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Abstract 

We study soft scalar masses in comparison with gaugino masses in 4-dimensional string models. In general non-universal 
soft masses are derived in orbifold models. We give conditians on modular weights which lead to a large non-degeneracy in 
the soft scalar mass spectrum. This non-universality is applied to the unification of gauge coupling constants in the minimal 
string model. 

Supersynvnktric models are very interesting as a 
unified theory. Local supersymmetry (SUSY) break- 
ing induces soft SUSY breaking terms, such as gaug- 
ino masses, scalar mssses and trilinear (A-terms) and 
bilinear (B-terms) couplings of scalar fields in Global 
SUSY models [ 11. The values of these soft terms de- 
termine the phenomenological properties of the mod- 
els. 

Superstring theories are the only known candidates 
for the unified theory when we take gravity into ac- 
count. By now starting from I-dim string models like 
Calabi-Yau models [2], orbifold models 13-61 and 
so on, we know a Kiihler potential and a gauge ki- 
netic function of supergravity as their effective theo- 
ries. In recent papers [7-10) the soft SUSY break- 
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ing terms derived from superstring theories are stud- 
ied assuming that nonvanishing F-terms of the dila- 
ton field S and moduli fields cause the SUSY break- 
ing. In these works the soft scalar masses are found 
to be non-universal at the string scale Mst = 3.73 x 
1O”GeV [ 111, although one usually assumes the uni- 
versality of all the soft terms in the study of SUSY 
models. This non-universality affects the phenomeno- 
logical features [ 12,131. For example, in Ref. [ 121 
it is shown that the unification scale of SU(3) and 
SU( 2) gauge couplings in the minimal supersymmet- 
ric standard model (MSSM) is sensitive to a strong 
non-degeneracy among soft scalar masses. In general 
the non-universality raises the unification scale. This 
seems desirable for superstiag unification. 

However, the orders of magnitude of soft scalar 
masses derived in Refs. [8,10] do not seem to be so 
different from each other. In Ref. [ lo] it is assumed 
that only the dilation field S and an overall modu- 
lus field T contribute to the SUSY breaking. The un- 
known direction of the golditino field is parametrized 
in the s-2’ space by the goldstino angle 0. In the gen- 
eral orbifold models there are three independent mod- 
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uli fields. In this paper we study the general models 
in which three moduli fields E (i = 1,2,3) as well 
as S can contribute to the SUSY breaking. We discuss 
the realization of the hierarchical soft scalar masses 
whose orders of magnitudes are different from one an- 
other. Such non-universal soft scalar masses are also 
applied to the study of gauge coupling unification in 
a minimal string model [ 7,14-161. Here the minimal 
string model means a string vacuum which has the 
same massless spectrum as the MSSM. 

This paper is organized as follows. In Section 2 
we review the soft SUSY breaking terms obtained 
in Ref. [9] and also their parametrization following 
Ref. [ 101. In Section 3 we reformulate the soft terms 
by taking account of the three moduli fields. Using 
them, it is shown that we can obtain scalar masses 
whose orders of magnitudes are different from one an- 
other. Conditions to yield such hierarchical soft masses 
are also given. In Section 4 such a non-universality is 
applied to the minimal string unification. Using thresh- 
old corrections of string massive modes [ 17,181, we 
investigate whether orbifold models can realize the ob- 
served low energy values of gauge couplings. Section 
five is devoted to conclusions and discussions. 

2. Soft masses 

In this section, we review the derivation of soft 
SUSY breaking terms in the superstring models fol- 
lowing Ref. [9]. Here we assume that the SUSY 
breaking occurs only due to the non-vanishing F-terms 
of the dilaton S field and the moduli fields Ti (i = l- 
3), where Ti corresponds to the ith one among the 
three moduli of the 6-dim orbifolds [ 3-61. We repre- 
sent S and T’ by am (m = O-3), where a0 is S and 
Q,’ = T’ , etc.. N = 1 supergravity theories are charac- 
terized by the K&ler potential K, the superpotential 
W and the gauge kinetic function fa. The Ktiler po- 
tential and the superpotential are expressed as follows, 

K = ~-~k(@,d) + K(@,aS,)ljQ’@ 

+(~H(~,~,),~Q’e~-th.c.)+..., (2.la) 
.a 

w = ww + &(w~Q’Q~ + +. . , (2.lh) 

these, we can write down the scalar potential V as 
follows, 

V = K-~~~[G,!G-‘)~~G~ - 3~~~1 -t (D-term), 
c2.q 

where 6 = K -I- K-~ log ~~1 Wj2 and the indices cy and 
p denote Q’ as well as am. Hereafter we does not 
consider the D-term contribution to V. The gravitino 
mass rn3/2 is written as 

m3/2 = K2&2/~[. (2.3) 

In (2.2) we take the flat limit M,t -+ cc preserving 
rn3/2 fixed and then the soft scalar masses mlJ for 
unnormalizcd fields Qr are derived as 

m f, = m$2K,j 

- FmPfi[&&K,,- (&KKJ)K~‘(~~K~L)] 

1- K*&K,j, (2.4) 

where the Fm are F-terms of am, the a,, denote a/+Dm 
and VO is the cosmological constant expressed as 

Va = K-*( FTP”am&R - 3m$2). (2.5) 

Hereafter the gravitational coupling K is set to one. 
The canonically normalized gaugino masses lkf, are 
derived through the following equation, 

M, = ‘J(Ref~)-‘Fm&tf~, (2.6) 

where the subscript a represents a gauge group. 
The orbifold models give the K&ler potential at the 

one-loop level as [ 181 

K = - log Y - c log( T’ + i”) 

Y=S+S-C%og(Ti+P), 
; 8sT2 (2.7) 

where K’ = &T/M;, and Q’ are chiral superhelds. The 
ellipses stand for terms of higher orders in Q’. Using 

where 6&s are constants introduced through the 
Green-Schwarz mechanism to cancel duality anoma- 
lies [ 19,20,18] and rzf are modular weights corre- 
sponding to Q’ [21,7]. The untwisted sector asso- 
ciated with the jth plane has ni = -8;. The twisted 
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sector with a twist oi (0 < ui < 1, ~~=, ui = 1) has 
r;f = ~1’ - 1 for ui # 0, and II: = 0 for ui = 0, Here the 
notation in Refs. [4,5] is used for the’ orbifolds and 
their twists except some permutation of elements [ii. 
The addition of oscillator modes changes the modular 
weights by one. We have also the following gauge 
kinetic function, 

1 
fa=kS-s i c  (62 - kJ&) 10gqiT’)~. 

(2.8) 

where the second term is a threshold correction due 
to string massive modes [ 17,181. Here bt is a duality 
anomaly coefficient and 7 (T) is a Dedekind function. 
The level of each gauge group is denoted by k,. In 
general the 4-dim string models lead to k, = 1 for 
non-abelian gauge groups. 

In Ref. [ lo] the investigation is done for the case of 
the overall modulus 7’ = 7”. This case is characterized 
by n = xi II’, 6: = xi b: and Sos = xi 8;s. Then the 
cosmological constant is given by 

vo = 

3 
+ (T-l-T’)2 

il- &)lFT12, (2.9) 

where FT is the F-term corresponding to the overall 
modulus T. If VO = 0, one can parametrize the un- 
known F-terms by the goldstino angle 0 as follows, 

SGS 

S+(T+T) 
FT) = &msjzsine, (2.10a) 

m 
T+i’ 

FT = d?rnsp cos 19, (2.10b) 

M & 
” - Ref.! 

- -tns/2(kaReSsine 

0’ - k,SGs 
+- cos ed 

32rr”,,‘~~ 
iT+%iT,% 

(2.1 lb) 

where & (7, T) is the Eisenstein function 5 ; 

The states with no oscillator modes have ri = -1 or 
-2. The different modular weights lead to the non- 
universal soft masses in (2.1 la). However, most of 
these masses are of O(m3p). Even if the orders of 
magnitude of scalar masses could differ from one an- 
other at M,t, loop effects due to the large gaugino mass 
might dilute the difference at Mz and result in the 
same order scalar masses 0( m3/2). In fact the gaugino 
masses are of order rn3/2 unless sine = 0. Therefore 
in order to produce a fairly strong non-degeneracy in 
the soft scalar masses, we are interested in the case 
with sin 0 = 0. Unfortunately, in this case, matter fields 
with n 5 -2 are not allowed, because these modu- 
lar weights lead to imaginary masses in (2.1 la). If 
we restrict ourselves to the states with no oscillator 
modes, the soft scalar masses are completely univer- 
sal. They are of order of mrn3p, where a should be 
negative to make this mass real. Then the soft scalar 
masses are of the same order in the overall modulus 
case. This might become a very severe constraint on 
SUSY models inspired by superstring theories. 

The n = 0 states with oscillator modes seem to yield 
a non-universality in the mass spectrum of the scalar 
fields. However the presence of such states is restricted 
in some cases, as shown in Refs. [ 15,161. Moreover 
Yukawa couplings of such states are often forbidden 
as renormalizable couplings. Therefore we study an- 
other possibility to cause a strongly non-degenerate 
soft scalar spectrum in the following section. 

We study a more general case by taking account 
of three independent moduli fields T’ instead of the 

3. Soft masses in case of three moduli 

where a = 6os/24?r2Y. To get the physical scalar mass 
from (2.3), we need to normalize the fields &I canon- 
ically. Here we assume the kinetic term to be diagonal. 
Then using eqs. (2.4) and (2.6)-( 2.8), the masses 
of the scalar superpartners and the gauginos are ex- 
pressed as 

m2 =m&*(l+ 1 -a -5.. COS* e) , (2.11a) 
5 Several kinds of modular functions are shown in Ref. [22] 
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overall mod&s. In this case the cosmological constant 
V, is written as 

(3.1) 

where ai = S&/87;2Y, and which is estimated as 
1~1 < 1. f?ere we parametrize the unknown F-terms 
as follows, 

(3.2a) 

(3.2b) 

where 0 I = sin 8’ sin fP, 02 = sin 8’ cos 0” and O3 = 
cos B’. Unless Vo = 0, in (3.2) rn312 should be replaced 
by Cm3/2, where C2 = 1 + &/3m$2. In Ref. [23] 
it is indicated that VO should be negative when taking 
account of loop effects of the observable sector. If VO 
is negative, C is less than one. We can then write down 
the canonically normalimd soft masses as 

3 3n’ 
,rn 2 =m&2C2(1 +c0s2eC --0i”) 

i=l 1 - G 

-t- 2m$,(C2 - I), (3 3a) 

M d3 
“-Refa - -Cm3/2[k,ReSsin8 

3 b; - k,6&, 
+cosez Jl’i-ai Di(T’,p)@il, (33) 

where Di(T’,i”) = (T’+ ~)&Ti,~)/3&r3. It is 
remarkable that the summation in (3.3b) is taken on 
the moduli contributing to the threshold corrections. 

We are interested in the case with m > M,, where 
the non-univergality of the soft scalar masses is not 
diluted by the’loop effects of gauginos. To investi- 
gate such cases, it is necessary to see what modular 
weights guarantee real soft scalar masses when sine = 
0 and Ui < 0. We show these conditions for ZN and 
ZN x ZM orbifold models in Tables 1 and 2, respec- 

Table I 
Conditions for real soft scalar masses in ZN orbifolds. The first 
column shows the modular weights obtained for the ZN o&fold 
models of the second column. An asterisk (*) in the second 
column represents all the 2,~ o&fold models except Z.3 and 2,. 
Modular weights forbidden under any condition are indicated by 
a dash (-) in the third column 

Modular Weight Orbifold Conditirn 

(-l,O,O) sin* #sin2 8” < l/3 
(071.0) sin’ 0’ COG 0” < I /3 
(0,0,-l) cos2t?‘I: l/3 

-(2,2,2) /3 zn, &i-I - 
-(3,3,2)/4 z4, zs-1 - 
-(2,2,0)/4 
-(5,X2)/6 S&Z,*-I 

sin’ 0’ 5 2/ 3 
sin@ =O 

-( 5,3,4) /6 za-11 - 
-(4,0,2)/6 za-11 sin* 8” < I /2 
-(2,0,4)/6 zs-II sin2 8’(2 - sin* 8”) > I 
-(a,/7 z7 
-(=,6)/S 2x-l 
-(=,4)/8 Zg-11 
-(6,2,0)/8 zs-ll,Z12-1 sin2 6’( 1 + 2 sin2 B”) 5 4/3 
-(2,&0)/8 i?S-lI,&-l sin:8’(3 - 2sin*B”) 5 4/3 
-(&S,8)/12 az-1 
-(8,8,8)/12, Z12-1 
-(H-7,6)/12 42-11 
-(10,2,0)/12 212-11 sin28’(l+4sin2B”) <2 - 
-(9,9,6)/12 Z&l 
-(8,4,0)/12 212-11 sin* f?‘( I + sin* @“) < 1 
-(4,8,0)/12 z12-II sin2 fY(2 - sin2 B”) 3 I 
-(2,10,0)/12 212‘11 six* 0’( 5 - 4 sin’ 0”) 5 2 

tively. The first column of these tables shows the mod- 
ular weights of the orbifold model that contains no os- 
cillator modes. Here C = 1 is assumed. In these tables 
only the modular weights corresponding to the matter 
sector [24,4,6] are shown and the modular weights 
for the antimatter sector are omitted. The underlining 
represent any permutation of the elements. The first 
three rows in Table 1 correspond to the untwisted sec- 
tor, which is omitted in Table 2, and the others COT- 
respond to the twisted sector. For the twisted sector 
all the modular weights with xi iti = - 1 are allowed 
under certain conditions as shown in the tables. It is 
remarkable that the modular weight -(5,5,2)/6 is 
also allowed under certain conditions, although in the 
case of the overall modulus all the modular weights 
with xi ni = -2 are forbidden. In the Z3 and Z7 orb- 
ifoldmodels, no twisted matter fields are allowed. The 
Z4 and Zs-I orbifolds have only the modular weight 
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Conditions for real soft scalar masses in ZN x ZM orbifolds. In the second column *I represents 22 x Zz, Z4 x Z4,Z2 x Z4, Z2 x &,,, z2 x 
Z<, 26 x Ze and *2 represents Zs X Zs, Z’?’ X &, Zs x Z& Modular weights forbidden under any condition are indicated by a dash (-) in 
the third column 

Modular Weight Orbifold Condition 

-40, I, I)/2 
-(1,0,1)/2 
--(I, ItO)/ 
-(O,Z I)/‘3 
-10,1,2)/3 
-(2.0,1)/3 
-(2,2,2)/3 
-(2,1,0)/3 
-(1,0,2)/3 
--(1,&W/3 
-4% 3,1)/4 
-(O, 1,3)/4 
-(2,3,3)/4 
-(fi 5,2)/6 
-(2, XV/6 
45, ‘&W/6 
--CO, 5, I)/6 
-CO, 1,5)/6 
--(X5,4)/6 
-(3,0,1)/4 
-(3.3,2)/4 
-(3,1,0)/4 
-(1,0,3)/4 
-(1,3,0)/4 
-(4.5,3)/6 
-(5,1,0)/6 
-(1,0,5)/6 
-(I, X0)/6 

*l,Z3 x zi, 
*I 
*I 
*2,za x 4 
t2.22 x Z,j 
*2 
*2,.Z, x 2; 
*2 
*2 
*2 
22 x 24, z4 x z4 

22 x z4, z4 x z4 
22 x z2,z4 x .& 
z2 x Z&Z6 x Z6 
z2 x z,& z3 x &, 26 x z6 

z2 x Z&26 x z, 
z2 x && x z6, &i x z6 
Z2~.%,z3~&.26X& 

ZZXza~26Xzt; 

z4 x z4 

z: x z4 

z4 x z4 

24 x z4 

z4 x 24 

z3 x &?26 x z5 
& x 26 

zax.% 
z6 x z6 

sit? #sin2 8” 1 l/3 
sin’ 0’ cos2 8” 2 l/3 
sin2 0’ < 2 /3 
COG 6” < l/2 
sin* 19’( 1 + sit+ 8”) > I 

- sin2 B” < l/2 

sin28’(sin20”+ 1) 5 1 
sin2 #(sin2 0” - 2) < 1 
sin2 8’(o - sin2 8”) 7 1 - . 
sin2 @ ‘( 2 - sin2 8”) z l/3 
sin2 8’(2 + sin2 0”) 5 5/3 

sin2 B’ = 0 
sin2 B’ sin2 6” = I 
sin2 6’ cos2 8” = 1 
sin2 8’(4 - 5 sin2 0”) < 1 
sin2 rir’(4 + sin2 8”) 2-3 

sin2 8’(3 sin2 8” - 1) 5 l/3 

sin2 tV( 1 + 3 sin’,@“) < 4/3 
sin2 0’(3 - sin2 6”) 2 5/3 
sin2 d’( 3 -- 2 sin2 B”) < 4/3 

sin’ 0’( I + 4 sin’ 8”) < 2 
sin2 6’( 5 - sin2 2-3 f7”) 
sin2 6’( 5 - 4 sin2 2 0”) 5 

- ( 1 , 1,O) /2 in the twisted sector as the allowed one. 
Further, ah considerable modular weights in each orb- 
ifold are not allowed simultaneously. For example, 
modular weights (0,.0,-l) and -(5,5,2)/6 cannot 
guarantee the scahz’masses to be real at the same time. 
In the Z,v orbifold models, however, all the modular 
weights with n = -1 are allowed simultaneously un- 
der the conditions as sin* 8’ = 213 and sin* 8” = l/2. 

We can also easily obtain the conditions in the case 
‘of C # 1. For example, the modular weight ( - 1 , 0,O) 
can derive the real scalar masses under the following 
condition, 

sin2@ ‘sin2e”< 1 - 2 - 3c2’ (3.4) 

Thus the modular weight (-l ,O, 0) is forbidden in 
the case of C* < 2/3 (Vi < -m$,) . If Vo is negative, 

and thus C < I, the modular weight -(5,5,2)/6 
is not allowed. In contrast with the C = 1 case all 
the modular weights with n = -1 cannot satisfy the 
conditions for the real scalar masses simultaneously. 

Here we study in more detail the soft scalar masses 
in the case of sin8 = 0 and C = 1. Using (3.3a) we 
find that the representative orders of magnitude of the 
scalar masses are O(m& and 0( mm&. We 
have ai x 5.0 x S& x 10V3 if we use cyx’ M  25 as the 
unified gauge coupling. As an example, we consider 
the scalar fields with modular weights - l,O,O), 
(0, -1,0) and -( 1,1,0)/2. Most of the orbifold 
models have these modular weights. We take the an- 
gles as sin B = 0, sin* 8’ = l/3 and cos2 8” = 1. Then 
the SC&W fields with ni = 
have the soft masses m* 

-(1,1,0)~2~d (-l,O,O) 
= m$2/ 2 and m&, respec- 
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tively. On the other hand, the mass corresponding to 
ni = (0, -1,0) is obtained w +t2 = \u$&. Thus we 
can derive the ditierent n-?ers of the non-degeneracy 
among the soft scalar masses by taking account of the 
three moduli fields. In the case with other values of 
C we can also obtain the large non-universality under 
certain angles 8’ and 0” for other combinations of 
the modular weights. The largest mass is’uf order of 
m3p Such a situation is impossible to be realized in 
the case of the overall modulus with sin 0 = 0. 

It is notable that the mass of order of rn3i2 cannot 
be obtained when some combinations of the modular 
weights constrain the angles 0’ and 0” severely. For 
example, we take the case where the matter fields with 
ni = (O,O, -1) are included in addition to the above 
combination of modular weights. This case is only al- 
lowed when the conditions sin2 8’ = 2/3 and sin2 0” = 
l/2 are satisfied:. as mentioned before. These angles 
result in scalar masses of order of mm312 at most. 
Similarly the scalar mass of ni = -(5,5,2)/6 is less 
than O( mrn3p), because matter fields are allowed 
at sine’ = 0. It is difficult to derive the soft scalar 
masses of order of rn3/2 when the angles 8’ and 0” are 
constrained severely. 

Next we estimate’the gaugino FBWC They should 
be small enough not to dilute the non-degeneracy 
among the soft scalar masses by their loop ef- 
fects. In (3.3b) Di(Ti,Fi) takes following values: 
Di(T’,F) = 1.5 X 10W3, 2.7 X 10W2, 6.0 X 10e2 and 
6.6 x 10-l for T’ = 1.2, 5.0, 10 and 100, respec- 
tively. In (3.3b) the first term proportional to sin8 
contributes mainly to the gaugino masses in the case 
of sine > 0( 10s3) and T N 0( 1). This is because 
k, = 1 and cy;’ z 25 lead to k,ReS N Ref= N 2. 
The condition sin 8 c 0( 1/ 10) should be satisfied 
in order to avoid the above mentioned dilution due 
to the gaugino loop effects. A large value of T’ lik, 
z > 0( 100) seems undesirable to preserve non- 
universality among the soft scalar masses at Mz. 

4. Minitnal string unification 

In Ref. [ 121 it is shown that the unification scale 
Mx of the SU(2) and SU( 3) gauge coupling con- 
stants is sensitive to the non-universality of the soft 
masses in the MSSM. In that paper Mx is estimated 
using the measured gauge coupling constants at Mz. 

The unification scale Mx is raising in most cases of 
the non-universal scalar masses. Especially the highest 
Mx is realized in the case where all the doublet scalar 
fields under SU(2) are heavier than the singlet ones. 
This type of non-universality corresponds to Case III 
in Ref. [ 121. In this section we apply the result found 
in the previous section to the minimal string unifica- 
tion. Here we concentrate on the case where all the 
doublet scalar fields are heavier than the singlet ones. 
Note that the gauge coupling of U( 1)~ a;* is not al- 
ways unified, at &lx, with the other couplings, because 
the string theories can predict not only kl = 5/3 but 
also other values. 

The running gauge coupling constants cy;’ of the 
MSSM at p are expressed as follows [ 17,18 1, 

-c l$ - k& 
4rk, log[(Ti+i”)Jv(T’)j4], (4.1) 

i 

where cus;’ is the universal string coupling at 1w,r and 
ba is the one-loop P-fuction coefficient of the MSSM, 
i.e., b3 = -3, b2 = 1 and bl = 11. The last term in 
(4.1) represents the threshold correcrjon due to ihe 
string massive modes and the duality anomaly coefti- 
cient 6” is written as a 

6; = --C(G) + CT&)(1 + 2n’), (4.2) 

where C(G,) is a quadratic Casimir of the ad- 
joint representation and T(R,) is the Dynkin 
index of the & representation, i.e., T(k) = 
C(R,) dim(R,)/dim(G,). Using Eq. (4.1) we can 
derive the relation between Mx and il4,i as [ 71 

8logz =c (b;‘- bf) log[(T’ +p)lg(Ti)/4]. 
i 

(4.3) 

It is remarkable that log[ (T’+p) I?( T’) I41 is negative 
for any value of T’. The unification scale Mx is always 
less than A4,r under the condition that the soft masses 
are less than 10 TeV even in the non-universal case 
!I121. 

The 23 and 27 orbifold models do not have the T- 
dependent threshold corrections and thus these orb- 
ifolds cannot yield the minimal string models consis- 
tent with observation. For the other 2~ orbifold mod- 
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els except G-11, only the third modulus T3 contributes the former to the doublet fields and the latter to the 
to the threshold correction. In these orbifold models, singlet fields. We assume that for the modular weight 
the duality anomaly coefficients should satisfy bj3 > ni = (-1, -1,0)/2 the scalar mass takes the value 
bi3 in order to result in Afx < M,t. First of all we con- of m3;2/2 and the other scalar mass vanishes in the 
sider the case where the mrctter fields have the mod- case with sin28’ = l/2 and sin2 19” = 0. The latter 
ular weights -( 1,1,0)/2, (-l,O,O) and (0, -l,O), scalar fields gain a mass of order of the gaugino mass 
as discussed in the previous sectinn. ‘lbe third ele- at MZ through loop effects. If T2 = T3, we obtain 
ment of these modular weights is zero and we obtain 6’2 + bf _ b;2 _ 6;’ = -2 under the above assign- 
6’3 _ 6’3 - 

3 2 - -2. In this case we cannot realize the mea- Gent of the modular weights to the matter fields. 
sured gauge couplings at Mz. Therefore we cannot have gauge couplings consistent 

In order to avoid such a situation, we need the modu- with observation. Then we consider the case where 
lar weights with a non-vanishing third element, which T2 dominantly contributes to the threshold correction, 
are (O,O, -1) and -(5,5,2)/6. The former belongs * I.e., T” > T3. In this case we obtain bi2 - bp = 2. The 
to the untwisted sector and the latter exists only in results of Ref. [ 123 show that the unification scale 
the &-I and 212-1 orbifold models. If the SU( 2) dou- of Case III is estimated as log,, Mx(GeV) = 17.0, 
blti scalar fields have such modular weights, the dif- 17.1, 17.2 and 17.3 in the case where the doublet 
ference bi3 - bi3 increases. Now we are considering superpartners have masses of 1.3, 2.0, 3.2 and 5.0 
the case where the doublet fields are heavier than the TeV, respectively, while the gauginos and the singlet 
singlet fields. It seems desirable that the scalar fields super-partners have masses of 100 GeV. In this case 
associated with rti = (0,0,--l) or -(5,5,2)/6 cor- the doublet scalar masses correspond to m3i2.2 and 
respond to the doublets and that their masses are of then we can easily estimate rn3/2. Using (4.3) we 
order of ~312. However we cannot derive the soft obtain the desirable values of T2 as p = 7.5, 6.5, 
scalar masses of order rn3!2 for the modular weight 5.5 and 4.5 for log,a1Mx(GeV) = 17.0, 17.1, 17.2 
- (5,5,2) /6. It is not suitable for the above scenario. and 17.3, respectively. Further, from these values of 
Moreover the simultaneous presence of the modular T2 we derive D2(T2,P) = 0.043, 0.037, 0.030 and 
weights (0, 0, - 1) and - ( 1, i (0) /2 forbids the scalar 0.024, respectively. If sin8 < 10w2, we can estimate 
fields with (O,O, -1) to have masses of order m3p, the gaugino mass of SU(2) as 
because the angle 8’ is constrained as sin2 8’ = 2/3. 
Therefore we cannot realize the minimal string mod- M2 d3 = -m3pD2(T2,ji2) 
els with the non-universal soft scalar masses of Case Re.fa 
III using the twisted sectors of the 24 and Zs-I orb- x (6;’ - 66, ) sin 8’ cos 8”. (4.4) 
ifold models, where cnly n = - ( 1, 1,O) /2 is allowed 
among the twisted stators. The 26-I orbifold mod- Suppose that S& = -1, then the values of T2 = 7.5, 
els are not promising, either. Although we can use 6.5, 5.5 and 4.5 lead to M2 = 68, 91, 120 and 150 
only the untwisted sectors, it seems unrealistic that GeV, respectively, in the case of sin 8’ = l/& and 
the massless spectrum consists of the untwisted sector cos 8” = 1. The masses of the singlet superpartners 
only. The scalar fields with n = (O,O, -1) can ob- are of the same order as the gaugino masses. These 
tain masses of order m3/2 under the presence of some spectra are consistent with the ones assumed initially. 
twisted matter fields in the Zs-II and Zi2-I, II orbifold It is remarkable that the gaugino mass of SU( 3) is 
models, because these orbifolds allow several types of different from the one of SU( 2) by a factor (b!f - 
the modular weights. %-,V(b;2 - a&), which is equal to -1 in the above 

Next, we, consider the Z6-II orbifold models, example. The gaugino masses are in general non- 
where T2 and T3 contribute to the threshold correc- universal when sin 8 = 0. Actually we can obtain large 
tions. They have several types of modular weights values of bf - b?, e.g., bi2 - bf > 0( 10) [ 15,161 
which have non-vanishing elements on the second and these values could lead to a large non-universality, 
and third ones. For example we take the modular of the gaugino masses. 
weights -( 1,1,0)/2 and -(2,0,4)/6, and assign We can eliminate 8os and the T-dependent term of 

(4.1) using (~3, CQ and ai, so that we have [ 151 
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atically, as in Refs. [7,!5,16]. In a similar way, other 
cases of non-universality can be studied. If we detect 
nrn+niversality of the superpartner spectrum in !he 
future, we may constrain promising mode!!: in the min- 
imal string models. It is easy to extend this analysis 
to the case of extended SUSY models. 

- 1, (4.5) 

where Ab’ = bi2 - b!j and B’ = b:2 + bf = -2. 
Eq. (4.5) cm, be used at ,!L where the SUSY is 
preserved. We take the example where the masses 
of the doublet scalar fields are equal to 3 TeV We 
have a;‘(3 TeV) 
rx;d (3 TeV) 

= 10, $‘I(3 TeV) = 31 and 
= 125 in Case III. In addition to these 

values, we use Mx = 1017.2 GeV and @ = 3 TeV so as 
to obtain k, = 1.4. This seems reasonable compared 
with the results of Refs. [ 15,161. The minimal string 
unification with non-universal soft masses can be re- 
alized for other assignments of the modular weights 
in &-II orbifold models. In the above discussion, we 
do not take into account the duality anomaly can- 
cellation condition [ l&7], which is used as another 
constraint for the realistic models. 

The ZN x ZM orbifold models have a rich structure 
of modular weights and the three moduli fields con- 
tribute to the threshold corrections. They can derive 
the minimal string models under several types of as- 
signments of the modular weights to the matter fields. 

5. Conclusions 

We have studied the soft scalar masses in compar- 
ison with the gaugino masses in the case where the 
three independent moduli fields as well as the dila- 
ton field contribute to the SUSY-breaking. We have 
showed that the superstring theories can derive a dif- 
ferent order of non-universality in the scalar partner 
spectrum. Fcri such non-universal cases, we have in- 
vestigated the conditions under which the modular 
weights are allowed. In addition the superstring theo- 
ries can also obtain the non-universal gaugino masses. 

The non-universality of the soft terms affects the 
phenomenological properties of the models. As an ex- 
ample we have stlidied the gauge coupling unification 
of the minimal string models with a certain type of 
non-universal soft masses. We have shown that the 
minimal string unification with non-universal scalar 
masses is realized in restricted cases. It is very im- 
portant to investigate all the possible models system- 

Other phenomenological properties are influenced 
by the non-universality. For example, the elec- 
tric dipole moment of the neutron is examined in 
Ref. [251. It is very worthwhile to study which 
phenomenological features are sensitive to the non- 
universality of the soft terms. That might lead us to an 
indirect determination of the superpartner spectrum. 
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