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Abstract

We study soft scalar masses in comparison with gaugino masses in 4-dimensional string models. In general non-universal
soft masses are derived in orbifold models. We give conditions on modular weights which lead to a large non-degeneracy in
the soft scalar mass spectrum. This non-umversahty is applied to the umﬁcanon of gauge couplmg constants in the minimal

strmg model.

1. Introduction

Supersynnnetfic models are’\"ery interesting as a
unified theory. Local supersymmetry (SUSY) break-

ing induces soft SUSY breaking terms; such as gaug-

ino masses, scalar masses and trilinear (A-terras) and
‘bilinear ( B-terms) couplings of scalar fields in global
' SUSY models [1]. The values of these soft terms de-
termine the phenomenologxcal properties of the mod-
els.

Superstring theories are the only known candidates

for the unified theory when we take gravity into ac-
count. By now starting from 4-dim string models like
" Calabi-Yau models [2], orbifold models [3-6] and
so on, we know a Kahler potential and a gauge ki-
netic function of supergravity as their effective theo-

- ries. In recent papers [7-10] the soft SUSY break-
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‘ ing terms derived from superstring theories are stud-
* jed assuming that nonvanishing F-terms of the dila-

ton ficld § and moduli fields cause the SUSY break-

“ing: In these works the soft scalar masses are found

to be non-universal at the string scale My = 3.73 x
10""GeV [111, although one usually assumes the uni-

 versality ‘of all the soft terms in the study of SUSY
‘models. This non-universality affects the phenomeno-

logical features [12,13]. For example, in Ref. [12]
it is shown that the unification scale of SU(3) and

- SU(2) gauge couplings in the minimal supersymmet-

ric standard model (MSSM) is sensitive to a strong
non-degeneracy among sofi scalar masses. In general
the non-universality raices the unification scale. ThlS
seems desirable for supersiring unification.

.However, the orders of magnitude of soft scalar
masses. derived in Refs. {8,10] do not seem to be so
different from each other. In Ref. [10] it is assumed

* that only the dilation field S and an overall modu-

lus field T contribute to the SUSY breaking. The un-
known direction of the goldstino field is parametrized

in the 5-T space by the go]dstmo angle 8. In the gen-

eral orbnfold models there are three mdependent mod- ;
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uli fields. In this paper we study the general models

in whlch three moduli ﬁelds T, (i =1,2,3) as well .

as S can contribute to the SUSY breaking. We discuss
 the realization of the hierarchical soft scalar masses
whose orders of magnitudes are different from one an-
other. Such non-universal soft scalar masses are also
applied to the study of gauge coupling unification in
a minimal string model [7,14- 16] Here the minimal
string model means a string vacuum which has the
~ same massless spectrum as the MSSM.

‘This paper is organized as follows. In Section 2
we review the soft SUSY breaking terms obtained
in Ref. [9] and also their parametrization following
Ref. [10]. In Section 3 we reformulate the soft terms
by taking account of the three moduli fields. Using
them, it-is shown that we can obtain scalar masses
whose orders of magnitudes are different from one an-
other. Conditions to yield such hierarchical soft masses
are also given. In Section 4 such a non-universality is
applied to the minimal string unification. Using thresh-
old corrections of string massive modes [17,18], we
_ investigate whether orbifold models can realize the ob-

served low energy values of gauge couplings. Secnon _

ﬁve is devoted to concluswns and discussions.

2. Soft massos ‘

In this section, we review the derivation of soft

SUSY breaking terms in the superstring models fol-
lowing Ref. [9]. Here we assume that the SUSY

breaking occurs only due to the non-vanishing F-terms
of the dilaton S field and the moduli fields T# (i = 1-
3), where T* corresponds to the ith one among the
three moduli of the 6-dim orbifolds [3-6]. We repre-
sent § and T* by ®™ (m = 0-3), where ®° is § and
®! =T, etc.. N = 1 supergravity theories are charac-
terized by the Kéhler potential K, the superpotential
W and the gauge kinetic function f,. The Kihler po-
tential and the superpotential are expressed as follows,

K= xR(0, ) + K(®,8),,0'0
+(H(®,8)40'0" +he) +:-,

%ﬁ(q’)tJQlQl + S

(2.1a)
W=W(®)+ (2.1b)
‘where k2 = 8w/M
- ellipses stand for terms of higher orders in Q. Using

2 and Q' are chiral superfields. The

these, we can write down the scalar potennal v as .
follows,

V=206, (G~ BG, - 32 + (D-iem), ‘
| @2)

where G = K + k% log k| W/|? and the indices a and
B denote Q! as well as ®™. Hereafter we does not -
consider the D-term contribution to V. The gravntmd
mass my/; is written as ;

myp = kKW @3y

In (2.2) we take the flat limit My — oo preserving
my2 fixed and then the soft scalar masses my; for
unnormalized fields Q; are denved as ‘
m%i‘ = ms/zKu

— F"F [ 3ndn K5 — (9K ;) K¥E(8mK)p) ]

+ K®VoK, 5, o (24)

where the F™ are F-terms of @™, the d,, denote 3/ D™
and Vp is the cosmologlcal constart cxpressed as

%=‘x—%(F'r‘F"a,,.a,-,k—3m3/2). 2

Hereafter the gravitational coupling K is set to one.
The canonically normalized gaugino masses M, are
derived through the followmg equatlon

M, = E(Refa

where the Subscript a represents a gauge group.
The orbifold models give the Kahler potential at the
one-loop level as [18]

YU e o (2.6)

K= -—logY Zlog(T‘ +T

+H(Tt+T1)n,QlQl
Y=S+§-Z%ilog3(r"+f"), L@
R L C ’

where 85 are constanis introduced through the -
Green-Schwarz mechanism: to cancel duality anoma-
lies [19,20,18] and n, are modular wexghts corre-
sponding to @' [21,7]. The untwisted sector asso-
ciated with the jth plane has n, -8‘ The twnsted
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- sector wnh a‘twist o' (0 < vf < 1, Z U =1) has
r.,‘ =y' 1 forv' # 0,and n} = 0 for v = 0. Here the
notatmn in Refs {4.5] is used for the: orbifolds and
- their twists-except some permutatlon of elements v’
The addition of oscillator modes changes the modular
- weights by one. We have also the following gauge
~ kinetic function,

 fa=kaS = 1o D (B — kadiss) logn(T)*,
,. |
(2.8)

where the second term is a threshold correction due
to string massive modes [ 17,18]. Here b’ is a duality
annomaly coefficient and 7(T) is a Dedekind function.
The level of each gauge group is denoted by k,. In
general the 4-dim string models lead to &k, = 1 for
non-abelian gauge groups.

In Ref. [ 10] ihe investigation is done fot the case of
the overall modulus T =T This case is characterized

byn=3%,n b, =Y bianddgs =3, 5Gs Then the
cosmologu.al constant is glven by
V= ~3m§/2 + I ~—§9§——FT[2‘
TRV 8T +T)
3 OGS\ gria
~—(1 - F'l7, (2.9
g ,24772}()' "o (29)

where FT is the F-term corresponding to the overall
modulus 7. If ¥ = 0, one can parametrize the un-
known F-terms by the goldstino angle 6 as follows,

1 5 \
—(FO— =88 __pTy = 2sind, (2.
7 smaan ) V3msjpsing,  (2.10a)
V30 =¢
‘ ‘—“—;—;—T—alﬂ =V3my cos 8, (2.10b)

‘where a = 8gs/247°Y. To get the physical scalar mass
from (2.3), we need to normalize the fields @ canon-
ically. Here we assume the kinetic term to be diagonal.
Then using egs. (2.4) and (2.6)~(2. 8), the masses

of the scalar superpartners and the gauginos are ex-

‘ pressed as

:' 2= 2 g
m ,m3/2(1+1‘_acos :0), (2.11a)

= R\/; m3 3 (ka ReSsmB
1 kyd
+cos 0z ”’—“z& S (T + 76T, D)),
(2.11b)

where Gy (T, T) is the Eisenstein function? :

A _19n(T). 27
Go(T\T) = —4mp(T) 't = .
WL T) an(T) T T T37
The states with no oscillator modes have # = —1 or

—2. The different modular weights lead to the non-
universal soft masses in (2.11a). However, most of
these masses are of O(mj3/y). Even if the orders of
magnitude of scalar masses could differ from one an-
other at M, loop effects due to the large gaugino mass
might dilute the difference at Mz and result in the

_same order scalar masses O(m3 ). In fact the gaugino

masses are of order mj3/, unless sin8 = 0. Therefore
in order to produce a fairly strong non-degeneracy in
the soft scalar masses, we are interested in the case
withsin @ = 0. Unfortunately, in this case, matter fields

~with n < -2 are not allowed, because these modu-

lar weights lead to imaginary masses in (2.11a). If

~.we restrict ourselves to the states with no oscillator
‘modes, the soft scalar masses are complétely univer-
sal. They are of order of /|a|ms 2, where a should be

negative to make this mass real.: Then the soft scalar

‘masses are of the same order in the overall modulus

case. This might become a very severe constraint on
SUSY models inspired by superstring theories.

The n = 0 states with osciliator modes seem to yield
a non-universality in the mass spectrum of the scalar -

fields. However the presence of sixch states is restricted

in some cases,; as shown in Refs. [15,16]. Moreover
Yukawa couplings of such states are ofter forbidden
as renormalizable couplings. Therefore we study an-
other possibility to cause a strongly non-degenerate
soft scalar spectrum in the following section.

3. Soft masses in case of three moduli

We study a more general case by taking account

- of three independent moduli fields 7* instead of the

" 5 Several kinds of modular functions are shown in Ref.;«[22] o



T. Kobayashi et al. / Physics Letters B 348 (1995} 402410 . : . 405

overall modulus. In this case the cosmological constant
Vo is written as

3

1 5 _
Vo= =3m3 4+ —=|F* =Y ——08 ___pi2
b==3m + 3l ;8772(T'+T') |

3
Fii2 ‘
, 3.1
21: (T' + T’)2 Fi

- where a; = 665/87r2Y and’ which is estimated as
la} < 1. Here we parametrize the unknown F-terms
as follows, :

1 8L .
CS(FO-NT —85 __Fi) = 3my,sind,
7P =2 gy ) = VAmnasin

(3.2a)
| -i———-”J:T“ = V3m3 3 cos 00, (3.2b)

where @ =sin8’sin8”, @, =sin@’ cos§" and O3 =
cos @'. Unless Vp = 0,in (3.2) m3  should be replaced
by Cmyj,, where C2 = 1 + Vo/’%m3 ,- In Ref: [23}

it is indicated that Vj should be negatlve when taking

account of loop effects of the observable sector: If V
is negative, C is less than-one. We can then write down
the canonically normalized soft masses as

m —m3/2C2(1+cos 02 @2)
=l B )
+ 2m§/,,(c2 -1, (3 3a)
V3
~ k,
M, = Re faCmg,/g[ ReSsmB
’ kaGS T
+cosBZ -4 4G p(T, 7)0;], (3.3b)

where D,~(T",T") = (‘Ti + THYGo(T!, T /320, Tt is
remarkable that the summation in'(3.3b) is taken on
the moduli ‘contributing to the threshold corrections.
We are interested in the case with m > M,, where
the non-universality of the soft scalar masses is not
diluted by the'loop effects of gauginos. To investi-
gate such cases, it is necessary to see what modular
weights guarantee real soft scalar:masses when sin 8 =

0 and a; < 0. We show these conditions for Zy and

ZN‘ x Zy - orbifold models in Tables 1-and 2, respec-

-2100)/12 - Zpell

Table 1 . :
Conditions for real soft scalar masses in Zy orbifolds. The first:
column shows the modular weights obtained for the Zy orbxfold,‘ :
models of the second column. An asterisk (x) in the’ qecond
column represents afl the Zy orbifold models cxcept Zs and Zy.
Modular weights forbidden under any.condition are indicated by~
a dash ( -) in the third column

Modular Weight ~ Orbifold Conditicn -
(-1,0,0) sin® ¢’ sin? 9" < 1/3
(0,-1,0) sin?#’ cos® 0" < 1/3
(0,0.-1) cos?0’ < 1/3
-(222)/3 Z, Ze-1 -
-(332)/4. Z4, Zg-1 -
~(2.2,0)/4 * sin ¢’ <2/3
~(5,5,2)/6 Ze-LZp-1 - sin@' =0
~(5,3.4)/6 Zs-11 =
-(4,02)/6 Ze-11 sin @ <1/2
~(2,04)/6 Zg-11 sin? 0/(2 — sin® @) >'1
~(6.5.3)/7 7z -
~(1,3.6)/8 Zg-1 -
~(1.54)/8 Zg-1l - -
-(6,2,0)/8 ZgILZp-l  sin® @' (1+4 2sin?0") < 4/3

C—(2,5,0)/8 Zg-MZpp-1  sin® /(3 - 2sin?6”) < 4/3
~(11.58)/12 Zpl - ‘
-(8,8,8)/12, " Zpl -

C=(1L,76)/12 [Zyp-ll AR

—(102,0)/12 - ZpeH sin? 9’ (1 + 4sin® 9”) <2

o =(9,9,6)/12 Zip-Ii - o

- —(84,0)/12 Zip-ll " Ein? e (I+sin26”) <1

-(4,8,0)/12 Zix-11 sin? @' (2— 5in29") < 1

sin? 9'(5 — 4sin? 9"y <2

tively. The first columin of these tables shows the mod-
ular weights of the orbifold model that contains no os-
cillator modes. Here C = 1 is assumed. In these tables
only the modular weights corresponding to the matter
sector [24,4,6] are shown and the modular weights
for the antimatter sector are omitted. The underlining
represent any permutation of the elements. The first
three rows in Table 1 correspond to the untwisted sec-; ;
tor, which is omitted in Table 2, and the others cor-
respond to the twisted sector. For the twisted sector
all the 'modular welghts with 3, n; = —1 are allowed -
under certain conditions as shown in the tables. Iti is -
remarkable that the modular weight —(5,5,2) /6 is'

. also allowed under certain conditions, although inthe

case of the overall modulus all the modular welghts
with Y ".n; = =2 are forbidden. In the Z; and Z; orb-
ifold models, no twisted matter ﬁelds are allowed. The -
Z, and Zg-1 orbifolds have only the modular weight
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*Table 2

. Conditions fdr real soﬁ scalar masses in Zy X Zy orbifolds. In the second column *1 represents Zy X 2y, Zg X Z4, 7y X 24,23 X Z6, Za X -
| Z{, Zg x Zg and *2 revresents Za X Za, Zg X Zs, Z3 X Zs. Modular weights forbidden under any condition are indicated by a dash (-) in

the third column

Modular Weight Orbifold Condition

~(0,1,1)/2 C 1,7 X Za sin® &’ sin " > 1/3
—(1,0,1)/2 : *1 sin® 9’ cos? 6" > 1/3
-(1,1,0)/2 1 sin® ¢/ <2/3

~(0,2,1)/3 *2, Za X Zg cos* 6" <'1/2 ,
=(0,1,2)/3 ¥2,Zy X Zg | sin? ¢'(1 + sin? 9”) >1
—(2,0,1)/3 *2 sin28” < 1/2

—(2,2,2)/3 ¥2,7, X Z} -

—(2,1,0)/3 . *2 sin @' (sin0” +1) < 1
—(1,0,2)/3 *2 sin? @' (sin? 9" = 2) < 1
—(1,2,0)/3 *2 sin? 0'(2 — sin?9") < 1
~(0,3,1)/4 ZyX 24,24 X Zy sin26'(2 — sin?9") < 1/3
~(0,1,3)/4 22 X 24,24 X Z4 sin? 8'(2 + sin®@’) < 5/3
=(2,3,3)/4 Zy X Zy, 2y X Z4 -

~(5,5,2)/6 Zy X' 2{,Z6 X Zg sin? 0 = 0

—(2,5,5)/6 Zy X Z{,Z3 X Z6, Zs X Zg sin? 9'sin? 6" = 1
—(5,2,5)/6 ZyX Z1,Z6 X Zg sin @’ cos2 9 = 1
. —(0,5,1)/6 Zy X 26,23 X Zs, Ze X Zg sin? 8'(4 — Ssin?6") < 1
-(0,1,5)/6 Zy X Zg, Za X 26, Ze X Zg sin? 8'(4 + sin?0"”) > 3
—(315_'5")/6 Zy X Z6, 26 X Z -

—(3,0,1) /4 Za X Zy sin? 6’ (3sin2 8" — 1) < 1/3
~(3,3,2)/4 Z: X Zs - 5
—(3,1,0)/4 Zy X Zy sin? 8(1 4 3sin29") < 4/3
-(1,0,3)/4 Zix 7y sin? /(3 - 5in? ") >'5/3
=(1,3,0)/4 ZyX.Z4 sin?.6'(3 -- 25in%8") < 4/3
-(4,5,3)/6 Z3 X Z3,Z6 X Zg - s
=(5,1,0)/6 Zs X Zg Sinz‘ﬂ"(l+4sin20”)'_<_2
—(1,0,5)/6 Z6 X Zg sin? 6/(5—sin?6") >3
—(1,5,0)/6 Zs x Zg sin® (5.~ 4sin?9"”) <2

—(1,1,0) /2 in the twisted sector as the allowed one.
Further, all considerable modular weights in each orb-
ifold are not allowed simultaneously. For example,
modular weights (0,0, ~1) and ~(5,5,2) /6 cannot

guarantee the scalar masses to be real at the same time. -

In tue Zy orbifold models, however, all the modular
weights with n = ~1 are allowed simultaneous]y‘un—
der the conditions as sin® @’ = 2/3 and sin? 6" = 1/2.
We can also easily obtain the conditions in the case
of C + 1. For example, the modular weight (-1,0,0)
can derive the real scalar masses under the followmg
condmon ‘
2
‘ 3C2
‘ Thus the modular welght ( 1, 0 0) is forbldden in
the case of C2 < 2/3 (b < ‘-m3/2). If Vp is negative,

~ sin2 ¢ sin2 0"<1- (3. 4)

~ have a; ~ 5.0 x 8i;5 x 1073 if we use a
. unified gauge coupling. As an example, we consider
‘the scalar fields with modular weights —1,0,0),

“and thus C < 1, the modular Weight —{(5,5,2)/6

is not allowed. In contrast with the C = 1 case all
the modular weights with n = —1 cannot satisfy the
conditions for the real scalar masses simultaneously.

Here we study in more detail the soft scalar masses
in the case of sinf = 0 and C = 1. Using (3.3a) we

 find that the fepréSentatiVe orders of magnitude of the

scalar ‘masses are O(msy;) and O(N/Ia, msz). 'We
& 25 as the

(0,~1,0) and —(1,1,0)/2. Most of the orbifold
models have these modular weights. We take the an-
gles as sin@ = 0, sin’ @' =1/3 and cos? §” = 1. Then
the scalar fields withr; = —(1,1,0) /2 and ( 1,0,0)
have the soft masses m = m3 /2/2 and m3 e respec-
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uvely On the other hand, the mass correspondmg to

;=1(0,—1,0) is obtained as 17>
can derive the ditierent o-lers of the non—degeneracy
among the soft scalar mwasses by taking account of the
three moduli fields. In the case with other values of
- C we can also obtain the large non-universality under
certain angles @ and 6" for other combinations of

the modular weights. The largest mass is of order of

" m3/. Such a situation is impossible to be realized in
the case of the overall modulus with sin @ =0.

It is notable that the mass of order of m3; cannot
be obtained when some combinations of the modular
weights constrain the angles ¢’ and 8" severely. For
example, we take the case where the matter fields with
n; = (0,0, —1) are included in addition to the above
combination of modular weights. This case is oniy al-
lowed when the conditions sin? ¢’ = 2/3 and sin® 6 =
1/2 are satisfied. as mentioned before. These angles
result in scalar masses of order of \/la_, [m3/2 at most.
Similarly the scalar mass of n; = —(5,5,2) /6 is less
than O( \/TZ lm3 /2) because matter fields are allowed
at sing’ = 0. It is difficult to derive the soft scalar
masses of order of m;/, when the angles #’ and 8" are

constrained severely

Next we estimate the gauémo masses. They should

be small enough not to ditate the non-degeneracy. - .

among the soft scalar masses by their loop ef-
fects. In (3.3b) Dy(T%,T%) takes following values:
D{(T', T
6.6 x 107! for T* = 1:2, 5.0, 10 and 100, respec-
tively. In (3.3b) the first term proporuonal to. sin@
contributes- mainly to the gaugino masses in the case

of sin@® > 0(10~3) and T ~ O(1). This is because -

ky =1 and ay' ~ 25 lead to k,ReS ~ Re f, ~ 2.
The condition sin@ < O(1/10) should be satisfied

in order to avoid the above mentioned dilution due

to the gaugino loop effects. A large value of T* lik.
T; > 0(100) seems undesirable to preserve non-
universality among the soft scalar masses at M.

4. Minimal string uniﬁmtion

“In Ref. [12] it is shown that the unification scale

My of the SU(2) and SU(3) gauge coupling con- -
stants is sensitive to 'the non-universality of the soft -

masses in the MSSM. In that paper My is estlmated
using the measured gauge couplmg constants at M z.

lazim3 ,- Thus we -

. the string theories can predict not only k;

=1.5x107,27x107%, 6.0 x 10"2and

The unification scale M. x is raising:in most cases s of -
the non-universal scalar masses. Especially:the highest -
My is realized in the case where all the doublet scalar

~ fields under SU(2) are heavier than the singlet ones.
‘This type of non-universality corresponds to Case IIT-

in Ref. [12]. In this section we apply the result found -
in the previous section to the minimal string unifica: -
tion. Here we concentrate on the case where all the .
doublet scalar fields are heavier than the singlet ones. |
Note that the gauge coupling of U(1)y a; is not al- -
ways unified, at M, with the other couplings, because -

=5/3 but:
also other values. ‘ i

- The running gauge coupling constants a ! of the

MSSM at g are expressed as follows [17,18],

2

b, M
Ak, log u>

o' (u) =az' +
N b kafts o "
> S gl (T T (T, (4.1)

where e is the universal string coupling at M, and
b, is the one-loop B-fuction coefficient of the MSSM,

ie, b3y ==3,by=1and b = 11. The last term in

(4.1) represents the threshold correction due to the
string 'massive modes and the duality anomaly coeffi-
cient b’ is written as ,

b"~—C(C)+ZT(R i+, (4.2).

‘where C(G,) is a quadratic Casimir of the ad-

joint . representation ‘and' T'( R,) ‘is the Dynkin:
index of the R, representation, ie., T(R;) =
C(R, )dlm(Ra /dlm(Ga) Using Eq. (4.1) we can
derive the relation between My and Mg as [7] :

8log %ﬁ = Z(b - b") log[(T" +T%)|n(TH*].
| (43) S

It is remarkable that log[ (7*+T") [p(T")|*] is negative
for any value of T, The unification scale My is always -
less than My under the condition that the soft masses
are less than 10 TeV. even in the non-umversal case f,
[12]. e
The Z3 and Z; orbifold models do not havé the 7- -
dependent threshold corrections and: thus thesc orb- .
ifolds cannot yield the minimal string models consis-
tent with observanon For the o;he: Zy orbifold mod-
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els except Zs-I1, only the thlrd modulus T? contributes-

.. to the threshold correction. In these. orbifold models,
the duality anomaly coefficients should satisfy b
b’3 in order to result in Mx < Mg. First of all we con-
sider the case where the matier fields have the mod-

~ular weights —(1,1,0) /2, (—=1,0,0) and (0, -1,0),

.as discussed in the previous section. 'the third ele-

. ment of these modular weights is zero and we obtain

| b~ b} = =2, In this case we cannot realize the mea-

sured gauge couplings at M.

In order to avoid such a situation, we need the modu-

. lar weights with a non-vanishing third element, which

are (0,0, —1) and —(5,5,2)/6. The former belongs -

to the untwisted sector and the latter exists only in

the Zs-1 and Z;,-I orbifold models. If the SU(2) dou-
biei scalar fields have such modular weights, the dif-

ference by} — b} increases. Now we are considering
the case where the doublet fields are heavier than the
singlet fields. It seems desirable that the scalar fields
associated with n; = (0,0, ~1) or —(5,5,2) /6 cor-
. respond to the doublets and that their masses are of
order of mj/,. However we cannot derive the soft
scalar masses of order ms/, for the modular weight
—-(5,5,2)/6. It is not suitable for the above scenario.
- Moreover the simultancous presence of the modular
weights (0,0, —1) and —(1, 1, 0) /2 forbids the scalar

fields with (0,0, ~1) to have masses of order ms/,

because the angle @' is constrained as sin” 8’ = 2/3.
. Therefore we cannot realize the minimal string mod-
els with the non-universai soft scalar masses of Case
"1 using the twisted sectors. of the Z4 and Zg-I orb-

ifold models, where caly # = —(1,1,0)/2 is allowed =

among the twisted scctors. The Zg-I orbifold mod-
els are not promising, either. Although we can use
only the untwisted sectors, it seems unrealistic that

the massless spectrum consists of the untwisted sector

only. The scalar fields with-n' = (0,0,~1) can ob-
“tain masses of ordet m; /2 under the presence of some
twisted matter fields in the Zg-II and Z;,-1, 11 orbifold
models, because these orbifolds allow several types of
the modular welghts

‘Next, we consider the Zg-11 orblfold models, .

where T2 and T3 contribute to the threshold correc-
tions. They have several types of modular weights

“which have non vanishing elements on the second

~and third' ones. For example we take the modular

- weights —(1,1,0)/2 and ~(2,0,4)/6, and assign

-at Mz through loop effects. If T2

~ values of b — b, e.g., b —

the former to the doublet fields and the latter to the

singlet ficlds. We assume that for the modular weight
n; = (~1,~1,0)/2 the scalar mass takes the value
of mg/z/z and the other scalar mass vanishes in the
case with sin?6’ = 1/2 and sin?6” = 0. The latter
scalar fields gain a mass of order of the gaugino mass
= T3, we obtain
b + b — b} — b} = —2 under the above assign-
ment of the modular weights to the matter " fields.
Therefore we cannot have gauge couplings consistent
with observation. Then we consider the case where

L T2 dominantly contributes to the threshold correction,

i.e; 72 > T3 In this case we obtain b} — b7 = 2. The
results of Ref. [12] show that the unification scale
of Case Ill is estimated as log;o Mx(GeV) = 17.0,
17.1, 172 and 173 in the case where the doublet
superpartners have masses of 1.3, 2.0, 3.2 and 5.0
TeV, respectively, while the gauginos and the singlet
superpartners have masses of 100 GeV. In this case
the doublet scalar masses correspond to m3/3/2 and
then we can easily estimate mj3;;. Using (4.3) we
obtain the desirable values of 72 as T? = 7.5, 6.5,
5.5 and 4.5 for log;, Mx(GeV) = 17.0, 17. 1,172
and 17.3, respectlvely Further, from these values of
T? we derive Do(T2,T?) =0.043, 0.037, 0.030 and
0.024; respectively. If sinf < 1072, we can estimate
the gaugino mass of SU( 2) as :

V3 .
= 13 /2D T2,T2
M, Refl,me?( ) o
X (b ~ 8%) sin cos 6" RN

Suppose that 8% = —1, then the values of T? = 7.5,
6.5, 5.5 and 4.5 lead to M, = 68, 91, 120 and 150
GeV, respectively, in the case of sin6’ = 1/v/2 and
cos ¢’ = 1. The masses of the singlet superpartners

- are of the same order as the gaugino masses. These
spectra are consistent with the ones assumed initially.

It is remarkable that the gaugino mass of SU(3) is

o different from the one of SU(2) by a factor (b —

8%s) /(b — 8%s), which is equal to -1 in the above
example. The gaugino masses’ are in general non- -
‘universal when sin @ =0. Actually we can obtain large
b2 > 0(10) [15,16]
‘and these values could lead toa large non-umversallty =
of the gaugino masses. '

. We can eliminate 8gs and the T-depenuent term of c

4 usmg az, a; and ay, so that we have [15]:
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128b'Tog( M2/ u?) — 4B"log(M>, 2 IML) — AmAb ag (u)
Ab'log( M2/ u?) — 4b mgw}/M ) = 4mAb o (u)

-1, o (45)

where Ab = b'2 b’2 and B = b2 + b'2 =

Eq. (4.5) can be used at u where the SUSY is',

preserved.. We take the example where the masses
of the doublet scalar- fields are equal to 3 TeV. We
;have az (3 TeV) = 10, a, 13 TeV) = 31 and

ozl (3 TeV) 125 in Case III. In addition to these
values, we use My = 10172 GeV and u = 3 TeV so as
to obtain k; = 1.4. This seems reasonable compared
with the results of Refs. [15,16]. The minimal string
unification with non-universal soft masses can be re-
alized for other assignments of the modular weights
in Zs-1I orbifold models. In the above discussion, we

do not take into account the duality anomaly can-

cellation condition [18,7], which is used as another
constraint for the realistic modéls.
The Zy x Zy orbifold models have a rich structure

of modular weights and the three moduli fields con- -

tribute to the threshold corrections. They can denve
the minimal string models under several types of as-
signments of the modular weights to the matter fields.

5. Conclusions :

We have studied the soft scalar masses in compar-
ison with the gaugino masses in the case where the
three independent moduli fields as well as the dila-
ton field contribute to the SUSY-breaking. We have

showed that the superstring theories can derive a dif- -

ferent order of non-universality in the scalar partner

spectrum. Foi such non-universal cases, we have i in-,
vestigated the conditions under which the modular

weights are allowed. In addition the superstring theo-
ries can also obtain the non-universal gaugino masses.

" 'The non-universality of the soft terms affects the -

fphenomenologi‘cal properties of the models. As an ex-
ample we have studied the gauge couplmg unification
of ‘the minimal string models with a certain type of

- non-universal soft masses. We have shown that the -

minimal string unification with non-universal scalar

masses is realized in restricted cases. It is very im--

portant to investigate all the possible models system-

atically, as in' Refs. [7,!5,16]. In a similar Way, other

. cases of non-umversahty can be studied. If we detect

non-universality of the superpartner spectrum in the
future, we may constrain promisiig models in the min- -

- imal string models. It is easy to extend this analysis

to the case of extended SUSY models.

Other phenomenological properties are influenced”
by . the non-universality. For example, the elec-
tric dipole moment of. the neutron is examined in.
Ref. [25]. It is very worthwhile to study which
phenomenological features are sensitive to the non-
universality of the soft terms. That might lead us to an
indirect determination of the superpartner spectrum.

Acknowledgement

The authors wouild like to thank Masahiko Kon-
mura, Tadao Suzuki and Haruhiko Terao for useful
discussions. The work of T.K. is partially supported by
Soryuushi Shogakukai, and the work of D.S. isin part
supported by a Grant-in-Aid-for Scientific Research
from the Ministry of Education, Science and Culture
(#05640337 and #06220201). ‘

References . k

[1] For a review, see, e.g. H.-P. Nilles, Phys. Rep. 110 (1984) 1.
[2] P. .Candelas,. G.. Horowitz, A. Strominger and E. Witten,
Nucl. Phys. 258 (1985) 46.
[3} L. Dixon, J. Harvey, C. Vafa and E Witten, Nucl. Phys B
261 (1985) 678, B 274 (1986) 285;
LE. Ibéfiez, J. Mas H.P. Nilles and F Quevedo, Nucl. Phys
B 301 (1988) 157;
Y. Katsuki, Y. Kawamura, T. Kobayashi, N. Ohtsubo, Y. Ono
and K. Tanioka, Nucl. Phys. B 341 (1990) 611. }
[4] T. Kobayashl andN Ohtsubio, Int. J. Mod. Phys. A9 (1994)
- 87. ‘

5] A. Font, LE. Ibénez and F Quevedo, Phys Lew. B 217

(1989) 272.

" [6] T. Kobayashi and N. Ohtsubo Phys. Lett. B 262 (1991) 425.

[7] LE. Ib4fiez and D. Liist, Nucl. Phys. B 382 (1992) 305.

[8] B. de Carlos, J:A. Casas and C. Muiioz, Phys Lett. B 299
'(1993) 234. .

[9] VS. Kaplunovsky and J. Loms, Phys. Lett. B 306 (1993)
269. .

{101 A. Bngnole LE: lbéﬁez and C. Mufioz, Nucl Phys B. 422 }
(1994) 125. ‘

[11]°V.S. Kaplunovsky, Nucl. Phys. B 307 (1988) 145

[12} T.-Kobayashi, D. Suematsu and Y. Yama"v'hl, Phys Lett. B
329 (1994) 27 ‘ .



410 S T. Kobayashi et al. / Physics Letters B 348 (1995) 402-410

[13]-A. Lleyda and C. Mufioz, Phys. Lett. B 317 (1993) 82;
N. Polonsky and- A, Pomarol, prepnm UPR-0616-T. (hep-
ph/9406”24),

Y. Kawamura, H. Murayama and M. -Yamaguochi prepnm
"DPSU-9402 (hep-ph/9406245);

D. Matalliotakis and H.P. Nilles, prepnm TUM-HEP-201794
(hep ph/9407251 %

[14] L.E. jbaficz, D List and G.G. Ross, Phys. Lett. B 272
(1991) 251,

H. Kawabe, T. Kobayashi and N. Ohtsubo, Phys Lert. B
322 (1994) 331;
T. Kobayashi, Phys. Lett. B:326 (1994) 231.

{15] H. Kawabe, T. Kobayashi and N. Ohtsubo, Phys Lett. B
325 (1994) 77;

T. Kobayashi, preprint Kanazawa<94-10 (hep- -ph/9406238),
to be published in Int. J, Mod. Phys. A.

'[16] H. Kawabe, T. Kobayashi and N. Ohtsubo, preprint
Kanazawa-94-09 "(hep-ph/940542C), to be published in
Nucl. Phys. B.

{171 L.J. Bixon, V.S, Kaplunovsky and J. Louis, Nucl. Phys, B
355 (1991).649;
I. Anteniadis, K.S. Narain and T.R. Taylor, Phys. Lett. B
267 (1991) 37, :

[ 18} J.-P. Derendinger, S. Ferrara, C. Kounnas and F Zwimer,
Nuck Phys. B 372 (1992) 145.

" '{19] M.B. Green and J.H. Schwarz, 'Phys. Lett. B 149 (1984)

17,

{20} J.-P. Derendinger, S. Ferrara, C. Kounnas .md E lwnmer.
Phys. Lett. B 271 (1991) 307. ‘

[21] L.J. Dixon, V.S. Kaplunovsky and J. Louis, Nucl Phys B
329 (1990) 27.

-[22] M. Cveti¢, A. Font, LE. Ibdfiez, D. Liist and F Quevedo,

- Nucl. Phys. B 361 (1991) .194.

{231 K. Choi, J.E. Kim and H.P. Nilles, prepsrint SN!. TP 94.19
(hep-ph/9404311).

[24] T. Kobayashi and N. Ohtsubo, Phys. Lett. B 245 (1990) 441.

[25] T. Kobayashi, M. Konmura, D. Suematsu, K. Yamada and
Y. Yamagishi, preprint Kanazawa-94-17 (hep-ph/9410269).



