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Zusammenfassung

Fortschritte in der Informationstechnik haben leistungsstarke allgegenwärtige
Rechner hervorgerufen, während uns digitale Netzwerke neue Wege für die schnelle
Kommunikation ermöglicht haben. Durch die Vielzahl von Anwendungen führte
dies zur Übertragung von riesigen Datenvolumen. Seit Jahrzehnten wurden bereits
verschiedene kryptographische Verfahren und Technologien zum Datenschutz
erforscht und analysiert. Das Ziel ist die Privatsphäre der Benutzer zu schützen und
gleichzeitig nützliche Funktionalität anzubieten, was oft mit einem Kompromiss
zwischen Sicherheitseigenschaften, kryptographischen Annahmen und Effizienz
verbunden ist. In einer Fülle von kryptographischen Konstruktionen spielen
Anonymitätseigenschaften eine besondere Rolle, da sie in vielen realistischen
Szenarien sehr wichtig sind. Allerdings fehlen vielen kryptographischen Primitive
Anonymitätseigenschaften oder sie stehen im Zusammenhang mit erheblichen
Kosten.

In dieser Dissertation erweitern wir den Bereich von kryptographischen Prim-
itiven mit einem Fokus auf Anonymität. Erstens definieren wir Anonymous
RAM, eine Verallgemeinerung von Einzelbenutzer-Oblivious RAM für mehrere
misstraute Benutzer, und stellen dazu zwei Konstruktionen mit verschiedenen
Kompromissen zwischen Annahmen und Effizienz vor. Zweitens definieren wir
ein Verschlüsselungsverfahren, das es erlaubt anonym eine Verbindung zwischen
Geheimtexten herzustellen und deren Integrität zu überprüfen. Darüber hinaus
bietet die aggregierbare Variante von diesem Verfahren an, Parallel Anonymous
RAM zu bauen. Dieses verbessert Anonymous RAM, indem es mehrere Benutzer
in einer parallelen Ausführung unterstützen kann. Drittens zeigen wir eine Meth-
ode für das Konstruieren effizienter Zero-Knowledge-Protokolle, die gleichzeitig
aus algebraischen und arithmetischen Teilen bestehen. Zuletzt zeigen wir ein
Framework für das Konstruieren effizienter Single-Leader-Election-Protokolle, was
kürzlich als ein wichtiger Bestandteil in den Proof-of-Stake Kryptowährungen
erkannt worden ist.
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Abstract

Advances in information technologies gave a rise to powerful ubiquitous com-
puting devices, and digital networks have enabled new ways of fast communication,
which immediately found tons of applications and resulted in large amounts of data
being transmitted. For decades, cryptographic schemes and privacy-preserving
protocols have been studied and researched in order to offer end users privacy of
their data and implement useful functionalities at the same time, often trading
security properties for cryptographic assumptions and efficiency. In this plethora
of cryptographic constructions, anonymity properties play a special role, as they
are important in many real-life scenarios. However, many useful cryptographic
primitives lack anonymity properties or imply prohibitive costs to achieve them.

In this thesis, we expand the territory of cryptographic primitives with
anonymity in mind. First, we define Anonymous RAM, a generalization of a single-
user Oblivious RAM to multiple mistrusted users, and present two constructions
thereof with different trade-offs between assumptions and efficiency. Second, we
define an encryption scheme that allows to establish chains of ciphertexts anony-
mously and verify their integrity. Furthermore, the aggregatable version of the
scheme allows to build a Parallel Anonymous RAM, which enhances Anonymous
RAM by supporting concurrent users. Third, we show our technique for construct-
ing efficient non-interactive zero-knowledge proofs for statements that consist
of both algebraic and arithmetic statements. Finally, we show our framework
for constructing efficient single secret leader election protocols, which have been
recently identified as an important component in proof-of-stake cryptocurrencies.
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Background of this Dissertation

This dissertation is based on four projects, two of which are published in
peer-reviewed conferences and two are under submission. I contributed to all
projects as one of the main authors.

The initial idea for our first work, Anonymous RAM [P1], originated during a
joint discussion of Ivan Pryvalov, Michael Backes, Aniket Kate, and Amir Herzberg
at Saarland University. Michael Backes shaped the theoretical foundation for the
anonymous RAM problem, and all authors discussed and reviewed the first (linear)
construction. Ivan Pryvalov came up with the two-server polylogarithmic solution
to the problem. Aniket Kate, Amir Herzberg, and Michael Backes contributed in
writing and improving the presentation of the paper. All authors reviewed the
paper.

Our second work, Randomize-or-Change encryption [P2], emerged as a follow-
up project to identify a basic primitive that could be used for building a secure
Anonymous RAM. All authors contributed to shaping the security properties of
the cryptographic primitive and discussed the discrete log construction. Aniket
Kate proposed a technique for saving one exponentiation in the discrete log
construction. Amir Herzberg proposed an idea for the hybrid construction, which
was later formalized by Ivan Pryvalov. Aniket Kate, Amir Herzberg, and Michael
Backes contributed in writing and improving the presentation of the paper. The
preliminary version of this work was presented at [P3]. Further, Ivan Pryvalov
came up with the aggregatable extension. All authors reviewed the paper.

Our third work about non-interactive zero-knowledge proofs [P4] emerged first
as a part of the hybrid construction in the Randomize-or-Change project. It was
later identified as a missing spot in the literature and formalized as a separate
independent contribution. Lucjan Hanzlik joined the project at a later stage and
contributed in writing and improving the security proofs. All authors reviewed
the paper.

Finally, the problem statement for secret leader election [P5] was first discussed
by Ivan Pryvalov and Pascal Berrang during their meeting at NDSS’2019 in
San-Diego. Ivan Pryvalov first came up with the idea of randomly swapping
commitments and then formalized the solution. Lucjan Hanzlik found a security
problem in an earlier version of the draft, which was later fixed by Ivan Pryvalov.
Ivan Pryvalov conducted experimental evaluation of the proposed framework. In
one of the instantiations, Ivan Pryvalov re-used the source code from another
publication [S1], also presented at [S3, S2], for which he was responsible for
implementing the MPC algorithms. All authors reviewed the paper.

[P1] Backes, M., Herzberg, A., Kate, A., and Pryvalov, I. Anonymous ram. In:
European Symposium on Research in Computer Security–ESORICS 2016.
Springer. 2016, 344–362.
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non-interactive zero-knowledge proofs in cross-domains without trusted
setup. In: IACR International Workshop on Public Key Cryptography.
Springer. 2019, 286–313.
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on Research in Computer Security–ESORICS 2022. 2022, to appear.

Further Contributions of the Author

[S1] Eigner, F., Kate, A., Maffei, M., Pampaloni, F., and Pryvalov, I. Differen-
tially private data aggregation with optimal utility. In: Proceedings of the
30th Annual Computer Security Applications Conference. 2014, 316–325.

[S2] Eigner, F., Kate, A., Maffei, M., Pampaloni, F., and Pryvalov, I. Privacy-
preserving data aggregation with optimal utility using arithmetic smc.
In: Workshop on Usable and Efficient Secure Multiparty Computation
(UaESMC). 2014.

[S3] Eigner, F., Kate, A., Maffei, M., Pampaloni, F., and Pryvalov, I. Privada:
a generic framework for privacy-preserving data aggregation. In: Grande
Region Security and Reliability Day (GRSRD). 2014.

viii



Acknowledgments
First of all, I would like to thank Michael Backes for giving me the opportunity

to be his student. I first contacted him back in 2012 regarding open PhD positions.
At the time I was a member of the Graduate School of Computer Science in
Saarbrücken and had recently completed the preparatory phase. However, I was
still exploring potential fields for pursuing my PhD and information security was
the only major field for which I hadn’t taken any courses during the preparatory
phase. So Michael had suggested that I take his upcoming cryptography core
course so that he could judge my application based on my performance in the
course. That was the departing point into a world of magic cryptographic numbers.
Not only had we learned in the class, say, why encryption schemes are secure
according to the modern security standards but also we were introduced some
remarkable primitives, one of which – zero-knowledge proofs – blew my mind.
In 2014, I joined Michael’s Information Security and Cryptography group and I
am very thankful to Michael for his support and supervision, especially in the
first years, when his help was most needed. Moreover, I would like to thank
Michael for his efforts in promoting research and, together with all people involved,
transforming a handful of research groups co-located at Saarbrücken campus into
the Helmholtz Center, which is the biggest academic success one can have in
Germany. Thanks to this transformation, our working environment has greatly
improved and I extended my academic network.

I would like to thank Aniket Kate for our long-term collaboration, which
started prior to my PhD. Not only has our collaboration served me as a bridge
between the cryptography course and the doctoral studies but also it continued
further and resulted in three co-authored conference publications, two of which
are included into this thesis. I am thankful for Aniket’s support throughout the
entire time of my journey into the cryptographic world.

I would like to thank Amir Herzberg for the opportunity to be his teaching
assistant in a seminar when he was visiting Saarland University in 2014; for his
thorough and detailed feedback in our joint projects; for helping me with my first
conference presentation at ESORICS’2016 in Greece; and for being supportive
throughout my PhD life. Our collaboration has resulted in two co-authored
conference publications, which are included into this thesis.

I would like to thank Lucjan Hanzlik for his help and support during the final
years of my PhD. Our collaboration has resulted in one co-authored conference
publication. Besides, he contributed to our recent research project with Pascal
Berrang. Thanks to Lucjan’s expertise, we discovered and fixed a security flaw in
an earlier draft of the paper.

I would like to thank Pascal Berrang for our recent collaboration, which started
with a meeting at NDSS’2019 in San-Diego when he shared a research question
for which he was looking a solution. The findings from this project are included
into this thesis.

ix



I would like to thank Nico Döttling and Amir Herzberg for agreeing to review
this thesis.

Regarding thesis writing, I would like to thank Ágnes Kiss, for giving me
a high-level feedback on the thesis, and Pascal Berrang, for helping me with
translating the abstract into German.

During my PhD time, I shared office with many people and I would like to
thank everyone of them for being a nice officemate: Ahmed Salem, Fabian Bendun,
Jonas Schneider-Bensch, Kamil Kluczniak, Kathrin Grosse, Lucjan Hanzlik, Min
Chen, Sebastian Meiser, Sebastian Weisgerber, and Tahleen Rahman. Separately,
I would like to thank Muhammad Rizwan Asghar, with whom I shared office in
2014 when he was a postdoc at Michael’s chair, for his help in writing my first
review for a conference paper and for numerous discussions about academic life.
After he left CISPA to join University of Oakland, New Zealand, we have been
keeping a semi-regular contact over the Internet; I consider Rizwan my external
mentor in navigating my academic path.

I would like to thank everyone at CISPA, who I met during my PhD time, for
making life full of interesting events, for simplifying any bureaucratic procedures,
and for making the working environment exceptionally good. I would like to thank
the Saarbrücken Graduate School of Computer Science for offering international
students a stipend program, which I have been part of.

Last but not least, I would like to thank Alina, for being nearby and supporting
me during these long almost 7 years of my PhD, and to our now-four-month-old
son Adam, for constantly reminding me that there are better alternatives to
writing a thesis. Finally, I would like to thank my parents and my brother for
being supportive throughout my doctoral studies.

x



Contents

1 Introduction 1

2 Anonymous RAM 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 AnonRAM Definitions . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Linear-complexity AnonRAM . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Seemingly Natural but Flawed Approaches . . . . . . . . . 16
2.3.2 AnonRAMlin and its Security Against HbC Adversaries . . 17
2.3.3 AnonRAMM

lin and its Security Against Malicious Users . . . 19
2.4 Polylogarithmic-complexity AnonRAM . . . . . . . . . . . . . . . 21

2.4.1 Cryptographic Building Blocks . . . . . . . . . . . . . . . 21
2.4.2 AnonRAMpolylog Data Structure . . . . . . . . . . . . . . . . 23
2.4.3 AnonRAMpolylog Protocol Overview . . . . . . . . . . . . . . 24
2.4.4 User Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.5 Reshuffle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.6 Complexity and Security Analysis . . . . . . . . . . . . . . 30
2.4.7 AnonRAMM

polylog Secure Against Malicious Users . . . . . . 31
2.5 (Partially Key-Homomorphic) Oblivious PRF . . . . . . . . . . . 32
2.6 Detailed Description of AnonRAMM

polylog . . . . . . . . . . . . . . . 35
2.7 Postponed Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.1 Proof of AnonRAMpolylog . . . . . . . . . . . . . . . . . . . 37
2.7.2 Proof of AnonRAMM

polylog . . . . . . . . . . . . . . . . . . . 42
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Randomize-or-Change Encryption 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Variants of RoC . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Security properties . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 (Basic) Randomize-or-Change Encryption . . . . . . . . . . . . . 55
3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Discrete log based construction RoCdlog . . . . . . . . . . . 59

xi



CONTENTS

3.4 Aggregatable Randomize-or-Change Encryption . . . . . . . . . . 60
3.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Aggregatable same-key RoC construction . . . . . . . . . . 63
3.4.3 Aggregatable any-key RoC construction . . . . . . . . . . 65

3.5 Keyed Randomize-or-Change Encryption . . . . . . . . . . . . . . 69
3.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.2 Hybrid construction RoChyb . . . . . . . . . . . . . . . . . 71
3.5.3 Security analysis of RoCHbC

hyb . . . . . . . . . . . . . . . . . 74
3.5.4 Integrity of plaintext in RoCM

hyb . . . . . . . . . . . . . . . 76
3.6 Parallel Anonymous RAM . . . . . . . . . . . . . . . . . . . . . . 78

3.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7 Group payment system . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.9 Postponed proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Non-interactive Zero-Knowledge Proofs in Cross-Domains 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Homomorphic Commitment Schemes . . . . . . . . . . . . 96
4.2.2 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . 98
4.2.3 ZKBoo/ZKB++ . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Combining ZKB++ with Algebraic Commitments . . . . . . . . . 100
4.3.1 Our Technique - First Approach . . . . . . . . . . . . . . . 101
4.3.2 Improved Version . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.3 Security analysis . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Optimization for large input space . . . . . . . . . . . . . 114
4.3.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 NIZK OR-proofs in cross-domains . . . . . . . . . . . . . . . . . . 115
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Single Secret Leader Election from MPC 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.3 Comparison with Boneh et al. [18] . . . . . . . . . . . . . . 123
5.1.4 On the practicality of our SSLE framework . . . . . . . . . 126

5.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.2 Single Secret Leader Election . . . . . . . . . . . . . . . . 128

5.3 (Non-secret) single leader election constructions . . . . . . . . . . 131
5.3.1 Naive attempts . . . . . . . . . . . . . . . . . . . . . . . . 131

xii



CONTENTS

5.3.2 Two-party Oblivious Select . . . . . . . . . . . . . . . . . . 132
5.3.3 Leader Election based on Two-party Oblivious Select . . . 134

5.4 Our SSLE from DDH . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4.1 Upgrading to secret leader . . . . . . . . . . . . . . . . . . 135
5.4.2 Full construction . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Our SSLE based on garbled circuits . . . . . . . . . . . . . . . . . 140
5.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . 142
5.6.1 Non-uniform distributions . . . . . . . . . . . . . . . . . . 144
5.6.2 Extensions to DDH-based MPC . . . . . . . . . . . . . . . 145

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.7.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 145
5.7.2 Construction 5.4.1 (Section 5.4.2) . . . . . . . . . . . . . . 145
5.7.3 Construction 5.5.1 (Section 5.5.2) . . . . . . . . . . . . . . 147

5.8 Postponed definitions . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.9 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Conclusion 159

xiii





List of Figures

2.1 User algorithm of AnonRAMlin with access request (j, α,m) for user
Ui. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Flow of User algorithm in AnonRAMpolylog for user Ui, cell j, and
level `: 1) Ui asks the tag server T for a dummy pre-tag. 2) T
runs an OPRF protocol with the storage server S such that T learns
the dummy pre-tag and S learns nothing. 3) T sends the dummy
pre-tag to Ui. 4) Ui runs OPRF with S to learn a pre-tag for her
cell j obliviously. 5) Depending on whether cell j is found in the
previous levels or not, Ui selects one of the two pre-tags to compute
a tag and sends the tag to S. 6) S re-randomizes and sends the
block(s) associated with the user’s tag. 7) Ui re-randomizes or
updates the block(s), and possibly learns the value of cell j. If
` = 1, steps 4) and 5) are skipped, and in step 6) S sends all blocks
from that level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Our (partially key-homomorphic) OPRF construction. . . . . . . 33
2.4 Part of zero-knowledge proof system for AnonRAMM

polylog relationship
between blocks Bk and B̂k at level `, represented as ciphertexts
(γk, vk) and (γ̂k, v̂k) respectively, and a new block B̂0, represented
as (γ̂0, v̂0). Encryption of pre-tag for the dummy block associated
with B̂k is denoted as γD` . Encryption of the constant dummy
value is denoted as vD. . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Parallel Anonymous RAM from aggregatable RoC. Example for 3
users, two of them sending write-requests to the same location at
the server via anonymous channels. . . . . . . . . . . . . . . . . . 54

3.2 Definition of IND-CPA and ANON games. . . . . . . . . . . . . . 58
3.3 Definition of ANON-INT-R and ANON-EXT-R games. . . . . . . 71
3.4 Ciphertext structure in RoCHbC

hyb . User Ui is the recipient of cipher-
text, G denotes a PRG, ei(·) denotes the encryption algorithm of a
(traditional) re-randomizable CPA-secure encryption scheme, m is
the encrypted message. Relative sizes of ciphertext components are
kept, γ is supposed to be the largest component, while all remaining
are of equal size. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xv



LIST OF FIGURES

3.5 Group payment system from ARoC-ak. Example for 3 users, two
of them sending transactions to the server via anonymous channels.
Server’s state consists of 4 units that belong to 3 users. User U1
owns two units and sends one unit to U2. User U2 owns one unit
and sends it to U1. For each unit, the server aggregates a new unit
value, forming a new server’s state. . . . . . . . . . . . . . . . . . 83

4.1 Description of Cross-ZKB++ (First Attempt) Prove algorithm for
function F (x) = 1 with a committed input Cx = Com(x, r), made
non-interactive using the Fiat-Shamir transformation and with t
rounds of ZKB++. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Description of Cross-ZKB++ (First Attempt) Verify algorithm for
function F (x) = 1 with a committed input Cx = Com(x, r), made
non-interactive using the Fiat-Shamir transformation and with t
rounds of ZKB++. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Description of Cross-ZKB++ Prove algorithm for function F (x) = 1
with a committed input Cx = Com(x, r), made non-interactive using
the Fiat-Shamir transformation and with t rounds of ZKB++. . 110

4.4 Description of Cross-ZKB++ Verify algorithm for function F (x) = 1
with a committed input Cx = Com(x, r), made non-interactive using
the Fiat-Shamir transformation and with t rounds of ZKB++. . 111

4.5 Non-interactive ZKB++ [37]. . . . . . . . . . . . . . . . . . . . . 117

5.1 Ideal functionality FN,`,cSSLE . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2 Two-party oblivious select OSelect protocol between Alice and Bob. 133
5.3 OSelectN : Extension of two-party OSelect to N users. Example for

N = 4 and party P1 as the operational leader. . . . . . . . . . . 134
5.4 The intermediate Secret Leader Election protocol. . . . . . . . . . 138
5.5 OSelectM: Oblivious Select in the MPC setting. . . . . . . . . . . 139
5.6 OSelectMN: Extension OSelectM to N inputs. Example for N = 4. 139
5.7 Single Secret Leader Election construction SSLE instantiated with

OSelectMN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.8 Elect algorithm and Oblivious Select instantiated in the MPC

framework by Wang et al. [129] . . . . . . . . . . . . . . . . . . . 143
5.9 Tree optimization technique. Example OSelectMN for P1 and P2

with stakes (1, 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.10 Comparison of timings for Oblivious Select in Construction 5.5.1

in the LAN and WAN settings. . . . . . . . . . . . . . . . . . . . 146

xvi



List of Tables

3.1 Permitted operations (randomize, change) for a given ciphertext c
to obtain c′ in randomize-or-change encryption, depending on the
user’s role. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Security properties in UREnc (as defined in [133]) and randomize-
or-change encryption. We use E,R,Ch to denote the encryption,
re-randomization, and change algorithms, respectively. “+” (“–”)
means that a respective security property can (cannot) be achieved. 52

3.3 Computing expected values (c̃[1], c̃[3], c̃[6], c̃[8]) from (c̃[2], c̃[4], c̃[5], c̃[7])
in ARoC-ak construction. Indices in the circles indicate to the
values computed by re-randomizers in the first round. . . . . . . . 68

4.1 Comparison of ZK proof systems in cross-domains for a circuit
F with an algebraically committed input x, where |F | denotes
the circuit size, |x| the number of input bits. We denote by λ
the security parameter, by pub a public-key operation, by sym a
symmetric-key operation. . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Comparison of SSLE protocols, assuming all N users participate in
election, amortized per one election . . . . . . . . . . . . . . . . . 124

5.2 Experimenal results for Construction 5.4.1 in the honest-but-curious
and malicious adversary models. . . . . . . . . . . . . . . . . . . . 148

5.3 Experimental results for Construction 5.5.1 in the malicious adver-
sary model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xvii





1
Introduction

1





Anonymity is essential in many real-life scenarios. The most prominent
examples are anonymous communication, electronic voting (e-voting), and payment
systems. Anonymous communication is crucial in countries where the government
censors their citizens by blocking unwanted content that may reveal or point out
to violations of human rights or corruption, so exposing identity of the source of
such information may put that person’s life in danger. Anonymous communication
is an active research field, and there have been many systems proposed in the
literature, perhaps the most known to the general public is Tor Browser. Likewise,
e-voting protocols are often seen as a secure alternative to the traditional paper-like
in-person voting. The main benefit of e-voting systems is that the voter can vote
from her electronic device at any point of time at any location during the election
while hiding the vote and the fact of voting, i.e. anonymity of voting. Even a
coerced user, who voted against her wish, should be able to privately and securely
cast again a legitimate vote and only that vote would be counted. As of today,
only a few countries have adopted e-voting for elections, mostly on a local level.
Therefore, an important step to defend democracy against authoritarian regimes
is to propose a provably secure e-voting system that would be widely accepted
and would withstand all known threats, including – but not limited to – physical
coercion, installed malware on electronic devices, or side channels. Finally, privacy
and anonymity are essential in payment systems. Paying in cash resembles the
essentials of a perfect payment system: banknotes are freely circulating in the
system (serial numbers written on them are usually not tracked during most of the
transactions); it is not known how much money left in the pocket; and banknotes
do not reveal the payer’s identity (unless the payer is explicitly asked to present
it). Users would like to reveal as little as possible about their account details and
identity when performing transactions. Nowadays, banks keep users’ accounts in a
digital form and allow online payments with certain privacy guarantees; however,
users have to trust these banks. The past decade has seen the emergence of
cryptocurrencies, with the main goal to remove the trust assumption by admitting
other, more acceptable, assumptions and at the same time to guarantee certain
privacy and anonymity properties. This is an active ongoing research topic.

Although anonymous communication, e-voting, and payment systems are
important topics in themselves, the focus of this thesis is studying more basic
cryptographic primitives that either lack foundation with respect to anonymity
properties or have such properties while lacking in efficiency. Basic cryptographic
building blocks with anonymity in mind can be used for constructing more complex
systems with anonymity guarantees, without sacrificing efficiency and the achieved
security properties in those systems. Depending on which primitive is studied,
anonymity properties may have different meanings and forms. We first explain on
a high level, which anonymity properties are addressed in the studied primitives,
and then detail the respective contributions:

• In our first work, Anonymous RAM, we generalize the problem of hiding
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client’s access patterns to the external storage, known as Oblivious RAM
(ORAM) in the literature, to multiple mistrusting users. Hence, in addition
to the security properties of a single-user ORAM primitive, we add user’s
anonymity property. As we show in this work, solving the Anonymous RAM
problem is not trivial.

• In our second work , we define Randomize-or-Change (RoC), a public-key
encryption scheme, which allows chaining of ciphertexts, while protecting
integrity of plaintexts. For a pair of ciphertexts, called input and output
ciphertexts, an external adversary should not be able to distinguish whether
the output ciphertext was created by the recipient of the input ciphertext,
or the output ciphertext is the re-randomized version of the input ciphertext
created by some other user. The ciphertexts in the chain are anonymous,
i.e. they are not associated with public keys explicitly. To ensure the
integrity of plaintexts, a pair of ciphertexts can be publicly verified. The
starting point of this work is universally re-randomizable encryption schemes
(UREnc), which allow anyone to re-randomize ciphertexts without knowing
the corresponding public keys. However, adding the integrity of plaintexts
propeprty alone diverges RoC from UREnc in terms of the achieved security
properties and applications.

• In our third work, we improve efficiency in so-called non-interactive zero-
knowledge proofs. Zero-knowledge protocols allow a prover to prove a
statement to a verifier such that the verifier at the end of the protocol is
convinced that the statement is true, without learning anything else, in
particular, without learning the prover’s secret. Protocols for zero-knowledge
proofs can be used via anonymous channels, hence constitute an important
building block for constructing more complex systems with anonymity
guarantees.

• Finally, in our fourth work, we present a framework for constructing efficient
protocols for Single Secret Leader Election (SSLE). In SSLE, the partici-
pating parties would like to randomly select a leader such that at the end
of the protocol only the leader knows that it is elected, i.e. anonymity of
the leader is achieved. At some point later, the leader presents a proof of
leadership and some payload, which depends on the application, in which
an SSLE protocol in used.

Anonymous RAM In [P1], we define the concept of and present provably
secure constructions for Anonymous RAM (AnonRAM), a novel multi-user storage
primitive that offers strong privacy and integrity guarantees. AnonRAM combines
privacy features of anonymous communication and oblivious RAM (ORAM)
schemes, allowing it to protect, simultaneously, the privacy of content, access
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patterns and user’s identity, from curious servers and from other (even adversarial)
users. AnonRAM further protects integrity, i.e., it prevents malicious users from
corrupting data of other users.

We present two secure AnonRAM schemes, differing in design and time com-
plexity. The first scheme has a simpler design; like efficient ORAM schemes, its
time complexity is poly-logarithmic in the number of cells (per user); however,
it is linear in the number of users. The second AnonRAM scheme reduces the
overall complexity to poly-logarithmic in the total number of cells (of all users) at
the cost of requiring two non-colluding servers.

Randomize-or-Change Encryption In [P2], we introduce randomize-or-change
encryption (RoC), an encryption scheme which allows any party to randomize
ciphertexts, and where the recipient may change the plaintext, i.e., output encryp-
tion of a new message. On the one hand, RoC ensures operation indistinguishability,
i.e., an eavesdropper cannot tell if an outgoing ciphertext is a randomization of the
incoming ciphertext, or if the ciphertext is the encryption of a different message
(by the recipient). On the other hand, RoC also ensures universal verifiability,
i.e., anyone can validate that the output is, indeed, either the randomization of
the incoming ciphertext or encryption of a new message (by the recipient), i.e.,
valid ‘randomize-or-change encryption’. This property protects the integrity of
re-randomized ciphertexts, together with recipient anonymity. Furthermore, we
introduce aggregated RoC, which allows to publicly aggregate multiple ciphertexts
linked to the same source ciphertext. We show three applications for RoC: parallel
anonymous RAM, group payment system, and anonymous communication. For
the first application, we significantly improve latency over our anonymous RAM
construction [P1].

We present a class of RoC constructions, which extends universal re-encryption
construction by Golle et al. [77]. To improve scalability, we then propose a class of
hybrid RoC constructions, that composes a RoC with a pseudorandom generator,
in a novel manner such that RoC can be employed for large messages. The
hybrid constructions trade off scalability for security, that is, the recipient of
randomized ciphertexts can identify randomizers. Note that existing universally
re-randomizable encryption (UREnc) schemes provide neither verifiability nor
operation indistinguishability.

Non-Interactive Zero-Knowledge Proofs in Cross-Domains With the recent
emergence of efficient zero-knowledge (ZK) proofs for general circuits, while
efficient zero-knowledge proofs of algebraic statements have existed for decades, a
natural challenge arose to combine algebraic and non-algebraic statements. Chase
et al. [38] proposed an interactive ZK proof system for this cross-domain problem.
As a use case they show that their system can be used to prove knowledge of a
RSA/DSA signature on a message m with respect to a publicly known Pedersen
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commitment. One drawback of their system is that it requires interaction between
the prover and the verifier. This is due to the interactive nature of garbled circuits,
which are used in their construction. Subsequently, Agrawal et al. [2] proposed
an efficient non-interactive ZK (NIZK) proof system for cross-domains based
on succinct non-interactive arguments of knowledge (SNARKs), which, however,
require a trusted setup assumption.

In [P4], we propose a NIZK proof system for cross-domains that requires no
trusted setup and is efficient both for the prover and the verifier. Our system
constitutes a combination of Schnorr-based ZK proofs and ZK proofs for general
circuits by Giacomelli et al. [71]. The proof size and the running time of our
system are comparable to the approach by Chase et al. Compared to Bullet-
proofs [25], a recent NIZK proofs system on committed inputs, our techniques
achieve asymptotically better performance on prover and verifier, thus presenting
a different trade-off between the proof size and the running time.

Single Secret Leader Election from Multi-Party Computation The emer-
gence of distributed digital currencies has raised the need for a reliable consensus
mechanism. In proof-of-stake cryptocurrencies, the participants periodically choose
a closed set of validators, who can vote and append transactions to the blockchain.
Each validator can become a leader with the probability proportional to its stake.
Keeping the leader private yet unique until it publishes a new block can signifi-
cantly reduce the attack vector of an adversary and improve the throughput of the
network. The problem of Single Secret Leader Election (SSLE) was first formally
defined by Boneh et al. [18] in 2020.

In [backes2021ssle:inProgress], we propose a novel framework for construct-
ing SSLE protocols, which relies on secure multi-party computation (MPC) and
satisfies the desired security properties. Our framework does not use any shuffle
or sort operations and has a computational cost for N parties as low as O(N) of
basic MPC operations per party. Moreover, our SSLE scheme efficiently handles
weighted elections. That is, for a total weight S of N parties, the associated costs
are only increased by a factor of logS. When the MPC layer is instantiated with
techniques based on Shamir’s secret-sharing, our SSLE has a communication cost
of O(N2) which is spread over O(logN) rounds, can tolerate up to t < N/2 faulty
nodes without restarting the protocol, and its security relies on the decisional
Diffie-Hellman assumption in the random oracle model. When the MPC layer is
instantiated with more efficient techniques based on garbled circuits, our SSLE
requires all parties to participate, up to N − 1 of which can be malicious, and its
security is based on the random oracle model. Our results show that 128 parties
can execute our SSLE protocol in under 7 minutes in a practical setup.

The rest of the thesis is organized as follows. In Chapter 2, we define AnonRAM
schemes and present two constructions thereof. In Chapter 3, we define randomize-
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or-change encryption (RoC) schemes in three flavors – basic, aggregatable, and
keyed RoC – and present constructions for each of them; we then extend AnonRAM
to parallel AnonRAM schemes and show how to build them from aggregatable
RoC. Chapter 4 is devoted to efficient non-interactive zero-knowledge proofs in
cross-domains. Finally, in Chapter 5 we present our framework for constructing
efficient protocols for Single Secret Leader Election. Chapter 6 concludes.
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2.1. INTRODUCTION

2.1 Introduction

The advent of cloud-based outsourcing services has been accompanied by a growing
interest in security and privacy, striving to prevent exposure and abuse of sensitive
information by adversarial cloud service providers and users. This includes, in
particular, the tasks of data privacy, i.e., hiding users’ data from overly curious
entities such as the provider, as well as access privacy, i.e., hiding information
about data-access patterns such as which data element is being accessed and how
(read/write?). The underlying rationale is that exposure of data access patterns
may often lead to a deep exposure of what the user intends to do. An extensive line
of research has produced impressive results and tools for achieving both data and
access privacy. In particular, oblivious RAM (ORAM) schemes, first introduced
by Goldreich and Ostrovsky [105], have been extensively investigated in the last
few years, yielding a multitude of elegant and increasingly efficient results [121,
94, 96, 108, 126, 45, 116, 80].

Another important privacy goal is to hide who is accessing the data, i.e.,
conceal the identity of the user to ensure anonymity. This area spawned extensive
research and multiple protocols and systems for anonymous communication [40,
51, 41, 55]. The Tor network [124] currently constitutes the most widely used
representative of these works.

We focus on the combination of these two goals: hiding content and access
patterns as offered by ORAM schemes, but also concealing the user identities as
offered by anonymous communication protocols. Experts in the relevant areas
may not be completely surprised to find that designing this primitive is quite
challenging. In particular, the privacy guarantees cannot be constructed by solely
combining both approaches: the naïve idea to achieve these privacy properties
simultaneously is to maintain separate ORAM data structures for each user
and have users access the system using the anonymous communication protocol.
However, this construction does not hide the access patterns, since the server can
determine if the same data structure is accessed twice, and thereby trivially link
two accesses made by the same anonymous user. Instead of multiple ORAMs, one
could try to use a single ORAM as a black-box with data of all users contained in
it. However, this does not work either, as inherently, the users have to share the
same key, and the privacy properties immediately fail in the presence of curious
adversaries. (See Section 2.3 for more details.) Supporting multiple, potentially
malicious (or even ‘just curious’) users is significantly harder than supporting
multiple cooperating clients (e.g., devices of the same user), as in [81, 130, 97, 63].

Furthermore, when considering an adversarial environment and, in particular,
malicious users, integrity, i.e., preventing one user from corrupting data of other
users, is also critical. Notice that the (popular) ‘honest-but-curious’ model is
easier to justify for servers (e.g., running ORAM) than for clients; handling (also)
malicious client is very important. Note also that ensuring integrity is fairly
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straightforward, when users can be identified securely; however, this conflicts
with the goals of anonymity and, even more, with the desire for oblivious access,
i.e., hiding even the pattern of access to data. As often happens in security, the
mechanisms for the different goals do not seem to nicely combine, resulting in a
rather challenging problem, to which we offer the first – but definitely not final –
pair of solutions, albeit with significant limitations and room for improvement.

Our Contributions We define Anonymous RAM (AnonRAM) schemes and
present two constructions that are provably secure in the random oracle model.
AnonRAM schemes support multiple users, each user owning multiple memory
cells. AnonRAM schemes simultaneously hide data content, access patterns, and
the users’ identities against honest-but-curious servers and against malicious users
of the same service while ensuring that data can only be modified by the legitimate
owner.

The first scheme, called AnonRAMlin, realizes a conceptually simple transfor-
mation that turns any secure single-user ORAM scheme into a secure AnonRAM
scheme (that supports multiple users). The key idea here is to convert every
single-user ORAM cell to a multi-cell having a cell for each user, and to employ re-
randomizable encryption such that a user can hide her identity by re-randomizing
all other cells in a multi-cell while updating her own cell. The drawback of
AnonRAMlin, however, is that its complexity is linear in the number of users (al-
though poly-logarithmic in the number of cells per users). This linear complexity
stems from the requirement that a user has to touch one cell of each user when
accessing her own cell.

The second scheme, called AnonRAMpolylog, reduces the overall complexity to
poly-logarithmic in the number of users. This comes at the cost of requiring two
non-colluding servers S and T. Server S maintains all user data in encrypted
form using a universal re-encryption scheme, thereby disallowing S and other
users to establish a mapping between a user and her data blocks. Essentially,
AnonRAMpolylog constitutes an extension of hierarchical ORAM designs, e.g., by
Goldreich-Ostrovsky [74], where the reshuffle operation and mapping to ‘dummy’
blocks are performed by the dedicated server T. This prevents user deanonymiza-
tion by the server S or by other users. Furthermore, mappings to specific buckets
are achieved by means of a specific oblivious PRF.

For the sake of exposition, we first describe simplified variants of both schemes
in the presence of honest-but-curious users. We subsequently show how to extend
both constructions to handle malicious users as well. The extension mainly involves
adding an integrity element to the employed (universal) re-encryption, such that
any user can only re-encrypt data of other users, but not corrupt it.

Finally, we consider it an important contribution that we present a rigorous
model and a definition for this challenging problem of AnonRAM, and show their
suitability by providing provable security protocol instantiations.
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Related Work Several multi-client ORAM solutions have been proposed in
literature. Goodrich et al. [81] observe that stateless ORAM schemes, in which
no state is carried from one access action to another, are suitable for a group of
trusted clients. [23, 44] address the concurrent accesses by multiple client devices
of the same user in the synchronous model, while [130, 120, 15, 112] deal with
asynchronous concurrent accesses.

Franz et al. [63] introduce the concept of delegatable ORAM, where a (trusted)
database owner can delegate access rights to other users and periodically performs
reshuffling to protect the privacy of their accesses. [97] allows a storage owner to
share a server-side ORAM structure among a group of users, but assumes that all
users share the same symmetric key which none of them is going to provide to the
server. These works, however, do not protect privacy of a client from malicious or
‘curious’ clients.

AnonRAM schemes avoid the strong non-collusion assumption between the
users and the storage server. In other words, we consider the problem of anony-
mously accessing the server by multiple users, where the server (cooperating with
some users) should not be able to learn which honest user accessed which cell over
the server. Notably, we achieve our stronger privacy guarantees against a stronger
adversary without requiring any communication among the users.

The only other multi-user ORAM scheme has been proposed by Zhang et
al. [89]. Their scheme uses a set of intermediate nodes to convert a user’s query to
an ORAM query to the server. Privacy of the scheme is, however, analyzed only
for individual non-anonymous user accesses and not for multi-user anonymous
access patterns. Furthermore, their scheme does not provide integrity protection
against malicious users. Moreover, their work lacks both definitions and proofs;
as the reader will see in our work, the definitions and proofs, we found necessary
to claim security of our schemes, are non-trivial.

Chapter Outline The rest of the chapter is organized as follows. In Section 2.2,
we introduce and define AnonRAM schemes. Next, we present two AnonRAM
schemes: in Section 2.3 our linear AnonRAM and in Section 2.4 our polylogarithmic
AnonRAM (AnonRAMpolylog). In Section 2.5, we present an OPRF construction
that is used in AnonRAMpolylog. In Section 2.6, we show the details for making
AnonRAMpolylog secure against malicious adversaries. In Section 2.7, we complete
our security analysis. Section 2.8 concludes.

2.2 AnonRAM Definitions

We consider a set of N users U = {U1, . . . ,UN}, a set of η servers S = {S1, . . . , Sη},
a set Σ of messages, and we let M denote the number of data cells available to
each user. All protocols are parametrized by the security parameter 1λ. Before
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defining the class of AnonRAM schemes, we provide the definitions of access
requests and access patterns.

Definition 2.2.1 (Access Requests). An access request AR is a tuple (j, α,m) ∈
[1,M ]× {Read,Write} × Σ. Here j is called the (cell) index of AR, α the access
type, and m the input message.

Intuitively, an access request (j, α,m) will denote that m should be written
into cell j (if α = Write), or that the content of cell j should be read (if α = Read;
in this case m is ignored and we often just write (j, α, ∗)).

Definition 2.2.2 (Access Patterns). An access pattern is a series of tuples (i, ARi)
where i ∈ [1, N ] is a user identifier and ARi is an access request.

For notational simplicity, we will write (i, j, α,m) instead of (i, (j, α,m)) for
the individual elements of access patterns.

We next define AnonRAM schemes. In this work, we consider sequential
schemes where one participant is active at any point in time.

Definition 2.2.3 (AnonRAM Schemes). An AnonRAM scheme is a tuple (Setup,
User, Server1, . . . , Serverη) of η + 2 PPT algorithms, where:
• The initialization algorithm Setup maps a security parameter 1λ and an

identifier id, to an initial state, where id ∈ {0, 1, . . . , η} identifies one of the
servers (for id > 0) or the user (for id = 0).
• The user algorithm User processes two kinds of inputs: (a) access requests

(from the user) and (b) pairs (l,m) where l ∈ [1, η] denotes a server and m a
message from server Sl. User maps the current state and input to a new state and
to either a response provided to the user or a pair (l,m) with l ∈ [1, η] denoting a
server and m being a message for Sl.
• The server algorithm Serverl for server Sl maps the current server state and

input (message from user or from another server) to a new server state and a
message either to the user or to another server.

Adversarial Models and Protocol Execution We consider two different ad-
versarial models: (i) honest-but-curious (HbC) adversaries that learn the state of
one server S∗ and of a subset U∗ of users, and (ii) malicious users (Mal_Users)
adversaries that learn the state of one server (as before) and additionally control
a subset U∗ of users. In both models, the adversary can additionally eavesdrop on
all messages sent on the network, i.e., between users and servers, and between
two servers.

We now define the sequential execution Exec(AR,Adv, AP, ζ) of an AnonRAM
scheme AR in the presence of an adversary Adv and a given access pattern AP
assuming an adversarial model ζ ∈ {HbC,Mal_Users}.
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Definition 2.2.4 (Execution). Let AR be an AnonRAM scheme (Setup,User,
Server1, . . . , Serverη), Adv be a PPT algorithm, ζ ∈ {HbC,Mal_Users} and AP be
an access pattern. The execution Exec(AR,Adv, AP, ζ) is the following randomized
process:

1. All parties are initialized using Setup, resulting in initial states σUi for each
user Ui, and σSl for each server Sl.

2. Adv selects a server S∗ and a strict subset U∗ ⊂ U .
3. Let (i, j, α,mi,j) be the first element of AP ; if AP is empty, terminate.
4. If Ui ∈ U∗ and ζ = Mal_Users, then let (l,m) be the output of Adv on input

(i, j, α,mi,j). Otherwise, let (l,m) be the output of User on input (j, α,mi,j), with
state σUi, and update σUi accordingly.

5. Invoke Sl with (input) message m. The server Sl may call other servers
(possibly recursively) and finally produces an (output) message m′.

6. If Ui ∈ U∗ and ζ = Mal_Users, provide the message m′ to Adv. Otherwise,
provide m′ to user Ui. Ui (Adv if Ui ∈ U∗ and ζ = Mal_Users) may repeat sending
messages to any servers. Eventually, Ui (Adv) terminates.

7. Repeat the loop (from step 3) with the next element of AP (until empty).
Throughout the execution, the adversary learns the internal states of S∗ and of

all users in U∗, as well as all messages sent on the network.
A trace is the random variable defined by an execution, using uniformly random

coin-tosses for all parties. The trace includes the sequence of messages in the
execution corresponding to access requests and the final state of the adversary. Let
Θ(x) denote the trace of execution x.

Privacy and Integrity of AnonRAM schemes To define privacy for AnonRAM
schemes, we consider an additional PPT adversary D called the distinguisher.
D outputs two arbitrary access patterns of the same finite length, which differ
only in inputs to unobserved users. We then randomly select and execute one
of these two patterns. The distinguisher’s goal is to identify which pattern was
used. Since these two accesses may differ in user, cell, operation, or value, this
definition encompasses all relevant privacy properties in this setting including
anonymity (identity privacy), confidentiality (value privacy), and obliviousness
(cell and operation privacy). We call an adversary Adv compliant with a pair
of access patterns (AP0, AP1) if Adv only outputs sets U∗ of users in Step 2)
of Exec(AR,Adv, AP0, ζ) and Exec(AR,Adv, AP1, ζ) such that AP0 and AP1 are
identical when restricted to users in U∗.
Definition 2.2.5 (Privacy of AnonRAM). An AnonRAM scheme AR preserves
privacy in adversarial model ζ ∈ {HbC,Mal_Users}; if for every pair of (same
finite length) access patterns (AP0, AP1) and for every pair of PPT algorithms
(Adv,D) s.t. Adv is compliant with (AP0, AP1), we have that∣∣∣∣Pr [b∗ = b : b∗ ← D (Θ (Exec(AR,Adv, APb, ζ)))]− 1

2

∣∣∣∣
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is negligible in 1λ, where the probability is taken over uniform coin tosses by all
parties, and b←R {0, 1}.

Note that when all-but-one (i.e., N − 1) users are observed and ζ = HbC, our
privacy property corresponds to the standard ORAM access privacy definition [74].
ORAM is hence a special case of AnonRAM with a single user (N = 1).

AnonRAM should ensure integrity to prevent invalid executions caused by
parties deviating from the protocol. Informally, a trace is invalid if a value read
from a cell does not correspond to the most recently written value to the cell.

Definition 2.2.6 (Integrity of AnonRAM). Let ϑ be a trace of execution with
access pattern AP , and let AR = (j,Read, ∗) with (i, ARi) ∈ AP be a read request
for cell j of user Ui, returning a value x. Let AR′ = (j,Write, x′) be the most
recent previous write request to cell j of user Ui in AP , or ⊥ if there was no such
previous write request. If x 6= x′, we say that this read request is invalid. If any
read request in the trace is invalid, then the trace is invalid.

An AnonRAM scheme AR preserves integrity if there is negligible (in 1λ)
probability of invalid traces when the traces are constrained to the view of the
honest users (all Ui ∈ U in the HbC model, and all users Ui ∈ U/U∗ in the
Mal_Users model) for any PPT adversary and any access pattern AP .

2.3 Linear-complexity AnonRAM

In this section, we present our first AnonRAM constructions and prove them
secure in the underlying model. For the sake of exposition, we start with a few
seemingly natural but flawed approaches to construct AnonRAM schemes.

2.3.1 Seemingly Natural but Flawed Approaches

A first natural idea to design an AnonRAM scheme is to maintain all the M ·N
cells in an encrypted form on the server and to only access them via an anonymous
channel such as Tor [124]. However, this approach fails to achieve AnonRAM
privacy, since the adversary can simply observe all memory accesses on the server
and thereby determine how often the same cell j of a user is accessed. One may
try to overcome this problem using a shared (M · N)-cell stateless ORAM [81]
containing M cells for each of N users and assuming that every user executes her
ORAM requests via an anonymous channel. In this case, all users will have to use
the same private key in the symmetric encryption scheme employed in the ORAM
protocol to hide their cells from the server. However, this allows Eve, an HbC
user, to break privacy of honest users, by observing the values in cells (allocated to
honest users) which she downloads and decrypts as part of her legitimate ORAM
requests.
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Another natural design would be to use a separate ORAM for the M cells of
each user and rely on anonymous access to hide user identities. This use would
hide the users’ individual access patterns, but the server can identify all accesses
by the same user and thereby violate the AnonRAM privacy requirement.

The AnonRAM schemes presented in this work overcome such problems by
having users re-randomize cells belonging to other users as well whenever their
own cells are being accessed in addition to encrypting the user’s own cells.

2.3.2 AnonRAMlin and its Security Against HbC Adversaries

We now present the AnonRAMlin construction and prove it secure in the HbC
adversarial model. AnonRAMlin uses an anonymous communication channel [124]
and the (single-user, single-server) Path ORAM [121] or other ORAM scheme
satisfying a property identified below.

In Path ORAM, the user’s cells are stored on the server RAM as a set of
encrypted data blocks such that each block consists of a single ciphertext and all
blocks are encrypted with the same key known to the user’s ORAM client. A block
encrypts either a user’s cell, or auxiliary information used by the User algorithm.
To access a cell, the ORAM client reads (and decrypts) a fixed number of blocks
from the server, and writes encrypted values (cells or some special messages) in
a fixed number of blocks. The server’s duty is to execute these user’s read and
write requests.

AnonRAMlin employs N instances (one per user) of Path ORAM for M cells
each while requiring a single server.1 To encrypt data as required in the ORAM
scheme, AnonRAMlin uses a semantically secure re-randomizable encryption (RE)
scheme (E,R,D) (e.g., ElGamal encryption), where E, R, and D are respectively
encryption, re-randomization, and decryption operations. The AnonRAMlin client
of user Ui, has access to her private key ski and to the public keys (pk1, . . . , pkN )
of all users. In AnonRAMlin, the ORAM scheme uses this RE scheme (E,R,D)
instead of the (symmetric) encryption scheme used in ‘regular’ Path ORAM.

Intuitively, an AnonRAMlin client internally runs an ORAM client and mediates
its communication with the server. Whenever the ORAM client reads or writes
a specific block, the AnonRAMlin client performs corresponding read or write
operations for all users, without divulging the user identity to the server at the
network level, as follows: Reading a block of another user can be trivially achieved,
since the block is encrypted for the owner’s key, but the contents are not used
(our goal is only to create indistinguishable accesses for all users). Writing a block
belonging to other user’s ORAM must not corrupt the data inside and is hence
achieved by re-randomizing the blocks of other users.

The Setup and Server algorithms of AnonRAMlin are simply N instances of the
1AnonRAMlin can also use an ORAM scheme that uses multiple servers. In this case,

AnonRAMlin will use the same number of servers.

17



CHAPTER 2. ANONYMOUS RAM

upon access request (j, α,m) from user Ui :
Invoke the ORAM client Oc with access request (j, α,m).

upon read request from Oc for block j′ :
for k ∈ [1, N ] do Let B[j′, k]← Read block j′ of user Uk kept by the server.
Return B[j′, i] to Oc.

upon write request from Oc, for value (ciphertext) B in block j′ :
B[j′, i]← B
for k ∈ [1, N ]|k 6= i do B[j′, k]← Rk(B[j′, k])
for k ∈ [1, N ] do

Write block B[j′, k] to position j′ of user Uk and release it from memory.
upon Receiving a result res from Oc :

Return res to Ui.

Figure 2.1: User algorithm of AnonRAMlin with access request (j, α,m) for user Ui.

corresponding algorithm of the underlying ORAM scheme (e.g., Path ORAM).
Namely, the Setup initializes state for N copies of the ORAM (one per user)
and the Server receives a ‘user identifier’ i together with each request, and runs
the ORAM’s Server algorithm using the ith state over the request. The Server
algorithm for the AnonRAMlin scheme simply processes Read/Write requests sent
by the users as in the ORAM scheme, e.g. the server returns the content of the
requested block for Read requests or overrides the content of the requested block
with the new value for Write requests.

We finally describe the User algorithm of AnonRAMlin using pseudocode in
Fig. 2.1 to increase readability. It relies on an oracle Oc for the ORAM client, and
an RE scheme (E,R,D). We write (Ei,Ri,Di) for the corresponding encryption,
re-encryption and decryption operations using the corresponding keys for user
Ui. The pseudocode depicts which operations are performed for an individual
access request (j, α,m) of user Ui. Its execution starts with invoking user Ui’s
local ORAM client Oc with the access request (j, α,m), and ends with a Return
message to Ui. The process involves multiple instances of Read and Write requests
from Oc for specified blocks kept by the server. These requests to Read and Write
blocks kept by the server should not be confused with access requests (j, α,m),
where α ∈ {Read,Write} for ORAM cells.

So far, we selected Path ORAM as a specific ORAM instantiation. However,
any other ORAM scheme is equally applicable, provided that it exhibits an
additional property: individual accesses have to be indistinguishable, i.e., the
adversary observing just one access request from an access pattern should not be
able to recognise how many accesses the honest user performed so far. We call
this property indistinguishability of individual accesses, and it is trivially satisfied
by Path ORAM. Hierarchical ORAMs (e.g., [74, 81, 94, 96]), however, do not
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achieve indistinguishability of individual accesses, as the runtime of individual
accesses depends on the number of accesses performed so far; in particular, the
client has to reshuffle periodically a variable amount of data.

Theorem 2.3.1. AnonRAMlin preserves access privacy in the adversarial model
HbC, when using a secure ORAM scheme O that satisfies indistinguishability of
individual accesses, and a semantically secure re-randomizable encryption scheme
(E,R,D).

Proof. Assume to the contrary that some PPT HbC adversary D can efficiently
distinguish, with a non-negligible advantage, between a pair of access-patterns
AP = {(iu, ju, αu,mu)}, AP ′ = {(i′u, j′u, α′u,m′u)}u∈[1,len] of length len.

Let APv = {(i∗u, j∗u, α∗u,m∗u)}u∈[1,len] be a ‘hybrid’ access pattern, where (i∗u, j∗u,
α∗u,m

∗
u) = (iu, ju, αu,mu) for u ≤ v, and (i∗u, j∗u, α∗u,m∗u) = (i′u, j′u, α′u,m′u) for

u > v. In fact, let v be the smallest such value, where some adversary (say D)
can distinguish between APv−1 and APv, and such v > 0 exists by the standard
‘hybrid argument’ as AP and AP ′ differ at least in one access.

If iv = i′v (i.e., for the same user), the executions only differ in the ORAM
client Oc Read/Write blocks for Uiv ; however, this immediately contradicts the
privacy of the underlying ORAM scheme. Notice that a user does not decrypt or
modify the other users’ data during her accesses.

Therefore, assume iv 6= i′v. Since we expect our ORAM client Oc to satisfy
indistinguishability of individual accesses, the difference between these two patterns
is only between the encryption of the blocks output by Oc and the re-encryption
of the blocks received anonymously by the ORAM server. However, ability to
distinguish between these, contradicts the indistinguishability property of the
semantically secure re-randomizable encryption scheme (E,R,D).

Let cS and cB denote the amortized costs of client-side storage and communica-
tion complexity of the underlying ORAM protocol. Then, the respective amortized
costs of AnonRAMlin are N · cS and N · cB. For example, using Path ORAM, the
client-side storage and communication complexity costs of AnonRAMlin become
O(N logM) and O(N log2M).

2.3.3 AnonRAMM
lin and its Security Against Malicious Users

When some users are malicious, we need to ensure that only a user knowing the
private key associated with a block can update the value inside the block, while
other users should only be able to re-randomize it. Leveraging the security of
AnonRAMlin to the adversarial model of malicious users, we require a semantically
secure encryption primitive such that a ciphertext C ′ can replace a ciphertext C if
C ′ is a re-randomization of C, or if the encryptor knows the encryption key for C.
Whenever a block is written, the user attaches a zero-knowledge proof showing
either that the ciphertext is re-encryption of the previous ciphertext or that the
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user has the (secret) encryption key. The server verifies the proof before updating
the block in its RAM memory. This ensures indistinguishability of re-encryption
from new encryptions, while ensuring that one user cannot corrupt or modify any
value of another user. We denote the resulting scheme as AnonRAMM

lin .
The required zero-knowledge (ZK) proofs are standard. For the re-randomizable

CPA-secure ElGamal encryption scheme, this will involve a ZK proof of knowledge
of discrete logarithm [114] and a ZK proof of equality of the discrete logarithm of
two pairs of group elements [43] composed in such a way that a user proves validity
of one of the statements, without releaving to the server which statement has
been proven [49, 53] (see also Example 3 of [30]). Following the formal notation
from [87] and extending it for proving “one-out-of-several” statements, the required
proof is

PoK{xi| pki = gxi} ∨ P{∃r | (c′1, c′2) = (cr1, cr2)}, (2.1)
where P stands for proof, PoK for proof of knowledge, ∨ denotes a disjunction of
several parts of the proof system where one part has to be proven; g is a generator
of a group of prime order q, (pki, c1, c2, c

′
1, c
′
2) are group elements, and (xi, r) are

elements in Zq. Let (C1, C2) be the input ciphertext encrypted using public key
pki, then a re-randomized ciphertext is computed as (C ′1, C ′2)← (C1 · gr, C2 · pkri ).
After re-arranging terms, we get (c1, c2, c

′
1, c
′
2) = (g, pki, C ′1/C1, C

′
2/C2). For the

sake of exposition, we will use c-notation throughout this section.

Theorem 2.3.2. AnonRAMM
lin based on a secure ORAM scheme O that satis-

fies indistinguishability of individual accesses, CPA-secure public-key encryption
scheme (e.g., ElGamal), and a ZK proof defined above, preserves integrity and
privacy in the adversarial model Mal_Users.

Proof. The integrity argument is simple: the use of ZK proofs for proving one-
out-of-two statements effectively reduces the adversarial abilities to the ones as in
the HbC model. The P -part of (2.1) corresponds to the honest behavior; to break
integrity the adversary must prove the PoK-part (we consider the integrity is
broken if the P -part does not hold). We can use an adversary that, given (c1, c2),
produces with non-negligible probability a valid proof for (c1, c2, c

′
1, c
′
2), where

(c′1, c′2) 6= (cr1, cr2) for any r > 0, to solve the discrete log problem with non-negligible
probability. Consider two games G0 and G1, where G0 is the normal execution
of the AnonRAM protocol, and G1 is same as G0, expect that the challenger
replaces public key gxi for user Ui ∈ U/U∗ with Xa , where X is a group element
with unknown discrete logarithm and a is drawn randomly; elements (c1, c2) are
computed as (c1, c2)← (gr, Xa·r). Games G0 and G1 are indistinguishable to the
adversary, as the public key for user Ui is a random group element in either game.
Upon receiving a valid proof in G1 from the adversary, the challenger runs the
extractor to learn the discrete log of Xa and substracts a to obtain the discrete
log of X with non-negligible probability, which contradicts the hardness of the
discrete log assumption.
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The privacy properties are also preserved similarly to AnonRAMlin as the
disjunctive nature of the included ZK proof does not allow the server to determine
which of N cells is modified by an honest user, while privacy of the accessed
cell-index as well as the access type is maintained by the employed ORAM
scheme.

2.4 Polylogarithmic-complexity AnonRAM

The AnonRAMlin scheme exhibits acceptable performance for a small number of
users, but the linear overhead renders it prohibitively expensive as the number of
users increases. In this section, we present AnonRAMpolylog, an AnonRAM scheme
whose overhead is poly-logarithmic in the number of users.

AnonRAMpolylog is conceptually based on the hierarchical Goldreich-Ostrovsky
ORAM (GO-ORAM) construction [74], where a user periodically reshuffles her
cells maintained over a storage server S. To reshuffle cells belonging to multiple
users, we introduce in AnonRAMpolylog an additional server, the so-called tag
server T. The tag server reshuffles data on the users’ behalf, without knowing the
data elements, and thereby maintains user privacy from the storage server S as
well as from the other users. The tag server only requires constant-size storage
to perform this reshuffling, and we show that, similarly to the storage server, it
cannot violate (on its own or with colluding users) the privacy requirements of
AnonRAM schemes.2

In what follows, we first describe the employed cryptographic tools, and then
present the AnonRAMpolylog construction and its complexity and security analysis,
first for the honest-but-curious case, and after that its extension, AnonRAMM

polylog,
to cope with malicious users.

2.4.1 Cryptographic Building Blocks
Universally Re-randomizable Encryption A universally re-randomizable en-
cryption (UREnc) scheme [77, 109] allows to re-randomize given ciphertexts
without requiring access to the encryption key. We use the construction of Golle
et al. [77]: for a generator g of a multiplicative group Gq of prime order q and a
private/public key pair (xi, gxi) for party i with xi ∈ Z∗q, the encryption C = E∗i (m)
of a message m is computed as an El-Gamal encryption of m together with an
El-Gamal encryption of the identity 1 ∈ Gq; i.e., C = (ga, gaxi ·m, gb, gbxi · 1) for
a, b ∈ Z∗q. The ciphertext C can be re-randomized, denoted R∗(C) by selecting
a′, b′ ←R Z∗q and outputting (ga · (gb)a′ , gaxi ·m · (gbxi)a′ , (gb)b′ , (gbxi)b′) as the new
ciphertext. Note that this scheme is also multiplicatively homomorphic.

2Adhering to our adversarial model from Section 2.2, we only consider the corruption of a
single server, and hence assume non-colluding servers S and T.
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We employ a distributed version of the UREnc scheme, where the private key
is shared between two servers such that both have to be involved in decryption.

(Partially Key-Homomorphic) Oblivious PRF An oblivious pseudo-random
function (OPRF) [64, 87] enables a party holding an input tag µ to obtain an
output Fs(µ) of a PRF Fs(·) from another party holding the key s without the
latter party learning any information about the input tag µ.

We use the Jarecki-Liu OPRF construction [87] as our starting point. Here, the
underlying PRF fs(·) is a variant of the Dodis-Yampolskiy PRF construction [57]
such that fs(µ) := g1/(s+µ) is defined over a composite-order group of order
n = p1p2 for safe primes p1 and p2. This function constitutes a PRF if factoring
safe RSA moduli is hard and the Decisional q-Diffie-Hellman Inversion assumption
holds on a suitable group family Gn [87].

To securely realize pre-tag randomization in our Reshuffle algorithm (explained
later), we propose a modification of the Jarecki-Liu OPRF where a second key ŝ
is used to define a new PRF fs,ŝ(µ) := gŝ/(s+µ). We call such a PRF partially key-
homomorphic as (fs,ŝ(µ))δ = fs,(ŝ·δ)(µ) holds for it. For unlinkability of PRF values
of the same input µ with updated δ, we expect the Composite DDH assumption 3

[35] to hold in Gn. We denote our OPRF construction as OPRFA,Bs,ŝ (µ), where A
denotes a party with input µ, and B denotes a server possessing the keys s and ŝ.
Our OPRF protocol makes only minor changes to the Jarecki-Liu OPRF, and we
postpone its full description and security analysis to Section 2.5.

Multiplicatively Homomorphic Encryption For appropriately computing on
our OPRF outputs that are elements of a group of order n generated by g, we need
a suitable multiplicatively homomorphic encryption scheme whose decryption is
shared between our two servers. To this end, we employ a semantically-secure
ElGamal encryption scheme, whose security relies on the DDH assumption in
the underlying group. Here, an encryption E+∗

pk (m) denotes a message m ∈ Gn

encrypted under a public key pk = gsk, where g is a generator of group Gn of size
n, and the private key sk belongs to Z∗n/4.

On the one hand, ElGamal is a multiplicatively homomorphic encryption
scheme; on the other hand, the message space matches the output space of our
OPRF. Therefore the scheme is additively homomorphic w.r.t. OPRF inputs:
E+∗

pk (m) · E+∗
pk (m′) = E+∗

pk (m · m′) for any m,m′ ∈ Gn, and E+∗
pk (m)δ = E+∗

pk (mδ)
for any δ ∈ Z∗n. This scheme, moreover, allows shared decryption; i.e., given
public/private key pairs (pkA, skA) and (pkB, skB) of parties A and B and the
joint public key pk = pkA · pkB, parties A and B can jointly decrypt a ciphertext
E+∗

pk (m) for a receiver using their private keys skA and skB. In our construction,

3Composite Decisional Diffie-Hellman assumption [35] is a variant of the standard DDH
assumption [16], but defined over a composite order group.
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given a ciphertext encrypted under the joint public key of servers S and T, they
jointly decrypt the ciphertext such that the plaintext message is available to T.

Oblivious Sort In oblivious sort (OSort), one party (in our case, S) holds an
encrypted data array and the other party (T) operates on the data array such
that the data array becomes sorted according to some comparison criteria, and
S learns nothing about the array (hence, the name “oblivious” sort). OSort can
be instantiated, e.g., by the randomized ShellSort algorithm [79], which runs in
O(z log(z)) for z elements.

2.4.2 AnonRAMpolylog Data Structure

AnonRAMpolylog caters N independent users (U1, . . . , UN) with their M ·N cells
(i.e.,M cells per user) using a storage server S and a tag server T. Similarly to other
hierarchical schemes [74, 108, 94, 96], blocks are organized in L = dlog(M ·N)e+ 1
levels, where each level ` ∈ [1, L] contents 2` buckets. Each bucket contains
β := dcβ log(M ·N)e blocks, where cβ is a (small) constant.

Similarly to GO-ORAM, during each access the user reads a pseudo-randomly
chosen (entire) bucket from each level such that server S cannot learn anything by
observing the bucket access patterns. AnonRAMpolylog adopts a recent improvement
to GO-ORAM proposed in [108, 94, 96] to avoid duplicate user blocks in the
server-side (RAM) storage at any point in time. To achieve this, on every access,
the user has to write a ‘dummy’ block into the location where it finds the data
such that S cannot distinguish between the added ‘dummy’ block and the ‘real’
data block. These user-added dummy blocks are periodically removed to avoid
RAM memory expansion, and the rest of the blocks are periodically reshuffled to
allow users to access the same cell multiple times.

In existing single-user single-server GO-ORAM designs [74, 108, 94], this
reshuffling is performed by the user. In AnonRAMpolylog, reshuffling operations
involve blocks of different users, and it cannot be performed by one or more users
without interacting with all other users. As we want to avoid interaction among
the users, reshuffling in AnonRAMpolylog is jointly performed by two non-colluding
servers (the storage-server S and the tag-server T) without exposing users’ data
or access patterns to either server.

Block Types Each block in AnonRAMpolylog consists of two parts: a ElGamal-
encrypted OPRF output called pre-tag part and a UREnc-encrypted value part.
We consider three types of blocks: real, empty, and dummy blocks.

A real block is of the form 〈E+∗
TS(θi),E∗Ui(j,mi,j)〉. Here, the value part contains

the jth cell of user Ui with value mi,j encrypted with UREnc for Ui, while the
pre-tag part contains a pre-tag θi computed using OPRF for some secret input of
Ui and encrypted using ElGamal for a joint public key of T and S. The pre-tag θi
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is computed by Ui with help from the storage server S using OPRF and is used
to map the block to a particular bucket on a given level. Given a pre-tag θ, for
a level ` ∈ [1, L], the bucket index (or tag) is computed by applying a random
oracle hash function, h` : {0, 1}∗ → Z2` . The mapping changes after 2` accesses,
which we refer to as an epoch.

Empty blocks are padding blocks that are used to form buckets of the re-
quired size β on the storage server S. An empty block is of the form 〈E+∗

TS(1),
E∗TS(“empty”)〉, where “empty” is a constant in the UREnc message space. An
empty block will be encrypted similarly to other types of blocks to ensure privacy
against the storage server S, and the server should not be able to determine
whether a user fetched an empty block or a real block. The first part of the empty
block is an encryption of unity 1; it allows the tag server T to determine if a block
is empty during the reshuffle.

Finally, similarly to most ORAM algorithms, we use dummy blocks to hide
locations of the real blocks. Once a real block with a specific index is found at some
level, it is moved to a new bucket at the first level and is replaced with a dummy
block in its old location. A dummy block is of the form 〈E+∗

TS(θD),E∗TS(“dummy”)〉,
where the pre-tag θD is computed using OPRF on the number (t) of accesses made
by the users so far and a secret input µD known only to server T, and “dummy”
is a constant in the UREnc message space.

Note that different blocks are completely indistinguishable to non-colluding
servers S and T individually. Nevertheless, during the reshuffle operations, when
necessary, server T can determine the type of a block with the help of server S.

2.4.3 AnonRAMpolylog Protocol Overview

Initialization We need to initialize UREnc, ElGamal, and OPRF. For the security
parameter 1λ, we choose a multiplicative group Gq of an appropriate prime order
q for UREnc, and a multiplicative group Gn of order equal to an appropriate safe
RSA modulus n for ElGamal and OPRF. Let g and g be generators of groups Gq

and Gn, respectively.
Given this setup, every user generates her UREnc key from Z∗q. The two

servers select their individual shared private keys for both UREnc and ElGamal
and publish the corresponding combined public key for ElGamal; we do not need
UREnc public key for the two servers. We represent these encryptions as follows:
E∗Ui(·) represents a UREnc encryption for user Ui; E∗TS(·) and E+∗

TS(·) respectively
represent shared UREnc and ElGamal encryptions for the servers S and T. The
servers make an encrypted empty block E∗TS(“empty”) and an encrypted dummy
block E∗TS(“dummy”) public to all users.

Similarly to all existing hierarchical ORAM constructions, all levels in the
AnonRAMpolylog data structure on S are initially empty. In particular, the complete
first level is filled up with empty blocks, while the rest of the levels are not yet
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allocated. The users write M ·N cells initialized to some default value, one by
one, at the first level such that, at the end of the initialization procedure, M ·N
users’ cells will be stored at level L and the remaining levels will be empty (w.l.o.g.
we assume that M ·N is a power of 2). Let t denote the access counter, which is
made available publicly by the servers. Each level ` has an epoch counter ξ(t, `)
that increments after every 2`−1 accesses. In other words, for level ` and t accesses,
the epoch counter is ξ(t, `) = bt/2`−1c.

Recall that our OPRF employs two keys. S generates the first (and fixed)
OPRF key s ←R Z∗n, and then a series of second OPRF keys ŝ[`, ξ(t, `)] ←R Z∗n,
for each level ` ∈ [1, L] and the current access t. User Ui generates independently
a secret PRF input µi ∈ Zn and computes a pre-tag θ for her block j using µi by
performing OPRF with S. Similarly, the tag server T generates a secret input µD
for dummy blocks. To tag blocks, the construction uses a hash function family
{h`} domain [0, 2` − 1], for each level ` ∈ [1, L]. In particular, a tag (or bucket
index) for a pre-tag θ is computed as h`(ξ(t, `)||θ), where || represents string
concatenation.

Protocol Flow Similar to our constructions in Section 2.3, users have to commu-
nicate with the servers via anonymous channels. To access a cell j during the tth
access, user Ui first computes the associated pre-tags for all levels θi using OPRF
with server S on her secret inputs µi and j. She also obtains θD pre-tags from
server T for all levels for the current value of access counter t. Here, T computes
pre-tags for dummy blocks by interacting with S and sends those to the users,
as the users cannot locally compute them. These pseudorandom pre-tag values
depend on the level and the current epoch through the PRF keys used by S. Due
to the oblivious nature of OPRF and secret inputs µi for Ui and µD for T, server
S does not learn the pre-tag values.

Once pre-tags are computed, the user maps each of those to a bucket index
(or tag) in their level ` using h`. Now, she starts searching for her cell j from
level 1 using tags computed using a pre-tag θi. Similarly to other hierarchical
schemes, after obtaining her cell she searches for the remaining levels with tags
computed using θD values. The updated cell j is added back to level 1. During
this process, a pre-tag θ associated with the user’s cell changes to another value θ′
indistinguishable from random. Fig. 2.2 shows the main sub-flow of User algorithm
executed by Ui in cooperation with servers S and T. In User flow, this sub-flow is
repeated once for each level. Finally, at the end of User, the user computes a new
pre-tag for possibly updated cell j, and computes and stores a block with them at
the first level.

Although dummy pre-tags and tags are computed by and known to T, it
cannot learn the tag employed by the user while requesting blocks from S, as
communication between the user and server S is encrypted. Neither can T learn
this information based on the content of blocks of specific tags retrieved by
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Figure 2.2: Flow of User algorithm in AnonRAMpolylog for user Ui, cell j, and level
`: 1) Ui asks the tag server T for a dummy pre-tag. 2) T runs an OPRF protocol
with the storage server S such that T learns the dummy pre-tag and S learns
nothing. 3) T sends the dummy pre-tag to Ui. 4) Ui runs OPRF with S to learn a
pre-tag for her cell j obliviously. 5) Depending on whether cell j is found in the
previous levels or not, Ui selects one of the two pre-tags to compute a tag and
sends the tag to S. 6) S re-randomizes and sends the block(s) associated with
the user’s tag. 7) Ui re-randomizes or updates the block(s), and possibly learns
the value of cell j. If ` = 1, steps 4) and 5) are skipped, and in step 6) S sends all
blocks from that level.

observed users, since S re-randomizes blocks before sending them to users.
The main task of T is to reshuffle the blocks without involving users. In the

Reshuffle protocol, while reshuffling levels 1 to ` into level `+ 1, server T copies,
re-randomizes or changes blocks from levels 1 to `, and then sorts them using
oblivious-sorting (OSort) such that the users can obtain their required cells over
level `+ 1 by procuring the appropriate pre-tag values from server S. This step
requires server S helping server T to decrypt the randomized version of pre-tags
in the blocks. Here, for every second access, T performs reshuffle of level 1 into
level 2 on S to empty level 1. For every fourth access, all the real blocks at levels 1
and 2 will be moved to level 3, and so on.

The crucial property is that, while reshuffling, server T should not learn any
information about user’s data from pre-tags. To prevent T from identifying
users’ cells by pre-tags, S proactively shuffles all blocks that T will access during
Reshuffle and updates the pre-tags associated with the blocks. Here, S utilizes
homomorphic properties of OPRF: in particular, for some pre-tag θ = fs,ŝ(µ) for
server S’s OPRF keys s, ŝ, the server computes θδ = fs,(ŝ·δ)(µ) for some random δ.
Although pre-tags in the blocks are stored in the encrypted form and cannot be
decrypted by S alone, the homomorphic properties of ElGamal allow S to apply
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the aforementioned trick to ciphertexts without knowing pre-tags in plain. Finally,
S partially decrypts the pre-tags of the blocks that have to be reshuffled by T and
moves these blocks to a temporary array.

After the pre-processing by server S, server T decrypts pre-tags of the blocks
and reshuffles non-empty blocks to arrange them into buckets based on the pre-tags.
This process is essentially the same as the Oblivious-Hash step in GO-ORAM [74]
except for de-duplication of blocks [108]. Specifically, while reshuffling blocks
from levels 1 to ` into level `+ 1, T first adds 2` forward dummy blocks that can
potentially be accessed by a user in subsequent accesses. It then assigns tags to
non-empty blocks using hash function h`+1 and ensures that no tag gets assigned
to more than β blocks. Finally, T pads the temporary array with the tagged empty
blocks such that exactly β blocks have the same tag, replaces forward dummy
blocks with empty ones, and moves all these blocks to level ` + 1 on server S.
Here, T cannot link the pre-tags seen in the current Reshuffle execution to those
observed during previous reshuffles, as the value δ chosen by S is unknown to T.

2.4.4 User Algorithm

In the User algorithm, a user searches in all levels for a block containing her cell j.
Once the block is found, it is moved to a new location at the first level after a
possible update (in case of Write operation), and a dummy block is instead added
to the old location.

User algorithm for user Ui on input (j, α,m) consists of the following steps:
1. Allocate local space to hold a single encrypted block value res and initialize

it to E∗TS(“dummy”). Set boolean variable found to false.
2. Receive from T the pre-tag θD := OPRFT,S

ŝ[1,ξ(t,1)](µD + t) computed by T
after performing OPRF with S. Read all blocks at level 1. Let B denote a current
block at level 1, re-randomized and sent by S to Ui. Parse block B into its two
components (B1, B2), where the first part is an ElGamal ciphertext and the second
part is a UREnc ciphertext. User Ui deciphers B2 using her UREnc private key.
If the block with cell index j is found, then the user sets found to true, copies
B2 to res, and replaces B with a dummy block 〈E+∗

TS(θD),R∗(E∗TS(“dummy”))〉.
Otherwise, Ui replaces the block B with its re-randomized version.

3. For each level ` from 2 to L:
(a) Compute a pre-tag θi ← OPRFUi,S

ŝ[`,ξ(t,`)](µi + j) by interacting with S, and
receive a pre-tag θD ← OPRFT,S

ŝ[`,ξ(t,`)](µD+ t) from T. If found, then compute
tag τ := h`(ξ(t, `)||θD), else τ := h`(ξ(t, `)||θi).

(b) Read all blocks of bucket τ at level `. Let B denote a current block of bucket
τ at level `, re-randomized and sent by S to Ui. If B is Ui’s real block with
index j, the user sets found to true, copies the value of B to res, and replaces
B with a dummy block 〈E+∗

TS(θD),R∗(E∗TS(“dummy”))〉. Otherwise, i.e., if B
is not Ui’s real block with index j, Ui replaces block B with a re-randomized
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version of B.
4. If α = Write, update res to the new value E∗Ui(m).
5. Re-randomize and send 〈E+∗

TS(θi), res〉 to S, where θi := OPRFUi,S
ŝ[1,ξ(t,`)](µi+j).

Server S writes the block to the first available empty slot at level 1.
6. If α = Read, return res.

2.4.5 Reshuffle

Reshuffle of every level ` into a higher level is performed every 2` accesses, when
the number of non-empty blocks (real or dummy) at level ` reaches 2`. We reshuffle
all blocks, from levels 1 to ` into level `+ 1, and there are no duplicates.

Recall that after User, the number of non-empty blocks at the first level
increases by 1. After two accesses, all blocks from the first level will be reshuffled
into the second level. After two more accesses, all blocks from first level should
be reshuffled into the second level. This event triggers the reshuffle of all blocks
from the first two levels into the third level. After this point, there will be four
non-empty blocks at level 3, and levels 1 and 2 will be empty.

For the current value of t, let `m := max{` > 0 s.t. 2` divides t}. Then,
before the reshuffle is performed, level 1 has two non-empty blocks, and each level
` ∈ [2, `m] has 2`−1 non-empty blocks. As we show in Lemma 2.7.2 later, level
`m + 1 is empty. Hence, the Reshuffle procedure takes all elements from levels
1 up to `m and moves them into level `m + 1. The total number of non-empty
blocks in levels 1 to `m is 2 +∑`m

`=2 2`−1 = 2`m , so 2`m real or dummy blocks will
be added into level `m + 1. The array is sparse; there are (2`m+1 − 2)β blocks at
levels 1 to `m including empty ones, and among them only 2`m dummy or real
ones. A Reshuffle protocol between S and T requires two operations performed by
T on data stored at S: Scan and OSort.

A generic Reshuffle algorithm for levels 1 up to `m into level `m + 1 is given
below; steps 1-3 are performed by S, and remaining steps 4-13 by T:

1. S allocates space for a temporary array A to hold 2`m+2 · β blocks.
2. For each level ` from 1 to `m:

(a) S moves all 2` · β blocks from level ` into a temporary array A′, and fills the
level ` with empty blocks. Each new empty block is just a re-randomization
of the public empty block 〈E+∗

TS(1),E∗TS(“empty”)〉.
(b) Let C denote the encrypted pre-tag of some block in A′, and C = E+∗

TS (
θŝ[`,ξ(t,`)−1]

)
, where θŝ denotes the value of PRF fs,ŝ(µ) for some input µ ∈

Zn. For each block in A′, S replaces C with C ′ ← C ŝ[`+1,ξ(t,`+1)]/ŝ[`,ξ(t,`)−1].
Thanks to the properties of f and homomorphic properties of ElGamal,
C ′ = E+∗

TS

(
θŝ[`,ξ(t,`+1)]

)
.

(c) S moves all blocks from array A′ to array A.
3. S pads A with empty blocks and partially decrypts pre-tags of all blocks.

Finally, S permutes A.
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4. Decrypting pre-tags: Decrypt pre-tags using partial decryption of S and
attach (plaintext) pre-tags to the blocks using (fast) local encryption scheme.

5. Adding forward dummies: Add 2`m dummy blocks 〈E+∗
TS(θ0),E∗TS(“dummy”)〉,

. . . , 〈E+∗
TS(θ2`m−1), E∗TS(“dummy”)〉, where T computes pre-tags interacting with

S as θk := OPRFT,S
ŝ[`m,ξ(t+k,`m+1)]( µD + (t+ k)), for k ∈ [0, 2`m − 1]. Array A now

contains 2`m+1 non-empty blocks. Scan A and add temporary encryption of flags
to the blocks: value 1 to the forward dummy blocks, otherwise value 0.

6. Mapping to buckets: Scan A and use hash function h`m+1 to assign tags to
non-empty blocks. Since there are no duplicates, each non-empty block has (with
overwhelming probability) a unique input to the hash function. Specifically, T
attaches the tag h`m+1(ξ(t, `m + 1)||θ) to a block, where θ denotes the pre-tag of
that block.

7. Obliviously-sort A using the OSort protocol, according to the following
criteria: (a) non-empty blocks before empty ones, (b) lower tags first.

8. Checking if there is no bucket overflow: Scan A and check that no single
tag was given to more than β blocks. If there is such a tag, this is considered as
an overflow. It can happen only with low probability; in this case, choose another
hash-family h`+1, and go to step 6.

9. Scan A and assign tags to 2`m+1β untagged empty blocks, one tag per β
blocks. This step ensures that each tag 0, . . . , 2`m+1 − 1 is represented by at least
β blocks.

10. OSort A according to the following criteria: (a) tagged blocks before
untagged, (b) lower tags first, (c) non-empty blocks before empty ones (among
the blocks with the same tag).

11. Scan A and make sure that exactly β blocks have the same tag, erasing
excessive blocks. Note that all excessive blocks are empty.

12. Prepare buckets for level (`m + 1): OSort A according to the following
criteria: (a) tagged blocks before untagged, (b) lower tags first.

13. Scan A to replace the dummy blocks introduced in Step 5 with empty ones;
these blocks have encrypted flag 1. Scan A to erase tags, temporary encryptions
of pre-tags (attached to the blocks in Step 4), and flags for forward dummy blocks.
Move the 2`m+1β prefix of A into level `m + 1, one by one in the same order as
the blocks appear in A.

The result of Reshuffle is 2`m+1β blocks is stored at level `m + 1. The first β
blocks are tagged 0, the next β blocks tagged 1, etc. This layout corresponds to
putting β blocks with same tag to one bucket, since the storage at server S is
organized in buckets of size β.

Reshuffle algorithm ensures, using forward dummy blocks, that buckets do
not overflow in the follow-up accesses made by users until the next reshuffle.
Specifically, there are no buckets accessed more than β times at some level `
within one epoch. Note that if instead of accessing dummy blocks the user
chooses random buckets, it can lead to a small, but not negligible probability of
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distinguishing specific access patterns.

Last Reshuffle After reshuffle into level L+ 1, M ·N real and M ·N dummy
blocks are located at that level. T and S eliminate dummy blocks by jointly
decrypting the block value: if a block is dummy, the decryption succeeds. Finally,
M ·N real blocks from level L+ 1 are reshuffled into level L, thus achieving the
state after the initial setup.

2.4.6 Complexity and Security Analysis

Computational and communication complexity of User is O(log2(M ·N)) since there
are L = O(log(M ·N)) levels, and for each level the user performs β = O(log(M ·N))
encryptions, decryptions, and OPRF evaluations. Each of these operations requires
O(1) exponentiations.

Computational and communication complexity of Reshuffle depends on param-
eter t. Consider the state after Setup and the state afterM ·N subsequent accesses.
They are identical, as all the real blocks are located at level L. Hence, it suffices to
analyze the aforementioned interval. Let Reshuffle(`) denote the reshuffle from lev-
els 1 to ` into level `+1, and let ρ(`) denote the complexity thereof. In Reshuffle(`),
the number of blocks involved is 2`+1β, hence ρ(`) = O(2`+1 · β · log(2`+1 · β)) due
to the cost of OSort. Then, within M ·N accesses, there is one Reshuffle(L), none
of Reshuffle(L− 1) (since level L initially already contains M ·N elements), one
Reshuffle(L− 2), two Reshuffle(L− 3), four Reshuffle(L− 4), etc. Thus, the total
complexity of all reshuffles made within M ·N accesses is

( L−2∑
`=1

2L−2−` · ρ(`)
)

+ ρ(L)

=
( L−2∑
`=1

2L−2−` ·O(2`+1 · β · log(2`+1 · β))
)

+O(2L+1 · β · log(2L+1 · β))

=
(
2L−1 · β ·

L−2∑
`=1

O(log(2`+1 · β))
)

+O(M ·N · log(M ·N) · log(2L+1 · β))

= O(M ·N) · β ·O(L2) +O(M ·N · log2(M ·N)) = O(M ·N · log3(M ·N)).

Hence, the amortized cost of Reshuffle is Õ(log3(M ·N)).

Theorem 2.4.1. AnonRAMpolylog preserves access privacy against HbC adversaries
in the random oracle model, when instantiated with semantically secure universally
re-randomizable encryption (UREnc) and multiplicatively homomorphic encryption
schemes, and a secure (partially key-homomorphic) oblivious PRF scheme for
appropriate compatible domains.

The proof of Theorem 2.4.1 is postponed to Section 2.7.1.
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2.4.7 AnonRAMM
polylog Secure Against Malicious Users

In AnonRAMpolylog we need to constrain users to avoid any tampering by the
malicious adversaries. Integrity and privacy of an honest user Ui can be achieved
if a malicious user can neither change real blocks of other users, nor introduce
new blocks encrypted using Ui’s key. In this section, we present AnonRAMM

polylog,
a modification to AnonRAMpolylog, and we will prove it is secure against malicious
users.

Observing that blocks are written to the first level in a pre-defined manner,
we say, without loss of generality, that User for tuple (i, j, α,m), parameterized
with t, does the following:

1. User Ui reads (t mod 2) blocks at level 1, and β blocks at each level ` ∈ [2, L].
2. Among these blocks there is at least one block belonging to Ui, and exactly

one block matches the target index j.
3. User Ui replaces one of the blocks that belongs to her with the dummy

block.
4. The replaced in 3) real block is moved to a new pre-defined location at

level 1, replacing an empty block.
It is important to enforce both 3) and 4), otherwise a malicious user could

either remove the real block of an honest user or introduce a new real block of
an unobserved user, thus violating integrity of honest users. We elaborate on
appropriate zero-knowledge proofs for UREnc and ElGamal encryption, which
enforce 3) and 4).

Recall that the ZK proof system, required in AnonRAMM
lin for a pair of old and

new ciphertexts, ensures that the new ciphertext is either a re-randomization of
the old ciphertext, or the user knows the associated with the old ciphertext secret
key. Re-randomization of ciphertext can be split into two parts: a) ciphertexts
are encrypted under the same key, and b) encoded messages are the same. To
achieve integrity in AnonRAMM

polylog, we require the former component, too, i.e. a
proof that two ciphertexts are encrypted under the same key.

Summarizing, we have the following types of proof systems w.r.t. a single
ciphertext C = (C1, . . . , C4), or relations between two ciphertexts C and C ′:

• the user knows the decryption key of UREnc ciphertext C; it requires a ZK
proof of knowledge of discrete logarithm PoK{xi|C4 = Cxi

3 }.
• ciphertext C ′ is encrypted under the same key as ciphertext C; the required

proof is a ZK proof of equality of the discrete logarithm of two pairs of
group elements P{∃r | (C ′3, C ′4) = (Cr

3 , C
r
4)}.

• ciphertext C ′ is a re-randomization of ciphertext C; the required proof is
conjunction of two ZK proofs of equality of the discrete logarithm of two
pairs of group elements if C is a UREnc ciphertext, or just one such ZK
proof if C is an ElGamal ciphertext (in this case, C = (C1, C2)).

We refer to Section 2.6 for the detailed description of changes in AnonRAMpolylog
in order to obtain AnonRAMM

polylog secure against malicious users.
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Theorem 2.4.2. AnonRAMM
polylog in the random oracle model, when instanti-

ated with semantically secure universally re-randomizable encryption (UREnc)
and multiplicatively homomorphic encryption schemes, a secure (partially key-
homomorphic) oblivious PRF scheme for appropriate compatible domains, and
augmented with ZK proof system defined above, preserves integrity and privacy in
the adversarial model Mal_Users.

The proof of Theorem 2.4.2 is postponed to Section 2.7.2.

2.5 (Partially Key-Homomorphic) Oblivious PRF

We next present the oblivious PRF (OPRF) construction, based on [87], and
mentioned in Section 2.4.1.

Definition 2.5.1 (Oblivious PRF—OPRF [64]). A 2-party protocol π is an
OPRF scheme if there exists some PRF family Fs such that π privately realizes
the following functionality: Input: Client holds an evaluation point µ; Server S
holds a key s. Output: Client outputs Fs(µ); Server outputs nothing.

This can be denoted as a secure computation protocol for functionality FOPRF :
(s, µ)→ (⊥, Fs(µ)).

Our construction is based on the Jarecki-Liu OPRF [87] and presumes a
malicious adversary, but a simpler version without zero-knowledge proof systems
is suitable against an HbC adversary.

Similar to the original OPRF, we need an encryption scheme to satisfy additive
homomorphism, verifiable encryption, and verifiable decryption properties as
defined in [87, Sec. 2.2]. The encryption scheme satisfying these properties can
be instantiated with a semantically-secure variant [87] of the Camenisch-Shoup
encryption (CSEnc) [28] scheme, accompanied with suitable zero-knowledge proof
systems, as specified in [87]. Here, we denote K+, E+, and D+ the key generation,
the encryption, and the decryption algorithms of CSEnc, respectively.

CSEnc is an additively homomorphic encryption scheme such that E+
pk(m) ·

E+
pk(m′) = E+

pk(m + m′) for any m,m′ ∈ Zn, and E+
pk(m)δ = E+

pk(m · δ) for any
δ ∈ Z∗n, where pk denotes a CSEnc public key. Moreover, CSEnc allows for shared
decryption. Denoting Cm = E+

pkSU
(m), C(S)

m = E+
pkS

(m), and C(U)
m = E+

pkU
(m),

decryption of Cm using the U’s private key gives C(S)
m , and decryption of Cm using

the S’s private key gives C(U)
m .

Theorem 2.5.1. Assuming hardness of factoring of safe RSA moduli, a semanti-
cally secure encryption scheme on Zn which satisfies properties listed above and
assuming that each proof (of knowledge) system in Fig. 2.3 is zero-knowledge and
simulation-sound, the protocol in Fig. 2.3 is a secure computation protocol for
functionality FOPRF.
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Proof. Our proof is similar to the proof of the original OPRF [87].
Constructing an ideal-world server SIMS from a malicious real server S∗: SIMS
interacts with S∗ and FOPRF, and does the following:

− If S∗ succeeds in the proof π1, then SIMS runs the extraction algorithm for
π1 with S∗ to extract (s, ŝ), s.t. pk1 = gs, pk2 = gŝ.

− SIMS simulates the real-world user U as follows:
1. (pkU, skU)← K+.
2. r ←R Z∗n, C(U)

r ← E+
pkU

(r).
3. a←R Z∗n, C(S)

a ← E+
pkS

(a).
4. C(S)

a ← E+
pkS

(a).
5. Send (pkU, C

(U)
r , C(S)

a ) and simulate the proof π2.
− If the proof π3 verifies, SIMS sends s, ŝ to FOPRF. On SIMS’s inputs (s, ŝ)

and ideal world user Ū’s input µ, FOPRF outputs fs,ŝ(µ) to Ū.

Let D be a distinguisher that controls the server S∗, chooses the input of the
user U, and also observes the output of U. We argue that D’s view in the real

Common input: (n, g, pk1, pk2). S’s private input: s, ŝ, s.t. gs = pk1, gŝ = pk2.
U’s private input: µ.
Step 1 (S). (pkS, skS)← K+, C(S)

s ← E+
pkS

(s),
π1 ← PoK{s, ŝ|C(S)

s ∈ E+
pkS

(s), pk1 = gs, pk2 = gŝ}. Send
(
pkS, C

(S)
s

)
, π1 to U.

Step 2 (U). If π1 verifies, then (pkU, skU)← K+, r ←R Z∗n, C(U)
r ← E+

pkU
(r),

C(S)
a ←

(
C(S)
s · E+

pkS
(µ)

)r
,

π2←PoK
{
µ|∃r, s.t. C(U)

r ∈E+
pkU

(r), C(S)
a ∈

(
C(S)
s · E+

pkS
(µ)

)r }
.

Send
(
pkU, C

(U)
r , C(S)

a , π2
)
to S.

Step 3 (S). If π2 verifies, then a← D+
skS

(C(S)
a ).

If gcd(n, a) 6= 1, send ⊥ to U and abort.
b← ŝ · (a)−1mod n, ϕS ←R Zn, vS ← gϕS , C(U)

ϕU
←
(
C(U)
r

)b
· E+

pkU
(−ϕS),

π3 ← P

 ∃a, ϕS, b, skS s.t. a = D+
skS

(
C(S)
a

)
, (pkS, skS) ∈ KeyVal

C(U)
ϕU
∈
(
C(U)
r

)b
· E+

pkU
(−ϕS), vS = gϕS , a · b = ŝ mod n, pk2 = gŝ

.
Send

(
vS, C

(U)
ϕU
, π3

)
to U.

Step 4 (U). Output ⊥ if receiving ⊥ from S, or if π3 fails.
ϕU ← D+

skU

(
C(U)
ϕU

)
, vU ← gϕU . Output vS · vU.

Figure 2.3: Our (partially key-homomorphic) OPRF construction.
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world (S∗’s view + U’s output) and its view in the ideal world (S∗’s view + ideal
user Ū’s output) are indistinguishable. To show this, we introduce a series of
games G0, . . . ,G6 where G0 is the real world experiment (S∗ interacting with the
real user U), G6 is the ideal world experiment (S∗ interacting with SIMS), and
arguing that the views in Gi and Gi+1 are indistinguishable.

G1: Same as G0 except that instead of proving π2, U simulates it. By zero-
knowledge of the π2, D’s views in G0 and G1 are indistinguishable.

G2: Same as G1 except that if S∗ succeeds in the proof π1, G2 runs the extractor
algorithm for π1 with S∗ to extract s, ŝ. By simulation soundness of π1, G2 extracts
s, ŝ with non-negligible probability.

G3: Same as G2 except that if the proof π3 verifies, then G3 outputs fs,ŝ(µ) =
gŝ/(s+µ) as the final output (or ⊥ if gcd(s+ µ, n) 6= 1). By simulation soundness
of π3, D’s views in G2 and G3 are indistinguishable.

G4: Same as G3 except that as long as gcd(s + µ, n) = 1, G4 does the fol-
lowing: 1. (pkU, skU) ← K+. 2. a ←R Z∗n, C(S)

a ← E+
pkS

(a). 3. r ← a · ŝ/(s + µ),
C(U)
r ← E+

pkU
(r). 4. Simulate the proof π2. The probability that gcd(s+ µ, n) 6= 1

is negligible assuming factoring safe RSA moduli is hard. If gcd(s + µ, n) = 1,
then the tuple (pkU, C

(U)
r , C(S)

a ) is distributed identically in G3 and G4, and so D’s
views in these games are indistinguishable.

G5: Same as G4 except that value r is replaced by random r′ ∈ Z∗n. By semantic
security of the encryption scheme, D’s views in G4 and G5 are indistinguishable.
(See G4 in the first part of the proof of Theorem 1 in [87] for a reduction.)

G6: G6 is the ideal world game between SIMS (with access to S∗), FOPRF, and
the ideal world user Ū. Instead of computing Step 4. in G5, the simulator SIMS
sends (s, ŝ) to FOPRF in G6. On inputs (s, ŝ) from SIMS and µ from Ū, FOPRF
computes and sends to Ū the value fs,ŝ(µ). We have that D’s views in G5 and G6
are indistinguishable.

Constructing an ideal-world user SIMU from a malicious real-world user U∗:
SIMU interacts with U∗ and FOPRF and does the following:

− SIMU picks (pkS, skS) ←R K+, s′ ←R Z∗n, computes CS
s ← E+

pkS
(s′), sends

pkS and C(S)
s to U∗, and simulates the proof π1.

− If the proof π2 verifies, SIMU runs the extractor algorithm of π2 with U∗ to
extract µ and sends it to FOPRF.

− Getting v = fs,ŝ(µ) from FOPRF, which computes it on ideal-world server S̄’s
inputs (s, ŝ) and SIMU’s input µ, SIMU does the following:
1. If fs,ŝ(µ) = 1, then SIMU sends ⊥ to U∗ and aborts.
2. ϕU ←R Zn.
3. vS ← v/gϕU .
4. C(U)

ϕr ← E+
pkU

(ϕU).
5. Send (vS, C

(U)
ϕr ) and simulate the proof π3.
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Let D be a distinguisher that controls the user U∗, chooses the input of the
server S, and also observes the output of S. We show a series of games G0, . . . ,G4,
where G0 is the real world experiment, G4 is the ideal world experiment, and argue
that the views in Gi and Gi+1 are indistinguishable.

G1: same as G0 except that S simulates the proofs π1 and π3. By zero-knowledge
of these proof systems, D’s views in G0 and G1 are indistinguishable.

G2: same as G1 except that if the proof π2 verifies, G2 runs the extractor
algorithm for π2 with U∗ to extract µ. By simulation soundness of π2, G2 extracts
µ with non-negligible probability.

G3: same as G2 except that it does the following after extracting µ: 1. v =
fs,ŝ(µ); if v = 1, send ⊥ to U∗ and abort. 2. ϕU ←R Zn, vS ← v/gϕr . 3. C(U)

ϕU
←

E+
pkU

(ϕU). 4. Send
(
vS, C

(U)
ϕU

)
and simulate the proof π3.

For the same arguments made in G3 in the second part of the proof of Theorem 1
in [87], D’s views in G2 and G3 are indistinguishable.

G4: same as G3 except that when v is to be computed, SIMU sends the extracted
µ to FOPRF (which also gets inputs (s, ŝ) from the ideal world server S̄) and gets
the value v = fs,ŝ(µ) from the ideal functionality instead. We have that the views
in G3 and G4 are indistinguishable.

2.6 Detailed Description of AnonRAMM
polylog

In the following, we present the required changes to make AnonRAMpolylog secure
against malicious users. The resulting construction is called AnonRAMM

polylog.

Changes in User We elaborate on a ZK proof system, in which a user proves
specific relations between the old (stored at S at the moment before the user
started User) and the new ciphertexts (sent from the user to S during User).

We collect all the blocks read and written by Ui into the array of w :=
(t mod 2)+(L−1)β blocks, B1, . . . , Bw, the modified array of w blocks, B̂1, . . . , B̂w,
and an extra new block B̂0. Each block Bk is the pair (γk, vk), where γk :=
(γk[1], γk[2]) denotes encryption of the pre-tag, and vk := (vk[1], vk[2], vk[3], vk[4])
encryption of the value. During User, the tag server T computes L pre-tags for the
dummy blocks for each level, and the user computes a pre-tag for the new block
(in the proof, we are interested only in aforementioned L+1 pre-tags). These
pre-tags are sent (computed) to (by) the user in Steps 2 and 3a (Step 5) of User.
In the modified version of User, the encryptions of dummy pre-tags are also sent
to S, so that S could verify ZK proofs sent by the user to S at the end of User.
Let γD` denote the encrypted pre-tag for the dummy block computed for level
` ∈ [1, L], and γ0 denote the dummy pre-tag computed in Step 5 of User. Let
vD := E∗TS(“dummy”) denote the public ciphertext initialized in Setup.

The proof consists of w + 1 individual parts. For each k ∈ {1, . . . , w}, the
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P


∃ r1, r2, r3 s.t. γ̂k =

(
γk[1] · gr1 , γk[2] · (pkTS)r1

)
, 1

v̂k =
(
vk[1] · (vk[3])r2 , vk[2] · (vk[4])r2 , (vk[3])r3 , (vk[4])r3

)
2


∨

PoK



x| ∃ r4, r5, r6, r7 s.t. vk[4] = (vk[3])x, 3
γ̂k = (γD` [1] · gr4 , γD` [2] · (pkTS)r4), 4
v̂k =

(
vD[1] · (vD[3])r5 , vD[2] · (vD[4])r5 , (vD[3])r6 , (vD[4])r6

)
, 5

(v̂0[3], v̂0[4]) =
(
(vk[3])r7 , (vk[4])r7

)
6


Figure 2.4: Part of zero-knowledge proof system for AnonRAMM

polylog relationship
between blocks Bk and B̂k at level `, represented as ciphertexts (γk, vk) and
(γ̂k, v̂k) respectively, and a new block B̂0, represented as (γ̂0, v̂0). Encryption of
pre-tag for the dummy block associated with B̂k is denoted as γD` . Encryption
of the constant dummy value is denoted as vD.

individual k-th part looks as described in Figure 2.4. The ZK proof for the
individual part consists of six components. The first two components in the proof
correspond to re-randomization of the block Bk:
− component 1 states that B̂k encrypts the same pre-tag as Bk;
− component 2 states that B̂k and Bk encrypt the same block value under

the same key.
The next four components correspond to the case when a real block is found

by the user. The user then replaces that block with the dummy block and stores
an updated value of the real block as B̂0. Specifically:
− component 3 states that the user knows the secret key, using which she can

decrypt the value part of Bk;
− component 4 states that B̂k encrypts the same pre-tag as γD` ;
− component 5 states that the block value of B̂k is a re-randomization of vD;
− component 6 states that the value of B̂0 is encrypted under the same key

as the user’s ciphertext vk.
Note that we do not restrict the value of B̂0, since the user may want to update

the value of her cell to some other value, different from the value of Bk.
The last, (w + 1)-th, part of ZK proof system is

P
{ w∨
k=0
∃rk s.t. (v̂k[3], v̂k[4]) = ((vD[3])rk , (vD[4])rk)

}
.

It states that the value in at least one of the new blocks is encrypted under
the same key as the dummy value vD. This part of ZK proof system tolerates a
malicious user who just re-randomizes all blocks she has read (and thus proving
only components 1-2 in Figure 2.4) and introduces a new block of an honest user.
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In this case, the newly introduced block B̂0 has to be encrypted using the shared
key pkTS.

The user sends w + 1 proofs to the server S at the end of User command. The
server rejects if at least one of the proofs does not verify.

Changes in Reshuffle Reshuffle has to be modified as follows: if T observes two
or more blocks with same pre-tag, it replaces them with empty blocks. To this
end, T performs an additional preparation step: OSort array A by pre-tags in the
ascending order, then Scan A and replace any consecutive blocks having the same
pre-tag with empty blocks. This modification to Reshuffle circumvents a malicious
scenario in which too many blocks have the same pre-tag (such blocks would be
mapped to the same tag and cause a bucket overflow with high probability).

2.7 Postponed Proofs

2.7.1 Proof of AnonRAMpolylog

Theorem 2.7.1. AnonRAMpolylog provides access privacy against HbC adversaries
controlling S∗ in the random oracle model, when instantiated with a semantically
secure universally re-randomizable encryption (UREnc) scheme, and a seman-
tically secure multiplicatively homomorphic encryption and a secure (partially
key-homomorphic) oblivious PRF schemes for appropriate compatible domains.

Before proving Theorem 2.7.1, we state several facts and lemmas.

Fact 2.7.1. During User, a user Ui modifies at most one block at level ` > 1, and
this block is a real block belonging to Ui and it is replaced with a dummy block by
Ui.

Based on Fact 2.7.1, after User is executed, the total number of dummy and
real blocks at level ` > 1 remains unchanged and these blocks are located at the
same locations.

Fact 2.7.2. After User is executed, the number of dummy or real blocks is increased
by one at level 1.

Lemma 2.7.1. The number of non-empty blocks at any level ` is determined only
by the current value t, and not by access pattern.

Proof. It follows from Facts 2.7.1 and 2.7.2, and the invariant of Reshuffle from
levels 1 to ` into ` + 1 for some `: all non-empty blocks from levels 1 to ` are
moved to level ` + 1, and Reshuffle does not introduce any new dummy or real
blocks.

Lemma 2.7.2. Before reshuffle levels 1 to ` into level `+ 1, level `+ 1 is empty.
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Proof. Analogously to the proof of Lemma 1 in [96].

Proof of Theorem 2.7.1. We argue that locations of Ui’s real blocks and dummy
locations used by Ui are not known to S∗ (and therefore cannot be distinguished).
First, the adversary cannot decrypt any part of block except for the block value
of the blocks belonging to U∗, so S∗ merely observes the access locations used
by Ui in User and can detect whether the real blocks of corrupted used has been
changed by Ui. Since Ui does not change the blocks of other users while executing
User (Fact 2.7.1), the only thing that could help the adversary is the locations
accessed by Ui during User. And second, after Reshuffle, the server S∗ does not
know the dummy locations, and the adversary learns dummy locations used by the
compromised users. Dummy locations used by Ui in User, on the other hand, are
known only to Ui itself and the tag server T, since these locations are computed
by T and sent to Ui in User, and they depend on private input (µD + t) known
only to T.

We define a series of games G1, . . . ,G10, where G1 denotes an execution
Exec(AR,Adv, AP0,HbC), and G10 an execution Exec(AR,Adv, AP1,HbC) for any
two HbC-compliant access patterns AP0, AP1, and show that the views of the
adversary in these games are indistinguishable.

We briefly describe the games. G1 is the real experiment with AP0. In G2, an
uncorrupted user Ui does not overwrite a found real block with the dummy block,
but just re-randomizes the real block and writes to the first level the dummy block
with the pre-tag computed for that level. In other words, the user re-randomizes
all blocks read in Steps 2-4 of User. In G3, the user always sets τ to the value
corresponding to the dummy pre-tag in Step 3b of User. In G4, the user sends
random inputs to OPRF evaluation in Step 3a. In G5, there is unique user U′ 6∈ U∗
who performs accesses instead of any other user Ui 6∈ U∗. The remaining games
G6, . . . ,G10 form a counter part for AP1 (in the reversed order) such that G5 = G6.
Below, we present reductions from G1 to G10.

G2 - same as G1 except for the changes in User presented below. We define
series of games G0

1, . . . ,G
|AP |
1 with G1 := G|AP |1 and G2 := G0

1, where the games Gi+1
1

and Gi
1 differ in the following: if the (i + 1)-th access is made by some uncorrupted

Ui, do not change the location and content of the real block in Gi
1, and instead

add a dummy block to the first level. We can show that the views of the adversary
in these games are indistinguishable by a reduction to DDH. For that we need to
introduce additional intermediate games as tools that look as follows:

a. Change the encrypted value (ga,m · gxia, gb, gxib) in a game G to some
random value as (ga, m̃ · gxia, gb, gxib) for some random m̃ ∈ Gq in a game G′. We
show that the views of the adversary in the games G and G′ are indistinguishable by
reduction to DDH: given a DDH tuple (X, Y, Z) = (gx, gy, gz or gxy), we construct
a distinguisher D against DDH as follows. D runs Setup(1λ) of AnonRAMpolylog
where instead of generating the Ui’s secret key xi for UREnc, it sets gxi = X,
and simulates the uncorrupted user Ui without xi based on the second part of
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UREnc ciphertext. Then D replaces a challenge ciphertext with (Y, Z ·m, gb, Xb).
If (X, Y, Z) is a true DH tuple, then the game proceeds as G, otherwise, i.e. if
(X, Y, Z) is a random tuple, the game proceeds as in G′.

b. Change the ownership of a ciphertext (ga,m · gxa, gb, gxb) under the key
x ∈ Zq in game G to some random key x̃ ∈ Zq and a random message m̃ ∈ Gq

as (ga, m̃ · gx̃a, gb, gx̃b) in a game G′. We show that the views of the adversary in
these two games are indistinguishable by a reduction to DDH: given a DDH tuple
(X, Y, Z) = (gx, gy, gz or gxy), we construct a distinguisher D against DDH as
follows. D runs Setup(1λ) of AnonRAMpolylog and instead of generating Ui’s secret
key xi for UREnc, it sets X = gxi and simulates the uncorrupted user Ui without
xi. Then, D replaces the challenge ciphertext with (ga, Xa ·m,Y, Z). If (X, Y, Z)
is a true DH tuple, then the game proceeds as G, otherwise, i.e. if (X, Y, Z) is a
random tuple, the game proceeds as in G′.

These tools are applied to the block value, since they are encrypted using
UREnc. We just mention that we also need the first tool (for changing the
encrypted value) for the pre-tag part, which is encrypted using the semantically
secure encryption scheme on Zn. Having all these tools in place, we define
intermediate games between Gi+1

1 and Gi
1, so that the views in these games are

indistinguishable for the adversary.
G3 - same as G2, except that pre-tags in OPRF evaluations performed by Ui

are replaced with dummy pre-tags computed and sent by T to Ui. Specifically,
we define series of games G0

2, . . . ,G
|AP0|·L
2 with G2 := G|AP0|·L

2 and G3 := G0
2, where

games Gi+1
2 and Gi

2 differ in the following: if the (i + 1)-th OPRF evaluation is
performed by Ui, set τ corresponding to the dummy pre-tag computed in Step 3a,
in Gi

2.
Let E be the event that there exist two OPRF evaluations with at least one

of them belonging to an honest user Ui, such that the OPRF is evaluated using
the same input and the same key. We show that the probability of this event is
negligible. In Gi+1

2 , pre-tag is evaluated via OPRF using a storage server’s key (s, ŝ)
and some input (µD + t) or (µi + j). In the former case, t is incremented every
new access, therefore the OPRF evaluation will be pseudo-random (the special
property of OPRF w.r.t. the second key applies only if the inputs to OPRF are
the same), and so will be the tag computed via h`. In the latter case, i.e. if OPRF
is evaluated using input (µi + j), the inputs to OPRF at specific level ` can be the
same, however the keys used by S∗ will be different with overwhelming probability.
The reason lies in the mechanics of User and Reshuffle. Fix level ` > 1. Assume
(µi + j) was used as input to OPRF at level ` for some t. This only could happen if
the real block was located at the level ` or at one of the next levels. Regardless of
that level, once read, the real block will be moved by Ui to the first level. In any
subsequent accesses, Ui will send (µi + j) as input to OPRF for level ` only if the
real block is located at level ` or one of the next levels; denote the time (access
counter) when this event happened as t′ > t. The real block can be moved from
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lower levels to one of the next levels only by performing Reshuffle. In particular,
there should have been Reshuffle of all levels from 1 to `− 1 into level ` at time
t∗ < t′ and t∗ ≥ t. But when level ` is involved into Reshuffle, the storage server
S∗ generates a fresh second key for OPRF. The probability to draw some ŝ′ that
already has been used as the second key to OPRF in the past is negligible, so is the
probability of E. The specific property of OPRF is “neglected" since the adversary
observes the tags, i.e. the output of h, which is modelled as a random oracle.
Hence, the views of the adversary in games Gi+1

2 and Gi
2 are indistinguishable.

G4 - same as G3, except that uncorrupted users use random inputs to OPRF.
Specifically, we define intermediate games G0

3, . . . ,G
|AP0|·L
3 with G3 := G|AP0|·L

3
and G4 := G0

3, where Gi+1
3 and Gi

3 differ in the following: if the (i + 1)-th OPRF
evaluation is performed by Ui, the input to OPRF is replaced by a random value.
The output of OPRF is not used subsequently by Ui in Gi+1

3 . If Adv can distinguish
between these two games, it can break the underlying assumptions of OPRF.

G5 - same as G4, except that all accesses performed by uncorrupted users are
replaced with “equivalent” accesses performed by some fixed uncorrupted user
U′. Note that uncorrupted users in G4 do not use their secret inputs in OPRF
evaluation. The uncorrupted users re-randomize the blocks they have read, and
introduce the dummy block to the first level. The views of the adversary in these
two games are indistinguishable provided that communication channels between
users and servers are anonymous.

The remaining games, G6, . . . ,G10 are defined analogously to G1, . . . ,G5, in
reversed order, so that G10 corresponds to an experiment with AP1, and whenever
AP0 is mentioned in G1 − G5, it should be replaced with AP1 in G10 − G6. We
have G5 = G6. Hence the views in games G1 and G10 are indistinguishable.

Theorem 2.7.2. AnonRAMpolylog provides access privacy against HbC adversaries
controlling T∗ in the random oracle model, when instantiated with a seman-
tically secure universally re-randomizable encryption (UREnc) scheme, and a
semantically secure additively homomorphic encryption and a secure (partially
key-homomorphic) oblivious PRF schemes for appropriate compatible domains.

Proof. There are several arguments for the proof. First, while accessing S, a
corrupted user from U∗ reads and writes some blocks. Since S re-randomizes the
block before sending it to users, the adversary cannot detect whether a particular
bucket was touched or not, by an uncorrupted user. So, Adv has no information
about tags used by an uncorrupted user, even though T∗ knows pre-tags for
dummy blocks in User.

Second, in Reshuffle, T∗ can observe pre-tags and identify empty blocks, but
only with help of S since pre-tags are encrypted under the joint key TS, while the
users’ data (the value of block) are protected by semantic security of underlying
UREnc. Before pre-tags become accessible to T∗ in Reshuffle, S preliminarily
changes pre-tags (Step 2 of Reshuffle) and shuffles array A. Intuitively, T∗ should
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not learn the link between pre-tags observed in any two reshuffles, since the storage
server S draws a new random second key to OPRF for the level `, into which all
the blocks from levels below are moved, every time Reshuffle is performed.

Finally, after pre-tags become accessible, T∗ can identify empty cells, however,
the number of empty blocks is array A in Reshuffle does not depend on the access
pattern (Lemma 2.7.1). Let Adv denote an adversary who corrupts T∗ and a
subset of users U∗. The goal is to show that Adv cannot distinguish between
Exec(AR,Adv, AP0,HbC), and Exec(AR,Adv, AP1,HbC) for any two compliant
access patterns AP0, AP1 significantly better than pure guessing.

We define a series of games G1, . . . ,G10, where G1 denotes an execution
Exec(AR,Adv, AP0,HbC), and G10 an execution Exec(AR,Adv, AP1,HbC) for any
two compliant access patterns AP0, AP1, and show that the views of the adversary
in these games are indistinguishable. The games are defined in the same way as
in the proof of Theorem 2.7.1, however reductions from G1 to G2 and from G2 to
G3 proceed differently, while other reductions remain without changes. Below,
we present reductions from G1 to G10.

G2 - same as G1 except for the changes in User: if the access is made by an
uncorrupted user Ui, then in Steps 2 and 3b, re-randomize the found block, and
write the dummy block in Step 5.

We introduce an intermediate game Ḡ1 to apply the changes made in the game
G2 into two steps. In the first step (in Ḡ1 compared to G1), the changes affect only
the block value, while the pre-tag remains as in G1. And in the second step (in G2
compared to Ḡ1), pre-tags are changed, i.e. if User is performed by an uncorrupted
user, then send E+∗

D (θD) in Step 5 for θD computed in Step 2, and re-randomize
the pre-tag in Step 3b regardless of the value of found. The reason for this split
is the fact that T∗ observes pre-tags in Reshuffle.

Reduction from G1 to Ḡ1 is done similarly to the reduction from G1 to G2 in
the proof of Theorem 2.7.1 (except that pre-tags are not altered). For reduction
from Ḡ1 to G2, assume w.l.o.g. that there is a list of all initial M ·N real pre-tags
and M ·N dummy pre-tags. Each pre-tag is an element of Gn, so we can represent
pre-tags as a list of 2M ·N distinct (probability of collision is negligible) group
elements: (g1, . . . , g2M ·N). The i-th element of the list corresponds to a specific
input to OPRF: µD+ (i−N ·M) if i ≥M ·N , and µ1+i/M + (i mod M) otherwise.
In Step 2 of Reshuffle, w.l.o.g. we may assume that the list is changed by S to
(gr1, . . . , gr2M ·N ) for some random r, and T∗ observes a subset of it ordered randomly.
There are |AP |/2 such lists, and we refer to them as to the lists of pre-tags.

We define series of games Ḡ0,0
1 , . . . , Ḡ0,|AP |/2

1 , Ḡ1,0
1 , . . . , Ḡ1,|AP |/2

1 , . . . , Ḡ2M ·N,0
1 ,

. . . , Ḡ2M ·N,|AP |/2
1 with Ḡ1 := Ḡ2M ·N,|AP |/2

1 and G2 := Ḡ0,0
1 , where the games Ḡi,j+1

1
and Ḡi,j

1 differ in the following: for the i-th element of the j-th list of pre-tags,
if this element corresponds to the dummy input or to the input of uncorrupted
user, replace the corresponding value with a random value, and related OPRF
evaluations (for t = 2j and t = 2j + 1 and inputs w.r.t. i-th element of the list) are
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responded by S with random values. We show that views of in Ḡi,j+1
1 and Ḡi,j

1 are
indistinguishable to the adversary by a reduction to composite DDH. Let ŝj denote
the second OPRF key used in the j-th list of pre-tags. Given (X, Y, Z) = (gx, gy, gz),
we construct a distinguisher D as follows: on input µ corresponding to the i-th
element of the j-th list, set g1/(s+µ) = X, so that fs,ŝ(µ) = X ŝ for any ŝ 6= ŝj,
and fs,ŝj(µ) = Z, where gŝj = Y . For other inputs µ′ 6= µ, fs,ŝj(µ′) = Y 1/(ŝ+µ′)

(respectively, OPRF is simulated as f1,ŝj(µ′) with g ← Y ). If (X, Y, Z) is a DH
tuple, then the game proceeds as Ḡi,j+1

1 , otherwise, if (X, Y, Z) is a random tuple,
the game proceeds as Ḡi,j

1 . Since dummy pre-tags and the pre-tags of uncorrupted
users observed by T∗ are replaced with random pre-tags, the views of the adversary
in Ḡ1 and G2 are indistinguishable.

G3: same as G2, except that pre-tags in OPRF evaluations performed by an
uncorrupted user Ui are replaced with dummy pre-tags computed and sent by T∗
to Ui. Since the adversary does not learn tags used by uncorrupted users in User,
the views in these games are indistinguishable.

Reductions from G3 to G5 are the same as in the proof of Theorem 2.7.1.
Games G6, . . . ,G10 are defined analogously to G1, . . . ,G5, in reversed order, with
the change that whenever AP0 is mentioned, it is replaced with AP1. We have
that G5 = G6, and so the views of the adversary in games G1 and G10 are
indistinguishable.

Proof of Theorem 2.4.1 . We have to show that AnonRAMpolylog construction pro-
vides indistinguishability of access patterns in the two following cases: a) collusion
of honest-but-curious subset of users U∗ and the storage server, b) collusion of
honest-but-curious subset of users U∗ and the tag server T∗. In either case, we
have to construct a simulator that simulates the execution of an access pattern
(for uncorrupted users) without knowing it, such that the adversary is not able to
distinguish between the real or simulated execution. Note that the probability
of overflow in Step 8 of Reshuffle algorithm is determined by n balls to n bins
experiment and therefore is small (≤ 1/n); the overflow itself does not help the ad-
versary, it only affects its running time. The theorem follows from Theorems 2.7.1
and 2.7.2.

2.7.2 Proof of AnonRAMM
polylog

Proof Sketch of Theorem 2.4.2. The argument for integrity is based on ZK proof
systems introduced in Section 2.4.7. They ensure that a user can modify the
block value only if she knows the secret key which is required for decryption of
the value. Since all the users generate their keys independently, the probability
that a malicious user from U∗ knows the secret key of any uncorrupted user is
negligible. The employed ZK proof system also ensures that the introduced to
the first level block is encrypted either under the same key as one of the blocks,
for which the user has proven the knowledge of the secret key, or under the joint
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servers’ key. Thus, the probability that the adversary changes during User any
block belonging to an honest user, or introduces a new block of an honest user,
is negligible. Finally, the privacy properties are preserved based on the security
analysis of AnonRAMpolylog against HbC adversaries.

2.8 Conclusion

We have defined the concept of Anonymous RAM (AnonRAM) and presented
two provably secure constructions. AnonRAM simultaneously provides privacy of
content, access patterns and the user identities, while additionally ensuring the
integrity of the user’s data. It hence constitutes a natural extension of the concept
of oblivious RAM (ORAM) to a domain with multiple, mutually distrusting users.
Our first construction exhibits an access complexity linear in the number of users,
while the second one improves the complexity to an amortized access cost that is
poly-logarithmic in the total number of cells of all users, at the cost of requiring
two non-colluding servers. Both constructions have two versions: a simpler one
that assumes honest-but-curious users and a version secure against malicious
users.

Several challenges still remain. In particular, it will be interesting to design a
single server AnonRAM scheme with a poly-logarithmic access complexity. It will
be also interesting to manage concurrent accesses to the server by the users. As a
folow-up work, we address the latter challenge in Chapter 3.
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3.1 Introduction

Encryption schemes that allow re-randomization of ciphertexts are important
tools for applications related to privacy and anonymity, especially ‘universal’
mechanisms which allow re-randomization without public key (or any identifier of
the recipient) [77, 33, 82, P1]. We will refer to such schemes as to universally re-
randomizable encryption schemes (UREnc) throughout the chapter. We illustrate
the core idea of UREnc [77]. The construction uses homomorphic properties of
El-Gamal encryption. For a generator g of a prime-order group Gq of order q and
a private and public key pair xi ∈ Zq and gxi ∈ Gq for party i, encryption E∗i (m)
of message m is computed as an El-Gamal encryption of m together with an
El-Gamal encryption of the value 1; i.e., (gr, grxi ·m, gt, gtxi ·1). Re-randomization
of a ciphertext c is possible using two random exponents r′, t′ such that the
re-randomized ciphertext is equal to (gr · (gt)r′ , grxi ·m · (gtxi)r′ , (gt)t′ , (gtxi)t′).

Backes et al. [P1] used UREnc as a building block in anonymous RAMs,
which extend oblivious RAM (ORAM) [74] to the setting of mutually untrusted
users. In anonymous RAM, users store and access their data on a server in
encrypted form. The server should not learn users’ access patterns or users’
identities. A user, who reads a data block of another user, overwrites it with
a re-randomization of that block. Respectively, a user, who reads a data block
of itself, can overwrite it arbitrarily. This example shows two possible ways of
‘chaining’ ciphertexts (connecting one ciphertext with another one), for which
there is a lack of foundational work since only re-randomization as a way of
chaining ciphertexts is captured in the definition of UREnc.

In this work, we initiate a foundational effort for defining and analyzing a
cryptographic primitive that allows chaining of ciphertexts.

Our contribution
1. We formally define randomize-or-change encryption (RoC), which allows

chaining of ciphertexts by either re-randomizing them or encrypting new cipher-
texts. RoC schemes ensure operation-privacy, i.e., given a ciphertext c′, it is
infeasible for an adversary to determine whether c′ is a randomization of another
ciphertext c, or a freshly constructed by the recipient of c. RoC schemes addition-
ally ensure data integrity, which informally means that an adversary who is not
the recipient of c cannot produce a ciphertext c′ such that verification succeeds
and the ciphertexts (c, c′) decrypt to different plaintexts using the same decryption
key. We refer to Table 3.1 for allowed operations for a given ciphertext w.r.t. the
user’s role. The definitional part includes semantic security properties: we define
message indistinguishability properties for the algorithms that output ciphertext,
which are the encryption, the change, and the re-randomization algorithms. Next,
we define key anonymity properties for the algorithms that output ciphertext,
which accounts for the ability to relate ciphertexts under different keys. Finally,
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we distinguish same-key and any-key RoC schemes. In same-key RoC, the recipient
of a ciphertext is allowed to encrypt another message that can be decrypted using
the same key (hence, same-key), whereas in any-key RoC this constraint is relaxed.
We present a discrete log based same-key RoC construction, which is based on
UREnc by Golle et al. [77], assisted with algebraic zero-knowledge proofs. With a
small modification in the zero-knowledge proof system, the construction can be
turned into any-key.

2. We define an extension to RoC, which we call aggregatable RoC. In ag-
gregatable RoC, parties can simultaneously (in parallel) randomize or change a
given ciphertext to a pre-ciphertext, and these pre-ciphertexts are then publicly
combined to obtain the output ciphertext. The aggregation algorithm should
be semantically correct as long as at most one pre-ciphertext is the result of
the change operation. If an aggregatable RoC requires one or more rounds of
synchronization between the users, we call such a scheme interactive, otherwise it
is non-interactive. We present two discrete log based aggregated RoC construc-
tions, which extend our discrete log based RoC. The first one is same-key and
non-interactive, the second is any-key and requires one round of interaction.

3. We define a restricted variant of RoC, which we call keyed RoC. In keyed
RoC, re-randomizers need to use keys in order to re-randomize ciphertexts. To
protect these keys, we define anonymity of re-randomization property, which
ensures that the recipient of ciphertext (or at least other re-randomizers and
external observers) cannot relate re-randomizers to identities (public keys). We
present a hybrid keyed RoC construction, which is designed for a pre-defined set
of re-randomizers and based on both symmetric-key and public-key operations.
Its public-key complexity depends on the number of users in the system and
does not depend on message space, which offers a trade-off between these two
parameters. The complexity factor is inherent to the construction and stems
from the requirement that a user, while computing c′ from c, has to update in
the ciphertext the respective parts of all other users. To achieve integrity in the
hybrid construction, we use verifier-efficient zero-knowledge proofs for proving
composite statements, consisting of algebraic and arithmetic parts [2]. Plausible
cost w.r.t. the message space comes at a price that anonymity of re-randomization
is achieved only against other re-randomizers and external observers.

4. We show three applications to RoC and aggregated RoC: (parallel) anony-
mous RAM, group payment system, and anonymous communication. With the
help of the aggregate functionality, we allow concurrent access from the users in
specific scenarios. In particular, aggregated RoC facilitates practically instant
responsiveness in our parallel anonymous RAM compared to the non-concurrent
anonymous RAM [P1].

Comparison with UREnc UREnc and RoC are public key encryption schemes
that allow anyone to re-randomize ciphertexts without knowing the recipient’s
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Table 3.1: Permitted operations (randomize, change) for a given ciphertext c to
obtain c′ in randomize-or-change encryption, depending on the user’s role.

Recipient of c Others
Randomize Yes Yes
Change Yes No

key. Security goals of both primitives, however, are partly orthogonal. By design,
UREnc prevents correlation between the original and randomized ciphertexts.
RoC schemes, on contrary, require an explicit link between ciphertexts in order to
ensure integrity.

Basic RoC schemes are equipped with two more algorithms that are not present
in UREnc: the change and the verification algorithms. The change algorithm
allows the recipient of a ciphertext c to encrypt a new plaintext of her choice as
c′. An adversary, observing a pair of ciphertexts (c, c′), should not be able to
distinguish whether c′ was a randomization of c or a new encryption computed
by the recipient of c. We refer to this security notion as indistinguishability of
operation.

The public verification algorithm allows to protect integrity of ciphertexts
against a malicious adversary, who may try to change c to an arbitrary ciphertext
c′ while not being the intended recipient of c. Such an adversary is left with the
only possible option in RoC: to re-randomize c.

In RoC, message indistinguishability and key anonymity properties defined
for the change and re-randomization algorithms no longer hold, since a pair of
ciphertexts can be verified (hence linked) in RoC by definition. If the malicious
behaviour is not expected, i.e. an adversary is honest-but-curious, a trivial
verification (returning always true) can be used in a RoC scheme, in which case
message indistinguishability and key anonymity properties do hold, and we call
such a scheme RoCHbC; conversely, we call a RoC scheme secure against malicious
adversaries RoCM. In Table 3.2, we summarize the security properties defined for
RoC and compare them to UREnc [133].

Chapter Outline The rest of the chapter is organized as follows. In Section 3.2,
we briefly discuss different variants of RoC and their applications. In Section 3.3, we
define randomize-or-change encryption (RoC), its security properties, and present
RoCHbC

dlog and RoCM
dlog constructions in the discrete log setting. In Section 3.4, we

define aggregatable RoC and present two ARoC constructions in the discrete
log setting: the first is non-interactive ARoC-sk, the second is ARoC-ak and it
requires one round of interaction. In Section 3.5, we define keyed RoC and present
our hybrid keyed construction. Next, we provide more details on the applications
of RoC: we define parallel anonymous RAM schemes and present a construction
thereof in Section 3.6, then we elaborate on our group payment system Section 3.7.
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In Section 3.8, we discuss related work. In Section 3.9, we complete the security
analysis. Section 3.10 concludes.

3.2 Overview

In this section, we give an informal overview on different variants of randomize-or-
change encryption, their security properties and applications.

3.2.1 Variants of RoC

RoC schemes enable chaining of ciphertexts. We say a party changes a ciphertext
if it applies the change algorithm for a ciphertext and obtains another ciphertext.
Conversely, we say a party randomizes a ciphertext if it applies the randomize
algorithm.

Let a pair of ciphertexts be in relation R if they are chained. We distinguish
the following cases:

1. Any party can re-randomize a given ciphertext c that encrypts message m
without knowing the corresponding public key. The resulting ciphertext c1
can be verified against c and thereby is in the chain relation, i.e. (c, c1) ∈ R.

2. The recipient of c (a party that knows the corresponding secret key to
decrypt c) is allowed to encrypt any message m2 as c2 such that (c, c2) ∈ R.

3. Any party that is not the recipient of c is not allowed to find a ciphertext c3
encrypting some message m3 6= m, which would extend the chain. For such
a pair the relation does not hold, i.e. (c, c3) 6∈ R.

The adversary model Integrity of plaintext property ensures that in all three
cases the verification algorithm outputs the correct boolean value, which indicates
whether a pair of ciphertext is in the chain relation or not. The first two cases
represent honest behaviour of parties, while the third case represents a malicious
behaviour. When considering honest behaviour only, the verification is trivial (not
enforced). The choice of the adversary model impacts not only the verification
algorithm, but also the security properties of a RoC scheme, which is foreseen
in Table 3.2 and we will consider this distinction when formally defining RoC
schemes and presenting our RoC constructions.

Recipient constraints for RoC Depending on whether the recipient is restricted
to encrypt c2 under the same key, or is allowed to encrypt under a different key,
we distinguish two variants of RoC schemes: same-key-RoC (RoC-sk) and any-
key-RoC (RoC-ak).
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Aggregatable RoC Let for some given ciphertext c there be a tuple (c̃1, . . . , c̃`)
such that (c, c̃i) ∈ R for all i ∈ [1, `]. A RoC scheme allows for verification of
multiple pairs (c, c̃i), to check whether or not they are in the relation R. An
aggregatable RoC (ARoC) additionally allows to publicly combine (aggregate)
(c, c̃1, . . . , c̃`) and compute a new ciphertext c′, such that the semantic properties of
the scheme are preserved. We allow up to one non-rerandomizer among the pairs
(c, c̃i). Since the output ciphertext c′ is publicly computed from (c, c̃1, . . . , c̃`), the
values c̃i are hence treated as intermediate and may not necessarily represent valid
ciphertexts. ARoC may require interaction between users and the aggregation
server, in which case the scheme is called interactive (otherwise, non-interactive).
We call a RoC scheme basic if it does not implement the aggregate functionality.

Keyed RoC The main motivation for UREnc and RoC is that the ciphertexts
cannot be publicly linked to the recipient’s public key. Similar to UREnc, the
re-randomization algorithm in RoC does not use the recipient’s public key. The
re-randomization algorithm in UREnc requires only a ciphertext as input. In RoC,
we will refer to this feature as to keyless randomization. We will define a comple-
mentary variant of RoC, called keyed RoC, which requires the re-randomization
algorithm to take a randomization key as an additional input.

3.2.2 Security properties

Since RoC is a functional extension of UREnc (basic RoC defines two more
algorithms that are not present in UREnc), our starting point is security games
defined in [133]. In all definitions, we consider a polynomial-time adversary.

Message indistinguishability The encryption algorithm provides message in-
distinguishability if an adversary cannot find out (significantly better than pure
guessing) which message out of two provided by the adversary, was encrypted
by the challenger. The re-radnomization algorithm provides message indistin-
guishability if an adversary cannot find out which ciphertext out of two provided
by the adversary was re-randomized by the challenger. In addition to these two
properties, already defined in [133], we formulate an indistinguishability game for
the change algorithm. The change algorithm provides message indistinguishability
if an adversary cannot find out which ciphertext out of two provided by the
adversary was changed by the challenger.

Key anonymity Ciphertext anonymity [22] refers to the property of ciphertext
to hide identities of the sender (i.e. who created the ciphertext) and the recipient
(who can read the ciphertext). The encryption algorithm provides key anonymity
if an adversary cannot find out (significantly better than pure guessing) which
key, out of two public keys generated by the challenger, was used to encrypt an
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Table 3.2: Security properties in UREnc (as defined in [133]) and randomize-or-
change encryption. We use E,R,Ch to denote the encryption, re-randomization,
and change algorithms, respectively. “+” (“–”) means that a respective security
property can (cannot) be achieved.

Security property UREnc RoCHbC RoCM

Integrity of plaintext +
Indistinguishability of operation for R

and Ch
+ +

Message indistinguishability
for E + + +
for R + + –
for Ch + –

Key anonymity
for E + + +
for R + + –
for Ch + –

Anonymity of re-randomization
(for keyed RoC)

external + +
internal + or – + or –

adversarial message. The re-randomization algorithm provides key anonymity if
an adversary cannot find out which key, out of two public keys generated by the
challenger, was used to encrypt a message chosen by the adversary to re-randomize
it. Here, the adversary provides a message and randomness to the challenger,
hence can reconstruct possible ciphertexts, one of which is used by the challenger
as input to the re-randomize algorithm. In addition to these two key anonymity
properties, already defined in [133], we add a key anonymity game for the change
algorithm. The change algorithm provides key anonymity if an adversary cannot
find out which key, out of two public keys generated by the challenger, was used to
encrypt a message chosen by the adversary to change it. Similarly to the previous
property, the adversary provides a message and randomness to the challenger,
hence can reconstruct two potential inputs the change algorithm.

Anonymity of re-randomization As the re-randomization algorithm in keyed
RoC requires randomization keys as input, we need to ensure that re-randomizers
cannot be identified. To this end, we define anonymity of re-randomization
properties. We distinguish two cases: anonymity of re-randomization against the
recipient of ciphertext (internal anonymity) and against re-randomizers (external
anonymity). In both cases the challenger generates randomization keys for two
users and picks one of them to randomize an adversarial ciphertext. The adversary
plays a role of either the recipient of the ciphertext or another re-randomizer. A
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RoC schemes achieves anonymity of re-randomization if the adversary cannot
find out which user re-randomized the ciphertext. Note that RoC schemes with
keyless randomization achieve both properties by definition, as there is no key
material used in the algorithm which could allow an adversary to differentiate
re-randomizers.

Indistinguishability of operation Using the re-randomization and the change
operations, users can create chains of ciphertexts, in which two neighboring
ciphertexts verify. The initial ciphertext in such a chain is created using the
encryption algorithm. Regardless of the type of operation performed to append a
chain, it should not be revealed to an external observer.

Integrity of plaintext Intuitively, RoC permits ciphertext chaining as follows:
for a given ciphertext c, the recipient (i.e. a party who holds the secret key to
decrypt c) can produce a new ciphertext, possibly encrypting another value, while
any other party can only re-randomize c. In either case, the resulting ciphertext
c′ should verify against c. Integrity of plaintext property ensures that no party
but the recipient can do more than re-randomization, i.e. it protects integrity
and prevents malicious adversaries from corrupting users’ data in the chains of
ciphertexts. We refer to Table 3.2 for a comparison of security properties in
UREnc and RoC.

3.2.3 Applications

The traditional application for UREnc are mixnets [77]. A mixnet is a set of
mixes, whose task is to re-randomize incoming messages and output them in a
random order. Interestingly enough, RoC with integrity property cannot protect
against malicious mixes. More specifically, RoC does not break the link between
re-randomized ciphertexts; on contrary, to verify a randomized ciphertext the
original ciphertext is required, and so an external observer could recover the
original order of messages processed by a mix server. Nonetheless, we identify
several applications for RoC, which we discuss below.

Parallel Anonymous RAM In anonymous RAM [P1], a set of users anonymously
operates on the joint external storage, while hiding from the server everything
except for the fact that someone has accesses some data. The linear anonymous
RAM construction [P1] assumes a single server, whose storage is encrypted and
equally divided among the users. The users have to use anonymous communication
to access the server. A user can hide her access pattern by using any secure
ORAM [74], and her identity by accessing the same ORAM’s locations in other
users’ storages, simply re-randomizing them.
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We observe that we can build an anonymous RAM using RoC-sk, as this
primitive captures the necessary properties by definition. First, the user can
change ciphertexts in her part of the storage, which corresponds to a ‘write’
operation in anonymous RAM. Second, the user can randomize ciphertexts that
are not in her part of the storage, which corresponds to a ‘read’ operation.
Finally, indistinguishability of operation property ensures that the change and
the randomize operations are not distinguishable to the storage server. Resulting
anonymous RAM is keyless, as the RoC ciphertexts do not require knowledge of
public keys to randomize them and asymptotically the construction is the same
as the linear anonymous RAM [P1].

In anonymous RAM, by definition only one user can access the storage at a
time, which may lead to unwanted waiting if multiple users would like to access
the storage. If we allow concurrent access to the server, using aggregatable RoC,
we can achieve anonymous RAM and at the same time eliminate waiting time for
users. We call the resulting construction parallel anonymous RAM. In Fig. 3.1,

Figure 3.1: Parallel Anonymous RAM from aggregatable RoC. Example for 3
users, two of them sending write-requests to the same location at the server via
anonymous channels.

we show on a high level how aggregatable RoC can be used to construct a parallel
anonymous RAM scheme. The resulting construction is fully based on aggregatable
RoC and requires anonymous communication channel for the users to communicate
with the server. We refer to Section 3.6 for the definitions and security analysis.
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Group payment system We consider the following scenario: a small group
of users would like to manage micro-transactions among themselves. All users’
coins are stored at the server in encrypted form. The recipient of ciphertext is the
owner of the coin. Users may send (anonymous) requests to the server to change
a coin c to another value c′. The server verifies the validity of the request and
updates the coin to a new value. The server’s storage is organized as any-key-RoC
ciphertexts. User Ua can send her coin c to another user Ub by changing it to
c′, so that it is decryptable by Ub. To hide from the server, which coin has
been sent, Ua randomizes the remaining coins stored on the server. Thanks to
indistinguishability of operation property of RoC, the server cannot distinguish,
whether the coin was indeed sent or randomized. If we allow concurrent access to
the server, using aggregatable any-key-RoC we can handle user’s transactions as
they arrive to the server. We refer to Section 3.7 for further details.

A blockchain/broadcast protocol for anonymous pairwise communica-
tion within a group We use ideas from the group payment system to construct
anonymous communication protocol resilient to malicious mixes (users). Previ-
ously, we were interested only in the ownership of ciphertexts (coins). In the
communication protocol, we also interested in the content of ciphertexts.

The protocol is based on periodical publishing (by broadcast or in a blockchain)
new values of a block of ciphertexts. Each time, each party reencrypts all
ciphertexts sent to others, and may decrypt and replace the ciphertext sent to
it (using her secret key). It is verifiable so parties cannot simply corrupt entries
of other parties. This is a bit similar to mixnets, and resilient against malicious
mixes (participants), except that the messages are only between the participants.
The protocol provides strong anonymity: one cannot identify the sender and
recipient, i.e. it provides unobservability.

3.3 (Basic) Randomize-or-Change Encryption

In this section, we define randomize-or-change encryption (RoC) schemes, its
security properties, and present a RoC construction in the discrete log setting.

Notation By c[i,j] we denote an array of elements (ci, ci+1, . . . , cj). To represent
the distinguishable symbol ⊥ in the groups, we use the identity element 1 ∈ G.
Multiplication and exponentiation of tuples is performed component-wise: (c1, c2) ·
(c3, c4) = (c1 · c3, c2 · c4) and (c1, c2)x = (cx1 , cx2). We denote ElGamal encryption by
ei(m; r) := (gr, grxi ·m) ∈ (Gq)2, where Gq is a group of a prime order q, xi ∈ Zq is
a private key. The following homomorphic properties hold: ei(m1; r1) · ei(m2; r2) =
ei(m1 ·m2; r1 + r2), ei(m; r)s = ei(ms; rs). We may write (ei(m1), ei(m2)) instead
of (ei(m1; r1), ei(m2; r2)), for some r1, r2 drawn independently. In particular,

55



CHAPTER 3. RANDOMIZE-OR-CHANGE ENCRYPTION

(c1, c2) ← (ei(m), ei(m)) does not mean that the two ElGamal ciphertexts are
equal, since it is a short-cut for (ei(m; r1), ei(m; r2)) for some r1, r2.

3.3.1 Definition

Definition 3.3.1 (RoC). A randomize-or-change encryption (RoC) scheme with
key spaces (SK, PK), message space M, and ciphertext space C is a tuple of
algorithms (KG,E,D,R,Ch,V) such that:
• The key generation algorithm KG is a randomized algorithm that takes a

security parameter 1λ as input and returns a key pair sk ∈ SK and pk ∈ PK.
• The encryption algorithm E is a randomized algorithm that takes a public

key pk ∈ PK and a plaintext m ∈M as input and returns a ciphertext c′ ∈ C.
• The decryption algorithm D is a deterministic algorithm that takes a secret

key sk ∈ SK and a ciphertext c ∈ C as input and returns a plaintext m ∈M∪{⊥},
where ⊥ is a distinguishable error symbol.
• The re-randomization algorithm R is a randomized algorithm that takes a

ciphertext c ∈ C as input and returns a ciphertext c′ ∈ C.
• The change algorithm Ch is a randomized algorithm that takes a secret key

sk ∈ SK, a plaintext m ∈ M, and a ciphertext c ∈ C, as input and returns a
ciphertext c′ ∈ C.
• The verification algorithm V is a deterministic algorithm that takes a pair

of ciphertexts (c, c′) ∈ C2 as input, and returns a boolean value.
The above algorithms should satisfy the following correctness properties:

1. Correctness of the encryption-decryption — Let (sk, pk)← KG(1λ). Then,
Dsk(Epk(m)) = m for any m ∈M.

2. Correctness of the re-randomization — Let (sk, pk)← KG(1λ), and c ∈ C
such that Dsk(c) = m for some m ∈M. Then for c′ ← R(c), Dsk(c′) = m.

3. Correctness of the change — Let (sk, pk)← KG(1λ). Then Dsk(Chsk(m, c)) =
m for any m ∈M and c ∈ C.

4. Correctness of verification of re-randomization — Assume (c1, c2) ∈ C2 such
that c2 ← R(c1). Then, V(c1, c2) = true.

5. Correctness of verification of encryption — Assume (sk, pk)← KG(1λ), and
(c1, c2) ∈ C2 such that c2 ← Chsk(m, c1) for some m ∈M. Then, V(c1, c2) = true.

Definition 3.3.1 is in flavor of RoC-sk, i.e., the change operation uses the
recipient’s key to encrypt a new message. The RoC-ak version of Definition 3.3.1
requires additionally the target public key as input in the change algorithm Ch
and appropriate changes in the correctness properties involving Ch.

For the rest of this section, when defining games let Π = (KG,E,D,R,Ch,V)
be a RoC-scheme with message spaceM, ciphertext space C, and let a game for Π
between the challenger and a PPT adversary Adv be defined as shown in subsequent
definitions. Since RoC schemes offer two options for chaining ciphertexts (using R
and using Ch), we define a property that captures indistinguishability of operation.
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Definition 3.3.2 (IND-OP game). Π provides indistinguishability of operation
(or is IND-OP secure) if |Pr[IND-OPAdv

Π (λ) = 1] − 1/2| is negligible in λ. The
game is defined as follows: b ← {0, 1}, (sk, pk) ← KG(1λ), (state,m,m∗, r∗) ←
Adv(1λ, pk), c← Epk(m∗; r∗), (ĉ0, ĉ1)← (R(c),Chsk(m, c)), b′ ← Adv(1λ, ĉb, state),
return b = b′.

In the RoC-ak version of the definition, the adversary additionally provides the
target public key to the challenger. This adjustment has to be done in subsequent
game definitions whenever the adversary provides a ciphertext to the challenger
which is supposed to be used by the challenger as input to the change operation
Ch.

Definition 3.3.3 (Message indistinguishability). E (respectively, Ch, R) provides
message indistinguishability if |Pr[IND-CPA-EAdv

Π (λ) = 1] − 1/2| (respectively,
|Pr[IND-CPA-ChAdv

Π (λ) = 1]− 1/2|, |Pr[IND-CPA-RAdv
Π (λ) = 1]− 1/2| ) is negli-

gible in λ.

We show a trivial example of a scheme that is IND-CPA-Ch secure, but not
IND-OP secure. Let an IND-CPA-Ch secure RoC scheme’s ciphertextspace be
extended by a single bit. If a ciphertext was computed using Ch, then set the bit
to 1, otherwise, if a ciphertext was computed using R, set the bit to 0. Clearly, an
adversary can easily win IND-OP game with the probability 1.

Definition 3.3.4 (Key anonymity). E (respectively, Ch, R) provides key anonymity
if |Pr[ANON-EAdv

Π (λ) = 1]− 1/2| (respectively, |Pr[ANON-ChAdv
Π (λ) = 1]− 1/2|,

|Pr[ANON-RAdv
Π (λ) = 1]− 1/2| ) is negligible in λ.

Definition 3.3.5 (Integrity of plaintext game). Π provides integrity of plain-
text if Pr[INT-PTXTAdv

Π (λ) = 1] is negligible in λ. The game is defined as
follows: (sk, pk) ← KG(1λ), (state, c0, c1) ← Adv(1λ, pk), return V(c0, c1) =
true and Dsk(c0) 6= Dsk(c1).

We call a RoC Π = (KG,E,D,R,Ch,V) secure if Π provides message indistin-
guishability for E and indistinguishability of operation, Ch provides key anonymity
and satisfies integrity of plaintext.

Relation between security properties Integrity of plaintext property in RoC
negates some previously defined security properties just by the fact that a pair of
ciphertexts can be verified by anyone including the adversary. Specifically, message-
indistinguishability and key anonymity of the change and of the re-randomization
operations no holder hold. We explain it in more detail.

Key anonymity ensures that, in particular, two arbitrary ciphertexts cannot be
linked to a single public key by an external adversary, however, this does not hold
for all ciphertexts from a single chain as they are encrypted under the same public
key. If a RoC scheme Π provides integrity of plaintext, then key anonymity of the
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1 : b← {0, 1}
2 : (sk, pk)← KG(1λ)

1 : b← {0, 1}
2 : (ski, pki)(i=0,1) ← (KG(1λ))2

IND-CPA-EAdv
Π (λ)

3 : (state,m0,m1)← Adv(1λ, pk)
4 : ĉ← Epk(mb)

ANON-EAdv
Π (λ)

3 : (state,m)← Adv(1λ, pk0, pk1)
4 : ĉ← Epkb(m)

IND-CPA-ChAdv
Π (λ)

3 : (state,m0,m1,m
∗, r∗)← Adv(1λ, pk)

4 : c← Epk(m∗; r∗)
5 : ĉ← Chsk(mb, c)

ANON-ChAdv
Π (λ)

3 : (state,m,m∗, r∗)← Adv(1λ, pk0, pk1)
4 : c← Epkb(m∗; r∗)
5 : ĉ← Chskb(m, c)

IND-CPA-RAdv
Π (λ)

3 : (state,m∗0, r∗0,m∗1, r∗1)← Adv(1λ, pk)
4 : if m∗0 = m∗1 return ⊥
5 : c0, c1 ← Epk(m∗0; r∗0),Epk(m∗1; r∗1)
6 : ĉ← R(cb)

ANON-RAdv
Π (λ)

3 : (state,m∗, r∗)← Adv(1λ, pk0, pk1)
4 : c← Epkb(m∗; r∗)
5 : ĉ← R(c)

b′ ← Adv(1λ, ĉ, state)
return b = b′

Figure 3.2: Definition of IND-CPA and ANON games.

change operation does not hold for Π. Indeed, in the key anonymity experiment
for anonymity of the change operation, the adversary chooses inputs (message
and randomness) to the encryption algorithm. The challenger then generates a
ciphertext by plugging in these inputs and using one of the public keys. The
adversary can generate both possible ciphertexts computed by the challenger
and then verify the challenge ciphertext c′ against each of them individually.
Verification will succeed on the one chosen by the challenger. The same logic
applies for the remaining cases, marked as ‘No’ in Table 3.2.

Theorem 3.3.1. Let Π = (KG,E,D,R,Ch,V) be a RoC. If Ch provides message
indistinguishability and the distributions of the change operation Chsk(m, ·) and
re-randomization R(c), where Dsk(c) = m and a key pair (sk, pk) is generated by
KG, are indistinguishable, then Π is IND-OP secure.

Proof of Theorem 3.3.1 is postponed to Section 3.9.
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3.3.2 Discrete log based construction RoCdlog

We present RoCdlog, a family of RoC schemes based on the UREnc construction
by Golle et al. [77]. As the requirement in RoC, RoCdlog has the change and
verification algorithms. We first present the construction in the HbC setting.

Construction 3.3.1 (RoCHbC
dlog ). Let q be a prime and g be a generator of group

Gq of order q. RoCHbC
dlog is a RoC scheme with private key space SK := Zq, public

key space PK := Gq, message spaceM := Gq, ciphertext space C := (Gq)4, and
the following algorithms:

• The key generation algorithm KG: on input security parameter λ, generate
public parameters q, g, pick the secret key sk ←R Zq, compute the public key
pk ← g(sk), and return (sk, pk).

• The encryption algorithm E: on input pk ∈ PK and m ∈M, pick (r, t)←R

Zq, compute c[1,4] ← (gr, (pk)rm, gt, (pk)t), and return c[1,4].
• The decryption algorithm D: on input sk ∈ SK and c ∈ C, parse c as c[1,4].

If (c3)sk 6= c4, then return ⊥, otherwise return c2 · (c1)−sk.
• The re-randomization algorithm R: on input c ∈ C, parse c as c[1,4], pick

(r, t) ∈ (Zq)2, compute c′[1,4] ← (c1 · cr3, c2 · cr4, ct3, ct4), and return c′[1,4].
• The change algorithm Ch: on input sk ∈ SK, m ∈ M, c ∈ C, pick

(h1, h2) ←R (Gq)2, compute c′[1,4] ← (h1, (h1)skm,h2, (h2)sk), and return
c′[1,4].

• The verification algorithm V: on input (c, c′) ∈ C2, return true.

In the RoC-ak version, the change algorithm Ch takes one more parameter,
the target public key pk′, which is used to encrypt message m via a call to the
encryption algorithm with this key: Epk′(m).

Theorem 3.3.2. Let Π be a RoCHbC
dlog as defined in Construction 3.3.1 in a group

Gq where DDH is hard. Then the encryption algorithm, the re-randomization
algorithm, and the change algorithm provide message indistinguishability and
key anonymity, Π provides indistinguishability of operation and anonymity of
re-randomization.

Remark 3.3.1. Since its invention, UREnc has been understood as a public key
primitive. We stress than it can also be defined as a private key primitive. RoCHbC

dlog
can be easily turned into such a primitive.

Integrity of plaintext in RoCM
dlog Here, we complete the presentation of RoCdlog

by actually implementing the verification algorithm with the help of appropriate
zero-knowledge proofs and proving that the construction achieves integrity of
plaintext.

RoCM
dlog’s proof system is based on proving the knowledge of discrete loga-

rithm [114] and its generalizations (proving the equality of discrete logarithms [43]).
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These proofs are one of the most efficient and popular classes of ZK proofs. Com-
bined proof systems (proof that all statements hold, proof that some of the
statements hold) can be efficiently done (see, e.g., [30]).

Construction 3.3.2 (RoCM
dlog). In Construction 3.3.1, extend ciphertext space to

C := (Gq)4 × (Zq)5, and update/add the following algorithms:
• The encryption algorithm E: on input pk ∈ PK and m ∈M, compute c′[1,4]

as before and return (c′[1,4], (1)5).
• The re-randomization algorithm R: on input (c[1,4], σ) ∈ C, pick (r, t) ∈

(Zq)2, compute c′[1,4] as before, then execute the algorithm P(c[1,4], c
′
[1,4], r, t) to

obtain σ′ ∈ (Zq)5, and return (c′[1,4], σ
′).

• The change algorithm Ch: on input sk ∈ SK, m ∈ M, (c[1,4], σ) ∈ C,
compute c′[1,4] as before, then execute the prove algorithm P(c[1,4], c

′
[1,4], sk) to

obtain σ′ ∈ (Zq)5 and return (c′[1,4], σ
′).

• The prove algorithm P: on input (c[1,4], c
′
[1,4]) ∈ (Gq)8 and either sk ∈ Zq

or (r, t) ∈ (Zq)2, execute the steps necessary to prove the following statement about
(c[1,4], c

′
[1,4]):

ΠDL := PoK{sk | (c4, c
′
4) = (csk3 , (c′3)sk)} ∨

P{∃r, t s.t. (c′1, c′2, c′3, c′4) = (c1 · cr3, c2 · cr4, ct3, ct4)},

and return the result as σ ∈ (Zq)5.
• The verification algorithm V: on input ((c[1,4], σ), (c′[1,4], σ

′)) ∈ C2, execute
the steps required to verify (c[1,4], c

′
[1,4], σ

′) in ΠDL, and return the result as true
or false.

We note that the prove algorithm P is used as a subroutine in the change
Ch and the re-randomization R algorithms and is not a part of the syntax. The
component c′4 = (c′3)sk of ΠDL prevents the recipient from changing the associate
public key of the output ciphertext. To allow the change of the public key, in the
RoC-ak version of RoCM

dlog we remove that component from the proof system.

Lemma 3.3.1. RoCM
dlog in the groups Gq where DDH is hard and assuming the

random oracle model provides integrity of plaintext.

Proof of Theorem 3.3.1 is postponed to Section 3.9.

3.4 Aggregatable Randomize-or-Change Encryp-
tion

In this section we discuss an extension to RoC, which allows for simultaneous
verification and aggregation of multiple ciphertexts created by randomizing or
changing the same ciphertext.
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3.4.1 Definition

For a given ciphertext c, which encrypts m for user Ua, we consider an array
of ciphertexts (c1, . . . , c`), where each element is computed either as R(c) or
Chska(m′, c), and the goal is to “squash” ` elements into one. To make the ag-
gregation of ciphertexts meaningful and unambiguous, we allow the number of
elements in the array that are computed using Ch to be less or equal one. We
assume that no user knows in advance how many ciphertexts will be aggregated.
Simultaneous participation of users requires coordination. To this end, we distin-
guish the aggregator entity, whose sole task is to aggregate incoming messages
in a well-defined manner (e.g., deterministically). Since the users may not know
each others, we facilitate a star-like communication model between them and the
aggregation server.

Definition 3.4.1 (Aggregatable RoC). An aggregatable randomize-or-change
encryption (ARoC) scheme with key spaces (SK, PK), message spaceM, cipher-
text space C, pre-ciphertext space C̃, and a polynomial function ` is a tuple of
algorithms (KG,E,D, R,Ch,Ag,V) such that:

• The key generation algorithm KG is a randomized algorithm that takes a
security parameter 1λ as input and returns a key pair sk ∈ SK and pk ∈ PK.

• The encryption algorithm E is a randomized algorithm that takes a public
key pk ∈ PK and a plaintext m ∈M as input and returns a ciphertext c′ ∈ C.

• The decryption algorithm D is a deterministic algorithm that takes a secret
key sk ∈ SK and a ciphertext c ∈ C as input and returns a plaintext m ∈M∪{⊥},
where ⊥ is a distinguishable error symbol.

• The re-randomization algorithm R is a randomized algorithm that takes a
ciphertext c ∈ C, a randomness r 1, and possibly an auxilliary string aux ∈ {0, 1}`(λ)

as input and returns a pre-ciphertext c̃ ∈ C̃.
• The change algorithm Ch is a randomized algorithm that takes a secret

key sk ∈ SK, a public key pk ∈ PK, a plaintext m ∈ M, a ciphertext c ∈ C,
a randomness r, and possibly an auxilliary string aux ∈ {0, 1}`(λ) as input and
returns a pre-ciphertext c̃ ∈ C̃.

• The aggregate algorithm Ag is a deterministic algorithm that takes a cipher-
text c ∈ C and pre-ciphertexts (c̃1, ..., c̃`) ∈ C̃` as input and returns a ciphertext
c′ ∈ C ∪ ⊥ and possibly a string aux ∈ {0, 1}`(λ). We call (c, c̃1, ..., c̃`) an aggrega-
tion tuple. We will omit aux if it is not returned by the algorithm.

• The verification algorithm V is a deterministic algorithm that takes a pair of
ciphertexts (c, c′) ∈ C2 and pre-ciphertexts c̃1, ..., c̃` as input and returns a boolean
value.

1Here, we use randomness explicitly as input to avoid maintaining a state between subsequent
calls to the algorithm in the case when the re-randomization and change operations are interactive
w.r.t. the aggregate algorithm. If it is clear from the context, we may omit randomness r.
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Let (sk, pk) ← KG(1λ), (sk′, pk′) ∈ (SK,PK) be a key pair, c ∈ C, m ∈ M,
(c̃1, . . . , c̃`) ∈ C̃`, where c̃i ← R(c, aux) or c̃i,← Chsk(pk′,m, c, aux), for some
aux ∈ {0, 1}`(λ) ∪ ⊥ for all i ∈ [1, `] such that Ch is used at most once. We
call such (c, c̃1, ..., c̃`) a valid aggregation tuple. If the last ` elements of a valid
aggregation tuple are computed using R, we say it is a randomize tuple. Otherwise,
we say a change tuple. The above algorithms should satisfy the following correctness
properties:

1. Correctness of the encryption — Let (sk, pk)← KG(1λ). Then, Dsk(Epk(m)) =
m for any m ∈M.

2. Unordered aggregation — Let (c, c̃1, ..., c̃`) be an aggregation tuple. Then,
for any permutation Π of ` elements, Ag(c, c̃Π1 , ..., c̃Π`

) = Ag(c, c̃1, ..., c̃`).
3. Correctness of the re-randomization — Let (sk, pk) ← KG(1λ), and let

c ∈ C such that Dsk(c) = m for some m ∈ M. Let (c, c̃1, ..., c̃`) be a valid
randomize aggregation tuple, and let c′ ← Ag(c, c̃1, ..., c̃`), such that c′ 6= ⊥. Then,
Dsk(c′) = m.

4. Correctness of the change — Let (sk, pk)← KG(1λ), and let (c, c̃1, ..., c̃`) be
a valid change aggregation tuple, in which one of the pre-ciphertexts is com-
puted as Chsk(pk′,m, c, aux) for some m ∈ M and aux ∈ {0, 1}` ∪ ⊥, and
c′ ← Ag(c, c̃1, ..., c̃`), such that c′ 6= ⊥. Then, Dsk′(c′) = m.

5. Correctness of verification of re-randomization — Let c ∈ C be a ciphertext
and (c, c̃1, ..., c̃`) a valid randomize aggregation tuple, and let c′ ← Ag(c, c̃1, ..., c̃`)
such that c′ 6= ⊥. Then, V(c, c′, c̃1, ..., c̃`) = true.

6. Correctness of verification of change — Let c ∈ C be a ciphertext and
(c, c̃1, ..., c̃`) a valid randomize change tuple, and let c′ ← Ag(c, c̃1, ..., c̃`) such that
c′ 6= ⊥. Then, V(c, c′, c̃1, ..., c̃`) = true. If the change algorithm is restricted to the
case (sk′, pk′) = (sk, pk), we call the scheme same-key, otherwise any-key. We
may omit pk′ from the notation for a same-key scheme.

The randomization R and change Ch algorithms may additionally use an
auxiliary input aux ∈ {0, 1}∗ and output an intermediate result; thus, to ensure
that the aggregation leads to a meaningful result, we define interactive aggregation.

Definition 3.4.2 (Interactive aggregation). Let (sk, pk)← KG(1λ), (sk′, pk′) ∈
(SK,PK) be a key pair, c ∈ C such that c can be decrypted using sk, and m′ ∈M.
The interactive aggregation for ` parties in k rounds w.r.t. ciphertext c consists of
the following steps:

1 : aux0 = ⊥ // For each u ∈ [1, `] fix the algorithm, either R or Ch.

2 : for i ∈ [0, k]
3 : for u ∈ [1, `] c̃u ← R(c, auxi; ru) or Chsk(pk′,m′, c, auxi; ru)
4 : if i < k (⊥, auxi+1)← Ag(c, c̃1, ..., c̃`)
5 : else (c′,⊥)← Ag(c, c̃1, ..., c̃`)
6 : return c′

We call an interaction aggregation complete if c′ 6= ⊥.
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3.4.2 Aggregatable same-key RoC construction

To implement the aggregation functionality, we utilize homomorphic properties of
our discrete log RoC scheme (Section 3.3.2). If all elements of array (c1, . . . , c`) are
randomizations of c, we can directly use the scheme, multiply the ciphertexts, raise
the message part to (`)−1 and obtain a new valid randomization of c. However, we
have ensure the validity of the aggregation in the remaining two cases: a) when
one of the ciphertexts encrypts another message m′ for Ua (RoC-sk), and b) when
one of the ciphertexts encrypts some message m∗ for some other user Ub (RoC-ak).
In this section, we address the former case and in Section 3.4.3, the latter. The
aggregate functionality does not require users to form valid ciphertexts, they need
to compute pre-ciphertexts (c̃1, . . . , c̃`), which may or may not be decryptable on
its own and will be aggregated into a valid ciphertext.

We start with the RoC-sk construction in the HbC model. Recall that in Con-
struction 3.3.1 a ciphertext is a tuple (ea(m), ea(1)), where ei(m; r) := (gr, grxi ·m).
The re-randomization algorithm returns (ea(m), ea(1)) and the change algorithm
(ea(m′), ea(1)), while the randomness is fresh. To account for the unknown number
of aggregated ciphertexts, we extend the ciphertext space by one more element to
(ea(m), ea(1),⊥) and modify the algorithms as follows: the re-randomize operation
returns (ea(m), ea(1), ea(1)), and the change operation (ea(m), ea(1), ea(m′/m)).
Unlike in Construction 3.3.1, the result of the change operation is not a valid encryp-
tion of m′, the final result will be computed by the aggregator for a vector of (pre-
)ciphertexts. The aggregator multiplies c and the vector of ciphertexts component-
wise, ignoring the bottom symbol ⊥, to obtain (ea(m`+1), ea(1), ea(m′/m)). By
raising the first component to (` + 1)−1 and multiplying with the third, one
obtains ea(m′). Finally, the aggregator outputs (ea(m′), ea(1),⊥), which is a valid
ciphertext.

To achieve integrity of plaintext, we use appropriate zero-knowledge proofs,
similar to Construction 3.3.2.

Construction 3.4.1 (ARoC-sk). Let q be a prime and g be a generator of group
Gq of order q. ARoC-sk is an aggregatable RoC scheme with private key space
SK := Zq, public key space PK := Gq, message spaceM := Gq, ciphertext space
C := (Gq)4, pre-ciphertext space C̃ := (Gq)6 × (Zq)6, and the following algorithms:

• The key generation algorithm KG: on input security parameter λ, generate
public parameters q, g, pick the secret key sk ←R Zq, compute the public key
pk ← gsk, and return (sk, pk).

• The encryption algorithm E: on input pk ∈ PK and m ∈ M, pick
(r, t)←R Zq, compute c← (gr, (pk)r ·m, gt, (pk)t), and return c.

• The decryption algorithm D: on input sk ∈ SK and c[1,4] ∈ C, if (c[3])sk 6=
c[4], then return ⊥, otherwise return c[2] · (c[1])−sk.

• The re-randomization algorithm R: on input c[1,4] ∈ C, pick (r, t1, t2) ∈ (Zq)3,
compute c′[1,6] ← (c[1] · cr[3], c[2] · cr[4], c

t1
[3], c

t1
[4], c

t2
[3], c

t2
[4]), then execute the algorithm
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P∗(c, c′[1,6], r, t1, t2) to obtain σ ∈ (Zq)6, and return (c′[1,6], σ).
• The change algorithm Ch: on input sk ∈ SK, m′ ∈ M, and c[1,4] ∈ C,

compute m← Dsk(c). If m = ⊥, terminate. Otherwise, pick (h1, h2, h3)←R (Gq)3,
compute c′[1,6] ← (h1, (h1)sk ·m,h2, (h2)sk, h3, (h3)sk ·m′/m), then execute the prove
algorithm P∗(c, c′, sk) to obtain σ′ ∈ (Zq)6 and return (c′, σ′).

• The aggregate algorithm Ag: on input c ∈ C and (c̃1, ..., c̃`) ∈ C̃`, verify that
V∗(c, c̃u) = true for all u ∈ [1, `]. Terminate, if any of the verification results
is false. Otherwise, proceed to compute C̃[1,6] ← (c[1,4], 1, 1) · ∏`

u=1 (c̃u)[1,6] and
output ((C̃[1])(`+1)−1 · C̃[5], (C̃[2])(`+1)−1 · C̃[6], C̃[3], C̃[4]).

• The prove algorithm P∗: on input (c[1,4], c
′
[1,6]) ∈ (Gq)10 and either sk ∈ Zq

or (r, t1, t2) ∈ (Zq)3, execute the steps necessary to prove the following statement
about (c, c′):

ΠDL := PoK
{
sk | (c[4], c

′
[4]) =

(
csk[3], (c′[3])sk

)}
∨

P{∃r, t1, t2 | c′[1,6] = (c[1] · cr[3], c[2] · cr[4], c
t1
[3], c

t1
[4], c

t2
[3], c

t2
[4])},

and return the result as σ ∈ (Zq)6.
• The verification algorithm V∗: on input (c, (c̃, σ′)) ∈ (C, C̃), execute the

steps required to verify (c, c̃, σ′) in ΠDL, and return the result as true or false.
• The verification algorithm V: on input (c, c′, c̃1, . . . , c̃`) ∈ (C2, C̃`), return

false if any of V∗(c, c̃u) for u ∈ [1, `] returned false. Otherwise, compute ĉ ←
Ag(c, c̃1, . . . , c̃`) and return the result of comparison ĉ = c′ as true or false.

Lemma 3.4.1. Construction 3.4.1 satisfies correctness properties, as defined in
Definition 3.4.1.

Proof. Correctness of encryption follows from its correctness in Construction 3.3.1,
and unordered aggregation follows from the commutativity of multiplication.

Correctness of the re-randomization — Let encryption of message m with
randomness (r0, t0) be c = (e(m; r0), e(1; t0)). Applying R on c, we get a pre-
ciphertext (e(m; r0+t0·r), e(1; t0·t1), e(1; t0·t2)), where (r, t1, t2) is fresh randomness
each time R(c) is executed. Let c̃u ← R(c) for all u ∈ [1, `]. In the aggregation
we have ∏`

u=1 (c̃u)[1,6] = (e(m`), e(1), e(1)), let us denote it as c[1,3]. Then, C̃[1,6] =
(c[1,4], 1, 1) · c[1,3] = (e(m), e(1), (1, 1)) · c[1,3] = (e(m`+1), e(1), e(1)) and let us denote
it as c′[1,3]. Finally, the aggregation returns ((c′1)(`+1)−1 ·c′3, c′2), which is (e(m), e(1)).

Correctness of the change — Since there is only one pre-ciphertext that is
not a randomization, we can w.l.o.g. rewrite the aggregation as follows: C̃[1,6] =
(c[1,4], 1, 1) · (e(m`−1), e(1), e(1)) ·Chsk(c) = (e(m`), e(1), e(1)) · (e(m), e(1), e(m′/m))
= (e(m`+1), e(1), e(m′/m)) and let us denote it as c′[1,3]. Finally, the aggregation
returns ((c′1)(`+1)−1 · c′3, c′2), which is (e(m′), e(1)).

Correctness of verification of re-randomization and of change follows from
correctness of these algorithms and the fact that the proof system ΠDL returns
true if computations are done honestly.
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Theorem 3.4.1. Construction 3.4.1 provides indistinguishability of operation, in-
tegrity of plaintext, message indistinguishability and key anonymity for encryption
algorithm E.

Proof. Indistinguishability of operation – Since the aggregation is non-interactive,
we simply have to prove that an adversary cannot distinguish between a pre-
ciphertext computed as R(c) or as Chsk(m′, c) for some key pair (sk, pk), message
m′ and ciphertext c = Epk(m). Following the scheme, R(c) is computed as
(e(m), e(1), e(1)), and Chsk(m, c) as (e(m), e(1), e(m′/m)). The third component
e(m′/m) is indistinguishable from e(1) by semantic security of ElGamal encryption.
We can show it by defining a series of games G0, ...,G2,G2 and proving indistin-
guishability between them. In G0, the challenger computes re-randomization
(e(m), e(1), e(1)). In G1, the challenger outputs (e(m), e(1), c̃[5], c̃[6]), where c̃[5,6]
are random elements. Finally in G2, the challenger computes (e(m), e(1), e(m′/m)).

We show that G0 ≈ G1 (G0 and G1 are computationally indistinguishable) via
a reduction to DDH. Let (X, Y, Z) be a DDH-tuple. Key generation is replaced
with pk ← Y , and the challenger outputs (gr, Y r ·m, gt1 , Y t1 , X t2 , Zt2) for some
random (r, t1, t2). If (X, Y, Z) is a true DDH tuple, the game is identical to G0.
If (X, Y, Z) is a random DDH tuple, the game is identical to G1. From the DDH
assumption it follows that the adversary can distinguish between G0 and G1 with at
most a negligible probability. Similarly, we prove that G1 ≈ G2. In the reduction,
the challenger outputs (gr, Y r · m, gt1 , Y t1 , X t2 , Zt2 · m′/m). We conclude that
G0 ≈ G2.

Message indistinguishability and key anonymity for E immediately follows from
message indistinguishability and key anonymity in Construction 3.3.1. Integrity
of plaintext – Similar to the proof of Lemma 3.3.1.

In our construction, the aggregate functionality is non-interactive, meaning
that users send a single message to the aggregator in order to chain a specific
ciphertext.

3.4.3 Aggregatable any-key RoC construction

We further develop our same-key ARoC construction in Section 3.4.2 to achieve
any-key ARoC. The goal is to allow the aggregation of a ciphertext (eb(m′), eb(1))
from the input ciphertext (ea(m), ea(1)) under the constraint that at most one
change operation is permitted in the aggregation. The change algorithm in our
any-key construction is interactive and requires 2 rounds of communication. The
basic idea is to fix the target ciphertext τ and learn the randomness used by the
re-randomizers in the first round, and then prepare a pre-ciphertext in the second
round in such a way that the aggregation will output τ .

We will first focus on the identity part ea(1) and eb(1), and later extend our
technique to the entire ciphertext. The input encryption of the identity is a
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pair (gr, gska·r), and the output of the aggregation should be (gr′ , gskb·r′) for some
random r′. Since the secret key skb is not known to the owner Ua of the input
ciphertext, we simply use c = eb(1) to encrypt the identity of Ub: to this end, user
Ua raises raises c to a random element from Zq.

Assume for a moment that Ua is the last party to send messages to the
aggregator and Ua can read all messages that other parties send to the aggregator.
Assume each re-randomizer send (gr, gska·r)ri for i ∈ [1, ` − 1], and let Ua send
(X, Y ) ∈ (Gq)2. Multiplying the elements in the pairs with the input ciphertext,
we get (X · gr̂, Y · gska·r̂), where r̂ = r · (1 +∑`−1

i=1 ri), which can be rewritten as
(X · gr̂, Y/X · (X · gr̂)ska). We observe that if Ua learns gr̂ before sending X, she
can compute X and Y appropriately without knowing any other users’ messages.
The remaining challenge is to ensure that X · gr̂ = gr

′ . Once we have it, we can
remove the assumption that we temporarily made about Ua.

The technique for choosing (X, Y ) discussed above suggests two rounds of
communication: in the first round, the re-randomizers send (gr)ri ; in the second
(gska·r)ri . If we change the order of rounds, Ua will be able to compute X and Y
appropriately after learning gska·r̂. By careful combining these two techniques,
we allow Ua to learn the necessary input from the re-randomizers in the first
round, and then use it to correctly compute (X, Y ) in the second round, so that
the aggregation will output (gr′ , gskb·r′) chosen by Ua. The re-randomizers draw
random numbers (ri, r′i) ∈ (Zq)2, compute (c̃i)[1,4] ← ((gr, gska·r)ri , (gr, gska·r)r′i),
send (c̃i)[2], (c̃i)[3] in the first round, and (c̃i)[1], (c̃i)[4] in the second round. The
aggregator simply multiplies the input ciphertext with all pairs received from
the users in the first round, and then in the second round the output will be
c ·∏`

i=1 (c̃i)[1,2] ·
∏`
i=1 (c̃i)[3,4], which is the resulting ciphertext (encryption of the

identity).
We have shown how Ua can ensure that ea(1) is aggregated into eb(1). We

apply the same techniques to ensure that ea(m) is aggregated into eb(m′). The
owner has to cancel out the term that encrypts the input message, the rest is
identical. Next, we present the full construction.

Construction 3.4.2 (ARoC-ak). Extend Construction 3.4.1 by setting pre-cipher-
text space to C̃ := (Gq)8 × (Zq)7, adding (P1,V1) and modifying the following
algorithms:

• The re-randomization algorithm R: on input c[1,4] ∈ C, randomness r, and
an auxiliary string aux ∈ {0, 1}`(λ), parse r as (r1, r2, t1, t2) ∈ (Zq)4, compute

c̃[1,8] ← (c[1] · cr1
[3], c[2] · cr1

[4], c
t1
[3], c

t1
[4], c[1] · cr2

[3], c[2] · cr2
[4], c

t2
[3], c

t2
[4]),

then proceed as follows. If aux = ⊥, execute the algorithm P1(c, c̃[2], c̃[4,5], c̃[7], r1, t1,
r2, t2) to obtain σ1 ∈ (Zq)5 and return (c̃[2], c̃[4,5], c̃[7], σ1). Otherwise, ignore aux,
execute the algorithm P2(c, c̃[1,8], r1, t1, r2, t2) to obtain σ2 ∈ (Zq)7 and return
(c̃[1,8], σ2).
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• The change algorithm Ch: on input sk ∈ SK, pk′ ∈ PK, m′ ∈ M, c ∈ C,
randomness r, and an auxiliary string aux ∈ {0, 1}`(λ), compute m← Dsk(c). If
m = ⊥, terminate. Parse r as (r′, t′, r1, r2, t1, t2) ∈ (Zq)6, compute

(c̃[2], c̃[4,5], c̃[7])← (c[2] · cr1
[4], c

t1
[4], c[1] · cr2

[3], c
t2
[3]).

If aux = ⊥, execute the algorithm P1(c[1,4], c̃[2], c̃[4,5], c̃[7], r1, t1, r2, t2) to obtain
σ1 ∈ (Zq)5 and return (c̃[2], c̃[4,5], c̃[7], σ1). Otherwise, parse aux as (C̃[2], C̃[4,5], C̃[7]),
compute c̄[1,4] ← (gr′ , (pk′)r′ ·m′, gt′ , (pk′)t′),

C̃[1] ←
(
C̃[2] ·m−`

)1/sk
, C̃[3] ← (C̃[4])1/sk, C̃[6] ←

(
C̃[5] ·m`

)sk
, C̃[8] ← (C̃[7])sk,

c̃[1] ←(c̄[1])2`+1 · (c̃[2]/m)1/sk · (C̃[1] · C̃[5] · c[1])−1,

c̃[3] ←(c̄[3]) · (c̃[4])1/sk · (C̃[3] · C̃[7] · c[3])−1,

c̃[6] ←(c̄[2])2`+1 · ((c̃[5])sk ·m) · (C̃[2] · C̃[6] · c[2])−1,

c̃[8] ←(c̄[4]) · (c̃[7])sk · (C̃[4] · C̃[8] · c[4])−1,

then execute the prove algorithm P2(c, c̃[1,8], sk) to obtain σ2 ∈ (Zq)7 and return
(c̃[1,8], σ2).

• The aggregate algorithm Ag: on input ciphertext c ∈ C and pre-ciphertexts
(c̃1, ..., c̃`) ∈ C̃`, re-order pre-ciphertexts by their second element and check if a tuple
(c, (c̃1)[2], ..., (c̃`)[2]) was previously stored. If not, parse c̃u as four group elements
d := ((c̃u)[2], (c̃u)[4,5], (c̃u)[7]) and a proof σ and verify that V1(c, d, σ) = true for all
u ∈ [1, `], then store the tuple, compute C̃[ρ] ←

∏`
u=1 (c̃u)[ρ] for ρ ∈ {2, 4, 5, 7} and

return (C̃[2], C̃[4,5], C̃[7]). Otherwise, proceed as follows. Abort, if there exist u ∈
[1, `] such that (c̃u)[2] does not match the stored tuple. Verify that V∗(c, c̃u) = true
for all u ∈ [1, `]. Terminate, if any of the verification results is false. Finally,
compute C[1,4] ← c ·∏`

u=1((c̃u)[1,4] · (c̃u)[5,8]) and output ((C[1])(2`+1)−1
, (C[2])(2`+1)−1

,
C[3], C[4]).

• The prove algorithm P1: on input (c[1,4], d[1,4]) ∈ (Gq)8 and (r1, t1, r2, t2) ∈
(Zq)4, execute the steps necessary to prove the following statement about (c[1,4],
d[1,4]):

Π1 := PoK{r1, t1, r2, t2 | d[1,4] = (c[2] · cr1
[4], c

t1
[4], c[1] · cr2

[3], c
t2
[3])},

and return the result as σ ∈ (Zq)5.
• The verification algorithm V1: on input (c[1,4], d[1,4], σ) ∈ (Gq)8 × (Zq)5,

execute the steps required to verify (c[1,4], d[1,4], σ) in Π1, and return the result as
true or false.
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Table 3.3: Computing expected values (c̃[1], c̃[3], c̃[6], c̃[8]) from (c̃[2], c̃[4], c̃[5], c̃[7]) in
ARoC-ak construction. Indices in the circles indicate to the values computed
by re-randomizers in the first round.

i 1 2 3 4
c̃[i] (c̃[2]/m)1/sk c̃[2] (c̃[4])1/sk c̃[4]

i 5 6 7 8
c̃[i] c̃[5] (c̃[5])sk ·m c̃[7] (c̃[7])sk

• The prove algorithm P∗: on input (c[1,4], c̃[1,8]) ∈ (Gq)12 and either sk ∈ Zq or
(r1, t1, r2, t2) ∈ (Zq)4, execute the steps necessary to prove the following statement
about (c[1,4], c̃[1,8]):

Π2 := PoK{sk | c[4] = csk[3]} ∨
P{∃r1, t1, r2, t2 | c′[1,4] = (c[1] · cr1

[3], c[2] · cr1
[4], c

t1
[3], c

t1
[4]),

c′[5,8] = (c[1] · cr2
[3], c[2] · cr2

[4], c
t2
[3], c

t2
[4])},

and return the result as σ ∈ (Zq)7.
• The verification algorithm V∗: on input ((c, σ), (c̃, σ′)) ∈ (C, C̃), execute the

steps required to verify (c, c̃, σ′) in Π2, and return the result as true or false.

Lemma 3.4.2. Construction 3.4.2 satisfies correctness properties, as defined in
Definition 3.4.1.

Proof. Correctness of encryption follows from its correctness in Construction 3.4.1,
and unordered aggregation follows from the commutativity of multiplication.

Correctness of the re-randomization — Since aux is not used in R, we can
focus on the case aux 6= ⊥ in the algorithm. Let encryption of message m
with randomness (r0, t0) be c = (e(m; r0), e(1; t0)). Applying R on c, we get a
pre-ciphertext (e(m; r0 + t0 · r1), e(1; t0 · t1), e(m; r0 + t0 · r2), e(1; t0 · t2)), where
(r1, r2, t1, t2) is fresh randomness each time R(c) is executed. Let c̃u ← R(c) for
all u ∈ [1, `]. In the aggregation we have ∏`

u=1 (c̃u)[1,8] = (e(m`), e(1), e(m`), e(1)),
let us denote it as c[1,4]. Then, C[1,4] = c[1,4] · c[1,2] · c[3,4] = (e(m2`+1), e(1)) and let
us denote it as c′[1,2]. Finally, the aggregation returns ((c′1)(2`+1)−1

, c′2), which is
(e(m), e(1)).

Correctness of the change — In the first round, the parties compute par-
tial pre-ciphertexts as (c[2] · cr1

[4], c
t1
[4], c[1] · cr2

[3], c
t2
[3]) for some random (r1, r2, t1, t2).

Using the secret key sk the owner can pre-compute the values computed by
re-randomizers in the second round, as shown in Table 3.3. Let C̃u = ∏`

u=1 c̃u
for all u ∈ [1, `] be expected re-randomizations (including the owner’s part).
Then, the expected aggregated output is C[1,2] =

(
c[1,2] · C̃[1,2] · C̃[5,6]

)(2`+1)−1
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and C[3,4] =
(
c[3,4] · C̃[3,4] · C̃[7,8]

)
. The owner of c fixes the target ciphertext

as c̄[1,4] ← (gr′ , (pk′)r′ ·m′, gt′ , (pk′)t′) for some random (r′, t′). By manipulating
the owner’s values (c̃[1], c̃[3], c̃[6], c̃[8]) sent in the second round, she ensures that C[1,4]

matches c̄[1,4]. We first show it for C[1]. We have that (c̄[1])2`+1 = c[1] · C̃[1] · C̃[5] =
c[1] ·

C̃[1] ·̃c[1]
(c̃[2]/m)1/sk · C̃[5]. Rewriting terms, we get c̃[1] = (c̄[1])2`+1 · (c̃[2]/m)1/sk · (C̃[1] ·

C̃[5] · c[1])−1. Analogously, we obtain c̃[3], c̃[6], c̃[8].
Correctness of verification of re-randomization follows similar to the proof

of Lemma 3.4.1.

Theorem 3.4.2. Construction 3.4.2 provides indistinguishability of operation, in-
tegrity of plaintext, message indistinguishability and key anonnimity for encryption
algorithm E.

Proof. Indistinguishability of operation – Following the scheme, R(c) is computed
as (ea(m), ea(1), ea(m), ea(1)), and Chska(pkb,m, c) as a specially crafted value c[1,4]
that allows to aggregate pre-ciphertexts to a pre-defined (eb(m′), eb(1)). We can
view c[1,4] as (c[1,4]) = (eA(m1), eA(1), eB(m2), eB(1)) for some unknown A,B. By
semantic security of ElGamal encryption, the component eb(m′) is indistinguish-
able from encryption of a random message eb(m∗), and by key anonymity eA(m∗)
is indistinguishable from ea(m∗). We define a series of games as follows. In G0, the
challenger computes (ea(m), ea(1), ea(m), ea(1)). In G1, (ea(m), eR(1), ea(m), ea(1))
for some random pkR. We show that G0 ≈ G1 via a reduction to DDH. Given a
DDH tuple (X, Y, Z), the challenger generates a public key as pka = Y r and com-
putes (Xr, Zr) instead of ea(1). If (X, Y, Z) is a true DDH tuple, the computation
is identical to G0. If (X, Y, Z) is a random tuple, the computation is identical to
G1. We have that G0 ≈ G1 due to the hardness of the DDH assumption. The
remaining games are constructed using the technique above and as in the proof
of Theorem 3.4.1.

Message indistinguishability and key anonymity for E immediately follows from
message indistinguishability and key anonymity in Construction 3.3.1.

Integrity of plaintext – The proof system used in the construction ensures
that messages from the second round of aggregation are bound to the first round,
hence we can focus on the second round. The rest is similar to the proof of
Lemma 3.3.1.

3.5 Keyed Randomize-or-Change Encryption

In this section, we define keyed RoC schemes, which extend basic RoC schemes
(Section 3.3) by including re-randomization keys that are used in the randomize
algorithm. With inclusion of the additional keys, we define a new security game
to characterize the ability of an adversary to distinguish re-randomization keys
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that are used by the challenger. We then present our hybrid keyed construction,
which makes use of both symmetric-key and public-key operations.

3.5.1 Definition

Definition 3.5.1 (Keyed RoC). A keyed RoC scheme with key spaces (SK, RK,
PK, PRK), message space M, and ciphertext space C is a tuple of algorithms
(KG,E,D,R,Ch,V) such that:

• The key generation algorithm KG is a randomized algorithm that takes a
security parameter 1λ as input and returns a key pair sk ∈ SK and pk ∈ PK.

• The randomization key generation algorithm RG is a randomized algorithm
that takes a security parameter 1λ as input and returns a key pair rk ∈ RK
and prk ∈ PRK. Public keys prk are added to public parameters pub.

• The encryption algorithm E is a randomized algorithm that takes a public
key pk ∈ PK and a plaintext m ∈ M as input and returns a ciphertext
c′ ∈ C.

• The decryption algorithm D is a deterministic algorithm that takes a secret
key sk ∈ SK and a ciphertext c ∈ C as input and returns a plaintext
m ∈M∪ {⊥}, where ⊥ is a distinguishable error symbol.

• The re-randomization algorithm R is a randomized algorithm that takes a
ciphertext c ∈ C and a randomization key rk ∈ RK as input and returns a
ciphertext c′ ∈ C.

• The change algorithm Ch is a randomized algorithm that takes a secret key
sk ∈ SK, a plaintext m ∈M, and a ciphertext c ∈ C, as input and returns
a ciphertext c′ ∈ C.

• The verification algorithm V is a deterministic algorithm that takes a pair
of ciphertexts (c, c′) ∈ C2 as input, and returns a boolean value.

The above algorithms should satisfy the following correctness properties:
1. Correctness of the encryption-decryption — Let (sk, pk) ← KG(1λ), (rki,

prki)i=[1,ρ] ← RG(1λ)ρ. Then, Dsk(Epk(m)) = m for any m ∈M.
2. Correctness of the re-randomization — Let (sk, pk)← KG(1λ), (rki, prki)i=[1,ρ]
← RG(1λ)ρ, and c ∈ C such that Dsk(c) = m for some m ∈ M. Then for
c′ ← Rrki(c), Dsk(c′) = m.

3. Correctness of the change — Let (sk, pk) ← KG(1λ), (rki, prki)i=[1,ρ] ←
RG(1λ)ρ. Then Dsk(Chsk(m, c)) = m for any m ∈M and c ∈ C.

4. Correctness of verification of re-randomization — Assume (c1, c2) ∈ C2 such
that c2 ← Rrki(c1). Then, V(c1, c2) = true.

5. Correctness of verification of encryption — Assume (sk, pk) ← KG(1λ),
(rki, prki)i=[1,ρ] ← RG(1λ)ρ, and (c1, c2) ∈ C2 such that c2 ← Chsk(m, c1) for
some m ∈M. Then, V(c1, c2) = true.
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1 : b← {0, 1}
2 : (rki, prki)i=0,1 ← RG(1λ)2

ANON-INT-RAdv
Π (λ)

3 : pub← (prki)i=[0,1]

4 : (state, pk,m∗, r∗)← Adv(1λ, pub)

ANON-EXT-RAdv
Π (λ)

3 : (sk, pk)← KG(1λ)
4 : (state, prk2,m

∗, r∗)← Adv(1λ, pk, prk0, prk1)
5 : pub← (prki)i=[0,2]

c← Epk(m∗; r∗)
ĉ← Rrkb(c)
b′ ← Adv(1λ, ĉ, state)
return b = b′

Figure 3.3: Definition of ANON-INT-R and ANON-EXT-R games.

Anonymity of re-randomization We define the notion of anonymity of re-
randomization to characterize the ability to determine the identity of the user
who performed re-randomization of ciphertext. Depending on the adversarial
knowledge, we distinguish two instances of the security game: against the recipient
of ciphertext (internal anonymity) and against an external observer (external
anonymity). Clearly, we require that external anonymity hold for any RoC scheme.

Definition 3.5.2 (Internal and external anonymity of R). Π provides internal
(respectively, external) anonymity of randomization if |Pr[ANON-INT-RAdv

Π (1λ) =
1]− 1/2| (respectively, |Pr[ANON-EXT-RAdv

Π (1λ) = 1]− 1/2|) is negligible in 1λ.

3.5.2 Hybrid construction RoChyb

In this section, we present the generic hybrid randomize-or-change encryption
(RoChyb). RoChyb is based on hybrid encryption, which allows to handle large
message spaces efficiently. The construction pays off when the number of re-
randomizers is small and especially in the honest-but-curious adversary model,
for which a trivial verification suffices.

We first describe the idea of hybrid encryption and then present RoChyb.
Hybrid encryption works as follows. Assume there is a pair of private and public
keys (sk, pk). To encrypt a long message MSG, one picks a random key k for
a symmetric encryption scheme, encrypts the message as C ← Ek(MSG), and
then encrypts k using the public key as c← Epk(k). To decrypt ciphertext (C, c),
one decrypts c using sk to obtain k, and then decrypts C using k to obtain
MSG. Because of relative efficiency of private-key encryption schemes over public-
key ones, the hybrid encryption pays-off when message space is large. Golle et
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al. [77] describe the hybrid variant of universal mixing, in which the number of
re-encryptions applied to a specific ciphertext is limited. In RoChyb we circumvent
the mentioned limitation for a fixed set of re-randomizers.

We introduce RoChyb in two steps. First we will define RoCHbC
hyb with a trivial

verification and prove its security against HbC adversaries, then in Section 3.5.4 we
will show the full construction RoCM

hyb and prove its integrity of plaintext. Unlike
RoCdlog, RoChyb does not provide internal anonymity of re-randomization.

Generic description In RoCHbC
hyb , we presume that there are N static users

who are at the same time re-randomizers U = {U1, . . . ,UN}, and each user Ui

has a pair of private and public keys (ski, pki). For the same of presentation, we
will use private keys as randomization keys. Encryption using pki is denoted as
ei(·), decryption using ski as di(·). We also assume that the encryption scheme is
partially homomorphic and allows re-randomization; we denote re-randomization
using pki as rei(·). For may explicitly specify the randomness r in the algorithm
by rei(c; r), where c is a ciphertext.

A ciphertext is associated with some user (the recipient Ui), and encryption
of an identity under the recipient’s key is attached to the ciphertext, so that
no one can learn this accosiation, expect for the recipient itself. The ciphertext
(α[1,N ], β[1,N ], γ, δ) is constructed using N seeds s1, . . . , sN . These seeds are en-
crypted into two arrays α1, . . . , αN and β1, . . . , βN . Element j in these arrays
corresponds to seed sj . Array α[1,N ] contains encryptions of seeds s1, . . . , sN using
the public key pki of the recipient Ui ∈ U , i.e. ei(sj) for all j ∈ [1, N ], and
array β[1,N ] contains encryptions of the same seeds using the public keys of the
corresponding users, i.e. ej(sj) for all j ∈ [1, N ]. The payload is stored in γ,
and δ is encryption of an identity under the recipient’s public key. Array α[1,N ]
allows the recipient to obtain a plaintext message m from γ, and array β[1,N ] and
component δ allow to perform re-randomization of γ. The structure of ciphertexts
in RoCHbC

hyb is presented in Fig. 3.4.
We describe next the encryption, the decryption, the change, and the re-

randomization algorithms for user Ui, who holds the key pair (ski, pki).
To encrypt a message m, user Ui generates N seeds sj for all j ∈ [1, N ]

and initializes arrays α and β with (ei(sj), ej(sj)), respectively. Then, the user
computes the payload as γ ← m⊕Nj=1G(sj), where G is a pseudo-random generator.
Finally, the user encrypts the identity δ ← ei(1). To decrypt a ciphertext
c = (α[1,N ], β[1,N ], γ, δ), user Ui first decrypts all values from array α[1,N ] using ski
to obtain s1, . . . , sN and then computes the plaintext message as m = γ⊕Nj=1G(sj).

Assume Ui is the recipient of a ciphertext c = (α[1,N ], β[1,N ], γ, δ), i.e. can
decrypt it. To encrypt a message m′ using the change operation, user Ui performs
the following. First, the user decrypts c to obtain the plaintext m and the seed
si ← di(αi). Next, he generates a fresh seed s′i and computes the new payload
as γ′ = (m′ ⊕m) ⊕ γ ⊕ G(si) ⊕ G(s′i). Finally, the user encrypts s′i into (αi, βi)
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Users: U1 with (pk1, sk1), . . . , UN with (pkN , skN).
Public information: pk1, . . . , pkN .
Ciphertext for Ui:

γ = m⊕ G(s1)⊕ · · · ⊕ G(sN)
α1 = ei(s1) . . . αN = ei(sN)
β1 = e1(s1) . . . βN = eN(sN)
δ = ei(1)

Figure 3.4: Ciphertext structure in RoCHbC
hyb . User Ui is the recipient of ciphertext,

G denotes a PRG, ei(·) denotes the encryption algorithm of a (traditional) re-
randomizable CPA-secure encryption scheme, m is the encrypted message.
Relative sizes of ciphertext components are kept, γ is supposed to be the largest
component, while all remaining are of equal size.

and re-randomizes the remaining seed entries (for all valid j 6= i) of arrays α[1,N ]
and β[1,N ] and re-randomizes the encryption of an identity, i.e. δ. Note that
the recipient should not change (αj, βj) plaintext values of any other user Uj,
otherwise Uj could distinguish between the change operation and re-randomization
based on the observed sj value.

Assume Uj is the recipient of a ciphertext c = (α[1,N ], β[1,N ], γ, δ). To re-
randomize c, user Ui needs to replace seed si of the ciphertext with a newly
generated s′i while preserving the encrypted message m. Specifically, user Ui

computes si ← di(βi), generates a fresh seed s′i, replaces the payload γ with
γ ⊕ G(si) ⊕ G(s′i), and updates the associated seed entries as αi = ej(s′i) and
βi ← ei(s′i). Entry αi cannot be computed using the recipient’s public key pkj,
since the recipient is not known to Ui, instead Ui computes this value using δ and
homomorphic properties of the underlying encryption scheme. Finally, the user
re-randomizes δ and the remaining elements of arrays α[1,N ] and β[1,N ].

Construction 3.5.1 (RoCHbC
hyb ). Let N be the number of users, G : {0, 1}s(λ) →

{0, 1}l(λ) be an efficient function, and E = (kg, e, d, re) be ElGamal encryption
with key space (S̃K, P̃K), message space M̃ ⊆ {0, 1}s(λ), and ciphertext space
C̃. RoCHbC

hyb is a RoC scheme with secret key space SK = RK := S̃K, public
key space PK = PRK := P̃K, message space M := {0, 1}l(λ), ciphertext space
C := C̃N × C̃N × {0, 1}l(λ) × C̃, and the following algorithms:

• The key generation algorithm KG (which is also used as the randomization
key algorithm RG): on security parameter λ as input, generate a pair of secret and
public keys (sk, pk)← kg(1λ) and return (sk, pk). Once generated, public keys of
N users become publicly available.

• The encryption algorithm E for user Ui: on input a public key pki ∈ PK
and a message m ∈M, perform the following steps:
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1 : for j ∈ [1, N ] do
2 : sj ←R {0, 1}s(λ),

3 : αj ← ei(sj), βj ← ej(sj)
4 : endfor
5 : γ ← m⊕Nj=1 G(sj), δ ← ei(1)
6 : return (α[1,N ], β[1,N ], γ, δ)

• The decryption algorithm D for user Ui: on input a private key ski ∈ SK
and a ciphertext (α[1,N ], β[1,N ], γ, δ) ∈ C, compute sj ← di(αj) for all j ∈ [1, N ],
then compute m← γ ⊕Nj=1 G(sj), and output m.

• The re-randomization algorithm R for user Ui: on input a ciphertext (α[1,N ],
β[1,N ], γ, δ) ∈ C and a randomization key ski perform the following steps:

1 : si ← di(βi), s′i ← {0, 1}s(λ),

2 : α′i ← re(δ) · s′i, β′i ← ei(s′i)
3 : for j ∈ [1, N ]\i do
4 : α′j ← re(αj), β′j ← re(βj)
5 : endfor
6 : γ′ ← γ ⊕ G(si)⊕ G(s′i), δ′ ← re(δ)
7 : return (α′[1,N ], β

′
[1,N ], γ

′, δ′)
• The change algorithm Ch for user Ui: on input a secret key ski ∈ SK,

a message m′ ∈ M, and a ciphertext c := (α[1,N ], β[1,N ], γ, δ) ∈ C, perform the
following steps:

1 : m← Di(c), si ← di(αi), s′i ← {0, 1}s(λ)

2 : α′i ← ei(s′i), β′i ← ei(s′i)
3 : for j ∈ [1, N ]\i do
4 : α′j ← re(αj), β′j ← re(βj)
5 : endfor
6 : γ′ ← m′ ⊕m⊕ G(si)⊕ G(s′i), δ′ ← re(δ)
7 : return (α′[1,N ], β

′
[1,N ], γ

′, δ′)
• The verification algorithm V: on input (c, c′) ∈ C2, return true.
In the RoC-ak version, the change algorithm Ch additionally takes the target

public key pkτ as input, which requires to appropriately update the algorithm.

3.5.3 Security analysis of RoCHbC
hyb

Definition 3.5.3 (PRG). A function G : {0, 1}λ → {0, 1}l(λ) is called pseudo-
random generator, in short PRG, if no PPT adversary Adv can distinguish the
output of G(s) for some s ←R {0, 1}λ and a truly random sequence of l(λ) bits
significantly better than pure guessing.
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Theorem 3.5.1. Let Π = (KG,E,D,R,Ch,V) be a RoCHbC
hyb as defined in Con-

struction 3.5.1, G be a PRG, and E = (kg, e, d, re) be a semantically secure
re-randomizable homomorphic encryption scheme (ElGamal encryption in the
groups where DDH assumption holds), and e provides key anonymity. Then the
encryption algorithm E, the change algorithm Ch, and the re-randomization al-
gorithm R provide message indistinguishability and key anonymity, Π provides
indistinguishability of operation and external anonymity of re-randomization.

Lemma 3.5.1. Let Π = (KG,E,D,R,Ch,V) be a RoCHbC
hyb as defined in Con-

struction 3.5.1, G be a PRG, and E = (kg, e, d, re) be a semantically secure
re-randomizable homomorphic encryption scheme. Then the encryption algorithm
E, the change algorithm Ch, and the re-randomization algorithm R provide message
indistinguishability.

Proof. Assume that an adversary corrupts all users expect for the challenger Ui.
The adversary can decrypt and obtain all seeds except for si. The encryption,
the change, and the re-randomization algorithms are reduced to the encryption
algorithm of the textbook hybrid public encryption, with the only difference that
is the seed si is encrypted twice. It is well known that a CPA-secure hybrid
public encryption scheme can be achieved by combining a CPA-secure public key
encryption and semantically secure private key encryption schemes, see Theorem
10.13 of [90]. A semantically secure private encryption scheme can be instantiated
using PRG, see Theorem 3.17 of [90].

Lemma 3.5.2. Let Π = (KG,E,D,R,Ch,V) be a RoCHbC
hyb as defined in Con-

struction 3.5.1, G be a PRG, and E = (kg, e, d, re) be a semantically secure
re-randomizable homomorphic encryption scheme. Then Π provides indistin-
guishability of operation.

Proof. Re-randomization R and the change operation Ch performed by user Uj

have the following in common: 1) s′j remains the same for all users j′ 6= j, 2) α′j
and β′j will be re-randomized for all users j′ 6= j, and 3) αj and β will encrypt the
new value s′j.

The only difference between R and Ch is that, in addition to G(s′j) for a fresh
s′j, the value m′ ⊕m is added. Given an adversary Adv that wins IND-OP game
with a non-negligible probability, we construct a distinguisher D that distinguishes
output of G and random bits.

Let G0 be the IND-OP game against RoCHbC
hyb . Let G1 be the same as G0 except

that message space of α and β is increased from s(λ) to l(λ) bits and only the
first λ bits are used as input to G in E, D, Ch, and R, while the rest are ignored.
The probability of the adversary success in G1 is the same as in G0.

Let G2 be the same as G1 except that l(λ) bits of seeds are used in E, D, Ch,
and R, instead of using the first λ bits as input to G. We show that the success
probabilities in these games differ by a negligible factor by a reduction to PRG:
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given an adversary Adv against IND-OP, we construct a distinguisher D that uses
Adv to distinguish between PRG and random bits. First, D generates a random
bit b←R {0, 1} and then sends to Adv the challenger’s output in IND-OP game
against G1 if b = 0, or against G2 if b = 1. Since G used in RoCHbC

hyb is a PRG,
the probability of Adv guessing correctly the value of b is negligible, and so is the
probability to distinguish between G1 and G2.

The success probability of an adversary in IND-OP against G2 is 1/2, since
the bits used in Ch and R are random.

Lemma 3.5.3. Let Π = (KG,E,D,R,Ch,V) be a RoCHbC
hyb as defined in Con-

struction 3.5.1, G be a PRG, and E = (kg, e, d, re) be a semantically secure
re-randomizable homomorphic encryption scheme. Then encryption algorithm E,
the change algorithm Ch, and re-randomization algorithm R provide key anonymity,
if so does the underlying public key encryption scheme E.

Proof. Let E = (kg, e, d, re) by the underlying public key encryption scheme of
RoCHbC

hyb . Let c = (α[1,N ], β[1,N ], γ, δ) be a ciphertext produced by the challenger
using E in the game. The only component that differs depending on which public
key has been used by the challenger is encryption of an identity, i.e. δ.

To show that Ch and R provide key anonymity, we use a similar argument, as in
the proof of Lemma 3.5.2. Lemma follows given that e provides key anonymity.

Lemma 3.5.4. Let Π = (KG,E,D,R,Ch,V) be a RoCHbC
hyb as defined in Con-

struction 3.5.1, G be a PRG, and E = (kg, e, d, re) be a semantically secure
re-randomizable homomorphic encryption scheme, and e provides key anonymity.
Then Π provides external anonymity of re-randomization.

Proof. We use a similar argument, as in the proof of Lemma 3.5.2.

Theorem 3.5.1 follows from Lemmas 3.5.1 to 3.5.4.

Remark 3.5.1. RoCHbC
hyb does not provide internal anonymity of re-randomization:

the recipient can decrypt the ciphertext and obtain all the seeds and find out which
seeds have been changed during re-randomization.

3.5.4 Integrity of plaintext in RoCM
hyb

In this section, we extend the hybrid construction RoCHbC
hyb to tolerate any malicious

behavior of users by actually implementing the verification algorithm with the help
of zero-knowledge proofs for composite statements [2]. The resulting construction
is called RoCM

hyb.
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NIZK proof system in RoCM
hyb To achieve integrity in RoCM

hyb, one has to prove
statements composed of both algebraic and arithmetic parts by means of non-
interactive zero-knowledge proofs. Efficient zero-knowledge proofs are well known
for algebraic structures [114, 41] and there are recent practical constructions
for arithmetic circuits [88, 71]. Moreover, there exist efficient zero-knowledge
proofs for composed statements [38, 25, 2, P4]. To date, zero-knowledge proofs by
Agrawal et al. [2] are the most verifier efficient and compact, but require a trusted
setup assumption.

Using zero-knowledge proofs for composite statements, we construct a proof
system for the hybrid construction. To initialize or extend a ciphertext chain
that ends with ciphertext c, a user computes c′ and proves that c′ was correctly
computed according to the NIZK system. The verify algorithm takes this pair of
ciphertexts (c, c′) and returns a boolean value. We distinguish the following two
cases.

Case 1 (the change operation). Recall that the recipient of ciphertext (α, β, γ, δ),
say Ui, can decrypt array α and component δ. It suffices for the prover to prove
the knowledge of the decryption key sk for δ. We show the proof system for a
pair of ciphertexts (α, β, γ, δ) and (α′, β′, γ′, δ′):

PoK{sk| δ = ei(1)} ∧ P{∃ rδ| δ′ = re(δ; rδ)}

The component δ′ prevents the recipient from changing the associate public
key in (α′, β′, γ′, δ′). To allow the change of the public key, in any-key-RoC version
of RoCM

hyb we need to remove this component from the proof system.
Case 2 (the randomize operation). We have to bind the algebraic and

arithmetic expressions, which can be done by means of commitment schemes.
We expect that commitment scheme ΠCom used in the proof system allows for
homomorphic operations and is instantiated via an encryption scheme. In the
description of the proof system, we will use Φ to denote the commit operation
of ΠCom. Thanks to the homomorphic properties, from commitments to individ-
ual bits Φ(x0) . . .Φ(x`−1) one can publicly construct a new commitment Φ(x),
where x = x`−1|| . . . ||x0 is a concatenation of individual bits. We will denote by
Φ(x0)||hom...||homΦ(x`−1) computing Φ(x) from commitments to the individual
bits. Finally, ΠCom should allow re-randomizations.

In the following, for convenience we will omit the randomness used for the
proof of re-randomization and proof of correct commitment Φ. We distinguish
three instances of the commit operation: Φ for committing the individual bits, Φpki

for committing using the public key pki, and Φδ for committing using encryption
of the identity δ. Let f(s||s′) = G(s)⊕G(s′). The proof system for (α, β, γ, δ) and
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(α′, β′, γ′, δ′) looks as follows:

P{f(χ) = γ′ ⊕ γ ∧ Φ(χ) = (Φ(s)||homΦ(s′)) ∧ δ′ = re(δ)
∧ ∨i∈[1,N ] [(βi, α′i, β′i) = (Φpki(s),Φδ(s′),Φpki(s′))

∧j∈[1,N ]\i [(α′j, β′j) = (re(αj), re(βj))]]}

The first line of the proof system essentially enforces that γ′ = γ⊕G(s)⊕G(s′)
for some seeds (s, s′) and that δ was correctly re-randomized. The second and
the third lines ensure that for at least one index i the seeds s, s′ are bound to
(βi, α′i, β′i) via commitments (re-randomizer does not use αi at all), and that for
all remaining indices j 6= i, (αj, βj) are correctly re-randomized to (α′j, β′j) (third
line). The resulting proof is an OR-proof of the two cases. Let ΠHy denote the
corresponding proof system.

Construction 3.5.2 (RoCM
hyb). Implement in RoCHbC

hyb (Construction 3.5.1) the
verification algorithm and update the change and re-randomization algorithms
appropriately using NIZK proof system ΠHy defined in this section.

Lemma 3.5.5. RoCM
hyb with assumptions defined in Theorem 3.5.1 and appropriate

non-interactive zero-knowledge proofs, as defined in Section 3.5.4, provides integrity
of plaintext.

Proof Sketch. Assume to the contrary that a PPT adversary Adv wins integrity
of plaintext game with a non-negligible probability. Since ΠHy is a zero-knowledge
proof system, there is a knowledge extractor for sk. We use the fact that seman-
tically secure E is instantiated with ElGamal encryption, which requires DDH
assumption. We use Adv to construct a distinguisher D of DH tuples and random
tuples piggybacked into E encryption algorithm. The success probability of D is
non-negligible, which contradicts the DDH assumption.

3.6 Parallel Anonymous RAM

In this section, we define parallel anonymous RAM schemes and present our
construction thereof, which makes use of aggregatable RoC.

3.6.1 Definition

We extend the definition of anonymous RAM (Section 2.2) to support concurrent
requests.

Definition 3.6.1 (Parallel Anonymous RAM). Parallel Anonymous RAM is a
tuple of algorithms (Setup, Server,User1, ...,User`), where:
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• The initialization algorithm Setup maps a security parameter 1λ and an
identifier id, to an initial state, where id ∈ {0, 1, ..., η} identifies one of the
servers (for id > 0) or the user (for id = 0).

• The user algorithm User processes two kinds of inputs: (a) access requests
(from the user) and (b) pairs (l,m) where l ∈ [1, η] denotes a server and m
a message from server Serverl . User maps the current state and input to a
new state and to either a response provided to the user or a pair (l,m) with
l ∈ [1, η] denoting a server and m being a message for Serverl .

• The server algorithm Serverl for server Serverl maps the current server state
and input (k ≤ ` messages from k users or from another server) to a new
server state and a message either to k users or to another server.

Definition 3.6.2 (Access requests). An access request AR is a tuple (i, j, α,m) ∈
[1,M ] × {Read,Write} × Σ. Here i ∈ [1, N ] is a user identifier, j is called the
(cell) index of AR, α the access type, and m the input message.
Definition 3.6.3 (Access pattern). An access pattern is a series of tuples (AR1,
..., ARk) where ARi is an access request and all access requests in a tuple belong
to different users.

We define the protocol execution in two different adversarial models: (i) honest-
but-curious HbC adversaries that learn the state of one server S∗ and a subset
U∗ of users, and (ii) malicious users Mal_Users that learn the state of one of the
server (as before) and control a subset U∗ of users. In both models, the adversary
can eavesdrop on all messages sent on the network.
Definition 3.6.4 (Execution). Let PAR be a Parallel Anonymous RAM scheme
(Setup,User, Server1, . . . , Serverη), Adv be a PPT algorithm, ζ ∈ {HbC,Mal_Users}
and AP be an access pattern. The execution Exec(PAR,Adv, AP, ζ) is the fol-
lowing randomized process:

1. All parties are initialized using Setup, resulting in initial states σUi for each
user Ui, and σSl for each server Sl.

2. Adv selects a server S∗ and a strict subset U∗ ⊂ U .
3. Let (i, j, α,mi,j) be the first element of the first tuple of AP ; if AP is empty,

terminate.
4. If Ui ∈ U∗ and ζ = Mal_Users, then let (l,mi) be the output of Adv on

input (i, j, α,mi,j). Otherwise, let (l,mi) be the output of User on input (j, α,mi,j),
with state σUi, and update σUi accordingly.

5. Repeat the loop (from step 3) with the next element of the tuple (until
empty).

6. Invoke Sl with (input) messages (l,mi). The server Sl may call other servers
(possibly recursively) and finally produces (output) messages m′i.

7. For each m′i, if Ui ∈ U∗ and ζ = Mal_Users, provide the message m′ to
Adv. Otherwise, provide m′i to user Ui. Ui (Adv if Ui ∈ U∗ and ζ = Mal_Users)
may repeat sending messages to any servers. Eventually, Ui (Adv) terminates.
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8. Repeat the loop (from step 3) with the next tuple of AP (until empty).
Throughout the execution, the adversary learns the internal states of S∗ and of

all users in U∗, as well as all messages sent on the network.
A trace is the random variable defined by an execution, using uniformly random

coin-tosses for all parties. The trace includes the sequence of messages in the
execution corresponding to access requests and the final state of the adversary. Let
Θ(x) denote the trace of execution x.

We call an adversary Adv compliant with a pair of access patterns (AP0, AP1)
if Adv only outputs sets U∗ of users in Step 2) of Exec(PAR,Adv, AP0, ζ) and
Exec(PAR,Adv, AP1, ζ) such that AP0 and AP1 are identical when restricted to
users in U∗.

Definition 3.6.5 (Privacy of Parallel Anonymous RAM). A parallel anonymous
RAM scheme PAR preserves privacy in adversarial model ζ ∈ {HbC,Mal_Users};
if for every pair of (same finite length) access patterns (AP0, AP1) and for every
pair of PPT algorithms (Adv,D) s.t. Adv is compliant with (AP0, AP1), we have
that ∣∣∣∣Pr [b∗ = b : b∗ ← D (Θ (Exec(PAR,Adv, APb, ζ)))]− 1

2

∣∣∣∣
is negligible in 1λ, where the probability is taken over uniform coin tosses by all
parties, and b←R {0, 1}.

Parallel anonymous RAM should ensure integrity to prevent invalid executions
caused by parties deviating from the protocol. Informally, a trace is invalid if a
value read from a cell does not correspond to the most recently written value to
the cell.

Definition 3.6.6 (Integrity of Parallel Anonymous RAM). Let ϑ be a trace of
execution with access pattern AP , and let AR = (j,Read, ∗) with (i, ARi) ∈ AP be
a read request for cell j of user Ui, returning a value x. Let AR′ = (i, j,Write, x′)
be the most recent previous write request to cell j of user Ui in AP , or ⊥ if there
was no such previous write request. If x 6= x′, we say that this read request is
invalid. If any read request in the trace is invalid, then the trace is invalid.

A parallel anonymous RAM scheme PAR preserves integrity if there is negli-
gible (in 1λ) probability of invalid traces when the traces are constrained to the
view of the honest users (all Ui ∈ U in the HbC model, and all users Ui ∈ U/U∗
in the Mal_Users model) for any PPT adversary and any access pattern AP .

3.6.2 Construction

Our parallel anonymous RAM construction from ARoC-sk, ParAnonRAM is based
on the linear AnonRAM construction AnonRAMlin (Section 2.3). The main differ-
ence is that the users may send simultaneous requests to the server and the server
now has a cryptographic tool to handle simultaneous requests, which is ARoC-sk.
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We now present ParAnonRAM. Similar to AnonRAMlin, ParAnonRAM uses an
anonymous communication channel [124] and the (single-user, single-server) Path
ORAM [121] or other ORAM scheme satisfying indistinguishability of individual
accesses. The property requires that the adversary observing just one access
request from an access pattern should not be able to recognise how many accesses
the honest user performed so far. We will use Path ORAM in the description of
our scheme. We refer to Section 2.3.2 for a high-level description of Path ORAM.

ParAnonRAM employs N instances (one per user) of Path ORAM for M cells
each while requiring a single server. 2 To encrypt data as required in the ORAM
scheme, ParAnonRAM uses ARoC-sk (Section 3.4). The ParAnonRAM client of
user Ui, has access to her private key ski. In ParAnonRAM, the ORAM scheme
uses our ARoC-sk instead of the (symmetric) encryption scheme used in ‘regular’
Path ORAM.

Intuitively, an ParAnonRAM client internally runs an ORAM client and me-
diates its communication with the server. Whenever the ORAM client reads or
writes a specific block, the ParAnonRAM client performs corresponding read or
write operations for all users, without divulging the user identity to the server at
the network level, as follows: Reading a block belonging to other user’s ORAM can
be trivially achieved, since the contents are not used. Writing a block belonging
to other user’s ORAM must not corrupt the data inside and is hence achieved by
re-randomizing the blocks of other users.

The Setup and Server algorithms of ParAnonRAM are simply N instances of
the corresponding algorithm of the underlying ORAM scheme (e.g., Path ORAM).
Namely, the Setup initializes state for N copies of the ORAM (one per user)
and the Server receives a ‘user identifier’ i together with each request, and runs
the ORAM’s Server algorithm using the ith state over the request. The Server
algorithm for the ParAnonRAM scheme simply processes Read/Write requests sent
by the users as in the ORAM scheme, e.g. the server returns the content of the
requested block for Read requests or overrides the content of the requested block
with the new value for Write requests.

Since we allow simultaneous requests from the users, it may happen that two
or more users ask the server to update the same block with different values. In
this case, the server uses the aggregate functionality of ARoC-sk and computes
the aggregated value which is then written to the cell.

Theorem 3.6.1. ParAnonRAM preserves preserves integrity and privacy in the
adversarial model Mal_Users, when using a secure ORAM scheme that satisfies
indistinguishability of individual accesses, and a secure ARoC-sk.

Proof. The proof is essentially similar to the proof of the linear anonymous RAM
construction AnonRAMlin, with a few differences noted below. According to the

2ParAnonRAM can also use an ORAM scheme that uses multiple servers. In this case,
ParAnonRAM will use the same number of servers.
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defintion of parallel anonymous RAM, concurrent requests may come only from
different users. Hence in each tuple of access requests, there is at most one owner
who may update the block; all others are re-randomizers of that block. This
observation matches the requirement for the correct aggregation.

The order in which the write requests arrive to the server does not change the
aggregated value by the server, since a secure ARoC has unordered aggregation
by definition.

Integrity is provided by integrity of plaintext property of ARoC, which prevents
any user who does not know the correcponding secret key to break integrity of
the input ciphertext.

3.7 Group payment system

We elaborate on a simple privacy-preserving group payment system using any-
key-RoC. Here, we consider a scenario, in which a small group of users would like
to manage micro-transactions among themselves. There are N users (Ui)i∈[1,N ]
and a server. Each user has a pair of public and secret keys and a fixed number of
encrypted payment units, X. We say that a unit belongs to Ui if it is encrypted
for Ui. In total, N ·X units are stored at the server, encrypted using any-key-RoC.
For simplicity, we assume that all units are of equal value. The server is honest-
but-curious, while users can be malicious (we assume that, in particular, not all
users know each others personally). The protocol is round-based. In each round,
one of the users reads the whole storage and updates its each element. User Ui

can send a specific number of units to user Uj by encrypting some of her tokens
for Uj, and all remaining units are re-randomized. The server verifies each pair
of ciphertexts sent by the user and rejects if there is a pair that does not verify.
If accepted, the server updates the storage with the units sent by the user and
reshuffles them.

We informally state the security properties of the described system. It is easy
to see that each user can only send her own units to another user, and once units
are sent the user loses control over them until someone sends them back. In
the system no new units are generated, and a user cannot learn the details of
transactions which she is not involved in. On the other hand, the server does
not learn anything about transactions, since each round looks the same: a user
updates all ciphertexts in the storage, and RoC hides content and association
with user’s public keys. Moreover, users cannot trace coins that they have sent,
since the server reshuffles units in each round.

Complexity cost for each round is high: the user has to updateN ·X ciphertexts,
although not in every round. In each round, only one user communicates with
the server. Depending on the expected rate of micro-transactions, the group of
users can adjust the time length of a round to achieve an appropriate latency.
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ARoC-ak instead of RoC-ak The protocol above is instantiated with the
help of RoC-ak and can process one user at a time. Using ARoC-ak, we can
handle multiple users’ requests simultaneously, thereby reducing waiting time.
Our ARoC-ak construction requires one round of interaction (synchronization
between active users sending transactions), which is handled by the server. In
Fig. 3.5, we show a high-level example of our micro payment system based on
ARoC-ak.

Figure 3.5: Group payment system from ARoC-ak. Example for 3 users, two of
them sending transactions to the server via anonymous channels. Server’s state
consists of 4 units that belong to 3 users. User U1 owns two units and sends one
unit to U2. User U2 owns one unit and sends it to U1. For each unit, the server
aggregates a new unit value, forming a new server’s state.

3.8 Related Work

Golle et al. [77] introduced universal re-encryption, a primitive that extends
the standard CPA-secure ElGamal encryption scheme by adding a re-encrypt
(re-randomize) operation that requires no decryption and no receiver’s public
key. Golle et al. proposed to use universal re-encryption in universal mixnets,
which replace re-encryption mixnets used in voting protocols such as Helios [1]
and Zeus [125]. Re-encryption mixnets require the mixing servers to keep public
keys of the senders, in order to be able to re-randomize the ciphertexts [106, 101],
and with the help of universal re-encryption, the mixing servers no longer require
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to hold public keys of the senders, as they can re-encrypt ciphertexts without any
additional information beyond the actual ciphertexts.

Another application of universal re-encryption is the anonymization of radio-
frequency identification (RFID) tags by universal mixnets. Golle et al. [77]
proposed to use universal re-encryption in order to prevent tracking capabilities:
universal mixnets re-randomizes a collection of RFID tags so that the original
and re-randomized tags cannot be linked to each other. Unfortunately, an active
adversary may still track an object with an RFID tag. He can try to mark the
object by replacing the RFID tag with a ciphertext of choice, which he can decrypt,
and universal mixnets will keep re-randomizing it without altering the plaintext.
To address this kind of attack, Ateniese et al. [6] defined insubvertible encryption
and proposed to use it in RFID tags. In insubvertible encryption, the rerandomizer
can check whether a given ciphertext is encrypted under a pre-registered public
key. If the check fails, the rerandomizer will set the RFID tag to a dummy “safe”
value instead of actually re-randomizing it, thus limiting tracking capabilities of
an active adversary. We note that, although insubvertible encryption [6] limits
tracking capabilities of an active adversary, who tries to replace a ciphertext c
with another ciphertext c′ (in the RFID scenario), the primitive allows to check
legitimacy of a single ciphertext and therefore does allow to replace a legitimate
ciphertext of one user with another legitimate ciphertext of another user.

Fairbrother [59] improved space efficiency of universal re-encryption [77].
Klonowski et al. [92] proposed an extension to the original universal re-encryption,
called universal re-encryption of signatures. In their construction, an RSA signa-
ture is attached to the ciphertext. Both the message and the signature can be
then re-randomized by any party, while the signature remains valid during this
transformation. However, as shown by Danezis [52], this construction is vulnerable
to existential forgery. Young and Yung [133] define several security properties for
UREnc: key anonymity (for the encryption algorithm, and for the re-randomize
algorithm) and message indistinguishability (along with the classical property
for the encryption algorithm, one for the re-randomize algorithm), and show
that the original construction by Golle et al. [77] is secure under their revisited
security definition. Universal re-encryption should not be confused with proxy
re-encryption, where the idea of the latter is to transform a ciphertext under
specific public key to a ciphertext under another public key [7, 32].

In the following line of works, CCA-like definitions have been researched for
encryption schemes that allow re-randomization of ciphertexts. Canetti et al. [33]
introduced a relaxation of the stardard CCA security notion called RCCA (R
stands for Replayable), which captures scenarios that an attacker can generate
different ciphertexts decrypting to the same plaintext. They called an encryption
scheme randomizable if it allows anyone to convert a ciphertext c to another
ciphertext c′ that decrypts to the same plaintext, and require that c and c′ should
not be linkable in any way. Groth [82] presented a rerandomizable cryptosystem
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that achieved a weaker form of RCCA (WRCCA), and another construction that
achieved RCCA in the generic groups model. Prabhakaran and Rosulek [109]
presented a rerandomizable RCCA-secure cryptosystem, which extends the Cramer-
Shoup public key cryptosystem. They also define RCCA receiver-anonymity and
state that their construction does not achieve it and that it is an open problem.

In the following works, encryption schemes have some form of verifiability.
Zheng [137] introduced signcryption, a public key scheme that combines simulta-
neously encryption and signing (the respective encryption/decryption algorithms
are usually called signcrypt/unsigncrypt). The primitive improves on efficiency as
compared to encrypt-then-sign/sign-them-encrypt schemes. Signcryption provides
condifentiality and authenticity in the public-key setting. The symmetric-key
analogue for signcryption is called authenticated encryption, introduced by Bellare
et al. [12]. Our RoC extends the notion of authenticated encryption by adding
re-randomization operation to the scheme definition. The difference is, however, in
the way the verification proceeds: while in authenticated encryption authenticity
of a single ciphertext can be verified by the recipient, in RoC it is done universally
(i.e., by any party) for a pair of ciphertexts.

Malleable non-interactive zero-knowledge proofs, proposed by Chase et al. [39]
allow anyone to produce new valid proofs of language membership based on some
valid proofs using a controllable transformation. A proof created in such a way
should be indistinguishable from a proof created from scratch using some witness.
As we already discussed, verifiability in RoC is by design captured for a pair of
ciphertexts.

3.9 Postponed proofs

Proof of Theorem 3.3.1. We show that an adversary Adv that breaks IND-OP
can also break IND-CPA-Ch. To show this, we construct an algorithm D that
given an oracle access to Adv can break IND-CPA-Ch. Let O1 be an oracle that
responds IND-OP queries from Definition 3.3.2, i.e., given (c,m), it outputs either
R(c) or Chsk(m, c) depending on the value of a random bit b1. Let O2 be an oracle
that responds IND-CPA-Ch queries, i.e. upon (m0,m1) and c′ as input, it outputs
Chsk(mb2 , c

′) for a random bit b2.
D simulates O1 as follows. Upon receiving a query (c,m), D decrypts c using

sk to obtain m′. If m′ 6= m, D sends (m′,m) and c to O2, and upon receiving a
response cb2 from O2, D redirects the ciphertext to Adv. Otherwise, i.e. if m′ = m,
D computes and sends Chsk(m′, c) to Adv. Finally, D receives a bit b′ from Adv
and outputs it as the result of the experiment.

In the case m′ = m it is easy to see that D and O1 produce identical distribu-
tions and that Pr[RoCIND-OP

Adv,Π (λ) = 1] = 1/2 because of identical distributions of
re-randomization and encryption of the same plaintext. Here we use the fact that
the distributions of R(c) and Chsk(m, c), for some m and c such that D(c) = m,
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are identical.
Otherwise, Pr[RoCIND-CPA-Ch

Adv,Π (λ) = 1] = Pr[RoCIND-OP
Adv,Π (λ) = 1], because of

aforementioned property if b1 = 0 and the same output distribution if b1 = 1.

Lemma 3.9.1. Encryption algorithm, re-randomization algorithm, and the change
algorithm of RoCHbC

dlog as defined in Construction 3.3.1 in the groups Gq where
DDH is hard provide message indistinguishability.

Proof. For message indistinguishability of E and of R, we can directly use the proof
from [133], since the encryption algorithm E and the re-randomization algorithm
R do not use the public keys of other users. The proof relies on the hardness of
decisional Diffie–Hellman (DDH) assumption [16] for group Gq.

Observing that the change algorithm Ch in fact does not use the input ci-
phertext c and that a call to Ch can be replaced with a call to E by plugging in
pk = gsk, IND-CPA-Ch security of RoCHbC

dlog follows.

Lemma 3.9.2. RoCHbC
dlog as defined in Construction 3.3.1 in the groups Gq where

DDH is hard is IND-OP secure.

Lemma 3.9.3. Encryption algorithm, re-randomization algorithm, and the change
algorithm of RoCHbC

dlog as defined in Construction 3.3.1 in the groups Gq where
DDH is hard provide key anonymity.

Proof. Since E and R algorithms do not use the public keys of other users,
anonymity of E and R follows from the proof of key anonymity in [133]. For
the same reasons, mentioned in the proof of Lemma 3.9.1, Ch provides key
anonymity.

Lemma 3.9.4. RoCHbC
dlog as defined in Construction 3.3.1 provides external and

internal anonymity of re-randomization.

Proof. Immediately follows from the fact, that the re-randomizer does not use
any public or private keys.

Proof of Theorem 3.3.2. Follows from Lemmas 3.9.1 to 3.9.4.

Proof of Lemma 3.3.1. Assume to the contrary that an adversary Adv wins in-
tegrity of plaintext game with a non-negligible probability. Since ΠDL is a
zero-knowledge proof system with the proof of knowledge part, there is a knowl-
edge extractor for the secret key sk. Let G0 is the INT-PTXT game. Let G1 be a
modified game, for which the key generation is replaced with pk ← X, where X is
a group element. The games are indistinguishable for the adversary. We use Adv
to solve the discrete log problem for X by extracting the secret with non-negligible
probability. This contradicts the assumption that solving the discrete log problem
is hard.
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3.10 Conclusion

Universally re-randomizable encryption (UREnc) schemes allow any user to re-
randomize ciphertexts without knowing the associated public key. They found its
application in mixnets, protecting privacy of radio-frequency identification (RFID)
tags. However, a malicious user, instead of re-randomizing, may corrupt data or
even encrypt a chosen plaintext. In this work, we define randomize-or-change en-
cryption (RoC) schemes which allow the recipient, in addition to re-randomization,
to encrypt a new value (‘change’). RoC provides indistinguishability of operation
and protects the integrity of plaintext property against malicious re-randomizers.

We present two families of constructions, one in the discrete log (dlog) setting
and another in the hybrid setting, which differ in their design and complexity.
We expect the hybrid constructions perform better when the number of users
is small and message space is large, while the dlog based constructions provide
an extra property (anonymity of re-randomization). Furthermore, we devise the
aggregation functionality in the dlog setting. The integrity of plaintext property
binds a pair of ciphertexts and comes at a cost of sacrificing some anonymity
properties, which is an unavoidable design side-effect in this case.

We propose several applications for RoC: anonymous communication, group
payment system, and parallel anonymous RAM. It will be interesting to see how
the ideas in this work can be extended to constructing verifiable proxy-reencryption
with possibility of universal re-randomization. We leave this direction for future
work.
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4.1 Introduction

Zero-knowledge (ZK) proofs, introduced by Goldwasser, Micali, and Rackoff [76],
are one of the central cryptographic building blocks, which allow a prover to
convince a verifier that a statement is true without revealing any other information.
Goldreich, Micali, and Wigderson showed that ZK proofs for NP-languages are
possible [73], which opened up a number of new research directions in cryptography.

Zero-knowledge proof systems are an essential building block used in many
privacy-preserving systems, e.g. anonymous credential systems [26] and voting
protocols [83, 10]. Unfortunately, only a few systems have been used in practice.
The main reason is that ZK proofs for general statements are usually inefficient.
Thus, the research focus switched from general statements to interesting subclasses.
In particular, a prover can efficiently prove knowledge of discrete logarithms
in groups of known [42, 114] and unknown [29, 9] order. Those proofs were
extended to allow other statements, e.g., equivalence of discrete logarithms, or
knowledge of representation. The main advantage was that using the Fiat-Shamir
transformation [61] one can make those systems non-interactive (NIZK), i.e. no
interaction between the prover and the verifier is necessary to generate the proof,
and transform honest-verifier ZK protocols into full ZK. Groth and Sahai [85, 58]
further extended the class of efficient NIZK proofs to statements about pairing
product equations. The common factor of those proofs is that they are restricted
to algebraic groups and cannot be efficiently used to prove statements about
non-algebraic structures, e.g., the SHA hash function or the AES encryption
scheme.

The problem of efficient interactive ZK proofs for non-algebraic statements was
solved by Jawurek et al. [88]. Their system allows to efficiently prove statements of
the following form: “The prover knows an input x such that y = SHA(x) for some
public y”. Unfortunately, one cannot apply the Fiat-Shamir transformation to
make those proofs non-interactive. The system is based on garbled circuits [132],
which are private coin protocols, which in turn makes the system inherently
interactive. Giacomelli et al. [71] addressed this limitation and introduced ZKBoo,
a non-interactive proof system for arithmetic circuits, based on the “MPC-in-
the-head" technique [86]. In their system, the proof size depends linearly on the
number of gates, input and output wires. This work was further improved by
Chase et al. [37] with the introduction of the ZKB++ system. The authors were
able to reduce the proof size by a constant factor and addressed post-quantum
security of the construction. Ames et al. [4] proposed Ligero, a NIZK proof system
based on the “MPC-in-the-head" technique, which has the proof size proportional
to the square root of the verification circuit size.

An interesting line of research present succinct non-interactive zero-knowledge
proofs (SNARKs) [84, 66, 13]. They allow compact proofs and very efficient
verification, but require a complex trusted setup and the prover has to perform
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a number of public key operations (i.e. modular exponentiations or equivalently
elliptic curve point multiplications) proportional to the circuit size. The setup
algorithm can be executed by a trusted party or by the participants of the system
using multi-party computation (MPC).

While there exist efficient proofs for algebraic and non-algebraic statements, it
became a natural challenge to combine both worlds and create a proof system that
would work efficiently in both, algebraic and non-algebraic, domains. Obviously,
one can implement algebraic structure directly using non-algebraic statements by
defining all group operations as functions. This approach introduces a significant
overhead in size of the proven statement, which increases the size of the proof
and the number of required computations. As noted by [2], depending on the
group size, the circuit for computing a single exponentiation could be thousands
or millions of gates. Alternatively, one can implement arithmetic circuit directly
using algebraic statements by treating each gate in a circuit as an algebraic
function and proving relations between gates. The prover’s/verifier’s work and the
proof size would be linear in the number of gates, and in case of hash functions or
block ciphers it could be tens of thousands of public key operations and group
elements.

The first attempt to efficiently solve this cross-domain problem was the
Crypto’16 work by Chase et al. [38]. Their system can be used e.g. to prove that
a given algebraic commitment (e.g. Pedersen commitment) C is a commitment
to x, where F (x) = 1 and F is expressed as a boolean circuit. The authors show
that an efficient proof system for this statement can be used as a building block
to construct more efficient proofs of knowledge of a signature and a committed
message for RSA-FDH, DSA and EC-DSA signatures. Their system can be ex-
tended to a scenario, where we have k commitments to x1, . . . , xk and the input x
is the concatenation x1|| . . . ||xk of values in those commitments.

Chase et al. propose two constructions of their proof system. For the first the
number of public key operations is linear in the size of x and that of symmetric key
operations is proportional to the number Fg of gates in F . The second construction
reduced the number of public key operations to a number linear in the security
parameter λ, but this comes at a cost of additional symmetric key operations
which are proportional to Fg + |x| · λ. Unfortunately, their approach is based on
the ZK proofs from [88] and the proof system is therefore interactive by nature.

Bünz et al. [25] presented at S&P’18 efficient NIZK range proofs called Bul-
letproofs. Those proofs can also be used for proving statements expressed as
arithmetic circuits with algebraically committed inputs. The proof technique
relies on discrete log assumptions and the Fiat-Shamir transformation. While
Bulletproofs produce relatively short proofs, the prover’s work is still expensive,
specifically, the prover has to perform a number of public key operations linear in
the circuit size.

At Crypto’18, Agrawal, Ganesh, and Mohassel [2] presented non-iteractive

92



4.1. INTRODUCTION

zero-knowledge proofs for composite statements. Whereas the authors addressed
the same problem of constructing zero-knowledge proofs in cross-domains, theirs
and our proposals differ in the underlying cryptographic blocks that handle the
arithmetic part of the proof system. Specifically, their proofs are based on Σ-
protocols and SNARKs [66]. As already noted, SNARKs allow for short proofs
and fast verification of arithmetic statements, however they require a trusted
setup for generating the common reference string (CRS) for a particular circuit F .
Typically, the CRS needs to be regenerated for a different circuit F ′. This is not
desirable in some applications such as ZCash, where an expensive MPC protocol
has to be run to generate a CRS [135].

Our contribution In this work, we present an efficient (both for the prover and
the verifier) non-interactive zero-knowledge proof system for cross-domains that
requires no trusted setup assumption. Our system uses ZKB++ [37] as a building
block, which is based on a technique called “MPC-in-the-head" [86]. The idea
is that the prover represents the circuit F as a multi-party computation (MPC)
and generates three shares x1 ⊕ x2 ⊕ x3 = x, where x is the original input of the
prover. The prover then performs the MPC computation using the values x1, x2,
x3 and given a challenge e ∈ {1, 2, 3} returns the view of computations performed
with inputs xe and xe+1. Executing these steps a number of times decreases
the soundness error of the proof. What is more, we can apply the Fiat-Shamir
transformation and allow the prover to compute this challenge itself, making the
system non-interactive.

We extend this idea to allow algebraic statements. To illustrate our solution
let us consider a simple example where the prover publishes y = SHA(x) and
a Pedersen commitment C = gx · hr. In this case, the prover wants to convince
the verifier that he knows x. To do so, he performs the “MPC-in-the-head" as
in ZKB++ and computes Pedersen commitments to all bits of the values x1, x2,
x3. Upon receiving a challenge e ∈ {1, 2, 3}, additionally to the views of the MPC
the prover opens all commitments to the bits of xe and xe+1. Finally, to bind
the “MPC-in-the-head" part to the Pedersen commitment C, the prover computes
commitments to the bits of the value xe ⊕ xe+1 ⊕ xe+2 and proves that these
commitments contain the binary representation of the same value that is in C.
As in ZKB++, this extended system has to be executed several times in order to
decrease the probability of the prover cheating the verifier. However, in contrast
to [38] we can apply the Fiat-Shamir transformation to get a NIZK system.

The number of public key operations in our system is proportional to |x| · λ.
This follows directly from the way we combine both domains. Each round we
have to prove that the commitments to the bits of xe⊕ xe+1⊕ xe+2 are the binary
representation of x. We solve this obstacle by committing to full values of the
ZKB++ share and not to its bits and show that we can still compute the XOR
value of them because 2 out of 3 values are revealed by the ZKB++ protocol.
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This unique technique allows us to further decrease the number of public key
operations to O(|x|+ λ).

The contribution of this work can be summarized as follows. We are the
first to present an efficient (both for the prover and the verifier) non-interactive
zero-knowledge (NIZK) proof system for algebraic and non-algebraic domains
(cross-domains) that requires no trusted setup. The solution is based on a
combination of ZKBoo [71, 37] with standard Schnorr based proofs [114, 30].
Using our techniques, we obtain the efficient non-interactive proof of knowledge
(proof of possession) of DSA/RSA signatures, without revealing the signature
itself.

Applications A straightforward application of zero-knowledge proofs in cross-
domains are anonymous credentials. Chase et al. [38] observed that many existing
credential systems [24, 26, 27, 11, 8] rely on signature schemes that are tailored in
a specific way to provide the desired properties of the system. The user proves that
he knows a value x and a signature under this value. Using zero-knowledge proofs
in cross-domains allows to use standard signature schemes like RSA-FDH or DSA
for which there exist no efficient proof system in the standard algebraic setting. In
contrast to the system by Chase et al. our proofs are non-interactive, which means
that they can be used to construct round-optimal anonymous credential systems.
This implies that using our techniques, one can create concurrently secure systems
based on RSA and DSA signatures.

Another application of NIZK in cross-domains, mentioned in [2], are proofs of
solvency for Bitcoin exchanges. In this scenario, an exchange wants to prove to its
customers that it is solvent, i.e. that it has enough Bitcoins to cover its liabilities.
To this end, the exchange would need to prove the control over some Bitcoin
addresses. A certain Bitcoin address is a 160-bit hash of a public ECDSA key [123].
The corresponding proof is a proof of knowledge x such that H(gx) = y, where
H is a hash-function such as SHA-256. Here, only y is public, and the exchange
would like to keep its public key part gx hidden, otherwise an adversary could
track the movement of exchanges associated with its public key. Since the Bitcoin
network does not require a trusted setup assumption, proofs of solvency based
on the approach by [2] would require a trusted CRS generation to be done. On
the other hand, since our techniques do not require any trusted setup assumption,
they can be used directly to prove solvency for Bitcoin exchanges. The proof
system would additionally include a proof of equality of discrete logarithm of a
committed value and another committed value. More specifically, a prover would
need to prove knowledge of x such that H(gx) = y for some public y. Here the
input to the circuit H is gx. The prover has to commit to gx as Comgx and to x
as Comx and use the proof of equality of discrete logarithm of a committed value
and another committed value, for which we refer to [38].

Note that ours and the proof system by Chase et al. [38] or any other system
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cannot be post-quantum secure if the underlying security assumptions in the
algebraic domain (integer factorization, discrete logarithms) can be broken by a
quantum adversary [117].

Comparison with existing techniques We compare ours and prior work on
zero-knowledge proofs in cross-domains in Table 4.1. We discuss the efficiency of
the constructions based on a circuit F and a committed input x. For the algebraic
part of the proof system, Σ-protocols are used in all ZK proof systems presented
in the table. Σ-protocols require a constant number of public-key operations for
a single algebraic statement and do not require any trusted setup assumption.
The approach by Chase et al. [38] is the only interactive protocol in the table.
In their first construction, the arithmetic part of the proof system is based on
garbled circuits, whose prover’s/verifier’s cost amounts to O(|F |) of symmetric-key
operations. The number of public key operations is linear in the input size |x|. In
the second construction, Chase et al. achieve the number of public key operations
independent of |x| at the cost of increasing the circuit that has to be garbled.
Various techniques to reduce computation, communication, memory requirements
of garbled circuits are available, e.g. [100, 134, 119]; in [93] XOR-gates can be
garbled essentially at no cost. In Bulletproofs [25], the prover has to perform
a constant number of public key operations for each multiplication gate of the
circuit, while the verifier is more efficient due to the multi-exponentiation trick.
The proof size in Bulletproofs is logarithmic in the number of multiplication gates
in the arithmetic circuit for verifying the witness. The approach by Agrawal et
al. [2], which is based on SNARKs, is the only protocol that requires a trusted
setup assumption and produces constant proofs. Verifier’s work does not depend
on the circuit size, and the number of public key operations is linear in the input
size. Prover’s work requires a number of public key operations linear in the circuit
size. We analyze efficiency of our Construction 4.3.2. As we show in Section 4.3.5,
it requires O(|x|+ 1λ) public key operations, while the number of symmetric-key
operations is O(|F | · λ), since ZKB++ protocol has to be repeated to reduce the
soundness error to a negligible value. Proof size is dominated by ZKB++ and
amounts to O((|F |λ+ |x|)λ).

Chapter Outline The rest of the chapter is organized as follows. Section 4.2
contains preliminaries. In Section 4.3, we develop our solution for NIZK proofs in
cross-domains. The section starts with the problem statement for NIZK proofs
in cross-domains. Then, in Section 4.3.1 we present our first attempt cross-
domain NIZK proof system based on ZKB++ followed by its security analysis.
Next, in Section 4.3.2 we present an improved version and its security analysis
in Section 4.3.3. Finally, in Section 4.3.4 we describe the optimization technique
to reduce the number of public key operations and in Section 4.3.5 we perform
efficiency analysis of our constructions. In Section 4.4, we complement NIZK
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Table 4.1: Comparison of ZK proof systems in cross-domains for a circuit F with
an algebraically committed input x, where |F | denotes the circuit size, |x| the
number of input bits. We denote by λ the security parameter, by pub a public-
key operation, by sym a symmetric-key operation.

Non-
inter-
active

Without
trusted
setup

Prover’s work Verifier’s work Communication/
Proof size

CGM16 [38]
Constr.1

No Yes O(|x| ·pub+ |F | ·
sym)

O(|x| ·pub+ |F | ·
sym)

O((|F |+ |x|)λ)

CGM16 [38]
Constr.2

No Yes O(λ·pub+(|F |+
|x|λ) · sym)

O(λ·pub+(|F |+
|x|λ) · sym)

O((|F |+ |x|λ)λ)

BBB+18 [25] Yes Yes O(|F | · pub) O( |F |
log(|F |) · pub) O(log(|F |)λ)

AGM18 [2] Yes No O((|F |+λ)·pub) O((|x|+λ) ·pub) O(λ)
This work Yes Yes O((|x|+λ)·pub+

(|F | · λ) · sym)
O((|x|+λ)·pub+
(|F | · λ) · sym)

O((|F |λ+ |x|)λ)

proofs in cross-domains to allow OR-proofs. Section 4.5 concludes.

4.2 Preliminaries

In this section we recall the notions of commitment schemes, zero-knowledge
and Σ-protocols. We also recall the details of the ZKBoo protocol introduced by
Giacomelli et al. [71].

4.2.1 Homomorphic Commitment Schemes

Let us byMck denote the message space of the commitment scheme and by OIck
the space of opening information (also called randomness).

Definition 4.2.1 (Commitment Scheme). A commitment scheme consists of the
following PPT algorithms (Gen,Com,Open):

• Gen(λ): on input security parameter λ, this algorithm outputs a commitment
key ck, which is an implicit input for the below algorithms.

• Com(m, r): on input message m and opening information r, this determin-
istic algorithm outputs a commitment Cm.

• Open(Cm,m, r): on input commitment Cm, message m and opening infor-
mation r, this algorithm outputs a bit {0, 1}.
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Definition 4.2.2 (Perfect Hiding). A commitment scheme is perfectly hiding, if
for all adversaries A we have:

Pr[ck← Gen(λ), (m0,m1, st)← A(ck), r ←$ OIck, C ← Com(m0, r) : A(st, C) = 1] =
Pr[ck← Gen(λ), (m0,m1, st)← A(ck), r ←$ OIck, C ← Com(m1, r) : A(st, C) = 1].

Definition 4.2.3 (Computational Binding). A commitment scheme is computa-
tionally binding, if for all PPT adversaries A we have:

|Pr[(ck)← Gen(λ), (m0, r0,m1, r1)← A(ck) : m0 6= m1 ∧
Com(m0, r0) = Com(m1, r1)]| ≤ Advbinding

A (λ),

where we require that m0,m1 ∈Mck, r0, r1 ∈ OIck and Advbinding
A (λ) is negligible

in the security parameter λ.

Definition 4.2.4 (Equivocality). A commitment scheme is equivocal, if there
exists an algorithm Eval and an alternative Gen′ algorithm that additionally to
the commitment key ck returns a trapdoor τ such that given a commitment C =
Com(m, r) we have C = Com(m′,Eval(τ,m′, (C,m, r))) for any message m′, i.e.
Eval can be used to compute the randomness to open C to an arbitrary value.

Moreover, we assume that there exists an efficient extraction algorithm Extrck
that given two openings of the same commitment, i.e. (m1, r1,m2, r2) where
Com(m1, r1) = Com(m2, r2) and m1 6= m2, returns the trapdoor τ .

We require that a commitment scheme is binding, hiding and equivocal.
Additionally, in this work we assume that the used commitment scheme has
the following homomorphic property: for all m1,m2 ∈ Mck and r1, r2 ∈ OIck
we have: Com(m1, r1) · Com(m2, r2) = Com(m3, r3), where m3 = m1 + m2 and
r3 = r1 +r2. This homomorphism allows us to introduce multiplication by a known
scalar, i.e. given C = Com(m, r) we can compute C ′ = [k]C = Com(k ·m, k · r),
where by [k]C we denote multiplication of commitment C by a public scalar
k. What is more, for a given commitment Cb = Com(b, r) to a bit b, we can
easily compute the exclusive-or on this hidden value with a known bit α. If
α = 0, we leave C unchanged, otherwise, if α = 1, we compute Cb⊕α = C1/Cb =
Com(1 − b,−r), where C1 = Com(1, 0) is formally a commitment to 1 with no
randomness (instead of sampling it, it is set to 0). Note that for commitments
Cx = Com(x, r) = ∏

i∈[0,|x|−1][2i]Cx[i] = ∏
i∈[0,|x|−1][2i]Com(x[i], rx[i]), where x[i]

is the i-th bit of x, we can compute a commitment Cx⊕α for a known α. To
do so, we apply the above technique bitwise, i.e. to commitments Cx[i] and
using the new values we then compute the commitment Cx⊕α. Notice, that this
operation changes the opening information, which is now ∑

i∈[0,|x|−1](−1)α[i]rx[i],
i.e. Cx⊕α = Com(x⊕ α,∑i∈[0,|x|−1](−1)α[i]rx[i]).

An example of a scheme that has those properties is the one introduced by
Pedersen [107]. There, given a commitment key ck = (g, h, q, p), a message m ∈ Zq
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and an opening information r ∈ Z∗q the commitment is of the form Com(m, r) =
gm · hr mod p. Multiplying two commitments Com(m1, r1) · Com(m2, r2) we get
gm1+m2hr1+r2 , which is a commitment to message m1 +m2 mod q with opening
information r1 + r2 mod q, as required. Note that the commitment scheme is also
equivocal and that there exists an extraction algorithm Extrck (to this end, one
simply needs to choose public parameters g, h with a known discrete logarithm).

4.2.2 Zero-Knowledge Proofs

Let R ⊂ {0, 1}∗ × {0, 1}∗ be an efficiently computable binary relation, for which
R(x,w) = 1 ⇐⇒ (x,w) ∈ R. We call x a statement and w a witness. A very
simple example of such a relation is R = {(x,w) : x = SHA(w)}, where we
are given a SHA value as part of the statement and the preimage is part of the
witness. Obviously, given both values we can easily verify that R(x,w) = 1 by
computing the SHA value on w and comparing it with x. We will assume that
|w| ≤ poly(|x|), which means that the witness length should be polynomial in the
statement length. We will denote by LR the language consisting of true statements
in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

We call a cryptographic protocol between two PPT parties, the prover P and
the verifier V an argument for language LR if it has the following properties. Using
communication P wants to convince V that x ∈ LR, where x is a publicly known
statement. Obviously, the prover has some extra private input, e.g. he knows a
witness for which R(x,w) = 1.

At the end of the protocol the verifier outputs accept if he is convinced and
reject otherwise. The protocol is complete if for all x ∈ LR an honest prover always
convinces an honest verifier. We also require that if x 6∈ LR, then a cheating prover
has only a small chance ε (called soundess error) to convince an honest verifier.
This property should hold for all possible statements not in the language, i.e. for
all x 6∈ LR we have Pr[V(x) = accept] ≤ ε. Finally, we require a property called
zero-knowledge (ZK). Informally, this means that whatever strategy a verifier
follows, he learns nothing besides whether x ∈ LR. It follows that he cannot get
any information about the private input of the prover. A weaker notion of ZK
is called honest-verifier ZK (HVZK). Zero-knowledge property in this case holds
only for a verifier, who does not deviate from the protocol.

A special case of such arguments are Σ-protocols, which follow a specific
communication pattern similar to the letter Σ. In the rest of the chapter, we will
only consider this type of protocols.

Definition 4.2.5 (Σ-Protocol). A protocol ΠR between a prover P and a verifier
V is a Σ-protocol for relation R if:

• The protocol consists of three phases:

1. (Commit) P sends a message a to V,

98



4.2. PRELIMINARIES

2. (Challenge) V picks a random e and sends it to P,
3. (Response) P sends a second message z to V.

• ΠR is complete - if both parties are honest, then for all x ∈ LR we have
Pr[(P ,V)(x) = 1] = 1.

• ΠR is s-special sound - for any x and any set of s accepting conversations
T = {(a, ei, zi)}i∈{1,...,s}, where ei 6= ej if i 6= j, there exists an efficient
algorithm Extr that on input T outputs w such that R(x,w) = 1.

• ΠR is a special honest-verifier ZK (HVZK) - there exists a PPT simulator
SIM such that on input x ∈ LR outputs a triple (a′, e, z′) with the same
probability distribution of real conversations (a, e, z) of the protocol.

The last property ensures only that Σ-protocols are ZK if the verifier is honest
and does not base his challenge e on the first message of the prover. Σ-protocols
have found many applications in the design of efficient identification and signature
schemes. The main advantage of using those protocols is that using the Fiat-
Shamir transformation [61], they can be made non-interactive in the random
oracle model. What is more, using this technique the protocol is ZK even if the
verifier is dishonest. Note that if the challenge e is chosen from a set of cardinality
c, then s-special soundness implies that the soudness error is (s− 1)/c.

Notation Given two commitments Cx = Com(x, rx) and Cy = Com(y, ry) we
will denote by P{(Cx ≡ Cy)} the prover’s part and by V{(Cx ≡ Cy)} the verifier’s
part of a Σ-protocol, where the prover tries to convince the verifier that it knows
openings (x, rx) and (y, ry) of public commitments Cx and Cy, respectively, such
that x = y. There exist very efficient Σ-protocols for the above mentioned Pedersen
commitments. In such a case, the witness is composed of the committed value x
and the opening informations rx and ry. We may sometimes append the notation
to denote a subroutine algorithm such as Commit, Response, or Reconstruct.
The Commit subroutine has a special output notation. We denote by (st, a) the
result of Commit execution, where st denotes an internal state and a the output.

Notation for a bit commitment We will also use this notion for a special case,
where the prover wants to show that the value committed in Cx = Com(x, rx)
is a bit, i.e. x ∈ {0, 1}. We will use P{(Cx ≡ C0) ∨ (Cx ≡ C1)} to denote this
special case. Note that we do not necessarily require the use of commitments
to values 0 (C0) and 1 (C1), as there exist more efficient realizations, i.e. given
a commitment C = gx · hr the prover simply shows that it knows the discrete
logarithm of C or C/g to the base of h, and therefore C0 and C1 may be omitted.
Moreover, we will use ∏|x|−1

i=0 C2i·x[i] = Com(x, r) to denote a commitment to x,
where x = ∑|x|−1

i=0 2ix[i], r = ∑|x|−1
i=0 2irx[i], and Cx[i] = Com(x[i], rx[i]).
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4.2.3 ZKBoo/ZKB++

Giacomelli et al. [71] proposed ZKBoo, an efficient Σ-protocol based on the idea
“MPC-in-the-head" [86]. Subsequently, Chase et al. [37] presented ZKB++, the
successor of ZKBoo, which has more compact proofs. As both versions of the
protocols differ primarily in technical aspects, our techniques can be applied to
either version. The main advantage of this system over the one by Jawurek et al.
[88] is that it can be made non-interactive using the Fiat-Shamir transformation.

ZKBoo/ZKB++ work for arithmetic functions F with prover’s input x and
the verifier holding no private input. Let y denote the output of function, i.e.
y = F (x). To create such a zero-knowledge proof of x, the prover splits the input
into 3 shares (x1, x2, x3) and for each pair xi, xi+1 runs the function F ′(xi, xi+1)
to obtain yi. F ′ is constructed in such a way that the correctness property of
ZKBoo/ZKB++ ensures y1 ⊕ y2 ⊕ y3 = y. The prover commits to all three views.
The verifier sends a challenge e ∈ {1, 2, 3}, which can be replaced by the output of
the random oracle applied on appropriate inputs. The prover opens input shares
(xe, xe+1) and the randomness used in computing F ′(xe, xe+1) in the corresponding
two views. The verifier then checks whether ye was correctly computed or not.
Another property of F ′ is that two out of three views leak no information about
the input x (the property is called 2-privacy; for more details we refer to Definition
3 in [71]). The protocol is 3-special sound and the soundness error of the protocol
is 2/3. Therefore, to reduce the soundness error to a negligible value the prover
runs multiple independent rounds of ZKBoo/ZKB++ protocol. In Fig. 4.5 in
Appendix we present the non-interactive version of the ZKB++ protocol.

4.3 Combining ZKB++ with Algebraic Commitments

In this section we present our main contribution: a Σ-protocol for statements in
cross-domains. Throughout this chapter we will consider the following statement
as the main building block that can be composed to create proofs for more general
statements.

Statement 4.3.1. Prove that there exists x such that F (x) = 1 and x is committed
to Cx, where x is a |x|-bit number, F is an arithmetic circuit, and the commitment
scheme is based on the group structure of order larger than 2|x| and allows some
homomorphic operations.

The naive approach to prove this statement is just to implement all algebraic
operations as a part of the circuit F and execute the ZKB++ protocol. However,
Chase et al. [38] already noticed that expressing modular exponentiation in a
boolean circuit would be computationally too expensive and fairly inefficient. In
particular, since the number of gates increases non-linearly in the size of the input,
this also means that the proof size increases at the same rate and so does the
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time required to compute the proof. As we will show, there exists a more efficient
way of realizing this kind of proofs.

4.3.1 Our Technique - First Approach

We propose the following technique, in which we take advantage of:

1) the fact that the ZKB++ protocol is a Σ-protocol,

2) the additive sharing of the prover’s input x in the group Z2 in ZKB++,

3) that Σ-protocols can be executed in parallel,

4) a multiplicatively homomorphic commitment scheme in the group Zq; for
simplicity we assume that 2|x| < q, the other case is addressed in Section 4.3.4.

The overall idea is to combine a ZKB++ round with zero-knowledge proofs
that input bits of x are bound to the public commitment. This part involves ZK
proofs for all individual bits of the ZKB++ input and the three exclusive-or based
bit shares. In particular, we prove that the exclusive-or value of those shares
is given in a commitment and is equal to the bit representation of x. We then
prove that values in the commitments match the real shares by giving opening
information for 2 out of 3 commitments, depending on the shares revealed by
ZKB++. More details can be found in Construction 4.3.1.

Construction 4.3.1 (Cross-ZKB++ First Attempt). Let x[i] denote the i-th bit
of input x, i.e. x = (. . . , x[1], x[0]). In the following, we describe necessary steps
to add to the ZKB++ protocol (Fig. 4.5) in order to realize the connection between
the input bits (. . . , x[1], x[0]) of the function F and the public commitment Cx, as
defined in Statement 4.3.1.

• (Commit Phase) — The prover follows the steps specified by the ZKB++
protocol. Then, for each bit i of input x the prover commits to x[i] and to
the respective input shares x[i]1, x[i]2, x[i]3 and gets Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3.
Again, for each bit i the prover executes the commit phase of a Σ-protocol
(with challenge space {1, 2, 3}) for the following algebraic statement:

P{
(
(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)

)
∧ (

∏
i∈[0,|x|−1]

C2i·x[i] ≡ Cx)∧(
(Cx[i]1 · Cx[i]2 · Cx[i]3 ≡ Cx[i]) ∨ (Cx[i]1 · Cx[i]2 · Cx[i]3 ≡ C2+x[i])

)
}.

(4.1)

The prover sends commitments {Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3}i∈[0,|x|−1], and the
commitments from the ZKB++ protocol and the Σ-protocol to prove the
statement Eq. (4.1) to the verifier.
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• (Challenge Phase) — The verifier sends the challenge e ∈ {1, 2, 3}.

• (Response Phase) — The prover executes the last phase of the ZKB++
and the other proofs, and sends the result to the verifier. Additionally,
he sends the opening information for commitments Cx[i]e , Cx[i]e+1, for all
i ∈ [0, |x| − 1].

To verify the result the verifier follows the steps specified by the ZKB++
protocol and additionally performs the following checks: reject if the opening is
wrong or the bits of the shares don’t match the bits in the ZKB++ views, or if
any of the additional algebraic proofs is invalid.

We present in Figs. 4.1 and 4.2 the detailed description of Construction 4.3.1,
instantiated with t rounds of ZKB++ and made non-interactive using the Fiat-
Shamir transformation.

Note that the proof system Eq. (4.1) does not explicitly enforce Cx[i]1 , Cx[i]2 , Cx[i]3
to be commitments to bits. However, as we show in the proof of Theorem 4.3.1, it
is the case.

4.3.1.1 Security analysis

Lemma 4.3.1. Assuming the ZKB++ protocol is complete, the Σ-protocols for
the algebraic statements are complete and the used commitment scheme is homo-
morphic, then Construction 4.3.1 is a complete Σ-protocol for the statement in
Problem 4.3.1.

Proof. Follows by inspection.

Theorem 4.3.1. Assuming the ZKB++ protocol is 3-special sound, the Σ-protocols
for the algebraic statements are 2-special sound and the used commitment scheme
is homomorphic and equivocal, then Construction 4.3.1 is a 3-special sound Σ-
protocol for Statement 4.3.1.

Proof. We will prove this theorem by constructing an efficient algorithm
ExtrCross that using 3 accepting tuples (a, e1, z1), (a, e2, z2) and (a, e3, z3) can
compute w∗ = (x∗, r∗), such that F (x∗) = 1 and Cx = Com(x∗, r∗), which is a
valid witness for the proven statement.

The algorithm works as follows:

1. First it uses the 3-special soundness of the ZKB++ protocol to extract a
value xZKB for which F (xZKB) = 1.

2. It uses the 2-special soundness of the Σ-protocols for the algebraic statements
to extract the values x[i], for all i ∈ [0, |x|−1], and the corresponding opening
information rx[i].
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p← Prove(x,Cx = Com(x, r))
1 : // (Commit step)

2 : (stζ , aζ)← ZKBF .Commit(x)
3 : foreach i ∈ [0, |x| − 1] do
4 : Cx[i] = Com(x[i], ri)
5 : foreach ρ ∈ [1, t] do
6 : Extract shares x[i](ρ)

1 , x[i](ρ)
2 , x[i](ρ)

3 from stζ

7 : C
x[i](ρ)

1
= Com(x[i](ρ)

1 , r
x[i](ρ)

1
)

8 : C
x[i](ρ)

2
= Com(x[i](ρ)

2 , r
x[i](ρ)

2
)

9 : C
x[i](ρ)

3
= Com(x[i](ρ)

3 , r
x[i](ρ)

3
)

10 : (stx, ax)← P{
∏

i∈[0,|x|−1]
C2i·x[i] ≡ Cx}.Commit(x,

∑|x|−1
i=0

2i · ri, r)

11 : foreach i ∈ [0, |x| − 1] do
12 : (stx[i], ax[i])← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Commit(x[i], ri)
13 : foreach ρ ∈ [1, t] do
14 : Cx[i](ρ) = C

x[i](ρ)
1
· C

x[i](ρ)
2
· C

x[i](ρ)
3

15 : (stx[i](ρ) , ax[i](ρ))← P{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Commit(

16 : x[i](ρ)
1 + x[i](ρ)

2 + x[i](ρ)
3 , r

x[i](ρ)
1

+ r
x[i](ρ)

2
+ r

x[i](ρ)
3
, ri)

17 : a = (aζ , (Cx[i])|x|, (Cx[i](ρ)
1

)|x|·t, (Cx[i](ρ)
2

)|x|·t, (Cx[i](ρ)
3

)|x|·t,

18 : ax, (ax[i])|x|, (ax[i](ρ))|x|·t) // output of (Commit step)

19 : e← H(a) // (Challenge step)

20 : // (Response step)

21 : rζ ← ZKBF .Response(e, stζ)
22 : rx ← P{

∏
i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Response(e, stx)

23 : foreach i ∈ [0, |x| − 1] do
24 : rx[i] ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Response(e, stx[i])
25 : foreach ρ ∈ [1, t] do
26 : rx[i](ρ) ← P{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Response(e, stx[i](ρ))
27 : return (e, a, rζ , rx, (rx[i])|x|, (rx[i](ρ))|x|·t,

28 : (x[i](ρ)
e , r

x[i](ρ)
e

)|x|·t, (x[i](ρ)
e+1, rx[i](ρ)

e+1
)|x|·t)

Figure 4.1: Description of Cross-ZKB++ (First Attempt) Prove algorithm for function
F (x) = 1 with a committed input Cx = Com(x, r), made non-interactive using the
Fiat-Shamir transformation and with t rounds of ZKB++.
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{Reject, Accept} ← Verify(Cx, p)
1 : // Reconstruct step

2 : Parse p as (e, a, rζ , rx, (rx[i])|x|, (rx[i](ρ))|x|·t,

3 : (x[i](ρ)
e , r

x[i](ρ)
e

)|x|·t, (x[i](ρ)
e+1, rx[i](ρ)

e+1
)|x|·t)

4 : Parse a as (aζ , (Cx[i])|x|, (Cx[i](ρ)
1

)|x|·t, (Cx[i](ρ)
2

)|x|·t, (Cx[i](ρ)
3

)|x|·t,

5 : ax, (ax[i])|x|, (ax[i](ρ))|x|·t)
6 : foreach i ∈ [0, |x| − 1] do
7 : foreach ρ ∈ [1, t] do
8 : Reject if C

x[i](ρ)
e
6= Com(x[i](ρ)

e , r
x[i](ρ)

e
) or C

x[i](ρ)
e+1
6= Com(x[i](ρ)

e+1, rx[i](ρ)
e+1

)

9 : (st′ζ , a′ζ)← ZKBF .Reconstruct(e, rζ)

10 : Reject if (x(ρ)
e )t, (x(ρ)

e+1)t do not match respective values in st′ζ
11 : a′x ← V{

∏
i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Reconstruct(e, rx)

12 : foreach i ∈ [0, |x| − 1] do
13 : a′x[i] ← V{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Reconstruct(e, rx[i])
14 : foreach ρ ∈ [1, t] do
15 : Cx[i](ρ) = C

x[i](ρ)
1
· C

x[i](ρ)
2
· C

x[i](ρ)
3

16 : a′x[i](ρ) ← V{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Reconstruct(e, rx[i](ρ))
17 : a′ = (a′ζ , (Cx[i])|x|, (Cx[i](ρ)

1
)|x|·t, (Cx[i](ρ)

2
)|x|·t, (Cx[i](ρ)

3
)|x|·t,

18 : a′x, (a′x[i])|x|, (a′x[i](ρ))|x|·t)
19 : e′ ← H(a′)
20 : Accept if e′ = e, otherwise Reject.

Figure 4.2: Description of Cross-ZKB++ (First Attempt) Verify algorithm for function
F (x) = 1 with a committed input Cx = Com(x, r), made non-interactive using the
Fiat-Shamir transformation and with t rounds of ZKB++.
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We now show the rest of his steps. Without loss of generality, let us assume that
e1 = 1, e2 = 2 and e3 = 3. For all i ∈ [0, |x|−1] let w2 = (x, r, x[i], rx[i], x[i]1, rx[i]1 ,
x[i]2, rx[i]2 , x[i]3, rx[i]3) be the witness extracted in step 2 and w1 = (xZKB) be the
witness extracted in step 1. Moreover, for i ∈ {1, 2, 3} let rx[i]ei and rx[i]ei+1 be
the opening information to commitments Cx[i]ei and Cx[i]ei+1 , where we know that
Cx[i]ei = Com(x[i]ei , rx[i]ei ) and Cx[i]ei+1 = Com(x[i]ei+1, rx[i]ei+1).

We now turn to the following observation. If at some point the algorithm
ExtrCross encounters two different opening information to one commitment, i.e.
Com(a, b) = Com(c, d) it can use (a, b, c, d) to compute the equivocal trapdoor
and open any commitment to an arbitrarily value. In particular, it can use this
trapdoor to open commitment Cx to the value xZKB, i.e. in case x 6= xZKB
we can use (x, r) and the equivocal trapdoor to compute x∗ = xZKB and the
corresponding r∗ such that Cx = Com(x∗, r∗), which would constitute a valid
witness w∗.

We now proceed with the proof and notice that due to the verification done
by the verifier and the extracted witness w2, we know that

Cx[i]1 = Com(x[i]1, rx[i]1) = Com(x[i]e1 , rx[i]e1
) = Com(x[i]e3+1, rx[i]e3+1),

Cx[i]2 = Com(x[i]2, rx[i]2) = Com(x[i]e2 , rx[i]e2
) = Com(x[i]e1+1, rx[i]e1+1),

Cx[i]3 = Com(x[i]3, rx[i]3) = Com(x[i]e3 , rx[i]e3
) = Com(x[i]e2+1, rx[i]e2+1),

and that for i ∈ {1, 2, 3} x[i]ei are bits that correspond to disclosed views in the
ZKB++ protocol. Thus, it follows that x[i]1 = x[i]e1 , x[i]2 = x[i]e2 and x[i]3 =
x[i]e3 and in particular that xZKB[i] = x[i]1 ⊕ x[i]2 ⊕ x[i]3 for all i ∈ [0, |x| − 1].

We will now argue that because of the soundness of the proof system used in
step 2, for all i ∈ [0, |x| − 1] we have x[i] = x[i]1 ⊕ x[i]2 ⊕ x[i]3 = xZKB[i]. Let us
take a look at the following table.

x[i]1 x[i]2 x[i]3 x[i]1 + x[i]2 + x[i]3 x[i]1 + x[i]2 + x[i]3 − 2 x[i]1 ⊕ x[i]2 ⊕ x[i]3
0 0 0 0 -2 0
0 0 1 1 -1 1
0 1 0 1 -1 1
0 1 1 2 0 0
1 0 0 1 -1 1
1 0 1 2 0 0
1 1 0 2 0 0
1 1 1 3 1 1

The two rows x[i]1 + x[i]2 + x[i]3 and x[i]1 + x[i]2 + x[i]3 − 2 correspond to
the value that the commitment Cx[i] = Com(x[i], rx[i]) can be opened to. However,
due to the fact that the statement contains the additional constraint that the
commitment opens to a bit, we conclude that for (x[i], rx[i]) we have x[i] = xZKB[i]
(we used the coloured background to highlight the only way that witness w2 can
be correct).
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Finally, we know that since the witness w2 is correct, it follows that:∑
i∈[0,|x|−1]

2i · x[i] = x.

However, since x[i] is the i-th bit of xZKB this means that xZKB = x and the
ExtrCross can return w∗ = (x∗, r∗) = (xZKB,

∑
i∈[0,|x|−1] 2i · rx[i]), which is a valid

opening for Cx, where F (x∗) = 1.
We conclude that the values returned by ExtrCross are a valid witness for State-

ment 4.3.1.

Theorem 4.3.2. Assuming the ZKB++ protocol and the Σ-protocols for the
algebraic statements are HVZK and the commitment scheme is perfectly hiding,
then Construction 4.3.1 is a HVZK Σ-protocol for Statement 4.3.1.

Proof. We will show how to construct a simulator SIM that on input in State-
ment 4.3.1, outputs a transcript (a, e, z). The simulator works as follows:

• It runs the simulator for ZKB++ receiving a transcript (a′, e, z′), where
z′ contains all the bits x[i]e and x[i]e+1. SIM chooses open information
rx[i]e , rx[i]e+1 and computes commitments Cx[i]e = Com(x[i]e, rx[i]e), Cx[i]e+1 =
Com(x[i]e+1, rx[i]e+1). Note that the openings rx[i]e , rx[i]e+1 are part of the
response z. Commitment to the bits x[i] and the bits x[i]e+2 are not opened,
so the simulator can compute Cx[i] and Cx[i]e+2 as commitments to zero.

• SIM runs the simulator for the Σ-protocol for the algebraic statements
receiving (a′′, e′′, z′′). Note that since this simulator should work for all pos-
sible challenges, there is a non-negligible probability that e′′ = e. Otherwise,
SIM just restarts it.

• Finally, SIM sets a = (a′, a′′, {Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3}i∈[0,|x|−1]) and z =
(z′, z′′, {rx[i]e , rx[i]e+1}i∈[0,|x|−1])

Since all the simulators used by SIM generate valid transcripts it remains to show
that the commitments Cx[i] and Cx[i]e+2 generated by SIM are indistinguishable
from values in real transcripts. However, this follows directly by the perfectly
hiding property of the commitment scheme.

Lemma 4.3.2. The soundness error of the Σ-protocol presented in Construc-
tion 4.3.1 is 2/3 and it has to be executed λ/(log2(3)− 1) times/rounds to achieve
a soundness error of 2−λ.

Proof. The soundness error is implied directly from 3-special soundness of the
protocol (Theorem 4.3.1) and the challenge space of cardinality 3. The number of
rounds, let us denote it t, is simply the solution of equation (2/3)t = 2−λ.
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4.3.2 Improved Version

The main disadvantage of Construction 4.3.1 is that we have to compute O(|x| · t)
commitments, which influences the number of public key operations we have to
additionally compute. The |x| factor is present because for each round ρ ∈ [1, t]
the relation x[i](ρ)

1 ⊕ x[i](ρ)
2 ⊕ x[i](ρ)

3 = x[i](ρ) is expressed as a conjunction of two
possible statements and we commit to the bits of the input x in every round. In
the following, we optimize Construction 4.3.1 to increase efficiency by decreasing
the number of commitment to O(|x|+ t).

Firstly, we notice that we can use the same commitments to bits of x for every
round that we repeat the protocol and instead of committing to the bits of the
ZKB++ shares we actually compute commitment to the whole values, saving a
lot of computations. Note that this idea will only work if the input to ZKB++ is
smaller that the order of the algebraic group that we use, otherwise the bitwise
exclusive-or of those values will not constitute a accepting input to the ZKB++
circuit (i.e. x1 ⊕ x2 ⊕ x3 is not always equal to (x1 mod q)⊕ (x2 mod q)⊕ (x3
mod q)). However, in the next subsection we show how to make the protocol work
for ZKB++ input without a size constraint.

Secondly, the bits x[i](ρ)
e(ρ) and x[i](ρ)

e(ρ)+1 are revealed in the response step of the
ZKB++ protocol (Fig. 4.5). Based on this observation, we can change the relation

x[i](ρ)
1 ⊕ x[i](ρ)

2 ⊕ x[i](ρ)
3 = x[i]

and express the third share using the hidden value x, i.e.

x[i](ρ)
e(ρ)+2 = x[i]⊕ (x[i](ρ)

e(ρ) ⊕ x[i](ρ)
e(ρ)+1).

We now take into account that this relation is constructed for known bits and
that we can express Ca⊕α for a given Ca and α using homomorphic properties
of the commitment scheme. Thus, we can actually compute a commitment to
x[i](ρ)

e(ρ)+2 using the commitments to bits of x and the revealed bits of values x[i](ρ)
e(ρ)

and x[i](ρ)
e(ρ)+1 . We use this commitment to bind the value x[i](ρ)

1 ⊕ x[i](ρ)
2 ⊕ x[i](ρ)

3
with the value x inside the commitment Cx.

In Construction 4.3.2 we describe those ideas in more detail. We will show a
single round of the protocol, which only has a soundness error of 2/3 but below
present the idea how decrease the soundness error efficiently. Our protocol is
divided into four essential steps:

1. committing to bits of x,

2. proving using a Schnorr based Σ-protocol that those commitments contain
a bit,

3. a ZKB++ proof that there exists a xZKB such that F (xZKB) = 1, and
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4. constant number of commitments Cx1 , Cx2 , Cx3 , which ensure x = xZKB.

Thus, if one would run the protocol many times, this still would require the
computation of O(|x| · t) commitments.

We solve this problem by taking advantage of the fact that Schnorr based
Σ-protocols can use a larger challenge space that decreases the soundness error
without repeating the protocol. Unfortunately, this does not apply for the ZKB++
part and for this to work we have to use a special kind of challenge. Let e1, . . . , eρ
be the challenges used for the ρ runs of the ZKB++ protocol, then we can use e.g.
eΣ = ∑

i∈[0,ρ−1] 3i · ei+1 in step 2. In other words, we execute the first two steps
once using the challenge eΣ and simultaneously run the last two steps ρ-times,
where each ZKB++ execution challenged respectively using e1, . . . , eρ.

This simple trick allows us to increase the efficiency of the proof. Now the
prover only has to compute a constant number of commitments per round and
commit to the bits of the input x only once.

Construction 4.3.2 (Cross-ZKB++). In the following, we describe necessary
steps to add to the ZKB++ protocol (Fig. 4.5) in order to realize the connection
between the input bits x = (. . . , x[1], x[0]) to the function F , where x < q and the
public commitment Cx in group of order q, as defined in Statement 4.3.1.

• (Commit Phase) — The prover executes the commit step of the ZKB++
protocol using input x, where Cx = Com(x, r). The prover chooses random
opening informations r1, . . . r|x|−1 and commits to the bits x[i] by computing:

Cx[i] = Com(x[i], ri), for i ∈ [1, |x| − 1].

To compute the remaining commitment he uses the opening information
r0 = r −∑i∈[1,|x|−1] 2i · ri. Note that because of the homomorphic properties
of the commitment scheme this means that Cx = ∏

i∈[0,|x|−1][2i]Cx[i] = Com(2i·
x[i], 2i · ri). For each bit i of input x the prover executes the commit step of
a Σ-protocol for the following algebraic statement:

P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}. (4.2)

The next step is also different. In this protocol we commit to the full
values of the respective input shares x1, x2, x3 and get Cx1 , Cx2 , Cx3, where
Cx1 = Com(x1, rx1), Cx2 = Com(x2, rx2), Cx3 = Com(x3, rx3). The prover
sends commitments {Cx[i]}i∈[0,|x|−1], Cx1 , Cx2 , Cx3 and the commitments from
the ZKB++ protocol and the Σ-protocol Eq. (4.2) to the verifier.

• (Challenge Phase) — The verifier sends the challenge e ∈ {1, 2, 3} to the
prover.
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• (Response Phase) — The prover executes the response step for ZKB++,
the Σ-protocol and sends the result to the verifier. Knowing e, the prover
computes α = xe ⊕ xe+1, where by α[i] we will denote its i-th bit. Using the
homomorphic exclusive-or described in subsection 4.2.1, he then computes
the commitment

Cz =
∏

i∈[0,|x|−1]
[2i]Cx[i]⊕α[i],

which is
Com(xe+2,

∑
i∈[0,|x|−1]

(−1)α[i]rx[i]).

Finally, the prover sends the opening information rxe, rxe+1 for commitments
Cxe , Cxe+1 and value rz = rxe+2 −

∏
i∈[0,|x|−1](−1)α[i]rx[i].

To verify the result the verifier follows the steps specified by the ZKB++
protocol and additionally performs the following checks: reject if the opening is
wrong or the shares in the commitments do not match the ones in the ZKB++
views, or if any of the additional algebraic proofs is invalid. The verifier aborts
if Cx 6=

∏
i∈[0,|x|−1][2i]Cx[i]. Knowing the shares xe, xe+1 and the openings rxe,

rxe+1, the verifier also computes Cz = ∏
i∈[0,|x|−1][2i]Cx[i]⊕αi and checks that Cz ·

Com(0, rz) = Cxe+2.

We present in Figs. 4.3 and 4.4 the detailed description of Construction 4.3.2,
instantiated with t rounds of ZKB++ and made non-interactive using the Fiat-
Shamir transformation.

4.3.3 Security analysis

Lemma 4.3.3. Assuming the ZKB++ protocol is complete, the Σ-protocols for
the algebraic statements are complete and the used commitment scheme is homo-
morphic, then Construction 4.3.2 is a complete Σ-protocol for the statement in
Problem 4.3.1.

Proof. Follows by inspection.

Theorem 4.3.3. Assuming the ZKB++ protocol is 3-special sound the used Σ-
protocols are 2-special sound and the used commitment scheme is homomorphic
and equivocal, then Construction 4.3.2 is a 3-special sound Σ-protocol for State-
ment 4.3.1.

Proof. As in the proof of Theorem 4.3.1 we will construct an efficient algorithm
ExtrCross that using 3 accepting tuples (a, e1, z1), (a, e2, z2) and (a, e3, z3) can
compute a witness that the statement is true. The extraction algorithm will return
a value x and an opening information r such that F (x) = 1 and Cx = Com(x, r),
which is a valid witness for the proven statement. We will now describe the idea
behind the algorithm ExtrCross, which is as follows:
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p← Prove(x,Cx = Com(x, r))
1 : // (Commit step)

2 : (stζ , aζ)← ZKBF .Commit(x)
3 : foreach i ∈ [1, |x| − 1] do
4 : Cx[i] = Com(x[i], ri)
5 : r0 = r −

∑
i∈[1,|x|−1]

2i · ri

6 : Cx[0] = Com(x[0], r0)
7 : foreach i ∈ [0, |x| − 1] do
8 : (stx[i], ax[i])← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Commit(x[i], ri)
9 : foreach ρ ∈ [1, t] do

10 : Extract shares x(ρ)
1 , x

(ρ)
2 , x

(ρ)
3 from stζ

11 : C
x

(ρ)
1

= Com(x(ρ)
1 , r

x
(ρ)
1

), C
x

(ρ)
2

= Com(x(ρ)
2 , r

x
(ρ)
2

), C
x

(ρ)
3

= Com(x(ρ)
3 , r

x
(ρ)
3

)

12 : a = (aζ , (Cx[i])|x|, (ax[i])|x|, (Cx(ρ)
1

)t, (Cx(ρ)
2

)t, (Cx(ρ)
3

)t) // output of (Commit step)

13 : // (Challenge step)

14 : e← H(a)
15 : // (Response step)

16 : rζ ← ZKBF .Response(e, stζ)
17 : foreach i ∈ [0, |x| − 1] do
18 : rx[i] ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Response(e, stx[i])
19 : foreach ρ ∈ [1, t] do
20 : α(ρ) = x(ρ)

e ⊕ x
(ρ)
e+1

21 : C(ρ)
z =

∏
i∈[0,|x|−1]

[2i]Cx[i]⊕α(ρ)[i]

22 : r(ρ)
z = r

x
(ρ)
e+2
−

∏
i∈[0,|x|−1]

(−1)α[i]rx[i]

23 : return (e, a, rζ , (rx[i])|x|, (x(ρ)
e , r

x
(ρ)
e

)t, (x(ρ)
e+1, rx(ρ)

e+1
)t, (r(ρ)

z )t)

Figure 4.3: Description of Cross-ZKB++ Prove algorithm for function F (x) = 1 with
a committed input Cx = Com(x, r), made non-interactive using the Fiat-Shamir
transformation and with t rounds of ZKB++.
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{Reject, Accept} ← Verify(Cx, p)
1 : // Reconstruct step

2 : Parse p as (e, a, rζ , (rx[i])|x|, (x(ρ)
e , r

x
(ρ)
e

)t, (x(ρ)
e+1, rx(ρ)

e+1
)t, (r(ρ)

z )t)

3 : Parse a as (aζ , (Cx[i])|x|, (ax[i])|x|, (Cx(ρ)
1

)t, (Cx(ρ)
2

)t, (Cx(ρ)
3

)t)

4 : Reject if Cx 6=
∏

i∈[0,|x|−1]
[2i]Cx[i]

5 : foreach ρ ∈ [1, t] do
6 : Reject if C

x
(ρ)
e
6= Com(x(ρ)

e , r
x

(ρ)
e

) or C
x

(ρ)
e+1
6= Com(x(ρ)

e+1, rx(ρ)
e+1

)

7 : α(ρ) = x(ρ)
e ⊕ x

(ρ)
e+1

8 : C(ρ)
z =

∏
i∈[0,|x|−1]

[2i]Cx[i]⊕α(ρ)[i]

9 : Reject if C(ρ)
z · Com(0, r(ρ)

z ) 6= C
x

(ρ)
e+2

10 : (st′ζ , a′ζ)← ZKBF .Reconstruct(e, rζ)

11 : Reject if (x(ρ)
e )t, (x(ρ)

e+1)t do not match respective values in st′ζ
12 : foreach i ∈ [0, |x| − 1] do
13 : a′x[i] ← V{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Reconstruct(e, rx[i])
14 : a′ = (a′ζ , (Cx[i])|x|, (a′x[i])|x|, (Cx(ρ)

1
)t, (Cx(ρ)

2
)t, (Cx(ρ)

3
)t)

15 : e′ ← H(a′)
16 : Accept if e′ = e, otherwise Reject.

Figure 4.4: Description of Cross-ZKB++ Verify algorithm for function F (x) = 1 with
a committed input Cx = Com(x, r), made non-interactive using the Fiat-Shamir
transformation and with t rounds of ZKB++.
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• First it uses the 3-special soundness of the ZKB++ protocol to extract a
value xZKB for which F (xZKB) = 1.

• It uses the 2-special soundness of the proof system for Eq. (4.2) to extract
the bits x[i], for all i ∈ [0, |x| − 1], and the opening information rx[i].

• It computes rZKB, as described below, and returns (x∗, r∗) = (xZKB, rZKB)
as a valid witness.

We will now show how ExtrCross computes witness w∗ = (x∗, r∗) and that the
returned values are valid. Let w2 = ({x[i], rx[i]}i∈[0,|x|−1]) be the witness extracted
in step 2 and w1 = (xZKB) be the witness extracted in step 1. Moreover, let rxe and
rxe+1 be the opening information to commitments Cxe1

, Cxe2
and Cxe3

, where we
know that Cxe1

= Com(xe1 , rxe1
), Cxe2

= Com(xe2 , rxe2
) and Cxe3

= Com(xe3 , rxe3
).

Again we observe that if the algorithm ExtrCross encounters two different
opening information to one commitment the equivocal trapdoor can be used to
open the commitment Cx to the value w1 = xZKB.

We now proceed with the proof and notice that since all the tuples are accepting,
we conclude that the openings of the commitments Cx1 , Cx2 , Cx3 are valid. This
is the case because we have valid openings (xe1 , rxe1

), (xe2 , rxe2
), (xe3 , rxe3

). It
follows that the binary representations of x1, x2, x3 correspond to the correct input
of the ZKB++ protocol and we have xZKB = x1 ⊕ x2 ⊕ x3. Note that this is only
true because xZKB is shorter that the order of the used group. Moreover, we know
that by construction:

Cx =
∏

i∈[0,|x|−1]
[2i]Com(x[i], rx[i]),

and that x[i] are bits.
Let e = e1, the ExtrCross computes commitment Cz = ∏

i∈[0,|x|−1][2i]Cx[i]⊕αi ,
where α = xe ⊕ xe+1. Since we know that for e1 we receive an accepting state, we
know that Cz · Com(0, rz) = Cxe+2 = Com(xe+2, rxe+2). This basically means that
ExtrCross can open Cz to xe+2 using randomness rxe+2 − rz. We now distinguish
two cases:

1. the openings of Cz and Cxe+2 are different, i.e. this means that∑
i∈[0,|x|−1]

2i(x[i]⊕ αi) 6= xe+2,

2. the openings of Cz and Cxe+2 are the same.

In the first case we notice that ExtrCross knows openings of the commitment
Cz to two different values. Thus, it can use an extractor Extrck to compute
the equivocality trapdoor for the commitment scheme and compute rZKB as
Eval(τ, xZKB, (Cx,

∑
i∈[0,|x|−1] 2ix[i],∑i∈[0,|x|−1] 2irx[i])). In other words, the extrac-

tion algorithm ExtrCross uses the trapdoor to open the commitment from the
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statement to the value xZKB for which F (xZKB) = 1. This means that the
returned values are a valid witness for the proven statement. In the second case
we know that: ∑

i∈[0,|x|−1]
2i(x[i]⊕ αi) = xe+2.

This means that r∗ = ∑
i∈[0,|x|−1] 2irx[i] is an opening of the commitment Cx

to a value x′ for which we know that x′ ⊕ xe ⊕ xe+1 = xe+2. It follows that
x′ = xe ⊕ xe+1 ⊕ xe+2 = xZKB. Thus, in this case ExtrCross can also return
w∗ = (xZKB, r∗), which ends the proof.

Theorem 4.3.4. Assuming the ZKB++ protocol is HVZK and the commitment
scheme is perfectly hiding, then Construction 4.3.2 is a HVZK Σ-protocol for State-
ment 4.3.1.

Proof. We will show how to construct a simulator SIM that on input of a
statement as in Statement 4.3.1 with commitment Cx, outputs a transcript
(a, e, z). The simulator works as follows:

• It runs the simulator for ZKB++ receiving a transcript (a′, e, z′), where z′
contains the shares xe and xe+1.

• SIM chooses randomness rxe , rxe+1 and computes commitments Cxe =
Com(xe, rxe), Cx[i]e+1 = Com(xe+1, rxe+1). Note that the openings for those
commitments are part of the response z. Commitments to the bits of x[i]
and to xe+2 are not opened, so the simulator can compute the commitments
Cx[i] and Cxe+2 as follows.

• For i ∈ [1, |x| − 1] it computes commitments Cx[i] as commitments to 0. For
j = 0 it uses the homomorphic properties of the commitment scheme to
compute Cx[j] such that Cx = ∏|x|−1

i=0 [2i]Cx[i].

• It then chooses a randomness rz and computes

Cxe+2 =
∏

i∈[0,|x|−1]
C2i·(x[i]⊕xe[i]⊕xe+1[i]) · Com(0,−(rz)).

• SIM runs the simulator for the Σ-protocol for the algebraic statement
receiving (a′′, e′′, z′′). Note that since this simulator should work for all pos-
sible challenges, there is a non-negligible probability that e′′ = e. Otherwise,
SIM just restarts it.

• Finally, SIM sets a = (a′, a′′, Cx1 , Cx2 , Cx3 , {Cx[i]}i∈[0,|x|−1]) and z = (z′, z′′,
rxe , rxe+1 , rz)
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Lemma 4.3.4. The soundness error of the Σ-protocol presented in Construc-
tion 4.3.2 is 2/3.

Proof. It is implied directly from 3-special soundness of the protocol (Theo-
rem 4.3.3) and the challenge space of cardinality 3.

4.3.4 Optimization for large input space

We now show how to reduce the number of public key operations to be proportional
to the message space of the commitment scheme and independent of the input
size of the function F , which is desirable when the input to the ZKB++ circuit is
large and required if we want to use Construction 4.3.2 for such circuits. This
optimization will utilize the properties of modular arithmetics.

Let F (m) = 1 be a function that has to be proven in the cross-domains, and let
m ≥ q where [0, q−1] is the message space of the commitment scheme. The prover
proceeds as follows. Instead of committing to m, it commits to C = Comq(m′),
where m′ satisfies m′ < q and m = k · q +m′ and proves the relation between m
and m′ as part of F . Let the original cross-domain statement be described as:
P{m : (F (m) = 1) ∧ (Cm = Comq(m, r))}. Then the optimized version is defined
as:

P{m,m′, k : (Fopt(m,m′, k, q) = 1) ∧ Cm = Comq(m′, r)},

where
Fopt(m,m′, k, q) = (F (m) = 1 ∧ (m = m′ + k · q)) .

It is easy to see that Cm can be opened either to m, or to m′, as both values are
equal modulo q. Furthermore, the prover indeed proves that m and m′ are equal
modulo q. Finally, the prover proves that m′ is the value committed to in Cm.

This solution requires us to create an arithmetic circuit as part of the statement
proven by ZKB++. Fortunately, this is a standard integer multiplication circuit
of a number k < |x| and q = O(λ). We can view such a multiplication as the
addition of q, k-bit numbers. Since adding two k-bit numbers can be done using
O(k) gates, it follows that this multiplication can be done using O(k · q) gates,
which is also O(|x| ·λ). In particular, we have that this can be done using O(|F | ·λ)
gates, because |x| < |F |. Thus, the asymptotic number of symmetric operations
remains the same and we only introduce a slight overhead using this technique.

4.3.5 Efficiency

We will discuss the computation overhead and increase in the proof size of our
techniques. We will compare both constructions for Statement 4.3.1 and focus
only on public key operations, i.e. exponentiations and multiplications in the used
group G of order q, where `q = log q. Let us assume that we run both protocols ρ
times for input x and that we use Pedersen commitments. Moreover, we will by
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`ZKB denote the proof size of the ZKB++ protocol, by `Σ the proof size of the
Σ-protocol for Eq. (4.1) and by `G the size of group elements.

In such a case the proof size of Construction 4.3.1 is ρ · (`ZKB + `Σ + 4 · |x| · `G +
2 · |x| · `q), which asymptotically is O(|x| · ρ). Construction 4.3.2 was introduced
to decrease this by depending less on Σ-protocols for algebraic statements and
using the homomorphic properties of the commitment scheme. When executed
in parallel, the proof size is ρ · (`ZKB + (3 · |x| + 3) · `G + 2 · |x| · `q + 3 · `q),
which is better but still O(|x| · ρ). Fortunately, we have shown that certain
parts of the computations can be reused throughout every round. Therefore,
for an optimized version of Construction 4.3.2 we end up with a proof size of
ρ · (`ZKB + 3 · `G + 3 · `q) + |x| · (3 · `G + 2 · `q), which is O(|x|+ ρ).

To compute the proof in Construction 4.3.1 we have to compute 4 · ρ · |x|
commitments and compute the proof for statement Eq. (4.1), which strongly
depends on the instantiation but it requires at least O(ρ · |x|) exponentiations.
Computing commitments to bits costs one exponentiation and one multiplication.
In the end, for this construction we require O(ρ · |x|) exponentiations. In case
of Construction 4.3.2 we have to compute |x| · (3 · `G) + ρ · 3 · `G commitments
and 2 · |x| exponentiations for the proof for statement Eq. (4.2). We also have to
compute the commitment Cz, which requires us to compute |x| · ρ multiplications
in G. Given the fact, that we assumed that |x| is of the size of log q it follows that
the cost of those multiplications is comparable with ρ exponentiations in G. It
follows, that for this construction we require only O(|x|+ ρ) exponentiations.

4.4 NIZK OR-proofs in cross-domains

Proofs of partial knowledge [49], also known as OR-proofs, allow to efficiently
prove only a part of a statement, without revealing, which part has been proven.
Below we show how to prove the most simple OR-statement in cross-domains,
which can be used as a basis for proving more complex statements.

Statement 4.4.1. Prove knowledge of x1 s.t. F (x1) = 1 or knowledge of x2 such
that y = gx2, where F is an arithmetic circuit.

We are going to use ZKB++ for proving the first part and the standard
Schnorr proof for the second part. Since the both parts of the proof system are
Σ-protocols, a challenge e will be “distributed” between these parts as e = e1 + e2.
Assume e1 ∈ Zp and e2 ∈ Zq, where p > q. The prover generates e1 or e2 and
derives the remaining element based on e. Both e1 and e2 should have the same
distribution regardless of the part that is being proved. Depending on which
part is being proved, we proceed as follows. Given e ∈ Zp, to prove the first
part the prover picks e2 ←R Zq and computes e1 = e − k · e2, where k = bp/qc.
Given e ∈ Zp, to prove the second part the prover picks e1 ←R Zp and computes
e′2 = e− e1 ∈ Zp. To preserve the distribution of e2, the prover performs rejection
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sampling: it further computes the largest p′ that satisfies p′ = k · q ≤ p for integer
k and rejects and regenerates e1 if e1 > Zp′ , otherwise e2 ← e′2(mod q). It is
easy to see that the probability of rejection is at most 1/2, and e1 and e2 are
distributed identically regardless of which part has been proven.

Remark 4.4.1. If p >> q, it suffices to stay in Zp and convert an element from
Zp to Zq by taking its residue.

4.5 Conclusion

Zero-knowledge proofs are an essential component in various protocols, including
payment, electronic voting, anonymous credential systems. Proofs based on
algebraic groups and for arithmetic circuits represent two different domains. In
this work, we presented an efficient Σ-protocol in cross-domains, which can be used
to prove the possession of standard RSA/DSA signatures. Moreover, the protocol
can be executed non-interactively using the Fiat-Shamir transformation. It follows,
that our results can be applied to build round-optimal and concurrent-secure
anonymous credentials based on standard signature schemes. Our techniques are
especially beneficial when applied for large circuits and when the prover’s running
time is critical. As future work, it would be interesting to explore whether the
approach by Ames et al. [4] can be used to achieve yet more efficient and compact
NIZK proofs in cross-domains.
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The prover knows x to a public function F , such that y = F (x), where y is public.
t denotes the number of (parallel) rounds.
p← Prove(x)

1. (Commit step) For each round ρ ∈ [1, t]: Sample random tapes k(ρ)
1 , k(ρ)

2 , k(ρ)
3

and simulate the MPC protocol to get an output view View(ρ)
j and output

share y(ρ)
j .

(x(ρ)
1 , x

(ρ)
2 , x

(ρ)
3 )← Share(x, k(ρ)

1 , k
(ρ)
2 , k

(ρ)
3 )

= (G(k(ρ)
1 ), G(k(ρ)

2 ), x⊕G(k(ρ)
1 )⊕G(k(ρ)

2 ))

View(ρ)
j ← Upd(...Upd(x(ρ)

j , x
(ρ)
j+1, k

(ρ)
j , k

(ρ)
j+1)...)

y
(ρ)
j ← Output(View(ρ)

j )

Commit D(ρ)
j ← H ′(k(ρ)

j ,View(ρ)
j ), let a(ρ) = (y(ρ)

1 , y
(ρ)
2 , y

(ρ)
3 , D

(ρ)
1 , D

(ρ)
2 , D

(ρ)
3 )

and let a = a(1), . . . , a(t) be the output of this step.
2. Compute the challenge: e ← H(a). Interpret e such that for ρ ∈ [1, t],

e(ρ) ∈ {1, 2, 3}.
3. (Response step) For each round ρ ∈ [1, t]: let b(ρ) = (y(ρ)

e(ρ)+2, D
(ρ)
e(ρ)+2) and

set z(ρ) ← (View(ρ)
e(ρ)+1, k

(ρ)
e(ρ) , k

(ρ)
e(ρ)+1). If e(ρ) 6= 1, add x

(ρ)
3 to z(ρ). Let

r← [(b(1), z(1)), . . . , (b(t), z(t))] be the output of this step.
4. Output p← [e, r].

b← V erify(y, p):
1. (Reconstruct step) For each round ρ ∈ [1, t]: Run the MPC protocol to

reconstruct the views. In particular: compute x(ρ)
e(ρ) , x

(ρ)
e(ρ)+1 using z(ρ) as part

of r of p in one of the following ways: x(ρ)
1 ← G(k(ρ)

1 ), x(ρ)
2 ← G(k(ρ)

2 ), or x(ρ)
3

given as part of z(ρ).
Obtain View(ρ)

e(ρ)+1 from z(ρ) and compute
View(ρ)

e ← Upd(...Upd(x(ρ)
j , x

(ρ)
j+1, k

(ρ)
j , k

(ρ)
j+1)...), y(ρ)

e(ρ) ← Output(View(ρ)
e(ρ)),

y
(ρ)
e(ρ)+1 ← Output(View(i)

e(ρ)+1), y(i)
e(ρ)+2 ← y ⊕ y(i)

e(ρ) ⊕ y
(i)
e(ρ)+1.

Compute the commitments for views View(ρ)
e(ρ) and View(ρ+1)

e(ρ) .
For j ∈ {e(ρ), e(ρ) + 1}: D(ρ)

j ← H ′(k(ρ)
j ,View(ρ)

j ).
Let a′(ρ) = (y(ρ)

1 , y
(ρ)
2 , y

(ρ)
3 , D

(ρ)
1 , D

(ρ)
2 , D

(ρ)
3 ) and note that y(ρ)

e(ρ)+2 and D(ρ)
e(ρ)+2

are part of z(ρ). Let a′ = (a′(1), . . . , a′(t)) be the output of this step.
2. Compute the challenge: e′ ← H(a′). If e′ = e, output Accept, otherwise

output Reject.

Figure 4.5: Non-interactive ZKB++ [37].
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5.1 Introduction

In 2008, Bitcoin [99] laid the foundation for the increasingly important areas of
cryptocurrencies and distributed ledgers. One of the main advantages of such
technology is that there is no single central authority that controls transaction flow
(censorship resistance). Anyone can access a public ledger, which is a sequence
of blocks that contains transactions. For example, in Bitcoin, participants called
“miners” are randomly selected to produce and append a new block to the chain.
This selection process relies on the “proof-of-work” concept (PoW). To be able
to append a block to the chain, the participant has to find a value, such that a
pseudo-random function (cryptographic hash function) is evaluated below some
threshold. The threshold is adapted by the protocol at intervals to yield an average
time span of 10 minutes between blocks. Although PoW allows to remove a central
authority from the model and to find a consensus of what blocks constitute the
correct chain, most of the computation the miners do is solving this hash puzzle.
Recent reports estimate that the energy used to keep the Bitcoin network running
exceeded the power supply of a small state [103].

To avoid extreme energy consumption induced by PoW protocols, an alternative
approach, “proof-of-stake” (PoS), has been proposed. Here, the probability of
being selected for appending the chain depends on the stake a party owns. It
does not matter whether the party owns an account with some stake v, or several
accounts whose accumulated stake amounts to v. The protocol consensus works
as long as the majority of all stake is controlled by honest users.

In cryptocurrencies based on proof-of-stake [72, 91, 62, 65], a single party that
produces a block is chosen randomly from a set of participants, called validators
(which is the equivalent to miners in a PoW protocol). In a PoS cryptocurrency
there could be potentially thousands or millions users, who may come and go. It
is up to a PoS protocol to determine and fix a relatively small (typically tens or
hundreds) set of validators [72] and a time window, in which a selected validator
can append a blockchain. To create a consistent picture for all validators, this
selection has to be deterministic, but pseudo-random – properties often achieved
by relying on Verifiable Random Functions (VRF). However, if an adversary knows
in advance which of the validators is selected, it can launch a targeted attack and
cause a denial-of-service.

Previous approaches to solving this issue aim to run the selection process
in private, with the selected participant publishing a proof alongside the block.
Until recently, these approaches failed to guarantee only a single participant to be
chosen [72]. After much interest in a solution that provides such a guarantee [118],
Boneh et al. proposed a formal definition and several instantiations of a Single
Secret Leader Election [18].

The primary motivation of having a single leader is a simple consensus design,
as there are no forks in the blockchain. This property encourages the leader to

121



CHAPTER 5. SINGLE SECRET LEADER ELECTION FROM MPC

solely perform heavy computations, which may even exceed the running time of
SSLE and/or require multiple cores. For example, the leader’s task may consist
of prover-heavy computations, whereas verification is very fast (SNARKs). Many
protocols assume uniqueness, and it is easy to update them with a SSLE solution.
They may require a full redesign if the leader uniqueness assumption no longer
holds.

5.1.1 Our contribution

1. In this work, we propose a framework for constructing an efficient Single Se-
cret Leader Election (SSLE), which relies on secure multi-party computation
(MPC). We formulate a simulation-based definition of the SSLE problem.
We first develop, step by step, an efficient t-threshold SSLE scheme that is
based on Shamir’s secret sharing in the random oracle model. We prove that
our construction is secure in the honest-but-curious and malicious adversary
models. For the latter, we additionally assume DDH. For N parties, the
leader election requires O(logN) communication rounds and O(N) of basic
operations on the underlying primitives. Furthermore, we instantiated our
SSLE scheme using the MPC framework by Wang et al. [129], which is
secure against any number of malicious parties and is more scalable, but
requires all parties to be online.

2. Our SSLE scheme can handle arbitrary stake distributions very efficiently.
For N parties and the overall sum of their stake units S, our construction
achieves O(N logS) cost of the election. Compared with a standard multi-
registration technique, in which a party registers multiple times for the
election proportionally to her stake, this cost may go up to O(S), which
makes our solution exceptionally efficient if N � S.

3. We implemented and microbenchmarked our solution using two different
MPC frameworks. The performance evaluation indicates that our DDH-
based SSLE protocol can be used in practical scenarios up to 30-40 parties
when instantiated with the textbook O(N2) techniques using the verifiable
secret sharing scheme (VSS). Furthermore, we implemented our SSLE in
the MPC framework based on garbled circuits [129]. The overall time to set
up and complete the protocol for 128 parties in a practical scenario is less
than 7 minutes.

5.1.2 Related work

The idea of proof-of-stake was first discussed on the Bitcoin forum1 in 2011.
Kiayaias et al. presented a provably-secure PoS protocol “Ouroboros” in CRYPTO
2017 [91], in which the participants that produce the blocks are elected publically.

1https://bitcointalk.org/index.php?topic=27787.0 (accessed 14.06.2021)

122



5.1. INTRODUCTION

Such a leader election may be public as in Ouroboros or private as in Algorand [72].
In a private leader election, each node needs to check whether it will be the next
leader using its private information but then can prove to others using only public
information that it is indeed the next leader. Such a design makes it impossible
for others to predict and carry out DoS attacks against the next leader until it is
too late.

Algorand achieves this private leader election using Verifiable Random Func-
tions, for which a participant has to prove the outcome to be below a certain
threshold. This, however, can result in either no participant or multiple partic-
ipants being elected. Another protocol employing a private leader election has
been formalized by Ganesh et al., who presented a privacy-preserving protocol
called Ouroboros Praos [65], which does not guarantee existence and uniqueness
of the leader either.

To mitigate these shortcomings of previous private leader elections, a problem
statement of a single secret leader election was first posed at a GitHub page [118]
in the form of a research proposal in the context of the Filecoin cryptocurrency.
The protocol’s goal is to elect a single leader among a finite set of participants.
Informally, such a protocol consisting of n participants has to meet the following
requirements: fairness – the probability of a particular party being elected should
be proportional to her power or stake, secrecy – only the elected leader should
learn the result of the protocol, (public) verifiability – the elected leader should be
able to prove the leadership to the other participants or observers by showing a
proof-string, unpredictability – no set of participants smaller than a threshold m of
n should be able to predict the outcome of the protocol with a probability greater
than a negligible factor. To tolerate sporadic drop outs, the protocol should satisfy
liveness – it should terminate as long as the honest majority is participating.
Moreover, the protocol should be reasonably efficient, that is, on-chain O(log n)
bits per block, O(n) communication complexity (per active party).

Following this call, Boneh et al. [18] formalized the problem of Single Secret
Leader Election (SSLE) and presented three constructions: 1) a feasibility result
based on indistinguishability obfuscation, 2) a construction based on threshold
fully homomorphic encryption (TFHE), and 3) a construction based on DDH that
achieves a weaker notion of security. To the best of our knowledge, this is the
only work on the SSLE problem in the literature, which proposes provably secure
SSLE constructions, so we will directly compare our solution to the latter two
constructions in [18].

5.1.3 Comparison with Boneh et al. [18]

SSLE is a protocol between N parties, who secretly and randomly elect a leader
among them. SSLE protocols are sought to be used as a subroutine in PoS
protocols. Intuitively, an adversary may corrupt up to a specific number of parties
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Construction Assump-
tions

Security
notion

Number of
rounds

Computation /
Communication

Obfuscation-based [18] iO full, non-
interactive 0 + beacon feasibility result

TFHE-based [18] TFHE,
weak PRF

full,
t-threshold 1 + beacon depends on a

particular instance

DDH-based [18] ROM,
DDH weak 1 + beacon O(

√
N) pub. op. /

O(
√
N) group el.

Our 5.4.1 ROM,
DDH

full,
t-threshold O(logN) O(N) MPC op.

Our 5.5.1 ROM full O(logN) O(N) MPC op.

Table 5.1: Comparison of SSLE protocols, assuming all N users participate in
election, amortized per one election

and observe public messages during an election, but should not be able to predict
a chosen leader up to a point when the leader reveals herself (and does something
useful, e.g. appends a blockchain), nor should the adversary be able to influence
the election by sending malformed messages, or pretending that it is the elected
leader when it is not. In order to let anyone to verify transactions in a chain,
a leader has to append new transactions along with a proof of leadership, and
the verification algorithm should use only the data stored on the blockchain.
Therefore, in the context of PoS systems, we distinguish on-chain and off-chain
messages sent by the parties according to a SSLE scheme. A multi-round SSLE
protocol is not required to post intermediate messages in a blockchain, as long as
the parties agree on the final on-chain message that should be appended to the
chain. We may refer to on-chain messages as to a public state. An SSLE scheme
may or may not require all N parties to be online during the election phase. If in
a PoS protocol the parties’ stakes are public, an SSLE scheme can be naturally
used out-of-box. If the stakes are private, a PoS protocol and a SSLE scheme have
to agree in advance on the setup parameters and how the PoS protocol supplies
the inputs to the SSLE scheme. An SSLE scheme may use a public randomness
beacon R that becomes available to the parties before each election starts.

We begin by first comparing how arbitrary stake distributions are handled
in [18] and our work. While a scenario with equal stakes is easier to analyze,
in practice one has to also account for arbitrary stake distributions and how
they affect the overall performance of the scheme. Boneh et al. [18] suggest a
multi-registration technique (one registration corresponds to one unit of stake)
to address arbitrary stake distributions, which makes the associated costs grow
linearly with the user’s stake. In contrast, our construction offers a more efficient
tree-based solution to this setting with the associated costs grow logarithmically
in the total stake S of participating parties. In the rest of our comparison, we
will assume equal stakes.
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The TFHE-based SSLE [18] uses TFHE [19] as a building block, which in
turn is based on fully homomorphic encryption (FHE) [70]. Its security relies on
learning with errors assumption (LWE) [111]. FHE [70] is parametrized by a circuit
depth that the scheme can handle without bootstrapping. The TFHE-based SSLE
is instantiated with a circuit multiplicative depth parameter D := d+log logN+1,
where d is a circuit depth of a low-depth block cipher f optimized for the FHE
setting, in particular Boneh et al. [18] suggest that it can be instantiated as low
as d = 5 with 127 bit blocks [56]. The evaluation of a circuit on encrypted data
in FHE [70] has the complexity Õ((nD)ω) of field operations per gate, where
ω < 2.3727 is the matrix multiplication exponent, D is the depth of a circuit, and n
the dimensional parameter, which depends on the security parameter λ. Depending
on how the underlying building blocks are instantiated, the TFHE-based SSLE
scheme offers various trade-offs in terms of assumptions and space/runtime. For
more details, we refer the reader to [18, 19]. After a random beacon R is revealed,
the parties engage in one round of communication to determine a leader.

The DDH-based construction [18] relies on more lightweight components than
the TFHE-based one, but achieves only a weaker security notion of unpredictability.
More specifically, for N parties, a potential leader is picked from a subset of data
elements representing O(

√
N) parties, and an adversary is asked to predict a

leader within this subset (excluding parties controlled by the adversary), whereas
in the full notion of unpredictability an adversary has to guess a purported leader
from the set of N parties. To register for an election, a party has to update
and shuffle O(

√
N) group elements available and provide a NIZK proof of honest

shuffling and re-randomization. These messages have to be considered on-chain,
so that everyone could verify the outcome of an election. One can trade efficiency
for security in this scheme by changing the number of elements that has to be
reshuffled during registration. After a random beacon R is revealed, a leader can
be determined locally, thus requiring no further communication.

Our SSLE construction runs O(logN) rounds of communication and does
not use a randomness beacon R. A party is required to post as little as O(1) of
information on-chain during registration. From [18], we use game-based definitions
as a starting point for our definitions, and the technique to prevent duplicate key
attacks.

We compare our constructions with possible instantiations of Boneh et al. [18]
in Table 5.1. For completeness, we included the obfuscation-based feasibility
result in [18]. This construction is the only one among the discussed ones that
does not require the leader to re-register in future elections and the only one
non-interactive, that is the outcome of election is known right after the randomness
beacon is revealed. By pub. op. we denote the number of public key operations
such as exponentiation, by MPC op. we denote basic MPC operations such as
multiplication.

In all discussed schemes, the leader has to re-register before next election, since
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she reveals a secret that was generated and used for the registration.

Randomness beacon A randomness beacon can be implemented in several
ways, ranging from harnessing randomness from financial data [46, 21, 14] to
cryptographic delay functions [95, 17], and specialized systems [75, 34, 122]. In
blockchain based applications, however, the most frequent source of randomness
is the output of verifiable random functions [98] (VRFs). Bootstrapped with one
initial random value, the leader of each election can publish a new, verifiable ran-
dom value based on the previous one without additional rounds of communication.
One possible instantiation is based on BLS signatures [20], which assume random
oracles and the intractability of the computational Diffie-Hellman problem in a
gap Diffie-Hellman group and require a single exponentiation and a single call to
the random oracle per signature and the verification additionally requires a single
pairing operation.

5.1.4 On the practicality of our SSLE framework

The number of validators depends on the PoS protocol and can vary from dozens
to a few hundred and in limited cases thousands. It does not necessarily correlate
with the total number of users. Stake disbalances also vary, and therefore they need
to be approximated in our framework by a tree of a sufficient height (Section 5.6.1).
Our tree optimization technique has a better effect when applied to a smaller set
of validators.

In our SSLE framework, we rely on existing MPC techniques. If one comes up
with a more efficient MPC protocol than the ones used in our constructions, it
will help to further improve the running time of the SSLE.

Chapter Outline The rest of the chapter is organized as follows. Definitions
are in Section 5.2 and Section 5.8. In Section 5.3, we discuss how naive attempts
fail to solve the problem of SSLE and present another attempt based on a new
two-party primitive called Oblivious Select. In Section 5.4, we develop our attempt
further and present our SSLE protocol from DDH based on MPC. In Section 5.5,
we instantiate our construction using the MPC framework on boolean circuits by
Wang et al. In Section 5.6, we discuss some practical considerations for SSLE.
In Section 5.7, we evaluate the performance of our SSLE instantiated with two
different MPC frameworks in a practical scenario. Security analysis of our SSLE
framework is in Section 5.9. Finally, we conclude in Section 5.10.

5.2 Definitions
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5.2.1 Preliminaries

DDH Assumption [54] Let g be a generator of a group G of a prime order q.
For any probabilistic polynomial time (PPT) machine Adv and (x, y, z)← (Zq)3,

|Pr[Adv(g, gx, gy, gxy) = 1]− Pr[Adv(g, gx, gy, gz) = 1]| ≤ negl(λ).

Secret Sharing Secret sharing schemes allow a dealer to share a secret s among
parties such that later a qualified set of parties can jointly reconstruct s, whereas
a non-qualified set of parties learns no information about it. We use Shamir’s
Secret Sharing [115], which is a t-threshold scheme. Let P1, ...,PN be N parties
and there is a threshold t < N/2. In Shamir’s secret sharing scheme, a secret can
be shared among N parties such that t+ 1 parties can reconstruct it, whereas t
parties learn no information about the secret. We denote [x] a Shamir sharing of
x in a prime field Zq, for which each party Pi gets a secret share xi ∈ Zq. For this
scheme to work, it is required that N < q. We denote Share a protocol to share
a secret x as [x], and Rec to reconstruct x from [x]. Whereas Shamir’s Secret
Sharing is only secure against passive adversaries, Verifiable Secret Share (VSS)
schemes [107] can protect against active adversaries.

Communication and adversary models We assume secure point-to-point
communication channels between parties. An adversary is allowed to corrupt up to
t parties. We consider two models of adversaries: honest-but-curious and malicious.
In the honest-but-curious model, adversaries follow the protocol honestly and
try to learn as much as possible from observed communication by corrupted
parties. In the malicious model, the parties controlled by an adversary can
stop communicating or send arbitrary messages to other parties, not necessarily
following the prescribed protocols.

Secure Multi-Party Computation (MPC) MPC allows a set of parties P =
{P1, ...,PN} to jointly compute a function on their private inputs in a privacy-
preserving manner [131]. Our SSLE scheme is based on MPC.

We borrow the standard definitions of VIEW and t-Privacy from [3].

Definition 5.2.1 (VIEW ). Let P = {P1, ...,PN} engage in a protocol Π that
computes function f(in1, ..., inN) = (out1, ..., outN). Let VIEW Π(Pi) denote the
view of participant Pi during the execution of protocol Π. More precisely, Pi’s
view is formed by its input and internal random coin tosses ri, as well as messages
m1, ...,ml passed between the parties during protocol execution:

VIEW Π(Pi) = (ini, ri;m1, ...,ml).

We denote the combined view of a set of participants I ⊆ P (i.e., the union of
the views of the participants in I) by VIEW Π(I).

127



CHAPTER 5. SINGLE SECRET LEADER ELECTION FROM MPC

Definition 5.2.2 (t-Privacy). We say that protocol Π is t-private in the presense
of honest-but-curious adversaries if for all I ⊂ P with |I| ≤ t < N there exist a
PPT simulator SI such that

{SI(inI , f(in1, ..., inN))} ≡ {VIEW Π(I), outI},

where inI = ⋃
Pi∈I{ini}, outI = ⋃

Pi∈I{outi}, and ≡ denotes computational indis-
tinguishability.

In the malicious setting, the subset I of honest-but-curious parties in Def. 5.2.1
and 5.2.2 is replaced with an equal-sized subset of malicious PPT parties IM , and
the protocol Π is replaced with ΠM , its maliciously-secure version.

We instantiate our SSLE scheme using the following underlying protocols:
1. the VSS-based MPC protocols [107, 110, 69, 67, 50, 36], in which secrets

are shared between the parties using Shamir’s secret sharing scheme:
• protocols for adding shares, substracting, and multiplying by a scalar:

[x] + [y], [x]− [y], [α · x],
• RndFld to generate a share of a random field element in Zp,
• RndBit to generate a share of a random bit,
• Mul to compute [x · y] given [x] and [y].

2. garbled circuit based MPC [129] on boolean circuits, where each party can
privately input her input to a computing circuit.

5.2.2 Single Secret Leader Election

We consider the following problem. Given a set of N parties. The parties do some
interactive pre-computation. Then, each party can run a local function that takes
the transcript as input to determine whether it is the leader or not. The leader
can show a proof that it is the leader.

Informally, we require the leader selection protocol to satisfy the following
properties: a) there should be a unique leader (uniqueness), b) only the leader
and no one else should be able to convince other parties that it is the leader
(soundness), c) the parties should have equal chances of becoming the leader
(fairness).

Game-based formulation of the SSLE problem We first present the game-
based definition. Our syntax and security properties of SSLE are based on
that of [18], with a slight difference that we do not have an external source of
randomness (random beacon) and we allow multiple rounds of communication
between the parties during the election, whereas the definition of SSLE in [18]
allows a single round of communication. Due to page limits, we postpone the
game-based definition to Section 5.8.
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Simulation-based definition of the SSLE problem We now formulate the
SSLE problem as an ideal functionality FN,`,cSSLE , which is presented in Figure 5.1.
In the description of the ideal functionality, we denote election id as eid, and
registration numbers as Ci. We then show that the simulation-based definition
implies the game-based one.

Our modeling of the ideal functionality FN,`,cSSLE for N parties with an adversary
statically corrupting up to t of them is influenced by the game-based definition
(Definition 5.8.1), which defines the registration and verification algorithms that
surround the election itself. We follow the same approach and define messages in
the ideal functionality for registration, election, and their verification.

In FN,`,cSSLE , the parties send messages to the ideal functionality that correspond
to a specific stage of the election. First, the parties register for an election with
id eid via sending register messages containing the registration number C. They
receive notifications from the ideal functionality for every registered party. To
verify registration, the parties send messages regVerify to the ideal functionality,
which outputs 1 if all registered numbers are distinct, otherwise it outputs 0 and
the execution of FN,`,cSSLE stops. If regVerify returned 1, the parties participate in the
election by sending messages elect to FN,`,cSSLE , which returns one of the registered
numbers as the elected number. Finally, the parties can verify whether some party
Pi is the elected leader by sending a message verify with the identifier for Pi and
the elected number.

Next, we discuss some of the design choices that we made in FN,`,cSSLE :
1. With the explicit inputs associated to parties, the definition naturally

captures the adversarial ability to register multiple parties using the same
private material and thereby break the uniqueness property.

2. The result of election is returned to the parties as one of the numbers, used
for the registration. In this way we model the information leakage, which
suggests an efficient way of running multiple elections by the same parties.
To run a subsequent election, the leader has to simply re-register, while
other parties can keep their previously registered numbers.

Intuitively, the security properties from the game-based definitions are captured
in the ideal functionality FN,`,cSSLE as follows:

1. Uniqueness - provided by answering regVerify messages, which excludes
the case that two parties register the same number, and elect messages are
answered with exactly one number.

2. Unpredictability - provided by answering elect messages with one of n
registered numbers, which are known only to the respective parties. In the
beginning, party Pi sends her input Ci only to the ideal functionality and
never discloses Ci to other parties until the election is finished. Pi discloses
her registered number only when Pi is the elected leader.

3. Fairness - provided by answering elect messages by uniformly at random
selecting one of n registered distinct numbers as the elected value.
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FN,`,cSSLE for a set of parties P = {P1, . . . ,PN}, c of which are corrupted by an
adversary, consists of the following steps:

• Upon receiving a message (eid, register, C) from Pi, check if (eid,Pi, ·) or
(eid, elected, ·, ·) is stored. If so, ignore the message. Otherwise, store
(eid,Pi, C). When storing tuples, we write Pi to denote the party’s unique
identifier. Send (eid, registered,Pi) to all parties and the environment.

• Upon receiving a message (eid, regVerify) from Pi, reply 0 if there exist two
stored tuples (eid,Pj , Cj) and (eid,Pk, Ck) such that j 6= k and Cj = Ck.
Otherwise, reply 1.

• Upon receiving a message (eid, elect) from Pi, check if there are at least `
registered parties that have corresponding stored tuples (eid, ·, ·). If not,
ignore the message, otherwise proceed. Check if (eid, elected,Pu, Cu) is
stored. If not, pick one of the stored tuples (eid, ·, ·) uniformly at random as
(eid,Pu, Cu), append it as (eid, elected,Pu, Cu), and send (eid, elected, Cu) to
the environment. Send (eid, elected, Cu) to Pi.

• Upon receiving a message (eid, verify,Pj , C) from Pi, check if
(eid, elected,Pu, Cu) is stored. If such a tuple exists, reply 1 if Pu = Pj and
Cu = C. In all other cases, reply 0.

Figure 5.1: Ideal functionality FN,`,cSSLE .
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We formally prove that the ideal functionality implies the game-based defini-
tions by showing the non-existence of a simulator given any of the game-based
attackers.

Proposition 5.2.1. The ideal functionality FN,`,cSSLE implies the game-based defini-
tions for uniqueness (Definition 5.8.3), unpredictability (Definition 5.8.4), and
fairness (Definition 5.8.5).

We refer to Section 5.9 for the proof of Proposition 5.2.1 and proofs of subse-
quent theorems.

In this work, we only consider SSLE schemes with expiring registration. In such
schemes, in a single SSLE instance elections are run sequentially and the eventual
leader has to re-register for subsequent elections. In the remainder of the chapter
we will only consider the modified ideal functionality that ensures sequentiality.
To this end, the ideal functionality keeps track of the current election id eid∗. As
soon as it receives a message with eid′ 6= eid∗, it stops responding to any further
messages with eid∗ and updates the current election id to eid′. In contrast to the
real world, in the ideal world non-leaders have to register for subsequent elections
explicitly using the same registration number C.

5.3 (Non-secret) single leader election construc-
tions

In this section, we start by discussing how naive solutions to the problem of SSLE
fail in keeping the leader secret. We then introduce a protocol based on our
primitive called Two-Party Oblivious Select. While this protocol still does not
meet all of our desired properties, it will serve as the base for our SSLE scheme,
which we present in Section 5.4.

5.3.1 Naive attempts

Designing a secure SSLE protocol is not a trivial task. Below, we briefly mention
three naive leader selection protocols and discuss where they fail to meet our
requirements.

Protocol 5.3.1. Run any secure MPC protocol for N parties to generate a fresh
random number (selection phase) and later reveal it and take it modulo N to
determine which party is selected (reveal phase).

Protocol 5.3.2. Each party commits to a number and sends the commitment
to all parties (selection phase). To determine the leader, each party opens the
commitment, and the leader is computed as a sum of these N numbers modulo N
(reveal phase).
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Protocol 5.3.3. Let an array of distinct numbers represent the participants in
the election. To determine a leader, we randomly permute this array (or sort
it according to some unpredictable criteria) (selection phase) and pick the first
number as the leader and discard the rest (reveal phase).

Problem The three naive protocols defined above are not secret leader election
protocols, as they follow a two-phase pattern: the selection phase and the reveal
phase. After the selection phase is over, the parties have already committed to
some leader, which is not yet known to anyone. After the reveal phase, everyone
knows who the leader is. The missing intermediate point (the “check” phase) is
the one that would allow the leader to learn the outcome exclusively.

Nevertheless, these protocols can serve as the basis for a secret leader election
protocol. Our construction is inspired by the idea in Protocol 5.3.3. While there
exist cryptographic protocols for multi-party sorting ([78, 104]) that all rely on a
pairwise comparison subroutine, we take a more efficient approach: We observe
that the order of the discarded numbers does not matter and take this into
account when designing our solution. This observation allows us to eliminate the
requirement for this comparison subroutine.

5.3.2 Two-party Oblivious Select

In this section, we start introducing the basis for our final SSLE protocol. Note
that, while the constructions in this section do not yet meet our requirements and
are considered non-secret, they will form the basis of the protocol presented in
Section 5.4.

We begin by defining a two-party Oblivious Select protocol, whose goal is to
secretly select one of two commitments. Once the commitment is selected, the
parties can open the selected commitment. This sub-protocol essentially makes use
of the observation from the previous section that we can discard any information
except the chosen leader.

We define first the probabilistic swap algorithm, denoted as PSwap, and then
the probabilistic select algorithm, denoted as PSelect.

Definition 5.3.1 (PSwap). On input of two commitments C0 and C1, draw
randomness (r0, r1) and a random bit b ∈ {0, 1}, compute C ′0 = Com(C0, r0),
C ′1 = Com(C1, r1), and output (C ′b, C ′1−b).

Definition 5.3.2 (PSelect). On input of two commitments C0 and C1, draw
randomness (r) and a random bit b ∈ {0, 1}, compute and output C ′ = Com(Cb, r).

It is easy to show for both algorithms that if the commitment scheme is hiding,
then an adversary cannot find the value of b better than pure guessing (up to a
negligible factor).
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Lemma 5.3.1. If the commitment scheme is hiding, then for any pair of commit-
ments (C0, C1) and any PPT adversary Adv, and security parameter λ,

Pr

[
(C ′0, C ′1)← PSwap(C0, C1),

b′ ← Adv(C0, C1, C
′
0, C

′
1), b′ = b

]
≤ 1/2 + negl(λ)

Lemma 5.3.2. If the commitment scheme is hiding, then for any pair of commit-
ments (C0, C1) and any PPT adversary Adv, and security parameter λ,

Pr[C ′ ← PSelect(C0, C1), b′ ← Adv(C0, C1, C
′), b′ = b]

≤ 1/2 + negl(λ)

We now describe OSelect, the two-party oblivious select protocol, which is based
on the probabilistic swap (PSwap) and probabilistic select (PSelect) algorithms.
OSelect allows parties to select one of the users’ commitments without revealing,
which commitment is selected.

The protocol consists of the select and the opening phases. The select phase
consists of the following steps: Two parties, which we will call Alice and Bob, make
their initial commitments public so that both Alice and Bob know (CA, CB). In
the next step, Alice performs PSwap on (CA, CB) and sends the resulting (C0, C1)
to Bob. Since the commitments are hiding, Bob does not yet know how the
two commitments are ordered. Bob proceeds analogously by running PSelect on
(C0, C1) and sends the output commitment C ′ to Alice, which completes the select
phase. Yet again, since the commitments are hiding, Alice does not yet know
which commitment was selected by Bob. To open the selected commitment, Alice
and Bob reveal the random tape used during their previous computation so that
the parties can verify that the protocol was carried out correctly by the parties.
More specifically, C ′ = Com(Com(CE)) for CE ∈ {CA, CB} and some randomness
used by Alice and Bob in Com. A schematic description of the protocol is given
in Figure 5.2.

Let b0 denote the bit used by Alice in a PSwap execution to determine the
output order of (C0, C1). Let b1 denote the bit used by Bob in a PSelect execution
to determine the selected commitment. Let b̂ denote a bit, which indicates the
selected commitment, CA or CB, encoded in the output Ĉ. We have that b̂ = b0⊕b1
with overwhelming probability.
Lemma 5.3.3. A passive adversary, controlling either party in OSelect, can
output the correct value of b̂ after the commit phase with the probability at most
1/2 plus some negligible factor.

5.3.3 Leader Election based on Two-party Oblivious Select

In this section, we define and analyze LeaderElection, our intermediate non-secret
construction, which essentially uses the oblivious select protocol (OSelect) multiple
times in a black-box manner.
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Alice Bob

input CA, rA input CB , rB

CA

C0, C1 ← PSwap(CA, CB ; rA) CB

C0, C1 C ′ ← PSelect(C0, C1; rB)

output C ′ C ′ output C ′

Figure 5.2: Two-party oblivious select OSelect protocol between Alice and Bob.

There are N users. In the selection phase, each user Ui initially holds a
distinct number mi and commits to it as Ci = Com(mi; ri). Then, the users
run a generalization of two-party OSelect to N parties, which we call OSelectN .
OSelectN essentially forms a binary tree of OSelect instances in a black-box manner.
Whereas OSelect reduces two inputs to one output, OSelectN reduces N inputs to
one output. We will use this logical tree-like structure used in OSelectN as the
basis for our final SSLE construction.

5.3.3.1 Extending OSelect to N parties

The protocol consists of multiple rounds. One of N users is appointed as an
operational leader. W.l.o.g., assume U1 is the operational leader. In a round, users
Ua and Ub holding Ca and Cb, respectively, perform C ′ ← OSelect(Ca, Cb), and
Ua keeps C ′ and proceeds to the next round, whereas Ub terminates. Indices a
and b are chosen according to the following procedure. In the first round, users
U2i+1 and U2i+2 run OSelect on their original inputs, and the resulting value
(commitment) is kept by U2i+1, where i ∈ [0, N/2− 1]. In the second round, users
U2i+1 and U2i+3 run OSelect using the output from the previous round as input,
where i ∈ [0, N/4− 1]. There will be log(N) such rounds. In the final round, U1
and UN/2+1 run an instance of OSelect. The resulting output, C̄, is stored by the
operational leader U1 (and broadcasted to other N − 1 users).

Thanks to the properties of OSelect, the output of OSelectN protocol, C̄, is a
commitment to one of the user’s inputs. If C̄ is a commitment to mi, then Ui is
the elected user. In the opening phase, all users broadcast their input message
and randomness, so that anyone could verify that OSelectN protocol was carried
out correctly.
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C̄ ← OSelect(C ′1, C ′3)

C ′3 ← OSelect(C3, C4)

P4
C4

P3
C3

C ′1 ← OSelect(C1, C2)

P2
C2

P1
C1

Figure 5.3: OSelectN : Extension of two-party OSelect to N users. Example for N = 4
and party P1 as the operational leader.

5.3.3.2 Amortizing the communication cost

Rotation of operational leaders allows to amortize the communication cost. The
operational leader has to execute OSelect log(N) times. After N executions of
LeaderElection with different operational leaders, the total number of OSelect
executions for any user amounts to 2 ·N , which means on average each user has
to perform two OSelect-s per single execution of LeaderElection, which makes it a
considerably efficient protocol.

5.3.3.3 Problem

The resulting protocol LeaderElection is still a non-secret leader election, as there
is no way for the leader to learn the outcome of the protocol exclusively. Moreover,
the unpredictability property does not hold. Imagine the last OSelect execution is
run by two parties, controlled by an adversary. The adversary then knows exactly
which half of the users contains the selected leader, breaking the unpredictability
property. Lastly, all parties are required to participate in the protocol in at least
one instance of OSelect, which makes it impossible to tolerate a single faulty party.
In the next section, we will address these problems and present our secure SSLE
protocol.

5.4 Our SSLE from DDH

In this section, we present our secret single leader election SSLE protocol, which
we gradually develop starting from Section 5.3. We first add an intermediate
representation layer to the tree-based construction LeaderElection (Section 5.3.3)
in order to let the secret leader actually check whether she is the elected leader.
Then, we replace the oblivious select protocol used in the construction with its
MPC version to achieve the desired security properties. More specifically, we will
show that our SSLE protocol satisfies uniqueness, fairness, and unpredictability.
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5.4.1 Upgrading to secret leader

We begin with the non-secret protocol LeaderElection (Section 5.3.3) and modify
it to let the elected leader exclusively learn the outcome of the election. Here, we
make use of a distributed key generation and threshold decryption. The resulting
secret leader election protocol does not satisfy all our requirements to SSLE but
serves as an intermediate point towards our final construction in Section 5.4.2.

5.4.1.1 Preliminaries

Distributed Key Generation (DKG) Distributed Key Generation [107] allows several
parties to agree on a joint secret key. The corresponding public key is computed
and published jointly by the honest majority of the parties. In t-out-of-N DKG
protocol [68], the secret key is shared according to Shamir’s secret sharing scheme.
The protocol can be efficiently simulated against passive and active adversaries,
which can corrupt up to t parties.

Threshold cryptography In threshold cryptography, parties jointly generate
a group public key to encrypt messages and a qualified subset of parties can
collaboratively decrypt ciphertexts encrypted using that key. We consider Shamir’s
t-out-of-N threshold ElGamal-based decryption schemes, for which any coalition
of t parties cannot decrypt a given ciphertext or learn any information about
the plaintext, whereas any coalition of t + 1 parties can recover it, even if the
remaining N − t− 1 parties stop communicating.

5.4.1.2 Intuition

Instead of OSelect, we use a new subroutine OSelectD, which is a two-party
verifiable oblivious select protocol in the discrete log setting. In contrast to
OSelect, the users can publicly verify that a OSelectD instance was executed
correctly without learning which input was selected. OSelectDN is an extension of
OSelectD to N parties, which follows the tree structure as shown in Figure 5.3. The
input to OSelectD is an Elgamal encryption of two group elements ei := (gr, gki·r)
under a group public key for some user’s registration key ki and randomness r.
Algebraic properties of the underlying group allow us to construct OSelectD in a
way that its output will be an encryption of one of the inputs in a randomized
form, i.e., (gr′ , gki·r′) for some r′. Conversely, OSelectDN will output an encryption
of one of the user’s inputs in a randomized form. Users jointly decrypt the output
of OSelectDN and obtain C̄. There will be a unique pair (ei, ē), which forms a
valid DDH tuple, for which the elected leader knows an exponent; all other pairs
(ej, ē) where j 6= i are random tuples. The leader presents the exponent as proof
of leadership.

OSelectD is a two-party oblivious select protocol between Alice and Bob, which
takes as input two messages of the following structure: (gr′ , (yG)r

′ ·gr, (yG)r
′ ·gki·r) ∈
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(Gq)3, for some i and random r, r′. We construct OSelectD in such a way that
the output message preserves this structure, while changing only the randomness.
Alice holds CA ∈ (Gq)3 as input, and Bob holds CB ∈ (Gq)3. The description of
the commit phase is exactly the same as it was defined in Figure 5.2 for OSelect,
except that OSelectD relies on the discrete log variants of PSwap and PSelect,
which we call PSwapD and PSelectD. We will also use appropriate non-interactive
zero-knowledge (NIZK) proofs that each OSelectD computation was carried out
correctly. This will help a leader later exclusively learn the outcome of the
election. These proofs are generalizations [49, 30] of Schnorr signature [113] and
can be efficiently instantiated in the random oracle model using the Fiat-Shamir
transform [60].

Definition 5.4.1 (PSwapD). On an input of two valid messages C0, C1 ∈ (Gq)3,
draw randomness (r0, r1) and a random bit b ∈ {0, 1}, compute C ′0 = (C0)r0,
C ′1 = (C1)r1, and output (C ′b, C ′1−b) and appropriate NIZK proofs.

Definition 5.4.2 (PSelectD). On an input of two valid messages C0, C1 ∈ (Gq)3,
draw randomness (r) and a random bit b ∈ {0, 1}, compute and output C ′ = (Cb)r
and appropriate NIZK proofs.

Definition 5.4.3 (Valid tuples). We call a tuple (Gq)3 valid w.r.t. ki ∈ Zp if it
can be represented as (gr′ , (pkG)r

′ · gr, (pkG)r
′ · gki·r) for some r, r′ ∈ Zp.

It is easy to see that if the inputs to OSelectD are valid tuples w.r.t. ki and kj ,
then the output of OSelectD is also a valid tuple w.r.t. k ∈ {ki, kj}. Conversely,
the output to OSelectDN is a valid tuple w.r.t. k ∈ {k1, . . . , kN}.

Lemma 5.4.1. Assuming DDH in groups Gq of a prime order q, for any pair of
valid tuples C0, C1 ∈ (Gq)3 and any PPT adversary Adv, and security parameter
λ,

Pr

[
(C ′0, C ′1)← PSwapD(C0, C1),
b′ ← Adv(C0, C1, C

′
0, C

′
1), b′ = b

]
≤ 1/2 + negl(λ).

Lemma 5.4.2. Assuming DDH in groups Gq of a prime order q, for any pair of
valid tuples C0, C1 ∈ (Gq)3 and any PPT adversary Adv, and security parameter
λ,

Pr[C ′ ← PSelectD(C0, C1), b′ ← Adv(C0, C1, C
′), b′ = b]

≤ 1/2 + negl(λ)
.

5.4.1.3 Protocol description

Let t denote the number of dishonest (malicious) users, where 2 · t < N . Let
g be a generator of a group G of a prime order Zp. User Ui registers for the
election by generating a registration key ki ∈ Zp and computing a registration
token as ei ← (gr, gki·r) for some random r. The values ki are ei are kept private.
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Elect(i, ki)
1 : r ← Zq
2 : ei ← (gr, gki·r)
3 : (yG , (yi, xi))← DKG(t,N)
4 : Ci ← EncG(ei)
5 : C̄ ← OSelectDN(..., Ci, ...)
6 : (ē1, ē2)← DecG(C̄)
7 : if (ē1)ki 6= ē2

8 : output ⊥
9 : output π := ki

Figure 5.4: The intermediate Secret Leader Election protocol.

The users generate a temporary shared public key using t-out-of-N distributed
key generation (DKG), pkG = gskG . The corresponding group secret key, skG, is
shared between N parties, such that t+ 1 parties have to collaborate to decrypt a
ciphertext C, which we denote by DecG(C).

Party Pi prepares her input Ci to OSelectDN by encrypting ei under a group
public key, Ci ← EncG(ei) := (gr1 , (pkG)r1 · ei). The parties then proceed with
OSelectDN and collaboratively decrypt its output C̄ to ē, while all the intermediate
results of OSelectD instances in OSelectDN are not decrypted. Thanks to algebraic
properties of the underlying group, the decrypted value will be (gr′ , gkj ·r′) for
some r′ and j ∈ [N ]. The election is concluded by running a DDH tuple check
for the registration token and ē using the registration key. We give a compact
description of the protocol in Figure 5.4. To verify a proof π, one verifies all NIZK
proofs used in OSelectDN and checks whether (ē[0])π=ē[1]. The leader will have
to re-register and get a fresh ki before participating in another election.

5.4.1.4 Problem

While, in this version of the leader election protocol, the leader can learn the
outcome of the election in private, there remain several problems to address. First,
an adversary can run a duplicate key attack [18], where she obtains multiple
registration tokens that correspond to a single registration key, and thus break
fairness. To see why the protocol suffers from this attack, we observe that
for a fixed registration key ki, two valid tokens (gr1 , gki·r1) and (gr2 , gki·r2) are
indistinguishable from two valid tokens that correspond to different keys, because
of DDH assumption. The mitigation measures proposed in [18] work in our
setting, too. Second, a malicious adversary can use biased coins when computing
OSelectD. If both parties are under her control, she can break the obliviousness
of OSelectD and, in turn, the unpredictability and fairness of the SSLE. Finally,
even an honest-but-curious adversary, who controls both parties in OSelectD and
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OSelectM([CA], [CB])
1 : [b]← RandBit()
2 : do //run in parallel
3 : [b · CA]← Mul([b], [CA])
4 : [(1− b) · CB]← Mul([1− b], [CB])
5 : [C ′]← [b · CA] + [(1− b) · CB]
6 : output [C ′]

Figure 5.5: OSelectM: Oblivious Select in the MPC setting.

follows the protocol, exactly knows which input has been selected, thus breaking
unpredictability of SSLE. Since our goal is to satisfy all the three properties
(uniqueness, unpredictability, and fairness), we will need one more modification to
our construction, which we discuss in the following section.

5.4.2 Full construction

To obtain the full construction, we modify the secret leader election from Sec-
tion 5.4.1 by replacing the two-party OSelect protocol with its MPC variant,
OSelectM. Thereby, we ensure that no adversary in our model can learn the
outcome of a OSelectM protocol instance. The extension of OSelectM to N inputs,
which we call OSelectMN, retains the binary tree layout of inputs and outputs
as it was shown in Figure 5.3. Each OSelectM instance is now executed by all
parties simultaneously. This modification incurs additional communication costs
compared to the previous (insecure) version of our SSLE construction. Fortu-
nately, the number of communication rounds needed for a leader election remains
O(logN), as OSelectM instances on the same level in the tree can run in parallel.

OSelectM is an oblivious select protocol in the MPC setting, which means that
it can be completed as long as at least t+ 1 parties remain online and honestly
execute the protocol. The protocol takes two secret shares [CA], [CB] as input
and outputs a new secret share [C ′]. It has a property, that the output secret C ′
is either CA or CB with equal probability. A description of OSelectM protocol is
shown in Figure 5.5. OSelectM extension to N inputs, called OSelectMN, follows
the same binary-tree structure of inputs and outputs to OSelectM, as in the
previous extensions of oblivious select protocols. As there are no dedicated parties
that execute the protocol, the notion of an operational leader introduced in the
context of OSelectN is no longer applicable. The binary-tree layout in OSelectMN
is shown in Figure 5.6.

To prevent duplicate key attacks, we incorporate into our SSLE scheme a
technique used in [18]. The technique works as follow. The registration key ki
is now used to produce a secret part kiL and a public fingerprint kiR using a
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[C̄]← OSelectM([C ′1], [C ′3])

[C ′3]← OSelectM([C3], [C4])

[C4][C3]

[C ′1]← OSelectM([C1], [C2])

[C2][C1]

Figure 5.6: OSelectMN: Extension OSelectM to N inputs. Example for N = 4.

cryptographic hash function H, where (kiL, kiR) ← H(ki). Before the election
starts, each user verifies that there are no duplicate fingerprints in the public
state st. The security properties of the hash function ensure that chances for an
adversary to succeed in a duplicate key attack are negligible.

The election proceed as follows. For each i ∈ {1, . . . , N}, the parties jointly
generate [Ci], a MPC version of the secret part kiL of the registration key ki,
which is [kiL]). In the MPC setting we do not need to additionally hide the key
using Elgamal encryption, since secret sharing already hides the results of the
computation.

The parties then proceed with OSelectMN and obtain [C̄], which is a secret
share of one of the secret inputs to OSelectMN. The parties jointly reconstruct
two group elements (ē1, ē2) from [C̄], which turn out to be a randomization of
the secret part of a party participated in the election, which we denote k̄L. If Pi
is the elected leader, the following equation will hold k̄L = kiL, i.e. each party
learns the secret key kiL of the leader, but does not know which one. The leader
Pi sends the registration key ki as a proof of leadership. To verify a proof π, one
recomputes the secret part πL of the registration key and its fingerprint πR and
checks that the computed fingerprint matches the one stored as sti, and that the
equation πL = k̄L holds.

In the malicious adversary model, we can use standard techniques [69, 48]
to protect the underlying MPC primitives used in the scheme against active
adversaries.

We now formally define our fully-fledged SSLE construction.

Construction 5.4.1 (Single secret leader election (SSLE)). Our SSLE scheme
is a tuple of PPT algorithms SSLE = (Setup, Register, RegisterVerify, Elect, Verify)
that use a group G of a prime order p. Let g be a generator of G, let H be a
function that maps {0, 1}λ to Zp × {0, 1}r(λ). The description of the algorithms is
shown in Figure 5.7.

Theorem 5.4.1. Assuming the underlying MPC primitives are secure in the
honest-but-curious adversary model, H is a random oracle, then Construction 5.4.1
implements functionality FSSLE.
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Setup(1λ, t, N)
1 : p, g ← FindParam(1λ)
2 : for i ∈ 1..N
3 : sti ← ⊥
4 : return p, g, st1, ..., stN

Register(i)
1 : ki ← Zp
2 : kiL, kiR ← H(ki)
3 : sti ← kiR

4 : [kiL]← Share(kiL)
5 : return ki

Verify(i, π)
1 : πL, πR ← H(π)
2 : if πL = k̄L and πR = sti

3 : return 1
4 : return 0

RegisterVerify(i, ki)
1 : for j1 ∈ 1..(N − 1)
2 : for j2 ∈ (j1 + 1)..N
3 : if stj1 = stj2 6= ⊥
4 : return 0
5 : kiL, kiR ← H(ki)
6 : if kiR 6= sti

7 : return 0
8 : return 1

Elect(i, ki)
1 : for i ∈ 1..N
2 : [Ci] := [kiL]
3 : [C̄]← OSelectMN([C1],
4 : ..., [CN ])
5 : k̄L ← Rec([C̄])
6 : if k̄L 6= kiL

7 : return ⊥
8 : return π := ki

Figure 5.7: Single Secret Leader Election construction SSLE instantiated with
OSelectMN.
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5.5 Our SSLE based on garbled circuits

In this section, we present our SSLE protocol, instantiated in the MPC framework
by Wang et al. [129].

5.5.1 Preliminaries

Wang et al. proposed an efficient secure constant-round MPC on boolean circuits
by extending a two-party protocol [128] to the multi-party setting [129]. The
protocol uses an ideal functionality FPre as a preprocessing step to set up correlated
randomness between the parties. At a high level, FPre generates authenticated
shares on random bits x, y, z such that z = x ∧ y, using information-theoretic
MACs [102]. Those authenticated shares are then used to distributively construct
a single, “authenticated” garbled circuit, which is evaluated by one of the parties.
Wang et al. show the security of their protocol against a malicious adversary
that compromises N − 1 parties in the FPre-hybrid model and assuming a random
oracle (ROM). We refer the reader to [129] for the description of FPre and further
details.

5.5.2 Construction

We use the MPC protocol [129] to instantiate our SSLE in a black-box manner.
The SSLE construction shown in Figure 5.7 needs to be updated to account for
technical details specific to the MPC part in the Elect algorithm, which we discuss
below.

To implement the Oblivious Select, we use a part of the input as selection
bits. The modified version of the Elect algorithm and a pseudocode of OSelectM
instantiated in the framework [129] are shown in Fig. 5.8. Each party Pi provides
her input of (rBits+ aBits) bits, which is stored in arrays of instances of MPC’s
class Integer, R and A. We require that rBits ≥ log(aBits). Array R is used to
compute selection bits R[0]. Then log(N) rounds follow, in which depending on a
selection bit bit, A[i] is assigned to either A[2i] or A[2i+ 1]. We use an existing
function select of MPC’s class Integer for this specific computation. Finally, A[0]
is revealed.

Construction 5.5.1 (Single secret leader election (SSLE)). Our SSLE scheme is
a tuple of PPT algorithms SSLE = (Setup, Register, RegisterVerify, Elect, Verify).
Let H be a function that maps {0, 1}λ to {0, 1}l(λ) × {0, 1}r(λ). The description of
the algorithms is shown in Fig. 5.7 expect for Elect, which is shown in Fig. 5.8.

Theorem 5.5.1. Assuming the underlying MPC primitives are secure in the mali-
cious adversary model, H is a random oracle, then Construction 5.5.1 implements
functionality FSSLE.
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oselectN

1 : for i ∈ 1..N
2 : R[i− 1] = Integer(bits : rBits, party : i)
3 : A[i− 1] = Integer(bits : aBits, party : i)
4 : for i ∈ 1..N − 1
5 : R[0] = R[0]⊕R[i]
6 : rem = N

7 : round = 0
8 : while rem > 1
9 : bit = R[0][round]

10 : for i ∈ 0..rem/2− 1
11 : A[i] = A[2i].select(bit, A[2i+ 1])
12 : round = round+ 1
13 : rem = rem/2
14 : A[0].reveal()

Elect(i, ki)
1 : Ri, Ai ← kiL

2 : Ā← oselectN(party i : Ri, Ai)
3 : if Ā 6= Ai

4 : return ⊥
5 : return π := ki

Figure 5.8: Elect algorithm and Oblivious Select instantiated in the MPC frame-
work by Wang et al. [129]
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[C̄]

[...]

[C2][C2]

[...]

[C2][C1] →

[C̄]

[C2][...]

[C2][C1]

Figure 5.9: Tree optimization technique. Example OSelectMN for P1 and P2 with
stakes (1, 3).

5.6 Practical considerations

There are several constraints in Constructions 5.4.1 and 5.5.1 that affect its
practicality. First, the definition of SSLE says that the probability for a party
being elected should be equal among all participants. In practice, the stakeholders
may have different stakes, and the probability for a party to be elected should
be proportional to her stake. A straightforward solution to this constraint would
be to adapt our SSLE construction to work with stake units and let each party
control several units. If implemented naively, this approach results in a linear
blow-up in computation and required storage (in the number of stake units). In
the following, we will show an efficient technique to extend Construction 5.4.1 to
support arbitrary (non-uniform) probability distributions in the election.

Second, we assumed the number of parties to be a power of two, in order to
construct a complete binary tree in Oblivious Select. However, if the number
of parties is arbitrary, the tree structure will likely unbalance the tree leaves, as
some inputs will not be matched on the first level with other inputs. Therefore,
such inputs would proceed to the next round without competition, i.e., with the
probability of 1, whereas input Ci in a binary tree will proceed with the probability
of 1/2. We will show that the technique from the previous point addresses this
concern, too.

Moreover, we will show how to reduce the number of communication rounds
in Construction 5.4.1 by using appropriate MPC primitives.

5.6.1 Non-uniform distributions

We observe that it is possible to unbalance almost-for-free the probability of being
selected (among two parties) if the sum of the weights is a power of two. To
illustrate this idea, assume that the weights are (1, 3), i.e., the probabilities for
two parties being selected are determined by the ratio 1:3. We can construct a
tree-structure with the probabilities 1/4 and 3/4, as shown in Figure 5.9.

Basically, we introduce a special case for OSelectM when handling shares of
the same secret for free, OSelectM(ShareC, [C])→ [C]. The resulting tree can be
optimized significantly by dropping the nodes with the same inputs.
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Using this technique, we can handle weights of the form (w, 2L − w) with a
logarithmic overhead, for some L ≥ 1 and 1 ≤ w < 2L. However, we cannot
naturally handle arbitrary weight ratios. For example, weights such as (1, 2) are
problematic. Nevertheless, we can approximate the probabilities in the election
according to any weights (a, b) by having a tree of sufficient depth.

Arbitrary N and stakes Let N be the number of parties participating in the
election with their stakes (s1, ..., sN), and let S = ∑N

i=1 si be the sum of parties’
stakes. The multi-registration solution may lead to O(S) complexity of the election
algorithm. We extend our technique for two parties to an arbitrary number of
users.

We start with a similar idea: each party has a sequence of stake units on the
first level in a OSelectMN tree. If N � S, there will be many pairs of inputs
that represent the same party. We observe that in this case, there is no need to
run OSelectM on such inputs. Instead, we can pick any input and advance it to
the next level in the tree. The worst case complexity (the number of OSelectM
instances) of this technique is O(N logS), since each party Pi’s inputs will be
matched in a tree of depth O(logS) at most two times, against Pi−1 and Pi+1.
With a tree of depth L we can get the absolute precision up to 2−L · S.

5.6.2 Extensions to DDH-based MPC

It is possible to generate random bits in a fully non-interactive manner [47]. This
will require an initial (trusted) setup for distributing randomness between the
parties. For the base case where stakes are equal and N is a power of two, this
improvement will not be significant, as the parties have to generate only O(logN)
random bits, while requiring O(N) interactive multiplications of shares. In a
general case, for arbitrary stakes, it will show a better reduction of the cost.

5.7 Evaluation

5.7.1 Experimental setup

We evaluate our SSLE framework, we implemented Constructions 5.4.1 and 5.5.1
and ran two kind of tests: in a local setting (LAN) and in a global setting
(WAN). In the LAN setting, we used machines located in the same Amazon EC2
region. In the WAN setting, we used machines located in four different regions
(Europe, North America, South America, and Asia). If not specified otherwise,
each machine is a t2.large instance with 2 cores Intel Xeon E5-2686v4 2.3 GHz,
8Gb of RAM, and installed Ubuntu 20.04. In some regions t2.large instances are
not available; instead we used t3.large instances with 2 cores Xeon Platinum 8175
2.5 GHz, 8Gb of RAM.
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Figure 5.10: Comparison of timings for Oblivious Select in Construction 5.5.1 in
the LAN and WAN settings.
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In our experiments, we evaluate a complete OSelect tree in our SSLE framework,
that is the number of users being a power of two, starting from 8 parties, and each
party holding one unit of stake. For each experiment we take average of 10 runs,
except that for lengthy experiments with a running time more than 1 minute we
perform a single run. Next, we present implementation details and the evaluation
results individually for each construction.

5.7.2 Construction 5.4.1 (Section 5.4.2)

Implementation details We implemented our Construction 5.4.1 in C++
in the honest-but-curious and malicious adversary models. We implemented
the underlying MPC primitives for secret sharing, adding shares, substracting,
multiplying by a scalar: [x] + [y], [x] − [y], [α · x], protocols RndFld, RndBit,
Mul [107, 110, 69, 67, 50, 36]. In the malicious adversary model, these primitives are
accompanied with verifiable secret sharing (VSS). We set the threshold t = N/2−1
in all experiments. Our implementation uses the Relic toolkit [5] for operations
on elliptic curves in groups of a prime order of 256 bits, the Boost and OpenSSL
libraries for secure communication.

Experimental results We performed LAN tests for up to 128 parties in the
honest-but-curious adversary model, and up to 32 parties in the malicious model.
Timings are shown in Table 5.2.

Analysis The experimental results show that up to 128 parties can complete
Elect protocol in under a minute. The running time grows rapidly as the number
of parties increases. This is due to expensive public key operations for generating
and reconstructing Shamir’s secret shares. The explosion of running time is
more visible in the malicious adversary model. In order to protect against such
adversaries, we have to use verifiable secret sharing, which requires O(N2) public
key operations in the textbook implementation. While Elect is the most heavy
algorithm, the rest of the SSLE protocol is essentially for free. We conclude that
Construction 5.4.1 offers a practical t-robust solution to the SSLE problem for a
small number of parties (up to 32, according to our evaluation).

5.7.3 Construction 5.5.1 (Section 5.5.2)

Implementation details We implemented and evaluated Oblivious Select part
of the Elect algorithm, as it is the most heavy part of the SSLE protocol (see
experimental results for Construction 5.4.1 in the honest-but-curious adversary
model in Section 5.7.2). Our implementation fully relies on the implementation
of the MPC framework by Wang el at. [129], which is available as [127]. We can
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N t Algorithm HbC time, sec. Mal. time, sec.
8 3 Register <0.01 0.11

RegisterVerify <0.01 <0.01
Elect 0.1 3.56
Verify <0.01 <0.01

16 7 Register 0.01 0.56
RegisterVerify <0.01 <0.01

Elect 0.34 28.1
Verify <0.01 <0.01

32 15 Register 0.02 3.83
RegisterVerify <0.01 <0.01

Elect 1.45 356.6
Verify <0.01 <0.01

64 31 Register 0.08 n.a.
RegisterVerify <0.01

Elect 7.63
Verify <0.01

128 63 Register 0.21 n.a.
RegisterVerify <0.01

Elect 54.4
Verify <0.01

Table 5.2: Experimenal results for Construction 5.4.1 in the honest-but-curious
and malicious adversary models.

trade-off security for efficiency by controlling how many bits each party inputs to
Oblivious Select (see Lemma 5.9.8).

Experimental results In the MPC framework, the evaluator of the garbled
global circuit requires more RAM than any other party. Therefore, we set up
one machine as a m5a.4xlarge instance with 16 cores and 64G of RAM, while
the rest of machines remain t2.large or t3.large instances. We run experiments
for each N up to 128. For the trade-off, we choose the length of user inputs to
Oblivious Select, l(λ), as 48, 64, and 80 bits. Additionally, each party provides 8
bits of selection bits, which satisfies the constraint that it should be at least as
big as log(N) in all test cases. Timings the LAN and WAN settings are shown in
Table 5.3 and in Fig. 5.10.

Analysis The experimental results show that the running time of Oblivious
Select algorithm (and in turn, Elect) grows almost linearly as the number of
parties gets increased. As we ran only 1 iteration for long test cases, we can see
some unexpected fluctuations in the running time, which we think are caused by
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N l(λ) LAN time, sec. WAN time, sec.
8 48 2.73 23.42

64 2.76 24.03
80 2.80 24.27

16 48 4.28 38.95
64 4.50 39.92
80 4.86 40.61

32 48 8.25 73.34
64 8.35 75.93
80 8.80 77.81

64 48 17.64 145.87
64 18.62 153.34
80 23.90 150.67

128 48 64.33 300.77
64 74.54 326.09
80 83.54 317.46

Table 5.3: Experimental results for Construction 5.5.1 in the malicious adversary
model.

fluctuations in the network and normally should be eliminated after averaging
multiple iterations.

The LAN and WAN settings have identical computational and communication
cost, as they only differ in the location of machines. We suspect that higher
latency between machines in the WAN settings accounts for the increased running
time. In the LAN setting, 128 parties can compute a leader in under 1.5 minutes,
where as in the WAN setting, this number approaches 7 minutes.

5.8 Postponed definitions

Definition 5.8.1 (Single secret leader election (SSLE)). A single secret leader
election scheme is a tuple of PPT algorithms SSLE = (SSLE.Setup, SSLE.Register,
SSLE.RegisterVerify, SSLE.Elect1, SSLE.Elect2,
SSLE.Verify) with the following behavior:

• SSLE.Setup(1λ, `, N)→ (pub, sk1, . . . , skN , st0): The setup process generates
public parameters pub, a number of secrets, and an initial state st0. N is
an upper bound on the number of participants supported by the scheme, and
` is a lower bound on the number of required users per election. SSLE.Setup
is a one-time setup process, followed by a series of elections.

• SSLE.Register(i, pub, st) → (rki, rti, st′): Each user registers with a unique
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public identity i ∈ [N ], the public parameters pub, and the current state st.
Registration outputs a registration key rki, gives a user a registration token
rti, and modifies the state to st′. SSLE.Register must be run to participate
in a series of elections. The eventual leader may be required to re-register
for subsequent elections.

• SSLE.RegisterVerify(i, rki, rti, pub, st) → {0, 1}: SSLE.RegisterVerify is run
by previously registered users after a new user registers to verify that the
registration was carried out correctly. Verification can use the user’s registra-
tion key rki, registration token rti, the public parameters pub, and current
state st. The user’s registration token rti can be modified as the result of
SSLE.RegisterVerify.

• SSLE.Elect1(pub, st, i, ski)→ (pi, li): Leader election begins by taking public
parameters pub, current state st, a user Ui’s secret key ski, and outputting
intermediate values pi and li.

• SSLE.Elect2(pub, st, i, pi, l1, ..., lm, ski, rki, rti) → (p′i, l′i) ∪ π ∪ {⊥}: Leader
election proceeds by taking public parameters pub, current state st, interme-
diate values pi and l1, ..., lm, user Ui’s secrets ski, rki, rti, and outputting
either 1) new intermediate values p′i and l′i, in which case the algorithm
will be executed one more time on appropriate inputs, or eventually 2) a
proof of leadership π in case user Ui has been chosen as the leader, or a
distinguishable symbol ⊥ otherwise.

• SSLE.Verify(pub, i, st, πi; pi) → {0, 1}: Given index i, the state st, and op-
tionally an intermediate value pi from the election, the verification algorithm
accepts or rejects the proof that user Ui has been elected leader. SSLE.Verify
is used to check the authenticity of a participant who claims to be the leader
when it is time for the leader to reveal herself.

If the eventual leader is required to re-register for subsequent elections, we say
that an SSLE scheme with such a property has expiring registration. Otherwise,
if the parties may re-use their registration for multiple elections regardless of the
outcome, an SSLE scheme has non-expiring registration. Note that re-registration
will change the public state st.

We could also formally include a revoke algorithm, to indicate that a user no
longer wishes to participate. We refrain from such a formalism since it does not
significantly impact the security properties, but our scheme can be modified to
account for it.

Definition 5.8.1 specifies algorithms for setting up an SSLE instance, registering
participants for the elections, verifying that the registration is performed correctly,
electing the leader among registered parties, and verifying a proof of leadership.
The setup algorithm generates private keys for the parties and introduces some
initial state st0, and the state can be updated by the registration algorithm. The
state is public and accessible by all parties during the entire execution of an SSLE
instance. The registration algorithm provides a party Pi with a registration key
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rki and a registration token rti, which are kept private and used during elections.
The difference between the key and the token is that the token depends on other
parties participating in elections and therefore can be altered by the party holding
it as the result of SSLE.RegisterVerify. The election proceeds in several rounds. In
each round, party Pi computes private pi and public li intermediate values, and
public output values from all participating parties are used as input for subsequent
rounds (SSLE.Elect2). After the final round, each party holds either a proof of
leadership π or ⊥. The public state and, optionally, private value pi from the last
communication round are used to verify a proof of leadership.

Next, we define an experiment for N parties between the challenger and an
adversary, where the adversary is controlling c parties. This experiment will serve
as the initial step in the security games.
Definition 5.8.2 (Experiment). We define an experiment EXPR[Adv, λ, `,N, c]
with security parameter λ, which is played between an adversary Adv and a
challenger C as follows:
– Setup phase. Adv picks2 a set of indices M ⊂ [N ], |M | = c, of users to
corrupt. C runs (pub, sk1, ..., skN , st0) ← SSLE.Setup(1λ, `, N) and gives Adv
the parameters pub, state st0, and secrets ski for i ∈M .

– Elections phase. Adv chooses a set of users to register for elections and for
any polynomial number of elections to occur, where Adv plays the role of users
Ui for i ∈M and C plays the role of the rest of the users.
To register an uncorrupted user, Adv sends the index i of the user to C, and C
runs (rki, rti, st′)← SSLE.Register(i, pub, st). To register a corrupted user, Adv
sends the index i of the user to C along with an updated state st′. In either case,
C then runs SSLE.RegisterVerify(j, rkj, rtj, pub, st) for any previously registered
user Uj, where j ∈ [N ] \M . If any call to SSLE.RegisterVerify returns 0, the
game immediately ends with output 0. Otherwise, the state is updated to st′.
Each election begins with C generating (pi, li)← SSLE.Elect1 (pub, st, i, ski) on
behalf of each uncorrupted registered user and Adv sending values li for any
subset of corrupted registered users. Let l1, ..., lt be the set of intermediate val-
ues li generated in this step. Then, elections may proceed with C generating
(p′i, l′i) ← SSLE.Elect2(pub, st, i, pi, l1, ..., lt, ski, rki, rti) on behalf of each uncor-
rupted registered user and Adv sending values l′i for any subset of corrupted
registered users. The intermediate values l′1, ..., l′t are used as input for subse-
quent calls to SSLE.Elect2. Let l′′1 , ..., l′′t be the last intermediate values generated
by SSLE.Elect2, and p′′j be the last private intermediate value of an uncorrupted
registered user Uj.
Then, for all uncorrupted users, C sets πj ← SSLE.Elect2(pub, st, j, p′′j , l′′1 , ..., l′′t ,
skj, rkj, rtj) if user Uj has registered for that election or ⊥ otherwise. C sends
πj for each uncorrupted user to Adv.
2We define the experiment is a way that c is given. Should Adv pick this number, we will

denote such an experiment as EXPR[Adv, λ, `,N ].
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If the SSLE scheme has expiring registration, the leader of an election should
repeat the registration procedure after the election is over, and uncorrupted
parties should verify registration. During the elections phase, multiple elections
can take place.

The experiment in Definition 5.8.2 allows the adversary to corrupt parties
statically during the setup. Then, the elections phase takes place, where an
adversary chooses which parties will participate in an election. Those parties then
register for the election. Each time a new party registers, all registered parties
have to re-run SSLE.RegisterVerify to ensure that the registration data stored in the
public state st is not malformed. During the election, the challenger plays the role
of honest users, whereas a (malicious) adversary can send arbitrary messages on
behave of the corrupted parties. As the outcome of an election, all non-registered
(but participating in the election) parties receive ⊥ symbol, whereas registered
parties may receive either ⊥ or a proof π.

Definition 5.8.3 (Uniqueness). The uniqueness experiment
UNIQUE[Adv, λ, `, N ] between an adversary Adv and a challenger C with security
parameter λ extends EXPR[Adv, λ, `, N ] as follows:
– Output phase. For each election in the elections phase, Adv outputs values
πi for each i ∈M . The experiment outputs 0 if for each election with state st,
there is at most one user Ui∗ who wins that election. Otherwise the experiment
outputs 1. We say user Ui∗ wins an election if it outputs πi∗ 6= ⊥ such that
SSLE.Verify(pub, i∗, st, πi∗) = 1.

We say an SSLE scheme is unique if no PPT adversary Adv can win the uniqueness
game expect with negligible probability. That is, for all PPT Adv and for any
` < N , Pr[UNIQUE[Adv, λ, `, N ] = 1] ≤ negl(λ). If uniqueness only holds so long
as there are at least t uncorrupted users participating in each election, we say that
the scheme is t-threshold unique.

Informally, an adversary wins the uniqueness experiment if in at least one
election in a series of consecutive elections there is more than one verifiable leader.

Definition 5.8.4 (Unpredictability). The unpredictability experiment UNPRED[Adv,
λ, `,N, n, c] between an adversary Adv and a challenger C with security parameter
λ extends EXPR[Adv, λ, `, N, c] as follows:
– Challenge phase. At some point after the elections phase, Adv indicates that
it wishes to receive a challenge, and one more election occurs. In this election, C
does not send (πj) for each uncorrupted user to Adv. Let Ui be the winner of this
election. The game ends with Adv outputting an index i′ ∈ [N ]. If, for Ui elected
in the challenge phase, i ∈M , then the output of UNPRED[Adv, λ, `, N, n, c] is
set to 0. Otherwise, UNPRED[Adv, λ, `, N, n, c] outputs 1 iff i = i′.
We say that an SSLE scheme Π is unpredictable if no PPT adversary Adv

can win the unpredictability game with greater than negligible advantage. That is,
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for all PPT Adv, for any c ≤ n− 2, n ≤ N , and for any ` < N ,

Pr[UNPRED[Adv, λ, `, N, n, c] | i ∈ [N ] \M ] ≤ 1
n− c

+ nelg(λ).

If Adv wins with advantage α + negl(λ) for α > 1
n−c , with α potentially

depending on c, n, or N , we say that Π is α-unpredictable. If the value of α
depends on N , then we require that n = N . If unpredictability only holds for c < t
for some t > 0, we say that Π is t-threshold unpredictable.

Informally, in the unpredictability experiment the adversary asks for a challenge
election after a series of elections. In this special election, the challenger does
not send to the adversary the outcome of elections. The adversary has to guess,
who is the leader in this challenge election. If some corrupted party turns out to
be the leader, the experiment is trivial and the result of the experiment will be
always 0. Otherwise, if some honest party is the leader, the adversarial chances to
correctly guess the leader should not be significantly greater than pure guessing.

Definition 5.8.5 (Fairness). The fairness experiment FAIR[Adv, λ, `, N, n, c] be-
tween an adversary Adv and a challenger C with security parameter λ extends
EXPR[Adv, λ, `, N, c] as follows:
– Challenge phase. At some point after the elections phase, Adv indicates that it
wishes to receive a challenge, and one more election occurs. FAIR[Adv, λ, `, N, n, c]
outputs 1 if there is no i ∈ [n] \M for which SSLE.Verify(pub, i, st, πi) = 1 in
the challenge election.
We say that an SSLE scheme Π is fair if no PPT adversary Adv can win

the fairness game with greater than negligible advantage. That is, for all PPT
Adv, n ≤ N , c < n, and for any ` < N , |Pr[FAIR[Adv, λ, `, N, n, c] = 1]− c/n| ≤
negl(λ).

If fairness only holds for c < t for some t > 0, we say Π is t-threshold fair.

Weaker selectively secure definitions of unpredictability and fairness are not
considered in this work. A viable SSLE scheme must satisfy all the definitions
above.

Informally, in the fairness experiment, the adversary asks for a challenge
election after a series of elections. The probability of winning this challenge
election by one of the corrupted parties should not be significantly greater than
c/n, where c is the number of corrupted parties, and n is the number of parties
registered for the challenge election.

5.9 Security analysis

Proof of Proposition 5.2.1. The goal is to demonstrate that any scheme that
UC-realizes FSSLE fulfills all three game-based notions of (a) uniqueness, (b)
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unpredictability and (c) fairness. One needs to show the non-existence of a
simulator given any of the game-based attackers: For some protocol π, assume an
adversary against (a) and construct from it an environment distinguishing π and
FSSLE (and same for (b) and (c)).

In the following experiments, assume to the contrary that some protocol
π UC-realizes FSSLE and there is an ideal-world simulator S of the real-world
adversary. Before an experiment starts, a random bit b is drawn; Z∗ interacts
with π in case b = 0, otherwise it interacts with S in case b = 1. Let B be
an adversary successfully attacking some game-based property of π with non-
negligible advantage AdvB. We construct an environment Z∗ as follows: it uses B
to set up malicious parties and communicate with the honest parties in the real
world and with S in the ideal world. Let Exec denote the output bit of Z∗ in the
experiment.

Uniqueness. An adversary wins the uniqueness experiment if there are at
least two users Ui,Uj for which the verification algorithm outputs 1 in the challenge
election. At the end of the experiment, Z∗ runs the verification algorithm for
each user on the final output of the election (running SSLE.Verify in the real world
or interacting with S that simulates the corresponding (verify) queries). If there
is more than one user for which the verification algorithm (or S) returns true, Z∗
outputs 0 (Z∗ believes it interacts with π). Otherwise, Z∗ outputs 1 (Z∗ believes it
interacts with S). On the one hand, we have that Pr[Exec[FSSLE,S,Z∗] = 0] = 0
due to the definition of FSSLE, which records only one leader for a single election and
never changes it afterwards. On the other hand, Pr[Exec[π,Adv,Z∗] = 0] = AdvB,
which is non-negligible. Hence, Z∗ can distinguish between the real and ideal
worlds with non-negligible probability, which contradicts the assumption we made
about π.

Unpredictability. An adversary breaks unpredictability if it can predict
the leader (among honest parties) significantly better than pure guessing. At
the end of the experiment, Z∗ computes the prediction as whatever B does.
If the prediction was correct, Z∗ outputs 0 (Z∗ believes it interacts with π),
otherwise it outputs 1 (Z∗ believes it interacts with S). On the one hand, we
have that Pr[Exec[FSSLE,S,Z∗] = 0] = 1

n−c due to the definition of FSSLE, which
uniformly at random chooses the leader among n registered parties, where c of
them are controlled by the adversary. On the other hand, Pr[Exec[π,Adv,Z∗] =
0] ≥ 1

n−c + AdvB, where AdvB is non-negligible. We have that Z∗ can distinguish
between the real and ideal worlds with non-negligible probability, which contradicts
the initial assumption about π.

Fairness. An adversary breaks fairness if it can significantly increase the
chances for the corrupted parties to be elected. At the end of the fairness
experiment, Z∗ learns whether one of the c controlled users (among n registered)
is the leader. If this is the case, Z∗ outputs 0 (Z∗ believes it interacts with π),
otherwise it outputs 1 (Z∗ believes it interacts with S). On the one hand, we
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have that Pr[Exec[FSSLE,S,Z∗] = 0] = c
n
due to the definition of FSSLE, which

uniformly at random chooses the leader among n registered parties, where c of
them are controlled by the adversary. On the other hand, Pr[Exec[π,Adv,Z∗] =
0] ≥ c

n
+ AdvB, where AdvB is non-negligible. We have that Z∗ can distinguish

between the real and ideal worlds with non-negligible probability.

Lemma 5.9.1. Let [CA] and [CB] be the inputs to OSelectM protocol, and let [C ′]
be the output. Then, assuming the underlying secret sharing scheme is linearly
homomorphic and the primitives for multiplication secret shares and generating a
random shared bit are secure, it holds that C ′ ∈ {CA, CB}.

Proof. The underlying RandBit primitive produces shares of a random bit [b].
By homomorphic properties of the secret sharing scheme and security of the
multiplication primitive, it follows that, if b = 0, C ′ evaluates to CA, otherwise, if
b = 1, C ′ evaluates to CB.

Lemma 5.9.2. Let [C1], ..., [CN ] be the inputs to OSelectMN protocol, and let [C̄]
be the output. Then, it holds that C̄ ∈ {C1, ..., CN}.

Proof. It follows from Lemma 5.9.1 and the binary tree structure of OSelectM
instances in OSelectMN.

Lemma 5.9.3. Assuming secret sharing is secure, algorithm Register in Construc-
tion 5.4.1 called by some party, securely implements sending a (register) message
in the ideal model.

Proof. The party uses the output value from Register as input to the (register)
message in the ideal model. The proof follows from simulatability of the secret
sharing scheme.

Lemma 5.9.4. Assuming H is a random oracle, algorithm RegisterVerify in
Construction 5.4.1 securely implements sending a (regVerify) message in the ideal
model.

Proof. By the properties of the random oracle, we have that the probability that
Ci 6= Cj in the ideal model and kiR = kjR is 1/2λ, which is negligible in λ.

Lemma 5.9.5. Algorithm Elect in Construction 5.4.1 securely implements sending
a (elect) message in the ideal model.

Proof. We construct a simulator S for an ideal adversary Adv. S recovers the
adversarial input from party Pi by reconstructing it from the shares available to
the simulator (S controls enough honest parties to reconstruct any shared secret).
S sends all inputs from honest parties and the recovered adversarial inputs

and receives CUN1 from the ideal functionality as the result of the election. It
is the same for all parties, including those controlled by the adversaries, so the
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simulator forwards this value to Adv. In order to let the adversary believe it
interacts with the real protocol, the simulator has to produce a transcript of the
OSelectMN protocol that will result in a specific value UN to be chosen and output.
To do that, the simulator fixes the shares of the honest parties for random bits
[b] in OSelectM instances so that the reconstruction would output the specific
fixed b, that will result OSelectMN to select precisely the UN -th element of the
sequence (st1, . . . , stN). The underlying secret sharing scheme allows to simulate
the transcripts for the honest parties that share a simulator-chosen secret.

In the real protocol, it is possible that for some i 6= j, kiL = kjL, while
kiR 6= kjR and so the parties would pass the registration. However, this only
happens with a low probability that we can control.

Lemma 5.9.6. Assuming H is a random oracle, Construction 5.4.1 produces a
unique leader with the probability at least 1− e−

N(N−1)
2p .

Proof. The probability that there exist two parties Pi and Pj such that kiL = kjL
and kiR 6= kjR can be estimated by the birthday paradox. Specifically, this
probabilty is bounded by e−

N(N−1)
2p .

Lemma 5.9.7. Algorithm Verify in Construction 5.4.1 securely implements send-
ing a (verify) message in the ideal model.

Proof. It follows by a similar argument as in the proof of Lemma 5.9.4.

Proof of Theorem 5.4.1. Since we only consider sequential execution, we need to
show that adversarial views in the real and the ideal worlds are indistinguishable
for one instance of the protocol, and the security of the whole protocol will follow
by Canetti’s composition theorem [31]. To this end, we construct a simulator for
a real-world adversary as follows.

• For the registration, the real-world adversary and honest users use a call to
the random oracle H for some (random) input and then share a string. Sharing
algorithm can be simulated by a secure secret sharing scheme. Moreover, a t-
private secret sharing scheme for t < N allows S to reconstruct the input used by
the corrupted user. Hence, all the numbers shared by the corrupted and honest
users during registration are known to S.

• To simulate the verification of registration, S verifies that there is no
duplicate numbers recorded during registration. If this is the case, it outputs 1,
otherwise 0.

• To simulate the election, S first consults the ideal functionality to elect the
leader and then we use Lemma 5.9.5 to simulate the corresponding transcript.

• To simulate the verify algorithm, S compares the elected number with the
number registered by the user (honest or malicious) and outputs 1 if the numbers
are equal, otherwise it outputs 0.
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We argue that any PPT environment Z cannot distinguish between the ideal
world and the real world significantly better than negligible probability via a series
or games.

G0 - the real-world experiment.
G1 - same as G0, except that the election always returns a single leader.

G1 ≈ G0, since the probability of a collisions during registration is negligible
by Lemma 5.9.6.

G2 - same as G1, except that MPC protocols (secret sharing, secret multiplica-
tion, and secret addition) are simulated by Lemma 5.9.5. We have that G2 ≈ G1
due to the properties of the secure secret sharing scheme, which allows for efficient
simulation.

G3 - same as G2, except that S consults the ideal functionality to determine the
leader on the submitted numbers during registration. Since we have at least one
honest user in the election who generates a random number for the registration
and that the transcript can be simulated by the MPC functionality, we have that
G3 = G2.

G4 - same as G3, except that during the registration, parties submit random
numbers (instead of calls to H), and for the verification they send theses numbers
to S. We have that G4 ≈ G3 by the properties of the random oracle.

G5 - the ideal-world experiment. We have that G5 = G4 by construction
(parties use random number for the registration and are consulted by the ideal
functionality to determine the leader).
Theorem 5.9.1. Assuming the underlying primitives are secure in the malicious
adversary model, the statement of Theorem 5.4.1 holds in the malicious adversary
model.
Proof. The theorem follows from Canetti’s composition theorem [31] and Theo-
rem 5.4.1.
Lemma 5.9.8. Assuming H is a random oracle, Construction 5.5.1 produces a
unique leader with the probability at least 1− e−

N(N−1)
2l(λ)+1 .

Proof. Analogously to Lemma 5.9.6 with the difference that kiL has 2l(λ) possible
choices.

Proof of Theorem 5.5.1. Since both our constructions Construction 5.4.1 and
Construction 5.5.1 rely on secure MPC primitives and differ only in specifics of the
used MPC frameworks, we simply follow the steps in the proof of Theorem 5.4.1
to prove the theorem.

5.10 Conclusion

In current proof-of-stake cryptocurrencies, the a-priori knowledge of who will
append the blockchain may be easily exploited by an adversary and lead to a
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denial-of-service of the system. The importance of hiding the identity of the block
appender was recently recognized, and first solutions to the problem have been
proposed by Boneh et al. [18]. In this work, we took a step further and presented
an efficient SSLE protocol, whose security relies on MPC. We implemented our
solution and microbenchmarked it in a real-world scenario. Our security analysis
and performance evaluation indicate that our solution is practical and can be
deployed into existing proof-of-stake cryptocurrencies.

Nevertheless, there are open questions that we leave for future work. First,
our construction elects a unique leader. If the leader does not show up within
some timeout, the parties have to restart the protocol from scratch. It would
be interesting to come up with a more efficient solution for this scenario. The
secret committee election of size > 1 can be seen as a generalization of the SSLE
problem and could solve the mentioned problem. Such a primitive could be used,
for example, to privately electing a committee for making treasury decisions as
in [136]. However, the generalization of our techniques for this setting is not
straightforward. If we naively skip the last OSelect subroutine and declare both
candidates as leaders, we know that one candidate is from the left subtree, another
from the right, which would contradict the committee’s uniform selection. We
leave this interesting problem as future work.

And second, the precision of our construction w.r.t. the stake distribution
directly affects the communication and computational costs. It would be interesting
to design an SSLE scheme that is cost-stable with regard to stake distributions.

158



6
Conclusion

159





Information systems that we use in our everyday lives provide various security
guarantees and often consist of smaller building blocks. Anonymity properties
are essential in many scenarios, therefore cryptographic primitives that capture
anonymity by design are important tools when building more complex systems.
In this thesis, we have studied four cryptographic primitives with anonymity
properties in mind.

We have defined two new primitives, Anonymous RAM and Randomize-or-
Change encryption, which capture anonymity properties by definition. Anonymous
RAM can be seen as a natural generalization of Oblivious RAM to the setting of
multiple mistrusting users, which share the same storage. We have shown two
AnonRAM constructions, which differ in asymptotics and assumptions. The first
construction is based on a secure ORAM and re-randomizable encryption scheme:
users have their own ORAM instances where they store data, and they have to
re-randomize the same locations in ORAM instances of all other users, thereby
achieving anonymity. The second construction requires two non-colluding servers
and achieves polylogarithmic complexity in the number of users and cells per
access.

Randomize-or-Change (RoC) encryption allows users to chain ciphertexts in a
way, that an external adversary cannot distinguish between re-randomizations or
new encryptions, yet malicious parties cannot break integrity of plaintexts. In
an extension for RoC called aggregatable RoC, multiple pairs of ciphertexts that
have the same input ciphertext can be efficiently and publicly aggregated. Using
aggregatable RoC, one can construct a parallel anonymous RAM, which has the
benefit that the users can simultaneously access their storage.

Furthermore, we have presented efficient constructions for two important
primitives. The first primitive is non-interactive zero-knowledge (NIZK) proofs.
In this thesis, we have proposed an efficient way of constructing NIZK proofs for
statements that consist of algebraic and arithmetic parts simultaneously. Each
part is taken care of efficiently by the respective technique known in the literature,
and we glue these parts together in a non-blackbox way, almost at no additional
cost. NIZK proofs can be naturally used in anonymous scenarios, since the prover
does not have to reveal her identity to the verifier(s).

Finally, we have proposed a framework for efficiently constructing Single Secret
Leader Election protocols. The problem was recently recognized and formalized
by Boneh et al. [18]. Our framework relies on secure multi-party computation
(MPC) and does not require any sorting or shuffling of the underlying data.

Future work In this thesis, we have presented two new primitives and improved
efficiency in another two primitives, where each of them has anonymity properties
in mind. Clearly, we haven’t covered all research problems related to anonymity
that need to be addressed. Below, we list several directions for future work.

• Our single server AnonRAM construction has a linear cost per access in
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the number of users. It would be interesting to construct a single server
AnonRAM with a polylogarithmic cost.

• It would be interesting to see how the ideas from randomize-or-change
encryption can be extended to constructing verifiable proxy-reencryption
with possibility of universal re-randomization.

• It would be interesting to explore whether the approach by Ames et al. [4]
can be used to achieve yet more efficient and compact NIZK proofs in
cross-domains.

• Currently, our experiments show that our SSLE protocol instance can run in
under 7 minutes in a real-world scenario for a hundred of users. It would be
an interesting challenge to bring this number to the order of tens of seconds
for the same setting.

Future work does not stop at this point and may touch cryptographic building
blocks which are not mentioned in this thesis or are not yet defined, e.g., the
SSLE problem was formalized very recently. Another direction for future research
is to address post-quantum security in the existing primitives, many of which will
no longer be secure in the presence of a quantum attacker. The more efficient
cryptographic building blocks exist at our disposal, the more complex systems we
could efficiently build and achieve the desired security and anonymity properties.
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