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Abstract 

Gauge coupling unification is studied in the MSSM with non-universal soft supersymmetry breaking terms. If gaugino 
masses are sufficiently smaller than scalar soft masses and the scalar soft masses have also certain types of non-universality, 
the gauge coupling unification scale can be larger than 3 x 1016 GeV even within the MSSM contents. String unification may 
not need a large threshold correction or a large modulus value. We also discuss the relation to the string model building, 

Superstring theory is the presently known unique 
theory which unifies all interactions including the 
gravity. Various features of the superstring unification 
are studied by now. The unification of the gauge cou- 
pling constants is one of the expected features. Its uni- 
fication is different from the usual grand unification 
scenario and does not need a unification group like 
SU(5) or SO(10). The gauge coupling unification 
k3~ = k2~ = k l ~  takes place due to the fact that all 
gauge interactions are induced from the affine Kac- 
Moody algebras on the world sheet [ 1 ]. Its unification 
scale is estimated as Mstr ~ 0.5 x gstr x 1018 GeV 
[2]. Recent study based on the precise measurements 
at LEP shows that the gauge coupling constants of 
SU(3) × SU(2) x U(1) correctly meet at M x  ~- 
3 × 1016 GeV in the minimal supersymmetric stan- 
dard model (MSSM) [3]. The explanation of this 
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discrepancy between Mstr and M x  is an important 
issue for building up superstring inspired models. 

Some stringy explanations for the discrepancy are 
proposed by now. One of such possibilities is based 
on the existence of additional massless fields which 
become massive at an intermediate scale [4]. In gen- 
eral there are extra massless colored modes beyond the 
MSSM spectrum in the superstring models. However, 
the inclusion of these fields usually causes various 
phenomenological problems like proton decay. More- 
over there are too many degrees of freedom to make 
some predictions. Thus as the first trial it seems more 
promising to find another explanation which works 
within the MSSM spectrum at least for the unifica- 
tion of SU ( 3 ) and SU (2) factor groups. In superstring 
there are infinite number of massive modes around 
Mpl. These modes may bring the large threshold cor- 
rection to the gauge coupling constants at Mstr [ 5]. 
If  this is the case, the gauge coupling constants split 
at Mst~ and appear to coincide at Mx.  This possibility 
has been studied using the MSSM spectrum at the low 
energy reginon [6-10].  The models are stringently 
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constrained to realize this scenario. Every field of the 
MSSM must have a nontrivial modular weight and also 
an overall modulus is required to have a large vacuum 
expectation value. For example, the ZN (ZN x ZM) 
orbifold models require ReT ~ TR _> 7 (3) to ob- 
tain the large threshold corrections consistent with the 
measured values of  the coupling at Mz. 

As is well-known, the superstring theory generally 
has the stringy symmetry called the target space mod- 
ular invariance [ 11 ]. I f  we impose this invariance on 
the model, the potential minimum will be around the 
selfdual point TR ,~ v~.  In this case we cannot expect 
the large threshold correction. From this viewpoint, it 
is very interesting to study the possibility of pulling up 
the unification scale Mx to near Mst~ without the large 
threshold correction in the MSSM spectrum. In this 
letter we investigate this point noting non-universal 
soft supersymmetry breaking masses. 

First of  all we briefly review the string threshold 
correction [5] and the soft supersymmetry breaking 
masses [7,12,13]. In the following we concentrate 
ourselves on the case with an overall modulus. The 
generalization will be done in a straightforward way. 
As mentioned above, it is expected that superstring 
theory is invariant under the following target space 
modular transformation [ 14] : 

aT - ib 
T - - -~ icT+d;  a d - b c = l ,  a,b,c,  d E Z  

Ci ~ (icT + d)n'ci, 
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oo 
rl(T ) = e-~r/12 r I ( 1  - e-2~nr). (4) 

n=l 

A duality anomaly coefficient ffa is related to a coef- 
ficient b~ of a one-loop fl-function in the MSSM as 

bta = ba + 2 ~ Ta(Ci) ( 1 + ni). (5) 
i 

Here Ta(Ci) is a second order index of the field Ci for 
Ga. The gauge coupling unification has been examined 
based on these formulae and the universal soft super- 
symmetry breaking terms within the MSSM frame- 
work. It is also suggested that the unification at Mst~ is 
possible if each superfield in the MSSM has a certain 
modular weight and the value of TR is rather large. 
However, in the duality invariant theory the minimum 
of the potential is realized around the selfduai point 
TR ,-~ x/2. Actually, in the gaugino condensation sce- 
nario the selfdual point appears as the potential min- 
imum [ 16] 5. If  this is the case, there seems to be a 
contradiction. 

As is known from the study of the soft supersym- 
metry breaking terms, the fields with different mod- 
ular weights have a non-universal soft masses. In the 
orbifold models with zero cosmological constant the 
scalar masses mi and gaugino masses Ma at Mstr are 
represented as [ 7,12 ] 

(1) 
m 2 = m~/2 (1 + n/cos 2 0) (6) 

(2) , - -  / kaReS 
Ma = x/3m3/2 ~ ~ e f a  sin 0 

+ ( (bta --kat~GS( T + T')a2(T -~- T*) ~ cos 0) 
/ 

(7) 

where S is a dilaton field and m3/2 is a gravitino mass. 
fa is a gauge kinetic function of Ga. The nonholomor- 
phic Eisenstein function t~2 is defined as 

G2 (T + T*) = - 4 ~  ( Orl( T) /07") (rl( T) )-1 

- 2 ~ r / ( r  + r*).  

A goldstino angle 0 expresses the feature of the super- 
symmetry breaking. This fact suggests that we should 

5 Recently it is suggested that large TR can be possible if we 
consider the loop correction in the gaugino condensation mecha- 
nism [ 17 ]. 

where T is an overall modulus and Ci is a matter field. 
A modular weight ni is an integer. Imposing the target 
space modular invariance, the threshold correction to 
the gauge coupling constants is calculated in certain 
types of orbifold models. Due to such an effect the 
gauge coupling constants at Mstr are effectively shifted 

as [51 

1 ka 
g2 - g2tr 

1 (bta_katSGS)Iog[(Tq_T.)I~I(T)I4] 
167r 2 

(3) 

where ka is the Kac-Moody level of the gauge group 
Ga and tSGs is a gauge group independent constant. 
It cancels a part of  the duality anomaly in the same 
way as the Green-Schwarz mechanism of the U(1) 
gauge [ 15 ]. The Dedekind function ~/is expressed as 
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carefully treat the threshold correction due to the non- 
universal soft masses at the low energy region in the 
renormalization group study, especially if we consider 
the models with nontrivial modular weights. 

At the low energy region the soft supersymmetry 
breaking masses are determined by the following su- 
persymmetric one-loop renormalization group equa- 
tions 6 

din2 1 ( _ 4 Z C a ( i )  22  = Mag a dt 8~ 2 
a 

+ (Yukawa terms) ) ,  

dMa : ;  
-~ = 2 g2aMa, 

(8) 

(9) 

where Ca (i) is the quadratic Casimirs for each scalar 
labelled by i. If we neglect Yukawa coupling contri- 
butions 7, these equations can be easily solved analyt- 
ically and the results are 

2Ca( (1 m~(Q) = m2(Mstr)+ Z 
a 

_ 1 M -  ~M2(Mstr)' (10) 
(1 + b a ~ l n ~ - ~ ) 2 /  

Ma(Mstt) ( g 2(Msrr) ) 
Ma(O.) = g2(Ms~) 1 + ba ~e:~ ln-~  

( l l )  

If these masses widely split, their threshold corrections 
can affect the evolution of the gauge coupling con- 
stants and then the unification scale. Hereafter noting 
this point, we study the relation between the unifica- 
tion scale and the soft breaking masses. In the follow- 
ing study we consider the unification of SU(3) and 
SU(2) alone because the Kac-Moody level of U(1) 
is a free parameter in the superstring theory [ 18]. 

6 If some superpartners decouple at Ms, the one loop fl-function 
coefficient ba in the Eq. (9) happens to be modified below Ms. 
It is also different from ba in Eq. (12). This is because one-loop 
corrections to the gaugino mass include graphs which have both 
of the fermions and their superpaxtners simultaneously in internal 
lines. In the following analysis we take account of this point. 
7 Except for the contribution of top Yukawa coupling, this ap- 
proximation will be completely justified. We will return to this 
point later. 

We now classify the models by the mass patterns of 
the gauginos, squarks and sleptons at the low energy 
region. To simplify the analysis, we divide the fields of 
the MSSM into two groups named as A and B. Group 
A is a set of superpartners which decouple from the 
renormalization group equations at Ms(>>, Mz).  The 
remaining superpartners belong to Group B and con- 
tribute to them down to Mz. This procedure will be 
sufficient to see the qualitative feature of the gauge 
coupling unification. As we only consider the unifi- 
cation scale of SU(3) and SU(2), the relevant super- 
partners in the MSSM are squark doublets Q, squark 
singlets U, D, slepton doublets L 8, Higgsino H1, /-/2 
and gauginos A3, A2. The typical cases presented here 
are the following: 
Case I (ordinary MSSM): 

A = {Q, U, D, L, Hi, /-/2, A3, A2}, 
Case II: A = {a, U, D, L, Hi, H2}, B = (A3, ,i2}, 
Case lH: a = {Q, L, H1, H2}, B = {U, D, A3, a2}, 
CaselV: A = (L, H1, /-/2}, B = (Q, U, D, A3, A2}, 
Case V: A = (a,  U, D, H1, H2}, B = {L, A3, A2}, 
Case VI: A = {U, D, HI, H2}, B = {Q, L, A3, A2}, 
where the generation indices are abbreviated. For the 
Higgs scalars we confine ourselves to the situation in 
each case that one Higgs doublet decouples at Ms. 

Here we should note some points on the non- 
universality of soft scalar masses. At first to justify the 
above classification the gaugino masses should not be 
large so as not to erase the difference in the soft scalar 
masses. Otherwise, as seen from the renormalization 
group equations of the scalar masses, the contribution 
to the scalar mass from gauginos becomes dominant 
and erases the non-universality at the low energy re- 
gion. Secondly the non-universal soft squark masses 
are dangerous for the flavor changing neutral currents. 
To avoid it we need to choose the non-universality 
which induces no dangerous mass difference between 
the generations. Finally Ms cannot be so large from 
the naturalness argument. It should be at most a few 
TeV. 

Now we study the unification scale Mx of SU(3) 
and SU(2) gauge couplings beginning from the low 
energy region. They are related by the renormalization 
group equation as 

8 Later we shall discuss the U(1) gauge coupling where the 
slepton singlets will be treated in the similar way. 
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ba In Mx 
a ;  1 (Mx)  = a ;  1 (Ms)  - 2---~ M----s' 

ba MZ 
a a  I ( M z )  = ~ ; 1  (Ms)  - ~ In M'-'-s-" (12) 

Using these formulae, we found that the unification 
scale Mx is expressed as a function of  Ms, 

Mz (b3 --/r2)/(b3--b2) 

27r 

(13) 

Our models are completely equivalent to the MSSM 
from Mx to Ms so that b3 = - 3  and b2 = 1. In the 
region below Ms ba is different in each case. The 
values o f  (b3, b2) are the following: ( - 7 , - 1 9 / 6 )  in 
Case I, ( - 5 , - 1 1 / 6 )  in Case II, ( - 4 , - 1 1 / 6 )  in 
Case III, ( - 3 , - 1 / 3 )  in Case IV, ( - 5 , - 4 / 3 )  in 
Case V, ( - 4 ,  1/6)  in Case VI. As easily seen from 
Eq. (13) ,  the smaller value of  (b3 - b2)/(b3 - b2) is 
preferable for our scenario. The unification scale Mx 
can be estimated for the various values of  Ms if we use 

Mz = 91.173 GeV, ~e - l ( M z )  = 127.9, 

sin2Ow(Mz) =0.2328,  ot3(Mz) =0 .118 ,  (14) 

as the input data [ 19]. Fig. 1 shows the change of  the 
unification scale Mx against the decoupling scale Ms 
of  the superpartners in Group A for each case. It is re- 
markable that Mx becomes larger accompanied with 
the increase o f  Ms in Case H ~ V. This feature is very 
different from Case I in which Mx ,-~ 3 x 1016 GeV 
is almost stable against Ms. It should be also noted 
that the unification scale Mx moves upward if the 
squark doublet decouples at Ms. The non-universal 
soft masses tend to give a higher unification scale than 
the case of  the universal soft masses. If  this qualitative 
tendency is the case, Mx can reach Mstr even if the 
threshold correction is not so large. From the quan- 
titative point of  view we should note that there is an 
ambiguity of  order 100.3 GeV also in the present esti- 
mation of  Mx as usual. 

Using Eqs. (3) and (14),  the necessary threshold 
correction is estimated as 

( ~X ) (b3-b2)/(b~-b~) 
Tffy--~fzlr/(T) [2 = st, , (15) 
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x=logloMS 
Fig. 1. Unification scale Mx of the gauge couplings of SU(3) 
and SU(2) corresponding to the decoupling scale Ms of some 
superpartners of MSSM. Both scales are defined as Mx = 10 y GeV 
and Ms = 10 x GeV. The explanation of each case is given in the 
text. 

where we take the Kac-Moody level as k3 = k2 = 1. 
As an example, let us adopt Case III and estimate the 
threshold correction required to realize the unification 
at Mstr. In Ref. [ 10] it is shown that the MSSM derived 
from the Zlv orbifold models can have b~ - b~ = 3 or 
4 and for Z6-II the maximum value of  b~ - b~ is equal 
to 6. Putting Ms = 1 TeV and 3 TeV, we have Mx = 
1017"° GeV and 10172 GeV, respectively (see Fig. 1). 

I / In the case where Mx = 10170 GeV and b 3 - b 2 = 3, 4 
and 6, we obtain TR = 5.5, 4.5 and 3.5, respectively, 
using (16) and Mstr = 3.7 × 1017 GeV. These values 
of  TR are fairly smaller than the ones estimated in 
the universal soft breaking case where the unification 
scale is Mx = 1016'5 GeV. For example, in the case of  
Mx = 1016"5 GeV the difference b~ - b~ = 3 leads to 
TR = 9. Further in the case where Mx = 1017"2 GeV 
and b~ - b~ = 3 and 4, we can have TR = 4 and 3.5. 
The ZN × ZM orbifold models can have larger values 
of  b~ - b~ than the ZN orbifold models [9] and then 
derive the smaller values of  TR, e.g. TR < 2 in the case 
of  Mx = 1017 GeV. 

Next we shall consider in what type of  superstring 
models the favorable soft breaking masses presented 
in the previous part are realized. From the recent study 
of  the soft supersymmetry breaking terms, we know 
their general features at Mx [ 12 ]. On the other hand, 
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Table 1 
The change of the soft breaking mass from the low energy region (M = Ms or Mz) to Mx and the ratio of the unification coupling ax  
and U(1) coupling a l  - ~ /41 r  at Mx 

MS = 1 TeV Ms = V/~  TeV 

Case 1 Case H Case III Case IV Case V Case VI Case 1 Case II Case III Case IV Case V Case VI 

Am2/M 2 ~  5.48 4.98 5.31 7.24 4.86 6.79 3.69 4.31 4.68 7.35 4.17 6.84 

AmL/M2o~, 5.10 4.60 6.74 6.81 4.47 4.64 3.32 3.96 6.97 6.92 3.80 3.98 
Am2/M 2 0.48 0.47 0.50 0.50 0.55 0.50 0.46 0.45 0.49 0.49 0.52 0.48 

M3/Mu 2.34 3.56 3.25 2.93 3.51 3.18 2.16 3.90 3.43 2.95 3.82 3.31 
M2/Mu 0.84 0.91 0.90 0.85 0.89 0.83 0.85 0.95 0.94 0.86 0.92 0.84 
M!/Mu 0.43 0.42 0.40 0.40 0.42 0.43 0.44 0.43 0.40 0.40 0.43 0.44 
etX/al 1.57 1.57 1.52 1.57 1.60 1.65 1.55 1.55 1.48 1.55 1.60 1.67 

For an example we take Ms = 1 TeV and Ms = x/T0 TeV. Am/2 is defined as Am/2 = m~(M) - m~(Mx) and Ma = Ma(Mz). The 
listed values are normalized by the gaugino mass Mu at Mstr. In the MSSM with M = 100 GeV, Am2Q/M~ = 6.87, Amu/Mu2 2 = 6.45, 

Am2/M 2 = 0.53, M3/Mu = 2.86, M2/Mu = 0.82, MI/Mu = 0.40 and ctx/Otl = 1.61. 

we can transmute the soft masses at the low energy 
region into the ones at Mx using Eqs. (10) and (11) 
in our present cases. Comparing them we can know 
what kinds of minimal superstring standard models do 
not need the large threshold correction for the string 
unification. We show the change of the soft masses 
from the low energy region to Mx against the gaugino 
mass Mtj at Mx for each case in Table 1. As men- 
tioned in the previous part the large gaugino mass will 
dilute the non-universality in the soft scalar masses by 
the renormalization group effect. This imposes a cer- 
tain condition on the upper bound of gaugino mass 
to make our scheme work. We can find from Table 1 
that the dilution effects of the non-universality will be 
escapable if m2i(Mx)/Mu > 0.1 is satisfied. 

It is very interesting to know in what type of su- 
persymmetry breaking this situation is generally real- 
ized. As discussed in Ref. [ 12] such soft terms can be 
caused in the moduli dominated supersymmetry break- 
ing (large cos 20).  However, our scenario needs vari- 
ous modular weights ni ~ --2 for the non-universality 
in Case III ~ VI. The goldstino angle cos20 can- 
not be so large to guarantee m~(Mx) > 0 because of 
its modular weight dependence as seen from Eq. (6). 
In such cases generally the dilaton contribution to the 
soft breaking masses is dominated and then m2i/Mu < 
1 for the suitable values of  cos 0 and TR at Mx. The 
original non-universality in the soft scalar masses may 
be diluted away. A more careful study for these cases 
will be necessary. The most promising case where 

rni(Mx)/Mw > 1 is Case II. Such soft masses can 
be easily realized in the orbifold model in which the 
modular weights of all massless modes are ni = --1 

and also the gaugino condensation model as suggested 
in Ref. [20]. In such models it is sufficient for our 
scenario to take Ms = 1 ,,~ 4 TeV. 

Some comments are in order. Firstly we have in- 
troduced the soft scalar masses which are degener- 
ate between the different generations in the same type 
flavors. The non-universality presented here will not 
yield the dangerous FCNC. Secondly we neglected the 
Yukawa couplings in the renormalization group equa- 
tions to estimate the scalar masses. Except for the case 
of the top sector this treatment will be justified. The 
top Yukawa reduces the stop mass at the low energy 
region. The stop mass at Mx must be large enough to 
keep the degeneracy between the same flavor at Mz. 
Anyway its effect will not affect our results crucially. 
Thirdly we do not refer to the unification of U(1) .  
However, its occurence can be expected by choosing a 
suitable value of the Kac-Moody level kl as suggested 
in Ref. [ 18,9,10]. The level kl can be estimated from 
the last row in the Table 1. 

In summary, we investigated the gauge coupling 
unification in MSSM with the non-universal soft su- 
persymmetry breaking masses, We found that in such 
cases the unification scale could be pulled up toward 
the string unification scale without the large thresh- 
old correction. This seems to be favorable to the 
superstring unification in the duality invariant string 
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models .  The  phys ics  o f  the non-universal  soft super- 
symmet ry  breaking  wil l  deserve  further invest igat ion 

for  the str ing unificat ion.  
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