigBee device RZ1. Comparing this figure with the I, Q,
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Figure 3.19: Reference preamble I, and Q components, phase, and constellation.

phase, and constellation of a reference preamble, as shown in Fig. 3.18, a reference sym-
bol (and its corresponding preamble) covers all 2π radians of the unit polar coordinate
circle. This phase is the reference for all computations in the phase compensation.

As discussed in Part 4 of Section 3.4.3, working with the initial captured signals, be-
cause of differences in the modulation and demodulation frequencies, there will be a
shift in the slope of the captured signal phase compared with the reference preamble’s,
as shown in Fig. 3.20. The procedure of phase compensation consists of reducing the
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slope difference of two graphs. Consequently, the mechanism is as follows.

a) First a reference symbol is generated as shown in Fig. 3.15.

b) Based on the fact mentioned in Part 1a of Section 3.5, repeating the symbol makes
a reference preamble, as shown in Fig. 3.17.

c) Calculation of the phase of the extracted preamble from the burst and also the
generated reference preamble. The phase of a complex number (C) is:

φ = arctan
(
ℑ(C)
ℜ(C)

)
(3.1)

where ℜ(C) and ℑ(C) are the real and imaginary values of C, respectively.
But as discussed in Part 1a of Section 3.5 and shown in Fig. 3.17, each modu-
lated preamble signal is the result of repeating a zero symbol 8 times. On the
other hand, as shown in Fig. 3.19, each symbol covers all 2π radians of the com-
plex plane. Thus, repeating a symbol in a preamble results in the addition of 2π

radians to the phases of the repeated symbols in the preamble. Therefore, the cal-
culation of data points in a preamble obey the rule in the following equation [98].

φn =

⌊
φn−1 − φ∗

n
2π

+ .5
⌋
× 2π + φ∗

n

φ∗
n = arctan

(
ℑ(prn)

ℜ(prn)

)
φ0 = φ∗

0

(3.2)

where prn is the nth sample from the received preamble, for n = 0, 1, · · · , N − 1
and N is the preamble length.

d) Calculation of the error using the following equation, as shown in Fig. 3.20:

φerr = φ(re fpr)− φ(recpr) (3.3)

where φ(re fpr) and φ(recpr) are the phase of the reference and the received (non-
compensated) preambles, respectively.

e) As seen in Fig. 3.20, the error is almost linear, after about 500 measured samples.
Therefore, by fitting a first degree polynomial to the error through the extraction
of the linear regression parameters a and b in the following equation, the linear
phase difference needed for the correction of phase in each data point can be cal-
culated as follows:

∆φlinear = a × n + b

a =
φerr2 − φerr1

N

(3.4)
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using Eq. 3.3.

where b is a constant, φerr1 and φerr2 are the first and the last elements in φerr, n =
0, 2, 3, . . . , N − 1 and N is the preamble length. The corrected phase of the received
preamble, φcorr, is given by

φcorr = φ(recpr)− ∆φlinear (3.5)

where φCorr is the corrected phase of the received preamble.

f) Using Eq. 3.5, the compensated I and Q components of the preamble can be
obtained using the following equation:

Icomp = A(cos(φcorr))

Qcomp = A(sin(φcorr))
(3.6)

where A is the amplitude of received preamble:

A =
√
ℜ(recpr)

2 +ℑ(recpr)
2

After the phase compensation procedure, the preamble is extracted, phase compen-
sated, and ready for feature extraction and signal analysis. An example of the compen-
sated phase of a received preamble of ZigBee device RZ1 is presented in Fig. 3.21. As
shown, the comparison of this phase with the reference preamble’s results in a good
match compared to the non-compensated preamble’s phase. Also, the corresponding
preamble for each of these three mentioned cases are shown in Fig. 3.22. As can be
seen, the compensated I and Q components of the received preamble match very well
with the corresponding components of the reference preamble. It is worth mentioning
that like in Fig. 3.13, the amplitude of the I and Q components in the received and
compensated preambles are normalized in Fig. 3.22 to facilitate the comparison.
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3.6 Determination of the beginning of a preamble using a
convolution

Consider the problem of finding the beginning of a preamble through convolving the phases
of a symbol and the whole burst. As explained earlier, the beginning of the preamble has a
shift compared to the beginning of the received signal. Therefore, through convolving the
phases of a symbol and the whole burst, the beginning of the preamble is achievable. After
finding the beginning of a preamble, knowing its length, we are able to extract it for the
processing purposes. It is worth mentioning that the real beginning of the preamble is one
symbol before the moment shown by the convolution results.

3.7 Conclusion

In this chapter, the mechanism of dataset acquisition and cleaning was described in detail.
As mentioned earlier, designing an effective device discrimination model starts from the gen-
eration of a large enough high quality clean dataset. In the environment, different distortion
factors such as noise, wireless signal, Wi-Fi access points, and other resources interference
decrease the quality of the captured signal. After cleaning the dataset, the preamble part of
the ZigBee signal based on IEEE protocol 802.15.4 must be extracted for training, validation,
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Figure 3.22: Received, reference and compensated preambles of ZigBee device RZ1.
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and testing of the model. After these two steps, the dataset is ready for device discrimination
purposes. These two steps were described in detail in this chapter, and the extracted dataset
is ready to be used in the next chapters.

Designing a secure network which rejects the access of rogue devices and accepts the
authorized devices to enter the network begins by capturing a dataset from real devices. As
discussed, the main focus in this thesis is on the ZigBee protocol (IEEE 802.15.4). For such a
goal, a set of ZigBee devices are collected and stimulated to produce a response. Based on
the IEEE 802.15.4, this response includes a part called preamble which is later used in the
model training for each device in chapters 4 and 5.
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Chapter 4

Rogue Device Discrimination in
ZigBee Networks Using Wavelet
Transform and Autoencoders

4.1 Introduction

In recent decades, the development of wireless communication systems and networks has
led to the use of portable devices anytime and anywhere. Consequently, different secu-
rity protocols such as Wi-Fi Protected Access (WPA), WPA2, and WPA3 have provided a
higher degree of security for short or long range radio communication systems over the last
years [7, 8]. One of these communication protocols, ZigBee, introduced in 1999 [99], is con-
sidered as an attractive wireless system for commercial and military applications, because of
its low cost and low complexity [97]. Despite the advantages in security protocols and sys-
tems in the last decade, the fast evolution of physical attacks by rogue/unauthorized guests
(unseen devices that attempt to access the wireless network by falsifying their bit-level cre-
dentials to match the identity of the known/authorized devices) to the ZigBee networks
makes physical layer attacks prevention and countermeasures very complicated, because
of the intrinsic importance of physical layer attacks in comparison with cryptanalytic at-
tacks [9].

Physical layer attacks include a vast range of attack types, typically using very sophis-
ticated methods and devices to extract the information from the network by falsifying the
identity of the main members (legitimate nodes), during normal data transmission. Based
on this, the longer a communication system transmits information, the higher the risk for
information leakage or unauthorized access of rogue devices.

An approach to improve the security of data communication through a vulnerable net-
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work channel, consists in defining RF Distinct Native Attributes (RF-DNA) features of hard-
ware devices (PHY layers) [100], which are inherently unique for a given device [101]. In this
thesis, these RF-DNA features are analyzed and processed for the discrimination and rejec-
tion of spoofing devices. The methodology presented in this chapter is published in [10].

The structure of this chapter is as follows. First, Section 4.2 introduces the methodol-
ogy adopted in our work for security classification purpose. In Section 4.3, the outcome of
the proposed method on real data is explained. Section 4.4 presents the comparison of the
proposed methodology in this chapter with some results presented in the literature. Finally,
Section 4.5 summarizes different findings of this chapter.

4.2 Proposed classification method

The main objective of this chapter is to propose a binomial (or binary) classification system
which provides a mechanism for device discrimination into two classes: legitimate devices
and (unauthorized) rogue devices. The purpose of this binomial classification is the ability
to reject the access of rogue devices to a ZigBee network. The classification strategy is one-vs-
all where the system generates a model for each specific device, and considers the detection
of all other devices other than the main target device. Assuming that a model is made for a
specific device, devicem, when any new device enters the network, this model tries to detect
if the anonymous device is an authorized device, i.e. devicem, which will be granted access
to the network. If not, it will then be rejected by the network.

4.2.1 Dataset acquisition

For training a model, the first step is the dataset acquisition from real devices. This consists
in creating the data points of different devices from the signal acquisitions of the ZigBee
devices. The IEEE 802.15.4 protocol (ZigBee protocol) communicates through 11 channels
from 2.4 GHz to 2.48355 GHz, each with a 2 MHz bandwidth [102]. Different manufac-
turers set the central carrier frequency of their ZigBee devices to different channels in this
frequency range. For instance, RZUSBSticks work in channel 20 with a central frequency of
2.45 GHz, whereas XBEE Digi units and Texas Instruments devices use channel 11 with a
central frequency of 2.405 GHz. The responses of these devices are captured as successive
partial signals, or bursts.

The structure of the bursts, following the IEEE 802.15.4 protocol, was shown in Fig.
3.2. A burst begins with a known preamble [102], followed by 8 successive modulated zero
symbols, consisting of I and Q components as shown in Fig. 3.18. Each preamble contains
a repetitive pattern of a single symbol. The duration of each symbol is 16 µs, and thus the
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length of the whole preamble is:

preamble length = 8 × 16 µs = 128 µs (4.1)

4.2.2 Received preamble extraction

In real life systems, the beginning of a preamble is not exactly located at the beginning of
the signal burst. Therefore, the beginning of a preamble must be extracted from the received
signal. For this purpose, a symbol for each of the 8 successive sub-regions in Fig. 3.17 is
convolved with the received signal. Thus, there will be 8 successive peaks in the calculated
convolution coefficients. The first one determines the beginning of the preamble in the re-
ceived burst.

After the determination of the beginning of the preamble, and knowing its length, ex-
traction of the preamble itself is easy.

4.2.3 Dataset phase and frequency compensation

The received signals must be phase and frequency compensated because of the time-varying
difference in the modulation and demodulation frequencies. This results in a shift in the
slope of the captured and the original preambles: phase compensation consists of reducing
the slope difference between these two. The dataset phase and frequency compensation is
described in detail in Section 3.5.2.

An example of a phase compensated signal is presented in Section 4.3.2. Once phase
compensation is done, the extracted preambles can be processed for feature extraction, signal
analysis, etc.

4.2.4 Dataset transformation

In this chapter, the discrete wavelet transform is investigated as a means to improve the
discrimination process between devices. Before feeding the data points of the dataset to the
classifier, a special kind of domain transformation, the dyadic discrete wavelet transform
(DDWT), is applied to the dataset. The dyadic wavelet transform coefficient of the received
ZigBee vector signal, xn = [xn,1, xn,2, · · · , xn,k′ , · · · , xn,K]

⊺ and (1 ≤ k′ ≤ K with K samples),
is given by [103, 104]:

cj,k =
1√
2j

∞

∑
k′=−∞

xn,k′ψ
∗
[

k′ − k2j

2j

]
=

1√
2j

K−1

∑
k′=1

xn,k′ψ
∗
[

k′ − k2j

2j

]
(4.2)
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Figure 4.1: Dyadic discrete wavelet transform decomposition diagram.

where j = 0, 1, 2, ... and k′ = 1, 2, ..., K, and ψ∗[k′] is the conjugate of the wavelet window,
ψ[k′]. Changing j (called the dyadic scale factor) results in changing the width of ψ[k′]. The
reason for calling this scale coefficient a dyadic factor is that the width of the wavelet window
ψ[k′] changes with this variable, dyadically (as a power of 2). The result of the calculation
of cj,k for different values of j is referred to as wavelet decomposition. The decomposition
level of the wavelet coefficients is determined by the wavelet parameter j. As the size of the
wavelet window changes, the number of features extracted will change, too, as shown in
Fig. 4.1.

Let us have a detailed look at Fig. 4.1. In this figure, the diagram is divided into different
parts, called decomposition levels. These are the same levels assigned by the j factor in Eq.
(4.2). In each decomposition level, two different types of filters can be seen, a low-pass
filter, h[k′], and a high-pass filter, g[k′]. Each of these two filters can be used as ψ[k′] in Eq.
(4.2). Using the low-pass filter h[k′], the calculated coefficients cj,k are called low-frequency
or approximation coefficients aj,k. On the other hand, replacing ψ[k′] by g[k′] results in the
extraction of the detail coefficients dj,k. Eq. (4.3) [103,104] presents the same rule, in a clearer
way.

aj,k =
1√
2j

∞

∑
k′=−∞

xn,k′h∗
[

n − k2j

2j

]
=

1√
2j

N−1

∑
k′=0

xn,k′h∗
[

n − k2j

2j

]

dj,k =
1√
2j

∞

∑
k′=−∞

xn,k′g∗
[

k′ − k2j

2j

]
=

1√
2j

N−1

∑
k′=0

xn,k′g∗
[

k′ − k2j

2j

] (4.3)

The selected wavelet window for this chapter is the Haar wavelet. The low-pass and
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high-pass filters for the Haar wavelet are as presented in Eq. (4.4), and as shown in Fig
4.2 [105].

h[k] =

1, for k = 0, 1.0

0, otherwise

g[k] =


1, for k = 0

−1, for k = 1.0

0, otherwise

(4.4)
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n

(b)

Figure 4.2: (a) low-frequency and (b) high-frequency Haar wavelet windows [105].

All classifications with the wavelet transform, referred to as the DDWT dataset, are done
based on the extracted details at the first wavelet decomposition level. For comparison pur-
poses, the dataset obtained before wavelet transform calculation (received, extracted, and
phase and frequency compensated dataset with respect to Sections 4.2.1, 4.2.2, and 4.2.3)
will be referred to as the RAW dataset in the remaining of the chapter.

4.2.5 Model definition

As described in Chapter 2, the structure used for feature extraction in this chapter is the
autoencoder. After feature extraction by the autoencoder, the extracted features are fed to a
classifier for device discrimination as an authorized/rogue device. The whole procedure of
the definition of the model used in this chapter (depicted in Fig. 2.1) is described in detail in
Section 2.2.
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4.2.6 Dataset subdivision into training, validation, and testing datasets

The classifier model selection requires three tasks: a training phase, a validation phase, and a
testing phase [106]. During the training and validation phases, a new model is generated for
the discrimination of one specific device from the other devices. Then a testing phase with
at least a new device is done to assess the reliability of the classifier model. Before training
the model, the dataset is thus subdivided into three different datasets: a training dataset, a
validation dataset, and a testing dataset. The step-by-step dataset subdivision procedure is
as follows.

Selection of positive and negative devices As mentioned before, the classification strategy
adopted for this work is the one-vs-all strategy. One device, devicem (0 ≤ m ≤ M − 1), is
selected as the positive device (with data points labeled +1) while the other M − 1 devices are
identified as negative devices, allocated to a negative class (’−1’) labeled data points. Either
devices in the dataset can be labeled as the positive device: thus M different scenarios are
possible, each considering a different device as the positive device.

Device allocation for training, validation and testing After the selection of devicem and
labeling the data points, the devices are selected for training, validation, and testing. The
procedure of device allocation to each of these steps is as follows.

1. Training
In this step, devicem and at least one other device from the same or another manufac-
turer are selected for the training dataset.

2. Validation
In the validation procedure, beside the models used in training, there should be one or
more additional devices which have never been seen by the model during the training
procedure. Feeding previously unseen devices improves the performance efficiency of
the model.

3. Testing
Beside the devices already selected for training and validation, new devices are essen-
tial for correct final evaluation of the generated model.

Data points allocation for training, validation and testing To ensure that the classification
model can distinguish between the data points of the desired device, devicem, from the other
devices, a sufficiently large number of data points from this device should be kept in the
training set. Then, after allocation of the devices for training, validation, and testing, the
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Figure 4.3: Training, validation, and testing
dataset generation.

data points themselves are assigned for each of them. Therefore, almost 60% of the data
points from training devices are used in training. Next, 10% of the validation devices are
allocated to it, and finally, the remaining data points from all devices should be used as
testing points. In this work, none of the devices used in training, validation, and testing
have data points in common: each data point from each device is used only in one of these
steps. In other words, the number of training (Ntr), validation (Nval), and testing (Nte) data
points are as follows.

Ntr = 0.6N

Nval = 0.1N

Nte = 0.3N

(4.5)

Fig. 4.3 illustrates the block diagram for the data points separation. As shown, the
dataset generation procedure can be applied to either the RAW or the DDWT datasets. It is
worth mentioning that in this figure, the goal is to make a dataset for each device through
stratified sampling. In such a case, although the sampling is done randomly, it can be assured
that the model is not going to be biased during the training.
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4.2.7 Model training and validation procedure

As mentioned in Chapter 2, the training procedure of the model includes feeding the dataset
to the model, minimizing the distance between the input data points (xn) and reconstructed
ones (x̂n), and training of the classifier output. The whole procedure of training of the au-
toencoder and classifier is described in Section 2.4.

4.2.8 Model testing

The last step in the procedure of device discrimination is testing. After designing the model,
it is very important to test the model performance to investigate the probability of overfitting
or underfitting. Such a purpose makes us to use the Confusion Matrix (CM) and the Receiver
Operating Characteristics (ROC) curves, as fully explained in Appendix A.

4.3 Experimental results

In this section, we validate the proposed methodology for dataset generation, model train-
ing, validation, and testing, in real world cases. For this purpose, after extraction, the dataset
is fed to a deep learning model, and after the training section, the output performance of the
model is evaluated through the different machine learning approaches. This procedure is
described in more detail in the following.

4.3.1 Experimental equipment setup

Figs. 3.3, 3.4, 3.9 and 3.10 show the laboratory setup designed for the signal measurements
and dataset acquisition. Also, the selected devices for data acquisition are shown in Fig.
4.4. As depicted, a Zynq XC7Z020 FPGA was used as the signal receiver. Eight (8) different
ZigBee wireless devices were tested, including five (5) RZUSBSticks (labeled RZ1, RZ2, RZ3,
RZ4, and RZ5), one XBEE Digi module (AR1), and two (2) Texas Instruments devices (TI1

and TI2).

4.3.2 Preprocessing of acquired signals

Preambles extraction from the received signal bursts

As explained in Section 4.2.2, in practical situations the beginning of the preamble may not be
located exactly at the beginning of a burst. Therefore, the first step in processing the sampled
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Arduino 

(AR)
Texas Instrument (TI) RZUSBStick (RZ)

Figure 4.4: Selected devices for data acquisition.

signals is to determine the beginning of the preamble by convolving the received signal with
a single known symbol, that is for each of 8 successive reference O-QPSK symbols.

After determining the starting point, the preamble can be extracted from the received
signal. As mentioned in Section 4.2.1, the length of a preamble is 128 µs, and since the
sampling frequency is set to 40 MHz, the number of samples in a preamble is 5120. Knowing
the length and exact location of the beginning of the preamble, extraction of the preamble
can be done.

Phase and frequency compensation

As discussed in Section 4.2.3, after extraction of the preamble, one can compare it with a
reference preamble. The phase difference between reference and received preambles should
be reduced as much as possible, with respect to Eqs. (3.4), (3.5) and (3.6). Fig. 4.5 depicts the
extracted preamble phases of devices AR1 before and after phase and frequency compen-
sation. The effect of phase compensation on the received signals themselves is illustrated
in Fig. 4.6 for the same three devices. As shown, the comparison of the received signals
with the reference preamble signals demonstrates the efficiency of the phase and frequency
compensation approach. The compensated signal phase (green line) is superimposed to the
reference phase (dotted red line).

4.3.3 Datasets processing

DDWT dataset generation

After preprocessing the data, with respect to Sections 4.2.2 and 4.2.3, the DDWT is applied
to the resulting data points as described in Section 4.2.4.
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Figure 4.6: (a) Real and (b) imaginary components of received, reference, and compensated
preambles obtained from a burst of AR1.

Model generation

The model is shown in Fig. 4.7 and summarized in Table. 4.1. The model is constructed with
respect to the classifier model of Fig. 2.1 and has 708 003 trainable parameters.

The model training, validation, and testing, were performed using a GPU NVIDIA
Quadro K620 hardware, and Python 3.6, TensorFlow 1.0.8, and Keras 2.2.0 software. The
whole set of data points was fed to the classifier batch by batch. The batch size was set to 20.

As mentioned in Section 2.2, the devices feature extraction and classification are based
on deep learning, and more specifically on autoencoders. The autoencoder is shown in Fig.
4.7 (En.layer_l (l ∈ {0, · · · , 9}) and Dec.layer_j (j ∈ {0, · · · , 8}) and summarized in the
corresponding rows of Table 4.1.

10 successive Maxpooling/Conv. layers, referred to as the encoder, extract the features
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Dec.layer_5 Dec.layer_0

Dec.layer_1
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Figure 4.7: Trained classifier model with deep learning (autoencoder).

Table 4.1: Model summary.

Index Layer Name Layer Type Output Shape Active Func. Parameters No. 

0 En.layer_0 InputLayer (None, 5120, 2, 1) - 0 

1 En.layer_1 Conv2D (None, 4800, 1, 32) Relu 20576        

2 En.layer_2 MaxPooling1D (None, 960, 1, 32)    - 0 

3 En.layer_3 Conv1D (None, 800, 1, 32)    Relu 164896       

4 En.layer_4 MaxPooling1D (None, 160, 1, 32) - 0 

5 En.layer_5 Conv1D (None, 80, 1, 32)     Relu 82976        

6 En.layer_6 Conv1D (None, 40, 1, 32) Relu 42016        

7 En.layer_7 Conv1D (None, 20, 1, 32) Relu 21536        

8 En.layer_8 Conv1D (None, 10, 1, 32)     Relu 11296        

9 En.layer_9_encoder MaxPooling1D (None, 2, 1, 32) - 0 

10 Dec.layer_0 UpSampling1D  (None, 10, 1, 32)     - 0 

11 Dec.layer_1 Conv1DTranspose (None, 20, 1, 32) Relu 11296        

12 Dec.layer_2 Conv1DTranspose (None, 40, 1, 32) Relu 21536        

13 Dec.layer_3 Conv1DTranspose (None, 80, 1, 32) Relu 42016        

14 Dec.layer_4 Conv1DTranspose (None, 160, 1, 32) Relu 82976        

15 Dec.layer_5 UpSampling1D (None, 800, 1, 32) - 0        

16 Dec.layer_6 Conv1DTranspose (None, 960, 1, 32) Relu 164896              

17 Dec.layer_7 UpSampling1D (None, 4800, 1, 32) - 0 

18 Dec.layer_8_decoder Conv2DTranspose (None, 5120, 2, 1) Relu 20545 

19 Cl.layer_0 Flatten (None, 64) - 0 

20 Cl.layer_1 Dense (None, 320) Sigmoid 20800        

21 Cl.layer_2_classifier Dense (None, 2) Sigmoid 642 

Total parameters:  708,003 

Trainable parameters:  708,003 
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Figure 4.8: Sigmoid function [88].

from the input data, and reduce the dataset size from (5120, 2) at the input layer to (2, 1) at
the output of 32 filters of the encoder layer, shown in parts En.layer_l (l ∈ {0, · · · , 9}) in
Fig. 4.7 and the corresponding rows (0 to 9) in Table 4.1. In this structure, no dropout or
batch normalization layer is used. In the decoder part for the autoencoder, 9 successive Up-
sampling/Deconv. layers (parts Dec.layer_l (l ∈ {0, · · · , 8}) of Fig. 4.7 and the corresponding
rows (10 to 17) in Table 4.1) are used to reconstruct the dataset at the output feature layer
with the same size as the input layer. As for the encoder, no dropout or batch normalization
layer is used.

The classification layers consist of 2 successive fully connected (dense) layers (Cl.layer_k
(k ∈ {1, 2}). Rows 20 and 21 of Table 4.1 identify these layers, using a Sigmoid as an active
function for binary (or binomial) discrimination, shown in the following equation and Fig.
4.8 [88].

fsigmoid(t) =
1

1 + e−t =
et

1 + et (4.6)

4.3.4 Dataset processing

Training and validation of model using acquired datasets

After defining the model, it is trained using the training part of the dataset. The chosen op-
timizer function for training the model is the adaptive learning rate optimization algorithm
Adam [88,107] with a learning rate value lr = 0.0001. This value assigns how fast the model
moves toward the optimized solution during training [88]. If this value is very small, the
model will move toward the solution, slowly and it will search all possible local solutions,
but at the same time, it may get stuck in the local solutions. On the other hand, if it is selected
to be large, the model will move fast toward the optimal solution during the training, but it
may miss some of the optimized solutions. During this project, based on the trial and error,
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a value of 0.0001 for the learning rate showed the best result for converging the model.
Meanwhile, the number of epochs for training is selected to be 100 without early stopping
to make sure that the number of epochs are large enough to allow the model to converge to
the final solution.

Data points allocation for training, validation and testing There are 2 datasets: RAW and
DDWT. Therefore, the following strategy for training, validation and testing is applied to
both datasets. Different scenarios for training, validation, and testing, based on Section 4.2.6
are provided in Table 4.2. Referring to Chapter 2, a target or nontarget device for training is
shown by DT,tr or DnT,tr, respectively. DT,val refers to a target validation device and DnT,val

relates to a nontarget validation device. In addition, target or nontarget testing devices are
labeled by DT,te and DnT,te. RZm, TIm, and ARm refer to mth RZUBSTICK, Texas Instrument,
and XBEE Digi devices, respectively. Based on this assumption, and with respect to Table
4.2, 4 devices are used for training, 5 devices for validation, and all 8 devices for testing. As
shown, the whole set of testing devices in each scenario is divided into 3 different groups:
group A, group B, and group C. Group A consists of devices which have been seen by the
model during the training phase (although a new set of data points from these devices will
be used in the testing phase). Group B includes devices which have never been seen by the
model before the testing phase, but for which a device from the same family of devices (devices
from the same manufacturer, such as devices RZ1 and RZ2) are used in the training phase.
Finally, in group C are devices that neither them, nor their family members have been seen
by the model during the training phase.

After allocating the devices for training, validation, and testing, referring to Section
4.2.6, the assigned percentages of the data points from the dataset for each stage are 60%,
10%, and 30%, respectively. The number of allocated data points from each device for each
stage is indicated in Table 4.3. In this table, Dtr,m, Dval,m, and Dte,m refer to the mth training,
validation, and testing device. Ntr

tr,m is the number of training data points from the mth target
or nontarget training device. Nval

val,m points at the number of validation data points from the
mth target or nontarget validation device, and Ntete,m refers to the the number of testing data
points from the mth target or nontarget testing device. In addition, Ntr, Nval , and Nte are
the total number of training, validation, and testing data points. As can be seen, the total
number of data points for each device in the dataset is 11 000 data points. This number is the
summation of Ntr

tr,m (equal to 6000), Nval
val,m (equal to 1000), and Nte

te,m (equal to 4000), for mth

device.

Shuffling the dataset before feeding into the classifier After splitting the dataset into
training, testing, and validation, the dataset for each part should be shuffled before feed-
ing to the classifier. The reason for this randomization is to prevent the model from learning
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Table 4.2: Different scenarios for label allocation.

 
 

Positive Device 

Training Validation 

𝐷𝑇,𝑡𝑟 𝐷𝑛𝑇,𝑡𝑟 𝐷𝑇,𝑣𝑎𝑙 𝐷𝑛𝑇,𝑣𝑎𝑙 

1 𝐴𝑅1 𝐴𝑅1 𝑅𝑍1, 𝑅𝑍2, 𝑇𝐼2 𝐴𝑅1 𝑅𝑍1, 𝑅𝑍2, 𝑇𝐼1, 𝑇𝐼2 

2 𝑅𝑍1 𝑅𝑍1 𝑅𝑍2, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍1 𝑅𝑍2, 𝑅𝑍3, 𝑇𝐼1, 𝑇𝐼2 

3 𝑅𝑍2 𝑅𝑍2 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍2 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼1, 𝑇𝐼2 

4 𝑅𝑍3 𝑅𝑍3 𝑅𝑍1, 𝑅𝑍2, 𝑇𝐼2 𝑅𝑍3 𝑅𝑍1, 𝑅𝑍2, 𝑇𝐼1, 𝑇𝐼2 

5 𝑅𝑍4 𝑅𝑍4 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍4 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼1, 𝑇𝐼2 

6 𝑅𝑍5 𝑅𝑍5 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍5 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼1, 𝑇𝐼2 

7 𝑇𝐼1 𝑇𝐼1 𝑅𝑍1, 𝑅𝑍2, 𝑅𝑍3 𝑇𝐼1 𝑅𝑍1, 𝑅𝑍2, 𝑅𝑍3, 𝑇𝐼2 

8 𝑇𝐼2 𝑇𝐼2 𝑅𝑍1, 𝑅𝑍2, 𝑅𝑍3 𝑇𝐼2 𝑅𝑍1, 𝑅𝑍2, 𝑅𝑍3, 𝑇𝐼1 

 

Positive Device 

Testing 

A B C 

𝐷𝑇,𝑡𝑒 𝐷𝑛𝑇,𝑡𝑒 𝐷𝑛𝑇,𝑡𝑒 𝐷𝑛𝑇,𝑡𝑒 

1 𝐴𝑅1 𝐴𝑅1 𝑅𝑍1, 𝑅𝑍2, 𝑇𝐼2 𝑅𝑍3, 𝑅𝑍4, 𝑅𝑍5, 𝑇𝐼1 - 

2 𝑅𝑍1 𝑅𝑍1 𝑅𝑍2, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍4, 𝑅𝑍5, 𝑇𝐼1 𝐴𝑅1 

3 𝑅𝑍2 𝑅𝑍2 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍4, 𝑅𝑍5, 𝑇𝐼1 𝐴𝑅1 

4 𝑅𝑍3 𝑅𝑍3 𝑅𝑍1, 𝑅𝑍2, 𝑇𝐼2 𝑅𝑍4, 𝑅𝑍5, 𝑇𝐼1 𝐴𝑅1 

5 𝑅𝑍4 𝑅𝑍4 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍2, 𝑅𝑍5, 𝑇𝐼1 𝐴𝑅1 

6 𝑅𝑍5 𝑅𝑍5 𝑅𝑍1, 𝑅𝑍3, 𝑇𝐼2 𝑅𝑍2, 𝑅𝑍4, 𝑇𝐼1 𝐴𝑅1 

7 𝑇𝐼1 𝑇𝐼1 𝑅𝑍1, 𝑅𝑍2, 𝑅𝑍3 𝑅𝑍4, 𝑅𝑍5, 𝑇𝐼2 𝐴𝑅1 

8 𝑇𝐼2 𝑇𝐼2 𝑅𝑍1, 𝑅𝑍2, 𝑅𝑍3 𝑅𝑍4, 𝑅𝑍5, 𝑇𝐼1 𝐴𝑅1 

Table 4.3: Number of data points allocated for training, validation, and testing.

Section Devices 
No. of Data 

Points/Device 
Total 

Training Dtr,1, Dtr,2, Dtr,3, Dtr,4 
𝑁𝑡𝑟,𝑚
𝑡𝑟 , 𝑚 = 1,⋯ ,4 𝑁𝑡𝑟 

6000 24000 

Validation Dval,1, Dval,2, Dval,3, Dval,4, Dval,5 
𝑁𝑣𝑎𝑙,𝑚
𝑣𝑎𝑙 , 𝑚 = 1,⋯ ,5 𝑁𝑣𝑎𝑙 

1000 5000 

Testing Dte,1, Dte,2, Dte,3, Dte,4, Dte,5, Dte,6, Dte,7, Dte,8 
𝑁𝑡𝑒,𝑚
𝑡𝑒 , 𝑚 = 1,⋯ ,8 𝑁𝑡𝑒 

≥4000 ≥32000 

 

any possible patterns which exist in the dataset. In such a case, the order of the data points
will not be learned by the model.

Decoding and classification convergence During the training of the model, a decoder loss
function, such as the mean squared error (MSE) described in Section 2.4, is measured to
ensure that the reconstructed data points at the decoder output (x̂n) are as close as possible
to the input data points (xn).

Also, to verify the efficiency of the trained autoencoder at each iteration, a validation
dataset is fed to the classifier to test the accuracy of the model. The training and validation
losses of the model for decoding (MSE) and classification (BCE) of each of the 8 scenarios
are shown in Figs. 4.9 and 4.10. The training and validation minimum errors for decoding
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Figure 4.9: Training and validation losses for all eight scenarios listed in Table 4.2 for the
RAW dataset.

69



Epoch

AR1

0 20 80 100

Validation
Training

Min. Value

-6.0

-2.0

-4.0

0.004

0

-8.0

0.002

0.006

40 60

Decoder

 (MSE)

Lo
ss

 (B
C

E)
Lo

ss
 (M

SE
)

Classifier
   (BCE)

(a) Spoofed device AR1
Epoch

L
o

ss

RZ1

0 20 80 10040 60

L
o

ss
L

o
ss

Validation
Training

Min. Value

0.2

0.4

0.3

0.1

0.004

0.003

0.002

0.001

0.005

0.5

0

Decoder

 (MSE)

Classifier
   (BCE)

(b) Spoofed device RZ1
Epoch

RZ2

0 20 80 100

0.001

0.004
0.003
0.002

0.005

Validation
Training

Min. Value
0.006

0.2

0.4
0.3

0.1

0.5

0
40 60

Decoder
 (MSE)

Lo
ss

 (B
C

E)
Lo

ss
 (M

SE
)

Classifier
   (BCE)

(c) Spoofed device RZ2

Epoch

L
o

ss

RZ3

0 20 80 100

L
o

ss
L

o
ss

Validation
Training

Min. Value

0.2

0.4

0.3

0.1

0.004

0.003

0.002

0.5

0

0.001

0.005

40 60

Decoder

 (MSE)

Classifier
   (BCE)

(d) Spoofed device RZ3

Epoch

RZ4

0 20 80 100

Validation
Training

Min. Value

0.2

0.4

0.3

0.1

0.004

0.003

0.002

0.5

0

0.001

0.005

40 60

Decoder

 (MSE)

Lo
ss

 (B
C

E)
Lo

ss
 (M

SE
)

Classifier
   (BCE)

(e) Spoofed device RZ4

Epoch

L
o

ss

RZ5

0 20 80 10040 60

L
o

ss
L

o
ss

Validation
Training

Min. Value

0.2

0.4

0.3

0.1

0.5

0

0.001

0.004

0.003

0.002

0.005
0.006

Decoder

 (MSE)

Classifier
   (BCE)

(f) Spoofed device RZ5

Epoch

TI1

0 20 80 100

Validation
Training

Min. Value

0.2

0.4

0.3

0.1

0.004

0.002

0.5

0

0

0.006

40 60

Decoder

 (MSE)

Lo
ss

 (B
C

E)
Lo

ss
 (M

SE
)

Classifier
   (BCE)

(g) Spoofed device TI1

Epoch

L
o

ss

TI2

0 20 80 100

L
o

ss
L

o
ss

Validation
Training

Min. Value

0.5

1.0

0.004

0.006

1.5

0

0.002

0.008

40 60

Decoder

 (MSE)

Classifier
   (BCE)

(h) Spoofed device TI2

Figure 4.10: Training and validation losses for all eight scenarios listed in Table 4.2 for the
DDWT dataset.
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and classification are depicted as stars in each plot of Figs. 4.9 and 4.10. The iteration where
the minimum validation error of classifier happens determines the best model to be used for
testing.

As shown, for both the RAW and DDWT datasets, in both cases of training and vali-
dation, the converged MSE value for the decoding of the trained model is low enough for
7 out of 8 scenarios in Table 4.2. This means that the model has been able to reconstruct the
input signal at the output of the decoder for these cases, with an acceptable approximation.
Convergence of the training MSE to a low value will guarantee that the classifier is fed with
features with an acceptable quality resulting in the training of the classifier with a high accu-
racy. On the other hand, achieving a low reconstruction (or decoding) validation MSE value
will prove that the model is not overfitted the training dataset. In such a case, like training,
the input feature applied to the classifier during the validation is accurate enough to deliver
high classification rates (and low BCE values). The low BCE error values, for both training
and validation, using the RAW and DDWT datasets, in Figs. 4.9 and 4.10 is a proof for the
efficiency of provided input features for a high accuracy classification.

In one case, (device TI2) for both RAW and DDWT datasets, although the training and
validation MSE and the training BCE converge to low values, the validation BCE loss value
diverges. In this case, the model has overfitted the training dataset, and increasing the size
or quality of the captured dataset from the device TI2 can help the model to distinguish this
device from all other devices with a higher accuracy.

4.3.5 Evaluation of the classification method

After training and evaluation, the classification model is tested against new devices pre-
viously unseen by the classifier. A detailed explanation of evaluation procedure using the
Confusion Matrix (CM) and the Receiver Operating Characteristic (ROC) curves is presented
in Appendix A. As stated in Section 4.3.4 , 30% of data points in the dataset are allocated for
testing. The resulting percentages of correct and false allocations of data points for each de-
vice are discussed in terms of confusion matrices and receiver operating characteristic plots.

The strategy for the demonstration of the results

Although the presented methodology of this chapter is based on one − vs − all strategy, but
following the strategy mentioned in Table 4.2, the results for each rogue device are shown
separately. Based on this idea, the confusion matrices in Figs. 4.11, 4.12, 4.13, and the ROC
plots in Figs. 4.15, 4.16, 4.17, and 4.18 present a different confusion matrix rate or ROC
plot graph for each attacking device. But, why not combining the results from all rogue
devices as a single one, labeled as others? As shown in Table 4.2, we try to examine the
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Table 4.4: Correct classification rate range for the RAW and DDWT datasets.

 RAW Dataset 

𝐴 𝐵 𝐶 

1 
𝑅𝑍1 [0.99, 1.00] [0.37, 1.00] 2 
𝑅𝑍2 1.00 [0.73, 1.00] 0.743 
𝑅𝑍3 [0.97, 1.00] 1.00 0.724 
𝑅𝑍4 [0.99, 1.00] [0.90, 1.00] 1.005 
𝑅𝑍5 [0.91, 1.00] [0.32, 1.00] 0.956 
𝑇𝐼1 [0.99, 1.00] 1.00 1.007 
𝑇𝐼2 1.00 [0.01, 1.00] 1.008 

DDWT Dataset 

𝐴 𝐵 𝐶 

1 

[0.99, 1.00] [0.42, 0.99] 0.95 2 

𝑅𝑍2 [0.97, 0.99] [0.24, 0.99] 0.39 3 

𝑅𝑍3 [0.98, 1.00] [0.85, 1.00] 0.77 4 

𝑅𝑍4 1.00 [0.85, 1.00] 1.00 5 

𝑅𝑍5 [0.98, 1.00] [0.64, 1.00] 0.97 6 

𝑇𝐼1 1.00 1.00 0.98 7 

𝑇𝐼2 [0.99, 1.00] [0.00, 1.00] 0.99 8 

𝐴𝑅1 1.00 1.00 

Positive DeviceScenario

Positive DeviceScenario

𝐴𝑅1 [0.87, 1.00] [0.99, 1.00] - 

1.00

𝑅𝑍1

- 

effect of different types of devices in falsifying the trained model. As shown in Table 4.2, the
dataset is divided into groups A, B, and C. Using this strategy, the effect of different types of
devices is investigated here. Initially it is assumed that group C (the devices which neither
them nor their family members have been seen during the training or validation) is the most
difficult problem for model performance. The real effect of all these groups on the model
performance will be reviewed in the rest of this chapter.

Confusion matrix

Figs. 4.11, 4.12, 4.13, and 4.14 show the confusion matrix for each of the 8 scenarios of Table
4.2 for both the RAW and the DDWT datasets. The selected devices associated to group A in
Table 4.2 are assigned with label A, devices in group B are depicted with label B, and devices
belonging to group C are shown with label C.

The minimum classification rates for groups of devices A, B, and C of Table 4.2 are
reported in Table 4.4. The classification rates in Table 4.4 represent the worst cases of classi-
fication of the RAW and DDWT datasets.

The ranges reported in this table correspond to the lowest and highest rates of classifi-
cation for groups A, B, and C of the RAW or DDWT datasets, in each scenario. For instance,
in the first scenario of the RAW dataset (for model trained based on positive device RZ1), the
range of correct classification rate for group A is [0.99, 1.0]. This means that, using the RAW
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Figure 4.11: Confusion matrix for the first group of four scenarios of Table 4.2 for the RAW
dataset.

dataset, looking at the classification rates for testing devices used in training, the minimum
and maximum classification rates are 0.99 and 1.00, respectively. However, for group B, the
unseen devices for testing which at least have one family member in training, gives the min-
imum and maximum classification rates of 0.37 and 0.100. Finally, group C, with device AR1

as an unseen device which does not have any family member in training or validation, gives
a classification rate of 1.00. A similar analysis can be applied to all rows of classification
rates for the RAW and DDWT datasets in Table 4.4, for groups A, B, and C. The minimum
correct classification rate using the RAW dataset in Table 4.4 belongs to the device TI1 (0.01)
obtained from the model trained based on the positive device TI2.

The comparison between the model performance for the RAW and DDWT datasets Al-
though the classification rate for the same rogue device and the same model (the rogue de-
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Figure 4.12: Confusion matrix for the second group of four scenarios of Table 4.2 for the
RAW dataset.

vice TI1 and the model of positive device TI2) did not improve using the DDWT dataset,
the minimum classification rate for some other cases could increase significantly. For in-
stance, using the DDWT dataset, for the rogue device RZ4, the correct classification rate of
the model of positive device RZ5 (0.64), has doubled compared to using the RAW dataset
(0.32). Therefore, comparing the results for the RAW and DDWT datasets in Table 4.4, using
the DDWT dataset improves some of the classification rates of the models presented in this
chapter, such as the minimum classification rate for group A and positive device RZ5 has
increased from 0.91 to 0.98, using the DDWT dataset, shown in Table 4.4. Using the DDWT
dataset can improve the worst case classification rates of the models presented in this chap-
ter. In such a case, using the DDWT dataset, or a combination of both datasets is a good
solution to improve the suggested models’ worst classification rates.
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Figure 4.13: Confusion matrix for the first group of four scenarios of Table 4.2 for the DDWT
dataset.

Receiver operating characteristics

The resulting receiver operating characteristic (ROC) plots are shown in Figs. 4.15, 4.16, 4.17,
and 4.18. For each ROC plot, the area under the curve (AUC), is given in the legend. As can
be seen, the devices selected as groups A, B, and C, are labeled with A, B, and C, respectively.

A summary of the ROC plots for device groups A, B, and C is given in Tables 4.5 and
4.6 for both the RAW and DDWT datasets.

The correct classification rate of target/authorized/spoofed device, pd (detection proba-
bility), and its corresponding misclassification rate of rogue/unauthorized/spoofing device,
pFA (false alarm probability) in this table, are related to the worst cases using the RAW and
DDWT datasets.
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Table 4.5: ROC plots summary for the RAW dataset.
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Table 4.6: ROC plots summary for the DDWT dataset.
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Figure 4.14: Confusion matrix for the second group of four scenarios of Table 4.2 for the
DDWT dataset.

For instance, in the second scenario, feeding the model trained for positive device RZ1

with the RAW dataset shown in Fig. 4.15 (b) and summarized in Table 4.5, the range of cor-
rect classification rate (pd) for the values of pFA in [0, 1.0] is almost equal to 1.0, corresponding
to group A of testing devices. As mentioned in Table 4.2, this group of devices are those used
in training, too. The lowest value of AUCmin belongs to the sixth scenario (0.9947) and the
minimum AUCmax is equal to 0.9999. For group A and the RAW dataset, the average area
under the curve (AUCavg) for the sixth scenario is 0.9980, which is the minimum AUCavg.

Looking at the same plot or the second scenario in Table 4.5, group B gives pd values
higher than 0.9 for pFA in the range [0.2, 1.0] for the same RAW dataset. The minimum value
among all values of AUCmin and the minimum value among all vales of AUCmax for this
group are equal to 0.3926 and 0.9992, respectively. AUCavg is in the range [0.7975, 1.0000] for
all scenarios. As shown in Fig. 4.16 (d) and summarized in the eighth scenario of Table 4.5,
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Figure 4.15: ROC plot for first group of four scenarios of Table 4.2 for the RAW dataset.

the model trained based on the authorized device TI2 has the lowest AUC (that is 0.3926) for
group B, among all scenarios of all three groups A, B, and C. As can bee seen, based on Fig.
4.9 (h), although the training BCE loss decreases and converges to values near 0, the vali-
dation BCE value diverges which means that the model is overfitted to the training dataset
and is not able to classify the validation datasets, correctly. Therefore, in Fig. 4.16 (d), due to
the overfitting, the authorized class conditional probabilities of testing data points from the
authorized device (TI2) are so low that no matter how much we change the threshold for the
different values of false alarm probabilities (pFA) lower than 0.4, none of the likelihood ratios
of the authorized class data points are affected, and the authorized device correct classifica-
tion probabilities (pd) are close to 0. For values of (pFA) higher than 0.4, the pd values start to
increase, abruptly, and pd reaches values higher than 0.8 for pFA ≥ 0.7.

Finally, referring to the same plot or the second scenario in Table 4.5, for the RAW
dataset, group C (as a new device which does not have any family member in the training)
presents a correct classification rate (pd) almost equal to 1.0 for all possible values of pFA. For
all scenarios in group C, for the area under the curve we have 0.9430 ≤ AUCmin ≤ 1.0000
and 0.9430 ≤ AUCmax ≤ 1.0000. In addition, the average area under the curve (AUCavg) is
in the range [0.9430, 1.0000].

As can be seen, for the RAW dataset, the best performance for this model relates to
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Figure 4.16: ROC plot for second group of four scenarios of Table 4.2 for the RAW dataset.

group A with the minimum AUCavg = 0.9980, and the worst case scenario (resulting in the
worst model performance) for this type of dataset is related to group B with the minimum
AUCavg = 0.7975.

A similar explanation can be presented about all other rows of Tables 4.5 and 4.6 for
both RAW and DDWT datasets. It is worth mentioning that for the DDWT dataset, the best
performance for this model goes to group A with the minimum AUCavg = 0.9952, and the
minimum AUCavg for this type of dataset is corresponding to group C with the minimum
AUCavg = 0.8997.

Comparison between the model performance for the RAW and DDWT datasets As ob-
served, although the pd for a specific range of pFA for devices from group A in the RAW
dataset part of Table 4.5 is better than the corresponding group of devices in the DDWT
dataset part of Table 4.6, the ROC plots for device groups B and C show the advantage of
feeding the classifier with the DDWT dataset in specific cases. For instance, in one of these
cases (device TI2), using the DDWT dataset increases the worst pFA range by about 25% for
the same correct classification rate pd in device group B; that is from 0.65 to 1 for the RAW
dataset, and from 0.4 to 1 for the DDWT dataset. Therefore, decreasing the lower threshold
of pFA will result in better performance of the model through achieving higher values of cor-
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Figure 4.17: ROC plot for first group of four scenarios of Table 4.2 for the DDWT dataset.

rect classification rates (pd) by tolerating lower values of false alarm probability (pFA). For
the comparison of the minimum AUCavg for all scenarios related to group A, this value for
the RAW and DDWT datasets are equal to 0.9980 and 0.9952, respectively. For the same vari-
able (minimum AUCavg), the DDWT dataset shows a better performance (0.9372 > 0.7975)
for group B, and the RAW dataset presents an improvement over the RAW dataset for group
C (0.9430 > 0.8997). Based on this, it may be concluded that using the RAW dataset the
better performance can be achieved by the model. But, if the focus is on the worst case sce-
narios, the minimum AUCmin for the DDWT dataset is 0.8115 which is more than twice the
same factor for the RAW dataset (0.3926). Therefore, although the comparison of confusion
matrix results shows a better classification rate using the RAW dataset, the ROC plots of Figs.
4.17 and 4.18 compared to Figs. 4.15 and 4.16 determine the better performances using the
DDWT dataset for the cases where the classifier tolerates larger false alarm values pFA. There-
fore, combining both datasets, we can achieve the higher AUC values and also, improve the
model performance for the worst case scenarios.
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Figure 4.18: ROC plot for second group of four scenarios of Table 4.2 for the DDWT dataset.

4.4 Classifier performance comparison

In this section, the performance of the proposed classification method is compared with
other classifiers recently presented in the literature. Before comparison, the following points
regarding the strategy adopted in this chapter are summarized.

(a) First, device discrimination is repeated for two types of datasets:

(i) RAW dataset.

(ii) DDWT dataset.

(b) As indicated in Table 4.2, focusing on each devices allows to consider different scenar-
ios for device allocation for training, validation, and testing. Each scenario results in
the training of a different model. Each model represents a specific device as an autho-
rized/spoofed unit.

(c) The discrimination of a device per model requires that beside the selected device (as
authorized/spoofed unit), at least another device plays the role of a rogue/unauthorized/
spoofing one at the time of training.
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(d) The devices used in the testing phase are separated into three groups:

(i) Group A:
Devices which are used in the training phase.

(ii) Group B:
Devices which are not used in the training, but for which one or more members
of their family are.

(iii) Group C:
Devices for which neither them nor their family members are used in the training
phase.

Referring to this short summarization, three cases of comparison are done with respect
to their approach to each mentioned criteria above.

AUC performance evaluation Why do we use AUC for the comparison? What does it
mean if a methodology presents a higher value of AUC? Area under the curve (AUC) is used
for comparing the different classifiers or methodologies. When a classifier presents a higher
value of AUC compared to another one, it can be inferred that it has a better performance in
discrimination of rogue and authorized classes. The summary of the AUC results presented
in this section are reported in Tables 4.8 and 4.9, respectively.

4.4.1 Comparison with reference [35]

In [35], Merchant et al. present a framework for training a convolutional neural network for
the verification of the rogue and authoried devices. Using the model designed in this work,
and shown in Table 4.7, comparison with [35] is done based on the 8 strategies of Table 4.2
with the RAW and DDWT datasets. For the comparison purposes, the model presented in
Table 4.7 is implemented, and the RAW and DDWT datasets used in this thesis are fed to the
model.

Referring to the summary shown in Tables 4.8 and 4.9, the AUCmax for both method-
ologies in this chapter for our proposed autoencoder classifier and [35] is equal to 1.0000.
This value is the same for groups A, B, and C, related to the RAW and DDWT datasets. On
the other hand, the AUCmin and AUCavg for the proposed autoencoder classifier shows a
better performance. For example, let us focus on the RAW dataset. For group A, AUCmin

and AUCavg have increased from 0.6216 to 0.9947, and from 0.9840 to 0.9996, respectively.
Focusing on group B, AUCmin and AUCavg have increased from 0.0580 to 0.3926, and from
0.8830 to 0.9686, respectively. Finally, in the case of group C, AUCmin and AUCavg related
to [35] show a better performance, but the performance of the approach presented in this
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Table 4.7: Model summary based on [35].
 

Index Layer Type Dimension Output Shape Active Func. Parameters No. 

0 InputLayer - (None, 5120, 2) - 0 

1 Conv1D 32 × 19 (None, 5102, 32) ELU 1248 

2 MaxPooling 2 (None, 2551, 32) - 0 

3 Conv1D 128 × 19 (None, 2533, 128) ELU 77952 

4 MaxPooling 2 (None, 1266, 128) - 0 

5 Conv1D 32 × 15 (None, 1252, 32) ELU 61472 

6 MaxPooling 2 (None, 626, 32) - 0 

7 Conv1D 16 × 11 (None, 616, 16) ELU 5648 

8 MaxPooling 2 (None, 308, 16) - 0 

9 Flatten - (None, 4928) - 0 

10 Dense 128 (None, 128) ELU 630912 

11 Dropout (0.5) - (None, 128) - 0 

12 Dense 16 (None, 16) ELU 2064 

13 Dropout (0.5) - (None, 16) - 0 

14 Dense 2 (None, 2) Softmax 34 

chapter for the proposed classifier is again not far away from the method in [35]. In [35],
AUCmin and AUCavg are 0.9532 and 0.9919, respectively, whereas in our work AUCmin and
AUCavg are 0.9430 and 0.9830, respectively.

Using the DDWT dataset, for group A, AUCmin and AUCavg have increased from 0.3964
to 0.9901, and from 0.9745 to 0.9989, respectively. Focusing on group B, AUCmin and AUCavg

have increased from 0.0602 to 0.8115, and from 0.8470 to 0.9792, respectively. Finally, in the
case of group C, AUCmin and AUCavg related to [35] show a better performance, but the
performance of the approach presented in this work is not far away from the method in [35].
In our work, the AUCmin is 0.8997, whereas in [35], the AUCmin is 0.9184. Also, AUCavg in
the proposed approach is 0.9711 while this factor in [35] is equal to 0.9879.

4.4.2 Comparison with reference [108]

In the work of Ramsey et al. [108], the dataset consists of the time domain information (RAW
dataset) of the signal characteristics of ZigBee devices, a(t),φ(t), and f (t) and their statistical
features: σ2, γ, and κ. This dataset is fed to the multi discriminant analysis (MDA) model,
and the results are analyzed with the ROC plot. For the comparison of the results in [108],
the statistical features (σ2, γ, and κ) of a(t), φ(t), and f (t) of the RAW dataset in this thesis
are fed to the MDA and the results for all 8 strategies of Table 4.2 are summarized in Table
4.8. Referring to the summary shown in Table 4.8, the AUCmax for both methodologies in this
chapter for the proposed classifier and that presented in [108], for all the groups A, B, and C
of RAW dataset is 1.0000. The AUCmin and AUCavg of our work shows an improvement for
the RAW dataset for group A, from 0.2404 to 0.9947, and from 0.9634 to 0.9996, respectively.
In the case of group B, AUCmin and AUCavg have changed from 0.0108 to 0.3926, and from
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0.9355 to 0.9686, respectively. For group C, [108] showed a bad performance of AUCmin equal
to 0.1976, but the methodology presented in this chapter improved this value to 0.9430. On
the other hand, the AUCavg in this chapter has a higher value (0.9830) compared to that
of [108] (0.8803).

As can bee seen, the performance of the methodology presented is very dependant
on the complexity of the dataset. Due to the complexity of the dataset in this thesis, the
approach in [108] presents a bad performance for the lowest value of AUCmin (0.0108 for
group B). Using our proposed autoencoder method in this chapter, we could increase the
worst performance to 0.3926, using the RAW dataset.

4.4.3 Comparison with reference [97]

In [97], Dubendorfer et al. employed multiple discriminant analysis (MDA) to classify Zig-
Bee devices from their RF-DNA (Radio Frequency Distinct Native Attributes). The used
dataset consists of the wavelet transform of statistical features (variance as σ2, skewness as
γ, and kurthosis as κ of physical signal characteristics like amplitude (a(t)), phase (φ(t)),
and instantaneous frequency ( f (t))) of the recorded signals. For the comparison of the re-
sults in [97], the wavelet transform of the statistical features (σ2, γ, and κ) of a(t),φ(t), and
f (t) of the RAW dataset in this thesis are fed to the MDA for all 8 strategies of Table 4.2. A
summary of the results is depicted in Table 4.9.

Based on Table 4.9, the AUCmax for both methodologies proposed in this chapter and
that in [97], for all the groups in the DDWT dataset is 1.0000. The AUCmin and AUCavg

of our proposed classifier illustrates the change of result for the DDWT dataset for group
A, from 0.0000 to 0.9901, and from 0.7474 to 0.9989, respectively. Let us focus on group B,
where AUCmin and AUCavg have increased from 0.0000 to 0.8115, and from 0.7356 to 0.9792,
respectively. Ultimately, for group C, [97] showed a bad performance of AUCmin equal to
0.0000, but the proposed methodology gives a value equal to 0.8997. On the other hand, the
AUCavg in this chapter has a better value (0.9711) compared to that of [97] (0.6992).

4.5 Conclusion

In this chapter, a rogue device discrimination method in a vulnerable network channel at
the physical layer is presented. The main strategy presented in this chapter relies on dis-
criminating the target/authorized/spoofed devices from rogue (unauthorized or spoofing)
ones, using RF-DNA features. The separation of devices for training, validation, and testing
is done by allocating specific devices for verification and/or testing which have never been
seen by the model during training. The classifier structure consists of an autoencoder for
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Table 4.8: Comparison of methodology presented in Chapter 4 and approaches in references
[35] and [108], using the RAW dataset.

RAW Dataset
A B

AUCmin AUCmax AUCavg AUCmin AUCmax AUCavg
Autoencoder (Ch. 4) 0.9947 1.0000 0.9996 0.3926 1.0000 0.9686
Merchant et al. [35] 0.6216 1.0000 0.9840 0.0580 1.0000 0.8830
Ramsey et al. [108] 0.2404 1.0000 0.9634 0.0108 1.0000 0.9355

C
AUCmin AUCmax AUCavg

Autoencoder (Ch. 4) 0.9430 1.0000 0.9830
Merchant et al. [35] 0.9532 1.0000 0.9919
Ramsey et al. [108] 0.1976 1.0000 0.8803

Table 4.9: Comparison of methodology presented in this chapter and approaches in refer-
ences [35] and [97], using the DDWT dataset.

DDWT Dataset
A B

AUCmin AUCmax AUCavg AUCmin AUCmax AUCavg
Autoencoder (Ch. 4) 0.9901 1.0000 0.9989 0.8115 1.0000 0.9792
Merchant et al. [35] 0.3964 1.0000 0.9745 0.0602 1.0000 0.8470

Dubendorfer et al. [97] 0.0000 1.0000 0.7474 0.0000 1.0000 0.7356
C

AUCmin AUCmax AUCavg
Autoencoder (Ch. 4) 0.8997 1.0000 0.9711
Merchant et al. [35] 0.9184 1.0000 0.9879

Dubendorfer et al. [97] 0.0000 1.0000 0.6992

the feature extraction process. Feature extraction is investigated for the RAW (time domain)
and DDWT (time-scale domain) datasets of the received RF signals. The classification rate
for testing devices has shown an acceptable accuracy for both seen and new (unseen) de-
vices. The suggested rogue device discrimination method compares favorably with results
reported in the literature presented in Section 4.4.
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Chapter 5

Unauthorized Device Rejection in
Wireless Communication Systems
using Wavelet Transform and LSTM
Based Autoencoders

5.1 Introduction

In modern wireless communication systems, different new and effective approaches have
been presented recently to increase security. Recent developments in machine learning have
led to several methods for efficient classifiers, such as that proposed by Merchant et al. in
[35] where a deep learning model is fed with the steady state component of the initial data

points. The proposed strategy of this chapter is to add a long short-term memory (LSTM)
layer to the structure presented in Chapter 4. As will be discussed in more details in this
chapter, it can be seen that there is a long time-dependency in the captured signal of wireless
ZigBee devices. On the other hand, LSTM layers are suitable to extract features from the sig-
nals with time-dependency. Then, adding an LSTM layer to the autoencoder based classifier
(as presented in Fig. 2.2) can result in the increase of the classification rate of the classifier.
The methodology presented in this chapter is published in [62].

The structure of this chapter is as follows. Section 5.2 describes the proposed classi-
fication method. The implementation of the proposed classifier is described in Section 5.3.
Section 5.4 addresses the training of the designed model of Section 5.3. Experimental results
obtained with the proposed device classification system are reported in Section 5.5. Finally,
Section 5.7 discusses the findings and outcomes of the chapter.

86



5.2 Proposed classification method

Our goal is to propose an approach such that when an unknown device, for instance devicei,
enters a network, the network model tries to detect if this anonymous device is an authorized
device, identified as devicem, or is an unauthorized (rogue) device. The proposed approach
employs a binomial (binary) classifier to distinguish the authorized members of the network
from the rest of the world, that is, a one-vs-all strategy. As explained in Chapter 4, before
feeding the data to the model for feature extraction and classification, first, we need to in-
crease the quality of the dataset to an acceptable level. For such a purpose, the following
steps are needed.

1. Dataset acquisition

2. Received preamble extraction

3. Dataset phase and frequency compensation

4. Dataset generation

Each of these steps are described in detail in Sections 4.2.1, 4.2.2, 4.2.3, and 4.2.4, re-
spectively. After the generation of high quality RAW and DDWT datasets, the next step is to
design a feature extraction structure which provides the classifier with high quality features,
for classification.

5.2.1 Time-dependency extraction

The main purpose of adding an LSTM layer to the autoencoder in this chapter is to extract
the time-dependency of the signal, as a key feature for classification purpose. As mentioned
in Section 2.3, each preamble is not just a simple vector, but a sequence of successive values
with a meaningful relationship between the adjacent values, called the time-dependency,
and the order of the values is important [109]. Time-dependency of the successive samples
is calculated with an autocorrelation, defined as the correlation of a signal xn (at time-step
k1) with its delayed version (at time-step k2), as shown in Eq. (5.1) [110].

Rxn (k1, k2) = E [xn (k1) , x∗n (k2)] (5.1)

where E is the expected value, * shows the complex conjugate, and x∗n (ki) is equal to the
complex conjugate of sample xn,ki at time-step ki (i ∈ {1, 2}), shown in Eq. (2.2). For the
acquired signal from ZigBee devices in this work, the autocorrelation in Eq. (5.1) is higher
than 0 for successive samples (Rxn (k1, k2) > 0), which means that there is a time-dependency
between samples at times steps k1 and k2.
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Extraction of this time-dependency is the responsibility of an RNN layer [88]. Also, as
described in Section 5.3.4, using an LSTM layer (as a type of RNN layer) in the encoder part
for time-dependency extraction, it is possible to feed the decoder and classifier with this key
feature, for a better classifier accuracy [111]. Now, as explained in Section 2.3.2, an RNN
layer is able to extract the time-dependency of each input preamble signal by the output
vector state of all cell units of the network (hk) at time-step k in Eq. (2.10), and the loop
feedback from the output vector state at time-step k − 1 (by hk−1) to the output vector state
at time-step k (by hk) is shown in this equation. This feedback can be used as a key feature
for improving the classification accuracy.

5.2.2 Model definition

Autoencoder

An LSTM layer which was described in more detail in Section 2.3.2, can be added to the
encoder part, increasing the classification accuracy, as shown in Fig. 2.2, and evaluated in
Section 5.5.

Feature extraction at the encoder Feature extraction maps high dimensional data to a re-
duced low-dimensional space. New feature xnF is obtained as the result of either a linear or
a nonlinear transformation of xn into xnF at the encoder based on Eq. (2.4).

Input reconstruction at the decoder The reconstruction in the decoder is done based on
Eq. (2.5), where function sg(.) maps the hidden representation xnF back to the reproduction
vector x̂n.

The training of the autoencoder extracts θ = (Ω, Ω′, bxn , b′
xnF

), by decreasing the dis-
tance between the original input data point xn and the reconstruction space x̂n using the
appropriate loss function. The full description of encoder and decoder parts is presented in
Section 2.2.

Classification

Since the strategy adopted in this thesis is one-vs-all, there are two classifier outputs, each
giving the conditional probability of the data points belonging to either the positive or the
negative class (see Fig. 2.2), where Wpos and Wneg represent these positive and negative (mu-
tually exclusive) classes, respectively. Training the classifier is done by feeding the allocated
features (xnF ) to the classifier in Fig. 2.2. In the implemented version of this structure, two
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dense and two dropout layers are used in the classifier which decreases the probability of
overfitting the model for small datasets.

5.2.3 Model training/validation/testing

After making the dataset ready, and defining the model structure, it is now time to train,
validate, and test the defined model to evaluate the performance of the proposed structure.
The steps needed for such a purpose are as follows.

1. Dataset partitioning into training, validation, and testing datasets

2. Model training and validation

3. Model testing

Steps 1 and 2 are essential for training the selected model and are explained in Sections
4.2.6 and 2.4, respectively. On the other hand, step 3 is the last and the most important part in
the determination of the efficiency of the trained model by evaluating the confusion matrices
and the ROC plots. This part is described in detail in Sections A.1 and A.2.

5.3 Classifier model implementation

As discussed, the trained model for device separation and classification is to reject the access
of rogue devices. Then, the introduced model of Fig. 2.2 is tested for real cases. In this
section, the result of the model classification fed by the real dataset is discussed.

5.3.1 Experimental setup

As explained in Chapter 4, Figs. 3.3, 3.4, 3.9 and 3.10 depict the required laboratory setup
designed for the signal measurements. Fig. 4.4 illustrates the devices used for the data
acquisition in this chapter. A Zynq XC7Z020 SoC FPGA is used as the ZigBee signal receiver.
A set of 8 different ZigBee wireless devices, including 5 RZUSBSticks (RZ1, RZ2, RZ3, RZ4,
and RZ5), one XBee Digi (AR1), and two Texas Instruments devices (TI1 and TI2) are used
for the data acquisition. An extracted signal burst obtained from the experimental setup is
depicted in Fig. 3.8. The extracted signal bursts need preprocessing to increase their quality
prior to training the classifier model.
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Figure 5.1: (a) Real and (b) imaginary components of received, reference, and compensated
preambles obtained from a burst of TI2.

5.3.2 Preprocessing of acquired signals

Preambles extraction from the received signal bursts

As pointed out in Section 5.2, the first task in processing of the sampled signals consists
of preamble extraction. This is done by convolving the received signal with a single known
reference symbol (each of the 8 successive reference QPSK symbols). The convolution results
in 8 successive peaks as shown for the ZigBee device RZ1 in Fig. 3.16.

Section 5.2 refers to Section 4.2.1 for estimating the preamble length, that is 5120 sam-
ples, obtained by sampling a preamble of 128 µs duration at a 40 MHz sampling rate.

Phase and frequency compensation

As addressed in Section 5.2, the preamble phase and frequencies of the received and the
reference preambles should be as close as possible. Phase and frequency compensation is
realized using Eqs. (3.4), (3.5) and (3.6). Comparison between extracted and compensated
signals and theirs phases, for device TI2 are illustrated in Figs. 5.1 and 5.2, respectively. As
can be seen, the comparison of the received and reference preambles shows the efficiency of
the suggested approach for compensation.
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Figure 5.2: Phases of received, reference and compensated preambles from TI2.

5.3.3 Dataset generation

Two different types of datasets are generated: a RAW dataset and the DDWT dataset. For
the latter dataset, the dyadic wavelet transform is applied on the extracted preambles. The
procedure is addressed in Section 5.2.

5.3.4 Classifier model generation

The classifier model is trained using the autoencoder deep learning method. The autoen-
coder model is depicted in Fig. 5.3 and its different layers are summarized in Table 5.1. Its
structure is based on the model shown in Fig. 2.2 and consists of 1 023 718 trainable param-
eters. This is the summation of trainable parameters for each layer in Table. 5.1.

Comparison of the LSTM based autoencoder model in this chapter and the autoencoder
in Chapter 4 As discussed earlier, both models in Figs. 4.7 and 5.3 are taking benefit from
an autoencoder based classifier structure. But they have three important differences. First,
the autoencoder introduced in Fig. 5.3 takes benefit from using an LSTM layer for time
dependency extraction. Second, besides using an LSTM layer, if the autoencoder in both
structures of Figs. 4.7 and 5.3 are compared, it can be seen that they are completely different.
The autoencoder in Fig. 4.7 has 19 layers, but the number of layers in the autoencoder part of
Fig. 5.3 is 41. Third, referring to Tables 4.1 and 5.1, the type of layers which are used in both
models is slightly different, since the structure in Table 5.1 takes benefit from using dropout
layers. Consequently, the design of the models in both chapters are completely different.

The model training, validation, and testing phases were performed using a gpu NVIDIA
Quadro K620 hardware platform. The dataset processing was done using Python 3.6, Ten-
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sorFlow 1.0.8 and Keras 2.2.0 software tools. The whole set of data points were fed to the
classifier, batch by batch, with the batch size set to 20 data points.

The autoencoder part of the classifier (Section 5.2.2) is used for feature extraction; the
corresponding autoencoder layers (En.layer_l (l ∈ {0, · · · , 19}) and Dec.layer_j (for j ∈
{0, · · · , 14})) in Fig. 5.3 are detailed in the corresponding rows of Table 5.1. The encod-
ing layers (En.layer_l (l ∈ {0, · · · , 19}) of Table 5.1) reduce the array size from (5120, 2) at
the input layer to (10, 1) at the encoding output layer. The decoding section (Dec.layer_j
(j ∈ {0, · · · , 14})) decodes the preamble back to the input array size (5120, 2).

In the classification part (Cl.layer_k (k ∈ {0, · · · , 5}) of Table 5.1), fully connected
(dense) layers (Cl.layer_k (k ∈ {2, 4})) assign the classifier conditional probabilities of the
extracted features. The active function used for these layers are Sigmoid (as shown in Eq.
(4.6) and Fig. 4.8) or Relu, shown in Eq. (5.2) and Fig. 5.4 [88].

LSTM layer performance As can be seen in Fig. 5.3, En.layer_3 is an LSTM layer. As
mentioned in Chapters 2 and 5, the background idea for the presence of LSTM layer in the
encoder part is to extract the time-dependency of the signal, as a key feature for feeding the
decoder and classification parts. But there is a question about the performance of this layer,
how it is fed, the input size to this layer, the output size of it, and its approach for extracting
the time-dependency. In Appendix B, an example of the LSTM layer design using Keras [111]
is presented. The input and output shapes of En.layer_3 in Table 5.1 are described, in detail
in this appendix. On the other hand, the mechanism of an LSTM layer for extracting the time
dependency of a preamble is explained in detail in Section 2.3.2

frelu(t) =

0, for t < 0

t, otherwise
(5.2)

5.4 Classifier model training and validation

The designed autoencoder and classification parts need to be trained with the RAW and
DDWT datasets. During the training, the weights of the designed model will update to
deliver the maximum possible classification accuracy at the output of the classifier.

5.4.1 Training and validation of acquired datatsets

After defining the classifier model, the model training phase starts with assigning some ini-
tial parameters. One important parameter is the learning rate of the optimization algorithm
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Figure 5.3: Trained classifier model with deep learning (LSTM based autoencoder and clas-
sifier).
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Adam [88, 107]. Adam is an optimization algorithm for stochastic gradient descent which is
used in the training phase of the deep learning models. Based on what explained in detail in
Section 4.3.4, the learning rate of the optimization and the number of epochs for training the
model are selected equal to 0.0001 and 100, respectively.

5.4.2 Data points allocation for training, validation and testing

In the training, validation, and testing phases, depending on which of the eight devices
is selected, eight possible scenarios are defined as in Table 4.2. The detailed procedure of
"Data points allocation for training, validation and testing" is explained in Section 4.3.4. As
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Table 5.1: LSTM based autoencoder and classifier model summary.

Index Layer Name Layer Type Output Shape Active Func. Parameters No. 

0 En.layer_0 InputLayer (None, 5120, 2, 1) - 0 

1 En.layer_1 Conv2D (None, 4800, 1, 1) Relu 643 

2 En.layer_2 Reshape (None, 4800, 1) - 0      

3 En.layer_3 CuDNNLSTM (None, 4800, 320) - 413440      

4 En.layer_4 Dropout (None, 4800, 320) - 0       

5 En.layer_5 Reshape (None, 4800, 320, 1) - 0       

6 En.layer_6 MaxPooling1D (None, 960, 1, 1) - 0       

7 En.layer_7 Dropout (None, 960, 1, 1) - 0       

8 En.layer_8 Conv1D (None, 800, 1, 32) Relu 5184        

9 En.layer_9 Dropout (None, 800, 1, 32) - 0 

10 En.layer_10 MaxPooling1D (None, 160, 1, 32) - 0 

11 En.layer_11 Dropout (None, 160, 1, 32) - 0 

12 En.layer_12 Conv1D (None, 80, 1, 32) Relu 82976 

13 En.layer_13 Dropout (None, 80, 1, 32) - 0 

14 En.layer_14 Conv1D (None, 40, 1, 32) Relu 42016 

15 En.layer_15 Dropout (None, 40, 1, 32) - 0 

16 En.layer_16 Conv1D (None, 20, 1, 32) Relu 21536 

17 En.layer_17 Dropout (None, 20, 1, 32) - 0 

18 En.layer_18 Conv1D (None, 10, 1, 32) Relu 11296 

19 En.layer_19_encoder Dropout (None, 10, 1, 32) - 0 

20 Dec.layer_0 Conv1DTranspose  (None, 10, 1, 32)    Relu 11296 

21 Dec.layer_1 Dropout (None, 20, 1, 32) - 0 

22 Dec.layer_2 Conv1DTranspose (None, 40, 1, 32) Relu 21536 

23 Dec.layer_3 Conv1DTranspose (None, 80, 1, 32) Relu 42016 

24 Dec.layer_4 Dropout (None, 80, 1, 32) - 0 

25 Dec.layer_5 Conv1DTranspose (None, 160, 1, 32) Relu 82976 

26 Dec.layer_6 Dropout (None, 160, 1, 32) - 0 

27 Dec.layer_7 UpSampling1D (None, 800, 1, 32) - 0 

28 Dec.layer_8 Dropout (None, 800, 1, 32) - 0 

29 Dec.layer_9 Conv1DTranspose (None, 960, 1, 32) Relu 164896      

30 Dec.layer_10 Dropout (None, 960, 1, 32) - 0 

31 Dec.layer_11 UpSampling1D (None, 4800, 1, 32) - 0 

32 Dec.layer_12 Dropout (None, 4800, 1, 32) - 0 

33 Dec.layer_13 Conv2DTranspose (None, 5120, 2, 1) Relu 20545 

34 Dec.layer_14_decoder Dropout (None, 5120, 2, 1) 0      

35 Cl.layer_0 Flatten (None, 320) - 0 

36 Cl.layer_1 Dropout (None, 320) - 0 

37 Cl.layer_2 Dense (None, 320) Relu 102720       

38 Cl.layer_3 Dropout (None, 320) - 0         

39 Cl.layer_4 Dense (None, 266666) Sigmoid 642 

40 Cl.layer_5_classifier Dropout (None, 2) - 0 

Total parameters: 1,023,718 

Trainable parameters: 1,023,718 

explained, the allocated percentages of the data points from the dataset for each group are
60% for training, 10% for validation, and 30% for testing. Based on this assumption, and with
respect to Table 4.2, four different devices are used for training, five devices for validation
and eight devices for testing. The number of allocated data points from each device for each
phase is given in Table 4.3. Note that the total number of data points for each device in the
dataset is higher than 11 000. Thus, there are enough data points from each device, which
prevents overfitting of the model to a specific device.
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Table 5.2: Dropout percentage allocated for the encoding, decoding, and classification layers
of LSTM based autoencoder model in training for scenario 8 of Table 4.2.

Model Section Dropout Percentage Row Number 

Encoder 0.5 4, 7, 9, 11, 13, 15, 17, 19 

Decoder 0.5 21, 24, 26, 28, 30, 32, 24 

Classifier 0.3 36, 38, 40 
 

In addition, as discussed in Section 4.3.4, the dataset should be shuffled before feeding
to the classifier to prevent the model from learning the order of the data points.

5.4.3 Decoding and classification convergence

During the training of the model, the dropout percentage used for encoding, decoding, and
classification, depends on the type of scenario of Table 4.2 that the model is trained for. In
seven out of 8 scenarios (scenarios 1 to 7), the dropout is eliminated for all three sections
(by assigning the dropout percentage = 0 for all model layers). For scenario 8, the dropout
percentage for specific layers of the model in Table 5.1 are as shown in Table 5.2.

As mentioned in Section 4.3.4, to assess the distance between the input data points and
those at the output layer of the decoder and thus the training process accuracy, the loss
function used is the mean squared error (MSE) between the two sets of data points. The loss
function selected for the classification output is the binary cross-entropy (BCE). On the other
hand, for the evaluation of the model performance at the training phase, the loss function
value of the validation dataset is an accurate criterion. The loss values and the minimum er-
rors for decoding and classification parts in training and validation are illustrated in Figs. 5.5
and 5.6. The iteration where the minimum validation error of classifier happens determines
the best model to be used for testing.

As illustrated, for both the RAW (Fig. 5.5) and DDWT (Fig. 5.6) datasets, in both cases
of training and validation, the converged MSE for the decoding of the trained model is low
enough for 7 out of 8 scenarios of Table 4.2, which illustrates that the model has been able
to reconstruct the input signal at the output for these cases, with an acceptable accuracy. On
the other hand, low training MSE values provide the classifier with a good quality input.
Meanwhile, convergence of the validation MSE shows that the model is not overfitting the
training dataset.

Let us have a look at BCE values for both training and validation, using the RAW and
DDWT datasets. In Figs. 5.5 and 5.6, the BCE error values for both training and validation,
using the RAW and DDWT datasets, are shown. As can be seen, similar to the MSE, for 7
out of 8 scenarios in Table 4.2, both training and validation BCE values converge to a low
value, as a sign of good classification performance. The classifier high accuracy is a proof
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that the quality of the input features at the output of the encoder has an acceptable level.

For device TI2, using the RAW datasets, due to the dropout percentage = 0.5 for the
encoding and decoding, and the dropout percentage = 0.3 for the classification parts (as shown
in Table 5.2), the converged MSE loss value for training (2.0) is higher than the validation
MSE loss value (1.7). Similarly, the BCE value in training converges to a higher value (2.5)
than that of validation (which is less than 0.5). For the DDWT dataset, the MSE for both
training and validation converges to a value lower than 0.2. However, although the BCE in
training converges to 0, the minimum validation BCE loss value is lower than 0.5. As can be
seen, although the performance of the model for scenario 8 is not as good as the other 7 cases
in Table 4.2, feeding the model with the DDWT dataset improves the model performance at
the output of the decoder (MSE), during the training and validation stages, compared to
the RAW dataset. In such a case, increasing the size or quality of the captured dataset from
device TI2 can help the model to distinguish this device from all other devices with a higher
accuracy.

Validation comparison with autoencoder model presented in Chapter 4 As can be seen
in Figs. 4.9, 4.10, 5.5, and 5.6, the most challenging scenario is the case 8 from Table 4.2. On
the other hand, since the output of the classifier is the part which is evaluated in Sections
4.3.5 and 5.5, the performance of the autoencoder model in Chapter 4 and the LSTM based
autoencoder in Chapter 5 during the validation are compared using the BCE values of the
validation. As can be seen in Figs. 4.9 (h) and 4.10 (h), the minimum BCE value in validation
for scenario 8 in Table 4.2, for both RAW and DDWT datasets, is close to 0.5, and it diverges
due to the fact that the model is overfitting the training dataset. But referring to the 5.5
(h) and 5.6 (h), for both the RAW and DDWT datasets, the validation BCE value does not
diverge and the minimum value is close to 0.5, which shows the advantage of the LSTM
based autoencoder proposed in this chapter compared to the autoencoder model analyzed
in Chapter 4, at the validation stage, for the worst case scenario.

5.5 Experimental results

5.5.1 Proposed classification testing

In this section, the emphasis is on testing and validation of the model, using the LSTM based
autoencoder. This is done by allocating 30% of the dataset to model testing as referred to in
Section 5.4.2. The evaluation of the model is based on the confusion matrices and the ROC
plots. As indicated in Table 4.2 and explained in detail in Section 4.3.5, the strategy for the
demonstration of the results is based on dividing the whole set of data points into 3 subsets:
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Figure 5.5: Training and validation losses for all eight scenarios listed in Table 4.2 for the
RAW dataset fed to the LSTM based autoencoder model.
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Figure 5.6: Training and validation losses for all eight scenarios listed in Table 4.2 for the
DDWT dataset fed to the LSTM based autoencoder model.
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Figure 5.7: Confusion matrix for the first group of four scenarios of Table 4.2 for the RAW
dataset fed to the LSTM based autoencoder model.

subset A, subset B, and subset C to evaluate the effect of different types of devices on the
model performance.

Confusion matrices

As the first step for the evaluation of the proposed classifier, the confusion matrices of the
testing data points are computed and shown in Figs. 5.7, 5.8, 5.9, and 5.10 for the LSTM
based autoencoder model. It is important to note that before testing, the classifier model is
trained for each of the 8 scenarios of Table 4.2 for both the RAW (original) and the DDWT
(wavelet-transformed) datasets. As shown, the results are compared from two points of
views: first, on the type of dataset (RAW or DDWT) and second, on the device group (A, B ,
or C).
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Figure 5.8: Confusion matrix for the second group of four scenarios of Table 4.2 for the RAW
dataset fed to the LSTM based autoencoder model.

The classification rates for groups A, B, and C of Table 4.2 shown in Figs. 5.7, 5.8, 5.9,
and 5.10, are summarized for each scenario in Table 5.3 with the RAW and DDWT datasets.

For instance, the classification rate in scenario 2 and group A of Table 5.3 (a) is larger
than or equal to 0.95, which means that the model trained for RZ1, using the RAW dataset,
leads to a classification rate higher than 0.95 for the testing data points of group A.

As seen in Table 5.3, the minimum classification rates for group A are 0.80 and 0.84,
for the RAW and DDWT datasets, respectively. The minimum classification rates for group
B are 0.30 and 0.39, which are much lower than for group A, for corresponding datasets.
This means that the model has a better performance for discrimination of the devices from
group A than group B, due to the fact that it has seen them during the training. For group
C, the minimum classification rates of the RAW and DDWT datasets are equal to 0.47 and
0.59, respectively. A similar analysis can be applied to all other rows of classification rates

100



TI2 (-1)

TI1 (-1)

RZ2 (-1)

RZ1 (-1)

RZ5 (-1)

Spoofed Device: AR1

AR1 (+1)

Predicted Labels

T
ru

e 
L

a
b

el
s

RZ3 (-1)

RZ4 (-1)

+1 (AR1) -1 (Others)

B

A

A

(a) Spoofed device AR1

TI2 (-1)

TI1 (-1)

RZ2 (-1)

RZ1 (+1)

RZ5 (-1)

Spoofed Device: RZ1

AR1 (-1)

Predicted Labels

T
ru

e 
L

a
b
el

s

RZ3 (-1)

RZ4 (-1)

+1 (RZ1) -1 (Others)

B

A

A

C

(b) Spoofed device RZ1

TI2 (-1)

TI1 (-1)

RZ2 (+1)

RZ1 (-1)

RZ5 (-1)

Spoofed Device: RZ2

AR1 (-1)

Predicted Labels

T
ru

e 
L

a
b

el
s

+1 (RZ2) -1 (Others)

RZ3 (-1)

RZ4 (-1)

B

A

C

A

(c) Spoofed device RZ2

TI2 (-1)

TI1 (-1)

RZ2 (-1)

RZ1 (-1)

RZ5 (-1)

Spoofed Device: RZ3

AR1 (-1)

Predicted Labels

T
ru

e 
L

a
b
el

s

RZ3 (+1)

RZ4 (-1)

+1 (RZ3) -1 (Others)

C

B

A

A

(d) Spoofed device RZ3

Figure 5.9: Confusion matrix for the first group of four scenarios of Table 4.2 for the DDWT
dataset fed to the LSTM based autoencoder model.

Table 5.3: Confusion matrix summary for the LSTM based autoencoder model using the (a)
RAW and (b) DDWT datasets fed to the LSTM based autoencoder model.

(a)

P
o
sitiv

e 

D
ev

ice
 

Members 

Classification Rate 

𝑨 𝑩 𝑪 

1 

𝑅𝑍1 ≥ 0.95 ≥ 0.30 2 

𝑅𝑍2 1.00 ≥ 0.70 0.473 

𝑅𝑍3 ≥ 0.98 1.00 0.594 

𝑅𝑍4 ≥ 0.99 ≥ 0.93 1.005 

𝑅𝑍5 ≥ 0.83 ≥ 0.82 1.006 

𝑇𝐼1 ≥ 0.99 0.99 1.007 

𝑇𝐼2 ≥ 0.80 ≥ 0.788 

𝐴𝑅1 1.00 1.00 -

0.99

1.00

(b)
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Classification Rate 

𝑨 𝑩 𝑪 

1 

𝑅𝑍1 ≥ 0.99 ≥ 0.39 2 

𝑅𝑍2 1.00 ≥ 0.71 0.593 

𝑅𝑍3 ≥ 0.93 ≥ 0.99 0.774 

𝑅𝑍4 ≥ 0.88 ≥ 0.90 1.005 

𝑅𝑍5 ≥ 0.84 ≥ 0.76 0.946 

𝑇𝐼1 ≥ 0.99 ≥ 0.99 1.007 

𝑇𝐼2 ≥ 0.91 ≥ 0.68 1.008 

𝐴𝑅1 1.00 1.00 -

0.95
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Figure 5.10: Confusion matrix for the second group of four scenarios of Table 4.2 for the
DDWT dataset fed to the LSTM based autoencoder model.

for the RAW and DDWT datasets in Table 5.3, for groups A, B, and C. The minimum correct
classification rate using the RAW dataset in Table 5.3 (a) and Fig. 5.7 (b) belongs to device
RZ4 (0.30) obtained from the model trained based on the positive device RZ1. For the DDWT
dataset, the minimum correct classification rate corresponds to device RZ4 (0.39) obtained
from the model trained based on positive device RZ1, shown in Table 5.3 (b) and Fig. 5.9 (b).

Comparison between the model performance for the RAW and DDWT datasets Although
the classification rate for rogue device TI1 and the model of positive device TI2 did not im-
prove using the DDWT dataset, by feeding the mode with this dataset we could increase the
classification rate of the worst case scenario (for group B and positive device RZ1 in Table
5.3) from 0.3 to 0.39, using the DDWT dataset. Therefore, comparing Tables 5.3 (a) and 5.3
(b), in some cases, using the DDWT dataset can improve the minimum classification rates of
the models presented in this chapter. For instance, the minimum classification rate for group
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Figure 5.11: ROC plot for first group of four scenarios of Table 4.2 for the RAW dataset fed
to the LSTM based autoencoder model.

C and positive device RZ2 has increased from 0.47 to 0.59, using the DDWT dataset, shown
in Tables 5.3 (a) and 5.3 (b). Using the DDWT dataset, or a combination of both datasets is a
good solution to improve the suggested models’ worst classification rates.

Receiver operating characteristics

As shown in Section 4.3.5, the resulting ROC plots for the LSTM based autoencoder model
are shown in Figs. 5.11, 5.12, 5.13, and 5.14. For each ROC plot, the area under the curve
(AUC), is given in the legend. Higher values closer to 1.0 illustrate better performances
of the trained models in the case of acceptance of an authorized device and rejection of a
rogue device [106]. The correct classification rate of a target/authorized/spoofed device, is
characterized by the detection probability pd, and its corresponding misclassification rate of
rogue/unauthorized/spoofing device by the false alarm probability pFA.

Tables 5.4 and 5.5 summarize the worst results obtained with the A, B, and C sets of
devices using the RAW and DDWT datasets. For instance, in the second scenario, feeding
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Figure 5.12: ROC plot for second group of four scenarios of Table 4.2 for the RAW dataset
fed to the LSTM based autoencoder model.

the model trained for positive device RZ1 with the RAW dataset in Fig. 5.11 (b) and Table 5.4,
the range of correct classification rate (pd) for the values of pFA in [0.01, 1.0] is almost equal
to 1.0, corresponding to group A of testing devices. As mentioned in Table 4.2, this group
of devices are also those used in training. For group A and the RAW dataset, the minimum
AUCmin belongs to the sixth scenario (0.9814) and the minimum AUCmax is equal to 0.9992.
Focusing on the same group, the average area under the curve (AUCavg) for the first scenario
and the RAW dataset is equal to 1.0000, the minimum AUCavg for all scenarios is 0.9931.

Looking at the same plot (Fig. 5.11 (b)) and the same scenario in Table 5.4, group B gives
pd values higher than 0.9 for pFA in the range [0.353, 1.0] for the same RAW dataset. The
values of minimum AUCmin and minimum AUCmax for group B are 0.9093 for the scenario
8 and 0.9992 for scenario 7, respectively. AUCavg is higher than 0.9546 for all scenarios.

Finally, for group C, the pd is equal to 1.0 for values of pFA higher than 0.057 in all sce-
narios of Table 5.4. For this group, for the area under the curve we have 0.9794 ≤ AUCmin ≤
1.0000 and 0.9794 ≤ AUCmax ≤ 1.0000. For such a group, the average area under the curve
has the same range as AUCmin and AUCmax.
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Figure 5.13: ROC plot for first group of four scenarios of Table 4.2 for the DDWT dataset fed
to the LSTM based autoencoder model.

The best AUCavg (and the best model performance) corresponding to the RAW dataset
relates to group A with the minimum AUCavg = 0.9931, and the worst case scenario (result-
ing in the worst model performance) for this type of dataset is related to group B with the
minimum AUCavg = 0.9546.

The summary of all resulted for the RAW and DDWT, and groups A, B, and C are
presented in Tables 5.4 and 5.5. Focusing on the DDWT dataset, the best performance for
this model goes to group A with the minimum AUCavg = 0.9866, and the worst model
performance is corresponding to group B with the minimum AUCavg = 0.9673.

Comparison between the model performance for the RAW and DDWT datasets Although
the pd for a specific range of pFA for devices from group A in Table 5.4 for the RAW dataset
shows a better performance compared to the same scenarios in Table 5.5 for the DDWT
dataset, the ROC plots for groups B and C show the advantage of the DDWT dataset over
the RAW dataset. For example, in the second scenario (device RZ1), using the DDWT dataset
improves the worst pFA range from [0.353, 1.0] to [0.167, 1.0] for the same correct classifica-
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Figure 5.14: ROC plot for second group of four scenarios of Table 4.2 for the DDWT dataset
fed to the LSTM based autoencoder model.

tion rate pd in device group B; and this improvement in the case of group C is from [0.057, 1.0]
related to the RAW dataset to [0.02, 1.0] in DDWT dataset. Therefore, decreasing the lower
threshold of pFA will result in better performance of the model through achieving higher
values of correct classification rates (pd) by tolerating lower values of false alarm probability
(pFA). For the comparison of the minimum AUCavg corresponding to all scenarios of group
A, it is 0.9931 for the RAW dataset and 0.9935 for the DDWT dataset, respectively. For group
B, the DDWT dataset shows a better performance (0.9546 < 0.9673), and the RAW dataset
presents an advantage over the DDWT dataset for group C (0.9794 > 0.9484). Based on this
fact, it may be concluded that using the RAW dataset better performance can be achieved
by the model. But, if the focus is on the worst case scenarios, as mentioned before, in the
second scenario (device RZ1), using the DDWT dataset improves the worst pFA range from
[0.3531.0] to [0.167, 1.0] for pd ≥ 0.9, and AUCavg from 0.9546 to 0.9719, in device group B.
Therefore, although the comparison of confusion matrix results shows a better classification
rate using the RAW dataset, the ROC plots of Figs. 5.13 and 5.14 compared to Figs. 5.11 and
5.12 determine the better performances using the DDWT dataset for the cases where the clas-
sifier tolerates larger false alarm probability values pFA. Therefore, combining both datasets,
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Table 5.4: ROC plots summary for the RAW dataset fed to the LSTM based autoencoder
model.
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we can achieve higher AUC values, lower pFA, and also, improve the model performance
for the worst case scenarios.

5.6 Classifier performance comparison

In this section, after testing the performance of the proposed methodology on real datasets,
the performance of the proposed classification method is compared with other classifiers
recently presented in the literature. As some special considerations are taken into account, it
is worth mentioning them.

• As in the testing process, all testing steps are repeated on the RAW and DDWT datasets.

• The main strategy of this work is based on the separation of devices based on Table 4.2,
resulting in training the model for a different authorized/spoofed unit.

• During the training of the model, two sets of devices are needed. One set (including a
device) plays the role of a spoofed device and the other set (consisting of at least one
device) is used as a spoofing set.

• As noticed in the testing section, the device dataset is composed of three groups: group
A (devices which are used in the training phase), group B (devices which are not used
in the training, but for which one or more members of their family are), and group C
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Table 5.5: ROC plots summary for the DDWT dataset fed to the LSTM based autoencoder
model.
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Table 5.6: Comparison of methodology presented in Chapters 4 (autoencoder model) and 5
(LSTM based autoencoder model), with approaches in [35] and [97], using the RAW dataset.

RAW Dataset
A B

AUCmin AUCmax AUCavg AUCmin AUCmax AUCavg
Autoencoder (Ch. 4) 0.9947 1.0000 0.9996 0.3926 1.0000 0.9686

LSTM autoencoder (Ch. 5) 0.9814 1.0000 0.9989 0.9093 1.0000 0.9916
Merchant et al. [35] 0.6216 1.0000 0.9840 0.0580 1.0000 0.8830
Ramsey et al. [108] 0.2404 1.0000 0.9634 0.0108 1.0000 0.9355

C
AUCmin AUCmax AUCavg

Autoencoder (Ch. 4) 0.9430 1.0000 0.9830
LSTM autoencoder (Ch. 5) 0.9794 1.0000 0.9939

Merchant et al. [35] 0.9532 1.0000 0.9919
Ramsey et al. [108] 0.1976 1.0000 0.8803
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Table 5.7: Comparison of methodology presented in Chapters 4 (autoencoder model) and
5 (LSTM based autoencoder model), with approaches in [35] and [97], using the DDWT
dataset.

DDWT Dataset
A B

AUCmin AUCmax AUCavg AUCmin AUCmax AUCavg
Autoencoder (Ch. 4) 0.9901 1.0000 0.9989 0.8115 1.0000 0.9792

LSTM autoencoder (Ch. 5) 0.9748 1.0000 0.9973 0.9018 1.0000 0.9705
Merchant et al. [35] 0.3964 1.0000 0.9745 0.0602 1.0000 0.8470

Dubendorfer et al. [97] 0.0000 1.0000 0.7474 0.0000 1.0000 0.7356
C

AUCmin AUCmax AUCavg
Autoencoder (Ch. 4) 0.8997 1.0000 0.9711

LSTM autoencoder (Ch. 5) 0.9484 1.0000 0.9894
Merchant et al. [35] 0.9184 1.0000 0.9879

Dubendorfer et al. [97] 0.0000 1.0000 0.6992

(devices for which neither they nor their other family members are used in the training
phase).

Referring to this short summarization, three cases of comparison are done with respect
to their approach to each mentioned criteria above.

AUC performance evaluation Why do we use AUC for the comparison? What does it
mean if a methodology presents a higher value of AUC? As in Chapter 4 (autoencoder
model), the area under the curve (AUC) is used for comparing the different classifiers or
methodologies, presenting the area under the ROC curve. When a classifier presents a higher
value of AUC compared to another one, it can be inferred it has a better performance in
discrimination of rogue and authorized classes. The summary of the AUC results presented
in this section are reported in Tables 5.6 and 5.7, respectively.

5.6.1 Comparison with autoencoder model presented in Chapter 4

In Chapter 4 (autoencoder model), an autoencoder based classifier for discrimination of
rogue and authorized devices is proposed. Using the model designed in Fig. 4.7 and shown
in Table 4.1, comparison with Chapter 4 (autoencoder model) is done based on the 8 strate-
gies of Table 4.2 with the RAW and DDWT datasets. The results obtained from this model for
the RAW and DDWT datasets are shown in Tables 5.6 and 5.7, the AUCmax for both method-
ologies in Chapters 4 (autoencoder model) and 5 (LSTM based autoencoder model) is equal
to 1.0000. This value is the same for groups A, B, and C, related to the RAW and DDWT
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dasets. On the other hand, the AUCmin and AUCavg corresponding to Chapter 4 (autoen-
coder model) shows a better performance for group A. For example, let us focus on the RAW
dataset. Although the performance of the model for group A is a little bit better than Chapter
4 (autoencoder model), in Chapter 5 (LSTM based autoencoder model), for group B, AUCmin

has almost doubled (increased from 0.3926 to 0.9093), and AUCavg has increased from 0.9686
to 0.9916. Finally, in the case of group C, AUCmin and AUCavg related to Chapter 5 (LSTM
based autoencoder model) show a better performance, since they could increase from 0.9430
to 0.9794. In brief, for the RAW dataset, the AUCmin values for Chapters 4 (autoencoder
model) and 5 (LSTM based autoencoder model) are 0.3926 and 0.9093, respectively, which
shows the better performance of the presented method in Chapter 5 (LSTM based autoen-
coder model).

Using the DDWT dataset, we obtain similar results as for the RAW dataset. Although
the performance of the model for group A is slightly better for Chapter 4 (autoencoder
model), in Chapter 5 (LSTM based autoencoder model), for group B, AUCmin has increased
from 0.8115 to 0.9018, compared to Chapter 4 (autoencoder model). Focusing on group
C, AUCmin for Chapter 5 (LSTM based autoencoder model) shows a better performance
(AUCmin = 0.9484) compared to Chapter 4 (autoencoder model) (AUCmin = 0.8997). As
a summary, the minimum AUCmin in Chapter 5 (LSTM based autoencoder model) has in-
creased from 0.8115 to 0.9018, compared to Chapter 4 (autoencoder model), which is the
proof for better performance of the LSTM based autoencoder model presented in Chapter 5.

5.6.2 Comparison with reference [35]

In [35], Merchant et al. introduced a discrimination system (a convolutional based neural
network) to distinguish between the different devices, as shown in Table 4.7. Implementing
the model in this table, the comparison with [35] is done using the RAW and DDWT datasets
with focus on all 8 strategies of Table 4.2.

In Tables 5.6 and 5.7, the AUCmax = 1.0000 for Chapter 5 (LSTM based autoencoder
model) and also the results obtained from [35], related to groups A, B, and C of both the
RAW and DDWT dasets. The AUCmin and AUCavg for Chapter 5 (LSTM based autoencoder
model) for the RAW dataset and group A have increased from 0.6216 to 0.9814, and from
0.9840 to 0.9989, respectively. In the case of group B from the RAW dataset, Chapter 5 (LSTM
based autoencoder model) could improve AUCmin and AUCavg from 0.0580 to 0.9093 (more
than doubled compared to Chapter 4 (autoencoder model)), and from 0.8830 to 0.9916, re-
spectively. Finally, AUCmin and AUCavg related to [35] (0.9532 and 0.9919) are not as high as
those in Chapter 5 (LSTM based autoencoder model) (0.9794 and 0.9939).

Let us now focus on the DDWT dataset. In the case of group A, AUCmin and AUCavg

110



improved from 0.3964 to 0.9748 (but not as much as Chapter 4 (autoencoder model)), and
from 0.9745 to 0.9973, respectively. The same factors for group B increased from 0.0602 to
0.9018 (higher than Chapter 4 (autoencoder model)), and from 0.8470 to 0.9705, respectively.
Eventually, group C proves that AUCmin and AUCavg related to Chapter 5 (LSTM based
autoencoder model) (0.9484 and 0.9879) has a better condition compared to [35] (0.9184 and
0.9879).

5.6.3 Comparison with reference [108]

For the third comparison, the method in [108] is compared to that of Chapter 5 (LSTM based
autoencoder model). In this work, Ramsey et al. used the time domain features of the ZigBee
devices, such as a(t), φ(t), and f (t) and their statistical features: σ2, γ, and κ. Using the multi
discriminant analysis (MDA) model, the results for all 8 strategies of Table 4.2 are summa-
rized in Table 5.6. Table 5.6 shows the AUCmax for both methods in Chapter 5 (LSTM based
autoencoder model) and [108], for all the groups A, B, and C of RAW dataset, equal to 1.0000.
In Chapter 5 (LSTM based autoencoder model), the AUCmin and AUCavg for group A has in-
creased from 0.2404 to 0.9814, and from 0.9634 to 0.9989, respectively. Focusing on group B,
the same factors have changed from 0.0108 to 0.9093 (which is a remarkable improvement
compared to Chapter 4 (autoencoder model)), and from 0.9355 to 0.9916, respectively. For
group C, AUCmin in Chapter 5 (LSTM based autoencoder model) and [108] are 0.9794 and
0.1976, respectively. As seen, the performance of an approach can easily be compromised by
a complex dataset like one which is used in this thesis. In such a case, [108] could not reach
an AUCmin higher than 0.0108 for group B.

5.6.4 Comparison with reference [97]

For the last comparison, the focus is on [97]. Dubendorfer et al. fed MDA by Radio Fre-
quency Distinct Native Attributes (RF-DNA) dataset for discrimination purposes. In such a
case, the wavelet transform of statistical features (variance as σ2, skewness as γ, and kurtho-
sis as κ of physical signal characteristics like amplitude (a(t)), phase (φ(t)), and instanta-
neous frequency ( f (t))) was used. In this section, the wavelet transform of the statistical
features (σ2, γ, and κ) of a(t),φ(t), and f (t) of the RAW dataset in this thesis are fed to the
MDA for all 8 strategies of Table 4.2. The summary of the results is depicted in Table 5.7.
Based on this table, the AUCmax for both methodologies in Chapter 5 (LSTM based autoen-
coder model) and [97], for all the groups in the DDWT dataset is 1.0000. In Chapter 5 (LSTM
based autoencoder model), using the DDWT dataset and group A, the AUCmin and AUCavg

have increased from 0.0000 to 0.9748, and from 0.7474 to 0.9973, respectively. For group B,
where AUCmin and AUCavg have increased from 0.0000 to 0.9018, and from 0.7356 to 0.9705,
respectively. In the case of group C, the AUCmin in [97] is 0.0000, which is due to the com-
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plexity of the dataset, and it was improved to 0.9484 in Chapter 5 (LSTM based autoencoder
model).

5.7 Conclusion

In this chapter, an approach based on deep learning has been presented for the rejection of
unauthorized devices and to prevent them from having access to the network. The physical
devices features are extracted from (time domain) RAW or from (time-scale domain) DDWT
datasets and fed to a deep learning network using an LSTM layer. The main strategy of
this work relies on the separation of target/authorized/spoofed devices from the group of
rogue/unauthorized/spoofing ones, using the mechanism of training the model for each
device and evaluating the trained model using seen/unseen devices. As observed, the clas-
sification rates for the rejection of rogue devices in worst and best cases for the area under the
curve (AUC) of ROC plots are 0.9093 and 1.0000 when using the RAW dataset, and 0.9018
and 1.0000 using the DDWT datasets, respectively. These results are comparable to those
reported in the literature, as shown in Section 5.6.
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Conclusion

Summary of the thesis

The main goal of this Ph.D. is to propose a system for discrimination of authorized devices
from rogue ones in ZigBee systems based on the IEEE 802.15.4 protocol. In other words,
the network should be able to reject unauthorized/rogue devices from having access to the
network, and at the same time, provide access for authorized ones with a high accuracy.
Different researches have been done in this field to provide access granting systems in the
past. However, the main two factors which were missed in the majority of these researches
were high accuracy and the ability of the system to detect unseen devices. In this thesis, the
main goal is on presenting a design which covers both factors. The proposed system has
the ability to accept/reject seen or unseen devices (at the time of training of the model) with
high accuracy.

After a problem definition in the introduction chapter, and a literature review of works
done in Chapter 1, Chapter 2 presented the theoretical background on device classifiers in-
vestigated in this thesis (autoencoder, RNN, and LSTM), training procedure of the autoen-
coder and classifier models. In addition, Chapter 3 went over the different steps of dataset
generation from the selected devices. As discussed in this chapter, the quality of captured
signals was low due to the distortion and noise in the environment. Therefore, before using
this kind of signal, an essential preprocessing procedure was done on the dataset to make it
ready for classification purposes.

Chapter 4 presented the performance results for rogue device discrimination using the
proposed autoencoder based classifier. With this autoencoder based model, the classification
rate lead to an acceptable accuracy for new (unseen) devices. The proposed rogue device
discrimination method compared favorably with other methods reported in the literature.

Chapter 5 addressed unauthorized device rejection using this time the long short-term
memory (LSTM) based autoencoder. Using LSTM, the extracted time-dependency of input
data points can be extracted for classification purposes. In such a manner, similar results as
those presented in Chapter 4 were reported, for the original (RAW) and wavelet-transformed
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(DDWT) datasets. These results are comparable to the results reported in the literature.
However, it should be kept in mind that for these tests, the combination of seen and un-
seen devices by the model has been used which makes these results more reliable in real
cases. As a conclusion, it is worth mentioning that the model complexity of the LSTM based
autoencoder proposed in Chapter 5 is more than that of the autoencoder presented in Chap-
ter 4. Therefore, there should always be a trade-off between the implementation complexity
and performance accuracy of the model with respect to the available computational power
of the system.

Contributions

The contributions that were presented in our thesis are as follows.

1. Model design using deep neural networks The special kind of deep learning model,
based on autoencoders, leads to promising results for device classification. In this the-
sis, using an automated feature extraction structure implemented by an autoencoder
deep neural network, essential features from each preamble are extracted. Later on,
the extracted features are fed to a fully connected classifier to distinguish between the
authorized and rogue devices. Also, adding a long-short term memory layer to the au-
toencoder structure, the time-dependency of the signal is extracted which is used as an
important feature for increasing the accuracy in the neural networks classifier. In addi-
tion, with simultaneous training of the decoder and the classifier parts, it is guarantied
that the extracted features are meaningful enough for the classifier.

2. Designing a model for each device We present a basic structure for the separation
of one device from all other devices. This means that the goal of each model is to
distinguish one device from all others, known as one-vs-all strategy. Consequently, the
number of models in such a methodology is equal to the number of authorized devices.
Through this strategy, instead of multi-class classification, we can assign a model to
each authorized device. Therefore, the mission for each model is to discriminate a
specific device, from all other devices in the world which try to copy the identity of this
device. In such a case, if a model is responsible to learn a single and unique device, the
accuracy will be higher compard to the multi-class case. Then, the selected strategy in
this thesis is one-vs-all.

3. Domain transformation The analysis of classifiers is adapted from the time to the time-
scale domain using wavelet transform. In such a case, the wavelet transformation
can map the signal from the time domain to the time-scale domain. Using such a
transformation, it is possible to extract some features from the signal that can be used
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for classification. In this thesis, using the Haar wavelet transformation to extract the
detail coefficients, the abrupt local changes of generated preambles (data points) by
each device are detected to be used in rogue and authorized device discrimination.

4. Testing the model with unseen devices We test the model with a subset of devices
which has never been seen by the model at the time of training. For such a purpose,
before training, the dataset is divided into three subsets, training, validation, and test-
ing. None of these three subsets have any data points in common. This is a main aspect
at the time of testing the model with new unseen data points, which is not present in
some of the works in the literature. Besides, the dataset which is fed to these models
is divided into three parts, including devices which are seen/unseen in the training
phase. Some of these unseen devices are from the family of training devices or com-
pletely new brands.

5. Focusing on the time-dependency of data points The time-dependency of preambles
in the dataset is an important factor which can be used for extraction of high accuracy
features, resulting in a high classification rate. After adding a long-short term memory
layer to the autoencoder, which is responsible to extract the time-dependency features
of the preamble, if we compare the results of the correct classification rates between the
autoencoder structures with and without long-short term memory, we can see that the
area under the curve for the worst classification case has increased remarkably, after
adding this layer, which is a good factor which justifies its efficiency.

In [73], the strategy of one-vs-all is used to design an efficient convolutional neural net-
work (CNN) for discrimination of authorized and unauthorized devices. The set of contri-
butions 3 to 4 is the basis of the work presented in [10] and Chapter 4. In addition to the
mentioned contributions, Chapter 5 and the work presented in [62] presents the benefit of
adding an LSTM layer to the structure of the autoencoder. Referring to the results of Chap-
ters 4 and 5, these contributions lead to an efficient approach for the detection and rejection
of seen and also unseen devices from the same or different manufacturers.

At the time of writing this thesis, based on the LSTM based autoencoder design pre-
sented for classification purposes in Chapter 5, a conference paper with the title of "Wireless
Device Authentication using LSTM based Autoencoders" has been presented at the 30th Bien-
nial Symposium on Communications 2021 [62], and a journal paper entitled "Unauthorized
Device Rejection in Wireless Communication Systems using Wavelet Transform and LSTM
Based Autoencoders" is in progress.
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Suggestions for future works

The complex structure of neural networks is a key barrier in the realization of a model for fast
and high accuracy networks for the detection of devices in very large datasets. Moreover,
failure of the model for detecting some special devices is an important factor which should be
investigated more. Also, all procedures for signal acquisition in this project have been done
in an isolated environment and the effect of the external noise was not taken into account.
For future works, the following ideas are suggested:

1. The rogue device rejection in this thesis is done for ZigBee standard protocol (802.15.4)
in 5G wireless communication systems. However, there is a potential for investigat-
ing an appropriate rogue device rejection approach for other wireless protocols (Wi-Fi,
Bluetooth, Z-Wave, etc.) or sixth generation standard for wireless communications
technologies (6G).

2. The data acquisition done in this work was in an anechoic chamber. A next step could
be to bring the devices outside of the anechoic chamber, which will add noise to the
received signal. This noisy environment results in distortion, reflection, and receiv-
ing signals from other working devices in the area which decreases the quality of the
received signal for feature extraction and classification.

3. Increasing the dataset size by adding new devices from the same families of devices
used in this thesis (RZUSBSTICK, TI, and XBee) or devices from other families is an-
other suggestion. On the other hand, the data receiving setup in this thesis includes a
Zynq XC7Z020 SoC FPGA sampling the captured signal 40 MHz. It is possible to test
different receivers and different sampling frequencies in the next researches.

4. Another suggestion for future research work is to investigate other classifier structures
with different types and number of layers at the time of designing the deep models.
Decreasing the size of the model, while keeping the accuracy is a good way of reducing
the computational power needed.

5. This project focused on the ZigBee protocol. However, through subtraction of refer-
ence preambles from the phase and frequency compensated received preambles before
processing, we can eliminate the dependency of the methodology of this thesis from
the IEEE 802.15.4 protocol, since the remaining signal is noise. This noise comes from
different sources including the device itself. This specific noise can be used as the fin-
gerprints of the device and can be used for device detection.
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Appendix A

Model testing evaluation using
confusion matrix and receiver
operating characteristic curve

Model training and validation were discussed in Section 2.4. The last step in the procedure
of device discrimination is testing. Although the model is evaluated during the validation
process with a group of data points (or even devices), since the design of the model is based
on its optimization for the best possible classification of validation data points, there is a risk
of overfitting the model to the validation dataset. Therefore, testing the model is required.
This involves the verification of the classifier: the output probabilities and classified labels
of the classifier are extracted and verified by machine learning evaluation methods, such as
the Confusion Matrix (CM), and the Receiver Operating Characteristic (ROC) curves. In the next
two sections, the procedures for generating the confusion matrix [112] and receiver operating
characteristics [113] are described in more detail.

A.1 Confusion matrix for model testing and verification of the
classifier

Verification is defined as the probability of correct classification of authorized (target) de-
vices, with respect to the possibility of misclassification of rogue (nontarget) devices [106].
During the evaluation of the results obtained from a classifier, the rate of the correct classifi-
cation of data points from the target class is called true positive rate (TPR). On the other hand,
the rate of misclassification of the data points from a target class is called the false negative
rate (FNR). Similarly, if the data points from the nontarget class are discriminated as data
points from the target class, the rate of this misclassification is referred to as false positive
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Table A.1: Confusion matrix.

Confusion matrix

Target (predicted) Nontarget (predicted)

Target (actual) TPR (true positive rate) FNR (false negative rate)

Nontarget (actual) FPR (false positive rate) TNR (true negative rate)

1

rate (FPR). Finally, correct classification of the data points from nontarget class is referred to
as true negative and the rate of this classification is called the true negative rate (TNR). The
summary of all mentioned above is shown in Table A.1, called the confusion matrix (CM).

A.2 ROC plot for model testing and verification of the classifier

Through changing the threshold value (τ) for calculation of TPR, FPR, TNR, and FNR, it can
be seen that the different values of these variables can be extracted according to the selected
value of τ. Using the different values of TPR and FPR, a special plot, referred to as ROC plot,
can be drawn pointing at the rate of correct classification of target class members known as
a true positive rate (TPR, also called the probability of detection) vs nontarget data points
misclassification or false positive rate (FPR, known as false alarm probability). The resulting
ROC plot is depicted in Fig. A.1.
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Figure A.1: ROC plot graph.

Step-by-step procedure of the model training to extract the ROC plot is as follows.

A.2.1 Model training

An example of device allocation with 10 devices for model training is shown in Fig. A.2. As
can be seen, one can train the model using different scenarios. One possible scenario is using
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Figure A.2: Example of a dataset device allocation.

all devices with different labels like D1, D2, D3,..., D10. The model will be able to classify
between different devices existing in a dataset. Another scenario is to divide the dataset into
some sets or groups where in each group, one or more devices are allocated. One example of
this case is to separate the dataset into 2 sets: an authorized set and a rogue set. Therefore, a
large number of scenarios with different number of groups for device allocation are possible.
Fig. A.2 shows an example of a device dataset partitioning into 4 possible groups.

Having allocated different devices into Ng groups, training the model is the next step in
this procedure. After training the model, the output of the model will attribute a probability
of belonging to any of these Ng groups to each data point from each device. As an example,
if we consider 10 devices and Ng = 4 groups as in Fig. A.2, the output of the model is as
shown in Eq. A.1.

p
(

Dj|Wi
)
=



1.0 if j = 1, 2, 3 and i = 1

1.0 if j = 4, 5, 6, 10 and i = 2

1.0 if j = 7, 8 and i = 3

1.0 if j = 9 and i = 4

0 otherwise

(A.1)

(a) Model training for identification

For identification [106], the model should be able to distinguish between the different
devices. As discussed before, the model just knows the classes, and this mean that each
class should include one device only. Such class allocation is illustrated in Fig. A.3, and
summarized in Eq. (A.2).
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Figure A.3: Identification dataset device allocation.

p
(

Dj|Wi
)
=

1.0 if j = i

0 otherwise
(A.2)

(b) Model training for verification
The main strategy is a one-vs-all verification, and the main classification strategy dur-

ing the training is slightly different from the simple mechanism (known as identifica-
tion) described in part (a). Each model is trained based on a specific device. In other
words, during the training, a single model is allocated to distinguish between the data
points of a specific device from all other data points from any other devices. There-
fore, during the training, all data points from the target device are labeled as +1 and
all other data points (regardless of their real device label) are labeled as −1. Then, for
example, for the separation of data points of D1 from all the other devices, the new
form of data points labeling is as shown in Fig. A.4.

After the training phase, the model should be able to distinguish between data points
of D1 from all other classes. Keeping this in mind, the model is not able to differentiate
any of the remaining devices D2, D3, D4, ..., D10 from each other. The resulting data
points labeling in this mode is as shown in Eq. A.3.
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Figure A.4: Verification dataset device allocation.

p
(

Dj|Wtype
)
=


1.0 if j = 1 and type=pos

1.0 if j = 2, ..., 10 and type=neg

0 otherwise

(A.3)

In the remaining of this section, the main training strategy which is selected for ROC
plot extraction is the same as the verification training strategy.

A.2.2 ROC plot extraction

We now explain the mechanism for the extraction of the ROC plot based on practical cases.
After the calculation of the conditional probabilities of each of the data points, the first step
in classification is the determination of the threshold τ. On the other hand, by varying the
value of the threshold τ, we can draw the ROC plot. First, the target class has to be assigned.
Referring to [61, 100, 114], the main scenario is to divide the set of classes into two regions,
such that the region of the authorized device(s) is called the target class, and the other set
of the device(s) is referred to as the nontarget class. Through this definition, all data points
of the target class are labeled as +1, and all other data points of the nontarget class are
labeled as −1. These are the true classification labels of the dataset. In this step, let us
imagine that we have M devices D1, D2, D3, ..., DM. For the division of a dataset into two
sets, lets say that [Di1 , ..., Dio ]1⩽i1,...,io⩽M are o selected units as the authorized devices. Besides,
[Dj1 , ..., Djp ]1⩽j1,...,jp⩽M,j1,...,jp ̸=i1,...,io are p devices which will be allocated to rogue devices set.
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A good example for this case is the separation of devices into two groups of authorized and
rogue ones, as shown in Fig. A.4.

Now, with respect to Fig. A.1, the definition of the ROC plot relates to the TPR vs the
FPR. Here, the main step is to make a decision about the target and nontarget classes. Let
us say that based on Fig. A.4, the authorized class (D1) is selected as the target class, and
the data points from this class are labeled as +1. In this case, other devices belong to the
unauthorized/rogue class, and the data points of these devices are labeled as −1.

After training/validation of the model with the training/validation dataset, it is time
to manage the probabilities of the trained model for target/nontarget classes to extract the
exact percentage of target/nontarget testing data points classified as the target ones. To reach
this goal, the strategy is as follows.

Steps to extract the thresholds for ( pFA)

1. Extraction of the conditional target/nontarget class probabilities from the trained model
for each of the testing data points of the nontarget class (−1) fed to the trained model.
As discussed, each device can attend the training, validation, and/or testing. The selec-
tion of a device for one/two/all of the mentioned stages is dependent on the training
strategy. Therefore, if a device is selected for training, validation, and testing, its data
points are divided into 3 parts.
If the number of testing devices is Mte, then we will have:

Mte = MT,te + MnT,te (A.4)

where 1 ≤ Mte ≤ M, and MT,te and MnT,te are the number of target and nontarget test-
ing devices, respectively. For example, one possible testing set (Ste) from all possible
testing subsets related to the specific case of Fig. A.4 , shown in Table A.2, is:

Ste = {D1, D2, D4, D8, D9} (A.5)

where M = 8, Mte = 5, MT,te = 1 (since we have just D1 as the target device in Ste),
and MnT,te = 4.

DnT,te,l for 1 ≤ l ≤ MT,te is defined as the lth nontarget testing device. For Eq. (A.5),
the DnT,te,l is any of the devices for testing, except D1, since D1 is a target device:

(DnT,te,l)l=1,2,3,4 = {D2, D4, D8, D9} (A.6)

xte,n
nT,te,l refers to the nth (1 ≤ n ≤ Nte

nT,te,l) testing data point from the lth nontarget testing
device (DnT,te,l). Nte

nT,te,l is the number of testing data points, from lth nontarget testing
device (DnT,te,l). For example, for (DnT,te,l)l=1 which is equal to D2 in Eq. (A.6), and
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Table A.2: An example for dataset division to training, validation, and testing.

Devices Target/Nontarget  Training No. Validation No. Testing No. 

D1 Target 6000 1000 4000 

D2 Nontarget 6000 1000 4000 

D3 Nontarget 6000 1000 - 

D4 Nontarget 6000 1000 4000 

D5 Nontarget - 1000 - 

D6 Nontarget - - - 

D7 Nontarget - - - 

D8 Nontarget - - 4000 

D9 Nontarget - - 4000 

D10 Nontarget - - - 

 

based on Table A.2,
(

Nte
nT,te,l

)
l=1

= 4000.
Let us have a deeper look at Table A.2. Besides the testing set in Eq. (A.6), we have the
following training and validation subsets.

Str = {D1, D2, D3, D4}

Sval = {D1, D2, D3, D4, D5}
(A.7)

Referring to Eq. (A.7), the definition of nontarget devices from these two subsets are
as shown in Eq. (A.8).

(DnT,tr,o)o=1,2,3 = {D2, D3, D4}(
DnT,val,q

)
q=1,2,3,4 = {D2, D3, D4, D5}

(A.8)

In Eqs. (A.6) and (A.8), we can divide the devices into some different groups. Among
the devices which are used, some devices just belong to testing ({D8, D9}). In such
a case, the dataset from these devices are completely allocated to the testing phase,
and

(
Nte

nT,te,l

)
l=3,4

(referring to Eq. (A.6)) is equal to 4000. Another group of the used

devices only belong to the validation phase. For instance, D5 is a validation device, and
all 1000 data points from this device are used in validation. In addition, some devices
are used in more than one phase. For example, D3 is used in training and validation,
or D4 is used in all phases of training, validation, and testing. Then, for the specific
device D4 we have: (

Ntr
nT,tr,o

)
o=3

= 6000(
Nval

nT,val,q

)
q=3

= 1000(
Nte

nT,te,l

)
l=2

= 4000

(A.9)

where
(

Ntr
nT,tr,o

)
o=3

is the number of training data points, from the 3th nontarget train-

ing device (DnT,tr,o)o=3.
(

Nval
nT,val,q

)
q=3

is the number of validation data points from 3th
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Table A.3: Conditional probabilities of class +1 and −1 for nontarget testing dataset.

Unauthorized/Rogue/Nontarget testing dataset
(DnT,te,l)l=1

Positive Class p
(

xte,n
nT,te,l

∣∣Wpos

)
n=1
l=1

· · · p
(

xte,n
nT,te,l

∣∣Wpos

)
n=Nte

nT,te,l
l=1

Negative Class p
(

xte,n
nT,te,l

∣∣Wneg

)
n=1
l=1

· · · p
(

xte,n
nT,te,l

∣∣Wneg

)
n=Nte

nT,te,l
l=1

...
...

(DnT,te,l)l=MnT,te

Positive Class p
(

xte,n
nT,te,l

∣∣Wpos

)
n=1
l=MnT,te

· · · p
(

xte,n
nT,te,l

∣∣Wpos

)
n=Nte

nT,te,l
l=MnT,te

Negative Class p
(

xte,n
nT,te,l

∣∣Wneg

)
n=1
l=MnT,te

· · · p
(

xte,n
nT,te,l

∣∣Wneg

)
n=Nte

nT,te,l
l=MnT,te(

Nte
nT,te,l

)
l=1

+ · · ·+
(

Nte
nT,te,l

)
l=MnT,te

= Nte
nT,te

nontarget validation device
(

DnT,val,q
)

q=3.
As mentioned, the summation of the number of all testing data points from all non-
target testing devices is equal to the number of all testing data points from nontarget
devices: (

Nte
nT,te,l

)
l=1 + · · ·+

(
Nte

nT,te,l
)

l=MnT,te
= Nte

nT,te (A.10)

For instance, based on Eq. (A.6) and Table A.2,
(

Nte
nT,te,l

)
l=1,2,3,4

= 4000, and Nte
nT,te =

16000.
Then, the resulting conditional probabilities are as illustrated in Table A.3.

2. Calculation of the likelihood ratios (LR) of the nontarget data points obtained as:

LR
(

xte,n
nT,te,l

)
1≤l≤MnT,te
1≤n≤Nte

nT,te,l

=
p(xte,n

nT,te,l|Wpos )
p(xte,n

nT,te,l|Wneg ) (A.11)

3. Sorting the likelihood ratios of the nontarget class data points in ascending order.

LRmin
nT ≤ · · · ≤ LRmax

nT

LRmin
nT = min

LR
(

xte,n
nT,te,l

)
1≤l≤MnT,te
1≤n≤Nte

nT,te,l


LRmax

nT = max

LR
(

xte,n
nT,te,l

)
1≤l≤MnT,te
1≤n≤Nte

nT,te,l


(A.12)

In the next step, the extraction of essential thresholds for each false alarm probability
is done. Then, generate a vector of false alarm probabilities from 0 to 1:

pFA = [0.000, 0.001, · · · , 1.000] (A.13)
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4. Determination of the corresponding threshold value (τ) for each false positive rate or
FPR (referred to as false alarm probability or pFA) is needed in this step. Each false
alarm probability relates to the percentage of all cases where the data points from non-
target/unauthorized/rogue devices are misclassified. For example, pFA = 0.6 means
that 60% of the nontarget/unauthorized/rogue data points have LR values higher than
the selected threshold τ, as shown in Eq. (A.14).

LR
(

xte,n
nT,te,l

)
1≤l≤MnT,te
1≤n≤Nte

nT,te,l

≥ τpFA=0.6 (A.14)

In other words, the role of the relating threshold for pFA = 0.6 (τpFA=0.6) is as follows.

To obtain the related threshold τ for each corresponding pFA, the following steps should
be made:

• Attributing an index to each LRs in a sorted order, as shown in Eq. (A.15).

(
LRj

)
j=1 = LRmin

nT ≤ · · · ≤
(

LRj
)

j=Nte
nT,te

= LRmax
nT (A.15)

• For the calculation of τ, the following equation is used:

a = Nte
nT,te × (1 − pFA)

b = ⌊a⌋
c = a − b

τpFA = LRb + c × (LRb+1 − LRb)

(A.16)

5. Repeating the previous step for the extraction of related thresholds (τ) for all values of
pFA in Eq. (A.13).

Steps to extract the detection probabilities (pd)

1. Extraction of the conditional target/nontarget class probabilities of the model for each
target class data points fed to the model, as shown in Table A.4. In this table, DT,te,z for
1 ≤ z ≤ MT,te corresponds to the zth target testing device. For instance, in the specific
case of Fig. A.4, DT,te,z can be none of the devices for testing, except D1, since D1 is a
target device:

DT,te,z ∈ {D1} (A.17)

As discussed, each device can be used during the training, validation, and/or testing
phases. The selection of a device for one/two/all of the mentioned stages is dependent
on the training strategy. Nte

T,te,z is the number of testing data points from zth target
testing device (DT,te,z).
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Table A.4: Conditional probabilities of class +1 and −1 for the target testing dataset.

Authorized/Target testing dataset
(DT,te,z)z=1

Positive Class p
(

xte,n
T,te,z

∣∣Wpos

)
n=1
z=1

· · · p
(

xte,n
T,te,z

∣∣Wpos

)
n=Nte

T,te,z
z=1

Negative Class p
(

xte,n
T,te,z

∣∣Wneg

)
n=1
z=1

· · · p
(

xte,n
T,te,z

∣∣Wneg

)
n=Nte

T,te,z
z=1

...
...

(DT,te,z)z=MT,te

Positive Class p
(

xte,n
T,te,z

∣∣Wpos

)
n=1
z=MT,te

· · · p
(

xte,n
T,te,z

∣∣Wpos

)
n=Nte

T,te,z
z=MT,te

Negative Class p
(

xte,n
T,te,z

∣∣Wneg

)
n=1
z=MT,te

· · · p
(

xte,n
T,te,z

∣∣Wneg

)
n=Nte

T,te,z
z=MT,te(

Nte
T,te,z

)
z=1

+ · · ·+
(

Nte
T,te,z

)
z=MT,te

= Nte
T,te

2. Extraction of the likelihood ratios of the target data points based on

LR
(

xte,n
T,te,z

)
1≤z≤MT,te
1≤n≤Nte

T,te,z

=
p(xte,n

T,te,z|Wpos )
p(xte,n

T,te,z|Wneg ) (A.18)

3. Sorting the likelihood ratios of the target class data points in ascending order.

LRmin
T ≤ · · · ≤ LRmax

T

LRmin
T = min

LR
(

xte,n
T,te,z

)
1≤z≤MT,te
1≤n≤Nte

T,te,z


LRmax

T = max

LR
(

xte,n
T,te,z

)
1≤z≤MT,te
1≤n≤Nte

T,te,z


(A.19)

4. Extraction of the TPR (also known as probability of detection or pd) for each of the
extracted threshold τ values. Each TPR relates to the percentage of cases that the target
data points are correctly classified. For example, TPR = 0.6 means that 60 percent
of the target data points has a higher probability p

(
xte,n

T,te,z

∣∣Wpos

)
1≤z≤MT,te
1≤n≤Nte

T,te,z

than the

corresponding parameter values τpFA=0.6 × p
(

xte,n
T,te,z

∣∣Wneg

)
1≤z≤MT,te
1≤n≤Nte

T,te,z

, as shown in Eq.

(A.20).

LR
(

xte,n
T,te,z

)
1≤z≤MT,te
1≤n≤Nte

T,te,z

≥ τpFA=0.6 (A.20)

To obtain the related pd for each corresponding pFA, the following steps are done.
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• Attributing an index to each of the sorted LRs, as shown in Eq. (A.21).

(
LRj

)
j=1 = LRmin

T ≤ · · · ≤
(

LRj
)

j=Nte
T,te

= LRmax
T (A.21)

• Using the extracted τ values, the corresponding TPR (pd) for each FPR is ex-
tracted. For this goal, after applying the extracted threshold to each of the cor-
responding FPRs, the percentage of the correct classified target data points are
obtained.

Using this mechanism, through the calculation and use of the τ values, the corre-
sponding TPR (or pd) and FPR (or pFA) values for the ROC plot are obtained.
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Appendix B

LSTM Based Autoencoders

Recurrent neural networks (RNNs) are a specific kind of models that includes layers which
take advantage of the time-dependency of the data as a key factor for feature extraction [111].
Using an integrative loop over the different time steps of the input sequence, an RNN layer
can extract the information from a time-step and memorize it for the next steps [115]. Long
short-term memories as a specific kind of layers to support time-dependency in the se-
quences of the input data were used in combination with an autoencoder in [116] in 2015.
The application of the LSTM based autoencoder in [116] was to reconstruct and predict the
video frames using the features extracted from the input data. In [116], the input dataset
was used to train the model for predicting the next sequence. With this strategy, simultane-
ously training of the reconstruction and prediction output guarantees to provide meaningful
features at the output of the encoder for good classification performance.

B.1 How to implement an LSTM based autoencoder in Keras

Designing an LSTM based autoencoder in Keras for feature extraction and data reconstruc-
tion is done through implementing an autoencoder including a recurrent layer using a recur-
rent neural network (RNN), long short-term memory (LSTM), gated recurrent unit (GRU),
CuDNN long short-term memory (CuDNNLSTM), or any other types of recurrent layers
[115]. In this section we intended to design an LSTM based autoencoder, using an LSTM
layer in Keras, to provide a review on the model design procedure. But as seen in Table 5.1,
the recurrent layer type which is used is an CuDNNLSTM layer. It is worth mentioning that
the CuDNNLSTM and LSTM layers are similar, and the only difference is that CuDNNLSTM
is the fast implementation of the LSTM layers which works on GPU with the TensorFlow
backend [117].
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Table B.1: An example LSTM based autoencoder structure introduced in [111].

1 from numpy import array
2 from keras.models import Model
3 from keras.layers import Input
4 from keras.layers import LSTM
5 from keras.layers import Dense
6 from keras.layers import RepeatVector
7 from keras.layers import TimeDistributed

# Defining the Input Data
8 seq_in = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
9 n_in = len(seq_in)
10 seq_in = seq_in.reshape((1, n_in, 1))

# Defining the Encoder part of the Model
11 visible = Input(shape=(n_in,1))
12 encoder = LSTM(320, return_sequence=False, activation='relu')(visible)

# Defining the Decoder part of the Model
13 decoder_1 = RepeatVector(n_in)(encoder)
14 decoder_2 = LSTM(320, activation='relu', return_sequence=True)(decoder_1)
15 decoder = TimeDistributed(Dense(1))(decoder_2)

# Making the Model
16 model = Model(inputs=visible, outputs=decoder)

# Compiling the Model
17 model.compile(optimizer='adam', loss='mse')

# Training the Model
18 model.fit(seq_in, seq_in, epochs=100, verbose=0)

# Testing the Model
19 seq_in_hat = model.predict(seq_in, verbose=0)

B.1.1 LSTM based autoencoder example in Keras

Let us look at an example shown in Table B.1, including the encoder and reconstruction de-
coder derived from an example called the composite LSTM autoencoder in [111]. Comparing
the structure of the LSTM based autoencoder in Table B.1 with the structure introduced in
Fig. 2.2, it can be seen that the general idea is the same. In Table B.1, lines 11 and 12 are
responsible for extracting the features from the input data [118]. In these two lines, the out-
put contains the summary of the information related to the input sequence for selected time
steps [118]. In the decoder part, lines 13 to 15 are allocated to the data reconstruction. In line
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Table B.2: Example model summary in lines 11 to 15 in Table B.1 [111].
 

Index Layer Name Layer Type Output Shape Active Func. Parameters No. 

0 visible InputLayer (None, 9, 1) - 0 

1 encoder LSTM (None, 320) Relu 412160 

2 decoder_1 RepeatVector (None, 9, 320) -       0 

3 decoder_2 LSTM (None, 9, 320) Relu       820480 

4 decoder TimeDistributed(Dense) (None, 9, 1) - 321 

Total parameters: 1,232,961 

Trainable parameters: 1,232,961 

13, the output sequence from line 12 is repeated n_in (which is the length of the seq_in and
equal to time steps). Finally, line 14 runs an LSTM layer on the sequence to make it ready for
the reconstructed input sequence (seq_in_hat) at the output of line 15. The summary of the
model in lines 11 to 15 of Table B.1 is shown in Table B.2. Finally, lines 16 to 19 are responsi-
ble for making, compiling, training, and testing the model. This is the general principle for
designing the autoencoders, as discussed in Chapter 2.

Input size to the autoencoder in Table B.1 Let us have a deeper look at lines 8 to 11 in
Table B.1, since the main purpose here is to explain how to prepare the input for the LSTM
layer. In line 8, the input data is as follows, with an array size of 9 (9, )1 and length (n_in)
equal to 9 in line 9:

seq_in = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] (B.1)

After reshaping in line 10, the input data is as in Eq. (B.2) with size (1, 9, 1).

seq_in =





[0.1]
[0.2]
[0.3]
[0.4]
[0.5]
[0.6]
[0.7]
[0.8]
[0.9]




(B.2)

Input size to the LSTM layer in Table B.1 The size of the input sequence to the LSTM
layer in Table B.2 (seq_in) is equal to (None, 9, 1), which is equal to the output size of the
'InputLayer'. Referring to [119], the first argument in the layer input shape (None, 9, 1)

1(9, ) is a Python programming notation to show an array with 9 elements.
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which is equal to 'None', which is a non-specific value and points at the number of data
points, second number (9) illustrates the number of time steps in each data point, and the
third argument points at the number of samples in a time-step (equal to 1).

Output size from the LSTM layer in Table B.1 As can be seen in Table B.1, the structure
of the LSTM layer in the encoder part in line 12 and also the decoder part in line 14 includes
an element named 'return_sequence', a logical parameter equal to 'True' or 'False'. If this
element is equal to 'False', the LSTM layer returns the last output of the output series, such
as what has happened as the output of the line 12 with Nunit = 320 cell units (with the output
size (None, 320), as shown in Table B.2), and if this element is equal to 'True', the output of
the LSTM layer includes the complete output series for all (9) time steps, similar to what
has happened as the output of the line 14 (with the output size (None, 9, 320), as depicted in
Table B.2). In both cases of these two lines (lines 12 and 14) the number of cell units assigns
the number of dimensions of the output [117]. The latter case is similar to the output of the
CuDNNLSTM layer in Table 5.1 (with 4800 time steps, the number of cell units (Nunit) equal
to 320, and the output size (None, 4800, 320)).

B.1.2 LSTM based autoencoder in Table 5.1

Input size to the LSTM layer in Table 5.1 The number of data points in the dataset in Table
B.1 is equal to 1. If the dataset size is larger than 1, such as what was used in Chapters 4 and
5, referring to Table 5.1, the size of the input to the LSTM layer in the fourth row (with the
layer name as EN.layer_3) is (None, 4800, 1). This means that for a non-specific number of
data points (None), the number of time steps will be equal to KRNN = 4800, and in each
time-step, there is a single sample, as illustrated in Eq. (B.3).

seq_in =




[a1,1]

...
[a1,4800]


...

[aNone,1]
...

[aNone,4800]




(B.3)

where an,k shows the kth sample from nth data point for n ∈ {1, · · · , None} (1 ≤ None ≤ N)
and k ∈ {1, · · · , KRNN = 4800}.

It is worth mentioning that if we compare the input size of the LSTM layer in Table
5.1 (None, 4800, 1) with 4800 time steps, to that of the LSTM layer in Table B.1 (equal to
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(None, 9, 1)) with 9 time steps, we can see that both have the same format. As shown in
Eq. (B.3), the input to the LSTM layer is vertical, which means that each row in a vertical
format is counted as a time-step. Then in Eq. (B.3), for each data point, the number of time
steps is kRNN = 4800, including one sample in each time-step, which emphasizes on the fact
that the model is taking benefit from the time-dependency of the input data point sequence.
This is the same as the input for the CuDNNLSTM layer in Table 5.1 (with the input size
(None, 4800, 1)).

Output size from the LSTM layer in Table 5.1 An LSTM layer (such as LSTM layer in row
EN.layer_3 of Table 5.1) has a cell with Nunit units, equal to 320, as the same as EN.layer_3 in
Table 5.1. Focusing on a single data point from Eq. (B.3), the size of an input vector (xRNN

n )
is (4800, 1), the same as the size of a single data point as the input to the EN.layer_3 of Table
5.1. Then, based on Eq. (2.7), we have:

xRNN
n = [a1, a2, · · · , a4800]

⊺ (B.4)

where ak (1 ≤ k ≤ KRNN = 4800) are scalar values. In such a manner, input values at time
1, 2, · · · , k = 4800 are xRNN

n,1 = a1, xRNN
n,2 = a2, · · · , xRNN

n,4800 = a4800, respectively. Then, the size
of the output oRNN

n,k vectors of an RNN cell with 320 units (Nunit = 320) are (1, 320). These
cell units at time-step k are applied to the input data, to make the LSTM output at time-
step k from all 320 cell units (oRNN

n,k ). In addition, as mentioned before, if we leave the 're-
turn_sequence'=False, the size of the output matrix ORNN

n from an LSTM layer after KRNN =

4800 time steps is equal to the size of oRNN
n,k at the last time-step k = KRNN = 4800. The

size of the overall output ORNN
n for this case if (1, 320). On the other hand, if we set 're-

turn_sequence'=True, the size of output matrix ORNN
n from a cell unit after KRNN = 4800

time steps is (4800, 320), which has the same shape as the ORNN
n in Eq. (2.7).

Absence of an LSTM layer in the decoder structure of Fig. 5.3 and Table 5.1 As can be
seen in Table 5.1, line 14 is allocated to an LSTM layer in the decoder part of the autoencoder,
responsible for making the sequence ready for reconstruction. But as shown in Fig. 5.3 and
Table 5.1, there is no such LSTM layer in the decoder part of the model proposed in Chapter
5. The reason for this modification is that, as explained in Section 2.2, the application of the
decoder part is just at the training stage. In such a case, training the decoder and classifier
outputs together guaranties that the features provided by the encoder part for the classifier
are meaningful enough to lead to a high classification accuracy. Then, the responsibility of
the decoder is just to reconstruct the data, as accurate as possible, at the training stage, to
help the encoder to find a meaningful feature collaborating to the success of the classifier in
its classification duty; and after training, at the testing stage, this part does not exist in the
model anymore. Therefore, keeping this basic rule in mind, the LSTM layer in the encoder
part is kept for time-dependency extraction from the input data, and in order to reduce
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the computational complexity of the model at the training stage, the LSTM structure in the
decoder part is removed in Table 5.1. The MSE error values in Figs. 5.5 and 5.6 for both the
RAW and DDWT datasets prove that removing the LSTM layer from the decoder does not
affect the decoder accuracy in the reconstruction of the input dataset.
On the other hand, as explained in Section B.1.1, if the 'return_sequence' for an LSTM layer is
set to 'True' (as what is set for the layer EN.layer_3 in Table 5.1), then the LSTM layer returns
the complete series for all time steps (equal to KRNN = 4800) in Chapter 5. In such a case, we
can prevent the LSTM layer from forgetting the long time dependencies of the output signal,
and feed the classifier with all possible time dependencies from the complete KRNN = 4800
time steps.
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