血液脳関門トランスポーターの分子機構と薬物の脳 移行性制御

著者	玉井 郁巳
著者別表示	Tamai Ikumi
雑誌名	平成10(1998)年度 科学研究費補助金 基盤研究(C)
	研究成果報告書概要
巻	1997 1998
ページ	2p.
発行年	1999-12-07
URL	http://doi.org/10.24517/00066021

1998 Fiscal Year Final Research Report Summary

Molecular mechanism of blood-brain barrier transport of drugs.

Research Project

Project/Area Number
09672221
Research Category
Grant-in-Aid for Scientific Research (C)
Allocation Type
Single-year Grants
Section
一般
Research Field
Biological pharmacy
Research Institution
KANAZAWA UNIVERSITY
Principal Investigator
TAMAI Ikumi Kanazawa University, Graduate School, Associate Professor, 大学院・自然科学研究科, 助教授 (20155237)
Co-Investigator(Kenkyū-buntansha)
SAI Yoshimichi Kanazawa University, Pharmacy, Research Associate, 薬学部, 助手 (40262589)
Project Period (FY)
1997 – 1998
Keywords

Blood-brain barrier / transporter / carrier-mediated transport / drug delivery / drug disposition / P-glycoprotein / monocarboxylic acid / beta-amino acid

Various transport systems equipped in brain capillary endothelial cells (BECEC) that form blood-brain barrier (BBB) were characterized as follows : 1.beta-amino acid transport system : beta-amino acids such as beta-alanine and taurine were transported across the blood-brain barrier by specific carrier-mediated transport mechanisms that is energized by sodium ion gradient in a chloride ion sensitive manner. The transporter function was found bcth at the luminal and abluminal membranes of BCEC, indicating that both of influx and efflux of beta-amino acids across the BBB are regulated such transporter(s).

2.Substrate specificity of adsorptive-mediated endocytosis at the BBB was further investigated using primary cultured bovine BCEC.By newly synthesizing cationic-derived peptide with various lipophilicity, isoelectric point and molecular size, the optimal structure for the mechanism was speculated.

3.Molecular characterization of the transporter for monocarboxylic acids such as lactic acid has been performed. Monocarboxylic acid transporter MCT-1 gene was expressed in the BCEC and was found to functionally play important role in transport of organic weak acids at the BBB by the in vitro cultured cells and in vivo BUI studies.

4.Multiple brain efflux mechanisms for new quinolone antibacterial agent, HSR-903 were found to be functionally expressed at the BBB.They are Pglycoprotein and unknown transporter sensitive to anionic compounds. These multiple efflux transporters seem to restrict brain distribution of HSR-903, resulting in a low toxicity in the central nervous system.

These lines of studies provide new insight of the function of BBB and imply new strategy to control brain distribution of drugs by focusing on the transporters functioning at the blood-brain barrier.

Research Products (6 results)

	All Publications (6 results)
[Publications] I.Tamai et al.: "Structure-internalization relationship for adsorptine-mediated endocytosis of basic peptides at J.Pharmacol.Exp.Ther.280. 410-415 (1997)	the blood-brain barrier" 🗸
[Publications] J.Komura et al.: "Brain-to-blood active transport of P-alamine across the blood-lrain bavier." FEBS Lett.400. 1	31-135 (1997) 🗸
[Publications] T.Wakamiya et al.: "Design and Synthesis of peptides passing though the blood-brain barrier" Bull.Chem.Soc.	Jpn.71. 699-709 (1998) 🔹 🗸
[Publications] Tamai I.et al.: "Structure-internalization relationship for adsorptive-mediated endocytosis of basic peptides at J.Pharmcol.Exp.Ther.280. 410-415 (1997)	the blood-brain barrier." \checkmark
[Publications] Komura J.et al.: "Brain-to-blood active transport of beta-alanine across the blood-brain barrier." FEBS Lett.40	0. 131-135 (1997) 🔹 🗸
[Publications] Wakamiya T.et al.: "Design and synthesis of peptides passing through the blood-brain barrier." Bull.Chem.Soc	.Jpn.71. 699-709 (1998) 🔹 🗸

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-09672221/096722211998kenkyu_seika_hokoku_

Published: 1999-12-07

All Other