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We present calculation of anomalous muonium in silicon which has been extensively studied but there is still

unresolved problems in first-principles calculations. We perform calculations by using spin-polarized density

functional theory within the general gradient approximation or the local density approximation. We check

the size effect of supercells and find that we need to use large sizes of supercells to get reliable results.

Some quantitative disagreement between the experimental and theoretical values in previous studies may

be due to the use of insufficient sizes of supercells. We clarify that the negative Fermi contact interaction

constant (FCIC) is induced by the electron correlation effect; By using the Hubbard model, we find that

the FCIC is zero when we neglect the correlation effect and the negative value of the FCIC is induced by

the correlation effect.

1. Introduction

Defects in semiconductors have been attracting scientific interests for several decades1).

Defects give significant effects on electronic properties of semiconductors. Hydro-

gen is one of the most important impurities in materials and, in particular, in

semiconductors2−7). Hydrogen in semiconductors has favorable or unfavorable effects on

the semiconductor devices. Hydrogen passivates shallow acceptors and donors, which

has technologically unfavorable effects on semiconductor devices1). On the other hand,

recently it was suggested that hydrogen in semiconductors could act as a shallow

impurity1,8−10).

Muon spin resonance (µSR) is an effective tool to study hydrogen impurities in

materials3,11). Muon has the same electric charge as proton. Although the mass is 1/9

of that of proton, its behaviors in materials are expected to be similar to those of proton.

Then µSR is considered to be an effective tool to study proton or hydrogen.

∗E-mail: m-saito@se.kanazawa-u.ac.jp
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In µSR, hyperfine parameters (HP), in particular, the Fermi contact interaction

constants (FCIC) are observed. Analysis of these parameters give useful informations;

for example, it gives informations on the site of muonium, which is expected to be the

stable site of hydrogen. To clearly determine the site, we need to perform first-principles

calculations and compare the calculational and experimental results. Although an ac-

cumulation of theoretical studies has been conducted, a reliable method seems not to

be established.

Muonium in silicon is one of the most extensively studied systems11−27). Anomalous

muonium was detected and was clearly identified as the muonium located at the bond-

center (BC) site, which is considered to be the most stable site21). This anomalous

muonium was reported by Patterson et al15) and later the location was identified by

Kiefl et al18) who combined the level crossing resonance and µSR methods.

The HP at the BC site were calculated by several studies but, unfortunately, previous

results largely deviate from the experimental data12,15,18,23,26). Small sizes of supercells

used in previous studies may be the reason for this discrepancy. Furthermore, the origin

of the novel FCIC has not been clarified; the FCIC of the anomalous muonium is

negative and the absolute value is extremely small.

In this paper, we attempt to perform reliable first-principles calculations of the FCIC

of the muonium at the BC site in silicon. We perform spin polarized density functional

theory (DFT) calculations by using supercell models to simulate the impurity in silicon.

It is found that we need to check the convergence of the supercell size; the conventionally

used supercell sizes are found to be insufficient to get reliable results. We clarify the

origin of the small absolute value of the FCIC and discuss its negative sign.

2. Methods

2.1 Spin-polarized density functional calculations

First-principles calculations based on the spin-polarized density-functional theory are

carried out by using PHASE/0 code28−31). In this calculation, we use a supercell approxi-

mation to study muonium in silicon crystals11,32). The norm-conserving pseudopotential

developed by Troullier and Martins is used for both atoms33). We set the cut off energies

25 Rydberg and 100 Rydberg, respectively, for the wavefunctions and charge density.

We use the local density approximation (LDA) and the generalized gradient approxi-

mation (GGA) for the exchange-correlation energy. The LDA calculation is based on

the method developed by Perdew and Wang34) and we use the Perdew-Burke-Ernzerhof
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formalism for the GGA calculations35).

The lattice parameter of the unit cell is set to be 5.431 Å which is deduced from

experimental data36−38). We vary the size of the supercell, and then we check the con-

vergence of the FCIC. We adopt the Γ k point sampling for supercell calculations. We

optimize the atomic geometries and in the optimized geometry, the atomic forces are less

than 10−3 Hartree/Bohr and the total energy is converged within 10−10 Hartree/cell.

By using the k points of the 4×4×4 mesh grid, we apply the tetrahedron method to

the calculations of density of states (DOS) and projected density of states (PDOS).

2.2 Fermi contact interaction

The hamiltonian for the hyperfine interaction is expressed as:

H = SeASI , (1)

where Se,SI and A are electron spin, nuclear spin and hyperfine tensor, respectively.

The hyperfine tensor consists of two parts, i.e., the isotropic part As and anisotropic

part Ap. In this work, we focus on the isotropic part,which is expressed as:

As =
2µ0

3
~γeγIρspin(0)1, (2)

where 1 is the 3×3 unit matrix. Equation (2) is expressed in the unit of MHz, where

µ0 (4π × 10−7 T2m3J−1) is the permeability of vacuum, ~ (1.05457168(18) × 10−34 J

s) is the reduced Plank constant, γe (1.76085974(15) × 1011 T−1 s−1) is the electron

gyromagnetic ratio and γI (133.81 MHz/T)39) is the gyromagnetic ratio of nucleus. The

ρspin(0) is the spin density of electron at the nuclear position. The isotropic part of

hyperfine tensor can be expressed as follows:

As = As


1 0 0

0 1 0

0 0 1

 , (3)

where As in Eq.(3) is the FCIC. For the free atom, the FCIC is expressed as follows:

Afree
s =

2µ0

3
~γeγI |ϕs(0)|2, (4)

where |ϕs(0)|2 is the electron spin density at the free muonium site, which originates

from the s orbital. Since the electron density is equal to 1/π, the value of Afree
s is equal

to 4472 MHz.

We follow the method by Van de Walle and Blöch to evaluate the FCIC by using the

psedudopotential calculations. To evaluate ρspin(0), we use the following approximation
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12,22):

ρspin(0) = ρ̃spin(R⃗)
|ϕs(0)|2

|ϕ̃s(0)|2
, (5)

where ρ̃spin(0) is a pseudo-spin density at the muonium site and |ϕ̃s(0)|2 is a pseudo-spin
density of free muonium. Then the FCIC is given by12,23):

As =
ρ̃spin(0)

|ϕ̃s(0)|2
Afree

s . (6)

To evaluate the reliability of the above approximation in the next section, we here

introduce two quantities12):

η̃ =
ρ̃spin(0)

|ϕ̃s(0)|2
, (7)

where η̃ is the ratio of pseudo-spin density at the muonium site in silicon and pseudo-

spin density of free muonium and

η =
ρspin(0)

|ϕs(0)|2
, (8)

where η is the ratio of spin density at the muonium site in silicon from experimental

data and spin density of free muonium.

3. Results and Discussion

We first determine the stable position of muonium and confirm that the BC site is

the most stable. Figure 1 shows the geometry of the present system. Table I tabulates

calculation results of the geometry of the muonium impurity at the BC site in silicon.

We vary the supercell size and find that the 4×4×4 supercell gives a well converged

result: The bond lengths are slightly varied within 0.01 Å when we use the supercell of

the 5×5×5 size. We confirm that the Si–Mu–Si bond is linear and the distance between

the nearest two silicon atoms is 3.220 Å. The distance between the nearest and the

second nearest host atoms is close to the bond length of the perfect crystal, i.e., the

difference is within 0.001 Å

We next calculate the FCIC (Fig. 2(a) and 2(b)). The constant reaches the conver-

gence by using the supercell of the 4×4×4 size: the supercell gives the value close to

that from the value from the 5×5×5 supercell calculation; the difference in the FCIC

between these two supercells is small (5.47 MHz in the case of the GGA calculation).

We find that the following function well fits to the above mentioned FCIC

YFCIC = A+B exp(−αN), (9)
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whereN is the the supercell parameter, which means that the supercell size isN×N×N .

We find that the converged values for the GGA and LDA are -50.7 MHz and -15.0 MHz,

respectively. The determined value of A, B, and α are tabulated in Table II.

The value calculated from the GGA calculation is found to be close to the ex-

perimental value18). The deviation of the above-mentioned converged value from the

experimental one is 16.6 MHz (25%). This deviation is, in general, smaller than those

in previous calculations (Table III). The deviations are 22.0 MHz-41.3 MHz (33%-61%).

One of the reasons for the discrepancy between the experimental and calculational re-

sults in the past studies is expected to be due to the fact that small sizes of supercells

were used.

We also evaluate the value of η̃ in Eq. (7) from calculational results and introduce

the following fitting expression which is similar to Eq. (9):

Yη̃ = A′ +B′ exp(−α′N). (10)

The determined parameters are tabulate in Table II. The converged value, A′ (-0.011),

is close to the value of η (-0.015) in Eq. (8) deduced from experimental data18) (Fig.

2). This result suggests the validity of the approximation mentioned in the previous

section which was introduced in Ref. 12 and Ref. 22.

We here calculate the DOS, PDOS (Fig. 3) and spin density (Fig. 4(a)). As the DOS

(Fig. 3(a)) shows, the spin density mainly originates from the spin polarized impurity

level which is located below the conduction band bottom. By analyzing PDOS (Figs.

3(b) and 3(c)), we find that the impurity level mainly consists of the s and p orbitals of

the nearest Si atoms and do not include the muonium s orbital component. As a result,

the spin density is mainly distributed at the nearest two Si sites and the spin density is

very small at the muonium site (Fig. 4(a)). This is the reason why the absolute value

of FCIC is very small in this system: The observed FCIC of the anomalous muonium is

-67.3 MHz18), whose magnitude is much smaller than that of the free muonium (4463

MHz)32).

Our calculation shows that the FCIC is negative, which is due to the fact that the

spin density at the muon site is negative. We here discuss the origin of this negative

spin density at the muon site. As was mentioned above, the impurity level does not

contribute to the spin density at the muon site. Therefore, the spin density at the muon

site is expected to originate from muon related states which are embeded in the valence

band. Actually, the PDOS of the muon s orbital shows two strong peaks around -4 eV
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and -8 eV (Fig. 3c). The minority spin DOS at these peaks are found to be larger than

those of the majority spin DOS. This difference causes the negative spin density at the

muonium site.

We here introduce a simplified model to explain the above results concerning the

negative spin density. In Fig. 5, we consider two wavefunctions. In the wavefunction in

Fig. 5(a), the nearest Si orbitals and muonium s orbital have the same phases (bonding)

and in the other wavefunction in Fig. 5(b), the two Si p orbitals have anti-phase,

therefore there is the node at the muonium site. Since the former wavefunction has a

relatively low energy, it is embeded in the valence band. Since the wavefunction has an

amplitude at the muonium site, it contributes to the small but finite value of the FCIC.

On the other hand, since the latter wavefunction has a relatively higher energy, it is

included in the impurity level (Fig. 4(b)) and does not contributes to the FCIC.

To clearly understand the novel FCIC, we here introduce the linear tri-hydrogen

molecule, which is considered to be a simplified model of the present system (Fig. 6).

First, we consider a tight binding model including a hopping parameter t between the

nearest atomic sites. Two electrons having majority and minority spins occupy the

lowest energy level, ϕ1 =
1
2
(χ1+

√
2χ2+χ3), where χ1 and χ3 are the atomic orbitals at

the two side sites and χ2 is the orbital at the middle site. This wavefunction corresponds

to that in Fig. 5 (a). A single majority spin electron occupies the second lowest level,

ϕ2 =
1√
2
(χ1 − χ3), which corresponds to that in Fig. 5(b). Therefore, the tight binding

approximation leads to the result that the spin density at the middle site is zero and

the spin density appears at the both side sites (Each side site has the magnetic moment

of 0.5 µB and the middle site has no magnetic moment) (see Fig. 6). We perform a

GGA calculation on the linear tri-hydrogen molecule by taking the equilibrium bond

length (lH−H=0.95 Å) and obtain results which are similar to those based on the tight

binding model; as Fig. 7 shows, low energy levels occupied by majority and minority

spin electrons have wavefunctions similar to ϕ1 and a high energy level occupied by a

single majority spin electron has a wavefunction similar to ϕ2. However, there is a slight

difference between the ϕ1 type wavefunctions occupied by majority spin and minority

spin electrons. As a result, the middle site has a small amount of the spin density which

is negative. This small value of the spin density cannot be explained based on the tight

binding model which leads to the zero value of the spin density, so we expect that the

nonzero value originates from the electron correlation effect.

We hence introduce the Hubbard model including the on-site Coulomb repulsion
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U as well as t42). We numerically solve the Hubbard model in the case of t
U

→ 0,

and find that the magnetic moments at the middle site and the side sites have the

opposite signs; The magnetic moment at the middle site and the edge sites are 1
3
µB and

-2
3
µB, respectively (see Fig. 6), which means that the spin density at the middle site is

negative. We perform GGA calculation by taking a large bond length(lH−H = 2.0 Å),

which corresponds to a small t
U
case in the Hubbard model (see Fig. 6). The calculated

spin density distribution is similar to that in the Hubbard model in the limit, t
U
→ 0.

As t
U
becomes large, the magnitude of the spin density at the middle site is expected

to decrease and get close to zero as is expected based on the tight binding model. This

tendency of the spin density expected based on the Hubbard model is reproduced by

our GGA calculation. We perform calculations for the bond lengths of 0.82 Å, 0.95 Å

and 2.00 Å and find that the magnitude of the spin density at the middle site becomes

small as the bond length decreases(Fig. 6). This tendency of the spin density is also

demonstrated in Fig. 8(a): We plot the spin densities by varying the bond lengths

around the equilibrium length (0.95 Å). The magnitue of the negative spin density

linearly decreases as the bond length becomes small. Since a shorter bond corresponds

to a larger t, the above mentioned results calculated based on the GGA are consistent

with those based on the Hubbard model. We conclude that the negative spin density

at the middle site is due to the electron correlation effect since it arises when U is not

zero.

The spin density distribution in muonium in silicon is expected to be similar to

that of the linear tri-hydrogen molecule where the two nearest Si atoms in the present

system are substituted by hydrogen atoms. To confirm this expectation, we perform

GGA calculations for various Si–Mu bond lengths; we displace the nearest two Si atoms

from the equilibrium positions. As a result, we find that the magnitude of the negative

FCIC becomes large as the Si–Mu bond length increases (Fig. 8(b)). This bond-length

dependence of the FCIC is similar to that in the case of the spin density at the middle

site in linear tri-hydrogen molecules. We expect that small magnitude of the FCIC

corresponds to the case of a large t
U
in the Hubbard model for the linear tri-hydrogen

molecule. It is noted, however, that the present Si–Mu bonds are resonant and thus

the length ( (1.619 Å ) is much longer than the conventional Si–Mu bond length; for

example, the silane (SiH4) forms the bonds whose lengths are 1.481 Å43) ). This rather

long bond length is expected to enhance the magnitude of the FCIC compared with the

cases of shorter bond lengths. Finally, by considering the analogy between the linear
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tri-hydrogen molecule and the present system, we attribute the negative FCIC to the

electron correlation effect.

4. Conclusion

We have performed first-principles calculations of anomalous muonium in silicon and

by using the GGA, we succeeded in reproducing the experimental FCIC: the constant

is negative and its magnitude is extremely small. We found that the large supercell is

necessary to get the converged result. We have clarified the origin of the very small

magnitude of the FCIC and discuss the origin of the negative value. By considering the

analogy between the linear tri-hydrogen molecule and the present system, we concluded

that the negative value is induced by the electron correlation effect.
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Table I. Calculated geometry of the muonium impurity at the bond-centered (BC) site. The

explanation of the geometrical parameters are given in Fig. 1.

Supercell size Number of θ1 (degree) θ2 (degree) l1 (Å) l2 (Å) l3 (Å)

the silicon atoms LDA GGA LDA GGA LDA GGA LDA GGA LDA GGA

2×2×2 64 99.9 99.9 180 180 1.619 1.619 3.238 3.237 2.312 2.313

3×3×3 216 99.7 99.8 180 180 1.624 1.619 3.247 3.239 2.320 2.321

4×4×4 512 99.8 99.8 180 180 1.614 1.614 3.228 3.227 2.322 2.322

5×5×5 1000 99.9 99.9 180 180 1.610 1.610 3.220 3.220 2.320 2.320
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Table II. Fitting parameters in Eq. (9) and Eq. (10)

Exchange Energy A(MHz) B(MHz) α A′ B′ α′

GGA -50.7 -155.5 0.54 -0.011 -0.034 0.543

LDA -15.0 -73.2 0.47 -0.002 -0.008 0.361

Table III. FCIC of muonium at the BC site. We show our calculational results for the 512, 1000

supercells and the converged value estimated by using Eq. (9).

References Method Exchange Number of FCIC

energy silicon atoms (MHz)

Present Pseudopotential GGA 512 -67.1

Present Pseudopotential GGA 1000 -61.6

Present Pseudopotential GGA Converged value -50.7

Porter et.al26) All electron GGA 16 -89.3

Porter et.al26) All electron LDA 16 -27.1

Luchsinger et.al23) Pseudopotential GGA 64 -81

Luchsinger et.al23) Pseudopotential LDA 64 -26

Van de Walle and Blöchl12) Pseudopotential LDA 32 -35

Experiment18) -67.3
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Fig. 1. (Color online) Geometries of pristine silicon (a) and muonium impurity at the BC site (b).

θ0 = 109.50 and l0=2.35 Å respectively. The silicon and muonium atoms are denoted by the light

brown sphere and dark sphere, respectively.
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Fig. 2. (Color online) (a) Calculated η̃ given in Eq.(7). The black solid line represents η in Eq. (8)

deduced from experimental data18). We present the fitting curves for the LDA and GGA

calculational results. (b) Calculated FCIC. The experimental value is deduced from Ref.18 and is

represented by the black solid line. The horizontal axis represents N which means that the supercell

size is N ×N ×N .

11/18



Jpn. J. Appl. Phys. REGULAR PAPER

Fig. 3. (Color online) DOS (a) and PDOS of the nearest silicon atoms (b) and of the muonium

(c). The vertical dashed lines indicate the Fermi level in the supercell calculations.
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Fig. 4. (Color online) (a) Spin density where the absolute value of the isosurfaces is 1.50×10−3

bohr−3. The positive and negative spin densities are represented by green and purple colors,

respectively. (b) Wavefunction of the impurity level. The red and blue colors represent positive and

negative values, respectively.

Si SiHH

(a)

Si Si

(b)

+
_ _

+

H

_ _
+ +

Fig. 5. (Color online) Schematic view of two muonium related wavefunctions. The red and the

blue colors represent the positive and negative values, respectively.
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Fig. 6. (Color online) Spin densities of the linear tri-hydrogen molecule (the green and the purple

colors represent positive and negative value of isosurfaces, respectively) for the cases of lH−H= 0.82

Å (the isosurface value is 9.11×10−2 spin/bohr−3), lH−H=0.95 Å (the isosurface value is 4.11×10−2

spin/bohr−3), and lH−H=2.0 Å (the isosurfacevalue is 4.11×10−2 spin/bohr−3). We also show the

magnetic moment at each site calculated based on the Hubbard model. Two limiting cases (t >> U

and t << U) are considered.
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Fig. 7. (Color online) Schematic diagram of energies of the linear tri-hydrogen molecule on the

lefthand side and wavefunctions on the righthand side where the red and blue colors represent

positive and negative amplitudes, respectively.
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Fig. 8. (Color online) (a) Spin density of the linear tri-hydrogen molecule. We carry out

calculations by changing the bond length from the equilibrium bond length (lH−H=0.95 Å) (b) FCIC

of anomalous muonium in silicon. The calculations are performed by changing the bond length from

the equilibrium one (lSi−Mu=1.61 Å).
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