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ABSTRACT
Sawmills are key elements of the forest product industry supply chain, and they play important
economic, social, and environmental roles. Sawmill production planning and control are, however,
challengingowing to several factors, including, butnot limited to, theheterogeneity of the rawmate-
rial. The emerging concept of digital twins introduced in the context of Industry 4.0 has generated
high interest and has been studied in a variety of domains, including production planning and con-
trol. In this paper, we investigate the benefits digital twins would bring to the sawmill industry via
a literature review on the wider subject of sawmill production planning and control. Opportunities
facilitating their implementation, as well as ongoing challenges from both academic and industrial
perspectives, are also studied.
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1. Introduction

The forest product industry is important in many
economies. For instance, in Canada, it contributed to
1.1% of the nominal gross domestic product in 20191

and employed 205,000 people in 2018.2 Similarly, the for-
est wood product industry as a whole supported 378,000
jobs in France in 2019.3 Emerging technologies and
new organisation methods introduced in the context of
Industry 4.0, among many goals, aim to improve pro-
cess efficiency and resource consumption. Industry 4.0 is,
therefore, expected to provide many benefits for compa-
nies and society as a whole. Oláh et al. (2020), in particu-
lar, argue that Industry 4.0 may have a positive impact on
environmental sustainability if public policies are imple-
mented to align industrial and sustainable development
goals.

Lumber production is one such activity that would,
with the benefits of improved planning, convey impor-
tant gains to the industry as awhole. Sawmills are, indeed,
an important link in the forest-product supply chain,
participating in the first transformation of stems and
logs harvested at forest sites into lumber and other by-
products. Sawed products, that is, lumber, have differ-
ent dimensions and qualities. The by-products, that is,
sawdust, chips, and bark can be used by other indus-
tries to produce energy, pulp and paper, and chemical

CONTACT Sylvain Chabanet sylvain.chabanet@univ-lorraine.fr CRAN, Université de Lorraine, CNRS, F-88000Epinal, France

compounds. This production process is divergent from
co-production, meaning that several products and by-
products are simultaneously obtained from the sawing of
a single piece of raw material (Dumetz et al. 2019). This,
along with the heterogeneity of the rawmaterial (the logs
have various shapes and qualities), complicates the man-
agement of sawmill production (Dumetz et al., “Planning
and Coordination,” 2017).

A general overview of the forest-product and internal
sawmill supply chains is presented in Figure 1. Because
the supply chain might vary significantly from coun-
try to country (as well as from firm to firm), the figure
shows a generic framework. Sawmills (2) are supplied
by forest companies (1) with whole tree stems or wood
logs. Before processing, this raw material is stored at the
sawmill log yard (A), which is usually an exterior storage
location. While the exact set of transformation opera-
tions taking place at a sawmill depends on its equipment
and policies, in general, they can be divided into three
sets (Dumetz et al., “Evaluating Order Acceptance Poli-
cies,” 2017). The first is the initial sawing of raw logs into
green lumber and other by-products (B). These can later
be dried (C). In contrast to the sawing process, which
is a quick transformation of an individual log into lum-
ber, drying of lumber takes several days and is performed
in kilns, in batches of similar, if not identical, products.
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Figure 1. Overview of a forest product supply chain

The third set agglomerates any finishing operation (D),
for example, the surfacing or grading of logs. In addition
to lumber, the transformation process produces other
by-products, such as sawdust, chips, and bark. These by-
products are used by various industries to produce energy
and chipboards (3).

Like any industry subject to international competition,
sawmills are subject to pressure to increase their com-
petitiveness and optimise their production processes.
Shahi (2016), for example, touches upon the case of
the Canadian forest industry which suffered in the past
decades from the combined effects of globalisation,
changes in the housing market, and a fluctuating cur-
rency. Climate change is expected to have an important
impact on forests and timber supply. Brecka, Shahi, and
Chen (2018), for example, studied the impact of climate
change on boreal forests and timber supply and con-
clude that the increased tree growth rate induced by a
warmer climate and more CO2 in the atmosphere does
not compensate for the increased treemortality from for-
est disturbance such as insects, fire, and drought. This
leads to a decrease in the net volume of wood. They also
argue that the quality of timber is likely to decline because
of the accelerated growth rate. Further, the benefits of

wood products, particularly wood construction for CO2
sequestration, have been widely studied (Himes and
Busby 2020).

This study aims to identify the benefits of digital twins
(DT) in the sawmill industry, with a particular focus on
operational production planning and control. Opportu-
nities that would facilitate their implementation, as well
as challenges and barriers to be tackled, are similarly
considered. The potential and limits of DT technologies
for industrial operations and production have been pre-
sented in various studies and literature reviews (Melesse,
Pasquale, and Riemma 2020; dos Santos et al. 2021;
Zheng, Lu, and Kiritsis 2021). However, studies on DT
often have a very generic purpose or are application
dependent. Therefore, there is a real need to deeply anal-
yse the DT in the framework of the sawmill industry.
Similarly, while there are several reviews in the scien-
tific literature about the potential effects of Industry 4.0
technologies on the forest product supply chain (Müller,
Jaeger, and Hanewinkel 2019), as well as the use of opti-
misation and operational research in the forest product
industry (D’Amours, Rönnqvist, and Weintraub 2008),
none of these focus on the use and potential benefits of
DT to the sawmill industry in particular; they focus either
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on forest operations or other technologies. Therefore, this
article first studies DT and sawmill production planning
and control independently before discussing DT in the
specific context of the sawmill industry.

While the exact definition and requirements of DT are
still debated, it is widely accepted that it is a repository of
the accumulated data of a product or production system
(named the physical twin), augmented with analytic and
predictive capabilities. It allows the gathering and coordi-
nation of all digital elements associated with the physical
twin under a single framework. Numerous benefits are
associated with the deployment of DT in manufacturing,
such as an increased ability to predict failures or track
asset performance.

The remainder of this paper is structured as follows.
Section 2 presents the concept of digital twins as a general
framework. Section 3 overviews the planning challenges
in the sawmill industry and commonly proposed solu-
tions from the existing literature for sawmill production
planning and control. Section 4 analyses the application
of DT to the sawmill industry. We conclude the study in
Section 5.

2. Digital twins

The concept of Industry 4.0 was introduced at the 2011
Hanover Fair as the first anticipated industrial revolu-
tion. It may be studied from many angles, including
technology, societal, and organisational (Bril El-Haouzi
and Valette 2021). Lasi et al. (2014), for example, argue
that Industry 4.0 may be defined by two development
directions. First, a set of economic, political, and social
changes, such as increased needs for production flex-
ibility, resource efficiency, and product personalisation
change the industry paradigm. The second is the devel-
opment of new technologies that respond to these needs.
These include the Internet of Things and Cyber-Physical
Production Systems, characterised by their modularity
and flexibility. Among the frameworks developed in the
context of Industry 4.0, DT has raised huge expecta-
tions. Various functions have been proposed for DT in
the context of production, such as product design, health
monitoring, and process control or production plan-
ning and scheduling. Aivaliotis, Georgoulias, and Chrys-
solouris (2019), for example, proposed a method based
on a digital twin to estimate the remaining useful life
of equipment and plan maintenance. Wang et al. (2019)
proposed a DT model, based on digital models, includ-
ing multiphysics simulations, data analytic and a knowl-
edge base, for rotating machinery fault diagnosis. Liu
et al. (2019) proposed a DT-driven methodology, based,
among other techniques, on simulation and optimisa-
tion to rapidly design manufacturing systems. Kousi

et al. (2019) exposed a shop floor DT infrastructure
to coordinate robots and human workers to plan the
robots’ actions in this complex and uncertain environ-
ment. West et al. (2021) presented 10 case studies where
DT is used to support decision-making. In particular,
two case studies expose the use of a DT to sched-
ule operations for make-to-order wooden construction
component factories and reduce waste production.Wang
and Wang (2019) discussed DT to support waste elec-
trical and electronic equipment recycling or remanufac-
turing because such a process requires precise product
knowledge. Zhou et al. (2020) proposed a knowledge-
driven digital twin framework with various applications,
including production scheduling through a simulation-
optimisation approach.

The definition and characterisation of DT have
evolved as part of active research on Industry 4.0 and its
technologies. In particular, no definition has been widely
accepted as a reference to fully characterise DT, and
numerous concurrent or field-specific definitions have
been proposed. Semeraro et al. (2021) propose a litera-
ture review of these definitions, and summarised them in
the following general definition:

A set of adaptive models that emulate the behavior of
a physical system in a virtual system getting real time
data to update itself along its life cycle. The digital twin
replicates the physical system to predict failures and
opportunities for change to prescribe real-time actions
for optimizing and/or mitigating unexpected events by
observing and evaluating the operating profile system.

According to this definition, a DT contains at least two
essential elements. First, the data describing the current
and past states of the system. This data representation
is updated in real time from data gathered from various
sources, including advanced sensing technologies. Sec-
ond, a set of models provides DT with analytical and
predictive capabilities,making it a powerful decision sup-
port tool and allowing it to control the physical twin to
some extent. Indeed, a DT should be more than a sim-
ple virtual representation of the physical twin, that is,
more than a digital shadow (Bergs et al. 2021). To achieve
the various functions expected from DT, these models
should be varied, for example, predictive or optimisa-
tion models. While their exact natures may vary, their
adaptive, or better, self-adaptive capabilities are crucial.
A DT is expected to follow its physical twin along its
entire life cycle – from its conception to its end of life. The
state, usage conditions, and environment of the physical
twin will change in ways that are impossible to predict
as early as in DT implementation. To remain useful, DT
models will, therefore, have to be continuously updated.
dos Santos et al. (2021) argue that while the use of
simulations-based DT presents several advantages, they
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Figure 2. Life cycles of products and processes

often require an auxiliary system to support decision-
making and present problems in term of both the valid-
ity of the model through time and the computational
requirements involved.

Owing to its real-time monitoring capabilities of the
product or system and the induced precise virtual rep-
resentation, DT may be suitable for short-term, online,
or operational decision-making. By providing a precise
replica of the system behaviour, it can also be used to
support other planning levels. In particular, when imple-
mented at the very beginning of a sawmill life cycle, DT
can intervene during the sawmill conception and update
phases, which are strategic or tactical decisions. However,
the granularity of the data representation and analysis
varies depending on DT usage. This also applies to the
actual availability of data, as well as to the time available
for analysis. All these factors may lead to different model
choices depending on the anticipated use of DT.

DT has been studied from both a product point of
view and a production system point of view, at various
scales (Ding et al. 2019b). Tao et al. (2019), for example,
proposed a DT-driven framework to support the design
of consumer products, while Ding et al. (2019a) pro-
posed a DT-based cyberphysical production system as a
step toward smart manufacturing. DT of products may
be used, among other things, to bridge all design, pro-
duction, and use phases, shortening the time to market
and allowing continuous improvement of the product by
monitoring its usage condition and health in real time.
Similarly, the production system DT allows the simula-
tion and design of the shop floor layout, as well as the
monitoring of production operations. Therefore, both
products and shop floor DT follow their respective phys-
ical twins throughout their entire life cycle. While these

life cycles are mostly independent, products and shop
floor DT should at the very least interact during the
production phase (Figure 2), to control production and
gather data to improve later plans (El Haouzi 2017).

In particular, a general discussion of the nature,
interest, and feasibility of using manufacturing system
DT models as decision support tools can be found
in Savolainen and Knudsen (2021). Several important
points are retained here. First, they mentioned the neces-
sity for the various simulation models included in the
DT to run faster than real time. This can be extended
to any model included in the DT, whose task is to infer
information using data from the physical twin to sup-
port decision-making. Such models have the objective of
inferring information for a time window in the future of
the system. Such a need for fast, computationally inten-
sive models is acute when multiple scenarios have to be
evaluated, for example, in a simulation-optimisation pro-
cedure (Xu et al. 2015). Second, while they recognise
the gap between DT as often described in the literature
and what would actually be realistic by current technol-
ogy standards, they argue that companies would benefit
from preemptively investing in cost-efficient and reli-
able data collection and storage technologies and base
the development of DT systems on existing technologies
rather than investing massive amounts in new ‘vision-
ary’ systems. As a consequence, the DT components
should bemodular to allow for gradual improvement and
completion.

Considering the preceding discussion, we focus our
analysis on the DT of the manufacturing system, that is,
sawmill DT during the production phase. In particular,
in what follows, we consider a DT as a decision support
system with the following three capabilities:
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• Descriptive capabilities, based on data describing the
current and past states of the manufacturing system,
including health monitoring and production data,
updated in real time.

• Predictive capabilities based on models able to infer
from these raw data future states of the system
and production, according to various scenarios. Such
models may be physics-based simulation models,
machine learning (ML) models, or based on any other
relevant technology but should be able to generate pre-
dictions fast enough for decision-making purposes.

• Prescriptive capabilities, to support decision-making
in the real world by prescribing optimised plans to
mill managers. The prescription process may use pre-
dictive and optimisation models in a simulation opti-
misation framework or use single models combin-
ing both optimisation and prediction simultaneously;
however, it should be fast enough to support real-time,
or at least operational, decision-making and allow fast
reaction to unexpected events.

3. Production planning and control in the
sawmill industry

As stated in the introduction, the objective of this study is
to identify the potential use of DT for production plan-
ning and control in the sawmill industry. Therefore, we
propose a literature review on general planning problems
from the sawmill industry and their challenges, as well as
solution methods commonly proposed in the field.

3.1. Methodology

For the purpose of this review, we used the snowballing
systematic methodology (Wohlin 2014) as follows: the
first set of articles, called seeds, was initially gathered.
Other articles of interest were collected by backward and
forward snowballing. Backward snowballing comprises
articles collected from a reference list of seeds and previ-
ously gathered articles. Forward snowballing comprises
selected articles being referenced in Google Scholar as
citing articles already gathered (in the seed or otherwise).
We selected articles with relevant titles as priority. Then,
we evaluated articles with less relevant titles for which the
author was known to have contributed to other selected
works, as recommended byWohlin (2014). After this first
selection, we evaluated articles based on their abstracts
and then based on a full read of the retained articles. Only
one round of backward snowballing and one round of
forward snowballing were performed as the number of
collected articles was judged to be sufficient.

The seed, which contains 50 articles, was built from
searching the keywords ‘sawmill’ and (‘planning’ or

‘production control’ or ‘scheduling’ or ‘sequencing’) in
the IEEE, Web of Science, Science Direct, and Scopus
article databases. For Science Direct, the terms were
searched only in the title, abstract, and authors’ keywords
of the articles. The search on Web of Science also con-
sidered the field Keywords Plus, and the search on IEEE
the field indexing terms. These fields define additional
keywords that are not necessarily present in the author’s
keyword list. The remaining snowballing procedure was
performed usingGoogle Scholar. In total, 133 documents
studying planning problems in the sawmill industry were
gathered and used as such in a preliminary analysis. Some
of the most relevant papers in this article are further
detailed in the following subsections. Only articles in
English were considered; however, no limitations were
set on the publication date. Additionally, conference and
journal articles, Ph.D. theses, and Master’s theses were
added when considered of interest. Articles were only
kept, however, when the full text was accessible through
Google Scholar or through university access.

3.2. Preliminary analysis

Figure 3 presents the publication dates distribution of
the articles. While no filter has been applied on the pub-
lication date, most of these articles are fairly recent. In
particular, 75 articles have been published since 2011
onward, the date of the Hanover fair which established
the concept of Industry 4.0.

Figure 4 shows the distribution of the authors’ coun-
tries in the gathered articles. As can be seen, this field
is vastly dominated by Canadian researchers, who con-
tributed to nearly half of the gathered articles. The fact
that the federal government, provinces, and territories
own 90% of Canadian forests and manage the allocation
of these resources to the industry may incentivise pub-
lic research. Other North and South American countries,
that is, Chile, theUnited States ofAmerica, andArgentina
contribute to 30%of the gathered documents. In contrast,
European countries only contribute to approximately
18% of the gathered articles despite the importance of the
sector on the continent.

The keywords of the selected articles were gath-
ered and summarised as a co-occurrence graph using
VOSviewer software and reshaped using Gephi for clar-
ity. The results are shown in Figure 5. Only keywords
present in more than three articles are presented. In
addition, keyword spelling was homogenised. In partic-
ular, American spelling was used, and special characters
such as ‘−’ were removed. A link between two nodes
denotes the co-occurrence of the associated keywords
in an article. The thickness of a link is proportional to
the number of articles in which the linked keywords
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Figure 3. Distribution of the number of published articles per publication dates from 1980 and before to 2020.

Figure 4. Pie chart of the nationalities of author institutions for the articles gathered during the literature review.

co-occur. The size of a node corresponds to the number
of articles in which the associated keyword occurs. As
can be seen, numerous keywords correspond to either
field-related terms or planning problem-solving meth-
ods. ‘Sawmills,’ ‘cutting pattern,’ or ‘forestry,’ for exam-
ple, are all keywords specific to this industry. Similarly,
while not being specific to the forest product industry,
‘production planning,’ ‘supply chain management,’ and
‘tactical planning’ are expected from the type of problem

considered. Concerning problem solutionmethods, both
‘optimization’ and ‘simulation,’ are frequent keywords.
They occurred in 17 and 14 articles, respectively. For
comparison, ‘sawmill’ and ‘production planning,’ which
are expected from the seed search string, are keywords
in 22 and 16 articles, respectively. Specific optimisa-
tion methods are also frequent. ‘Linear programming’ is
included in 11 article keyword lists, and ‘mixed integer
programming’ in 7.
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Figure 5. Keyword graph of the selected articles.

3.3. Planning in the sawmill industry

This section introduces planning concepts in the sawmill
industry.

3.3.1. Planning levels
Planning in the forest wood industry is traditionally
divided into four hierarchical levels: strategic, tactical,
operational, and online (Rönnqvist 2003; D’Amours,
Rönnqvist, and Weintraub 2008).

The strategic level refers to problems with a long plan-
ning horizon, typically more than five years. Examples
of strategic problems in the sawmill industry are plan-
ning the creation of new mills, their emplacement, or
the expansion of an existing mill. Troncoso and Gar-
rido (2005) proposed the use of a mixed-integer pro-
gramming model to solve three such strategic problems
in the forest industry, including transformation facility
locations.

Tactical planning involves mid-term operations. Rön-
nqvist (2003) considers them as having a time horizon
from six months to five years. However, some authors
present tactical problems with shorter time horizons. For

example, Lobos and Vera (2016) considered a tactical-
level problem with a tactical rolling time horizon of four
months (optimising the monthly amount of log to pur-
chase and labour to hire). An example of the tactical
planning problem is the yearly planning of production
and sales (Marier et al. 2014). As stated in D’Amours,
Rönnqvist, and Weintraub (2008), an important feature
of tactical plans is that it serves as a bridge between
strategic decisions and operational plans.

The operational level involves short-term decision
problems. Rönnqvist (2003) classified such problems as
having a time horizon lower than six months. D’Amours,
Rönnqvist, and Weintraub (2008) additionally stressed
the need for such problems to consider very short plan-
ning periods, from a few hours to one day at most, to be
as close as possible to the fields operations. Daily produc-
tion planning (Zanjani, Ait-Kadi, and Nourelfath 2010)
and scheduling of drying operations (Huka, Rindler, and
Gronalt 2020) are examples of operational problems.

Lastly, the online level is concerned with the imme-
diate production process and operational reality. Rön-
nqvist (2003) classified as such planning problems as
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having a horizon of less than a day, from truck dispatch-
ing to process control. Todoroki and Rönnqvist (2002)
presented an example of such a problem. This article pro-
posed a solution to adjust the product price list online
according to actual production. This price list is used by
an optimiser to decide what sawing pattern is used for
which log. The objective here is to fill an order list with
minimal overproduction of unwanted products.

3.3.2. Global challenges
Several global challenges complicate planning in the for-
est product industry in general and in the sawing industry
in particular. The first challenge arises because of the
aforementioned nature of the sawing process. The sawing
process is divergent and in co-production, and the pro-
duction of a set of lumbers to fill an order results in the
production of unwanted low-value products.

Second, difficulty arises in the uncertainties inherent
to the sawmill production process. In addition to the
uncertainty over demand, sawmills must consider uncer-
tainties in supply and production output. Several factors
make it more difficult to forecast sawmill production
(whether for a single log or for several logs), such as the
heterogeneity of raw material, and the presence of real-
time optimisers in some sawmill machines. Such opti-
misers are solvers encapsulated in machines that choose
the sawing pattern of each log in real time to max-
imise its return value. They perform local optimisation
or may consider a simplified projection of future pro-
cessing steps. Owing to time constraints, they are often
based on heuristics. They further complicate forecasting
by enabling further configuration of the equipment and
by adding other variables in the process, such as the list
of product values. While this effectively maximises the
returned value from the available raw material, it com-
plicates planning. The exact effect that changingmachine
configurations would have on the production as a whole
is indeed difficult to assess because it could change the
basket of products sawed from each log. This is especially
true in the absence of historical data, for example, when
introducing new products (Wery et al. 2014, 2018).

Another difficulty is the integration of sawmilling oper-
ations in the supply chain as a whole. In particular, forests,
which provide logs supply to sawmills, have, in general,
to be managed over extremely long time horizons to take
into consideration at least one complete forest rotation.
Such a forest rotation can take more than 80 years in
cold countries such as Canada (D’Amours, Rönnqvist,
andWeintraub 2008). Similarly, tactical forestrymanage-
ment can, for example, consider a horizon of 5–10 years
(Marinescu and Maness 2010). As expressed by Mari-
nescu and Maness (2010), sawmill managers may find it
difficult to integrate these data into their planningmodels

because they consider much lower time horizons. More-
over, accumulating data over an 80-year period poses its
own unique challenges.

In addition to economic objectives, it may be impor-
tant for the forest product industry to balance social and
environmental aspects when planning operations. This,
of course, includes the sawmill operations. Indeed, this
value chain is an important actor in forest management,
which provides social and ecological services to society
as a whole, for example, in terms of wildlife preserva-
tion, sightseeing, and carbon sequestration. Additionally,
sawmills are important employers in some rural areas.

Among all the articles gathered, only five intro-
duced such objectives. For example, in Boukherroub
et al. (2013a), Boukherroub et al. (2013b), and Boukher-
roub et al. (2015), the same authors proposed models
based on goal programming techniques to simultane-
ously optimise economic, environmental, and social indi-
cators, such as operation costs, greenhouse gas emissions,
and local employment, respectively.

Dumont et al. (2019) similarly proposed a method to
integrate energy consumption costs into tactical sawmill
production planning by adapting a previously existing
model. More precisely, they adapted the linear program-
ming model introduced in Marier et al. (2014) to include
the energy cost from production processes and heating
or cooling the workplaces into the minimised objective
function.

Despite these difficulties, a point often stressed in the
literature is the interest in coordinating several elements
of a sawmill external and internal supply chain. In par-
ticular, Rönnqvist et al. (2015) considered the integrated
management of the forest product value chain as an open
problem in the industry. Several studies have demon-
strated the benefit of such coordination. For example,
Bajgiran, Zanjani, and Nourelfath (2016) built a mixed-
integer programming model to integrate simultaneously
‘harvesting, procurement, production, and sales activi-
ties in the lumber supply chain.’ The results were com-
pared with those obtained from decoupled models, and
a decrease of 11% was observed when planning was dis-
tributed into twomodels. A decrease of 84%was obtained
when decoupling it into three models. Similarly, Tron-
coso et al. (2015) compared a decoupled model where
forest and mill operations are planned sequentially, and
the forest planning only aims tomaximise the net present
value of timber, with an integrated model where both
solutions aim to maximise the long-term profit of the
company. In comparison to the decoupled model, which
is presented as the traditional planning strategy in the
forest value chain, the integrated model led to a higher
profit for the company despite harvesting fewer trees.
While both articles demonstrate the interest in forest-mill
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integration for planning in the value chain, these two
models differ greatly in terms of the planning horizon.
Bajgiran, Zanjani, and Nourelfath (2016) only planned
operations over a yearly planning horizon, which is too
short to take silviculture operations into account, and the
study focused on harvest operations, whereas Troncoso
et al. (2015) planned forestry operations over at least a
full forest rotation. However, downstream operations are
only planned over five years because demand becomes
too uncertain after this horizon (Troncoso et al. 2015).
Finally, several articles consider the problem of bucking
tree stems into logs. While this problem can occur either
in forests or sawmills, it is a divergent step that strongly
affects further production and sawmill profits (Dems,
Rousseau, and Frayret 2015; Vanzetti, Broz, Montagna,
et al. 2019b).

An important, but seldom mentioned, challenge in
the selected articles is the traceability of logs and prod-
ucts from forest to sawmills and throughout the sawing
process. The diverging nature of the sawing process
renders common discrete markings such as RFID tags
ill-suited to track the origin of every lumber (Jover,
Thomas, and Bombardier 2011). Nonetheless, Boukher-
roub et al. (2015) mentioned the existence of a strong
demand for such product traceability for better track-
ing of timber origins and carbon footprint calculations.
Traceability is also motivated by government regula-
tions. For example, the EU Timber Regulation, which is
designed to fight illegal logging .4 Wood product trace-
ability is, however, further complicated by the divergent
nature of the sawing process.

3.3.3. Common planning problems in the scientific
literature
The literature includes a wide array of planning prob-
lems taking place at sawmills, from the creation of pro-
duction plans specific to various production units, to
the vertical or horizontal integration of plans at vari-
ous levels. A common problem is the planning of the
primary sawing operations. Some authors refer to this
as the cutting pattern problem (Vergara, Palma, and
Sepúlveda 2015 or Palma and Vergara 2016) or the saw-
ing stock problem (Pradenas et al. 2013). A common
formulation of this problem is ‘what quantity of which
class of logs to saw with which cutting pattern to opti-
mise a given objective under constraints.’ However, the
specific objectives and constraints vary from case to case.
The common objectives are to maximise profits or min-
imise losses. For example, Kazemi Zanjani, Nourelfath,
and Aït-Kadi (2011) proposed a stochastic program-
ming model to solve this problem under a 30d plan-
ning horizon with a cost minimisation objective. Huka
and Gronalt (2017) proposed a mixed-integer program

to maximise the operation net revenue over a 10-week
planning horizon and compared it with several real-life
inspired heuristics. Vanzetti et al. (2018) similarly pro-
posed a mixed-integer linear programming model to
maximise the net benefit over a 5d planning horizon, and
proposed a preliminary step, which generates the cutting
pattern used in the optimisation problem.

Other authors have proposed variations of this prob-
lem. For example, in Haberl et al. (1991), Maturana,
Pizani, and Vera (2010) and Varas et al. (2014), logs from
a certain class are always cut with a pattern that max-
imises the expected yield over said class. In particular,
they consider only the mix of raw materials to process to
fulfil an order. They justified this approach as a way for
sawmills to minimise waste. Conversely, authors such as
Wery et al. (2018) andMaturana, Pizani, and Vera (2010)
reported that some sawmills have automated the saw-
ing of logs to the point where the cutting pattern used
on a specific log is decided in real time by the hard-
ware to maximise the output volume or value (marker
(B) in Figure 1). This limits the actions of the manager
to the choice of the log mix to process, sawmill configu-
ration, and product price list used by the hardware when
optimisation by value is performed.

Ulterior production steps, supply, inventory, and sales
management can also be included in these planningmod-
els with various levels of precision to plan the whole
production of one or several sawmills.

Compared to sawing, fewer examples focus on dry-
ing (marker (C) in Figure 1) and finishing (marker (D)
in Figure 1) operations planning and scheduling. For
example,Huka, Rindler, andGronalt (2020) studied plan-
ning methods to minimise tardiness when scheduling
drying operations over 14d. Vanzetti, Corsano, andMon-
tagna (2020) proposed a disjunctive programmingmodel
to plan these operations over 5d to either maximise the
number of dried packages or minimise unused space.
Marier, Gaudreault, and Noguer (2021) proposed com-
bining mixed-integer and constraint programming to
minimise tardiness over a three to four weeks planning
horizon. Theresia, Widyadana, and Wahjudi (2019) pro-
posed two linear programming models to successively
assign lumbers to different drying facilities then to dif-
ferent kiln chambers to minimise production costs and
chamber use.

Table 1 lists articles studying these different planning
problems.

Similar to drying and finishing, the sawmill log yard
(marker (A) in Figure 1) has its own set of problems. For
example, Beaudoin, LeBel, and Soussi (2012) proposed
the use of a discrete event simulation model to compare
loader-to-truck allocation strategies and optimise truck
unloading operations. Rathke, Huka, andGronalt (2013),
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Table 1. Examples of articles studying common planning problems from the sawing industry.

Planning problem References

Sawing operations Haberl et al. (1991), Maness and Adams (1991), Reinders (1992), Sinclair and Erasmus (1992), Reinders (1993), Todoraki and
Ronnqvist (2001), Donald,Maness, andMarinescu (2001),Maness andNorton (2002), Corro, Singer, andDonoso (2007), Caballero
et al. (2009), Pradenas, Alvarez, and Ferland (2009), Zanjani, Ait-Kadi, and Nourelfath (2010), Kazemi Zanjani, Nourelfath,
and Ait-Kadi (2010), Kazemi Zanjani, Nourelfath, and Aït-Kadi (2011), Kazemi Zanjani, Ait-Kadi, and Nourelfath (2013),
Zanjani, Ait-Kadi, and Nourelfath (2013), Pradenas et al. (2013), Zanjani, Nourelfath, and Ait-Kadi (2013b), Arabi (2013), Marier
et al. (2014), Alvarez and Vera (2014),Lindner, Vlok, and Wessels (2015), Lobos and Vera (2016), Palma and Vergara (2016),Huka
and Gronalt (2017), Wery et al. (2018), Galvez, Borenstein, and da Silveira Farias (2018), Vanzetti et al. (2018), Vanzetti, Broz,
Corsano, et al. (2019a), Broz et al. (2019), Vanzetti, Broz, Montagna, et al. (2019b), Alvarez et al. (2020), Pradenas, Bravo, and
Linfati (2020)

Drying operations Sinclair and Erasmus (1992), Donald, Maness, and Marinescu (2001), Corro, Singer, and Donoso (2007), Gaudreault et al. (2011),
Cifuentes, Gatica, and Linfati (2017), Theresia, Widyadana, and Wahjudi (2019), Vanzetti, Corsano, and Montagna (2020),
Pradenas, Bravo, and Linfati (2020), Huka, Rindler, and Gronalt (2020), Marier, Gaudreault, and Noguer (2021)

Finishing operations Sinclair and Erasmus (1992), Donald, Maness, and Marinescu (2001), Maness and Norton (2002), Corro, Singer, and Donoso (2007),
Marier, Gaudreault, and Robichaud (2014), Baesler and Palma (2014), Gaudreault et al. (2011), Pradenas, Bravo, and Linfati (2020)

Coordination mechanisms Donald, Maness, andMarinescu (2001),Wessels et al. (2006), Frayret et al. (2007), Cid et al. (2007), Singer andDonoso (2008), Forget
et al. (2009), Cid Yáñez et al. (2009), Beaudoin, Frayret, and LeBel (2010), Marinescu and Maness (2010), Gaudreault et al. (2010),
Santa-Eulalia et al. (2011), Gaudreault et al. (2012), Jerbi et al. (2012), Alayet et al. (2013), Arabi (2013), Morneau-Pereira
et al. (2014), Bajgiran, Zanjani, and Nourelfath (2014), Paradis et al. (2015), Dumetz et al., “Planning and Coordination” (2017),
Vanzetti, Broz, Corsano, et al. (2019a), Vanzetti, Broz, Montagna, et al. (2019b), Fuentealba et al. (2019), Pradenas, Bravo, and
Linfati (2020)

Note: An article can be placed in several cells if it tackles or integrates several planning steps.

on the other hand, studied the box assignment problem.
This problem refers to the optimisation of log sorting and
storage operations to minimise the transportation time.

The coordination of different production steps can be
divided into two categories: centralised or distributed.
When the planning is performed in a centralised man-
ner, a single optimisation scheme, usually a single model,
is proposed to optimise all operations simultaneously.
Nonetheless, Gaudreault et al. (2010) argue that more
often than not, centralised planning models are ill-suited
to the production of detailed operational plans because
of the complexity of the underlying operations. The alter-
native, according to the authors, is to favour a distributed
approach along with coordination mechanisms between
the different production units.

Examples of centralised plans include Vanzetti, Broz,
Corsano, et al. (2019a), who proposed a mixed-integer
linear programming model to maximise the sawmill
profit from the primary breakdown of the logs into
intermediate products and secondary breaking into final
products which takes place after drying operations. Gau-
dreault et al. (2011) proposed two approaches, based
on either mixed-integer programming or constraint pro-
gramming for the planning and scheduling of both dry-
ing and finishing operations. Singer and Donoso (2008)
proposed a single linear programming model to model
and optimise both sawing and drying-finishing oper-
ations. More than proposing a framework to produce
a feasible plan, their objective is to provide decision-
makers with a method to measure the impact of focusing
development on either one of these operations.

In contrast, several studies have proposed decen-
tralised plans. In particular, the FORAC Research
Consortium (Université Laval, QC, Canada) developed

a simulation platform based on multiagent systems
to model the interaction between different production
units, suppliers, and clients. This platform is described
in Frayret et al. (2007). A wide range of problems
were studied on this platform. For example, Cid Yáñez
et al. (2009) modelled coordination strategies with differ-
ent push/pull decoupling points. Interestingly, they con-
cluded that whilemoving this decoupling point upstream
of the internal supply chain increases customer satis-
faction, the divergent nature of the production pro-
cess impairs the ability of the sawmill to maximise log
value recovery. Gaudreault et al. (2010) propose several
coordination mechanisms between production planning
agents and test them on the platform. In particular, they
compared upstream planning, two-phase planning, and
bottleneck-first planning. Upstream planning is a pure
pull system in which agents plan their production iter-
atively starting with the agent closest to the customer
and propagating demand upward the supply chain. In
two-phase planning, a first planning round is performed,
with demand information flowing upward, up to the first
production agent, that is, the sawing agent. Then, in the
second round, these agents propagate their production
plan downstream, adapting them to demand informa-
tion. Bottleneck-first planning is similar to two-phase
planning, but the first round only starts from the dry-
ing operation agent, which is considered a bottleneck in
the process because of the time required to dry timbers
(Dumetz et al., “Planning and Coordination,” 2017).

3.4. Common resolutionmethods

The twomost common solutionmethods encountered in
this literature review are optimisation and simulation.
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Table 2. Articles gathered during the literature review using metaheuristics.

Reference Metaheuristic Problem characteristics

Pradenas, Peñailillo, and Ferland (2004) Tabu search Optimisation of monthly operation. The problem was modelled as
an MIP model with quadratic constraints

Caballero et al. (2009) Scatter Search Procedure for Multiobjective
Optimisation (SSPMO)

Operational production planning, modelled as a multiobjective
nonlinear integer model

Lindner, Visser, and Wessels (2013) Probability-based incremental learning Simultaneous optimisation of primary and secondary sawing
operations

Pradenas et al. (2013) Genetic algorithm or simulated annealing Sawing operation planning over a few days horizon. Metaheuristics
are used to generate sawing patterns and solve the subsequent
integer programming problem

Baesler and Palma (2014) Memetic algorithm Scheduling of finishing operations (moulding) on a set of parallel
machines

Lindner, Vlok, and Wessels (2015) Population-based incremental learning algorithm Optimising simultaneously machine settings at two points of the
production line

Shahi and Pulkki (2015) A commercial solver was used, which is based on
scatter search and tabu search procedures

Inventory optimisation to minimise daily costs of three simulated
agents representing a forest company, merchandising log yard,
and sawmill

Huka, Rindler, and Gronalt (2020) Tabu search Scheduling of drying operations. The metaheuristic is used to
improve upon the results of the first heuristic solution. The
problem was modelled as a nonlinear MIP model

3.4.1. Optimisation
Optimisation methods, particularly operational research
methods, have been extensively used in the forest product
industry for decades (D’Amours, Rönnqvist, and Wein-
traub 2008; Rönnqvist et al. 2015). The literature pro-
poses many use cases of such a model and an approach
to solve sawmilling planning problems. For example,
Donald, Maness, and Marinescu (2001) proposed the
use of linear programming to optimise monthly pro-
duction planning at a sawmill. Gaudreault et al. (2011)
compared a mixed-integer programming model with a
constraint programming model for the task of planning
and scheduling drying and finishing operations. Consid-
ering the important size of the industrial problem they
consider, they further proposed a search procedure to
find a satisfying solution in a limited time. This prob-
lem of limited computing time is similarly stressed by
Marier, Gaudreault, and Robichaud (2014), who relate
the implementation of a mixed-integer programming
model to an industrial partner. A hard requirement was
for the model to propose a solution in less than five
minutes.

Resolution methods based on metaheuristics to solve
these optimisation problems appear promising. Meta-
heuristics are a general family of methods used to
find approximate solutions to complex problems within
an acceptable time (Chopard and Tomassini 2018).
In particular, such methods are considered in the
literature when the problem is not convex and/or
difficult to solve. For example, Huka, Rindler, and
Gronalt (2020) proposed several heuristics to solve
a nonlinear programming problem to schedule dry-
ing operations. Interestingly, they proposed the use
of a metaheuristic – a tabu search, Laguna (2018) –
to improve the heuristics results. Similarly, Caballero

et al. (2009) proposed the use of a metaheuristic – a
scatter search procedure for multiobjective optimisation,
Molina et al. (2007) – to solve a nonlinear goal pro-
gramming model to plan sawmill production and meet
demand.

Table 2 presents a summary of the metaheuristics
and problems characteristics considered in the surveyed
articles.

Finally, the last use of optimisation models is the cre-
ation of plans under uncertainties. According to Zanjani,
Nourelfath, and Ait-Kadi (2013a), a common method
used in the industry to deal with uncertainty is the use
of deterministic optimisation models under a rolling
horizon scheme. The optimisation model is solved for
a long time horizon using the information available at
the time. However, the recommendation (or plan) is not
followed until the end of the planning horizon, but is
computed again on a regular basis when new information
becomes available. However, numerous studies have pro-
posed usingmodels that explicitly consider uncertainties.
The two popular methods are stochastic programming
and robust optimisation. Both of these have advantages
and disadvantages. Table 3 presents a summary of the
articles using these methods gathered during the liter-
ature review. In particular, Varas et al. (2014) note that
stochastic programming requires knowledge of the prob-
ability distribution of events, which may not be easy
to gather or estimate. Additionally, they may be diffi-
cult to understand for a sawmill manager and can be
computationally intensive depending on the number of
scenarios considered. Diverse decomposition methods
and heuristics were , therefore, proposed (e.g. Zanjani,
Ait-Kadi, and Nourelfath 2013; Zanjani, Nourelfath, and
Ait-Kadi 2013b). The same authors also used simula-
tion and Monte Carlo methods to generate scenarios,



12 S. CHABANET ET AL.

Table 3. Articles implementing specific optimisationmethods to dealwith uncertainty in the planning process.

Reference Uncertainty Solution method

Vila, Beauregard, and Martel (2009) Demand Stochastic programming
Zanjani, Ait-Kadi, and Nourelfath (2010) Process yield Robust optimisation
Kazemi Zanjani, Nourelfath, and Ait-Kadi (2010) Rawmaterial quality and demand Stochastic programming
Kazemi Zanjani, Nourelfath, and Aït-Kadi (2011) Rawmaterial quality Stochastic programming
Vahidian (2012) Process yield and demand Stochastic programming
Zanjani, Nourelfath, and Ait-Kadi (2013a) Process yield, products demand Robust optimisation,

stochastic programming
Zanjani, Ait-Kadi, and Nourelfath (2013) Process yield and demand Stochastic programming
Kazemi Zanjani, Ait-Kadi, and Nourelfath (2013) Processed yield Stochastic programming
Zanjani, Nourelfath, and Ait-Kadi (2013b) Process yield and demand Stochastic programming
Varas et al. (2014) Rawmaterial supply and demand Robust optimisation
Alvarez and Vera (2014) Process yield Robust optimisation
Palma and Vergara (2016) Manager preferences among objectives Robust optimisation
Lobos and Vera (2016) Log supply Stochastic programming
Alvarez et al. (2020) Process yield Robust optimisation

for example, Zanjani, Nourelfath, and Ait-Kadi (2007).
While stochastic optimisation requires modelling the
probability distribution over scenarios, robust optimi-
sation aims at providing a feasible plan despite uncer-
tainty on some of the model parameters and does not
require such probability modelling. However, Rönnqvist
et al. (2015) remarked that this may lead to conservative
plans with high costs.

Table 3 presents a summary of the optimisation meth-
ods implemented by the surveyed articles to deal with
uncertainty in the planning process.

3.4.2. Simulation
Simulation is becoming an increasingly accepted and
important tool in the industry and has been widely used
in the forest industry, for example, to identify bottlenecks
or study the impact of upgrading production systems
(Opacic, Sowlati, and Mobini 2018). Noticeably, Masood
and Sonntag (2020) classify simulation as an Industry 4.0
technology with high average benefit but low application
complexity, making it particularly suitable for small and
medium enterprises.

The sawmill industry has several sawmill simulators
at its disposal, which can be used in decision processes.
A particular interest of such simulators is that they can
replace historical production data when they are unavail-
able, for example, when designing a new sawmill or deal-
ing with unusual products. They can also produce unag-
gregated data on a log-to-log basis, alleviating production
uncertainties.

Sawmill simulators are, therefore, used in several stud-
ies to generate data that are used to solve optimisation
problems. For example,Maness andNorton (2002) used a
simulator to simulate the sawing of logs fromX-ray scans.
The simulator additionally emulates a sawing optimiser
and selects the sawing pattern to maximise a set of val-
ues (Sohrabi 2013). These data were then fed into a linear
programming model. However, this approach was criti-
cised by Zanjani, Nourelfath, and Ait-Kadi (2007), who

considered it impractical to require X-ray scans for logs
that will be sawed later. In this study, the sawmill simu-
lator was used to simulate the sawing of logs present in
a historical database. These simulation results were then
used to generate different stochastic output scenarios and
solve a stochastic programming optimisation problem.

Similarly, Wery et al. (2018) proposed simulation-
optimisationmodels, where the simulation and optimisa-
tion procedures were repetitively solved. The simulation
steps generate scenarios that are evaluated and fed to a
search procedure that determines the parameters of the
next simulation. The sawmill simulator considers logs
from a nonevolving database that is representative of
two different harvesting areas. Simulation is particularly
interesting in that setting because it allows the evaluation
of new sawmill configurations in the absence of historical
data.

A third use of simulation tools is evaluating and com-
paring different planning strategies. For example, Men-
doza et al. (1991) used a simulationmodel to evaluate the
feasibility of a plan produced by an optimisation model.
Dumetz et al. (2015) consider a discrete event simulation
model to compare various planning and order manage-
ment strategies. Similarly, Dumetz et al. (2021) used it
to compare coordination strategies between tactical and
operational plans, and Cid Yáñez et al. (2009) proposed
the use of a multiagent simulation platform to evaluate
different push–pull decoupling points in a sawmill inter-
nal supply chain composed, among others, of a sawing
agent, drying agent, and finishing agent.

Such a multiagent simulation setting similarly appears
in numerous articles related to the sawmill industry, even
when considering only planning problems at a single
sawmill composed of several production units. Multi-
agent simulation originates from the distributed artifi-
cial intelligence field and, therefore, by nature, allows
the implementation of a distributed planning strategy.
According to Gaudreault et al. (2010), this facilitates
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Table 4. List of articles collected during the literature review using multi-agent simulation technologies.

Reference Main agents Simulation objective

Frayret et al. (2007) Source, Sawing, Drying, Finishing, Deliver and
Warehouse agents

Design and test distributed planning strategies. This study
focuses on the introduction of the FORAC agent simulation
platform

Cid et al. (2007) Sawing, Drying and Planning agents Evaluate different planning strategies, especially in terms of
push-pull decoupling points, under several scenarios

Forget, D’Amours, and Frayret (2008) Planning and Customer agents While focusing on a general agent architecture this article
presents a use case in the lumber industry. The use case is
used to assess the impact of the reception of a new demand
plan by the planning agent

Lemieux et al. (2009) Source, Sawing, Drying, Finishing, Deliver and
Customer agents

Evaluate different tactical planning strategies under various
market situations

Cid Yáñez et al. (2009) Sawing, Drying and Finishing agents Compare planning strategies in terms of push-pull decoupling
points

Forget et al. (2009) Source, Sawing, Drying, Finishing, Warehouse and
Customer agents

Compare operational planning behaviours, such as agents
coordination mechanisms

Gaudreault, Frayret, and Pesant (2009) Sawing, Drying and Finishing agents Coordinate operations on a short-term horizon
Gaudreault et al. (2010) Sawing, Drying and Finishing agents Evaluate coordination mechanisms
Beaudoin, Frayret, and LeBel (2010) Mandated and Procured agents, representing forest

companies. Each agent owns a mill, but only the
mandated agent manages the harvest

Coordinate wood procurement planning among several
companies, as well as procurement and production within a
company

Santa-Eulalia et al. (2011) Source, Sawing, Drying, Finishing and Deliver agents Compare planning policies, in terms of horizon, control level and
planning method

Vahid (2011) Each existing economic player in the modelled
supply chain (i.e. sawmills and log yards) is
represented by an agent

Solve strategic problems, including the placement of new
facilities to maximise the total profit of the supply chain

Gaudreault et al. (2012) Sawing, Drying and Finishing agent Evaluation of a coordination mechanism, based on an efficient
search in a solution space

Shahi and Pulkki (2015) Sawmill storage, Merchandising yard and Forest
management unit agents

Optimise an inventory policy to help tactical and operational
decision-making

the creation of detailed models compared with the cen-
tralised approach, which, in general, cannot consider pre-
cise operational details. This appears to be of particular
interest for a sawmill supply chain because of the diver-
gent nature of several production steps that complicate
planning.

Table 4 lists articles usingmulti-agent simulation tech-
nologies to study production planning and control prob-
lems in the forest product industry and sawmills in par-
ticular.

Finally, sawmill simulators, like Sawsim5 integrate an
optimiser to emulate sawing lines integrating these. Such
an optimiser can, for example, decide which primary or
secondary cutting pattern to use on a log-per-log basis.

4. Digital twins for the sawmilling industry

While none of the papers discussed in the previous
section mention sawmill DT, they highlight the existence
of many data-intensive models that may constitute ele-
mentary components of DT, both in terms of predictive
and optimisation capabilities.

As discussed in Section 2, in this study, DT is defined
as a decision support system having descriptive, pre-
dictive, and prescriptive capabilities, with the capacity
to optimise online and operational production planning
and control (Figure 6).

4.1. Descriptive capabilities

Owing to the highly heterogeneous nature of rawmateri-
als processed by sawmills, many technologies have been
developed by the industry to gain insight into their nature
throughout the transformation process. Methods are
being developed to gain such information as early as from
the standing tree, prior to harvest. Nguyen et al. (2020),
for example, propose using Lidar scans, often studied for
their potential for forest inventory, to detect and clas-
sify defects on standing tree trunks. Similarly, the sawmill
industry has been used for a long time, allowing external
and internal scans of logs and lumber. Such scans are used
in the industry for various purposes, including process
optimisation, and different scanner technologies exist. In
particular, laser scans of the exterior shape of logs have
been used for a long time to scale and grade them ,6 mea-
suring their length, diameter, and volume. X-ray scanners
have been developed to allow for further detection of
internal defects in logs. These 3D scans, whether they
consider internal defects or only the log shape, are used
in the industry to optimise the bucking of the stems into
logs or the primary breakdown of logs into lumber. Such
scans may also be used to simulate the sawing process
in a nondestructive manner and generate useful data for
various decision support problems. Examples of studies
using such methods include (Maness and Norton 2002;
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Figure 6. Outline of the components essential to a sawmill DT.

Morneau-Pereira et al. 2014; Wery et al. 2014).
Similar to scans of the full log, scans of the lumbers

measured after their primary breakdownmay be used for
process optimisation,7 or quality control. Staudhammer,
Maness, and Kozak (2007), in particular, reported the
use of laser measurement of lumbers surfaces for quality
inspection.

Overall, 3D scans, especially those obtained from X-
ray technologies, may be considered informative enough
to constitute digital shadows of the logs and products.
However, this raises the issue of product traceability
across several diverging production steps. Traceability
is a major challenge in the forest product industry to
limit the loss of information taking place at various
steps of the forest product supply chain, allowing bet-
ter guarantees on the product origin and characteris-
tics and a better use of resources at the online pro-
duction level (Jover et al. 2013). Various methods have
been studied for this purpose. In particular, the use of
X-ray scans appears promising (Skog, Jacobsson, and
Lycken 2017). Furthermore, equipment manufacturers

propose technologies to allow traceability from logs to
lumbers based on X-ray scans and what they call a dig-
ital fingertip .8 Another method studied in the literature
is the mass marking of logs with chemical markers (Jover
et al. 2013).

4.2. Predictive capabilities

Many models are already able to benefit from industrial
data such as logs and lumber scans to infer information
about future transformation steps. In particular, modern
sawmill hardware manufacturers provide simulators that
integrate real pieces of software running their machines.
These simulators can be linked by sawmill managers to
simulate the entire production line and can, for exam-
ple, be used to assess the effects of changes in the mill
configuration. Therefore, they appear as important parts
of a hypothetical mill DT, with the advantages of being
already present, known by sawmill managers, and liter-
ally used by the equipment for local optimisation pur-
poses. Interestingly, some of these software programs
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have the capacity to roughly estimate the results of future
production steps in their optimisation and may, there-
fore, already be considered as DT of the production line
to some extent. Similarly, sawmill simulators untied to
specific equipment exist, such as SAWSIM9 or Optitek
(Goulet 2006). Optitek, for example, has been used in
several studies to generate data for optimisation prob-
lems. These studies include (Morneau-Pereira et al. 2014;
Wery et al. 2018), who, however, mention the long com-
putation time required by such simulations. Therefore,
Morneau-Pereira et al. (2014) ran simulations for only
a subset of logs, whereas (Wery et al. 2018) proposed a
simulation-optimisation framework to reduce the num-
ber of required simulations.

In addition to simulation models, a small subset of
articles study the use of a second set of technology, that
is, ML models and their interactions with simulation
and optimisation. ML models are of particular interest
in the context of DT. These are naturally data-driven
models that leverage historical data. It is also possible to
implement a self-update procedure to adapt these mod-
els to changes in the physical twin. This coordination
between simulation and machine learning technologies
was performed following various methods.

Morin et al. (2020), in particular, propose using
machine learning algorithms to train metamodels of
sawmill simulators. They proposed the use of classic and
well-understood ML algorithms, such as random forests
or k-nearest neighbours (kNN), to make predictions
based on know-how descriptors or logs. Although such
sawing simulators are available to the forest wood indus-
try, they are judged to be too slow for operational use,
and typical use cases focus on tactical and strategic prob-
lems, which can also cause issues when decision-making
involves tens of sawmills. Metamodels based on machine
learning algorithms appear, therefore, as an interesting
solution because they can approximate a simulator out-
put and, in general, are designed tomake fast predictions.
However, the need for a certain amount of simulation
or production data remains in order to train these ML
metamodels. Recent studies have extended this study
by exploring the use of various other machine learning
algorithms, such as dissimilarity-based kNN (Chabanet
et al. 2021; Chabanet, El-Haouzi, and Thomas 2021) and
neural networks (Martineau et al. 2021).

In two other studies, Thomas, Choffel, and Thomas
(2008) and Thomas and Thomas (2009) proposed the use
of neural network models to simplify the simulation of a
sawmill. Rather than completely replacing the simulator,
the objective is to integrate ML inside the simulation to
simplify it and speed it up. As with previous studies, the

objective remains to alleviate the computational cost of
the simulation.

4.3. Prescriptive capabilities

Many models have been proposed in the scientific litera-
ture to support decision-making in the sawmill industry,
responding to a wide range of problems. In particu-
lar, operational research is extensively used by the for-
est product industry (Rönnqvist 2003) and may benefit
from more precise data than that currently used (Morin
et al. 2020). Such models are able to propose optimised
production plans for sawmill managers and respond in
particular to the sawing stock problem: which set of logs
to cut, and with what equipment setting. This is par-
ticularly important for optimising raw material usage
and limiting waste production. However, it is impor-
tant to note that a common formulation of this problem
requires, at the very least, to have logs sorted into classes
based on shared properties. This is not always done effi-
ciently in the industry despite the potential of such a strat-
egy to reduce uncertainties and improve sawmill flexibil-
ity (Wery et al. 2012; Gil and Frayret 2016). While not all
sawmills implement the required step to use such sawing
operation planning models, other models are extensively
used by Canadian sawmills, for example, to plan drying
and finishing operations. Simulators are also extensively
used to support decision-making at strategic and tactical
levels rather than online and operational levels.

Similarly, such models require various data, such as
operation costs, product prices, order lists, and expected
operation outputs. This output, in particular, is not
always available for new products or new machine
settings. Simulations have been proposed to supple-
ment these missing data. Nonetheless, this increases the
computational cost. Additionally, the heterogeneity of
sawmilling firms makes it difficult to implement some
of these models for other specific cases. Adaptive frame-
works have, however, been proposed to implement such
models on a case-by-case basis (Kaltenbrunner, Huka,
and Gronalt 2020). Simulations should also be used to
verify the feasibility of the proposed plans.

The desirable modular structure of a sawmill DT
makes the literature on multiagent simulation particu-
larly interesting. A sawmill is composed of several dis-
tinct production units. Each one should naturally be
attributed to its own set of potentially dependent pre-
dictive models. Some models may require the results of
models from previous production steps as inputs. There-
fore, mechanisms are required to coordinate them inside
a single framework and optimise the production process
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globally, rather than providing a set of locally optimal
solutions.

4.4. Discussion

Many building blocks of sawmill DT decision support
systems already exist, either in the scientific literature
or in the industry. Such a system may be expected to
limit the loss of information between different sawmill
production steps and improve short- to mid-term pro-
duction plans by reducing uncertainties, particularly over
the raw material and expected output. Better coordina-
tion between production units may also yield huge ben-
efits, as shown by numerous studies based on multiagent
simulations.

Additionally, while none of the reviewed articles men-
tion the concept of DT, several other articles discuss the
advantages of DT and other Industry 4.0 technologies in
the forestry sector. Reitz, Schluse, and Roßmann (2019),
for example, envisioned a DT network to coordinate and
share information between different forestry actors and
their customers. This is proposed to deal with specific
challenges, such as weak Internet connections in forests
and the reluctance of stakeholders to share informa-
tion. Kogler and Rauch (2020) proposed a set of digital
models, as a precursor of DT, to manage transporta-
tion from forests to mills considering uncertain natural
events. Müller, Jaeger, and Hanewinkel (2019) proposed
the concept of digital forest, i.e. a digital representation
of a forest. The representation would gather informa-
tion about soil conditions, topography, and individual
trees, using remote sensing, such as satellite, airborne,
or LiDAR technologies. Therefore, a virtual forest is a
digital shadow of the forest. To complement it with ana-
lytical capabilities would allow the creation of a forest
DT. Coupling this with a sawmill or sawmills DT could
realise a powerful decision support tool, making it pos-
sible to coordinate, simulate, and optimise integrated
production plans. This further limits the sawmill uncer-
tainty on the available raw material by gathering and
transmitting information very early in the supply chain.
Multiagent technologies will, once again, play a key role
in ensuring a smooth and efficient coordination between
these various DTs. Models have been proposed to man-
age sawmill supply at the operational or online level
and respond to unexpected events (Amrouss et al. 2017;
Kogler and Rauch 2020). By analysing the quality and
shapes of logs as early as the harvest operations, or even
before, and transferring this information to sawmills,
managers would have far better guarantees on the raw
material being processed and reduce production uncer-
tainties. This would allow greater control of production
and increase the sawmill flexibility.

Despite the high interest in these aforementionedML,
optimisation, and simulation models, a few difficulties
exist regarding their application to the sawmill industry.

In particular, the computational efficiency, or lack
thereof, of some sawmill simulators has been mentioned
by several researchers (Morneau-Pereira et al. 2014;Wery
et al. 2018;Morin et al. 2020).While the software running
the machines and proposed as simulators by manufac-
turers are constrained to perform real-time optimisation,
they may not find a real optimum. Additionally, many
such optimisations should be performed to optimise
the production plans. Whether these software programs
would perform well enough for operational planning
remains to be studied. Such studies should consider other
works that implement simulation optimisation strate-
gies (Wery et al. 2018). Similarly, stochastic optimisation
requiring simulated data for only a representative subset
of logs has been proposed (Zanjani, Nourelfath, and Ait-
Kadi 2013a). Marier, Gaudreault, and Robichaud (2014),
however, mention the difficulty, in some cases, of solv-
ing even a deterministic mixed-integer programming
model fast enough for industrial purpose. Additionally,
while these model parameters may be changed easily to
respond to changes in demand or log input mix, their
global structure remains fixed, which may negatively
impact the adaptive ability of the DT and its response
to context and process changes. To propose models able
to react to unexpected changes to some extent, as done
in Amrouss et al. (2017) to solve a real-time transporta-
tion problem in forestry, appears important. Similarly,
some of the mentioned technologies remain out of reach
for many sawmills. While it has been proposed, in other
contexts, that sawmills may share such equipment (Cha-
layer 2019), this would complicate the implementation
of DT by adding additional transportation steps. How to
organise this, as well as the development of more afford-
able robust alternatives, would be an interesting research
avenue.

For speeding up the simulation process, sawmill sim-
ulator ML metamodels appear to be particularly promis-
ing. However, more research remains to be done on
both their structure, monitoring, usage, and limits.
Sawmill simulator metamodels are, so far, specific to
the sawmill and equipment configuration used to gener-
ate the labelled database for model building (training).
Production processes taking place in the sawmill indus-
try are, however, diverse and vary depending on coun-
try market contexts, company strategies, and equipment
configuration. Numerous such models would, there-
fore, have to be trained and implemented, leading to
high computational costs and modelling time. A sec-
ond general challenge is the usual presence of concept
drift in the industry. Concept drift refers to changes in
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the (theoretical) probability distribution generating data
fed to the ML models. Several types of concept drifts
have been identified and classified in the related litera-
ture, including class drift, covariate shift, and novel class
appearance (Webb et al. 2016).

For example, some sawmills perform online optimisa-
tion of the cutting pattern process. This can be achieved
by maximising the volume of the final products, or their
‘value.’ However, these values are not necessarily the real
market price, but rather a set of command values used to
favour the production of some products tomeet demand.
These command values can be changed depending on
market conditions, sawmill order list, and actual produc-
tion. Changing these parameters will lead to changes in
the cutting pattern attributed to a log and, therefore, to
the set of lumbers obtained. This is an example of class
drift. Therefore, metamodels should either take com-
mand prices as input or be easily adapted and retrained
when such a change occurs. Similarly, changes in the
nature of the log supply, due to a change in the supplier or
harvested area, will induce covariate drift, and the addi-
tion of new products to a sawmill catalogue will induce a
class appearance type of drift.

These different types of drifts make it necessary
to continuously adapt and update models used in the
sawmill industry, or, in any industry, for that matter.
This is particularly important for a DT following its
physical twin throughout its entire life cycle. Therefore,
approaches that facilitate the training and adaptation of
ML models in the context of forest companies, such as
transfer learning (Torrey and Shavlik 2010) and active
learning (Settles 2009), are interesting avenues for fur-
ther research. Transfer learning focuses on the transfer
of knowledge learned from a previous task to new mod-
els for similar tasks. Alexopoulos, Nikolakis, and Chrys-
solouris (2020) argued that in cases where DT implement
fast and precise simulations, they may be used to quickly
generate new synthetic labelled datasets and comple-
ment transfer learning algorithms. Similarly, active learn-
ing focuses on the guided construction of a training
dataset to maximise the trained predictor performance
with minimal cost.

Other specific challenges are presented by Sawmill
storage areas. Nantel, Gaudreault, and Léger (2020) stud-
ied, in particular, the potential of DT to maintain a
geolocated inventory in a woodyard, using GPS tech-
nologies. Contrary to classic warehouses, these storage
areas are placed outside, subject to the weather, and
do not necessarily implement predetermined storage
emplacements. The organisation of the woodyard was
then left at the discretion of the operator. According to

Nantel, Gaudreault, andLéger (2020), current commercial
GPS technologies are still insufficient to maintain a
geolocated inventory of each package in the yard.
However, they demonstrate that maintaining such an
inventory would be possible by adding other informa-
tion and not differentiating between packages of the
same product or by implementing additional storage
rules.

5. Conclusion

DT is, in the context of this study, a collection of vari-
ous models and data updated in real time. They are more
than a precise representation of the physical twin, but
are also endowed with predictive and analytical capabil-
ities. Therefore, they are expected to serve various func-
tions such as production planning and control decision
support tools.

Sawmills in particular would benefit from the devel-
opment and deployment of DT. These would, indeed,
allow the testing and optimisation of production plans,
including optimising the parameters of embedded real-
time optimisers.Owing to the divergent nature of sawmill
production processes and the heterogeneity of the raw
material, the impact of these parameters on the produc-
tion as awhole is difficult to assesswithout historical data,
which are not always accessible or require costly trials
and errors. Additionally, by communicating with forest
DT benefiting from new sensing technologies, they could
reduce information loss taking place at several points in
the forest product supply chain, both before and inside
the sawmill.

The state of existing technologies and simulation tools
makes the development of DT realistic for the sawmill
industry. In particular, equipment manufacturers sup-
ply simulators based on real pieces of software running
their machines. These simulations are therefore able to
precisely model the behaviour of the production line,
given sufficient data, and appear as important models to
include in aDT.Traceability technologies based on chem-
ical marking or X-ray scanners are being developed with
promising results. X-ray-based production optimisation
systems are already being commercialised, but they are
too expensive for many sawmills. Finally, some countries
have sustained active academic research on sawmill pro-
duction planning and control. In particular, numerous
planning optimisation methods have been studied, and
specific coordination mechanisms based on multi-agent
technologies have been proposed.

However, several challenges remain and need to be
investigated to enable the implementation of sawmill
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DT. It is important to note that the heterogeneity of the
forest-wood product supply chain structures, production
processes, and raw material makes the development of
a solution suitable for all cases improbable. A solu-
tion that responds to one sawmill requirement may
not respond to another requirement. Therefore, to cre-
ate flexible methodologies aimed at facilitating their
development, it is important to propose finished imple-
mentations. Similarly, the adaptive capacities of sawmill
DT models over time and their response to changes
remain challenging and require further investigation.
These models will, indeed, be subject to changes in both
the physical twin and its environment caused by multi-
ple factors ranging from variations in the properties of
wood logs to tool wear. To efficiently coordinate mod-
els of various natures included in the DT will, addi-
tionally, generate its own challenges, although current
research on multiagent technologies appears promising.
These different models will not only respond to differ-
ent needs, over various time horizons, and be related
to different production or storage units, but will also
be written in different programming languages, use data
in a variety of formats gathered from numerous sen-
sors (e.g. X-ray scanners, laser scanners, ultrasound,
cameras), and have very different computation time
requirements, ranging from a fewmilliseconds to several
hours.

Notes

1. https://www.nrcan.gc.ca/our-natural-resources/forests-
forestry/state-canadas-forests-report/how-does-forest-
sector-contribut/indicator-gross-domestic-product/
16556, last accessed in December 2021.

2. https://www.nrcan.gc.ca/our-natural-resources/forests-
forestry/state-canadas-forests-report/forest-industry-
contribute/16517, last accessed in December 2021.
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tion.htm, last accessed on August 2021.
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