
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

GM2MS4: A Transformation Tool from
Goal-Oriented Models to System-of-Systems

Mission Simulation

Manoel Vieira Coelho Neto

Monografia apresentada como requisito parcial

para conclusão do Curso de Engenharia da Computação

Orientadora

Prof.ª Dr.ª Genaina Nunes Rodrigues

Brasília
2021

Universidade de Brasília — UnB

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Curso de Engenharia da Computação

Coordenador: Prof. Dr. Joao José Costa Gondim

Banca examinadora composta por:

Prof.ª Dr.ª Genaina Nunes Rodrigues (Orientadora) — CIC/UnB

Prof. Dr. Edison Ishikawa — CIC/UnB

Prof. Dr. Marcelo Antônio Marotta — CIC/UnB

CIP — Catalogação Internacional na Publicação

Coelho Neto, Manoel Vieira.

GM2MS4: A Transformation Tool from Goal-Oriented Models to

System-of-Systems Mission Simulation / Manoel Vieira Coelho

Neto. Brasília : UnB, 2021.

91 p. : il. ; 29,5 cm.

Monografia (Graduação) — Universidade de Brasília, Brasília,

2021.

1. System-of-Sytems, 2. modelagem de SoS, 3. simulação de SoS,

4. conversão de modelos, 5. modelagem orientada a objetivos e

missões de SoS

CDU CC672g

Endereço: Universidade de Brasília

Campus Universitário Darcy Ribeiro — Asa Norte

CEP 70910-900

Brasília–DF — Brasil

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

GM2MS4: A Transformation Tool from
Goal-Oriented Models to System-of-Systems

Mission Simulation

Manoel Vieira Coelho Neto

Monografia apresentada como requisito parcial

para conclusão do Curso de Engenharia da Computação

Prof.ª Dr.ª Genaina Nunes Rodrigues (Orientadora)

CIC/UnB

Prof. Dr. Edison Ishikawa Prof. Dr. Marcelo Antônio Marotta

CIC/UnB CIC/UnB

Prof. Dr. Joao José Costa Gondim

Coordenador do Curso de Engenharia da Computação

Brasília, 16 de Novembro de 2021

Por um mundo onde sejamos
socialmente iguais, humanamente
diferentes e totalmente livres

Rosa Luxemburgo

i

Agradecimentos

Agradeço à minha família pelo esforço hercúleo empenhado em minha educação
com o objetivo de que estas linhas um dia fossem escritas. Agradeço ao suporte que
me foi dado nos dias mais difíceis, principalmente pelos meus pais e tios, necessá-
rios para minha manutenção no curso.

Agradeço aos meus pais por terem ensinado que o melhor caminho para avançar
é o estudo e a priorizá-lo acima de todas as coisas. Agradeço pelas inúmeras vezes
que me incentivaram a ir até o final e a não desistir no meio do caminho. Agradeço
às minhas irmãs, Anna e Maria, por estarem sempre presentes e pelo seu afeto.

Agradeço ao irmão e tia que o universo me deu, Davi e Sandra Ory, por estarem
sempre presentes nas dificuldades e por sempre me ajudarem a superá-las.

Sair de casa e deixar o conforto da família em busca de novas oportunidades -
apesar de estimulante num primeiro momento aos olhos de um garoto - pode ser um
desafio muito maior que o esperado. Por isso, agradeço àqueles que, mesmo sem
ligação sanguínea, me tomaram como parte dos seus e me acolheram, prestando
uma contribuição enorme para que eu chegasse aqui. Sem essas pessoas jamais
conseguiria ter superado os obstáculos encontrados nos últimos anos. Agradeço
cada carona, cada RU, cada almoço de domingo. Sem o acolhimento e suporte de
vocês este trabalho não poderia ter sido finalizado.

Agradeço à equipe UnBall por todo conhecimento que construímos juntos e
aprendizados que tivemos como time. Meus anos na equipe foram essenciais para
o meu progresso acadêmico e profissional. Agradeço pelos laços que fizemos ali e
que carrego sempre comigo.

Agradeço aos meus amigos Izabella e Martin por terem me ajudado na revisão
deste trabalho.

Por fim, agradeço à minha orientadora Prof.ª Dr.ª Genaina Nunes Rodrigues e à
minha tutora Prof.ª Dr.ª Vanessa Tavares Nunes, pela oportunidade oferecida e pelo
suporte durante o caminho que percorremos. Por terem me estimulado durante o
desenvolvimento e escrita e por terem acreditado no sucesso deste trabalho.

ii

Resumo

System-of-Systems (SoS, ou em português: Sistema-de-Sistemas) são aqueles
sistemas resultantes da integração de outros sistemas independentes (sistemas
constituintes). A modelagem desses sistemas através de técnicas tradicionais de
design de sistemas é uma tarefa árdua, levando em consideração as diversas for-
mas que estes sistemas contituintes podem participar em processos de SoS. Há
algumas propostas de modelo na literatura, como o projeto mKaos[14], mas esses
modelos não podem ser simulados ou conectados a aplicações externas à simula-
ção para que seja validado. A partir desse ponto, o presente trabalho propõe um
modelo orientado a objetivos para SoS que: (i) foque nas missões que um SoS deve
cumprir ao invés da visão arquitetural do sistema e (ii) possa ser convertido em um
projeto MS4 capaz de simular os comportamentos extraídos do modelo de objetivos.
Adicionalmente o designer poderá conectar o modelo MS4 a aplicações existentes
para a execução da missão possa ser verificada. Uma ferramenta para essa con-
versão de modelos (GM2MS4) é provida juntamente a este manuscrito e é capaz de
transformar o modelo de missões proposto em uma simulação MS4 que verifique o
cumprimento da missão.

Palavras-chave: System-of-Sytems, modelagem de SoS, simulação de SoS, conver-
são de modelos, modelagem orientada a objetivos e missões de SoS

iii

Abstract

System-of-Systems (SoS) are those systems resulted by the integration of other
independent systems (constituent systems). Its modeling through traditional sys-
tem design approaches is a challenging tasks, considering the multiple ways that
these constituent systems may participate on the SoS processes. There are some
SoS model proposals on the literature, such as the mKaos[14] project, but these
models cannot be simulated neither can be connected to external applications in
order to validate it. Starting from this point, this work proposes a goal-oriented
model for SoS that: (i) focuses on the missions that an SoS may accomplish, rather
than its architectural view and (ii) can be converted into an MS4 project capable of
simulating the behaviors extracted from the goal-model. Additionally, the designer
may connect the MS4 model to existing applications in order to verify the mission
execution. A tool for this model conversion (GM2MS4) is provided along with this
manuscript and is capable of transforming the mission model proposed into an MS4
simulation that verifies the mission accomplishment.

Keywords: System-of-Systems, SoS, SoS modeling, MS4, SoS simulation, model
conversion, goal-oriented modeling and SoS missions

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem and Hypothesis . 2
1.3 Goals . 2

1.3.1 General goals . 2
1.3.2 Specific goals . 2

1.4 Organization . 3

2 Research Baseline 4
2.1 System-of-systems . 4

2.1.1 Definition . 4
2.1.2 Distinguishing a System from a System-of-Systems 5

2.2 Goal-Oriented SoS Modeling . 6
2.2.1 Goal-seeking system . 6
2.2.2 The mKaos project . 7
2.2.3 piStar GODA . 9
2.2.4 SoS modeling on i* Framework 10

2.3 System-of-Systems simulation . 10
2.3.1 MS4 . 10

2.4 Blockchain as a Cyber-physical SoS . 15

3 Proposal 17
3.1 From goal-oriented model to MS4 model 17
3.2 piStar-MS4 goal mapper . 19

3.2.1 Model construction . 19

4 Implementation 24
4.1 Model conversion . 25
4.2 Connections . 26
4.3 DNL file generation . 27
4.4 Java class generation . 27
4.5 SES file generation . 29

5 Execution 30
5.1 Running the converter . 30
5.2 Dependencies . 30
5.3 Execution . 31

v

5.4 Importing onto the MS4 ME . 31
5.5 Before running the simulation . 33
5.6 Running the simulation . 35

6 Results 38
6.1 Unit tests . 38
6.2 Simulation validation . 39

6.2.1 A blockchain mission . 39
6.2.2 Simulation Results . 41

6.3 Challenges . 44

7 Conclusion 45

References 48

I GM2MS4 Input file 50

II Peer DNL file 61

IIIPeer Transitions Class 64

IV Peer task class 67

V Result class 68

VI Error Class 71

VIIInvalid model 72

vi

List of Figures

2.1 mKaos conceptual model for missions of SoS [15] 7
2.2 A tree representation of a task composition [14] 8
2.3 A generic piStar model at the platform 9
2.4 The MS4 environment home screen . 10
2.5 An MS4 component ready for simulation 11
2.6 SES tree view . 12
2.7 React process SoS simulation running 13

3.1 A simple mission model containing only high-level goals 20
3.2 The task T1 is refined into T3 and T4 . 21
3.3 An AND link where both G5 and G6 must be accomplished 22
3.4 An OR link: any of the tasks must be accomplished 22
3.5 A goal decomposed into a task and another goal 23
3.6 A complete example for the proposed blockchain 23

4.1 Function notation . 24

5.1 Npx command line for running the conversion tool 31
5.2 Npm command for running the conversion tool 31
5.3 Opening the import window . 32
5.4 Source type selection . 32
5.5 Project import window . 33
5.6 Rebuild project . 33
5.7 Pruning the SES file . 35
5.8 Opening the PES file in the simulator 35
5.9 Starting the simulation . 36
5.10Simulation result . 36
5.11Activity diagram of the mission "Registering a Transaction" 37

6.1 Unit tests result . 39
6.2 Simulation initial state . 42
6.3 Verifier System sends "From_G0_to_G2" to the SDK system 42
6.4 Simulation final state . 43
6.5 Simulation result dialog . 43

vii

Chapter 1

Introduction

1.1 Motivation

With the increase of autonomous interconnected systems over the last years
and the integration of cyberphysical systems into daily life, a new kind of complex
system category emerged: the System-of-Systems [8]. It refers to those systems
made out of other independent systems, where the whole is not just the sum of the
parts as in the design of common systems. Rather, these constituent systems have
their goals and autonomy to choose if they will contribute to the System-of-Systems
(also known as SoS) purposes or chase their own goals instead. Also, new features
may emerge by connecting those constituent systems together to accomplish some
major goals.

While systems which needed to be integrated to other systems are very popular
today (microservices architecture, IoT, and blockchain solutions are a few exam-
ples), the architects of these systems tend to still model them in a traditional way,
and they often may disregard the emergent behaviors that these independent sys-
tems could provide while working in a group setting. This lack of focus on emergent
behavior, or rather the attempt to restrict them, happens because the traditional
approach of systems design focuses mainly on the architectural view of the sys-
tem, and therefore it is difficult to fit the emergent behaviors into this modeling
perspective.

We search then, for a model that focuses on the missions (or the goals) of a
System-of-Systems, one that can not only abstract the architectural view of the sys-
tem but also allow the design to validate the model by connecting its simulation to
existing systems. In other words, we focus on a high-level perspective of the system
capable of evaluate the behaviors of the SoS and the behaviors that emerge from
a global mission (or a set of goals) accomplishment. By "global mission" we mean
the connection setting of the constituent systems. If a simulation of the model is
provided, it may evaluate the mission execution, outputting if the modeled mission
is achievable or not.

1

1.2 Problem and Hypothesis

The problem aimed is the lack of a model that describes a System-of-Systems
from a high-level perspective (missions) and its behaviors, rather than focusing
only on its structural view. Based on the research shown in the Chapter 2, it was
stated that:

1. There are mission model specifications existent in the literature (such as the
mKaos [14]). Yet, those models are concerned with the expected behaviors
and their description, serving as a design document. Therefore, we want to
assess if it is possible to validate a model that extends such specification by
allowing the designer to implement the tasks present at the model.

2. There are software that allows System-of-Systems validations from a behav-
ioral view, such as the MS4 ME presented later in the section 2.3.1.

Unfortunately, the simulator won’t simulate pure mission (or goal) models, nei-
ther the models found can be simulated in any other tool. The question that arises
here is: Is it possible to have a tool capable of converting from a given mission
model to the MS4 model (enabling then the mission to be validated through its
simulation)? Such tool is provided in this work.

The hypothesis that was tested in this work is that a goal model provide this
high-level abstraction, keeping it as close as possible to the model proposed in
mKaos [14], this model should be convertible into an MS4 project and validated
through the simulation of this generated project. It is expected that, from the
mission model proposed an equivalent MS4 project could be able to provide enough
information for the design to evaluate whether a mission is achievable and to point
out emergent behaviors on that System-of-Systems that allow the mission to be
accomplished, or even behaviors that prejudices the mission accomplishment.

1.3 Goals

1.3.1 General goals

Our general goals are:

• To provide a model that specifies a mission for a System-of-Systems; and

• To develop a tool capable of converting this mission model into an MS4 project
allowing the designer to implement the tasks presented at the model by inter-
facing the simulation with the real world.

1.3.2 Specific goals

To achieve this model specification and integration we focus on four main objec-
tives as described below:

2

1. To provide a goal model that has the necessary elements to specify a SoS
mission and the constituent systems relations present at this mission accom-
plishment.

2. To provide a software solution that is capable of transforming this model into
an MS4 simulation, expressing the expected behaviors presented at the mis-
sion model in the face of each constituent system and how they are intercon-
nected.

3. To verify those behaviors by adding the tasks presented at the mission model
as implementable code on the MS4 resulting project, allowing the designer
to interface the simulation with existent systems or self-implemented mocks,
and then to validate the mission accomplishment.

4. To illustrate the model proposal by modeling a mission for a private blockchain
network.

5. To test the proposed model and toolchain by implementing behaviors on the
code of the tasks and verifying if the simulation result corresponds to the
expected execution expressed in the model.

1.4 Organization

This manuscript is organized into another four chapters as described next.
In Chapter 2 it is presented the baseline of the research for this work, showing

the works that served as basis for the proposal. Some major points are covered:

• System-of-Systems definition and what are its differences to common systems;

• Properties from the goal-oriented approach that can be associated with System-
of-Systems characteristics;

• Existent works that guided the model proposal;

• System-of-Systems simulation and what is the necessary data to construct it;

• Introduction to the domain used as an example for the model construction.
Explaining which characteristics were assumed for the modeled blockchain
network, as for its constituent systems and their properties.

Chapter 3 shows how the proposal was developed, providing the methodology
of this work and how the results could be achieved. This section gives detailed in-
formation for the reader to comprehend the process executed to convert the model
into a simulation and verify the results. Also, the instructions for the model creation
and conversion as for its simulation execution are provided here.

In Chapter 6, the simulation results and the verification for the example model
are shown. We analyzed and evaluated the following questions: What is the exe-
cution result for an implemented model?; Does the simulation fail when behaviors
are not attended by the implementation of the tasks?; and What happens when an
OR-linked task fails?.

Lastly, the conclusions are presented in Chapter 7.

3

Chapter 2

Research Baseline

In this chapter, we show the knowledge base and methods used as a basis to
develop our proposal. It is divided as follows: First, in Section 2.1 we introduce
the system-of-systems concept regarding its definitions and its differences from
common systems. In Section 2.2, we show why a System-of-Systems can be mod-
eled under a goal-oriented approach and the modeling tool we have chosen for this
project. In Section 2.3, we present the simulation tool that may validate the pro-
posed model. In the last section 2.4, it is explained why a blockchain is an SoS and
thus can be a valid domain to exemplify the proposal.

2.1 System-of-systems

A system is usually seen as a whole, as a black-box that must meet some criteria,
and by doing so, it is defined as a functional system. In other words: "A system is a
set of interrelated elements" [1]. But very often those elements are other systems
by themselves, which are then called constituent systems. The resulting set created
by grouping other individual and autonomous systems is defined as a "system-of-
Systems" and it may appear abbreviated as SoS from now on in this manuscript.

The question that arises is: What distinguishes a system composed of systems
from a system composed of parts? The following subsections will answer that ques-
tion by looking at the SoS definition and evidencing some distinctions between
them.

2.1.1 Definition

The most commonly used definition for an SoS is the one presented by Maier
[8] who states that "a System-of-Systems is an assemblage of components which
individually may be regarded as systems, and which possesses two additional prop-
erties: operational independence of components and managerial independence of
components".

For the first additional property, the subsystems must guarantee that once they
are disassembled from the mesh they must continue to operate independently (al-
though the disconnected element probably would be pursuing its own goals, rather

4

than the mesh’s one). As for the second, "the components not only can operate
independently, they do operate independently"[8].

2.1.2 Distinguishing a System from a System-of-Systems

For a system to be characterized as a System-of-Systems the literature converges[3]
to some properties that must be shown to exist in the system design.

We can distinguish a system, properly speaking, from an SoS by comparing them
using the following characteristics[3]:

Autonomy

• System: parts often lose autonomy to grant autonomy to the system

• System-of-Systems: constituent systems must be autonomous to accomplish
the purpose of SoS

Belonging

• System: parts are intrinsic to the system itself and designed as such, the parts
are not independent.

• System-of-Systems: constituent systems are independent and because of
that, they may or may not choose to contribute to accomplish the SoS pur-
poses, based on its own goals and taking into account the SoS’ goals on that
decision process.

Connectivity

• System: all the connections are known at the system’s design time, multiple
connections are abstracted inside the elements, and the external connections
to other systems are minimized.

• System-of-Systems: All the constituent systems may communicate to each
other allowing them to contribute to each other to accomplish their individual
goals.

Diversity

• System: Simpler abstractions are implemented to reduce the diversity of the
parts, forcing different discrete modules to fit in known interfaces.

• System-of-Systems: The open and dynamic connectivity allows the constituent
systems to be more diverse and even play different roles for different con-
texts in an SoS.

5

Emergent Behaviours

• System: for a simple system, its emergence is foreseeable (or at least there is
an attempt to predict it by brainstorming, testing, etc.) and must be designed
or tested to avoid any kind of unexpected emergent behaviors.

• System-of-Systems: the emergent behaviors of the constituent systems are
deliberately not designed, neither can be predicted. Instead, an additional
capability in the SoS, provided by some of the constituent systems, would
detect and warn/eliminate bad behaviors from the mesh.

2.2 Goal-Oriented SoS Modeling

In this Section, we present the concepts for a goal-seeking system and how it
relates to the SoS modeling. In other words: What is the basis to model an SoS
from a goal-oriented modeling approach? The following subsections show that an
SoS can be modeled as a goal-seeking system, and thus it is possible to model it
through its goals rather than its architecture.

2.2.1 Goal-seeking system

Ackoff [1, p.665] states that:

"A goal-seeking system is one that can respond differently to one or more dif-
ferent external or internal events in one or more different external or internal
states and that can respond differently to a particular event in an unchanging
environment until it produces a particular state (outcome). Production of this
state is its goal. Thus such a system has a choice of behavior. A goal-
seeking system’s behavior is responsive, but not reactive. A state which
is sufficient and thus deterministically causes a reaction cannot cause different
reactions in the same environment.

Under constant conditions a goal-seeking system may be able to accom-
plish the same thing in different ways and it may be able to do so under
different conditions."Ackoff [1, p.665]

It is easy to conclude that an SoS satisfies the properties required by this def-
inition of a goal-seeking system, and therefore it can be modeled as one. A goal-
oriented approach would allow us to express the variability of an SoS through the
relations between the goals and their dependencies. We can then verify if there is
any variability. If the supposed SoS have different paths to achieve the same goal,
it may be an SoS, otherwise, an SoS approach is not recommended and more tradi-
tional modeling methods may be used. Also, based on the requirements of the goals
we can check if a capability is available on the network.

Goal-oriented modeling expresses the possible behaviors for goal achievement.
A declarative modeling approach like this makes the expected behaviors and pos-
sibilities explicit, instead of trying to guess them from a port-interface diagram.
By going this way we believe we can raise the abstraction level of the set, from a

6

pure relational perspective to a behavioral one. We believe that this can reduce the
(already high) complexity of the requirement gathering for an SoS and its mission
execution analysis.

2.2.2 The mKaos project

This kind of perspective over SoS design is not entirely new and the mKaos [14]
first proposed a modeling language for SoS based on the Kaos[7] abstraction for
goals, but extending it to missions of SoS, its conceptual model is shown at the
Figure 2.1.

Figure 2.1: mKaos conceptual model for missions of SoS [15]

That work suggests some elements that constitute a mission in an SoS context.
Those are:

• Tasks

A task is an operation to be executed by the system, these are the final de-
composition for a goal, a task must represent something that happens at one
of the systems, the decomposition for a task is organized to follow a specific
order. As shown in the Figure 2.2

7

Figure 2.2: A tree representation of a task composition [14]

• Preconditions

Also called trigger, this is a set of conditions (operational limitations or re-
quirements) that must make the system to execute a specific mission.

• Executor

The executor is a system of the SoS that executes a task.

• Priority

The priority that a mission has over another in the SoS.

• Parameter

Parameters are variables that a mission can receive or return, they can offer
additional knowledge about the context or provide conditions for a mission or
tasks to execute.

• Constraints

Additional conditions must be satisfied over the system execution, if not sat-
isfied the mission may fail. The constraints can be classified as invariants or
heuristics. The first refers to the mandatory conditions that an SoS must meet,
as the second, refers to the conditions whose satisfaction is not assured.

• Final Condition

A final condition is a condition that once met, stops the mission’s execution
and may be used as the accomplishment result of the mission.

• Relationship

A relationship between missions specifies if a given mission contributes or
not to the accomplishment of another mission. This creates a dependency
between the missions and tasks if needed.

8

The mKaos studio [15] provides ways to design an SoS from its missions per-
spective, yet it does not allow the user to implement any of the items, leading to an
architectural view of the SoS missions only.

As stated before in Chapter 1, we intend to provide a dynamic model of the sys-
tem, which would allow the designer to evaluate the viability of an intended mission.
From our research, there are mission modeling tools and SoS simulators (such as
the MS4Systems [9]) but it lacks an integrated model simulation environment that
could provide this analysis from a mission view.

Later in Chapter 3, we will present a tool that performs this environment inte-
gration while trying to keep the concept of a mission as close as possible to the one
presented in this Section.

2.2.3 piStar GODA

The piStar-GODA [13] is an extension of the tool of the piStar project[11], mak-
ing it easy to enable new features focused on the cases studied in the research
group. The GODA integration itself with the piStar model is a great example of how
we can extend the piStar application, for this current work we have used the piStar
version available at https://pistar-goda.herokuapp.com/.

The piStar tool offers a graphical design platform for designing i* [6] goal mod-
els using the tropos methodology [4]. A piStar model is shown on the Figure 2.3,

Figure 2.3: A generic piStar model at the platform

This tool allows us to implement goal models regarding the relationships of the
elements which is our main concern for an SoS mission. As the mKaos [15] tool
presented before, the goals hold the representation for a mission and its decompo-
sition. The model itself is purely declarative too, no implementation is needed at
the piStar modeling stage.

9

https://pistar-goda.herokuapp.com/

2.2.4 SoS modeling on i* Framework

There is currently on the literature some proposals for modeling System-of-
systems under the iStar Framework. The work of Alhajhassan[2] proposes an agent
based modeling for SoS. Goal-oriented modeling simplifies the design process by
elucidating the goals structure for a process, it removes the need of precisely de-
scribing agents or systems that participate on the process.

All goal-oriented modeling approaches researched shared common elements,
such as agents, goals, relationships and soft goals. The proposed tool will try to
follow the same path as stated by the presented studies to be in consonance with
the current literature about SoS and SoS modeling.

2.3 System-of-Systems simulation

In this section, we explore the simulation tool for SoS, how it works, and its
simulation model.

2.3.1 MS4

Based on the Eclipse IDE, the MS4 Modelling Environment [9] is a platform
for SoS simulations, its approach is based on the widely known DEVS (discrete
event system specification) [19] framework, which is based on atomic models for
the components. The resulting transition system always goes from a previous state
to another or else it passivate1 on a defined state, each component has input and
output ports for communicating with other systems. Also, it may control as many in-
ternal states (variables) as it wants to, and each system is completely independent.
So it may respond to many requests from different components of the network.

Figure 2.4: The MS4 environment home screen

1passivate: holds on the state until an external condition triggers it to another state

10

Figure 2.5: An MS4 component ready for simulation

All the paths are triggered by events emitted by other elements, those emissions
may be an autonomous signal - in which case the component has decided for their
own reasons that the signal must be sent - or they are responses to external events.

After a component is ready, it can be simulated as an isolated block, and as we
can see in the Figure 2.5, it becomes a black box with inputs and outputs so you
can test if the system behaviors are being achieved correctly.

The platform works with two input files to create the SoS perspective and to
model it: Sequence diagrams and atomic models. For the first, it uses the UML
(universal modeling language) [5] specification and keeps the description in XML
files that can be imported from other compatible XML based applications, or by de-
sign it in the environment itself. Thus it can construct the SoS from an architectural
description.

But we want to evaluate an SoS mission execution from a goal model. Then,
how to use the MS4 environment to simulate a mission instead of verifying its ar-
chitecture only? This leads us to the second kind of input: atomic models, which
are going to be introduced next in Section 2.3.1.

Once the components are built disregarded of the approach that produced them,
it is time to link them and describe their connections to each other. The file re-
sponsible for this description is the SES (System Entity Structure) file. It uses a
proprietary structured natural language for achieving this. We show an example of
it in the Listing 2.1, the SES links the systems (oxygen, hydrogen, ‘reactProcess‘
and water) to simulate water production by the reaction of the elements triggered
by the ReactProcess manager component.

1 From the reaction perspective, ChemicalReaction is made of
ReactProcess, Hydrogen, Oxygen, and Water!

2

3 From the reaction perspective, ChemicalReaction sends StartUp to
ReactProcess!

4

5 From the reaction perspective, Hydrogen sends Release to ReactProcess!
6

11

7 From the reaction perspective, Oxygen sends Release to ReactProcess!
8

9 Hydrogen can be LowH or HighH in HydroConcentration!
10

11 Oxygen can be LowO or HighO in OxyConcentration!
12

13 From the reaction perspective, ReactProcess sends ReleaseTwoMolecules
to Hydrogen!

14

15 From the reaction perspective, ReactProcess sends ReleaseOneMolecule
to Oxygen!

16

17 From the reaction perspective, ReactProcess sends AcceptOneMolecule
to Water!

18

19 From the reaction perspective, Water sends MoleculesOfWater to
ChemicalReaction!

20

21 From the reaction perspective, Hydrogen sends MoleculesOfHydrogen to
ChemicalReaction!

22

23 From the reaction perspective, Oxygen sends MoleculesOfOxygen to
ChemicalReaction!

Listing 2.1: SES file example for an SoS

The SES file is then converted into a specialization tree - shown in the Figure 2.6
-, and at this stage we can specialize those elements that have variants (this is ex-
pressed by the "{ComponentType} can be X or Y in {Unspecialization}" statement,
at line 9 and 11 in the Listing 2.1).

Figure 2.6: SES tree view

12

Once it is pruned, the SoS is ready for simulation, the resulting view of the
mesh can be seen in Figure 2.7, the lines represent the connections between the
components. Note that they only link output ports to input ports. Everything that
happens inside a component is unknown from the SoS perspective, which corre-
sponds to the expected for the SoS abstraction seen before in Section 2.1. Often,
the designers may not know how those components are implemented, but they have
in hands those subsystems behaviors (behavior here means: "for a given input the
system outputs an expected value (or range) or else it emits a generic signal") well-
mapped through API documentation, structural design, behavioral tests, etc.

Figure 2.7: React process SoS simulation running

Atomic models

Another way to model the MS4’s components is the atomic models, as referred
early in this section. Those are files written in another yet structured language:
DNL (DEVS Natural Language) [10]. Bellow we show the ReactProcess DNL file
from the previous subsection as an example:

1 accepts input on StartUp!
2 accepts input on Release with type IntEnt!
3 use Release with type IntEnt!
4 generates output on AcceptOneMolecule !
5 generates output on ReleaseTwoMolecules!
6 generates output on ReleaseOneMolecule!
7 use releaseTime with type double and default "0"!
8 to start hold in sendRelease for time "releaseTime" !
9 //
10 passivate in waitForInput!
11 when in waitForInput and receive StartUp go to sendRelease!
12 when in waitForInput and receive Release go to sendRelease!
13

14 hold in sendRelease for time "releaseTime" !

13

15 from sendRelease go to waitForInput!
16 after sendRelease output Release!
17 external event for waitForInput with Release
18 <%
19 IntEnt Release = null;
20 for (Message<IntEnt> msg : messageList) {
21 Release = msg.getData();
22 if (Release.getValue() == -1) {
23 break;
24 }
25 }
26 int income = Release.getValue();
27 if (income >0){
28 releaseTime = 1;
29 }
30 else{
31 releaseTime = Double.POSITIVE_INFINITY;
32 }
33 %>!
34 output event for sendRelease
35 <%
36 output.add(outReleaseTwoMolecules, "ReleaseTwoMolecules");
37 output.add(outReleaseOneMolecule, "ReleaseOneMolecule");
38 output.add(outAcceptOneMolecule, "AcceptOneMolecule");
39 %>!

Listing 2.2: A DNL file example

The DNL file can be extended on its transitions and events by adding Java code
that will perform actions on the state of the component, process the input, or add a
value to an output signal (i.e. it outputs a custom value for the signal, allowing the
system not only to trigger other systems but indeed to communicate with others in
the network).

By knowing its structure we can generate it by meta-programming the com-
ponent, as its base is a natural language, the system’s behaviors can be easily
understood by anyone.

Also, the capability of writing Java code directly into the transitions supports
creating components that more than follow state paths also do calculate something
- by interfacing with some real-world system or by mocking values - and verify
conditions of interest for the SoS implementation.

With those features (DNL, SES, and Java extension code) we may achieve our
goal of modeling missions for an SoS. In Chapter 3, we propose a mapper capa-
ble of converting a goal-oriented mission model to an SoS perspective ready to be
simulated on the MS4 Modeling Environment.

14

2.4 Blockchain as a Cyber-physical SoS

As stated by other works [16], a blockchain may be seen as SoS since it is formed
by autonomous agents that operate over the same set of data. The emergent be-
haviors that can surge then are infinite. In this work it will be used a blockchain
network as the domain of the mission modeling.

Van Lier [16] focuses on the applications of blockchain and the emergent behav-
iors that derive from sharing a piece of data, i.e. a network between a supermarket
and its vendors may be able to optimize the delivery of the products and to improve
predictions about the consumer demand, making the supply chain faster than be-
fore.

Instead, this work will aim in general missions of blockchains, such as the regis-
tering process, integrity check (which is performed as a sum of contributions from
each agent in order to validate the good faith of the network participants) and so
on.

It may be possible to model blockchain contracts using the proposed model in
this manuscript, but the perspective about the model agents must change: instead
of seeing the network elements and their behaviors, the model must design the
contribution of data from each network participant, i.e., In the previous example
how the consumer and the vendor behaviors with regard to the context of the data
that they share, for example the available stock amount. Following works may try
to validate this hypothesis since it was taken out of the scope of this project due to
time limitations.

Blockchain Elements (Constituent Systems)

A private blockchain network is formed by four independent systems that col-
laborate together in other to assure some expected properties from the blockchain,
such as integrity, real-time synchronization, block validation, etc.

The four major elements that constitutes a blockchain network are:

• Peers: responsible for executing the smart-contract transaction and holding
the current state of the world;

• Orderers: servers responsible for the validation of the block as for to keep
their sequence immutable;

• Chaincode: also known as smart-contract, it is a piece of code instantiated on
the network which is called at every transaction. Responsible for validation
and calculations for a transaction running on the blockchain; and

• SDK: any application that is capable of communicating to the blockchain net-
work through an SDK, it may be a phone app, web app, etc.

Capabilities

Some capabilities on this proposed blockchain are assumed for the constituent
systems of this blockchain, defining what are the assumed capabilities is important

15

for the mission modeling that will be presented later in Section 3.2.1, those skills
are:

• An SDK application is able to communicate to the peers through gRPC and
REST protocols. Additionally, it can broadcast search messages on the net-
work for all peers, using either TCP or UDP protocol.

• A Peer is able to broadcast its result to all the applications listening for trans-
actions or to unicast the result to the last online application.

• An Orderer will notify the network through broadcast every time that a new
block is added to the chain.

16

Chapter 3

Proposal

In Chapter 2, the problem was made clear: there are goal-oriented approaches
for SoS modeling (Section 2.2) and there are simulation tools for SoS (Section 2.3),
but there isn’t any tool capable of integrating these two methods.

The problem that remains is: How to model an SoS from a mission (or goal)
perspective and simulate it in the terms of its behaviors? This is what the present
work tries to solve with the proposed tool presented in Section 3.2.

In Section 5.1, it is shown how to download, install and execute the GM2MS4
tool, with an exported piStar model as the input.

3.1 From goal-oriented model to MS4 model

When converting from a piStar model to an MS4 model it is important to know
how the elements from one are associated to the other. In this section it will be
explained how the elements are related, starting at the conceptual model for an
SoS mission and the piStar elements and in the sequence the relation between the
iStar and the MS4 ME.

Using the mKaos conceptual model for a mission given in Figure 2.1, its ele-
ments are represented both in the piStar and MS4 as shown in the Table 3.1.

mKaos piStar Model MS4 Model

Mission

Each mission (in-
dividual, global or
common) is repre-
sented as a goal with
a property that sets
the constitutent sys-
tem where this goal
must be achieved

Each goal under the tree
becomes a linked state,
having a predecessor
and a successor state,
the state sequence is
extracted from the tree
structure (goals that re-
side on higher levels are
executed before the ones
in lower levels of the tree)

17

Table 3.1 continued from previous page
mKaos piStar Model MS4 Model

Constraints

AND/OR links are ca-
pable of restricting
the mission execution
in case of failure.

At each state transition
the runner method ver-
ifies the last execution
result and evaluates the
continuation of the mis-
sion based on the relation
of that state (goal) to its
parent. This evaluation
decides if the system will
do its calculations and
contribute to the mission
accomplishment or not.

Task
Tasks are represented
with iStar elements of
the same name.

Each task is represented
by a Java method that
receives the last execu-
tion result and returns the
next result

Task parameter
Not present in the
model

Not present in the MS4
model

Priority

Priorities can be set in
the order array spec-
ified along the goal
name. i.e., [T0;T3;T2]
prioritizes the tasks
T0 and T3.

The order that the tasks
methods will be called
during a state transition

Connectivity

The model allows
connectivities to be
expressed by linking
goals with different
"component" proper-
ties.

Connections are ab-
stracted into signal
events from a constituent
system to another, these
signals when emitted
carry the goal execution
result. This allows each
system to evaluate if they
must execute their tasks
related to that requisition
or not, in simpler words:
Given the last state of
the mission, should the
system colaborate with
it?

18

Table 3.1 continued from previous page
mKaos piStar Model MS4 Model

Executor

The root node for a
tree of goals repre-
senting a mission, also
called verifier on this
text, this is the system
responsible for exe-
cuting the mission and
for its result evalua-
tion

An aditional constituent
system is created to vali-
date the mission final re-
sult. The execution rules
and signal behaviors are
the same as the ones from
the others contituent sys-
tems.

SoS

The set of goals of
the distinct systems
that are part of the
SoS. The tree present
in the agent on the
model.

The set of connections of
distinct systems that par-
ticipates on the SoS. Also
called SES file, as pre-
sented before.

Table 3.1: Relation between the models elements

3.2 piStar-MS4 goal mapper

While the goal-model exported file has its own definitions[12] and represents
only the SoS goals, the simulation comes from the MS4 model which describes sys-
tems transitions of the constituent systems, or behaviors: the DNL files. Linking
these DNLs together in a SES file will enable the SoS simulation.

The proposed tool is named GM2MS4 (an acronym from "Goal Model to MS4")
and will be referred to as such from now on. It is responsible for the mapping from
the model to the simulation files, making it possible to simulate the goals of an SoS
from its mission model exported by the piStar-GODA [12].

The next sections will show how this was accomplished and how to run the
software. Starting from the model construction (Section 3.2.1) where we show
how to construct a mission model in the piStar-GODA that is compatible with the
GM2MS4 tool.

The implementation in Section 4 presents how the tool performs the transfor-
mation from the proposed model to the simulation project.

3.2.1 Model construction

As mentioned before, the models are constructed in the piStar-GODA tool1. Our
model represents a mission for an SoS, and the mission is represented in the appli-
cation as an agent containing a goal at the root level of the agent tree. The children
of the root goal are then a composition of other missions that must be accomplished
by other systems.

1available at https://pistar-goda.herokuapp.com/#.

19

https://pistar-goda.herokuapp.com/#

The model uses three elements from the modelling application:

• Goals

– Represents a high-level abstraction for an expected behavior, it consti-
tutes a mission in our model;

– Each goal must have a property named "component" in the model indi-
cating what is the constituent system that must accomplish it;

– It can be decomposed into other goals, and those may or may not have
the same property component.

– It can be decomposed into tasks2;

– The goal name must start with a unique identifier in the form of "G%d:",
where %d is any natural number, for example: G12, G5;

– The goal name must end with the order of execution of its children, sep-
arated by a ’;’ and inside square brackets, the order is then defined from
left to right . i.e. G0: A Super Goal [T1;T2;G1] is a valid name for a goal,
defining the execution order as T1 -> T2 -> G1;

– In the execution order array, the tasks must always precede other goals.

In Figure 3.1 we show a simple model for an SoS mission. Each color des-
ignates a different system where the goal must be achieved. The legend in
Figure 3.1 shows what constituent system the color represents in the model3.
The color code will be kept as shown in the Legend 3.1 for the examples pre-
sented next.

� Root (mission verifier) component � SDK component
� Peer component � Orderer component

Figure 3.1: A simple mission model containing only high-level goals

• Task

– Represents an implementation method for a constituent system process;

– Each task must have a property named "component" in the model indi-
cating what is the constituent system that must accomplish it;

2note that it does not make sense to execute a task in a different system to achieve the goal of
some other system. So a task must belong to the same system as its parent.

3the colors are for understanding purposes only, they do not represent anything about the model
conversion. The constituent system name must be set at the "component" property at the goal
element.

20

– All the leaf tasks on the model tree will be converted into Java meth-
ods. These methods together define the necessary interface for the com-
ponents to communicate while respecting the relation provided in the
model;

– A task must always relate to a parent of the same component type;

– A task may be decomposed in other tasks and, in this case, they are
named refiner tasks;

– A task must not be decomposed into goals;

– The task name must start with a unique identifier in the form of "T%d:",
where %d is any natural number;

– The task name must end with the order of execution of its children, sep-
arated by a ’;’ and in between square brackets, the order is then defined
from left to right. i.e. T0: A Super Task [T3;T4;T5] is a valid name for a
task, and it defines the execution order as T3 -> T4 -> T5.

This element allows us to interface with the real world or simulate processes
through the Java programming extension provided by the DNL file.

In Figure 3.2, the refinement of a task is shown, and the leaf tasks are con-
verted later into Java methods.

Figure 3.2: The task T1 is refined into T3 and T4

• Links

– AND links: represents a dependency between the children. In other
words, the first child must be accomplished before the second starts. In
Figure 3.3, it is shown an example for a goal having two children linked
by an AND relation.

21

Figure 3.3: An AND link where both G5 and G6 must be accomplished

– OR links: Represents a variability between the children where the accom-
plishment of only one of the children is necessary to achieve the accom-
plishment of the parent. In Figure 3.4, a variability example is shown,
where the success of any of the tasks accomplishes the goal G6.

Figure 3.4: An OR link: any of the tasks must be accomplished

Links can be used to decompose a task - creating a refined task - or to decom-
pose a goal into other goals and/or tasks. Figure 3.5 shows a goal decomposed
into a task and another goal. In this case, all tasks must precede the goals in
the execution order. Graphically that means all the tasks must be placed at
the left of the goal children of the parent.

The number of children of a parent is unlimited per the model specifications
but they must all be connected with the same type of link.

22

Figure 3.5: A goal decomposed into a task and another goal

An SoS model example using Blockchain

In Figure 3.6, a complete goal model for a blockchain network is shown. The
next Section shows how this model is converted into an MS4 project.

Registering
a transaction G0: Register a

transaction
[G1;G2;G4;G7]

G4: Calculate
transaction result

[G5;G6]

G5: Invoke
chaincode

G6: Return contract
execution result

[T9;T10]

G8: Verify result
pool [T11;G10]

G10: Send signed
transaction to

Orderer

G11: Validate block
signatures [T12;G12]

G12: Create
block [T13;T14]

T13: Add block
to chain

T14: Notify the
network

G13: Execute
bussiness logic

T8: Execute requested
contract function

T9: Broadcast
transaction result pool

to channel

G7: Receive
result pool

T10: Unicast
transaction result

through grpc

G1: Find the
target peers
[T0;T1;T2]

T0: Search for peers
on discovery channel

T1: Broadcast
search message

[T3;T4]
T2: Extract from
local config file

G2: Send
transaction request

to peers

T3: Broadcast
through TCP

T4: Broadcast
through UDP

T5: Send request
through TCP

[T6;T7]

T6: Send request
through gRPC

T7: Send request
through REST

T11: Verify
peer response

T12: Check
signatures

� Root (mission verifier) component � SDK component
� Peer component � Orderer component
� Smart-contract

Figure 3.6: A complete example for the proposed blockchain

23

Chapter 4

Implementation

In the topics ahead, the mapper implementation is presented in the following
structure:

• Model conversion: Model loading and parsing process. It is shown how the
piStar model is converted into the main structure used by the map which is
the GoalTree;

• Connections: Definition of the structure of connections. What are the model
rules that describes an interconnection between different systems and how
the structure is calculated;

• DNL file generation: Shows the functions that are responsible for generating
the DNL, naming rules for ports, and how the state sequence is generated
from the goal model. Also, it is explained how a system triggers another one
and waits for their response;

• Generation of Java classes: explains which Java classes are created along with
the DNL file and how they contribute to the simulation process, and

• SES file generation: points out which previous structures are used in order to
create the SES graph.

The GM2MS4 tool was written in Typescript, which is a superset of the
JavaScript language that allows typing for the objects and structures. All the types
of structures presented in the listings of this Section are in Typescript type nota-
tion.

To simplify reading comprehension, the function prototypes presented in this
Section follow the notation shown in Figure 4.1.

functionName(parameter: parameterType) =⇒ ReturnType

Figure 4.1: Function notation

24

4.1 Model conversion

Once the piStar [13] model is ready, it can be exported as a JSON file by clicking
at "File > Save Model" option from the toolbar. The saved model will be used as the
input for the GM2MS4. The exported JSON file for the example shown in Figure
3.6 can be found in Appendix I.

After the model isLoaded, it is validated by the function
validateModel(model: Model) => void, responsible to check if there is more
than one root in the model. If so, the model is taken as invalid and the conversion
stops.

The component property of the root goal isn’t restricted and the designer may
set the value wished for naming the mission verifier module, it won’t make a dif-
ference for the model processing. As stated before, this node is responsible for
evaluating the result of the mission execution. Once the mission has finished it will
output a fail or pass for the SoS simulation.

Then, the function convertToTree(model: Model) => GoalTree converts the
loaded model into a tree that can be represented by the recursive type described
in Listing 4.1. This function starts from the root node (the one with the property
"selected: true") and then searches for its children in the link array. This process is
repeated recursively for each child until it reaches the leaf nodes.

1 interface GoalTree {
2 // node data
3 component: string
4 type: 'task' | 'goal' | 'resource'
5 isRoot: boolean
6 identifier: string
7 text: string
8

9 // children and relationship data
10 relation: 'and' | 'or' | 'none'
11 children?: GoalTree[]
12 }
13 // type alias
14 interface Node = GoalTree

Listing 4.1: Tree type returned after model conversion

At the end of the calculation, the model is converted into a GoalTree, which is
the main structure that is operated in the tool, from which the desired properties
are extracted and the project for MS4 is created.

In line 14 of Listing 4.1 a type alias called Node is defined to refer to the Goal-
Tree. Sometimes a function may return a Node array to indicate that the original
tree was decomposed in many other trees containing only the desired elements.

25

4.2 Connections

Before creating the MS4 model, it is necessary to navigate the goal tree to
search for connections between different constituent systems. These will be neces-
sary to describe the ports of a component (input and output) in the MS4 represen-
tation.

The function componentConnections(tree: GoalTree) => Connections ap-
plies a recursive reduce on the tree, searching for goals linked to goals from a
different component. Every child with the property "component" distinct from its
parent is then added to the Connections structure, adding an output port for the
parent and an input port for that child.

The Connections structure is presented below in the Listing 4.2:

1 type port = {
2 inputPortName: string
3 outputPortName: string
4 from: connectionNode
5 to: connectionNode
6 rootLink: boolean
7 }
8 type Connections = {
9 [K: string]: port[]
10 }

Listing 4.2: Connnections structure

For a tuple (from : Node, to : Node), the properties "inputPortName" and "out-
putPortName" are named based on the rule presented in Listing 4.3:

1 inputPortName: `From_${to.identifier}_to_${from.identifier}`,
2 outputPortName: `From_${from.identifier}_to_${to.identifier}`,

Listing 4.3: Ports naming

With this dependencies, the SoS constituent systems will be capable of com-
municating with each other, adding dependency between them, which means: a
system may depend on another system to accomplish some goal.

Every time a component sends a signal to another system, it returns to its initial
state where it will wait for the next event.

Once the triggered goal on the targeted system is accomplished (or not), the
called system will trigger the caller back by emitting an event on its respective
input with the response for the caller request.

Example: If in the model, component A is linked to component B through the
goals G1 and G2, during simulation, component A must trigger component B at
input port "From_G1_to_G2" using its output port with the same name. Once this
branch execution is finished, component B will trigger component A back on input
port "From_G2_to_G1" using an output port with the same name. The signal carries
the goal execution result. This communication is better represented in Figure 5.11.

26

4.3 DNL file generation

For the DNL writing, first, we group the root branches by component, the func-
tion

getTreeNodeByComponent(nodeType: goal | task, tree: GoalTree) =>
[component: string, rootGoals: Node[]]

results in a tuple containing the component name ("component" property set in
the goal model) and its input goals. Input goals are defined as the goals which are
connected to a parent having a different component property. If the goal is linked
to a parent of the same component type then it is taken as the successor state in
the MS4 model.

All components have the same initial state: waitForInput.
Taking the third branch from the example shown in Figure 3.6, it is extracted

the following state sequence in the MS4 model for the Peer component:

InputFrom_G0_to_G4 −→ [waitForInput −→ G4 −→ G5] −→ OutputFrom_G5_to_G6
InputFrom_G6_to_G5 −→ [waitForInput −→ G5 −→ G6] −→ OutputFrom_G4_to_G0

Note that G6 outputs at the "From_G4_to_G0" port, this is a rule: the last goal
of a component on the branch outputs back at the output port associated with the
root node of the sequence.

Every time a component outputs a signal it must wait for the response of that
system. This is done by making it go back to the initial state "waitForInput". As
the DNL model is atomic, no conditional branch between states is allowed. To
allow the system to continue the dependent process, an auxiliary state was added
to hold the transition after an external component has replied with the requested
goal response. The state is named by the following rule:

[CallerIdentifer]_continue (4.1)

where [CallerIdentifier] is the identifier tag of a goal in the set of output goals.
I.e., for a set [G0, G2, G6, ...] representing the states which trigger a system

of a different type of a component, a set of the same size containing the states
[G0_continue, G2_continue, G6_continue, ...] will be created to resume the tree
execution at the point which the component went back to its initial state.

The generated DNL file for the peer from the example model (Figure 3.6), is
available in the Appendix II.

4.4 Java class generation

As pointed out before in Section 2.3.1, the MS4 DNL files can be extended using
Java code compatible with release 1.6 of the language (the MS4 environment runs
under this version).

27

Each component defined in the model leads to two classes:
{component}TranstionsClass and {component}TaskClass. i.e, for a component
named SDK, two classes are generated: SdkTransitionsClass and SdkTaskClass.

The transition classes define methods terminated by "_runner" which are called
at each state transition of a system. Those methods will call methods defined in
the corresponding task class - for the task class, the methods end with "_task" -
arranging their sequence execution and verifying if the result corresponds to the
relation expected for a goal to be achieved. The call of the runner method can be
seen in line 58 of the listing II.1 in Appendix II.

1 public Result return_contract_execution_result_runner(Result result) {
2

3 result = verifyContinuation(result, "and" , true);
4 if (result.locked()) {
5 return result;
6 }
7

8 TaskRunner[] runners = new TaskRunner[] {
9 new TaskRunner() {
10 public Result run(Result res) {
11 return PeerRunner.Broadcast_transaction
12 _result_pool_to_channel_task(res);
13 }
14 },
15 new TaskRunner() {
16 public Result run(Result res) {
17 return PeerRunner.Unicast_transaction
18 _result_through_grpc_task(res);
19 }
20 }
21 };
22 return tasksRunner(runners, "or", "and", result);
23 //Goes to state: output_state
24 }

Listing 4.4: PeerTranstionsClass.java

In Listing 4.4 the runner method for the goal G6 is shown. First, it verifies if it
can continue based on the last result and its relation to the parent and then groups
the tasks in an array to be executed by the tasksRunner method.

The method verifyContinuation will lock the result state of the component if a
child linked by an OR link executes successfully (there is no need to process any
new tasks at the same level). If a task linked by an AND link fails then the following
tasks should not be executed.

The tasksRunner method is responsible to execute the runner sequence, evalu-
ating at the end of each task execution if it may continue or not.

The PeerTransitionsClass and PeerTaskClass can be found in appendices III.1
and IV.1

28

Two auxiliary classes are provided by the tool: Result and Error. The first holds
the result that is carried through transitions, where each component has a variable
of type Result to hold the result state of the last executed task. The second holds
an Error value inside the Result state and the user may modify the class in order
to add more info to the result in the case of an execution error. These classes are
available in Appendices V.1 and VI.1

4.5 SES file generation

As the last step of the transformation, the SES file is generated. The output
and input ports are matched from the arrangement of the Connections structure
presented before, with an array of goals for each component (both structures are
calculated in the first step of the conversion. Those structures are the information
needed to create the connections graph expressed in the SES file. An SES file
example for the model presented in this section is given in the Listing 4.5.

1 from the blockchain perspective, Registering_a_transaction is made of
Verifier, Peer, Chaincode, Sdk, and Orderer!

2

3 from the blockchain perspective, Registering_a_transaction sends
StartUp to Verifier!

4

5

6 from the blockchain perspective, Peer sends From_G5_to_G13 to
Chaincode!

7 from the blockchain perspective, Chaincode sends From_G13_to_G5 to
Peer!

8 from the blockchain perspective, Verifier sends From_G0_to_G4 to Peer!
9 from the blockchain perspective, Peer sends From_G4_to_G0 to Verifier!
10 from the blockchain perspective, Verifier sends From_G0_to_G7 to Sdk!
11 from the blockchain perspective, Sdk sends From_G7_to_G0 to Verifier!
12 from the blockchain perspective, Verifier sends From_G0_to_G1 to Sdk!
13 from the blockchain perspective, Sdk sends From_G1_to_G0 to Verifier!
14 from the blockchain perspective, Verifier sends From_G0_to_G2 to Sdk!
15 from the blockchain perspective, Sdk sends From_G2_to_G0 to Verifier!
16 from the blockchain perspective, Sdk sends From_G10_to_G11 to Orderer!
17 from the blockchain perspective, Orderer sends From_G11_to_G10 to Sdk!
18

19 from the blockchain perspective, Verifier sends stop to Peer!
20 from the blockchain perspective, Verifier sends stop to Chaincode!
21 from the blockchain perspective, Verifier sends stop to Sdk!
22 from the blockchain perspective, Verifier sends stop to Orderer!

Listing 4.5: SES file for the example model

29

Chapter 5

Execution

In this chapter it is presented how to run an SoS simulation using the project
that the GM2MS4 tool exports. The sections will show how to:

1. Execute the GM2MS4 program

2. Load the project into the MS4 ME

3. Create execution conditions for the leaf tasks

4. Evaluate the simulation result

5.1 Running the converter

The tool may be run from a development environment or directly from the npm
package. In the first case, the user must download the code from the GitHub
repository[17] (available at https://github.com/vieirin/GM2MS4). If they want
to use a different model, the model path that parametrizes the loadModel function
must be changed to the path of the new model first. Then the tool can be executed
by running the command given in Figure 5.2. For the second case, no repository
download is needed and the process is explained at Section 5.3.

In the following sections we present the project dependencies, how to execute
the tool, how to import the outputted MS4 project inside the MS4 ME, and finally
how to simulate the mission.

5.2 Dependencies

To run the converter, the user must have Node.js installed on the machine.
In Listing 5.1, the libraries that the tool depends on to run are shown. They can

be installed by invoking the command npm install from the root directory of the
repository.

1 {
2 ...,
3 dependencies: {

30

https://github.com/vieirin/GM2MS4

4 "@types/node": "^12.11.5",
5 "jszip": "^3.7.1",
6 "lodash.intersectionby": "^4.7.0",
7 "lodash.merge": "^4.6.2",
8 "lodash.mergewith": "^4.6.2",
9 "lodash.uniqby": "^4.7.0",

10 "ora": "^4.0.2",
11 "replace-in-files": "^2.0.3",
12 "typescript": "^4.3.5",
13 "yargs": "^14.2.0"
14 },
15 ...,
16 }

Listing 5.1: Dependencies Sectionfrom the package.json file

5.3 Execution

The converter binary is available at the npm registry "gm2ms4-dev"
(https://www.npmjs.com/package/gm2ms4-dev) and can be run using the npx com-
mand from Node.js installation folder. Npx will download the package and save its
binary into the bin directory of Node.js. The command for running using npx is
shown in Figure 5.1

npx gm2ms4-dev - -output=<output-name> <model-name.txt>

Figure 5.1: Npx command line for running the conversion tool

Additionally, the user can execute the project from the downloaded code, the
command is present at 5.2.

npm install && npm start

Figure 5.2: Npm command for running the conversion tool

5.4 Importing onto the MS4 ME

After running the tool, a .zip file is saved onto the disk (the name of the zip file
defaults to Project.zip, but if the tool was ran with the command provided at the
Figure 5.1, the user may rename it to the desired name using the flag – output).
This is the asset needed to import the project into the MS4 ME workspace.

A tutorial for the importing process is given below:

31

https://www.npmjs.com/package/gm2ms4-dev

1. Right-click on the workspace area and then select the "Import..." option as
shown in the figure

Figure 5.3: Opening the import window

2. In opened window, select the "Existing Projects into Workspace" and then hit
the "Next >" button

Figure 5.4: Source type selection

3. In the next section, select the generated project .zip file. A project must ap-
pear under the window "Projects" area as shown in Figure 5.5, make sure it is
selected and hit the "Finish" button.

32

Figure 5.5: Project import window

4. Once the project is imported into the workspace, it must be rebuilt. By re-
building the project MS4 will generate automatically the Java files for the
DNLs that were created by the GM2MS4 tool, and those are the files inter-
preted by the simulator. Go to the toolbar of the MS4 ME and select "Build >
Rebuild Project". In the window that appears next hit the "OK" button.

Figure 5.6: Rebuild project

5.5 Before running the simulation

With the project imported into the workspace, the user must now implement the
tasks methods for each of the components. All task methods must return a Result
that is successful or not. Any calculation can be done in the method but it must
always return a Result instance so that the Runner class that called it knows if the
tree execution may continue or not.

An example is shown for the peerTaskClass.java in the Listing 5.2. The reader
may notice that the result depends on the random result, i.e., this is a simplification

33

to show that a task may succeed or fail based on an external result. The random line
could be an HTTP call to a service or even a method calling to another user-defined
class, and the possibilities here are infinite. For the model checking though, only
the result of the calculation is used, so the user must set the received result to
Error or Success before returning it.

1 package components;
2

3 import java.lang.Math;
4

5 public class peerTaskClass {
6

7 public Result Broadcast_transaction_result_pool_to_channel_task
(Result result) {

8 // the following line may can be an HTTP call or any process
you want

9 int success = (int)(Math.random()*10);
10 if (success < 5) {
11 result.setError("The task has failed");
12 }else {
13 result.setSuccess("The task has succeeded");
14 }
15 return result;
16 }
17

18 public Result Unicast_transaction_result_through_grpc_task
(Result result) {

19 int success = (int)(Math.random()*10);
20 if (success > 5) {
21 result.setError("The task has failed");
22 } else {
23 result.setSuccess("The task has succeeded");
24 }
25

26 return result;
27 }
28 }

Listing 5.2: Implemented peerTaskClass.java

If any of the methods setError or setSuccess are not called then the result will
repeat its last state. Every time an event is triggered in a component the success
field of the Result instance is reset to its default, which is False. So the user must
set the conditions for the tasks to succeed in order to make the branch pass.

This abstraction allows the designer to evaluate the emergent behaviors of the
mission. Sometimes a mission simply cannot be achieved because some capabilities
are missing for the designed system. Or on the contrary, the designer can find
similar capabilities between the components of the mission. By pointing these out,

34

the mission model can be modified to either remove a redundant task or to add a
new variability to a goal since a common capability was found across the systems.

5.6 Running the simulation

Once all the tasks are implemented the project is ready to be simulated. To do
so a tutorial is provided below:

1. Open the .ses file living under the "Models.ses" directory and then hit the
"Prune SES into PES" button above the file as shown in Figure 5.7

Figure 5.7: Pruning the SES file

2. The MS4 ME will open the PES file automatically. Once that happened, hit the
"Run PES file in SimViewer" button indicated in Figure 5.8

Figure 5.8: Opening the PES file in the simulator

3. Right-click the "inStartUp" port and select the inject input option that appears
and then hit the "Run" button at the bottom toolbar.

35

Figure 5.9: Starting the simulation

4. When finished, the simulation opens a dialog window indicating the mission
result as shown in Figure 5.10.

Figure 5.10: Simulation result

The code for a task class is present at the Listing 5.3, by explicitly calling the
method setSuccess or setError in the task, it is possible to force the task into the
desired state.

1 package components;
2

3 public class ordererTaskClass {
4

5 public Result Check_signatures_task(Result result) {
6 result.setSuccess();
7 return result;
8 }
9

10 public Result Add_block_to_chain_task(Result result) {
11 result.setSuccess();
12 return result;

36

13 }
14

15 public Result Notify_the_network_task(Result result) {
16 result.setError("notify error");
17 return result;
18 }
19 }

Listing 5.3: Task class for the Orderer System

The activity diagram of the resulting MS4 project is present in Figure 5.11.

Figure 5.11: Activity diagram of the mission "Registering a Transaction"

In the following chapter it is presented the results of this work, such as the tests
executed and the simulation output for the given cases.

37

Chapter 6

Results

In this chapter it is presented the results of the proposal, what kind of tests
were applied, and what they assure about the application. Starting from the unit
tests, where the tested cases are shown, to the simulation validation, where it is
explained how to test the resulting project from the Section 5.1 in the MS4 ME and
the simulation results.

6.1 Unit tests

Some simple unit tests were implemented in order to validate the input model
and its conversion into a tree, including cases where it may fail or pass.

The cases contemplated at this stage were:

1. A model should not have more than one root to be loaded;

2. A loaded model must be converted into a tree without any errors;

3. Traversing the tree must be possible (which means it is valid); and

4. All the goal nodes under the tree must start with an identifier "Gn", where n
is a natural number.

For the tests stated above, the tested models are the ones present in Appendices
VII (an invalid model) and I (a valid model).

These basic checks prevent the user from feeding invalid models into the soft-
ware. The checks may be expanded in future versions.

The result of the units tests is shown in the Figure 6.1.

38

Figure 6.1: Unit tests result

6.2 Simulation validation

The model used as basis for the simulation is the example shown in Figure 3.6,
its exported JSON file which was the input for the GM2MS4 tool is available in the
Appendix I.

6.2.1 A blockchain mission

The proposed blockchain and its capabilities was presented before in Section
2.4. With the purpose of modeling an SoS mission, the model shown in Figure 3.6
represents the chosen mission for a blockchain network, in our example: How the
network registers a new transaction into the history chain.

To register a transaction, a coordination of the constituent systems is necessary
and it is performed by the application that is communicating with the blockchain
(blockchain here means the set formed by the peers and orderers servers). This
hypothetical application is named "SDK" (this is the value of the "component" prop-
erty) in the model and it is represented by the green color �.

The first goal to be achieved is to find the target peers for the transaction, that
means, deciding which peers on the network will be responsible for calculating the
transaction result for the customer request. The SDK can achieve this goal by any
of the following means:

1. Connect to the discovery channel shared among the peers and the SDK to find
peer candidates for the contract execution; or

2. Broadcast a search message to the blockchain network and choose the peers
that responds to the broadcast message. The message can be sent through
UDP or TCP; or

3. Try to reach the peers defined in a static configuration file.

39

This mission of the SDK is represented by the goal "G1: Find the target peers"
at the example model.

If G1 is executed successfully then the next goal execution is started, the goal
"G2: Send transaction request to the peers" takes the result of the G1 achievement
and sends to those selected peers the transaction request to be calculated by the
contract code of the blockchain network (also called smart-contracts or chaincode).
The task of sending the request can be achieved by sending the request through
gRPC[18] dialings or through REST requests.

For the next step "G4: Calculate transaction result" it is important to state that
all participant peers of the blockchain network has an auxiliary system attached to
it, this system is widely known as "smart-contract", in this work the name "chain-
code" will be used. In the model, the goals of the peers can be identified by the
yellow color �, as for the goals of the chaincode, the blue color the color is used �.

The goal G4 is decomposed into two goals:

1. "G5: invoke chaincode": requests to the chaincode system to calculate the
transaction result, for example, the transference of a value from a user to
another, changing the proprietary of the data; and

2. "G6: Return contract execution result": notifies the applications which are
waiting for the transaction result about the contract execution return. This
can be done by either broadcasting the result data to the network (in this
case the application must be listening for the result) or by unicasting the mes-
sage back to the application that have requested the transaction. The first is
preferable since these are decentralized systems, but in the case of failure the
second method can be applied to prevent the discarding of the data.

Note that both G5 and G6 should be executed successfully in order to achieve
G4 accomplishment as they’re linked by an AND relation.

G5 also depends on the "G13: Execute business logic" goal to be achieved, which
means that if the smart-contract execution fails, then the whole branch under G4
also fails, as G4 is related to the root node by an AND link, the failure of either G5
or G6 results in the simulation failure.

Going further on the model simulation, the next goal that needs to be achieved
is "G7: Receive result pool", which is the state path of the simulation for the SDK
system activated by the return of the chaincode execution.

As many peers were target to execute the transaction, the result arrives as a
group of results. In a blockchain network, the transaction output must be deter-
ministic, in other words: All the selected peers must return the same result for a
given request, otherwise the peers replying with results diverging from the majority
are considered malicious by the rest of the network. This verification process must
be done in the task T11. In future works these verification tasks may be converted
into model constraints in order to minimize the model complexity.

After verifying the results, if the pool validation passes, then the transaction
result is passed down to the orderer system, which is responsible for validating the
signatures present in the block. The consensus is the rule applied by the orderer
on a incoming transaction. To be appended, it must be signed as the rule states,

40

the simplest rule is considered in this example: the majority of the peers must sign
the transaction for it to reach the consensus.

The goal "G11: Validate block signatures" represents this process done by the
orderer system (in the model, the goals of the orderer are colored in red �). Once
finished the appending result is sent back to the SDK that finishes the mission vali-
dation with Success if all the goals G0, G2, G4 and G7 were successfully achieved.

6.2.2 Simulation Results

To validate if the exported MS4 model was correctly analyzed, the mission ex-
ecution, and the returned result from the tasks were forced to either Success or
Fail states. The simulation must output a message containing the result of the run-
ning, informing if it was successfully executed for a given set of passing and failing
tasks. setSuccess or setError for each task method present at the task classes
of each constituent system. In the Table 6.1, the columns 1-13 represent the state
forced onto the task. The expected simulation result and the executed result can
be compared in the last two columns of Table.

It is noticeable that the tasks that compose OR relations affect less the accom-
plishment of the mission, that is, many can fail under that node given that the suc-
cess of at least one of the tasks achieves the goal. While the tasks that are needed
for the process to continue (the ones that are linked to its parent by an AND link)
affect much more the mission accomplishment, in the sense that they are sensitive
tasks on the mission evaluation. In other words, the failure of any of these tasks is
sufficient to the mission failure as well.

The Table 6.1 shows the tested combinations of

Task Name T0 T2 T3 T4 T6 T7 T8 T9 T10 T11 T12 T13 T14 Mission simulation expected result Simulation Result

Task result

success success success success success success success success success success success success success success success
success fail success success success success success success success success success success success success success
success fail fail success success success success success success success success success success success success
fail fail fail fail success success success success success success success success success fail fail
success fail fail fail fail success success success success success success success success success success
success fail fail fail fail fail success success success success success success success fail fail
success success success success success success fail success success success success success success fail fail
success success success success success success success fail success success success success success success success
success success success success success success success success fail success success success success success success
success success success success success success success fail fail success success success success fail fail
success success success success success success success success success fail success success success fail fail
success success success success success success success success success success fail success success fail fail
success success success success success success success success success success success fail success fail fail
success success success success success success success success success success success success fail fail fail

Table 6.1: Table result obtained by forcing tasks into either Failure or Success state

The initial state for the simulation is shown in the Figure 6.2. All the systems
start from the same initial state "waitForInput".

41

Figure 6.2: Simulation initial state

In the Figure 6.3, a view of the simulation running is presented.

Figure 6.3: Verifier System sends "From_G0_to_G2" to the SDK system

Once finished, the simulation ends and all the constituent systems now passivate
forever at the "stop" state. If needed, the simulation may be restarted by hitting
the "Restart" button in the toolbar present at the bottle of the simulation.

42

Figure 6.4: Simulation final state

The result shown in Table 6.1 corresponds to the expected behavior for the
simulation, that is, the AND/OR relations of the model are respected, and they
control the result of the simulation properly.

In Figure 6.5, the dialog windows for simulation Success and Failure results are
shown. The windows appear after the simulation is finished.

Figure 6.5: Simulation result dialog

The simulation result shown in Table 6.1 corresponds to the expected behavior
designed in the goal model, which means that our goal was reached: From the
proposed model it is possible to simulate an SoS from its mission perspective, im-
plementing the tasks with Java code that can be used to interface with the real
world. To simplify, the tests forced the tasks into a failure/success state - i.e. an

43

SoS designer may set the states by checking the response of an API or based on
a serial communication to an IoT device or any other desired interface - and the
result must match the expected one for that set of failures and successes.

6.3 Challenges

By far the hardest task in this work development was not the implementation of
the converter itself, but:

1. Gathering and sorting out all the necessary information that would make it
possible to create an MS4 project from the model.

2. Understanding the MS4 environment and gathering the necessary expertise
to metaprogram its model. As the platform source is closed, the only resource
for studying it is the software manuals and the modeling book recommended
by the MS4 team [10].

As many files are outputted and linked together in the conversion process, one
may think that verifying all the produced files present in the project (DNL, Java,
and SES files) would be a tough task, but the functional programming style sug-
gests to the developer to view their data as code: That is, the output is a sum of
independent calculations over the properties of the elements, hence the need of all
the nodes to have an identifier, task sequence, component name, and so on. These
are common properties that occur in all nodes and which parametrize the calcula-
tions in the program. Combining this abstraction over the model data with the MS4
IDE features and compiler has made the work of projecting a compatible model for
the MS4 platform easier.

Testing the simulation results was a time-demanding task, as there are thou-
sands of failure and success combinations possible for the set of tasks present in
the model, it is impossible for a human to test all of them and compile them into
a result table. It may be interesting to implement scenarios generators that by
providing the set of task results for a given context would facilitate the simulation
verification process, and automatize it.

44

Chapter 7

Conclusion

This work proposes a model for missions of an SoS and provides a tool that
converts the mission model to an MS4 ME project, which allows the simulation of
the desired SoS, starting from its mission perspective. The research showed that a
tool capable of chaining the mission modeling to the SoS simulation was inexistent,
thus the implementation was challenging, not only because of the high level of
abstraction and concepts mapping from the goal model to the MS4 syntax but also
because a convertible mission model is missing in the literature.

The main benefit that the model and the GM2MS4 tool brings is to allow an SoS
designer to describe it from the goals that must be achieved rather than describ-
ing the systems from its architectural perspective, as often in the SoS context the
designer knows only the behaviors of the constituent systems and not its implemen-
tation. The MS4 project structure that the tool outputs makes it easier to interface
the simulation with the real world while checking for the expected behavior printed
in the model, this is a powerful feature that proves the model and that the designed
goals are achievable.

In Table 7.1, the goals aimed at in Chapter 1, and the achieved results are com-
pared.

Goal Contributions Results

Provide a goal model that
has the necessary ele-
ments to specify a mission
and the constituent sys-
tems relations present at
this mission accomplish-
ment.

A goal-oriented mis-
sion model capable
of describing the ex-
pected behaviors for
an SoS

The goal-oriented model
proposed not only de-
scribes the mission from
its expected behav-
iors but also respects
many of the aspects pro-
posed in [14] such as
dependability between
constituent systems and
goal-achievement vari-
ance.

45

Provide a software solu-
tion that is capable of
transforming this model
into an MS4 simulation,
expressing the expected
behaviors present at the
mission model in the view
of each constituent sys-
tem and how they are in-
terconnected.

Tool implementation
and testing

The implemented tool
(GM2MS4) is capable of
converting the SoS mis-
sion model into an SoS
simulation under the MS4
systems

Verify these behaviors
by adding the tasks
present at the mission
model as implementable
code on the MS4 out-
putted project, allowing
the design to interface
the simulation with
existent systems or self-
implemented mocks, and
to validate the mission
accomplishment.

MS4 Java classes
ready-to-code pro-
vided along with the
simulation project

The leaf tasks present at
the model have their cor-
respondent methods in
the tasks class for that
component; The result re-
turned by these tasks con-
trol the result of the simu-
lation, providing informa-
tion for the verifier node
to evaluate the result of
mission execution.

Test the proposed model
and toolchain by imple-
menting behaviors in the
code of the tasks and
verifying if the simula-
tion result corresponds
to the expected execution
expressed in the model.

Testing Table 6.1

By evaluating the many
combinations of tasks fail-
ure and success it is pos-
sible to prove the sup-
plied model.

Table 7.1: Aimed goals and results

The software was implemented using Typescript, which is a very modern and
flexible language. Combined with functional programming style it was possible to
develop such a huge solution in a short time. The tool is easy to maintain due to its
explicit types and transparent reference, which makes the code more readable. It
is considered that the aim was achieved, even with all the challenges found along
the way.

The limitations associated with the tool are the missing concepts for a mission
modeling proposed by the mKaos [14], like constraints, contribution, and task pa-
rameters. Those must be analyzed and fit into the proposed model: how they can
be expressed on the mission model built on the piStar tool. Once those elements
are expressed in the model, the tool must be extended to translate them to the MS4
syntax.

46

For future works, it is suggested that these missing elements from the mission
definition are targeted in order to provide robust SoS modeling. Although several
checks are done in the software flow, it lacks unit testing to make the model rules
more explicit for the developer working on it. Also, it is suggested to create docu-
mentation for the tool from the knowledge present in this manuscript.

It would be interesting to enable concurrent processes for OR junctions since
currently the goals are executed sequentially following the order expressed by the
tree nodes. As the OR junctions are independent processes, they may be executed
at the same time without waiting for the preceding task to finish.

Finally, the implementation of a global static state is recommended, this would
allow systems to perform checks on the SoS context to decide which strategy is the
best to accomplish the goals.

47

References

[1] Russell L. Ackoff. Towards a System of Systems Concepts.
http://dx.doi.org/10.1287/mnsc.17.11.661, 17(11):661–671, 7 1971. doi:
10.1287/MNSC.17.11.661. URL https://pubsonline.informs.org/doi/
abs/10.1287/mnsc.17.11.661. 4, 6

[2] Suhair Alhajhassan, Mohammad Odeh, and Stewart Green. Aligning systems
of systems engineering with goal-oriented approaches using the i framework.
ISSE 2016 - 2016 International Symposium on Systems Engineering - Proceed-
ings Papers, 11 2016. doi: 10.1109/SYSENG.2016.7753125. 10

[3] John Boardman and Brian Sauser. System of Systems - The meaning of of. In
Proceedings 2006 IEEE/SMC International Conference on System of Systems
Engineering, volume 2006, 2006. doi: 10.1109/sysose.2006.1652284. 5

[4] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An Agent-Oriented Software Development Methodology. Au-
tonomous Agents and Multi-Agent Systems 2004 8:3, 8(3):203–236, 5 2004.
ISSN 1573-7454. doi: 10.1023/B:AGNT.0000018806.20944.EF. URL https:
//link.springer.com/article/10.1023/B:AGNT.0000018806.20944.ef. 9

[5] Steve Cook, Conrad Bock, Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic,
and Doug Tolbert. Unified Modeling Language (UML) Version 2.5.1. Technical
report, Object Management Group (OMG), 12 2017. URL https://www.omg.
org/spec/UML/2.5.1. 11

[6] Fabiano Dalpiaz, Xavier Franch, and Jennifer Horkoff. iStar 2.0 Language
Guide. 10 2016. 9

[7] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. GRAIL/KAOS.
pages 612–613, 1997. doi: 10.1145/253228.253499. 7

[8] Mark W. Maier. Architecting Principles for Systems-of-Systems. INCOSE Inter-
national Symposium, 6(1):565–573, 7 1996. doi: 10.1002/J.2334-5837.1996.
TB02054.X. 1, 4, 5

[9] MS4 Systems Inc. Welcome to MS4 Systems. URL http://www.ms4systems.
com/pages/main.php. 9, 10

[10] Bernard P. Zeigler and Hessam S. Sarjoughian. Guide to Modeling and Sim-
ulation of Systems of Systems. 2017. doi: 10.1007/978-3-319-64134-8. URL
http://link.springer.com/10.1007/978-3-319-64134-8. 13, 44

48

https://pubsonline.informs.org/doi/abs/10.1287/mnsc.17.11.661
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.17.11.661
https://link.springer.com/article/10.1023/B:AGNT.0000018806.20944.ef
https://link.springer.com/article/10.1023/B:AGNT.0000018806.20944.ef
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
http://www.ms4systems.com/pages/main.php
http://www.ms4systems.com/pages/main.php
http://link.springer.com/10.1007/978-3-319-64134-8

[11] Joao Pimentel and Jaelson Castro. PiStar tool - A pluggable online tool
for goal modeling. Proceedings - 2018 IEEE 26th International Require-
ments Engineering Conference, RE 2018, pages 498–499, 10 2018. doi:
10.1109/RE.2018.00071. 9, 60

[12] Leandro Santos Bergmann and Orientador Profa Dra Genaína Nunes Ro-
drigues Brasília. piStar-GODA: Integração entre os projetos piStar e GODA.
Technical report, 2018. 19

[13] Leandro Santos Bergmann and Genaína Nunes Rodrigues. piStar-GODA: In-
tegração entre os projetos piStar e GODA. Technical report, Universidade de
Brasília, Brasília, 3 2018. URL https://bdm.unb.br/handle/10483/20428. 9,
25

[14] Eduardo Silva, Everton Cavalcante, Thais Batista, Flavio Oquendo, Flavia C.
Delicato, and Paulo F. Pires. On the characterization of missions of systems-of-
systems. In ACM International Conference Proceeding Series. Association for
Computing Machinery, 2014. ISBN 9781450327787. doi: 10.1145/2642803.
2642829. iii, iv, vii, 2, 7, 8, 45, 46

[15] Eduardo Silva, Thais Batista, and Everton Cavalcante. A Mission-Oriented Tool
for System-of-Systems Modeling. In Proceedings - 3rd International Workshop
on Software Engineering for Systems-of-Systems, SESoS 2015, 2015. doi: 10.
1109/SESoS.2015.13. vii, 7, 9

[16] Ben van Lier. Blockchain Technology: The Autonomy and Self-Organisation of
Cyber-Physical Systems. Business Transformation through Blockchain, pages
145–167, 2019. doi: 10.1007/978-3-319-98911-2{_}5. URL https://link.
springer.com/chapter/10.1007/978-3-319-98911-2_5. 15

[17] Manoel Vieira. GM2MS4 (Goal Model to MS4), 11 2021. URL https:
//github.com/vieirin/GM2MS4. 30

[18] WangXingwei, ZhaoHong, and ZhuJiakeng. GRPC. ACM SIGOPS Operating
Systems Review, 27(3):75–86, 7 1993. doi: 10.1145/155870.155881. URL
https://dl.acm.org/doi/abs/10.1145/155870.155881. 40

[19] Bernard P. Zeigler, Hae Sang Song, Tag Gon Kim, and Herbert Praehofer.
DEVS framework for modelling, simulation, analysis, and design of hybrid sys-
tems. pages 529–551, 10 1994. doi: 10.1007/3-540-60472-3{_}27. URL
https://link.springer.com/chapter/10.1007/3-540-60472-3_27. 10

49

https://bdm.unb.br/handle/10483/20428
https://link.springer.com/chapter/10.1007/978-3-319-98911-2_5
https://link.springer.com/chapter/10.1007/978-3-319-98911-2_5
https://github.com/vieirin/GM2MS4
https://github.com/vieirin/GM2MS4
https://dl.acm.org/doi/abs/10.1145/155870.155881
https://link.springer.com/chapter/10.1007/3-540-60472-3_27

Appendix I

GM2MS4 Input file

1 {
2 "actors": [
3 {
4 "id": "309c8d4d-f7a1-4ca3-83a8-a93e9240716b",
5 "text": "Registering a transaction",
6 "type": "istar.Actor",
7 "x": 65,
8 "y": 261,
9 "nodes": [

10 {
11 "id": "f0406552-00af-4442-b03d-a78e27457929",
12 "text": "G0: Register a transaction [G1;G2;G4;G7]",
13 "type": "istar.Goal",
14 "x": 653,
15 "y": 276,
16 "customProperties": {
17 "Description": "",
18 "selected": true,
19 "component": "verifier"
20 }
21 },
22 {
23 "id": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84",
24 "text": "G4: Calculate transaction result [G5;G6]",
25 "type": "istar.Goal",
26 "x": 676,
27 "y": 398,
28 "customProperties": {
29 "Description": "",
30 "component": "peer"
31 }
32 },
33 {

50

34 "id": "51e1a122-2abe-4153-a42e-3e0c7a3bbd8e",
35 "text": "G5: Invoke chaincode",
36 "type": "istar.Goal",
37 "x": 698,
38 "y": 484,
39 "customProperties": {
40 "Description": "",
41 "component": "peer"
42 }
43 },
44 {
45 "id": "52781a22-2ed1-4281-9c73-e6a9d314e240",
46 "text": "G6: Return contract execution result [T9;T10]",
47 "type": "istar.Goal",
48 "x": 854,
49 "y": 508,
50 "customProperties": {
51 "Description": "component",
52 "peer": "",
53 "component": "peer"
54 }
55 },
56 {
57 "id": "7c79330d-f564-4134-b810-47370afd7308",
58 "text": "G8: Verify result pool [T11;G10]",
59 "type": "istar.Goal",
60 "x": 1019,
61 "y": 339,
62 "customProperties": {
63 "Description": "",
64 "component": "api"
65 }
66 },
67 {
68 "id": "30fdd731-24c7-424d-b77c-6b9683a76bca",
69 "text": "G10: Send signed transaction to Orderer",
70 "type": "istar.Goal",
71 "x": 1128,
72 "y": 420,
73 "customProperties": {
74 "Description": "",
75 "component": "api"
76 }
77 },
78 {
79 "id": "fc1c1d20-d10d-48d0-a717-59094a59d944",

51

80 "text": "G11: Validate block signatures [T12;G12]",
81 "type": "istar.Goal",
82 "x": 1229,
83 "y": 528,
84 "customProperties": {
85 "Description": "",
86 "component": "orderer"
87 }
88 },
89 {
90 "id": "0973aeef-286f-47b0-a6cf-640e43d7671f",
91 "text": "G12: Create block [T13;T14]",
92 "type": "istar.Goal",
93 "x": 1329,
94 "y": 611,
95 "customProperties": {
96 "Description": "",
97 "compoonent": "orderer",
98 "component": "orderer"
99 }

100 },
101 {
102 "id": "c4146a67-384f-48f8-b48a-65fbdb31c7d0",
103 "text": "T13: Add block to chain",
104 "type": "istar.Task",
105 "x": 1298,
106 "y": 677,
107 "customProperties": {
108 "Description": "",
109 "component": "orderer"
110 }
111 },
112 {
113 "id": "637bd788-65ab-4223-81cd-ceab64eef5fb",
114 "text": "T14: Notify the network",
115 "type": "istar.Task",
116 "x": 1398,
117 "y": 673,
118 "customProperties": {
119 "Description": "",
120 "component": "orderer"
121 }
122 },
123 {
124 "id": "3867e9d3-349c-4829-8c9b-61de16ac60c2",
125 "text": "G13: Execute bussiness logic",

52

126 "type": "istar.Goal",
127 "x": 701,
128 "y": 559,
129 "customProperties": {
130 "Description": "",
131 "component": "chaincode"
132 }
133 },
134 {
135 "id": "ba3fd6ff-acbc-4a10-911a-55c4b655ed8c",
136 "text": "T8: Execute requested contract function",
137 "type": "istar.Task",
138 "x": 667,
139 "y": 741,
140 "customProperties": {
141 "Description": "",
142 "component": "chaincode"
143 }
144 },
145 {
146 "id": "bdacda33-50aa-4850-9ce5-ad6a47368972",
147 "text": "T9: Broadcast transaction result pool to channel",
148 "type": "istar.Task",
149 "x": 774,
150 "y": 626,
151 "customProperties": {
152 "Description": "",
153 "component": "peer"
154 }
155 },
156 {
157 "id": "0c59d725-3739-47ad-8ce9-d49b65004a52",
158 "text": "G7: Receive result pool",
159 "type": "istar.Goal",
160 "x": 867,
161 "y": 317,
162 "customProperties": {
163 "Description": "",
164 "component": "api",
165 "receives": "proposalResult"
166 }
167 },
168 {
169 "id": "7cdffcb0-d59f-4ee1-aaff-da02092465b0",
170 "text": "T10: Unicast transaction result through grpc",
171 "type": "istar.Task",

53

172 "x": 935,
173 "y": 688,
174 "customProperties": {
175 "Description": ""
176 }
177 },
178 {
179 "id": "859d8dee-5dc8-4b11-976b-47d3a4e76d25",
180 "text": "G1: Find the target peers [T0;T1;T2]",
181 "type": "istar.Goal",
182 "x": 223,
183 "y": 338,
184 "customProperties": {
185 "Description": ""
186 }
187 },
188 {
189 "id": "9b37915e-83b7-4055-8a86-ffaafdd5d377",
190 "text": "T0: Search for peers on discovery channel",
191 "type": "istar.Task",
192 "x": 82,
193 "y": 425,
194 "customProperties": {
195 "Description": ""
196 }
197 },
198 {
199 "id": "fecf3fa3-1a75-45d9-a6f4-05c0b55c4991",
200 "text": "T1: Broadcast search message [T3;T4]",
201 "type": "istar.Task",
202 "x": 219,
203 "y": 415,
204 "customProperties": {
205 "Description": ""
206 }
207 },
208 {
209 "id": "27c52174-a655-4fa4-967f-f0a919ed3425",
210 "text": "T2: Extract from local config file",
211 "type": "istar.Task",
212 "x": 318,
213 "y": 450,
214 "customProperties": {
215 "Description": ""
216 }
217 },

54

218 {
219 "id": "0bda1fdd-58bc-4a29-9177-a6c09c88f6f8",
220 "text": "G2: Send trasaction request to peers",
221 "type": "istar.Goal",
222 "x": 470,
223 "y": 417,
224 "customProperties": {
225 "Description": ""
226 }
227 },
228 {
229 "id": "17a290a1-59cb-4128-9b2c-312dce0bd36e",
230 "text": "T3: Broadcast through TCP",
231 "type": "istar.Task",
232 "x": 162,
233 "y": 538,
234 "customProperties": {
235 "Description": ""
236 }
237 },
238 {
239 "id": "f6a65702-e439-4abe-9600-99f83cafabdd",
240 "text": "T4: Broadcast through UDP",
241 "type": "istar.Task",
242 "x": 277,
243 "y": 540,
244 "customProperties": {
245 "Description": ""
246 }
247 },
248 {
249 "id": "7e46c2d1-1b9b-4b69-b97f-013c56a22d7e",
250 "text": "T5: Send request through TCP [T6;T7]",
251 "type": "istar.Task",
252 "x": 477,
253 "y": 536,
254 "customProperties": {
255 "Description": ""
256 }
257 },
258 {
259 "id": "3f2c7cf3-5898-45e3-bc25-47c5f456df9f",
260 "text": "T6: Send request through gRPC",
261 "type": "istar.Task",
262 "x": 389,
263 "y": 650,

55

264 "customProperties": {
265 "Description": ""
266 }
267 },
268 {
269 "id": "92d7e548-b52d-448e-93fd-3f260694f605",
270 "text": "T7: Send request through REST",
271 "type": "istar.Task",
272 "x": 562,
273 "y": 663,
274 "customProperties": {
275 "Description": ""
276 }
277 },
278 {
279 "id": "439736ed-a61f-4cbf-bf4b-559506be953a",
280 "text": "T11: Verify peer response",
281 "type": "istar.Task",
282 "x": 971,
283 "y": 431,
284 "customProperties": {
285 "Description": ""
286 }
287 },
288 {
289 "id": "44a63bbf-dffe-48a0-af55-633460d4dec5",
290 "text": "T12: Check signatures",
291 "type": "istar.Task",
292 "x": 1188,
293 "y": 626,
294 "customProperties": {
295 "Description": ""
296 }
297 }
298]
299 }
300],
301 "links": [
302 {
303 "id": "fa476696-fe1f-47a3-ab4d-e784b2ff8986",
304 "type": "istar.AndRefinementLink",
305 "source": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84",
306 "target": "f0406552-00af-4442-b03d-a78e27457929"
307 },
308 {
309 "id": "4cea1497-9abf-496e-a8f0-094dbecc3588",

56

310 "type": "istar.AndRefinementLink",
311 "source": "51e1a122-2abe-4153-a42e-3e0c7a3bbd8e",
312 "target": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84"
313 },
314 {
315 "id": "bac1272c-1ce2-4a26-bdb9-38d641c9e35e",
316 "type": "istar.AndRefinementLink",
317 "source": "52781a22-2ed1-4281-9c73-e6a9d314e240",
318 "target": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84"
319 },
320 {
321 "id": "61e14467-0a96-40cb-8bbe-11084b7656ae",
322 "type": "istar.AndRefinementLink",
323 "source": "fc1c1d20-d10d-48d0-a717-59094a59d944",
324 "target": "30fdd731-24c7-424d-b77c-6b9683a76bca"
325 },
326 {
327 "id": "d1df420d-447a-4620-9705-82ce8ff0f01c",
328 "type": "istar.AndRefinementLink",
329 "source": "3867e9d3-349c-4829-8c9b-61de16ac60c2",
330 "target": "51e1a122-2abe-4153-a42e-3e0c7a3bbd8e"
331 },
332 {
333 "id": "876e5e77-4141-40f9-b5f4-3c97f5a87c67",
334 "type": "istar.AndRefinementLink",
335 "source": "ba3fd6ff-acbc-4a10-911a-55c4b655ed8c",
336 "target": "3867e9d3-349c-4829-8c9b-61de16ac60c2"
337 },
338 {
339 "id": "41c0afb7-9e89-4b12-8cda-13fa24a4a0d1",
340 "type": "istar.AndRefinementLink",
341 "source": "0c59d725-3739-47ad-8ce9-d49b65004a52",
342 "target": "f0406552-00af-4442-b03d-a78e27457929"
343 },
344 {
345 "id": "4466f6ec-58f8-4909-a90c-0da8a0fe35c8",
346 "type": "istar.AndRefinementLink",
347 "source": "7c79330d-f564-4134-b810-47370afd7308",
348 "target": "0c59d725-3739-47ad-8ce9-d49b65004a52"
349 },
350 {
351 "id": "d61e1fe5-603b-43a1-9d6f-b265f030e49c",
352 "type": "istar.AndRefinementLink",
353 "source": "c4146a67-384f-48f8-b48a-65fbdb31c7d0",
354 "target": "0973aeef-286f-47b0-a6cf-640e43d7671f"
355 },

57

356 {
357 "id": "951d4f12-a130-4a70-9e28-2adaafa67906",
358 "type": "istar.AndRefinementLink",
359 "source": "637bd788-65ab-4223-81cd-ceab64eef5fb",
360 "target": "0973aeef-286f-47b0-a6cf-640e43d7671f"
361 },
362 {
363 "id": "379b5b86-164e-4e8a-bf87-78fdf4dd240c",
364 "type": "istar.OrRefinementLink",
365 "source": "bdacda33-50aa-4850-9ce5-ad6a47368972",
366 "target": "52781a22-2ed1-4281-9c73-e6a9d314e240"
367 },
368 {
369 "id": "fec075a9-7334-4053-b622-d30efe954698",
370 "type": "istar.OrRefinementLink",
371 "source": "7cdffcb0-d59f-4ee1-aaff-da02092465b0",
372 "target": "52781a22-2ed1-4281-9c73-e6a9d314e240"
373 },
374 {
375 "id": "db76bbf4-81d5-4c53-9909-45c6eb8fde3e",
376 "type": "istar.AndRefinementLink",
377 "source": "859d8dee-5dc8-4b11-976b-47d3a4e76d25",
378 "target": "f0406552-00af-4442-b03d-a78e27457929"
379 },
380 {
381 "id": "6fcf5fbe-d35b-4ddc-8ce2-c83719edd039",
382 "type": "istar.OrRefinementLink",
383 "source": "9b37915e-83b7-4055-8a86-ffaafdd5d377",
384 "target": "859d8dee-5dc8-4b11-976b-47d3a4e76d25"
385 },
386 {
387 "id": "ea4e222f-c86a-4225-a8f6-afd28ba3e0f6",
388 "type": "istar.OrRefinementLink",
389 "source": "fecf3fa3-1a75-45d9-a6f4-05c0b55c4991",
390 "target": "859d8dee-5dc8-4b11-976b-47d3a4e76d25"
391 },
392 {
393 "id": "dd20196e-e2cf-417f-bcc0-d28fb7068c73",
394 "type": "istar.OrRefinementLink",
395 "source": "27c52174-a655-4fa4-967f-f0a919ed3425",
396 "target": "859d8dee-5dc8-4b11-976b-47d3a4e76d25"
397 },
398 {
399 "id": "f8607312-ac78-44c4-8b46-124fa4585a07",
400 "type": "istar.OrRefinementLink",
401 "source": "17a290a1-59cb-4128-9b2c-312dce0bd36e",

58

402 "target": "fecf3fa3-1a75-45d9-a6f4-05c0b55c4991"
403 },
404 {
405 "id": "23e34400-6652-4cf9-a697-7a31a21d71e9",
406 "type": "istar.OrRefinementLink",
407 "source": "f6a65702-e439-4abe-9600-99f83cafabdd",
408 "target": "fecf3fa3-1a75-45d9-a6f4-05c0b55c4991"
409 },
410 {
411 "id": "898e01ec-8d4f-44e3-bd83-05786b374530",
412 "type": "istar.AndRefinementLink",
413 "source": "0bda1fdd-58bc-4a29-9177-a6c09c88f6f8",
414 "target": "f0406552-00af-4442-b03d-a78e27457929"
415 },
416 {
417 "id": "cfe65907-64fd-4e1f-a68c-e16ad564128a",
418 "type": "istar.OrRefinementLink",
419 "source": "3f2c7cf3-5898-45e3-bc25-47c5f456df9f",
420 "target": "7e46c2d1-1b9b-4b69-b97f-013c56a22d7e"
421 },
422 {
423 "id": "e97bbe43-6d00-4eb9-b788-d79d3476b674",
424 "type": "istar.OrRefinementLink",
425 "source": "92d7e548-b52d-448e-93fd-3f260694f605",
426 "target": "7e46c2d1-1b9b-4b69-b97f-013c56a22d7e"
427 },
428 {
429 "id": "07a33966-7d8d-427e-be6a-8f250b9e5c71",
430 "type": "istar.AndRefinementLink",
431 "source": "7e46c2d1-1b9b-4b69-b97f-013c56a22d7e",
432 "target": "0bda1fdd-58bc-4a29-9177-a6c09c88f6f8"
433 },
434 {
435 "id": "1fe3926f-a1b4-4a33-b487-44341f26e40a",
436 "type": "istar.AndRefinementLink",
437 "source": "439736ed-a61f-4cbf-bf4b-559506be953a",
438 "target": "7c79330d-f564-4134-b810-47370afd7308"
439 },
440 {
441 "id": "e6e3bf53-a894-4ff2-9220-c980625bc057",
442 "type": "istar.AndRefinementLink",
443 "source": "30fdd731-24c7-424d-b77c-6b9683a76bca",
444 "target": "7c79330d-f564-4134-b810-47370afd7308"
445 },
446 {
447 "id": "5dd177dc-5aa1-492f-98cb-b967f1f17939",

59

448 "type": "istar.AndRefinementLink",
449 "source": "44a63bbf-dffe-48a0-af55-633460d4dec5",
450 "target": "fc1c1d20-d10d-48d0-a717-59094a59d944"
451 },
452 {
453 "id": "7b02d3cc-e8e6-4724-881a-b7191b93ea5c",
454 "type": "istar.AndRefinementLink",
455 "source": "0973aeef-286f-47b0-a6cf-640e43d7671f",
456 "target": "fc1c1d20-d10d-48d0-a717-59094a59d944"
457 }
458],
459 [...]
460 }
461 }

Listing I.1: Model converter input file

Some unused fields are omitted, please refer to piStar work[11] for the complete
file.

60

Appendix II

Peer DNL file

1 use peer_transition with type components.PeerTransitionsClass and
default "new components.PeerTransitionsClass()"!

2 use result with type components.Result and default "new
components.Result(\"peer\")"!

3

4 To start passivate in waitForInput!
5 Passivate in StopState!
6

7

8 when in waitForInput and receive From_G0_to_G4 go to
Calculate_transaction_result!

9 external event for waitForInput with From_G0_to_G4
10 <%
11 Result incomingResult =

result.update(messageList.get(0).getData());
12 result.reset(incomingResult);
13

14 %>!
15

16 when in waitForInput and receive From_G13_to_G5 go to
Execute_bussiness_logic_continue!

17 external event for waitForInput with From_G13_to_G5
18 <%
19 result = result.update(messageList.get(0).getData());
20

21 %>!
22

23 when in waitForInput and receive stop go to StopState!
24

25 generates output on From_G5_to_G13 with type Result!
26 generates output on From_G4_to_G0 with type Result!
27 generates output on stop !
28

61

29 accepts input on From_G13_to_G5 with type Result !
30 accepts input on From_G0_to_G4 with type Result !
31

32

33 hold in Calculate_transaction_result for time 5!
34 from Calculate_transaction_result go to Invoke_chaincode!
35 internal event for Calculate_transaction_result
36 <%
37 peer_transition.calculate_transaction_result_runner(result);
38 %>!
39

40

41 hold in Invoke_chaincode for time 5!
42 from Invoke_chaincode go to waitForInput!
43 internal event for Invoke_chaincode
44 <%
45 peer_transition.invoke_chaincode_runner(result);
46 %>!
47

48 after Invoke_chaincode output From_G5_to_G13!
49 output event for Invoke_chaincode
50 <%
51 output.add(outFrom_G5_to_G13, result);
52 %>!
53

54

55

56 hold in Execute_bussiness_logic_continue for time 5!
57 from Execute_bussiness_logic_continue go to

Return_contract_execution_result!
58 internal event for Execute_bussiness_logic_continue
59 <%
60 peer_transition.execute_bussiness_logic_continue_runner(result);
61 %>!
62

63

64 hold in Return_contract_execution_result for time 5!
65 from Return_contract_execution_result go to waitForInput!
66 internal event for Return_contract_execution_result
67 <%
68 peer_transition.return_contract_execution_result_runner(result);
69 %>!
70

71 after Return_contract_execution_result output From_G4_to_G0!
72 output event for Return_contract_execution_result
73 <%

62

74 output.add(outFrom_G4_to_G0, result);
75 %>!

Listing II.1: DNL file for peer component in model 3.6

63

Appendix III

Peer Transitions Class

1 package components;
2

3 public class PeerTransitionsClass {
4

5

6 interface TaskRunner {
7 Result run(Result res);
8 }
9

10 private peerTaskClass PeerRunner = new peerTaskClass();
11

12 private Result tasksRunner (TaskRunner[] tasks, String relation,
String parentRelation,Result result){

13 Result lastRes = result;
14 for (TaskRunner run : tasks) {
15 Result res = run.run(lastRes);
16

17 res = verifyContinuation(res, relation, parentRelation ==
"and");

18

19 lastRes.update(res);
20 if (res.locked()) {
21 break;
22 }
23

24 }
25 return lastRes;
26 }
27 private Result verifyContinuation(Result result, String relation,

boolean canLock) {
28 if (((result.getError() == null && result.isSuccess())&& relation

== "or") || ((result.getError() != null &&
!result.isSuccess())&& relation == "and")) {

64

29 if (canLock) {
30 result.lock();
31 }
32 }
33 // before continuing to next functions
34 if (!result.locked()) {
35 result.resetError();
36 }
37 return result;
38 }
39

40 public Result calculate_transaction_result_runner(Result result) {
41

42

43 if (result.locked()) {
44 return result;
45 }
46

47 return result;
48

49 //Goes to state: Invoke_chaincode
50 }
51

52 public Result invoke_chaincode_runner(Result result) {
53

54 result = verifyContinuation(result, "and" , true);
55 if (result.locked()) {
56 return result;
57 }
58

59 return result;
60

61 //Goes to state: Execute_bussiness_logic
62 }
63

64 public Result execute_bussiness_logic_continue_runner(Result
result) {

65

66 result = verifyContinuation(result, "and" , true);
67 if (result.locked()) {
68 return result;
69 }
70

71 return result;
72

73 //Goes to state: output_state

65

74 }
75

76

77 public Result return_contract_execution_result_runner(Result
result) {

78

79 result = verifyContinuation(result, "and" , true);
80 if (result.locked()) {
81 return result;
82 }
83

84 TaskRunner[] runners = new TaskRunner[] {
85 new TaskRunner() {
86 public Result run(Result res) {
87 return PeerRunner.Broadcast_transaction
88 _result_pool_to_channel_task(res);
89 }
90 },
91 new TaskRunner() {
92 public Result run(Result res) {
93 return PeerRunner.Unicast_transaction
94 _result_through_grpc_task(res);
95 }
96 }
97 };
98

99 return tasksRunner(runners, "or", "and", result);
100

101 //Goes to state: output_state
102 }
103

104

105 }

Listing III.1: PeerTranstionsClass.java

66

Appendix IV

Peer task class

1 package components;
2

3 public class peerTaskClass {
4

5 public Result Broadcast_transaction_result_pool_to_channel_task
(Result result) {

6 return result;
7 }
8

9 public Result Unicast_transaction_result_through_grpc_task
(Result result) {

10 return result;
11 }
12 }

Listing IV.1: peerTaskClass.java

67

Appendix V

Result class

1 package components;
2

3 import java.io.Serializable;
4

5 public class Result implements Serializable {
6

7 private static final long serialVersionUID = 5018535970263352859L;
8

9 private ErrorSignal error = null;
10 private String component = "";
11 private boolean success = false;
12 private boolean isLocked = false;;
13 private String result = "";
14

15 public void setError(String error) {
16 System.out.println(error);
17 this.error = new ErrorSignal(error, this.component);
18 this.success = false;
19 this.result = error;
20 }
21

22 public ErrorSignal getError() {
23 return error;
24 }
25

26 public void setSuccess() {
27 if (!isLocked) {
28 error = null;
29 success = true;
30 System.out.println("done with success");
31 }
32 }
33

68

34 public void setSuccess(String result) {
35 if (!isLocked) {
36 success = true;
37 this.result = result;
38 }
39 setSuccess();
40 }
41

42 public void lock() {
43 this.isLocked = true;
44 }
45

46 public boolean locked() {
47 return this.isLocked;
48 }
49

50 public boolean isSuccess() {
51 return success;
52 }
53

54 public void resetError() {
55 this.error = null;
56

57 }
58

59 public void setResult(String result) {
60 if (!this.isLocked) {
61 this.result = result;
62 }
63 }
64

65 public String getResult() {
66 return result;
67 }
68

69 public void reset (Result res) {
70 this.error = null;
71 this.success = false;
72 this.isLocked = false;
73 this.result = res.result;
74 }
75

76 public Result update(Result res) {
77 if (!this.isLocked) {
78 this.error = res.error;
79 this.success = res.success;

69

80 this.result = res.result;
81 }
82 return this;
83 }
84

85 public Result (String component) {
86 this.component = component;
87 }
88

89 public Result (String component, String initialState) {
90 result = initialState;
91 this.component = component;
92 }
93

94

95 public void print() {
96 System.out.print("Succes: ");
97 System.out.print(success);
98 System.out.print(" Locked: ");
99 System.out.print(isLocked);

100 System.out.print(" Error: ");
101

102 System.out.print(error != null ? error.error : "null");
103 }
104 }

Listing V.1: Result.java

70

Appendix VI

Error Class

1 package components;
2

3 public class ErrorSignal {
4 public String error;
5 public String origin;
6 public ErrorSignal (String error, String origin) {
7 this.error = error;
8 this.origin = origin;
9 }
10 }

Listing VI.1: Error.java

71

Appendix VII

Invalid model

1 {
2 "actors": [
3 {
4 "id": "309c8d4d-f7a1-4ca3-83a8-a93e9240716b",
5 "text": "Registrando uma transa o",
6 "type": "istar.Actor",
7 "x": 103,
8 "y": 152,
9 "customProperties": {

10 "Description": ""
11 },
12 "nodes": [
13 {
14 "id": "f0406552-00af-4442-b03d-a78e27457929",
15 "text": "Registrar uma transa o",
16 "type": "istar.Goal",
17 "x": 416,
18 "y": 170,
19 "customProperties": {
20 "Description": "",
21 "selected": true
22 }
23 },
24 {
25 "id": "8de7a901-398e-4d37-a22d-3f954bb81601",
26 "text": "Processar entrada na api",
27 "type": "istar.Goal",
28 "x": 268,
29 "y": 233,
30 "customProperties": {
31 "Description": "",
32 "selected": true
33 }

72

34 },
35 {
36 "id": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84",
37 "text": "Calcular resultado da transa o",
38 "type": "istar.Goal",
39 "x": 470,
40 "y": 230,
41 "customProperties": {
42 "Description": ""
43 }
44 },
45 {
46 "id": "51e1a122-2abe-4153-a42e-3e0c7a3bbd8e",
47 "text": "Invocar o chaincode",
48 "type": "istar.Goal",
49 "x": 501,
50 "y": 322,
51 "customProperties": {
52 "Description": ""
53 }
54 },
55 {
56 "id": "52781a22-2ed1-4281-9c73-e6a9d314e240",
57 "text": "Enviar resultado para api",
58 "type": "istar.Goal",
59 "x": 606,
60 "y": 325,
61 "customProperties": {
62 "Description": ""
63 }
64 },
65 {
66 "id": "7c79330d-f564-4134-b810-47370afd7308",
67 "text": "Verificar a pool de resultados",
68 "type": "istar.Goal",
69 "x": 771,
70 "y": 236,
71 "customProperties": {
72 "Description": ""
73 }
74 },
75 {
76 "id": "0d5629f0-4d07-46e9-a452-cac4d322e234",
77 "text": "Rejeitar a transa o",
78 "type": "istar.Goal",
79 "x": 726,

73

80 "y": 315,
81 "customProperties": {
82 "Description": ""
83 }
84 },
85 {
86 "id": "30fdd731-24c7-424d-b77c-6b9683a76bca",
87 "text": "Enviar transa o assinada para o orderer",
88 "type": "istar.Goal",
89 "x": 879,
90 "y": 309,
91 "customProperties": {
92 "Description": ""
93 }
94 },
95 {
96 "id": "fc1c1d20-d10d-48d0-a717-59094a59d944",
97 "text": "Validar assinaturas do bloco",
98 "type": "istar.Goal",
99 "x": 895,

100 "y": 372,
101 "customProperties": {
102 "Description": ""
103 }
104 },
105 {
106 "id": "0973aeef-286f-47b0-a6cf-640e43d7671f",
107 "text": "Rejeitar a transa o",
108 "type": "istar.Goal",
109 "x": 813,
110 "y": 448,
111 "customProperties": {
112 "Description": ""
113 }
114 },
115 {
116 "id": "a219eddf-f170-454f-b20b-7568228307e0",
117 "text": "Criar bloco",
118 "type": "istar.Task",
119 "x": 974,
120 "y": 454,
121 "customProperties": {
122 "Description": ""
123 }
124 },
125 {

74

126 "id": "c4146a67-384f-48f8-b48a-65fbdb31c7d0",
127 "text": "Adicionar bloco cadeia",
128 "type": "istar.Task",
129 "x": 923,
130 "y": 518,
131 "customProperties": {
132 "Description": ""
133 }
134 },
135 {
136 "id": "637bd788-65ab-4223-81cd-ceab64eef5fb",
137 "text": "Notificar a rede ",
138 "type": "istar.Task",
139 "x": 1046,
140 "y": 520,
141 "customProperties": {
142 "Description": ""
143 }
144 },
145 {
146 "id": "0429a68a-713a-4918-96d9-f3fbff61569d",
147 "text": "Abortar bad input",
148 "type": "istar.Goal",
149 "x": 107,
150 "y": 296,
151 "customProperties": {
152 "Description": ""
153 }
154 },
155 {
156 "id": "f6f3d933-8b3d-4c61-893c-cca36d2972c8",
157 "text": "Montar proposta de transa o",
158 "type": "istar.Goal",
159 "x": 273,
160 "y": 302,
161 "customProperties": {
162 "Description": ""
163 }
164 },
165 {
166 "id": "c4963052-bad5-46ef-b79e-031266546f11",
167 "text": "Montar proposta de transa o",
168 "type": "istar.Task",
169 "x": 213,
170 "y": 370,
171 "customProperties": {

75

172 "Description": ""
173 }
174 },
175 {
176 "id": "9c1403b9-53f3-4036-8690-3af589e5c536",
177 "text": "Abort (input)",
178 "type": "istar.Task",
179 "x": 103,
180 "y": 374,
181 "customProperties": {
182 "Description": ""
183 }
184 },
185 {
186 "id": "3867e9d3-349c-4829-8c9b-61de16ac60c2",
187 "text": "Executar l gica de neg cio",
188 "type": "istar.Goal",
189 "x": 503,
190 "y": 392,
191 "customProperties": {
192 "Description": ""
193 }
194 },
195 {
196 "id": "ba3fd6ff-acbc-4a10-911a-55c4b655ed8c",
197 "text": "Executar f u n o solicitada",
198 "type": "istar.Task",
199 "x": 502,
200 "y": 454,
201 "customProperties": {
202 "Description": ""
203 }
204 },
205 {
206 "id": "e3ea007b-e9df-4651-9260-8566a86c52d8",
207 "text": "Enviar proposta para os Peers",
208 "type": "istar.Goal",
209 "x": 334,
210 "y": 362,
211 "customProperties": {
212 "Description": ""
213 }
214 },
215 {
216 "id": "bbfc14b1-9da7-4112-82cf-3ec369887261",
217 "text": "Enviar proposta para os peers-alvo",

76

218 "type": "istar.Task",
219 "x": 403,
220 "y": 452,
221 "customProperties": {
222 "Description": ""
223 }
224 },
225 {
226 "id": "b96e97cd-d783-4f76-b006-b4c0ef93f4c9",
227 "text": "Calcular peers-alvo",
228 "type": "istar.Task",
229 "x": 258,
230 "y": 451,
231 "customProperties": {
232 "Description": ""
233 }
234 },
235 {
236 "id": "bdacda33-50aa-4850-9ce5-ad6a47368972",
237 "text": "Enviar resultado para api",
238 "type": "istar.Task",
239 "x": 615,
240 "y": 397,
241 "customProperties": {
242 "Description": ""
243 }
244 },
245 {
246 "id": "0c59d725-3739-47ad-8ce9-d49b65004a52",
247 "text": "Receber pool de resultados",
248 "type": "istar.Goal",
249 "x": 663,
250 "y": 218,
251 "customProperties": {
252 "Description": ""
253 }
254 },
255 {
256 "id": "72f6d345-7050-4382-8593-10719959349b",
257 "text": "Enviar erro",
258 "type": "istar.Task",
259 "x": 724,
260 "y": 395,
261 "customProperties": {
262 "Description": ""
263 }

77

264 }
265]
266 }
267],
268 "links": [
269 {
270 "id": "69723206-a23d-49da-960e-4a9c4d569598",
271 "type": "istar.AndRefinementLink",
272 "source": "8de7a901-398e-4d37-a22d-3f954bb81601",
273 "target": "f0406552-00af-4442-b03d-a78e27457929"
274 },
275 {
276 "id": "cceffa83-283e-463a-b7b1-8a6ec9337563",
277 "type": "istar.AndRefinementLink",
278 "source": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84",
279 "target": "f0406552-00af-4442-b03d-a78e27457929"
280 },
281 {
282 "id": "2249a9a6-06f0-43b1-9fec-3b95718424e2",
283 "type": "istar.AndRefinementLink",
284 "source": "51e1a122-2abe-4153-a42e-3e0c7a3bbd8e",
285 "target": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84"
286 },
287 {
288 "id": "00fb712e-aa43-4c32-b041-eacde62edc39",
289 "type": "istar.AndRefinementLink",
290 "source": "52781a22-2ed1-4281-9c73-e6a9d314e240",
291 "target": "2bb58c75-9a35-4b6f-8e8c-85f4cb604c84"
292 },
293 {
294 "id": "502f9ccb-1c1e-48e0-9020-dc7b5a5a9ba7",
295 "type": "istar.OrRefinementLink",
296 "source": "0d5629f0-4d07-46e9-a452-cac4d322e234",
297 "target": "7c79330d-f564-4134-b810-47370afd7308"
298 },
299 {
300 "id": "fa8f5bbc-5973-448f-8745-9a01d7afe960",
301 "type": "istar.OrRefinementLink",
302 "source": "30fdd731-24c7-424d-b77c-6b9683a76bca",
303 "target": "7c79330d-f564-4134-b810-47370afd7308"
304 },
305 {
306 "id": "7528b4c4-0d91-4e07-a9f3-ad431893b782",
307 "type": "istar.AndRefinementLink",
308 "source": "fc1c1d20-d10d-48d0-a717-59094a59d944",
309 "target": "30fdd731-24c7-424d-b77c-6b9683a76bca"

78

310 },
311 {
312 "id": "fe6524a0-4aa2-4528-84fb-117d34a4967e",
313 "type": "istar.OrRefinementLink",
314 "source": "0973aeef-286f-47b0-a6cf-640e43d7671f",
315 "target": "fc1c1d20-d10d-48d0-a717-59094a59d944"
316 },
317 {
318 "id": "13bb3b35-e66a-4c0d-a02f-ac8198cbc352",
319 "type": "istar.OrRefinementLink",
320 "source": "a219eddf-f170-454f-b20b-7568228307e0",
321 "target": "fc1c1d20-d10d-48d0-a717-59094a59d944"
322 },
323 {
324 "id": "31ba894d-707a-4670-81b3-3056559ab155",
325 "type": "istar.AndRefinementLink",
326 "source": "c4146a67-384f-48f8-b48a-65fbdb31c7d0",
327 "target": "a219eddf-f170-454f-b20b-7568228307e0"
328 },
329 {
330 "id": "aa89e99a-ab8d-42d6-8fad-91c599c01335",
331 "type": "istar.AndRefinementLink",
332 "source": "637bd788-65ab-4223-81cd-ceab64eef5fb",
333 "target": "a219eddf-f170-454f-b20b-7568228307e0"
334 },
335 {
336 "id": "2a15ced0-a60e-4a2f-8e7a-c5eb6d7ac6dd",
337 "type": "istar.OrRefinementLink",
338 "source": "0429a68a-713a-4918-96d9-f3fbff61569d",
339 "target": "8de7a901-398e-4d37-a22d-3f954bb81601"
340 },
341 {
342 "id": "152d6209-502b-4291-95bc-d4e2dd28adc3",
343 "type": "istar.OrRefinementLink",
344 "source": "f6f3d933-8b3d-4c61-893c-cca36d2972c8",
345 "target": "8de7a901-398e-4d37-a22d-3f954bb81601"
346 },
347 {
348 "id": "69b3478b-8374-4def-bdf1-1a470c1dae90",
349 "type": "istar.AndRefinementLink",
350 "source": "c4963052-bad5-46ef-b79e-031266546f11",
351 "target": "f6f3d933-8b3d-4c61-893c-cca36d2972c8"
352 },
353 {
354 "id": "bc91875d-7167-410e-8c18-dd86e0c77263",
355 "type": "istar.AndRefinementLink",

79

356 "source": "9c1403b9-53f3-4036-8690-3af589e5c536",
357 "target": "0429a68a-713a-4918-96d9-f3fbff61569d"
358 },
359 {
360 "id": "9603aaa6-c3e2-4699-8b2a-09800b8ae326",
361 "type": "istar.AndRefinementLink",
362 "source": "3867e9d3-349c-4829-8c9b-61de16ac60c2",
363 "target": "51e1a122-2abe-4153-a42e-3e0c7a3bbd8e"
364 },
365 {
366 "id": "520f7996-c674-4a95-a6fb-f2dfbc62aad9",
367 "type": "istar.AndRefinementLink",
368 "source": "ba3fd6ff-acbc-4a10-911a-55c4b655ed8c",
369 "target": "3867e9d3-349c-4829-8c9b-61de16ac60c2"
370 },
371 {
372 "id": "3b73c71e-d64b-428f-9144-412368798265",
373 "type": "istar.AndRefinementLink",
374 "source": "bbfc14b1-9da7-4112-82cf-3ec369887261",
375 "target": "e3ea007b-e9df-4651-9260-8566a86c52d8"
376 },
377 {
378 "id": "a3481701-8c90-426b-9086-0656307c3bc2",
379 "type": "istar.AndRefinementLink",
380 "source": "e3ea007b-e9df-4651-9260-8566a86c52d8",
381 "target": "f6f3d933-8b3d-4c61-893c-cca36d2972c8"
382 },
383 {
384 "id": "88ad5efa-86ee-44d4-9cd3-1da4e9896420",
385 "type": "istar.AndRefinementLink",
386 "source": "b96e97cd-d783-4f76-b006-b4c0ef93f4c9",
387 "target": "e3ea007b-e9df-4651-9260-8566a86c52d8"
388 },
389 {
390 "id": "b1c1d20d-787d-484d-b39a-70bd23f702a0",
391 "type": "istar.AndRefinementLink",
392 "source": "bdacda33-50aa-4850-9ce5-ad6a47368972",
393 "target": "52781a22-2ed1-4281-9c73-e6a9d314e240"
394 },
395 {
396 "id": "62c3868b-b917-436b-ad0a-37bfc1ac31b3",
397 "type": "istar.AndRefinementLink",
398 "source": "0c59d725-3739-47ad-8ce9-d49b65004a52",
399 "target": "f0406552-00af-4442-b03d-a78e27457929"
400 },
401 {

80

402 "id": "3d19403c-c0f0-4243-b017-6068a3262795",
403 "type": "istar.AndRefinementLink",
404 "source": "7c79330d-f564-4134-b810-47370afd7308",
405 "target": "0c59d725-3739-47ad-8ce9-d49b65004a52"
406 },
407 {
408 "id": "ab346661-81be-44dd-99e4-b7907930d12c",
409 "type": "istar.AndRefinementLink",
410 "source": "72f6d345-7050-4382-8593-10719959349b",
411 "target": "0d5629f0-4d07-46e9-a452-cac4d322e234"
412 }
413],
414 }

Listing VII.1: Invalid input model

81

	Agradecimentos
	Resumo
	Abstract
	Introduction
	Motivation
	Problem and Hypothesis
	Goals
	General goals
	Specific goals

	Organization

	Research Baseline
	System-of-systems
	Definition
	Distinguishing a System from a System-of-Systems

	Goal-Oriented SoS Modeling
	Goal-seeking system
	The mKaos project
	piStar GODA
	SoS modeling on i* Framework

	System-of-Systems simulation
	MS4

	Blockchain as a Cyber-physical SoS

	Proposal
	From goal-oriented model to MS4 model
	piStar-MS4 goal mapper
	Model construction

	Implementation
	Model conversion
	Connections
	DNL file generation
	Java class generation
	SES file generation

	Execution
	Running the converter
	Dependencies
	Execution
	Importing onto the MS4 ME
	Before running the simulation
	Running the simulation

	Results
	Unit tests
	Simulation validation
	A blockchain mission
	Simulation Results

	Challenges

	Conclusion
	References
	GM2MS4 Input file
	Peer DNL file
	Peer Transitions Class
	Peer task class
	Result class
	Error Class
	Invalid model

