一次元電気伝導体における超伝導の研究

著者	石原 裕
著者別表示	Ishihara Yutaka
雑誌名	平成8(1996)年度 科学研究費補助金 基盤研究(C)
	研究成果報告書概要
巻	1995 1996
ページ	2p.
発行年	1999-03-08
URL	http://doi.org/10.24517/00066280

1996 Fiscal Year Final Research Report Summary

Superconducting properties of a Quasi-One-Dimensional Nb_3Te_4 Doped with Hg

Research Project

Project/Area Number
07640466
Research Category
Grant-in-Aid for Scientific Research (C)
Allocation Type
Single-year Grants
Section
一般
Research Field
固体物性Ⅱ(磁性・金属・低温)
Research Institution
Kanazawa University
Principal Investigator
ISHIHARA Yutaka Kanazawa University, Faculty of Science, Professor, 理学部, 教授 (10019474)
Project Period (FY)
1995 – 1996
Keywords
superconductivity / intercalation / low dimensional matter / electrical resistivity / thermoelectric power / specific heat
Research Abstract

The electrical resistivity, thermoelectric power, and specific heat of Nb_3Te_4 inserted with Hg: Hg_xNb_3Te_4 were measured from 0.5K to 300K.The superconductivity and superconducting upper critical field H_<c2> were also measured. Hg insertion suppresses the charge density wave transition at about 80K The anomaly of the resistivity at about 30K is also suppressed by Hg insertion. However, the anomaly of the thermoelectric

power at 30K is not greatly affected by Hg insertion. These results are discussed in terms of the modification of the shape of the Fermi surfaces. The residual resistivity ratio is not affected by Hg insertion. The thermoelectric power is negative indicating a dominant transport by electron at concentrations of x < 0.3. While, for concentrations of x < 0.3 the thermoelectric power is positive near superconducting transition temperature. With addition of Hg, the superconducting transition temperature is enhanced from 1.9K to 5.4K.The superconducting upper critical field H_<c2> is proportional to the temperature difference from the transition temperature. The ratio H_{c2*}/H_{c2*} of the parallel and the perpendicular to the c axis is 4.5 for concentrations of X<0.3. In contrast, the ratio increases remarkably at about x=0.3 and is about 40 for concentrations of x>0.3. For Nb_3Te_4, although it becomes superconducting at about 2K in the electrical-resistivity measurement, an excess of specific heat due to the superconducting transition was not found down to about 0.5K. However, the excess of specific heat appears by Hg insertion and increases with increasing concentration x. The coefficient of the electronic specific heat is enhanced from 18.7 (mJ/molK^2) for x=0 to 146 (mJ/molK^2) for x=0.4. This is due to a change in dominant transport from electrons to holes.

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-07640466/076404661996kenkyu_seika_hokoku_

Published: 1999-03-08