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Abstract 

Small non-coding RNAs (sncRNAs) are essential players in all pathological and 

pathophysiological processes. The high evolutionary conservation, especially for 

microRNAs (miRNAs) from nematodes to humans make them very interesting research 

objects. To advance the translation and application of sncRNAs in human healthcare, it 

is mandatory to have a profound understanding of their expression in health and 

diseases, especially in the context of aging. With such knowledge we can then model 

the contribution of non-coding RNAs to challenging diseases such as Alzheimer’s disease 

and other neurodegenerative disorders. 

Two factors adding to an improved understanding of non-coding RNAs are high-

resolution experimental approaches that measure the molecules in an as least as 

possible biased manner and advanced computational analysis. The latter topic covers 

two aspects, primary data analysis such as genome mapping but more importantly also 

statistical analysis with respect to the biological function and altered molecular 

pathways.  

In my phD thesis, I contributed to the unbiased measurement of small non-coding RNAs 

by using combinatorial probe-anchor synthesis (cPAS) sequencing [1]. Using the new 

sequencing approach called DNBSEQ now, we were able to demonstrate that cPAS is 

not only more accurate as compared to microarrays but also that it generates a 

physiological distribution of non-coding RNAs that is partially lost in other sequencing 

approaches. Further, cPAS demonstrated a great technical reproducibility, making it of 

potential use for medical application. Available as high-throughput approach now, the 

work in my thesis is fundamental to characterize thousands of samples with millions of 

reads each in a reproducible and affordable manner, even limiting the hands-on time of 

technicians. Based on the success of the initial cPAS sequencing I worked on the 

advanced and even less biased analysis using the CoolMPS technology [2]. The key 

difference in this sequencing approach is that the detection signal is not generated by a 

chemically modified nucleotide incorporated in synthesized DNA but that a highly 

specific secondary antibody emits a light signal to sequence DNA or RNA [3]. This 

improved the sequencing quality significantly, at the same time lowering the 

sequencing cost.  



As very first application for the sequencing of sncRNAs, we selected Alzheimer’s disease, 

generating data of sufficient quality for application as clinical biomarker. As specimen 

types, we intentionally selected whole blood, containing the information from white 

blood cells, red blood cells, free circulating sncRNAs in plasma and extracellular vesicles. 

Notably, I also contributed to make the molecular measurements feasible as home-

sampling [4], a topic that gains rapid traction not only because of the recent Sars-Cov2 

pandemic.  

Independent on the technology, it is essential to extract the relevant biological 

information from small non-coding RNA data. Using data from neurological disorders 

but also from other diseases such as lung cancer and from controls we first modeled 

how aging affects the molecular patterns [5]. Our results clearly suggest a dependency 

of small non-coding RNAs from the age of patients, calling for age specific diagnostic 

tests. One challenge is however to differentiate between causative and correlated 

effects. Finally, we thus collected our and others knowledge on one specific class of 

small non-coding RNAs, microRNAs, and model how these molecules regulate the gene 

expression. We included this information to miRTargetLink2 [6], a web server that can 

model specific gene regulatory effects in one disease such as Alzheimer’s disease but 

that also can be applied to any other biomedical research question.  Using 

miRTargetLink2, others and we now can answer highly complex questions – e.g., which 

genes are targeted by sets of miRNAs or which miRNAs target gene sets in a disease 

within minutes. 

In sum, the advanced and least biased measurement of non-coding RNAs by deep 

sequencing and the advanced computational analysis developed in this work 

contributes to advance our understanding of the molecules in health and diseases. 

Further, the framework can be applied by other researchers in the context of any 

physiological or pathological processes in humans, mice and other animals.         



Zusammenfassung 

Kleine nicht-kodierende RNAs (small non-coding RNAs, sncRNAs) sind wesentliche 

Akteure in allen pathologischen und pathophysiologischen Prozessen. Ihr hoher Grad 

an evolutionärer Konservierung, von Fadenwürmern bis hin zum Menschen, machen sie 

zum interessanten Forschungsgegenstand. Um die Translation von sncRNAs zum 

Patientenwohl zu ermöglichen ist es zwingend notwendig, ein tiefes Verständnis ihrer 

Expression in Gesundheit und Krankheit zu haben, insbesondere im Kontext des Alterns. 

Mit diesem Wissen können wir dann den Beitrag von nicht-kodierenden RNAs zu 

herausfordernden Krankheiten wie der Alzheimer- oder Parkinson-Krankheit 

modellieren. 

Zwei Faktoren, die zu einem verbesserten Verständnis der nicht-kodierenden RNAs 

beitragen, sind hochauflösende experimentelle Ansätze, die die Moleküle auf eine 

möglichst unvoreingenommene Weise messen, und fortgeschrittene rechnerische 

Analysen. Letzteres umfasst zwei Aspekte, zum einen die primäre Datenanalyse wie das 

Genom-Mapping, aber vor allem auch die statistische Analyse im Hinblick auf die 

biologische Funktion und veränderte molekulare Pfade.  

In meiner Doktorarbeit habe ich einen Beitrag zur unvoreingenommenen Messung von 

kleinen nicht-kodierenden RNAs mit Hilfe der kombinatorischen Sonden-Anker-

Synthese (cPAS) Sequenzierung geleistet [1]. Mit dem neuen Sequenzieransatz DNBSEQ 

konnten wir zeigen, dass cPAS im Vergleich zu Microarrays nicht nur genauer ist, 

sondern auch eine physiologische Verteilung der nicht-kodierenden RNAs erzeugt, die 

bei anderen Sequenzieransätzen teilweise verloren geht. Weiterhin zeigte cPAS eine 

große technische Reproduzierbarkeit, was es für den medizinischen Einsatz interessant 

macht. Die Methode ist inzwischen als Hochdurchsatz Methode verfügbar und erlaubt 

es Kohorten mit tausenden Patienten, jeweils mit Millionen an Datenpunkten, Zeit- und 

Kosten-effizient zu messen. Basierend auf dem Erfolg der ersten cPAS-Sequenzierung 

arbeitete ich an der weiterentwickelten und noch weniger verzerrten Analyse mit der 

CoolMPS-Technologie [2]. Der entscheidende Unterschied bei diesem Sequenzieransatz 

ist, dass das Detektionssignal nicht durch ein chemisch modifiziertes Nukleotid erzeugt 

wird, das in die synthetisierte DNA eingebaut ist, sondern dass ein hochspezifischer 

sekundärer Antikörper ein Lichtsignal zur Sequenzierung von DNA oder RNA aussendet 

[3]. Dadurch konnte die Sequenzierqualität deutlich verbessert und gleichzeitig die 

Sequenzierkosten gesenkt werden.  

Als erste Anwendung für die Sequenzierung wählten wir die Alzheimer-Krankheit und 

generierten Daten von ausreichender Qualität für die Anwendung als klinischer 

Biomarker. Unsere Resultate beruhen dabei auf der Analyse von Vollblutproben, die 

sowohl das Muster von Weißen Blutkörperchen, Roten Blutkörperchen als auch frei 

zirkulierender und Vesikel-gebundener Moleküle widerspiegeln. Insbesondere habe ich 



auch dazu beigetragen, die molekularen Messungen als Home-Sampling möglich zu 

machen [4], ein Thema, das nicht Zuletzt wegen der Sars-Cov-2 Pandemie schnell an 

Bedeutung gewinnt.  

Unabhängig von der Technologie ist es wichtig, die relevanten biologischen 

Informationen aus den nicht-kodierenden RNA-Daten zu extrahieren. Anhand von 

Daten von neurologischen Erkrankungen, aber auch von anderen Krankheiten wie 

Lungenkrebs und von Kontrollen haben wir zunächst modelliert, wie das Altern die 

molekularen Muster beeinflusst [5]. Unsere Resultate deuten eindeutig auf eine 

Abhängigkeit der kleinen nicht-kodierenden RNAs vom Alter der Patienten hin, was 

nach altersspezifischen diagnostischen Tests verlangt. Eine Kern-Herausforderung ist es 

allerdings, zwischen Ursächlichen und Korrelierten Effekten zu unterscheiden. Daher 

bündeln wir unser Wissen und das von anderen Forschern über eine bestimmte Klasse 

von nicht-kodierenden RNAs, die microRNAs, und wie diese Moleküle die 

Genexpression regulieren. Diese Informationen fügten wir miRTargetLink [6] hinzu, 

einem Webserver, der spezifische genregulatorische Effekte bei einer Krankheit wie der 

Alzheimer-Krankheit modellieren kann, der aber auch auf jede andere biomedizinische 

Forschungsfrage angewendet werden kann.  Mit Hilfe von miRTargetLink können 

andere und wir nun innerhalb von Minuten hochkomplexe Fragen beantworten - z. B. 

welche Gene von Sets von miRNAs angegriffen werden oder welche miRNAs bei einer 

Krankheit auf Gensets zielen. 

Zusammenfassend lässt sich sagen, dass die fortschrittliche und am wenigsten verzerrte 

Messung von nicht-kodierenden RNAs durch Deep Sequencing und die fortschrittliche 

rechnerische Analyse, die in dieser Arbeit entwickelt wurde, dazu beiträgt, unser 

Verständnis dieser Moleküle in Gesundheit und Krankheit zu verbessern. Darüber 

hinaus kann das Framework von anderen Forschern im Zusammenhang mit beliebigen 

physiologischen oder pathologischen Prozessen bei Menschen, Mäusen und anderen 

Tieren angewendet werden. 
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1. Introduction

1.1 miRNAs and miRNA biology 

MicroRNAs (miRNAs) are endogenous 22 nt RNAs that can play important regulatory 

roles in animals and plants by targeting mRNAs for cleavage or translational repression 

[7]. The small and very stable molecules that have big potential are transcribed in all the 

living organisms and excel by their high degree of evolutionary conservation. miRNA 

structures are typically predicted in stem loops structures, with one or two mature 

miRNAs produced from this stem loop by processing using the enzyme Dicer. The 

precise sequences of the mature miRNAs could be defined by cloning. The processing in 

a canonical- and non-canonical manner is a very complex process that is sketched in 

Figure 1 (miRNA biogenesis). 

Single stranded RNAs can complementarily recognize, and then bind, via highly selective 

hydrogen bonding, to specific complementary ribonucleotide targets in the 3’ prime 

untranslated region (3’-UTR) of specific messenger RNAs (mRNAs), and in doing so, 

down-regulate their expression [8Ͳϭϲ]. As mRNAs are essential to bridge the genetic 

information delivery from DNA to proteins, it can be understood that miRNAs are very 

important for cellular processes and also will impact the phenotypes of the organisms. 

Since the discovery of miRNA in the early 1990s [17] , continuous and significant 

progress has been made on how miRNAs are involved in the different life  processes 

[18]. Moreover, a review written by Bartel provided an summary understanding of the 

key features for miRNA biogenesis and genomics [19]. This is very helpful review to 

intrigue more scientific work on how the miRNAs could be involved in different life 

processes, especially, their mode of actions. 

A key feature of mature miRNAs is their length, miRNAs typically consist of 25 to 30 

nucleotides. Elementary ribonucleic acid sequence analysis and bioinformatics predict 

that a ‘typical’ 22 nucleotide single strand RNA that is comprised of 4 different 

ribonucleotides (adenine, guanine, cytosine and uridine; A,G,C,U) could have over 

1013 possible sequence combinations or structures [20]. However, indeed, miRNAs are 

highly conserved between different eukaryotic tissues and for humans a little over 2,500 

miRNAs are annotated in the reference database miRbase. Many experimental 

observations indeed indicated that there are typically only about 2×103 different 

miRNAs so far identified in all eukaryotic tissues [21]. That miRNAs are highly 

developmental stage-, tissue- and cell-specific, even in adjacent cell types suggests an 

extremely high evolutionary selection pressure to use only specific miRNA sequences 

[20-25].  In this aspect, miRNAs studies are even more promising in getting their mode 

of mechanism clarified in most of species.  
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So far, miRNAs have been identified as regulators for many essential biological 

processes, such as development, growth, differentiation, and neurodegenerative 

processes [26]. 

While miRNAs mainly work through 
binding complementarily at the 3ʹ 

untranslated region of their target 

mRNA to induce translational 

repression [27],  the 5ʹ untranslated 

region, coding sequence or promoter 

regions of mRNAs as their targets 

also exist [28]. Moreover, RNA-

binding proteins have an important 

role in the regulation of miRNA 

activity [29] (see also Figure 1 

(miRNA biogenesis)).  

Therefore, it is of great significance to 

study the miRNA -mRNA-proteins 

interactions as well as their pathways 

for more deeper understanding of 

their roles in the life processes. As 

miRNAs biomarkers are important for 

many pathological mechanisms and 

having great potential for diagnostic 

applications, miRNA-based therapies 

are also an extremely important 

research topic nowadays as well 

[30Ͳϯϳ]. 

Some companies are also making miRNA therapies in clinical research phase such as 

RGENIX, Curamir Therapeutics Inc, Mirna Therapeutics Inc, Santaris Pharma etc. Those 

companies provided and updated their status on their homepages as well. However, 

there are no miRNA therapy clinically approved so far [38], which call for more solid 

research evidence and comprehensive understanding of miRNAs structures as well as 

their associated life processes.  

Figure 1 (miRNA biogenesis) 

miRNA Biogenesis. In the usual (canonical) processing pathway pri-miRNAs are 
cleaved into pre-miRNAs. Pre-miRNAs are exported from the nucleus to the 
cytoplasm. Next, they are cleaved into small double stranded RNAs. The RIS 
complex mediates the recognition of the mRNA to be targeted. The non-
canonical pathway, described as so-called Mirtrons, is characterized by 
additional splicing. The resulting RNA adopts a pre-miRNA like form and is 
likewise exported to the cytoplasm. This file is licensed under the Creative 
Commons Attribution-Share Alike 4.0 International license  
https://commons.wikimedia.org/wiki/File:MicroRNAs_biogenesis.jpg 



3 

1.2  Other non-coding RNAs 

In addition to the fore mentioned miRNAs, many other non-coding RNA classes, large 

and small RNAs exist. While the most important class within my thesis are miRNAs, I 

want to briefly mention 

other non-coding RNA 

classes. These are listed 

in Figure 2. It is worth to 

explicitly highlight that 

not all the classes shown 

in this figure are small 

non-coding RNA. 

LincRNAs for example 

have a length exceeding 

several hundred bases. 

The data we describe in 

this thesis and the 

methodology are 

however based on small 

RNA sequencing. This 

means that all 

expression features 

considered herein are 

derived from short read 

sequencing. For the sake 

of simplicity, we thus 

term all the different 

classes described and 

used in this thesis as 

sncRNAs. While the 

emphasis is on miRNAs, the class with most annotated representatives are lincRNAs 

(49,803), followed by piRNAs (28,733). All representatives from the different classes 

have been extracted from the respective references, e.g. the piRNAs from piRBase and 

the miRNAs from miRbase. The details on the different classes are provided later in the 

results section in the respective manuscripts.  

1.3  Challenges and prospects of miRNAs as biomarkers 

As described in the previous section, miRNAs exhibit a significant role in most 

physiological processes. Their targets or associated mRNAs appear to be also 

dysregulated in conditions of specific pathological processes.  

Figure 2 (sncRNA classes) 

The chart displays the different small RNA classes and the number of representatives in H. 
Sapiens according to the respective reference databases. Please note that not all the listed 
RNA classes are small RNAs, since we derive the expression of the molecules however from 
short reads, we denote them as “small” in the context of this thesis. Source: own graphic.    
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As miRNAs are detectable in various biological fluids and are stable in dry blood spot 

transportation [69]  and also clinical lab processing, they are considered as very valuable 

biomarker candidates. There are numerous studies also reporting miRNAs to be 

indicative for chronic diseases [39], nevertheless, it is still indeed a big challenge to get 

miRNAs applied in clinical patients care diagnostics. There are several processes 

crucially influencing this translational step, including the right collection of the samples, 

the measurement using an accurate profiling system and the evaluation of substantially 

large cohorts in a clinical setting. In the next sections I want to sketch the most relevant 

factors that impact the translation of miRNAs from bench to bedside. The main four 

reasons are sketched in Figure 3 below. The human miRNA and disease database 

(HMDD) currently available in the third version1 , lists serval thousand associations 

between miRNAs and pathologies in different specimen types, disease states, and 

evaluated by different technologies. In turn, the results stored in the HMDD can at the 

first view look contradicting each other (a miRNA going up in a disease in one study but 

going down in the same diseases in another study), but the results might be justified by 

different conditions. Examples are that the one study considers whole blood and the 

second plasma, or that one study considers low grades of that disease the other higher 

grades. Such biological factors are often hard to be separated from technical factors.   

Figure 3 (heterogeneity in miRNA biomarkers) 

The figure displays four important sources for heterogeneity. These include the exact definition of the clinical use case, 
the selection of the right sample type (referred to as matrix), the selection of the right profiling technology and the 
computational analysis. Image source: self-designed.   

1) Defining the right clinical use case: As described in the first part of the Introduction

and elaborated later in this section and the methods, miRNAs are relevant for

1 http://www.cuilab.cn/hmdd 
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basically all human pathologies. In the context of heterogeneity, I am not referring 

to different disease conditions such as Alzheimer’s disease (AD) and Lung Cancer 

(LCa) where obviously different sncRNA patterns are expected. But when 

comparing different research works proposing miRNA biomarkers, subtitle 

differences (e.g. the one study relies on low stage Lung Cancer while another relies 

on late stage Lung Cancers) can make substantial differences in the profile. In this 

context, also confounding factors have a severe impact, here, especially the age 

can affect miRNA profiles as we will demonstrate in the results section.  

2) Sampling: Sampling of miRNAs could generate differences in miRNA quantity and

type determination, such as storage time [40], blood collection tubes  [41]. This

means already the information whether anti-coagulants such as EDTA are added

has an impact on profiles, of course also whole blood and plasma profiles differ.

Lastly, sample matrices such as dried blood spots (DBS) again show different

patterns though in principle they contain the same RNAs as whole blood. Especially

the differences between DBS and whole blood will be elaborated in the results

section. In a similar direction, I want to emphasize that also the purification of RNAs

can impact the profiles, even between column based and gel-based size selection,

differences in non-coding RNA profiles can exist.

3) Measurement: Further analytic techniques are also creating differences for same

sample results ΀ϰϮͲϰϯ΁. For instance, next generation sequencing analysis of

miRNAs was reported to introduce new isoforms of miRNAs during the RNA

library preparation processes by RNA ligase [44]. While many of the earlier

manuscripts on miRNAs and other RNAs in general were based on microarrays,

now next generation sequencing is the de facto standard.  In sum, on the one

hand, technically, different methods such as RT PCR, genome arrays, next

generation sequencing are applied to study the miRNAs in the samples, those data

generate differences for the quantity and also different types of miRNAs

information for same cohort of samples. In the context of this thesis, we will focus

on stable and efficient measurement of small non-coding RNAs using such massive

parallel sequencing (MPS).

4) Data analysis: For the data analysis, statistic methods and algorithms can also lead

to different miRNAs type information. This leads from the substantial influence in

using different normalization approaches (e.g. housekeeping genes or miRNAs

versus distribution based normalization or others), to differences because of the

application of other hypothesis tests (e.g. non-parametric Wilcoxon Mann-

Whitney versus parametric t-Test) and many others. Also, this aspect is covered in

my thesis as described in the Results chapter.
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Besides these general challenges, often for the NGS studies of miRNA, only limited 

cohort sizes are available. This is due to the high cost associated with the measurement 

as well as the availability of clinical samples of highest quality and challenges related to 

the very large data set sizes. From such small – and often monocentric and retrospective 

studies –  it is difficult to get an overall pattern of dysregulated miRNAs for the diseases 

being studied and also fully validate those miRNAs discovered to be true miRNAs.  

Again, it is important to emphasize, that not all factors are driven by technical nature or 

limitations in study set up, but that the biological factors add to the complexity. Patients 

with same diseases or phenotypes also express several different miRNAs, since they 

have other confounding factors such as gender, age, or other accompanying chronic 

diseases or physiological conditions [5].  Or at cellular levels, miRNAs differ between 

plasm and serum preparations. And at molecular level, extracellular miRNAs are 

different between microvesicles or bounded to proteins [45]. The limitations on sample 

size, individual biological differences, technology leave a lot of space to further 

concretely depict the real expression status of miRNAs in vivo. 

Given those challenges mentioned above, many further studies are extensively carried 

by applying new technologies and also streamline the disease cohort types in order to 

improve the specificity of miRNAs as well as the reproducibility of data analysis of 

miRNAs signatures of different disorders such as type 2 diabetes mellitus (DM), Chronic 

Obstructive Pulmonary Disease (COPD), breast cancer, lung cancer, Alzheimer’s disease 

(AD) and many others [46].  

Those studies, especially bundled with in-depth literature review made comprehensive 

comparison and careful analysis of miRNAs in different disease types, therefore, those 

studies indicate that a small set of miRNAs in the same sample types with similar study 

set-up, patient recruitment criteria seem to be largely concordant [46]. As a 

consequence, there are still a few percentages of each cohort, whose miRNAs are 

different to verify. Curated databases for storing circulating miRNAs and diseases 

relations could facilitate the detection of miRNAs that are applicable for diseases 

diagnosis [46]. As sketched above, respective databases are still hard to interpret even 

though they are partially manually curated to a significant amount.  

Those unverified results call for more longitudinal follow up studies that could monitor 

changes of miRNAs along with disease progression or treatment in regular timelines. 

Using the new measurement devices such as next generation sequencing machines 

could increase the speed of data generation, novel biomarker discovery and enable 

large scale sample analysis significantly. However, being high throughput, their turn 

round time is however often more than 2-5 weeks if the samples need to be shipped to 

centralized labs. So, for the clinical routine diagnosis, the high throughput technology is 

on the one hand good for database accumulation and reference establishment, but they 
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should be also as fast as cheap as possible. But most importantly, the quality of data 

generation and data analysis should be optimized [47].  

Given the challenges that could potentially affect the diagnosis specificity and sensitivity 

of miRNAs in clinical routine, technology is further improved, and also more resources 

are used for studying miRNAs. This gives rise to more extensive miRNAs databases 

corresponding to different disease types.  In this thesis, one of the topics are applying 

new next generation sequencing technology for miRNAs studies as well. And it is hoped 

that with the suitable technology, miRNAs databases on the population level, tissue 

level and even single cell level can be extended.  

It is probably then possible to have a reasonable application - a multiplexed test of 

typical list of miRNAs for a specific type of diseases such as Alzheimer at specific age 

range for facilitating healthcare monitoring or diagnosis. In this light, AD is a promising 

use case for my research. While the main goal is conceptually, i.e. defining a stable, 

efficient and high-throughput measurement pipeline with sophisticated computational 

algorithms, it is important to select a clinical use case that allows to showcase the power 

of a potential diagnostic test.    

1.4 Alzheimer’s disease and miRNA in Alzheimer’s disease 

Being irreversiable and progressive, Alzheimer's disease ;ADͿ is a neurodegenerative 
disease and the main cause of dementia in the elderly globally (source- "Dementia 

Fact sheet", World Health Organization, September 2020). As global aging progresses, 

many countries such as China, Japan, Germany, USA and others are now facing the 

fact that the population structures are imbalanced. For instance, people over 60s are 

consisting around 18-20% of the whole population number, which will definitely lead 

to more Alzheimer’s prevalence. 

It is estimated that in 2010 there were around 35.6 million dementia pateints 

worldwide; these numbers are expected to increase ϭϬϬй  every 20 years by 2050 

[48]. In Germany, a similar development is expected, as data from the Statistisches 

Bundesamt demonstrate (see also Figure 4).  

As a neurodegenerative disease, Alzheimer’s diseases become worse with time and is 

thought to begin 20 years or more before symptoms arise [ϰϴͲ49]. While brains 

change in an unnoticeable manner for imaging technologies, individuals experience 

also unnoticeable symptoms such as memory loss and language problems [ϱϬͲ53]. 

Often when individuals experience those symptoms, they are already too late to get 

disease prevention or cured. 
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Alzheimer symptoms occur mainly because nerve cells in parts of the brain involved in 

thinking, learning and cognition have been damaged or destroyed in a way that cannot 

be compensated or rescued. 

Eventually with time, patients develop 

huge problems in carrying out basic body 

functions, need to depend other 

caregivers around the clock and 

ultimately fatal [54]. Unfortunately, so 

far, there is no cure or vaccine for 

Alzheimer’s diseases. As Alzheimer’s 

patients are dependent on others for 

their daily care, this gives huge burden for 

public health.   

By the year of 2030, it is estimated that 

the global cost of dementia could grow to 

around US$2 trillion, which could 

overwhelm health and social care 

systems [55]. For families that have 

Alzheimer’s patients, they are under huge 

emotional stress and sadness since 

communications with patients are almost 

blocked.  

Nowadays, people are becoming aware that the diagnosis of Alzheimer should be as 

early as possible. However, currently, magnetic resonance tomography technology or 

other imaging technologies can only detect disease status in a macro-tissue level, which 

cannot meet the challenges to detect the molecular pathologies of Alzheimer to enable 

early intervention.  In order to solve this biological, social challenges in the aging earth, 

‘omics’-based, hypothesis-free, exploratory big data pathway, will enable collection of 

genomics, transcriptomics, epigenomics and proteomics data from progressing 

asymptomatic, preclinical and clinical neurodegenerative diseases populations. Those 

omics data is key to the ultimate understanding of the Alzheimer’s diseases and 

development of early diagnosis and effective individualized treatment of Alzheimer’s 

disease  [56].  

Indeed, many research projects have been consistently investigating the molecular 

process of Alzheimer’s disease using genomics and proteomics technologies [57]. The 

documented candidate biomarkers are described in different literatures [58Ͳϲϱ]. 

However, many famous Alzheimer’s biomarkers like Aß, tau, ApoE4 and others 

reported still are 

Figure 4 (Alzheimer's disease projection in Germany 

The figure presents the projection of AD cases in Germany till 2050. 
Source: own visualization of data extracted from the Statistisches 
Bundesamt.  



9 

lack of enough accuracy and their prediction value remains further to be combined 

with other biomarkers [66Ͳϲϳ].  

Until now for Alzheimer’s diagnosis, it is still challenging to have molecular diagnostics 

markers that are easily accessible, for instance, from peripheral blood or urine, saliva, 

highly specific and sensitive, less expensive and technically applicable by laboratories 

with standard equipment and interpretation tools. While Alzheimer’s diseases are 

progressing with time, it is also very important to have regular and highly standardized 

sampling methods to enable longitudinal home sampling. Since miRNAs obtained from 
blood and serum have shown those characteristics, their potential as non-invasive 

biomarkers  for different human pathologies is enormous [68]. Besides, they are stable 

from Dried Blood Spot (DBS) samples, which could enable remote sampling and 

potentially good for longitudinal follow ups [69].  

In a multicenter study published in 2011, Keller and co-workers profiled the expression 

of 863 microRNAs by array analysis of 454 blood samples from human individuals with 

different cancers or noncancer diseases and validated this 'miRNome' by quantitative 

real-time PCR [68]. While this study did not contain AD patients or any other form of 

dementia, it was the basis for later AD miRNA research. The important result of the first 

version of the human disease miRNOme study was that it is highly important to consider 

a broad range of diseases as controls. Many miRNAs were dys-regulated in the same 

direction in various diseases, most importantly a striking down-regulation of miR-144. 

If such a miRNA is reported in a case-control study on AD it has likely no consequence 

for medical applications since it is down-regulated in the majority of all human 

pathologies. In continuation of the original study and beyond, miRNA patterns have 

been extensively studied in Alzheimer’s patients’ tissue samples and cell cultures 

[70Ͳϳϭ]. In addition, serum profiling of circulating miRNAs by Geekiyanage etc al 

provided first evidence that miRNAs expression differences might be valuable 

biomarkers for Alzheimer’s diseases diagnosis [72].  

In 2013, Leidinger et al applied next generation sequencing (Illumina platform 

Hiseq2000) to investigate the miRNA expression profiles from blood samples, where 

140 unique differentially expressed miRNAs between Alzheimer patients and controls. 

Further, they compared the NGS vs RT PCR methods to validate 12 miRNA biomarkers 

with accuracy,specificity and sensitivity all over ϵϬй in Alzheimers’ blood samples vs 

health controls [66]. This study gave a very good starting point for studying 

deregulated miRNAs in blood for molecular diagnosis of Alzheimer’s diseases. Again, 

the study was affected by a limitation mentioned in the previous section, which is the 

technology, most importantly related to the fact that whole blood miRNAs were 

considered. In fact, 90% of all reads measured in the study by Leidinger et al come 

from one single mature miRNA, namely miR-486-5p. This greatly affects the profiles of 

the less abundant miRNAs, one key point in my thesis.  
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As age is highly related to the prevalence of Alzheimer’s diseases, many further studies 

on miRNA have been carried to provide insights into changes in microRNAs abundance 

associations on age, neurodegenerative diseases etc [ϳϯͲ7ϳ]. The aging process is also 

involving different other diseases in parallel, which will in general influence the normal 

aging progression of miRNAs profiles in blood. For instance, people at age 40-50 have 

largest effect size in lung and heart diseases while the neurological diseases are more 

effected in age 60-70 years old. This means for a healthy individual, his or her miRNA 

patterns might be influenced for a given period of time by some other physiological or 

pathological conditions such as acute infection etc.  

Therefore, it is complex to resolve the miRNA biomarkers in age dependency or related 

pattern, since aging is accompanied with different physiological or pathological status 

for individuals. And individuals with same age might have different environmental 

conditions as well. Besides, miRNAs have complex gene regulatory networks, it is 

demanding to see how the entire networks change with age. Since it would be also 

challenging to define at which age range, the miRNA tests should be suggested for 

Alzheimer’s risk analysis. To further develop understanding of age-related miRNAs 

changes, Fehlmann et al have used computational deconvolution methods to 

characterize all 2549 annotated miRNAs in 4393 whole blood samples from both 

genders across the lifespan (30-90 years) [78]. 

This study showed aging is a confounder in biomarkers discovery, which needs to be 

incorporated into different scenarios of other diseases. So far, many different 

technologies are available for high-throughput studies for different diseases but not for 

specific diseases at specific ages. As sketched above, to monitor the miRNome, usually 

microarrays and high-throughput sequencing are applied. The suitable technology will 

not only give good technical performances but also give good biological findings. 

Microarray technology could of advantage to give high dynamic range of blood miRNAs, 

while NGS reads could be only matched to few miRNAs [1]. Moreover, for Alzheimer’s 

disease, iso-forms are characteristic. This means that in patients, a modification at the 

3’ end of the mature miRNA can be dominant that is less abundant in control patients. 

However, because microarrays can only identify known miRNAs since it is designed in a 

probe capture manner [79], such iso forms are frequently missed in microarray studies. 

It is mandatory to consider that miRNAs are often building isomiRs and basically all 

human miRNAs have different isoforms [80] and to apply a methodology that takes this 

fact into account.  

To better characterize those isomiRs, next generation sequencing technology as SNP 

level are required. However, for the next generation sequencing data quality, also need 

good sample preparation and library preparation together with sequencing chemistry 

methods. Moreover, more biological samples need to be analyzed, which call for low-
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costs NGS strategies. Besides the high throughput data generation should be of high 

quality, low costs, the interpretation also requires integrative and intelligent strategy 

to mapping the miRNAs patterns in aging associated diseases such as Alzheimer 

[ϴϭͲ82]. Therefore, in this PhD thesis, many efforts are paid for investigating 

sequencing performance technology as described in the methods. 

1.5 Summary and contribution of the research in this thesis in context 

In Figure 3 on page 4 I sketched challenges in the translational research. In my thesis I 

tried to address topics covering the different aspects. Within a single PhD thesis not all 

issues related to such a complex research topic can be addressed. Most of the 

contributions of my work are related to the improved measurement of small non-coding 

RNAs (this includes miRNAs but also other sncRNAs) as well as computational analysis 

to add biological interpretation to the vast amount of data. The manuscripts included in 

my cumulative dissertation are presented in the context of the four main challenges and 

my contributions below in Figure 5. 

Figure 5 (research in context) 

This figure shows the four main challenges described above and the contributions of my thesis to these challenges in 
six manuscripts. As an outlook, we additionally present a single cell study at the end. The main contributions where I 
am first author are highlighted in bold. 
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2.Methods 

2.1 High throughput Technologies for miRNA Sequencing 

2.1.1 Introduction of cPAS (combinatorial Probe Anchor Synthesis) Sequencing 

As outlined in previous chapter, it is important to have an unbiased next generation 
sequencing approach to further study miRNAs in a high throughput way [83Ͳϴϰ]. Most 

studies have been using Illumina 

sequencing platforms. Other 

technologies that have partially been 

discontinued include the 454 system by 

Roche and the ABI SoLiD system. In 

addition to these short-read 

sequencing systems, also long read 

sequencing (e.g. from PacificBio) exist. 

Another emerging technology includes 

nanopore sequencing as for example 

developed by the company Oxford 

Nanopores. Figure 6 presents a current 

overview of data sets available for H. 

Sapiens, irrespectively on whether DNA 

or RNA has been sequenced (data 

extracted from the Sequence Read 

Archive on May, 25th 2021). In this 

figure, the complete genomics 

technology as well as the BGISEQ 

technology are listed. This sequencing 

relies on so-called cPAS sequencing, 

invented by Drmanac and co-workers 

[85]. 

The small RNA sequencing protocol 

presented in this thesis relies on the 

same technology. I thus introduce the 

main principle in sufficient details. The 

DNA Nanoball-based sequencing technology starts from genomic DNA fragmentation 

which can be done from enzymatic digestions or sonic processes. The fragmented 

double stranded DNA (dsDNA) pieces are exposed in to 95-degree heating to generated 

single stranded DNAs, which are used as template for DNA single strand circularization. 

Figure 6 (Sequencing technologies for H. Sapiens) 

The graphic presents the number of sequencing experiments for H. Sapiens 
depending on the used sequencing platform. Most of all samples has been 
sequenced using Illumina technology. Please note that the number of 
experiments on the y-axis is presented on a log10 scale. Source: own graphic 
based on data from the sequence read archive. 
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The  Figure 7 on page 14 schematically shows how the single strand circular DNA is 

produced. 

After DNA single 

strand circulation 

step, DNA nanoball are 

generated using a 

high-fidelity enzymatic 

process. In the next 

step, the DNB 

nanoballs are 

generated (Figure 8). 

After DNBs are 

created, their 

concentration are 

measured or 

quantified with Qubit 

devices before loading 

onto the sequencing 

chip. The quality 

control step of DNBs is important for the sequencing quality and can be done with 

common devices 

inexpensively. For the 

DNB sequencing 

technology, there are 

some benefits. Firstly, 

it used the high-fidelity 

DNA polymerase 

during the rolling circle 

amplification (RCA) 

step, this could help 

reduce the errors by 

amplification. In 

addition, as depicted in 

Figure 7, the 

amplification always 

uses the original single strand DNA circle as template, which will avoid the propagation 

or accumulation of amplification errors. So, these two factors can contribute to less or 
no mistakes in the DNB sequences.

Figure 7 (cPAS - DNA single strand circulation) 

DNA Single strand circulation. Ds DNA with barcoding sequences 
is heated in order to generate ssDNA (single stranded DNA). A splint oligonucleotide with a 
complementary sequence to both the 5’ and 3’ terminal ends of one strand of the target 
dsDNA will hybridize to both the 5’ and 3’ terminal ends of the same target ssDNA to form a 
nicked circle.  hsing DNA ligase on the circle, this will lead  to form a single stranded circle. 
(source-  MGI Tech Co.,Ltd Sequencing DNB Platform Product Brochure). 

Figure 8 (DNA Nanoball generation) 

DNA nanoballs are catalyzed by rolling  RCA process from the single stranded circle DNA 
template. Therefore, it can result in 100-1000 copies of DNA fragments 

with various sizes. (source-MGI Tech Co.,Ltd DNBSEQ technology introduction) 
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In addition, RCA technology avoids errors propagation, GC biases and dropouts 

observed with other amplification approaches, such as PCR according to the MGI Tech 

Co., Ltd DNBSEQ introductions.  In summary, the DNB preparation is thus a very 

promising method during sequencing sample preparation and could help improve the 

data quality significantly.  

After sample preparation, DNBs are then loaded and sequenced on a patterned array. 

DNBs are negatively charged since they have phosphate backbone, and the array 

surface is positively charged. In this way, DNBs will stay on the array surface. The DNB 

binding sites are created on the surface of a silicon chip from state-of-art 

semiconductor manufacturing process. The size of binding site spots is designed in a 

way that only one sing DNB can bind to each binding spot. In addition, the distance 

between active spots is uniform. Therefore, the DNBs in nearby sites will not influence 
the fluroscence signals with each other.

This patterned array method can help get high sequencing accuracy, high chip usage 

and optimal reagent usage. The positive and negative charge interaction helps 

maintain the DNBs once they are loaded on the slide surface of flow cells. A special 
buffer is loaded to ensure the DNBs will stay on the same spots while hundreds of 
reactions circles. The sizes of DNBs and the active binding sites on the slide surface are 

balanced, so that they are same or similar size, which could ensure the high spots 

yield.  The loading process of DNBs is depicted in Figure 9.  

Figure 9 (Patterned array for loading DNBs) 

Active spots on the chip surfaces are distributed uniformly to ensure only one single DNB is bound to each binding 
site. Source: MGI Technology  

After loading DNBs to the flow cells or slide surfaces, sequencing is done using CPAS 

technology. The primers are hybridized to the adapter region of the DNBs, and during 
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the sequencing by synthesis step, the fluorescently labeled dNTPs probes will be 

detected and imaged (Figure 10).  

The sequencing reaction 

time has been reduced 

to less than one minute. 

This is reached by 

significant 

improvements in 

sequencing 

biochemistry, as well as 

the identification of a 

superior sequencing 

polymerase screened 

from tens of thousands 

of mutants. 

Once the fluorescence dNTPs signals are converted to electrical signals, base calling and 

registration is done and data could be further filtered for high quality Q30, Q20 scores. 

Figure 11 describes the base calling step. 

Figure 10 (core of the cPAS sequencing technology) 

After sequencing primers are hybridized to the DNB adapters, a dNTP probe with 
fluorescence labelling is incorporated with a DNA polymerase (Figure 4). DNBs will be 
detected  and MGI's proprietary base-calling software convert the fluroscence signals to 
digital signals. Afterwards, fluoresences dyes are washed way and DNBs are entering next 
cycles. (Source—MGI Tech Co.,Ltd DNBSEQ Platform Product Brochure). 

Figure 11 (Base calling in CPAS) 

The signal intensities from all channels are used to do base calling . Existing data moldes provie reference for signal profiling and 
sequencing calculation. Sequencing erroes are predicted from signal characterization. Quality scores are based on phred-33 standard. 
(source: DNBSEQ Technology Information provided by MGI Tech Co.,Ltd) 



17 

In summary, the DNBSEQ Technology is using linear amplification of single circular DNA 

templates for generating billions of DNBs, which are then sequenced on a patterned 

array and gives high quality sequencing data. The linear amplification has unique 

advantages for miRNAs sequencing to avoid amplification errors propagation, as 

reported in literature [1]. Moreover, the error rate is independent of the sequencing 

length. This means, especially towards the end of the reads where the miRNA/gene 

targeting is determined the required low error rate is reached. In the first part of the 

results section, we describe in detail how we adapted the sample preparation and 

library generation step to achieve highly accurate sequencing data for small RNAs.   

2.1.2  Introduction of CoolMPS 

High throuhgput sequencing on DNA nanoarrays provides huge amount of data in an 
affordable way. It readily excels by a low amplification bias and highly accurate 

sequencing results across the whole read length and independent on the position in 

the read. Nonetheless, the signal detection can be further improved. While the other 

sequencing technology is applying modified nucleotides for blocking the synthesis step 

and using fluorescently labeled nucleotides for imaging, the disadvantages are that the 

signals will diminish with the sequencing 

Figure 12 (CoolMPS sequencing overview) 

The figure schematically presents the four steps in the CoolMPS sequencing procedure that are repeated in each sequencing 
cycle. Bars (-) on the natural nucleotides depict 3’ chemical groups that can be removed.  RTs specific antibodies with natural 
nucleobase are detected with three dye molecules with enhanced signals. Source: Figure is taken from reference [3] 
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progressing. Further the common MPS is limited by read length, usually only paired or 

single end 100, 150, 200 base pairs are available, which will cause difficulties of 

structural variants analysis during later bioinformatics. Therefore, further improvement 

in read length, sequence quality on the sequencing technology is necessary. Besides, 

cost reduction makes longitudal and regular healthcare diagnostics more easily.

The development of a novel MPS chemistry (CoolMPS™) utilizes 'cold' nucleotides and 

four natural nucleobase (A, T, C, G)-specific fluorescently labeled antibodies with fast 

(30 seconds) binding. The CoolMPS sequencing method is antibody-based, but it is 

compatible with the DNB sample preparation. This in fact means that people can 

sequence the same libraries with the same sequencer, only by exchanging the 

sequencing chemistry. Therefore, CoolMPS™ data generation can be implemented on 

MGI’s DNBSEQ MPS platform using arrays of DNBs from RCA΀ϯ΁. 

The sequencing process is based on DNA polymerase catalytic activity. Natural 

unlabeled nucleotides or bases are binding with fluorescently labeled antibodies 

specifically. Each antibody can be labeled with one or more fluorescent molecules to 

get higher signal intensity. Therefore, for same copy numbers of DNB, CoolMPS 

sequencing can have stronger signals and higher resolution signals, which will lead to 

more accuracy of data generation (source-MGI Tech Co., Ltd CoolMPS Sequencing set 

Figure 13 (comparison standard MPS to CoolMPS) 

The figure presents the matching of reads to the different sncRNA classes across a wide variety of mouse tissues (left 
panel). For each tissue the old (standard MPS) and new (CoolMPS) performance is presented. The CoolMPS approach 
highlights the intended enrichment for miRNAs. The panel on the right-hand side presents the mapping also considers 
unmapped reads (grey fraction). Here, CoolMPS has a significantly higher mapping rate as compared to standard MPS. 
Source: own graphic based on data from the Tabula Muris Senis collection.  
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Brochure). It is reported that DNBs with less than 50 template copies were successfully 

sequenced by strong -signal CoolMPS with 3- times higher accuracy than in stand MPS 

[3]. 

Because CoolMPS is using the unlabeled nucleotides, this will avoid ‘scars’ on the bases 

during incorporation. Therefore, as sequencing is moving on, CoolMPS will not have the 

problems of ‘scar’ accumulation, which process is affecting the binding activity of the 

DNA polymerase and increase the error rate of the sequencing. While having no ‘scar’ 

accumulation issue, it is in principle that the sequencing read length can be prolonged 

with low out-of-phase incorporation for CoolMPS approach. CoolMPS™ chemistry mode 

of mechanism is sketched in Figure 12 on page 17.  

As described in the previous section, CoolMPS has many potential advantages over 

standard MPS. This has been verified by investigating various tissues from the Tabula 

Muris Senis study and underlines that CoolMPS is the perfect sequencing technology for 

deciphering complex sncRNOmes (Figure 13). The data presented in this Figure contain 

an additional novel library preparation procedure. Instead of manual size selection from 

gels, an automated magnetic bead selection was used. By applying this method on the 

SP960 sample preparation robot we now can scale up the sequencing of sncRNA data 

sets to a 96-well plate format and produce 288 data sets each with 30 Million reads 

within a week.    

In my PhD thesis work, I contributed to the development of the advanced CoolMPS 

approach for miRNA sequencing and the results are described in the paper published 

[2] and highlighted in Figure 5 on page 11.   
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Figure 14 (scRNA Seq workflow) 

The figure presents the single cell RNA seq workflow. Blood cells are brought into a single cell suspension, oil droplets 
with each having a blood cell and a barcode in the optimal case are generated. The beads are collected, the RNA in 
amplified and then all RNAs with the attached barcodes identifying the cell of origin are sequenced using cPAS 
sequencing. Finally, the data are analyzed (this step is done by Tobias Fehlmann). Source: Own graphic. 
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2.1.3  Single Cell RNA Sequencing using DNB-c Lab 

As described in the previous sections we applied the cPAS and CoolMPS sequencing to 

measure sncRNAs in a so-called bulk manner. Here, the information from different 

blood cell types and the different representative cells from this blood cell type are 

mixed, adding significant noise to the data. For sncRNAs that have no poly-A tail, single 

cell sequencing does not exist at scale. Since my aim was nonetheless o get RNA single 

cell data, I worked towards the end of my thesis to get single cell RNA data. Basically, 

we made use of a droplet-based sequencing system as sketched in Figure 14. In some 

detail, we generated a single-cell suspensions for oil droplet generation. Thereafter, we 

did an emulsion breakage and beads collection step. To increase the number of 

molecules, we did reverse transcription (RT), and cDNA amplification. From the 

amplified products we in turn produced the barcoded libraries. The sequencing libraries 

contain the 3’ UTR of a gene of interest, a unique molecular identifier (UMI) to 

determine the cell of origin and the sequencing adapter. The detailed read structure of 

the paired-end reads consist of Read 1 (covering 30 bases inclusive of 10-bp cell barcode 

1, 10-bp cell barcode 2 as well as 10-bp UMI), and Read 2 (containing 100 bases of 

transcript sequence as well as 10-bp sample index). The sequencing of the libraries using 

DNA nanoballs was not done on the sequencing system installed at Saarland University, 

because they lack the required throughput. Instead, the sequencing was done as a 

service using the ultra-high-throughput DIPSEQ T1 sequencer at China National 

GeneBank (CNGB). Altogether, we sequenced 1.1 Million cells from 400 individuals, 

including AD patients, patients with mild cognitive impairment, Parkinson’s disease and 

unaffected controls of matched gender and age. The data analysis has been mainly 

performed by Tobias Fehlmann and he will describe the results in his PhD thesis.   

2.2 Web Server for miRNA Analysis 

Having the right tools for stable measurement of sncRNAs with an unpreceded single 

base resolution of highest quality calls for improved computational analyses. Here, two 

factors are to be differentiated, the primary analysis and the secondary analysis. While 

the primary analysis in the context of this thesis includes the step from fastq files to 

biomarker profiles, the secondary analysis takes care on adding biological sense to the 

data. Remarkably, this is different form a frequent other definition where the primary 

analysis ends already with the sncRNA expression matrix. Since the purpose of this work 

is however to make complex AD biomarker panels explainable, this letter important step 

is considered separately. In this direction, I did not contribute to the development of 

the miRMaster tool that I sketch only for the sake of completeness in Section 2.2.1. 

miRMaster, but focused on the development of miRTargetLink described in Section 

2.2.2 MiRNATargetLink. 
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2.2.1. miRMaster 

The CoolMPS technology generates millions and millions of small RNA reads that must 

be processed. With standard software implemented in scripting languages such as Perl, 

we would not reach the required computing speed. Thus, the Chair for Clinical 

Bioinformatics developed the miRMaster tool, which is now available in the second 

version [85]. The program is available as web service and in the backend implemented 

in efficient C++. In brief, small RNA read data sets are uploaded in fastq file format and 

mapped to the reference genomes and small RNA resources mentioned in the 

Introduction (see Figure 2 on page 3). If not mentioned explicitly, I applied miRMaster 

using the standard parameters. Remarkably, miRMaster has own modules for 

processing also CoolMPS data generated using MGISEQ platforms. As output, 

miRMaster generates tables and images that describe the expression of the different 

representatives of RNAs across the samples and computes biomarker profiles in case-

control studies. From the data returned by miRMaster it is however hard to conclude 

whether biomarkers are just correlated to a disease phenotype or whether they have a 

potential to be causative. For making respective conclusions, I contributed to the 

development of miRTargetLink, a web-based software that computes complex 

regulatory networks between miRNAs and target genes. miRMaster has been mainly 

developed by Tobias Fehlmann and I appreciate his guidance in evaluating my sncRNA 

data using miRMaster.         

2.2.2 MiRNATargetLink 

With the application of high throughput sequencing technologies as well as other 

proteomics technology, more and more research projects have been carried out for 

miRNA involved life processes. For miRNAs, the canonical pathway includes the binding 

of target genes, containing the seed region of a miRNA and the 3’ Untranslated Region 

(UTR) of a gene (see Figure 15).  

Figure 15 (miRNA gene binding) 

The figure describes the binding of a miRNA to a target gene. The 3‘ UTR of the target gene is shown in orange, the miRNA in 
blue. The seed region of around 7-8 nucleotides is deterministic for the binding although shorter pattern can also initiate 
binding and gene repression. Often, a G:U wobble can be observed in the seed region, which is not impairing the binding. 
Source: own graphic. 
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Theoretically, in H. Sapiens, 2,500 miRNAs can regulate the expression of 25,000 genes, 

over 60 million combinations. Of course, only a fraction of those is biologically 

functional. Computational approaches to predict which of the miRNA – gene 

interactions are functional have limited accuracy, specificity, and sensitivity. An 

excellent overview on miRNA gene targeting in general and with a focus on 

computational target prediction has been published by Kern and co-workers [86]. 

Nonetheless, databases store such predicted interactions, partially as consensus 

predictions. Other data bases rely on validated interactions, including weak evidence 

targets (such as negative correlation of miRNA and gene expression) and stronger 

evidence targets (such as reporter assays). There are eight typical databases available 

for miRNAs, partially tailored for target information and partially including target 

information as part of a broader functionality.  Examples include miRBase for miRNA 

annotation; miRTarBase, mirDIP, miRDB, miRATBase for miRNA targets; miRPathDB for 

miRNA target pathway database, miEAA for miRNA set enrichment analysis and 

GeneTrail for Gene set enrichment analysis [6]  

Those databases contain high amount of miRNAs information, for instance, miRbase in 

its most recent release version 22 (October 2018) contains 38,589 entries from 271 

species and MirGeneDB contains 10,899 curated miRNAs from 45 different organisms 

[2]. Besides, there are around 11,000 annual publications on miRNAs [2], which add to 

an important resource of miRNA knowledge, however, it is a demanding search work 

about how and what miRNAs regulate which specific genes, pathways. In fact, miRNAs 

Figure 16 (miRNA gene targeting complexity classes) 

The figure presents different complexity classes of how interactions between miRNAs and genes can be modeled. The most 
realistic assumption is the n:m relation presented in the lower panel of the figure. 
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and genes are not following simple 1:1 relation, one miRNA is regulating one gene. 

Indeed, one gene can be repressed by multiple miRNAs and one miRNA can repress 

multiple genes. Typically, cooperative effects exist, including several binding sites of the 

same miRNA in one UTR of a gene or co-located binding sites of different miRNAs in the 

UTR. Computational tools must consider these complexity stages (Figure 16). 

Therefore, an integrative solution from different data sources to present quick and 

comprehensive answers to help visualize the miRNAs targets are needed urgently, 

miRNA TargetLink 2 is developed to enable search for miRNA targets in bi-directional 

mode.  In the miRNA TargetLink 2 project, data is selected from existing databases such 

as miRBase (v22.1) and validated targets from miRTarBase (v.8) and miRATBase.  In 

addition, mirDIP (v4.1) is used for predicted miRNA targets for human, miRDB (v.6) for 

mouse and rat.  

Besides, miRTargetLink supports target pathways from miRPathDB 2.0.  miEAA 2.0 and 

GeneTrail 3 are the tools used for gene set annotation analysis. An overview of 

databases and tools used for miRTargetLink 2 is provided in Table 1. 

Table 1 Overview of in-house and third-party resources included in miRTargetLink 2.0 

Database  function type entries version source 

miRBase miRNA 

annotation 

database 22.1 third 

party 

miRTarBase miRNA 

annotation 

database 553 000  8.1 third 

party 

mirDIP miRNA target 

database 

database 1519000 4.1 third 

party 

miRDB miRNA target 

database 

database 1173000 6.0 own 

miRATBase miRNA target 

database 

database 300 1.0 own 

miRPathDB miRNA target 

pathway 

database 

database 13000 2.0 own 

miEAA miRNA set 

enrichment 

analysis 

tools n.a 2.0 own 

GeneTrail Gene set 

enrichment 

analysis 

tools n.a 3.0 own 

Those applications of tools and databases enable a comprehensive background 

resources for the miRNA search analysis, so researchers can freely choose for one 

specific miRNA to understand their targets and associated pathways. Or they could 

apply the miRTargetLink 2 to get the miRNA results under the pathways of interests.  
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3. Goal of the thesis

As outlined in the previous chapter, the importance of miRNAs in biology needs high 

throughput sequencing data generation and analysis in a cost-effective way. From the 

cPAS-based sequencing on BGISEQ-500 to explore small non-coding RNAs, I was 

motivated significantly to explore further new technologies that can enable further data 

improvements and cost reduction on miRNA research.  Being high throughput, 

advanced computational analysis is also of great importance.  

Therefore, the primary goal of this thesis focuses on the new technology CoolMPS, to 

evaluate their performances in a comprehensive way. Subsequently, we are applying 

integration of data analysis solve the computing challenge by providing an interface of 

input miRNAs and get their targetome network information. 

Therefore, the analysis of a large collection of miRNA samples and their profiles are 

done. The studies of cPAS and CoolMPS technologies on miRNA were performed in 

collaboration with industry partners such as BGI Research Institute and MGI Tech Co., 

Ltd and Complete Genomics.  

To offer a good computational analysis solution for miRNAs, a web server, miRNA Target 

Link, was implemented to provide access to interactively analyze the miRNA in the uni-

directional and multi-directional way. While setting up the framework of data 

generation as well as data interaction analysis, we also investigated the miRNA 

sequencing in aging associated diseases such as Alzheimer diseases. 

One core observation in my research was that data from mixtures of cells have certainly 

a diagnostic and prognostic value but that single cell resolution data will most likely add 

significantly to reduce the noise. Especially for the bulk sequencing of whole blood, two 

factors contribute to data noise. First of all, the sncRNAs are measured from all blood 

cell types, irrespectively of their origin. This could be cured by positive selection of one 

or several cell types, by negative selection or by fluorescence-activated cell scanning 

(FACS). Still, we would only measure signals from many cells of that cell type. Here, 

single cell RNA sequencing is a promising option to improve the situation. While for 

sncRNAs, single cell sequencing approaches are available only in a low-throughput 

manner, they are available for gene expression profiling at scale. Towards the end of my 

work, I thus supported the development of a complete map of neurodegenerative gene 

expression across a blood cells.  
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4. Results

This cumulative thesis is mainly based on following peer-reviewed publications whose 

published versioned are included in this chapter. 

a) Fehlmann, T., ….Li,Y.,..., et al. cPAS-based sequencing on the BGISEQ-500 to explore

small non-coding RNAs. Clin Epigenetics 8, 123, doi:10.1186/s13148-016-0287-1

(2016) [YL is contributing author]

b) Li, Y. et al. CoolMPS: evaluation of antibody labeling based massively parallel non-

coding RNA sequencing. Nucleic Acids Res 49, e10, doi:10.1093/nar/gkaa1122

(2021) [YL is first-author]

c) Kern, F., Aparicio-Puerta, E., Li, Y., et al., miRTargetLink 2.0—interactive miRNA

target gene and target pathway networks,  Nucleic Acids Research, 2021;,

gkab297,  https://doi.org/10.1093/nar/gkab297 [Li,Y is shared first author]

d) Pirritano, M., …, Li, Y., …,  et al. Next Generation Sequencing Analysis of Total Small

Noncoding RNAs from Low Input RNA from Dried Blood Sampling. Anal Chem 90,

11791-11796, doi:10.1021/acs.analchem.8b03557 (2018). [Li,Y is contributing

author]

e) Fehlmann, T., ..., Li, Y., ..., et al. Common diseases alter the physiological age-related

blood microRNA profile. Nat Commun. 2020;11(1):5958. Published 2020 Nov 24.

doi:10.1038/s41467-020-19665-1 [Li,Y is contributing author]
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Abstract

Background: We present the first sequencing data using the combinatorial probe-anchor synthesis (cPAS)-based
BGISEQ-500 sequencer. Applying cPAS, we investigated the repertoire of human small non-coding RNAs and
compared it to other techniques.

Results: Starting with repeated measurements of different specimens including solid tissues (brain and heart) and
blood, we generated a median of 30.1 million reads per sample. 24.1 million mapped to the human genome and
23.3 million to the miRBase. Among six technical replicates of brain samples, we observed a median correlation of 0.
98. Comparing BGISEQ-500 to HiSeq, we calculated a correlation of 0.75. The comparability to microarrays was
similar for both BGISEQ-500 and HiSeq with the first one showing a correlation of 0.58 and the latter one
correlation of 0.6. As for a potential bias in the detected expression distribution in blood cells, 98.6% of HiSeq reads
versus 93.1% of BGISEQ-500 reads match to the 10 miRNAs with highest read count. After using miRDeep2 and
employing stringent selection criteria for predicting new miRNAs, we detected 74 high-likely candidates in the cPAS
sequencing reads prevalent in solid tissues and 36 candidates prevalent in blood.

Conclusions: While there is apparently no ideal platform for all challenges of miRNome analyses, cPAS shows high
technical reproducibility and supplements the hitherto available platforms.

Keywords: Next-generation sequencing, miRNA, Biomarker discovery, BGISEQ

Background
Currently, high-throughput analytical techniques are
massively applied to further the understanding of the
non-coding transcriptome [1]. Still, the full complexity
of non-coding RNAs is only partially understood. One
class of well-studied non-coding RNAs comprises small
oligonucleotides, so-called miRNAs [2, 3].
Among the techniques most commonly used for

miRNA profiling are microarrays, RT-qPCR, and next-
generation sequencing (NGS), also referred to as high-
throughput sequencing (HTS). An excellent review on
the different platforms and a cross-platform comparison
has been recently published [4]. A detailed examination

of technologies, however, frequently reveals a bias. One
reason for the respective bias is the ligation step, as, e.g.,
reported by Hafner and co-workers [5]. For example, the
quantification of miRNAs differs between NGS and
microarrays as it is dependent on base composition [6].
Especially, the guanine and uracil content of a miRNA
seems to influence the abundance depending on the
platform used. A substantial strength of NGS is the abil-
ity to support the completion of the non-coding tran-
scriptome. Unlike microarrays and RT-qPCR, NGS
allows the discovery of novel miRNA candidates. To this
end, different algorithms have been implemented, with
miRDeep being one of the most popular ones [7]. A sub-
stantial part of small RNA sequencing data has been
obtained using HiSeq and MiSeq platforms (Illumina)
based on stepwise sequencing by polymerase on DNA
microarrays prepared by bridge PCR [8], as well as the
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IonTorrent systems from Thermo Fisher Scientific using
a different type of polymerase-based stepwise sequencing
on micro-bead arrays generated by emulsion PCR, the
first method proposed for making microarrays for mas-
sively parallel sequencing [9]. Another approach is the
ligase-based stepwise sequencing also using micro-bead
arrays, applied for example by ThermoFisher Scientific’s
SOLiD sequencing platform, and which has also been
used to analyze and present novel miRNAs [10].
In the current study, we applied the new combinatorial

probe-anchor synthesis (cPAS)-based BGISEQ-500 se-
quencing platform that combines DNA nanoball (DNB)
nanoarrays [11] with stepwise sequencing using poly-
merase. An important advantage of this technique com-
pared to the previously mentioned sequencing systems is
in that no PCR is applied in preparing sequencing arrays.
Applying cPAS, we investigated the human non-coding
transcriptome. We first evaluated the reproducibility of
sequencing on standardized brain and heart samples,
then compared the performance to Agilent’s microarray
technique and finally evaluated blood samples. Using the
web-based miRNA analysis pipeline miRmaster and the
tool novoMiRank [12], we finally predicted 135 new
high-likely miRNA candidates specific for tissue and 35
new miRNA candidates specific for blood samples.

Methods
Samples
In this study, we examined the performance of three
sample types using three techniques for high-throughput
miRNA measurements (Illumina’s HiSeq sequencer, Agi-
lent’s miRBase microarrays, and BGI’s BGISEQ-500 se-
quencing system, see details below). The three
specimens were standardized HBRR sample ordered
from Ambion (catalog number AM6051) and UHRR
sample ordered from Agilent (catalog number 740000).
UHRR and HBRR samples were measured in two and
six replicates, respectively. As third sample type, we used
PAXGene blood tubes. Here, two healthy volunteers’
blood samples were collected and miRNAs were ex-
tracted using PAXgene Blood RNA Kit (Qiagen) accord-
ing to manufacturer’s protocol. The study has been
approved by the local ethics committee.

Next-generation sequencing using BGISEQ-500
We prepared the libraries starting with 1 μg total RNA
for each sample. Firstly, we isolated the microRNAs
(miRNA) by 15% urea-PAGE gel electrophoresis and cut
the gel from 18 to 30 nt, which corresponds to mature
miRNAs and other regulatory small RNA molecules.
After gel purification, we ligated the adenylated 3′
adapter to the miRNA fragment. Secondly, we used the
RT primer with barcode to anneal the 3′ adenylated
adapter in order to combine the redundant unligated 3′

adenylated adapter. Then, we ligated the 5′ adapter and
did reverse transcript (RT) reaction. After cDNA first
strand synthesis, we amplified the product by 15 cycles.
We then carried out the second size selection operation
and selected 103–115 bp fragments from the gel. This
step was conducted in order to purify the PCR product
and remove any nonspecific products. After gel purifica-
tion, we quantified the PCR yield by Qubit (Invitrogen,
Cat No. Q33216) and pooled samples together to make
a single strand DNA circle (ssDNA circle), which gave
the final miRNA library.
DNA nanoballs (DNBs) were generated with the ssDNA

circle by rolling circle replication (RCR) to enlarge the
fluorescent signals at the sequencing process as previously
described [11]. The DNBs were loaded into the patterned
nanoarrays and single-end read of 50 bp were read
through on the BGISEQ-500 platform for the following
data analysis study. For this step, the BGISEQ-500 plat-
form combines the DNA nanoball-based nanoarrays [11]
and stepwise sequencing using polymerase, as previously
published [13–15]. The new modified sequencing ap-
proach provides several advantages, including among
others high throughput and quality of patterned DNB
nanoarrays prepared by linear DNA amplification (RCR)
instead of random arrays by exponential amplification
(PCR) as, e.g., used by Illumina’s HiSeq and longer reads
of polymerase-based cycle sequencing compared to the
previously described combinatorial probe-anchor ligation
(cPAL) chemistry on DNB nanorrays [11]. The usage of
linear DNA amplification instead of exponential DNA
amplification to make sequencing arrays results in lower
error accumulation and sequencing bias.

Next-generation sequencing using HiSeq
Samples have been sequenced using Illumina HiSeq se-
quencing according to manufacturer’s instructions and
as previously described [16, 17].

Agilent microarray measurements
For detection of known miRNAs, we used the SurePrint
G3 8×60k miRNA microarray (miRBase version 21, Agi-
lent Technologies) containing probes for all miRNAs
from miRBase version 21 in conjunction with the
miRNA Complete Labeling and Hyb Kit (Cat. No. 5190-
0456) according to the manufacturer’s recommenda-
tions. In brief, 100 ng total RNA including miRNAs was
dephosphorylated with calf intestine phosphatase. After
denaturation, Cy3-pCp was ligated to all RNA
fragments. Labeled RNA was then hybridized to an indi-
vidual 8×60k miRNA microarray. After washing, array
slides were scanned using the Agilent Microarray
Scanner G2565BA with 3-μm resolution in double-pass
mode. Signals were retrieved using Agilent AGW
Feature Extraction software (version 10.10.11).
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Data availability
The new sequencing data using BGISEQ-500 data are
available in the Additional file of this manuscript (Add-
itional file 1: Table S3).

Bioinformatics analysis
The raw reads were collapsed and used as input for the
web-based tool miRMaster, allowing for integrated ana-
lysis of NGS miRNA data. On the server side, mapping to
the human genome was carried out using Bowtie [18] (one
mismatch allowed). miRNAs were quantified similar to
the popular miRDeep2 [19] algorithm. The prediction of
novel miRNAs was performed using an extended feature
set built up on novoMiRank [12]. For classification, an
AdaBoost model using decision trees was applied. Novel
miRNAs were cross-checked against other RNA re-
sources, including the miRBase [20], NONCODE2016
[21], and Ensembl non-coding RNAs. The assessment of
the quality of new miRNAs was carried out using the
novoMiRank algorithm. A downstream analysis of results
including cluster analysis was performed using R. For tar-
get prediction, we applied TargetScan 7.1 (http://www.tar-
getscan.org/vert_71/) and predicted for all new miRNAs
the targets. With the predictions, we extracted the context
++ scores and used them for prioritizing the targets,
miRNA-target interactions with context++ scores below 1
were considered as high-likelihood targets. Target net-
works were constructed using an offline version of MiR-
TargetLink [22] and visualized in Cytoscape. miRNA
target pathway analysis has been carried out using Gene-
Trai2 [23]. For the GeneTrail2 analysis, all available cat-
egories were analyzed, the minimal category size was set
to 4 and all p values were adjusted using Benjamini-
Hochberg adjustment.

Results
Raw data analysis
We sequenced six brain, two heart, and two blood samples
using the BGISEQ-500 system. The resulting reads were
mapped to the human genome allowing one mismatch per
read. The 10 samples had a median of 30.1 million reads.
Of these, 24.1 million reads mapped to the human genome
and 23.3 million reads to miRNAs annotated in the human
miRBase version 21. The remaining 0.7 million reads per
sample contain potentially new miRNAs.

Technical reproducibility of the BGISEQ-500 and compari-
son to microarrays
To assess the technical reproducibility of the sequencing
platform, we evaluated the six technical replicates of the
human brain sample (see correlation matrix in Fig. 1).
The median correlation between the six replicates was
0.98, and the 25 and 75% quantile were 0.98 and 0.99,
respectively. These data suggest an overall high

correlation for technical replicates on the BGISEQ-500
platform.
Comparing the BGISEQ-500 data to the measurements

of the brain sample with microarrays (miRBase version
21) that have also been carried out as six technical repli-
cates (median correlation of the microarrays was 0.999),
we observed a log correlation of 0.48. A direct comparison
is presented in the scatter plot in Fig. 2a. This plot high-
lights many miRNAs that can be measured at a compar-
able level on both platforms. However, a subset of the
small non-coding RNAs is shifted towards higher expres-
sion on the array platform. The same behavior can be ob-
served in the cluster heat map in Fig. 2b. This heat map
graphically represents the 50 miRNAs with most different
detection between both techniques. To compare rather
the ranks of miRNAs instead of the absolute read counts,
the replicated brain samples on both platforms were
jointly quantile normalized. Three miRNAs, in particular,
showed highly significant deviations (multiple testing ad-
justed p values below 10−20). Hsa-miR-8069 was almost
not detected in the BGISEQ-500 but had 0.9 million nor-
malized intensity counts on the array platform, hsa-miR-
4454 had 51.6 normalized reads on the BGISEQ-500 ver-
sus 1.9 million normalized counts on the microarrays, and
hsa-miR-7977 had 343.2 normalized reads on the
BGISEQ-500 versus 1.3 million normalized counts on the
microarrays. This means that the three miRNAs were or-
ders of magnitudes more abundant on microarrays as
compared to the sequencing system. The secondary struc-
tures of the three precursors are presented in Additional
file 2: Figure S1. These results match well to previously
published platform comparisons between NGS and micro-
arrays [6]. Here, several miRNAs such as hsa-miR-941
(not detected in any array experiment, not detected in RT-
qPCR, average read count of ~1000 reads using Illumina
HiSeq sequencing) had expression levels differing several
orders of magnitude between the miRBase microarrays
and using HiSeq sequencing.
The full list of miRNAs with raw and adjusted p values

in t test and Wilcoxon-Mann-Whitney test comparing
BGISEQ-500 and microarrays is presented in Additional
file 3: Table S1. Overall, the results are well in-line with
those obtained between HiSeq NGS and the same
microarray platform [6]. Reasons that explain differences
between arrays and NGS include different sensitivity
levels of the platforms, cross-hybridization of miRNAs
with similar sequences on the microarrays or bias in li-
brary preparation. Further, effects of the normalization
can lead to variations in miRNA quantification.

Biological replicates of blood samples and comparison to
other platforms
One of the most promising applications in small RNA
analysis is biomarker profiling in body fluids. We
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previously analyzed over 2000 blood samples on Agilent
microarrays [17, 24, 25] and about 1000 samples using
HiSeq sequencing [26, 27] and compared both platforms
[6]. We correlated two newly sequenced blood samples
using the BGISEQ-500 system to the data generated by
HiSeq and Agilent microarrays. When interpreting the
results, it is important to keep in mind that the microar-
rays and HiSeq data are from the same samples [6] while
the newly sequenced blood drawings are from other in-
dividuals and thus biological but no technical replicates.
To minimize a potential bias between the platforms with
respect to different miRNA sets, we first reduced the
marker set to the 2525 human miRNAs that were pro-
filed on all platforms and next to the subset of 658 miR-
NAs that were discovered in all three platforms. For
each, platform data were normalized using quantile
normalization. Due to the wide dynamic range of miR-
NAs in blood samples, which is approximately 107, we
present the three pairwise comparisons (BGISEQ-500 to
microarrays, BGISEQ-500 to HiSeq, and HiSeq to mi-
croarrays) on a log scale. The scatter plots are presented
in Fig. 3. The highest correlation was observed for
BGISEQ-500 to Illumina (0.75, Fig. 3a). Even the correl-
ation between microarrays and HiSeq was below this

value (0.6, Fig. 3c). Especially since technical replicates
have been measured for these platforms, the increased
correlation of sequencing platforms is remarkable. The
comparison of BGISEQ-500 and microarrays revealed
correlation values in the same range as for the brain
samples (0.58, Fig. 3b). The 3D scatter plot in Fig. 3d
compares the expression of the three platforms directly
to each other. The coloring of the miRNAs has been car-
ried out with respect to the GC content.

Expression distribution of miRNAs
As mentioned, miRNA expression is highly variable and
can scatter across many orders of magnitude. We thus
compared the distribution of the sequencing reads in
blood samples on the HiSeq to the BGISEQ-500. Blood
samples, including blood cells (especially red blood cells)
are known to be enriched for few miRNAs that are
highly expressed. The diagram in Fig. 4 (panel A) high-
lights that 90.8% of all blood sequencing reads from the
HiSeq match to one single miRNA: hsa-miR-486-5p.
The second most abundant miRNA miR-92a-3p takes
further 5.5%, and already the third most abundant
marker miR-451a has below 1% of all reads. In sum,
98.6% of all reads match to the top 10 miRNAs. For the

Fig. 1 Correlation matrix of the brain (six technical replicates), heart (two technical replicates), and blood (two biological replicates) sequenced by
the BGISEQ-500 system
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Fig. 2 a Log average expression of common miRNAs for the brain RNA on BGISEQ-500 and on Agilent microarrays (six technical replicates each).
b Heat map with dendrogram for the 50 most differently detected miRNAs in the brain RNA between Agilent and BGISEQ-500 (six technical
replicates each)
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BGISEQ-500 (panel B), 45.9% of reads match to miR-
451a, further 20% map to miR-191-5p and 13.3% map to
miR-92a-3p. The most abundant miRNA in HiSeq, miR-
486-5p, is detected in 7.7% of all reads. 93.1% of all
sequenced reads match to the top 10 miRNAs.
Comparison of the distribution and abundance of miR-

NAs on the microarray platform is difficult since micro-
arrays show a saturation effect. This means that for two
miRNAs expressed in a range above the saturation, no
difference can be observed. We nonetheless performed
the same analysis as presented above, assuming that the
sum of all expression counts equals to 100%. In this ana-
lysis, miR-451a which is found in 0.8% of HiSeq reads
and 45.9% of BGISEQ-500 reads is the highest expressed

in microarrays (37.2% of all expression counts), followed
by 17% of miR-486-5p.

Prediction of novel miRNAs
Predicting new miRNAs from NGS data is a challenging
task since many false positive miRNA candidates are ob-
served. We implemented our own prediction tool for
miRNAs from NGS data and filtered the candidates
stringently to reduce the false discovery rate. Without
any filtering steps, our initial predictor trimmed for
maximizing the ROC AUC returned 25,086 candidates
across all samples. The exclusion of the candidates with
low abundance (less than 10 total reads) reduced the
number of candidates to around 10% (2354 candidates).

Fig. 3 a-c Pairwise scatter plots for comparing expression of miRNAs in blood cells on microarrays, HiSeq, and BGISEQ-500. Please note that for
HighSeq and Agilent technical replicates were measured, for BGISEQ-500 biological replicates. d 3D scatter-plot colored by the GC content
of miRNAs
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Further analysis with novoMiRank (cutoff 1.5) filtered
out more miRNAs, leaving 1553. The miRNAs were
flagged by novoMiRank because of a high deviation from
miRNAs in the first miRBase versions, including deviat-
ing length, free energy, or nucleic acid composition of
miRNAs. Matching the remaining candidates to other
RNA resource in a blacklisting step finally presented 926
miRNA candidates (Additional file 4: Table S2). Still, it is
likely that this set contains many false positives.
Additionally, low-throughput experimental validation of
almost 1000 miRNA candidates, e.g., by Northern Blot is
a very labor-extensive approach. We thus additionally
compared the frequency of reads mapping to the blood
versus tissue samples. As detailed in Fig. 5a, we observe
a substantial variability between blood and tissue for the
926 miRNA candidates (correlation 0.18). Defining a
miRNA as tissue/blood specific if it occurs with a factor
of 100-fold higher in one of both sample types (normal-
ized for the total number of samples) highlighted 74 new
miRNA candidates specific for tissue and 36 new
miRNA candidates specific for blood samples. Figure 5b
shows bar plots for two miRNA precursors, the most tis-
sue specific novel-mir-36616 (blue), only present in the
brain samples, and the blood specific novel-mir-31007.
The first miRNA, which is observed exclusively in the
brain samples and not in the heart, reveals a significantly

less expressed 3′ mature form as compared to the 5′
mature form. The second miRNA is exclusively observed
in blood samples. Here, the 5′ mature form is lower
expressed compared to the 3′ form. The boxes above
the bar plots show the secondary structures of both
miRNA candidates.

miRNA target analysis
For all 926 miRNAs, we predicted targets using TargetS-
can. To rank miRNA-target interactions, we used the
context++ score (distribution of the context++ score
across all predictions is provided in Additional file 5:
Figure S2). Thereby, we observed an accumulation of
high-likelihood targets for tissue-specific miRNAs. Of
the 926 miRNAs, the tissue specific had an average 42.8
targets, the neither for blood nor for tissue-specific miR-
NAs 40.7 targets while for blood-specific miRNAs, only
34.5 targets were predicted. The complex miRNA-target
network is presented in Additional file 6: Figure S3. It
contains 6014 nodes (5088 genes and 926 miRNAs).
Network characteristics such as degree distribution and
shortest path length are presented in Additional file 7:
Figure S4. The genes with largest numbers of predicted
miRNAs targeting the gene were CYB561D1 (229 miR-
NAs), FBXL12 (174 miRNAs), PML (162 miRNAs), and
VNN3 (154 miRNAs). The distribution of miRNAs in

Fig. 4 Expression distribution of the 10 miRNAs with the highest detection in the blood RNA on the HiSeq system (a), BGISEQ-500 (b), and microarray
system (c). Note that for the Agilent microarray system, the sum of all expression intensities was assumed to be 100%
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the different group is presented as Venn diagram in
Additional file 8: Figure S5). Among the predicted target
genes that were found only for candidate miRNAs being
blood specific was, e.g., HMOX1, heme oxygenase 1,
mediating the first step of the heme catabolism by cleav-
ing heme to build biliverdin or HPX, coding for hemo-
pexin. The complex nature of the in silico calculated
miRNA-target network requires further analyses to

understand whether target genes accumulate in specific
biochemical categories such as KEGG pathways or gene
ontologies. We thus applied GeneTrail2 separately to the
set of genes targeted by blood specific miRNAs, targeted
by tissue specific miRNAs and by all other miRNAs. As
the background sets, all genes predicted to be targeted
by at least a single miRNA were selected and the func-
tionality to compare different enrichment analyses by

Fig. 5 a Expression of novel miRNAs in blood versus tissue. The green miRNAs are specific for blood, the orange miRNAs for tissue, and the blue
miRNAs were detected in both specimens. b Bar plot for two different miRNAs. The first miRNA novel-mir-36616 in blue is detected only in the
brain tissue and not in the heart tissue or blood, the -3p form is one order of magnitude less expressed compared to the -5p mature form. The
second miRNA novel-mir-31007 is expressed in blood and not in tissue, here, the -3p form is more than an order of magnitude more abundant
compared to the -5p form
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GeneTrail2 has been used. Enriched pathways seem to
be largely relevant for either blood or tissue miRNAs, as
Additional file 9: Figure S6 highlights. Tissue specific
miRNAs had target genes enriched for DNA damage re-
sponse, the apoptosis, or RNA polymerase II regulatory
region DNA binding while blood miRNAs target genes
were, e.g., enriched for TP35 network. Interestingly,
tissue miRNA target genes also clustered on specific
genomic locations (e.g., 19p12 and 19.q13) while blood
miRNA targets did not show such an enrichment. In
contrast, blood miRNA targets were enriched for disease
phenotypes such as carotid artery diseases. In sum, the
enrichment analysis highlights very distinct patterns for
blood and tissue miRNA targets. Of course, not only the
new miRNAs themselves but also the predicted targets
deserve detailed experimental validation.

Discussion
The advent of next-generation sequencing reduced the
costs of sequencing while simultaneously increasing the
speed of throughput [28]. Today, the costs for small
RNA seq are almost equal to and even lower than
miRNA microarrays, although small RNA-seq provides
the additional possibility for detecting novel small RNA
entities.
In the present study, we investigated two current

sequencing approaches supporting massively parallel
sequencing, which is of high relevance in small RNA
research because of the high dynamic range of these
molecules: DNA nanoball [11]-based sequencing by
BGISEQ-500 and PCR cluster [8]-based sequencing by
HiSeq. An important difference between these tech-
niques is in that the first approach uses linear DNA
amplification, and the second uses exponential DNA
amplification to make sequencing arrays. The latter
approach may in turn lead to amplification errors and
some specific biases. Besides this fundamental difference,
both approaches have their additional advantages and dis-
advantages. Specifically for the BGISEQ-500, the library
preparation currently takes around three working days,
the sequencing itself needs one or at maximum two work-
ing days. Each flowcell of the BGISEQ-500 has two lanes.
On each of these lanes, 32 Gb data can be generated using
single-end reads of length 50 bases. The cost of the re-
agent and material is around 200 USD for 20 million reads
ensuring high-quality data at a reasonable cost.
Recently, we published a manuscript about bias in

NGS and microarray analysis for miRNAs [6], highlight-
ing that the expression of miRNAs on different plat-
forms varies by, for example, the nucleic acid
composition. In the validation by RT-qPCR, we focused
on miRNAs discordant between the high-throughput
platforms. Thereby, we observed cases where the RT-
qPCR results were concordant with Illumina HiSeq, with

microarrays or with none of the techniques. Therefore,
we were especially interested how the BGISEQ-500
platform compares to the HiSeq platform and microar-
rays with the content from the miRBase for small RNA
analysis.
Three miRNAs had high divergence between arrays

and BGISEQ-500, among them hsa-miR-4454, which
was high abundant in arrays but almost not detectable
in BGISEQ-500. According to the miRBase, only 28% of
users believe that this miRNA is real. Although such
votes have only limited value, they at least indicate that
this miRNA may be influenced by technological bias.
For high-throughput sequencing, the library prepar-

ation and the kits used play a crucial role for the quality
of the sequencing results. Others and we noticed an
overly abundance of the miRNA miR-486-5p when using
the TruSeq kit (Illumina, San Diego), which seems to be
independent of the source of the analyzed material
[6, 29, 30]. Using the BGISEQ-500 platform, we ob-
served lower read counts for this miRNA. However, in
some cases, the miRNA abundance of BGISEQ-500
matches to the HiSeq sequencing results while microar-
rays show a different expression level, and in other cases,
the BGISEQ-500 deviates from the other platforms and
in several cases, all three techniques provide substan-
tially divergent results. The more even distribution of
reads of the BGISEQ-500 compared to the HiSeq results
facilitates the discovery of new miRNAs, which are ex-
pected to be significantly less expressed as compared to
the already known miRNAs, especially from early miR-
Base versions.
With respect to many miRNA currently annotated in

miRBase and the rapidly growing number of new miRNAs,
it is essential not only to have tools for filtering likely false-
positives such as the NovoMiRank tool but also to carry
out validation of miRNAs using other molecular biology
approaches such as cloning and Northern blotting.
Focusing on the performance of the BGISEQ-500, we

found a high technical reproducibility of sequencing
results, which was however slightly below the technical
reproducibility of microarrays. This fact can have differ-
ent reasons, e.g., the different limit of detection of
microarrays. In contrast to sequencing, microarrays have
a saturation effect. With respect to the total number of
discovered known miRNAs, performance of the
BGISEQ-500 was comparable both to the Illumina and
the microarray platform.

Conclusions
In sum, none of the mentioned platforms seems to pro-
vide the “ultimate solution” in miRNA analysis. All have
their advantages and disadvantages and show some bias
for the detection of certain sequence types.
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ABSTRACT

Results of massive parallel sequencing-by-synthesis
vary depending on the sequencing approach.
CoolMPS™ is a new sequencing chemistry that incor-
porates bases by labeled antibodies. To evaluate the
performance, we sequenced 240 human non-coding
RNA samples (dementia patients and controls) with
and without CoolMPS. The Q30 value as indicator
of the per base sequencing quality increased from
91.8 to 94%. The higher quality was reached across
the whole read length. Likewise, the percentage of
reads mapping to the human genome increased
from 84.9 to 86.2%. For both technologies, we com-
puted similar distributions between different RNA
classes (miRNA, piRNA, tRNA, snoRNA and yRNA)
and within the classes. While standard sequencing-
by-synthesis allowed to recover more annotated miR-
NAs, CoolMPS yielded more novel miRNAs. The cor-
relation between the two methods was 0.97. Evaluat-
ing the diagnostic performance, we observed lower
minimal P-values for CoolMPS (adjusted P-value of
0.0006 versus 0.0004) and larger effect sizes (Co-
hen’s d of 0.878 versus 0.9). Validating 19 miRNAs re-
sulted in a correlation of 0.852 between CoolMPS and
reverse transcriptase-quantitative polymerase chain
reaction. Comparison to data generated with Illu-
mina technology confirmed a known shift in the over-
all RNA composition. With CoolMPS we evaluated
a novel sequencing-by-synthesis technology show-

ing high performance for the analysis of non-coding
RNAs.

INTRODUCTION

Since the mid 1990′s, massively parallel sequencing ap-
proaches have been developed and continuously improved.
The !rst commercial instruments were available on the mar-
ket around 2005 (1). The rapid development of technology
in the !rst 10 years had a substantial impact on genomic re-
search (2), also leading to a continuous growth of data de-
posited in resources such as GenBank (3). While one of the
most common applications is genome sequencing, RNAs
are often analyzed using high-throughput sequencing as
well. Even resolution at the single cell level can be reached
now (4). A general overview of the different sequencing ap-
proaches together with available instruments highlights the
diversity of available platforms and applications (5). Most
recently, a comparison of Illumina NextSeq 500, NovaSeq
6000 and the BGI MGISEQ-2000 using identical single Cell
3′ libraries generated with the 10× Genomics Chromium
platform highlighted comparable performance between the
platforms in general (6).

For the high-throughput analyses of small non-coding
RNAs (sncRNAs), sequencing has become one of the most
frequently used methods (7). This has led to a very deep
understanding of the sncRNA expression in humans (8,9)
and many other species (10). As a consequence, databases
on sncRNAs, especially on microRNAs (miRNAs) are up-
dated regularly with increasing numbers of miRNAs. The
miRBase in its most recent release 22 (October 2018 (11))
contains 38 589 entries from 271 species (12). Besides miR-
Base, MirGeneDB contains 10 899 curated miRNAs from
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45 different organisms (13) and miRCarta (14) has the
ambition to provide a collection of all expressed small
RNAs. With 11 000 annual publications on miRNAs, these
databases cover particular needs of researchers and provide
an important source of information for future miRNA an-
notations (15). The largest fraction of miRNAs from high-
throughput sequencing has been annotated for Homo sapi-
ens. For example, as of August 2020, the miRMaster web
service (16) has been applied in over 1300 studies. Sequenc-
ing data of more than 74 000 human sncRNA samples were
evaluated and 1.1 trillion reads (1.1 × 1012) have been pro-
cessed using miRMaster. Notably, only a fraction of all
available sncRNA sequencing data has been analyzed using
the miRMaster tool, e.g. since only one organism is consid-
ered. Thus, the total number of sncRNA sequencing data
sets exceeds the !gures given above substantially. The gold
standard sncRNA analysis software miRDeep/miRDeep2
(17,18) for example has been cited almost 2000 times. Con-
stantly decreasing cost and broader availability of sequenc-
ing systems will lead to a continuously growing amount of
sncRNA datasets in the future.

Many studies, however, indicate a severe in"uence of
sample handling, library preparation and the sequenc-
ing technology on the read quantity, composition and
quality (19–22). The most commonly applied approach is
sequencing-by-synthesis using Illumina systems. These are
available in combination with different library preparation
approaches (19). We previously evaluated the performance
of sequencing-by-synthesis on Illumina systems to com-
binatorial probe-anchor synthesis (cPAS)-based BGISEQ-
500 sequencer (23). As compared to the Illumina system
we found a larger variety of sncRNAs in the cPAS data,
including twice as much yet unknown microRNAs at that
time. Both sequencing approaches however rely on similar
sequencing-by-synthesis principles, incorporating labeled
nucleotides during each sequencing cycle.

The continuous development of library preparation and
sequencing approaches is leading to novel commercially
available systems and assay formats. The availability of
a new experimental approach however immediately calls
questions with respect to the validity of its data and the
comparability. Especially for applications in biomarker de-
velopment a platform change may signi!cantly affect the di-
agnostic or prognostic performance of tests. Consequently,
two questions come up whenever a new experimental ap-
proach is available: how does the performance change if
technical replicates are compared between platforms and
how does it affect biological results?

Recently, a fundamentally novel sequencing approach
called CoolMPS has been introduced and made commer-
cially available through MGI Tech Co., Ltd, Shenzhen,
China (details are provided in the ‘Materials and Methods’
section). While it still relies on the sequencing-by-synthesis
principle as other methods, no labeled nucleotides are in-
corporated. In order to measure a signal intensity repre-
sentative for the incorporated base at each cycle, four spe-
ci!c antibodies, one recognizing each of the four natural
bases (A, T, C, G) are used. The approach promises higher
data quality by avoiding incorporation and detection in-
terference of base-linked dyes and providing stronger sig-
nals by attaching multiple molecules of a dye per anti-

body. The CoolMPS approach for sequencing non-coding
RNAs is described in the ‘Materials and Methods’ section.
More details on the sequencing kits and basic biochemi-
cal principles of the methodology and its application are
available with the user manual of the commercial kits and
as preprint (https://doi.org/10.1101/2020.02.19.953307). It
is mandatory to evaluate such new technologies with re-
spect to common application scenarios. Discovering single
nucleotide variants or small insertions and deletions pose
different challenges as compared to, e.g. the quanti!cation
of RNAs in an at least pseudo-quantitative manner. In this
study, we set to present the !rst detailed and direct perfor-
mance comparison between the novel antibody-based la-
beling approach in comparison to standard sequencing-by-
synthesis using labeled nucleotides for the quanti!cation of
small non-coding RNAs.

MATERIALS AND METHODS

RNA sample preparation and quality control

RNA from 2.5 ml whole blood collected in PAXgene
tubes was isolated using the PAXgene Blood miRNA Kit
(Qiagen, Hilden, Germany) according to the manufac-
turer’s recommendations. RNA concentration and integrity
were measured using Nanodrop 2000 spectrophotometer
(Thermo Fisher Scienti!c, Waltham, MA, USA) and RNA
6000 Nano Kit for Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA), respectively. RNA was
aliquoted and used for the four experimental approaches
CoolMPS, BGISEQ, Illumina and reverse transcriptase-
quantitative polymerase chain reaction (RT-qPCR) as de-
scribed below. The study was approved by the ethical com-
mittee of the Medical Faculty of the University of Tuebin-
gen (Nr. 90/2009BO2). A list of samples included in the
study is available as Supplementary Table S1.

CoolMPS™ on the DNBSEQ-G400RS

MiRNA libraries were prepared using the MGIEasy Small
RNA Library Prep Kit (MGI Technologies, Shenzhen,
China; product number 1000006383) with 800 ng total
RNA input according to the manufacturer’s recommenda-
tions. First, adapter sequences were ligated to the 3′ end
of the RNA, followed by ligation of barcoded RT primers.
Next, a universal adapter was ligated to the 5′ end. The
RNA was then transcribed into cDNA by HiScript II Re-
verse Transcriptase in the presence of RNAse inhibitor.
The primers used for the reverse transcription contained
barcodes that allowed the pooling of up to 24 samples
per sequencing library. Then cDNA libraries were ampli-
!ed by 18-cycles of PCR reactions. Ampli!ed PCR prod-
ucts were size selected using 6% TBE gel electrophoresis
and the band from 100 to 120 bp was then puri!ed with
spin-X centrifuge tube !lters followed by ethanol precip-
itation. The puri!ed PCR products were quanti!ed using
Qubit dsDNA HS Assay kit (Invitrogen, Cat No. Q32854).
Twelve puri!ed PCR products were pooled with 84 fmol
each (total 1 pmol) and circularized using a speci!c oligo
sequence complementary to sequences in both the 3´ and
5´ adaptors provided in the MGIEasy Small RNA Li-
brary Prep Kit. The remaining linear DNA was digested.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkaa1122/6027815 by Saarländische U

niversitäts- und Landesbibliothek user on 04 January 2021

https://doi.org/10.1101/2020.02.19.953307


Nucleic Acids Research, 2020 3

After puri!cation, the single strand circularized DNA li-
brary was quanti!ed using Qubit ssDNA Assay Kit (In-
vitrogen, Cat No, Q10212). Subsequently, DNA nanoballs
(DNBs) were generated using rolling circle ampli!cation
from 60 fmol of single stranded, circularized DNA li-
brary for 25 min. The DNB concentration was determined
using Qubit ssDNA Assay Kit. The DNBs (concentra-
tion in the range of 8–20 ng/!l) were mixed with load-
ing buffer by manual pipetting and subsequently loaded
onto DNBSEQ-G400RS 4-lane "owcells (product num-
ber 1000016985) using the MGIDL-200H DNB loader as
described in the CoolMPSTM High-throughput Sequenc-
ing Set User Manual provided with the kit. Loaded "ow
cells were sequenced on the DNBSEQ-G400RS instrument
using CoolMPSTM SE50 beta sequencing kits, now avail-
able as commercial products (product number 1000019478,
MGI Tech Co., Ltd, Shenzhen, China) following manu-
facturers recommendation. The MGI CoolMPSTM SE50
kits are the standard product for small RNA sequencing.
Sequencing was performed by selecting the smallRNA se-
quencing plan from the application menu on the DNBSEQ-
G400RS. Single end sequencing of 50 bp along with 10 bp
of barcode was performed. The basic difference between
CoolMPS and standard sequencing-by-synthesis, relying
on incorporation of labeled nucleotides, is the incorpora-
tion of unlabeled, reversibly terminated nucleotides. The
"uorescent signal to detect the incorporated bases is gen-
erated by using base-speci!c 3′ block-dependent "uores-
cently labeled antibodies. After each cycle, the bound an-
tibodies are removed and 3′ blocking moiety on the sugar
group of the nucleotide regenerates the natural nucleotides.
This procedure has the advantage not leaving a mark on
the base and making the current sequencing cycle inde-
pendent on the previous one. Base calling and generation
of FASTQ !les on the DNBSEQ-G400RS was performed
using the software release for CoolMPS (BasecallLite ver-
sion 1.0.7.84). An important machine quality control step
included the removal of tiles from the FASTQ !les that
failed at some point in the base calling process leading to
‘N’ bases for all reads in that respective tile. A detailed de-
scription of the CoolMPS method and procedures is avail-
able under: https://doi.org/10.1101/2020.02.19.953307. The
sequencing has been performed by Complete Genomics
Incorporated, San Jose, California. The overall process
of library preparation and sequencing on the DNBSEQ-
G400 is referred to as ‘CoolMPS’ through the whole
manuscript.

BGISEQ-500 sequencing using standard cPAS

As described above for CoolMPS, the MGIEasy Small
RNA Library Prep Kit (product number 1000006383) was
used to generate circularized DNA libraries with 800 ng to-
tal RNA input according to the manufacturer’s recommen-
dations. The library preparation and DNB preparation pro-
cedures are exactly the same as the one described in the pre-
vious section. DNBs were loaded onto the "ow cell using the
BGIDL-50 DNB loader and single end 50 bp sequencing
was performed using the BGISEQ-500RS High-throughput
Sequencing Set SE50 on the BGISEQ-500RS instrument.
The sequencing has been carried out in the Human Genetics

Department at Saarland University, Germany. This process
is referred to as ‘BGISEQ’ through the whole manuscript.

Illumina library preparation and sequencing

Libraries were prepared according to the protocol of the
TruSeq Small RNA Sample Prep Kit (Illumina) with 200
ng of total RNA per sample as starting material as de-
scribed previously (24). In brief, the concentration of the
libraries was assessed using a Bioanalyzer with the DNA
1000 Chip. Before sequencing, libraries were pooled in equal
amounts of batches of six samples and clustered with a con-
centration of 9 pmol in one lane each of a single read "ow
cell. Sequencing of 50 cycles was performed on a HiSeq
instrument (Illumina). Demultiplexing of raw sequencing
data and generation of FASTQ !les was performed with
CASAVA v1.8.2.

RT-qPCR

RT-qPCR experiments are described in detail in the origi-
nal publication (25). In brief, the miScript PCR system was
used with custom miRNA PCR arrays (all reagents from
Qiagen, Hilden, Germany). The PCR arrays were designed
in 96-well plates to measure the expression of human miR-
NAs and RNU48 as well as RNU6 as endogenous con-
trols. The RT-qPCR experiments have been performed in
the Human Genetics Lab of Saarland University. Reverse
transcription was performed using 100 ng total RNA as in-
put using miScriptRT-II kit in 20 !l total volume. PCR re-
actions with 1 ng cDNA input in a total volume of 20 !l
were set up automatically using the miScript SYBR Green
PCR system in a Qiagility pipetting robot (Qiagen, Hilden,
Germany).

Bioinformatics

The pre-processing of the FASTQ !les of CoolMPS,
BGISEQ and Illumina has been done using miRMaster 1.1
(16,26). MiRMaster is freely accessible at https://www.ccb.
uni-saarland.de/mirmaster/. Brie"y, adapters at the 3′ end
were trimmed, while allowing an error of maximum one
base and requiring a minimum overlap with the read of 10
bases. Reads were quality trimmed when the average qual-
ity dropped below 20 in a window of four consecutive bases
to ensure a high quality of reads used for the downstream
processing. All reads shorter than 17 bases after trimming
were discarded from all further analyses. Read duplication
levels were computed with FASTQC 0.11.8. The error rate
per base was estimated by mapping the trimmed reads to the
human genome with bowtie, while allowing up to three mis-
matches (command line: bowtie -v3 -k 1 –best –fullref) and
counting the mismatched bases with Samtools stats (ver-
sion 1.9, (27)). To further ensure the best comparability,
BGISEQ and Illumina data were subsampled to match the
CoolMPS distribution that was originally sequenced to a
lower extent. In detail, all samples were subsampled to a
read depth of 10 Million reads. Reads were mapped to the
primary assembly of GRCh38.p10 using bowtie 1.2.2 (28),
while allowing no mismatches and discarding reads map-
ping to over 100 locations (command line: bowtie -v0 -m
100 –best –strata –fullref). Read RNA classes were deter-
mined using FeatureCounts 1.5.2 (29) and annotations of
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GENCODE v25 (30), piRBase 1 (31), miRBase v22.1 and
GtRNAdb 18.1 (32) with the following parameters: -F SAF
–O –M –R –f –fracOverlap 0.9, which required an overlap
of at least 90% of a read with the annotated region and al-
lowed multimapping reads and overlapping features. MiR-
Base v22.1 miRNAs were quanti!ed using miRMaster with
up to one mismatch and a variability of two bases allowed
at the 5′ end and !ve bases at the 3′ end. Novel miRNA
candidates were predicted with miRMaster with a required
minimum expression of !ve reads in at least 75% of all de-
mentia or control samples. Since we expect numerous false
positive hits from the next generation sequencing data we
performed a quality control of the newly predicted candi-
dates and evaluated them using the NovoMiRank tool (33).
NovoMiRank was applied using the default parameters, i.e.
miRBase versions 1–7 were used as reference to identify the
most reliable candidates. All further downstream analyses
have been carried out in R 3.6.1 (https://www.R-project.
org/). To test whether miRNAs were normally distributed,
Shapiro–Wilk tests were computed per miRNA using the
shapiro.test function from the stats package. As hypothesis
test, parametric t-test and non-parametric Wilcoxon Mann-
Whitney (WMW) test were performed using the t.test and
wilcox.test functions from the stats package. Statistical tests
for group comparisons were carried out as two-tailed and
un-paired tests. All P-values were subjected to adjustment
for multiple testing by using the Benjamini–Hochberg ap-
proach through applying the p.adjust function from the
stats package. To estimate the effect sizes, the area un-
der the receiver characteristic curve (AUC value) and the
Cohen’s D effect size were computed using the R pROC
package (1.15.0, (34)) and the R effsize package (0.7.4).
Plots were generated with ggplot2 (3.1.0), cowplot (0.9.4),
complexHeatmap (2.5.3, (35)), ggridges (0.5.1) and vioplot
(0.3.5). To compute the most signi!cant overlap between the
CoolMPS and BGISEQ technology in terms of dementia
biomarkers we employed the dynamic programming based
DynaVenn approach (36). DynaVenn is freely accessible at
https://www.ccb.uni-saarland.de/dynavenn. Functional cat-
egories were analyzed by miRNA set enrichment analysis
with default parameters using miEAA 2.0 (37,38) with a list
of the miRNAs sorted with respect to their effect sizes as in-
put (with separate adjustment of categories and Benjamini–
Hochberg adjustment procedure).

RESULTS

Study setup allowing to evaluate technical and biological as-
pects

Primary aim of the study was to compare the combinato-
rial probe-anchor synthesis (cPAS)-based data using label-
ing of nucleotides to the data generated by the new antibody
labeled-based approach on the more recent DNBSEQ-
400RS systems. In the context of this manuscript, the for-
mer approach is referred to as BGISEQ and the latter as
CoolMPS. Secondary aim was to compare the performance
and comparability of both approaches in terms of potential
liquid biopsy biomarker tests. We thus selected a study setup
that allows to address both aims (Figure 1A). We sequenced
240 individual blood samples on both sequencing systems.
The 240 samples include 179 controls and 38 patients with

dementia. This part of the cohort has been used to evalu-
ate the performance of both technologies to detect dementia
biomarkers. Furthermore, the 240 samples include 17 indi-
viduals and 6 technical replicates. The latter samples were
not used for the biomarker study but to assess the general
stability and reproducibility of the technologies. Further, we
compared the data to RT-qPCR measurements of a subset
of 19 miRNAs in 189 samples and also evaluated the per-
formance in comparison to data generated by Illumina se-
quencers. A full list of miRNAs and samples together with
the respective Delta CT values from the RT-qPCR valida-
tion is available in Supplementary Table S2. We !rst eval-
uated the general performance of CoolMPS for quanti!ca-
tion of RNA and then provide results of CoolMPS as liq-
uid biopsy biomarker for dementia. The cohort was com-
posed of participants with an average age of 67.3 years and
a standard deviation of 12.3 years (Figure 1B). Details on
the sequencing approaches and data analyses are given in
the ‘Materials and Methods’ section.

Key performance indicators reveal improved quality of
CoolMPS

First, we compared the Q30 values for the reads from the
two sequencing approaches (Figure 1C). The Q30 value pro-
vides the percentage of bases sequenced with a Phred score
of at least 30, corresponding to an error rate of 0.1%. The
median Q30 of the BGISEQ was 91.8% while the median
Q30 of CoolMPS jumped to 94%, representing a signi!cant
improved performance of CoolMPS (P < 10−10). Intrigu-
ingly, we observed the higher per base sequencing accuracy
over the complete read length not observing any drop at the
beginning or at the end of the read. Moreover, CoolMPS
showed lower variability in sequencing performance over
the read in general as well as lower variability per base in
the read (Figure 1D). While the variation of valid reads
per sequencing run still varied for the CoolMPS technol-
ogy we observed a constantly higher fraction of reads map-
ping without mismatches to the human genome (84.9% for
BGISEQ and 86% for CoolMPS; Figure 1E). We also inves-
tigated the GC content of the generated libraries and found
a median of 51.10% for BGISEQ and a median of 50.72%
for CoolMPS in the unprocessed data, which dropped to a
median of 42.38 and 41.60% for BGISEQ and CoolMPS
after adapter and quality trimming, respectively (Supple-
mentary Figure S1A and B). The mean quality scores per
position varied between 33.95 and 36.35 for CoolMPS and
even increased slightly toward the end of the read. In con-
trast, the BGISEQ reads varied between 27.95 and 36.17
and reached their peak at position 26. Then, the quality
of BGISEQ reads decreased until position 50 (Supplemen-
tary Figure S1C and D). The mean quality scores for the
trimmed !les, i.e. those that did not contain any adapters,
varied similarly, although the mean quality scores decreased
more for longer reads. The estimated error rate was for both
technologies similar with a median of 0.74% for BGISEQ
and 0.76% for CoolMPS (Supplementary Figure S1E). For
both, the raw sequencing !les, and the trimmed ones, we ob-
served a close to identical GC content distribution. For both
technologies we observed two distinct peaks at 51 and 57%
(Supplementary Figure S1F and G). We also found that the
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Figure 1. Study setup and quality control. (A) In the study we measured 240 individual blood samples using two fundamentally different sequencing
approaches and compare the data by bioinformatics approaches before we compute the concordance to RT-qPCR pro!les. The 240 samples include one
part that has been used only for assessment of technical properties (6 and 17 samples in blue and gray) as well as a second part to evaluate performance
related to biomarker discovery (176 controls in green and 38 dementia cases in orange). (B) Distribution of the age of the individuals included in the study,
shown as violin plot. The black box spans the !rst to the third quartile and the white dot shows the median. (C) Distribution of the average Q30 value per
sample for the two technologies, shown as boxplot (left) and dotplot (right). Each sample is shown as one dot. The boxes span the !rst to the third quartile
with the horizontal line inside the box representing the median value. The whiskers show the minimum and maximum values or values up to 1.5 times
the interquartile range below or above the !rst or third quartile if outliers are present. (D) Q30 value over all samples per technology as function of the
position in the read. The smoothed curve is !tted by a generalized additive model using a cubic regression spline. The gray area represents the con!dence
interval of the !t. (E) Distribution of the percentage of reads mapping to the human reference genome hg38 without mismatch per technology, shown as
boxplot (left) and dotplot (right). Each sample is shown as one dot. The boxes span the !rst to the third quartile with the horizontal line inside the box
representing the median value. The whiskers show the minimum and maximum values or values up to 1.5 times the interquartile range below or above
the !rst or third quartile if outliers are present. (F) Scatter plot of the average expression of all miRNAs in all samples for the two technologies. The blue
line is the regression line. The Pearson correlation is shown in the upper left part of the plot. MiRNAs with a fold change larger than two between both
technologies are highlighted. (G) Heat map of the clustered expression z-scores of miRNAs (rows) and technical replicates (columns). The color code for
the columns represents the technology. The dendrogram shows the hierarchical clustering of the samples with Euclidean distance and complete linkage.
(H) Distribution of all 12*11/2 = 66 pairwise Pearson correlation coef!cients, shown as violin plot. The black box spans the !rst to the third quartile
and the white dot shows the median. (I) Correlation matrix of the expression values of all miRNAs for all technical replicates. The dendrogram shows
the hierarchical clustering of the samples with Euclidean distance and complete linkage. (J) Scatter plot of miRNAs for the best correlation between two
technical replicates. The dotted line represents the angle bisector. The Pearson correlation is shown in the upper left part of the plot. The points are colored
according to the point density in their neighborhood. (K) Scatter plot of miRNAs for the worst correlation between two technical replicates. The dotted
line represents the angle bisector. The Pearson correlation is shown in the upper left part of the plot. The points are colored according to the point density
in their neighborhood.
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read length in both libraries after trimming peaked at 22, as
we expected from a miRNA enriched library (Supplemen-
tary Figure S1H). We further evaluated the duplication lev-
els of the CoolMPS and BGISEQ libraries. In both cases,
the distributions were again nearly identical, showing most
duplication levels above 10 000 (Supplementary Figure S1I
and J). This is expected from miRNA libraries, as often a
small number of miRNAs account for most of the reads.
Finally, we checked the read base composition and found
similar patterns. The !rst 22 bases reveal the most overrep-
resented sequence (i.e. the sequence of hsa-miR-451a), fol-
lowed by the bases of the adapter sequence for the raw reads,
and by less sequence speci!c bases for the trimmed reads
(Supplementary Figure S1K and L). For most of the tested
relevant key performance indicators (e.g. Q30 and reads
mapping to the human genome) that allow to compare the
general sequencing performance, CoolMPS yielded an in-
creased performance compared to the classical BGISEQ ap-
proach.

Next, we evaluated and compared the reproducibility of
the two technologies. When comparing the mean expression
of all samples for CoolMPS to BGISEQ we obtained an ex-
tremely high correlation of 0.999 (Figure 1F). The scatter
plot highlights a set of seven miRNAs, which were mea-
sured with higher expression in the CoolMPS data as com-
pared to BGISEQ (miR-19a-3p, miR-30a-5p, miR-6131,
miR-451b, miR-378g, miR-195-5p and miR-23c). Next, we
considered only the six technical replicates per technology.
There, these miRNAs reveal the same pattern as for the
complete set of samples, thus excluding variance related
to the disease status of the participants as potential cause
(Supplementary Figure S2). Sequence and structure prop-
erties of these miRNAs are shown in Supplementary Table
S3. Neither the length, nor the base composition or sec-
ondary structures reveal a joint pattern, arguing against a
technological bias. We then asked whether we observe a
clustering according to the sequencing approach or whether
CoolMPS and BGISEQ samples mix. Indeed, hierarchical
clustering indicates that the samples do not cluster by tech-
nology (Figure 1G). The Pearson correlation between all
12 × 11 / 2 = 66 pair wise comparisons of technical repli-
cates varied between 0.952 and 0.990 with a median per-
formance of 0.973 (Figure 1H). The correlation matrix re-
vealed marginal differences in the correlation coef!cients
between all the BGISEQ replicates (median 0.980) in com-
parison to the ones between the CoolMPS samples (median
0.964) (Figure 1I). Also, the correlation between the two
technologies with a coef!cient of 0.973 was high. The differ-
ences in the correlation lead to a tendency of technologies to
cluster together, although CoolMPS Technical Replicate 2
clustered with BGISEQ Technical Replicates 2 and 6. Scat-
ter plots for the best (Figure 1J) and the worst correla-
tion (Figure 1K) demonstrate the generally very high repro-
ducibility between the technologies that is in the same range
as technical replicates within the technologies. Most impor-
tantly, we did not observe any signi!cant change between
the RNAs pro!led with BGISEQ compared to CoolMPS
after adjustment for multiple testing, both, for the WMW
and the t-test.

Having understood basic performance of the sequencing
technology as well as core aspects on technological repro-

ducibility we next evaluated the content of the different se-
quencing approaches with respect to quantitative and qual-
itative aspects.

Composition of different RNA classes is similar between
BGISEQ and CoolMPS

The !rst question related to small non-coding RNA se-
quencing data is the representation of different RNA
classes. Different sample- and library preparation protocols
lead to varying results. For example, size selection is ap-
plied to enrich-speci!c populations of sncRNAs. To min-
imize respective effects and to focus on the performance
of the sequencing technique, we used the same libraries
for sequencing and puri!ed small non-coding RNAs by gel
electrophoresis (see ‘Materials and Methods’ section). This
protocol has been optimized to enrich for miRNAs, how-
ever, leaving also reads to evaluate other RNA classes. The
distribution to the different classes matched generally very
well between BGISEQ and CoolMPS (Figure 2A). Espe-
cially, we observed the intended enrichment for miRNAs.
For BGISEQ, 91.7% of all mappable reads matched to miR-
NAs, for CoolMPS we even reached a higher mapping of
92.7%. The second most abundant RNA class was the En-
sembl’s misc RNA category, containing among others yR-
NAs and signal recognition particle RNAs (SRP RNAs).
This category contains 5.1% of all BGISEQ and 4.5% of all
CoolMPS reads. All other categories were covered by less
than 1% of reads in both technologies. The scatter plot con-
trasting the log10 percentages for both technologies high-
lights the very reproducible distribution of reads to the dif-
ferent RNA classes (Figure 2B). Since the protocol was op-
timized to enrich for miRNAs and our results demonstrate
that this enrichment was successful, we focused on compar-
ing the performance for this class of sncRNAs.

CoolMPS yields more novel miRNA candidates

With respect to different technologies a bias in sncRNA-
seq data is known. Especially for specimen types such as
whole blood where already an enrichment of selected miR-
NAs exist, additional technological bias can further impair
the data analysis. In whole blood, miRNA expression is
not uniformly distributed but few miRNAs are signi!cantly
higher expressed than others. Technology bias further over-
ampli!es the respective miRNA reads. These circumstances
complicate the discovery of new miRNAs with the aim of
completing the repertoire of annotated miRNAs (8). We
thus evaluated and compared the distribution of reads to
different miRNAs using the two sequencing technologies
and asked how many novel miRNA candidates could be ob-
tained. As expected, we observed an uneven distribution,
which is however highly concordant between the technolo-
gies (Figure 3A). At the same time, we discovered 124 novel
miRNA candidates using BGISEQ while CoolMPS based
results highlight 134 novel miRNA candidates (Figure 3B
and Supplementary Figure S3A). These !ndings suggest a
higher sensitivity in terms of discovering low abundant yet
unknown miRNA molecules. Remarkably, a large fraction
of all new microRNA candidates, in total 88, have been de-
tected by both technologies. To assess the quality of those
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Figure 2. Distribution to the different sncRNAs classes. (A) Donut plot comparing the distribution of all RNA classes and intergenic regions that were
covered by reads from CoolMPS and BGISEQ. (B) Scatter plot that shows the percentage of reads mapping to the RNA classes and intergenic regions for
BGISEQ (x-axis) and CoolMPS (y-axis) on a logarithmic scale.

miRNA candidates we scored them using NovoMiRank.
The score computed by NovoMiRank considers sequence
and structural features and describes the average distance
of the new candidates to a reference set, which is per default
miRBase v1-7. The median score obtained for the com-
mon candidates was 1.12, while the technology speci!c can-
didates obtained median scores of 1.05 for CoolMPS and
1.00 for BGISEQ. As highlighted by the distribution shown
in Supplementary Figure S3B, the score ranges are simi-
lar between the approaches and only few candidates (four
detected by both CoolMPS and BGISEQ, three CoolMPS
speci!c and one for BGISEQ speci!c) showed scores above
1.5. The score of 1.5 has been set since it is the maximum
score observed for miRBase v1-7 miRNAs i.e. the refer-
ence set of NovoMiRank. In summary, both technologies
do not reveal quantitative differences in the quality of re-
ported miRNAs but only in the quantity, with remarkable
advantages of CoolMPS.

In comparing the distribution of miRNAs annotated in
the miRBase we observe 76.7% of all BGISEQ reads map-
ping to the most abundant miRNA (miR-451a; Figure 3C).
Using CoolMPS, 78.5% of all reads matched to this miRNA
(Figure 3D). The second most abundant miRNA is repre-
sented by 9 and 8.4% of all reads, respectively (miR-92a-
3p). In sum, the top !ve miRNAs are covered by 93.8%
of all reads in the BGISEQ and by 92.6% of all reads in
the CoolMPS approach. A more detailed breakdown by ex-
cluding the most abundant miR-451a demonstrates that the
order of the 10 most abundant miRNAs matches perfectly
between the two technologies (Figure 3E and F). At the

same time, the data reinforces that especially for biospec-
imens with an uneven distribution of miRNA molecules,
deep sequencing with the least possible bias is required to
pro!le known and to discover new miRNAs.

Comparing biomarker pro!les shows high reproducibility be-
tween the different approaches

One of the most important question in introducing new
technologies is not only whether general performance im-
proves but also whether previous biological results can be
reproduced. One core example are biomarker tests. Often,
biomarker sets change substantially when a new quanti!-
cation approach is introduced. This might be an expected
and even desired result, e.g. if a new technology genera-
tion with higher technical sensitivity is introduced. But if
a new technology has the main task to support transla-
tion of biomarkers to care by facilitating better integration
into clinical work"ows or lower experimental costs, origi-
nal biomarker pro!les should not be compromised. We thus
evaluated the diagnostic performance of miRNA biomark-
ers using BGISEQ and CoolMPS and used a liquid biopsy
dementia test as validation example. We sequenced cases
with dementia as well as controls with similar age distribu-
tion (Figure 1A and B). As performance criteria we con-
sidered the result of two commonly used hypothesis tests,
the t-test and the WMW test. Since not all miRNAs were
normally distributed according to the Shapiro Wilk test,
we here focus on the results of the WMW test and pro-
vide the t-test P-values only in the supplement (Supplemen-
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Figure 3. Distribution to microRNAs. (A) Distribution of the read percentage of the 10 most abundant miRNAs in the CoolMPS and BGISEQ data,
shown as boxplot (left) and dotplot (right). Each sample is shown as one dot. The boxes span the !rst to the third quartile with the horizontal line inside
the box representing the median value. The whiskers show the minimum and maximum values or values up to 1.5 times the interquartile range below or
above the !rst or third quartile if outliers are present. (B) Number of novel microRNA candidates for both technologies. (C) Pie chart for the top !ve
miRNAs on the BGISEQ. (D) Pie chart for the top !ve miRNAs on the CoolMPS. (E) Pie chart for the top ten miRNAs on the BGISEQ after exclusion
of the most abundant miR-451a. (F) Pie chart for the top ten miRNAs using CoolMPS after exclusion of the most abundant miR-451a.

tary Table S4 and 5). Because of known challenges with P-
values and the controversial discussion on this topic (39),
we also computed effect sizes, namely Cohen’s D and the
area under the receiver characteristics curve AUC. Detailed
results for each miRNA and each of the different metrics
are provided for both BGISEQ (Supplementary Table S4)
and CoolMPS (Supplementary Table S5). In terms of AUC,

BGISEQ and CoolMPS showed an almost identical distri-
bution (Figure 4A). The scatter plot displays a very high
degree of reproducibility (Pearson correlation coef!cient
of 0.905) between the two technologies considering the di-
agnostic performance (Figure 4B). As consequence, also
the volcano plots for the two technologies were very simi-
lar (Figure 4C and D). Given the general concordance of
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Figure 4. Diagnostic performance on dementia patients. (A) Distribution of the AUC values to differentiate between dementia and controls obtained for
both technologies. An AUC of 0.5 means no dys-regulation. A deviation from 0.5 toward one means an upregulation and toward zero a downregulation
of the biomarkers. The distribution is shown as boxplot (left) and dotplot (right). Each miRNA is shown as one dot. The boxes span the !rst to the third
quartile with the horizontal line inside the box representing the median value. The whiskers show the minimum and maximum values or values up to 1.5
times the interquartile range below or above the !rst or third quartile if outliers are present. (B) Scatter plot of the AUC values to differentiate between
dementia and controls in CoolMPS (x-axis) versus BGISEQ (y-axis). The black horizontal and vertical line represent the AUC value of 0.5, respectively.
The Pearson correlation is shown in the upper left part of the plot. The points are colored according to the point density in their neighborhood. (C)
Volcano plot showing the log2 fold change on the x-axis and the FDR adjusted negative log10 of the Wilcoxon–Mann–Whitney (WMW) P-value on the
y-axis for BGISEQ. Orange dots are located above the horizontal line and are signi!cant. Blue and green dots above the horizontal and on the left / right
of the vertical lines are signi!cant and have a fold-change above 2. (D) Same volcano plot as in Figure 4C, but for CoolMPS. (E) Result of DynaVenn that
presents the negative log10 of the overlap between the two miRNA sets dependent on how many miRNAs are included. The peak of the curve represents
the most signi!cant overlap. (F) Scatter plot of the log2 CoolMPS expression (x-axis) and the negative delta CT value for the 19 miRNAs included in the
validation study. The Pearson correlation coef!cient is shown in the upper left part of the plot. (G) Scatter plot of the AUC values to differentiate between
dementia and controls in CoolMPS (x-axis) and BGISEQ (y-axis). The dashed line represents the angle bisector.
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the results we speculated that also the ranks of biomark-
ers were consistent between the two technologies. For the
top-10 markers of BGISEQ and CoolMPS we thus com-
pared the ranks and absolute values (Table 1). First, we rec-
ognized that the top marker performed better in CoolMPS
as compared to BGISEQ in all metrics, the raw P-value,
the adjusted P-value, the Cohen’s D and the AUC. The ad-
justed P-values were for example 0.0006 in BGISEQ data
and 0.0004 in CoolMPS data. Second, we observed that
four miRNAs were among the top 10 markers in both tech-
nologies (miR-3200-3p, let-7e-5p, miR-15b-5p, miR-19b-
3p). For other markers we computed partially very differ-
ent ranks. One of the most extreme examples is miR-3335-
5p, which is ranked 9th most signi!cant in CoolMPS and
117th in BGISEQ. Nonetheless, this miRNA was signif-
icant in both approaches. On the one hand we observed
a very high correlation, on the other hand, we also no-
ticed substantial differences in the ranks, most likely re-
lated to the close range of the P-values, challenging the
concept of !xed thresholds. To overcome the bias of se-
lecting !xed rank ranges, we developed the DynaVenn ap-
proach that computes the most signi!cant overlap between
two biomarker sets containing technical or biological repli-
cates. DynaVenn computed the best overlap in selecting the
best 112 miRNAs from BGISEQ and the best 126 miRNAs
from CoolMPS, yielding an overlap of 94 miRNAs and a
P-value of 2 × 10−35 (Figure 4E). Thus, the two biomarker
sets show a highly signi!cant overlap which might have re-
mained hidden if only the top 10 markers would have been
considered.

Illumina sequencing data shows differently biased but com-
parable measurements

In addition to BGISEQ we also compared the performance
of CoolMPS to standard Illumina sequencing for small
non-coding RNAs on a subset of 12 samples (24). As part
of our quality control we !lter reads shorter than 17 nu-
cleotides. We thus compared the fraction of !ltered reads for
the three technologies on the subset of samples sequenced
by the three technologies. For BGISEQ, 2.76% (SD of 0.56)
of reads, for CoolMPS 3.90% (SD of 0.54) of reads and for
Illumina 3.95% (SD of 3.24%) of reads were excluded. In
a !rst analysis step we evaluated the Q30 values obtained
by both approaches and found a median Q30 of 94.95%
for Illumina in comparison to 93.10% for CoolMPS (Sup-
plementary Figure S4A). The quality pro!le revealed Q30
values going up to a median of 99.43% for Illumina in
the !rst 20 positions, whereas a strong drop could be ob-
served afterwards, going down to a Q30 of 87.33% at po-
sition 50 (Supplementary Figure S4B). In comparison, the
CoolMPS quality remained more stable for the complete
read length with an average Q30 of 93.12% (SD: 1.79%)
and even showed an increased quality toward the end of the
reads. For the fraction of reads that can be used in further
analyses, i.e. the ones mapping to the human genome, we
observed for CoolMPS a median of 90.74%, while for Illu-
mina only 77.85% could be mapped (Supplementary Figure
S4C). In the next step, we inspected the expression similarity
of both technologies and found a general agreement of both
with a Pearson correlation of 0.873 (Supplementary Figure
S4D). Nevertheless, we could observe 52 miRNAs with ex-

pression values differing by fold changes above 10, show-
ing the technological speci!c biases (e.g. hsa-miR-486-5p
was expressed 76 times higher in the Illumina samples). In
addition, we con!rmed that the samples of both technolo-
gies clustered separately according to their miRNA pro!les
(Supplementary Figure S4E) and showed a much higher
intra-technology expression correlation (Pearson correla-
tion of 0.960 for CoolMPS on median, 0.955 for Illumina)
than between technologies (median Pearson correlation of
0.742) (Supplementary Figure S4F and G). We then asked
if the RNA class distribution between both technologies
show similar patterns. We found that the CoolMPS sam-
ples showed a higher diversity of RNA classes, whereas the
Illumina samples contained a higher percentage of reads
mapping to piRNAs (0.70 versus 0.17% in CoolMPS) and
miRNAs (97.76 versus 94.98% in CoolMPS) (Supplemen-
tary Figure S5). Next, we focused on the composition of
the detected miRNAs and found that of the top 10 most ex-
pressed miRNAs of both technologies, six overlapped. The
largest differences could be observed for hsa-miR-486-5p
and hsa-miR-451a, which are both the most expressed miR-
NAs in Illumina and CoolMPS and differ by a fold change
of 76 and 87, respectively (Supplementary Figure S6A). For
the Illumina samples, thus only 9.48% of the reads could
be mapped to other miRNAs and after excluding the top 5
miRNAs, only 3.15% of the reads mapped to others (Sup-
plementary Figure S6B). For the CoolMPS samples, we ob-
served slightly increased mapping rates to the top !ve miR-
NAs on this subset of samples, with 5.60% of the reads map-
ping to the other miRNAs (Supplementary Figure S6C).
Supplementary Figure S6D and E show a detailed break-
down of the top expressed miRNAs, after excluding the
most abundant one. We also found that some miRNAs that
were detected with low abundance in one technology (e.g.
hsa-miR-223-3p and hsa-miR-185-5p for Illumina and hsa-
miR-142-5p for CoolMPS) were among the 10 most ex-
pressed miRNAs in the other. This reinforces the necessity
of deep sequencing, especially for the Illumina libraries, to
quantify a larger range of miRNAs.

RT-qPCR data largely !t to the CoolMPS measurements

Finally, it is important to understand whether a third and
independent technology validates the biomarker pro!les.
Since we previously already validated the BGISEQ ap-
proach using RT-qPCR (23) and demonstrate in the present
work that CoolMPS is concordant to BGISEQ we can
speculate that the RT-qPCR data would also match the
CoolMPS pro!les. To evaluate this hypothesis, we com-
pared the expression values of 19 miRNAs that have been
measured for 189 samples from the present study by RT-
qPCR (25). Between the mean log2 CoolMPS expression
and the negative delta CT values computed from RT-qPCR
we observed a high correlation of 0.823 (Figure 4F). To val-
idate how well this translates into biomarker patterns we
again computed the difference between controls and demen-
tia patients (Figure 4G). In this comparison we observed
10 miRNAs that were upregulated in both technologies, 5
miRNAs that were downregulated in both technologies and
four miRNAs that were discordantly regulated between the
technologies. According to Fishers Exact test this corre-
sponds to a signi!cant overlap (P = 0.022).
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Table 1. For the top 10 most signi!cant miRNAs with both technologies the rank in each technology is provided, followed by nominal and adjusted
P-value, the effect size (Cohen’s D) and AUC

miRNA Rank BGISEQ Rank CoolMPS WMW raw P-value WMW adj P-value Cohen’s D AUC

hsa-miR-3688-3p 1 16 2.89E-06 0.0006 − 0.88 0.26
hsa-miR-3200-3p 2 4 3.23E-06 0.0006 − 0.87 0.26
hsa-let-7d-5p 3 17 6.98E-06 0.0007 0.83 0.73
hsa-miR-589-5p 4 51 9.26E-06 0.0007 − 0.79 0.27
hsa-miR-550a-3-5p 5 NA 9.39E-06 0.0007 0.78 0.73
hsa-let-7e-5p 6 6 1.06E-05 0.0007 0.82 0.73
hsa-miR-193a-3p 7 69 1.21E-05 0.0007 − 0.76 0.27
hsa-miR-4448 8 55 2.21E-05 0.0010 0.57 0.72
hsa-miR-15b-5p 9 8 2.55E-05 0.0010 0.77 0.72
hsa-miR-19b-3p 10 1 2.64E-05 0.0010 − 0.77 0.28
hsa-miR-181c-5p 21 2 2.38E-06 0.0004 − 0.80 0.26
hsa-miR-185-5p 48 3 4.84E-06 0.0006 − 0.75 0.26
hsa-miR-5695 12 5 7.70E-06 0.0006 − 0.76 0.27
hsa-miR-363-3p 33 7 2.15E-05 0.0011 0.75 0.72
hsa-miR-335-5p 117 9 5.55E-05 0.0022 − 0.44 0.29
hsa-miR-30b-5p 83 10 5.83E-05 0.0022 − 0.72 0.29

Bold miRNAs are in the top 10 for both technologies.

BGISEQ and CoolMPS AD miRNAs are matching known
AD miRNAs and correlated to functional categories

As described in the previous sections, the miRNAs identi-
!ed by the CoolMPS and BGISEQ approach have a sig-
ni!cant diagnostic potential from a statistical perspective.
We asked whether the signatures matched previously pub-
lished results and which functional categories are enriched.
To this end, we employed a miRNA set enrichment analy-
sis using miEAA (37,38). As input the miRNAs were sorted
with respect to their CoolMPS effect sizes. Downregulated
miRNAs were most signi!cantly associated to the miEAA
disease category ‘Downregulated in Alzheimer’s Disease’
(raw and adjusted P-value of 2.3 × 10−5 and 6.88 × 10−4)
while upregulated miRNAs were most strongly correlated
to glioma (raw and adjusted P-value of 0.002 and 0.025,
respectively). With respect to Gene Ontology and pathway
databases we computed two signi!cant categories. Upregu-
lated AD miRNAs were enriched in chromosome conden-
sation (raw and adjusted P-value of 3.3 × 10−6 and 0.018)
as well as response to magnesium ion (raw and adjusted P-
value of 1.3 × 10−5 and 0.036).

DISCUSSION

Whenever new technologies emerge in a !eld it is manda-
tory to test the !t to former technologies. The more disrup-
tive a technological change is, the more the results differ
from previous ones. An extreme example is the step from
microarrays to RNA sequencing for analyzing expression
pro!les. If a novel technology aims to improve a previous
one in a rather evolutionary manner by adapting and im-
proving a speci!c step, the research results should gener-
ally be more aligned with previous !ndings. In biomedicine,
such improvements can aim at an improved translational
aspect of research in making work"ows easier to use or
in reducing the cost of assays. With CoolMPS we eval-
uated such an evolutionary improvement. Still, the main
principle is sequencing-by-synthesis and also the detec-
tion and evaluation approach stay the same. The main

difference is in using labeled antibodies instead of in-
corporating labeled nucleotides. While theoretical advan-
tages of this approach, e.g. a potential re-use of the se-
quencing chemistry, are obvious we don’t expect disrup-
tive new !ndings. It is essential to benchmark CoolMPS
to related high-throughput approaches, in our case stan-
dard cPAS sequencing-by-synthesis and Illumina sequenc-
ing, but also to a gold standard technology, in our case
RT-qPCR. As primary comparison high-throughput tech-
nology we selected cPAS on the BGISEQ since we already
previously performed a detailed benchmarking to the Il-
lumina sequencing-by-synthesis approach, highlighting the
advantages and disadvantages of both approaches (23). As
biospecimens we intentionally selected whole blood. Not
only because whole blood samples can be used to screen
for minimally invasive biomarkers but also because of their
challenging characteristics. The repertoire of small non-
coding RNAs varies between different blood cell types and
sncRNAs have a very high dynamic range. In fact, this
means that few high abundant molecules are sequenced of-
ten whereas low abundant molecules are hardly observed.
In whole blood small non-coding RNA sequencing data
generated by Illumina sequencers, partially over 90% of the
reads belong to miR-486-5p. While this miRNA is certainly
highly abundant in red blood cells, this extreme distribu-
tion does not seem to match reality. In both, the BGISEQ
and CoolMPS data we still observe an extreme distribution
with around 3

4 of all reads matching to the most abundant
miRNA, miR-451a. This can also be recognized in Supple-
mentary Figure S1K and L. Still, this distribution is less
extreme than for the previously investigated Illumina se-
quencing data. The less extreme overrepresentation in the
BGISEQ and CoolMPS data thus facilitates the discov-
ery of yet unknown and less abundant non-coding RNA
molecules.

Among the top 10 markers that we discovered by
CoolMPS (Table 1), eight miRNAs (miR-19b-3p, miR-
181c-5p, miR-185-5p, miR-3200-3p, let-7e-5p, miR-15b-5p,
miR-335-5p and miR-30b-5p) were already described in the
literature to be correlated to Alzheimer’s disease or demen-
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tia. For example, miR-19b-3p prevents amyloid "-induced
injury by targeting BACE1 in SH-SY5Y cells (40) and is al-
tered in CSF exosomes of AD patients (41). Similarly, miR-
185-5p is known as exosomal AD biomarker (42). Also,
let-7e-5p and miR-3200-3p were previously identi!ed as
blood biomarkers (43). Interestingly, the same manuscript
also lists miR-30c-5p, miR-30d-5p and miR-15a-5p. For
these miRNAs we report differential expression in related
miRNA family members (miR-30b-5p and miR15b-5p re-
spectively). The latter miRNA has also been reported in
other studies a circulating AD biomarker (44,45) and tar-
gets the amyloid precursor protein (46). Similarly, miR-335-
5p inhibits "-Amyloid in AD (47). Already for the 10 most
signi!cant miRNAs we thus found substantial evidence for
their role in AD, both as biomarker but also linked to a po-
tential pathogenic function.

One step in our analysis pipeline is to !lter out short
reads (below 17 nucleotides), that might add noise to the
data. For BGISEQ, the lowest number of reads was !l-
tered out in this step followed by CoolMPS and lllumina
sequencing data. While the percentages overall were sim-
ilar, we observed a higher standard deviation in Illumina
data (3.24%) as compared to BGISEQ (0.54) and CoolMPS
(0.56) data. In comparing CoolMPS data to Illumina data
we observed a slightly better averaged Q30 value for the
Illumina data. This advantage could be observed however
mostly in the beginning of the read. Toward the end of the
50 base reads, Illumina Q30 values dropped more as com-
pared to the stable performance of CoolMPS. This resulted
in a higher mapping rate of the CoolMPS data. One expla-
nation for a drop of quality is in the small size of miRNAs
that are usually shorter than 25 nucleotides but 50 bases are
sequenced. This effect might be more pronounced for Illu-
mina as compared to the BGISEQ and CoolMPS data. In
consequence, we can expect that this factor is likely less rel-
evant for longer RNAs or sequencing of DNA. Also, the
composition of the RNA classes was different between the
technologies. Illumina data revealed higher percentages of
piRNAs and miRNAs while CoolMPS shows a higher di-
versity also including other non-coding RNA classes. A dif-
ference between the BGISEQ/CoolMPS and Illumina pro-
tocols was the amount of starting material. For BGISEQ
and CoolMPS, 800 ng was used while the Illumina data have
been generated from 200 ng input material. This might pre-
tend that a higher input amount is required for CoolMPS
as compared to Illumina. We used this higher input amount
however only during the exploratory phase of the CoolMPS
protocol. Even with lower amount of input material down
to 100ng we did not observe signi!cant changes (data not
shown). Indeed, the manufacturer’s instruction would even
allow input from 10ng RNA only. Thus, the input volume
seems not to be a limiting factor for the CoolMPS technol-
ogy.

In sum, both of the technologies have their advantages
and disadvantages and the best systems should be cho-
sen dependent on the application. Our data thus clearly
suggest that small RNA sequencing results from Illumina
data should not be directly compared to sequencing results
from BGISEQ since the technical differences between iden-
tical samples are statistically highly signi!cant. With respect
to comparing between BGISEQ and CoolMPS datasets

we observed generally very similar performance. The most
striking advantage of CoolMPS is a signi!cantly improved
single base call quality. This led to marginal improvements
in the biomarker patterns but did not improve the perfor-
mance of any biomarker in a substantial manner. Interpret-
ing the results, we have to bear in mind that the BGISEQ
technology and chemistry have already matured over at
least !ve years while we used prototype beta testing chem-
istry for CoolMPS. Since already this chemistry lead to im-
proved performance we can expect further improvements
with revised kits of CoolMPS. Finally, one big advantage
is the potential to recover the used labeled antibodies for a
second sequencing run.
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ABSTRACT

Which genes, gene sets or pathways are regulated
by certain miRNAs? Which miRNAs regulate a par-
ticular target gene or target pathway in a certain
physiological context? Answering such common re-
search questions can be time consuming and labor
intensive. Especially for researchers without compu-
tational experience, the integration of different data
sources, selection of the right parameters and con-
cise visualization can be demanding. A comprehen-
sive analysis should be central to present adequate
answers to complex biological questions. With miR-
TargetLink 2.0, we develop an all-in-one solution for
human, mouse and rat miRNA networks. Users in-
put in the unidirectional search mode either a sin-
gle gene, gene set or gene pathway, alternatively a
single miRNA, a set of miRNAs or an miRNA path-
way. Moreover, genes and miRNAs can jointly be pro-
vided to the tool in the bidirectional search mode. For
the selected entities, interaction graphs are gener-
ated from different data sources and dynamically pre-
sented. Connected application programming inter-
faces (APIs) to the tailored enrichment tools miEAA
and GeneTrail facilitate downstream analysis of path-
ways and context-annotated categories of network
nodes. MiRTargetLink 2.0 is freely accessible at
https://www.ccb.uni-saarland.de/mirtargetlink2.

GRAPHICAL ABSTRACT

INTRODUCTION

A central question in biomedical and life science research
studies is how the expression of genes is modulated in phys-
iological and pathophysiological processes (1). In this con-
text, miRNAs play a central role in orchestrating gene ex-
pression. A frequent mechanism is that miRNAs bind to
a speci!c sequence at the 3′ untranslated region (UTR) of
a target mRNA to induce translational repression (2). In
addition to this common mode of action, miRNA-binding
sites in other mRNA regions such as the 5′ untranslated re-
gion, coding sequence or promoter regions exist (3). More-
over, RNA-binding proteins have an important role in the
regulation of miRNA activity (4). An overview on canoni-
cal and noncanonical miRNA targeting (including aspects
upstream such as miRNA biogenesis) has been provided by
O’Brien et al. (5) and Erkeland (6). Moreover, Bartel pro-
vided a comprehensive overview on the current understand-
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ing of the de!ning features for miRNA biogenesis and re-
lated genomics (7).

It has become evident that miRNAs target genes in a
systematic manner and exhibit a targetome speci!city up
to the pathway level (8). On the molecular level this effect
manifests in different aspects. For example, the 3′ UTR of
mRNAs often harbors multiple binding sites of the same
miRNA, and the binding to these target sites has a coop-
erative effect. Likewise, the binding of different miRNAs
to the same UTR can have cooperative effects. To facili-
tate the systematic analysis of miRNAs in the context of
target genes or vice versa, i.e., in one-to-many or many-
to-many relationships, we implemented miRTargetLink (9).
The analysis of putative target genes and target pathways
in a systems biology context is an essential step in non-
coding RNA studies, including contrasts of experimental
groups in disease research. Thus, several research tools with
varying scope and functionality, as both stand-alone and
web-based tools, have been proposed. Tools4mirs, a popu-
lar meta-repository for miRNA analysis methods (10), cur-
rently lists 60 target prediction tools and 26 toolboxes for
the functional analysis of targets. In the following, we intro-
duce the tools with an application scope closest to miRTar-
getLink 2 (11,12). For instance, miRTarVis is a tool speci!-
cally developed to display co-expression networks of paired
miRNA and mRNA data (13). Second, MIENTURNET
generates interaction networks by estimating the statistical
signi!cance of paired lists of miRNA and mRNA identi-
!ers provided (14). An advantage of this approach is to re-
duce potentially large input lists to likely core interactions
of the putative biological network, while a disadvantage is
that weak informative edges might be removed due to sta-
tistical instability, potentially introducing a bias to the net-
work. The tool miRViz allows to quickly visualize precom-
puted networks for multiple species, based on preselected
features such as shared seed region identities between re-
lated miRNAs from the same or similar families (15). Fur-
thermore, miRNet is a web-based tool supporting statisti-
cal analysis and functional interpretation miRNA studies
(16,17). Also, it facilitates exploring the results in miRNA–
target interaction networks. To analyse miRNA function in
a more tissue-speci!c manner, miTALOS has been devel-
oped (18,19). Furthermore, tools that analyse miRNA and
gene expression data in an integrated manner are available.
One example of such is MMIA (miRNA and mRNA in-
tegrated analysis) that processes miRNA and gene expres-
sion experiments (20). With a similar application focus, Ta-
Lasso (21) and miRTrail were developed (22). Other more
specialised web servers such as FFLtool are designed for
transcription factor and miRNA feed-forward loop analy-
sis (23).

In general, many methods are based on gene and miRNA
expression data to !nd putative new regulatory edges or in-
tegrate known edges from miRNA target gene association
databases. To test the signi!cance of putative interactions in
a statistical framework, several tools perform miRNA and
gene set enrichment analyses to annotate biological func-
tion. One research goal in our studies was to provide evi-
dence that miRNAs target genes in a systematic manner. To
this end, we released miRPathDB 2.0, indexing thousands
of enriched pathways for known miRNAs and miRNA can-

didates using validated and predicted target genes from the
literature (24). Following up on our observations, we pub-
lished the !rst comprehensive experimental validation of
miRNA target pathway regulation (8).

In 2016, we presented miRTargetLink Human (9), a
tool that hierarchically builds miRNA regulatory networks,
containing validated and predicted target genes. Here, we
present miRTargetLink 2.0, a novel version of our inter-
active tool for systems biology applications in miRNA re-
search by a dynamic presentation of miRNA target gene
and pathway networks. We provide a large set of miRNA
gene associations from published repositories [miRTarBase
(25), mirDIP (26), miRDB (27) and miRATBase (8)] and
extend it by the pathway data from the recent release of
miRPathDB 2.0 (24). Besides new analysis-centric features
that are described in this manuscript, we want to highlight
the new multi-species support, as Mus musculus and Rattus
norvegicus are now available for analysis.

MATERIALS AND METHODS

Data selection and processing

The new version of miRTargetLink supports miRNAs and
targets for Homo sapiens, M. musculus and R. norvegicus.
MiRNA identi!ers and annotation records were obtained
from the latest release of miRBase (v.22.1) (28), and vali-
dated targets were downloaded from miRTarBase (v.8) (25)
and miRATBase (8).

As for predicted targets, top 5% predictions (high and
very high con!dence) from mirDIP (v.4.1) (27) were used
for human whereas we used miRDB (v.6) (27) for mouse
and rat. miRTargetLink also supports target pathways from
miRPathDB 2.0 (24).

Annotations for functional or categorical miRNA sets
were obtained from miEAA 2.0 (29) and from GeneTrail
3 (30) for gene sets. MiEAA sets can be used for all three
species, but target pathways are only available for human
and mouse. Mygene python package (31) was used to trans-
late RefSeq names to gene symbols where required. An
overview on the different tools used throughout this work
is given in Table 1 along with the type, the task we used the
resources for and the respective version.

Web server implementation

The web server was implemented using Django v2.2 in a
docker environment with a PostgreSQL database, celery for
job scheduling and execution and Redis as message broker
backend. The frontend was built using common HTML,
CSS and Javascript libraries, including the Bootstrap frame-
work (v.4) for the styling, dataTables for the network node
and interaction tables, and jQuery and Cytoscape.js (32) to
create the interactive network visualizations. Typing-ahead
suggestions are generated using the autoComplete JS li-
brary.

RESULTS

Data input

We implemented a convenient work"ow for miRTargetLink
2 (Figure 1). We observed that most research questions re-
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Table 1. Overview of in-house and third-party resources included in miRTargetLink 2.0

Database Task Own/third-party Type Version

miRBase miRNA annotation Third-party Database 22.1
miRTarBase miRNA target database Third-party Database 8.0 (2020)
mirDIP miRNA target database Third-party Database 4.1
miRDB miRNA target database Third-party Database 6.0
miRATBase miRNA target database Own Database 1.0
miRPathDB miRNA target pathway database Own Database 2.0
miEAA miRNA set enrichment analysis Own Tool 2.0
GeneTrail Gene set enrichment analysis Own Tool 3.0

Figure 1. Work"ow of miRTargetLink 2.0. The user selects the input
species and the data input option. All information is extracted from incor-
porated databases automatically, and the interaction graph is immediately
generated and visualized. APIs to gene and miRNA set enrichment facil-
itate the interpretation of more complex interaction graphs. Nodes and
edges are further annotated in interactive tables.

lated to miRNAs and genes, respectively, and their inter-
actions can be addressed from a simple yet powerful se-
lection of input types. In the unidirectional mode, the user
can decide from six upload options, i.e. whether to select
a single miRNA, a single gene, a list of either miRNAs
or genes and lastly a prede!ned miRNA set or a gene set,
as for instance, disease-associated miRNAs. In addition, a
bidirectional query (paired miRNA gene lists) can be ini-
tiated. To prevent unintended results that may occur if the
organism is selected automatically (e.g. genes can share the
same name in mouse and human), we also ask the user
to select the organism. From the input data, a compre-
hensive network on miRNA targets and target pathways
is generated. As background data sets, we integrate four

miRNA–target databases (miRTarBase, mirDip, miRDB
and miRATBase) complemented with pathway interactions
from miRPathDB. Altogether, the miRTargetLink knowl-
edge base hosts ∼553 000 entries from miRTarBase, ∼1 519
000 entries from mirDIP, ∼1 173 000 entries from miRDB,
∼300 targets from miRATBase and ∼13 000 entries from
miRPathDB. The detailed distribution of data records per
organism and category such as validated or predicted tar-
gets, or pathways is presented on the miRTargetLink statis-
tics page.

Representation of results

Based on the input and the information in the knowledge
database, the interaction graphs with all edges between
miRNAs and targets, and miRNAs and target pathways are
generated and visualized. Edges between genes and path-
ways have been omitted from the graphs, since those would
introduce more complexity to the graphs without adding
information content for the miRNA-centered application.
The network can be shifted, zoomed and node positions
and colors can be adjusted. To edit the network, the user
can choose from a range of options, e.g. select whether
weak/strong evidence or also predicted targets are shown or
whether pathways should be added. If pathways are avail-
able, then also other miRNAs regulating these pathways can
be revealed. Further, the number of shared targets for each
miRNA can be increased to highlight the key regulators. Fi-
nally, six different layout options for the network are avail-
able. The network can be downloaded as JSON !le or as
image in jpg and png format. Below the network view, in-
teractions are presented as the table where miRNAs, target
evidence and sources are given in detail. In addition, avail-
able node annotations based on biological categories such
as known tissue expression of miRNAs and genes are shown
in a separate view. Both tables can be downloaded in either
xls or csv format and directly copied to the clipboard.

APIs facilitate gene and miRNA set enrichment analysis

Once the miRNA and target gene network has been gener-
ated by miRTargetLink 2, the interpretation of the results
becomes important. For small networks and !eld experts,
this task can often be achieved manually. But especially
for larger networks with several dozens of genes and miR-
NAs, it is frequently not obvious where to focus on. Here,
the pathway information from miRPathDB supports inter-
pretability, but it focuses on miRNA pathways that are an-
notated with experimental evidence. To guide researchers
and to draw their attention to relevant hits, we integrated
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Figure 2. Use case 1––mouse let-7a-5p targetome. (A) For the input option of a single miRNA (mmu-let-7a-5p), the interaction graph is presented. (B)
After increasing the number of required target interactions per gene, only the pathways and miRNAs remain. (C) As the second input, the hormone
receptor binding was selected, and miRNAs targeting this pathway are shown. (D) Interaction graph for mmu-let-7a-5p as browsable table adjacent to the
network representation. The !rst 10 of 129 entries are displayed.

miRNA and gene set enrichment through miEAA 2.0 (29)
and GeneTrail 3 (30) via external APIs. By selecting the rel-
evant enrichment analysis method, these tools are automat-
ically executed using their standard parameters and the ag-
gregated download of result tables is initiated after comple-
tion.

Context dependency

miRNA expression is known to depend on the physiological
or pathophysiological contexts. For example, the age of un-
affected individuals or patients with different diseases can
affect miRNA expression (33). Cholinergic-targeting non-
coding RNAs, miRNAs or lncRNAs can also modulate sex-
speci!c- and age-related acetylcholine signals (34). Espe-
cially in the context of age-related disorders such as Parkin-
son’s disease, miRNAs seem to be differentially expressed in

speci!c age windows (1). Moreover, the tissue or different
body "uids can confound miRNA expression (35), and reg-
ulatory events between miRNAs and target genes seem to
depend on the tissue context (36). As the !rst step to make
this information visible, miRTargetLink 2 contains and dis-
plays available context information where available. Specif-
ically, we added metadata information from miRTarBase
about the experimental setup around which the listed in-
teractions were obtained, e.g. which type of experiment was
used along with the source PubMed ID. Moreover, miRTar-
getLink speci!cally allows to search for age- and sex-related
miRNAs on the unidirectional search. Similarly, users can
spawn a network by searching for biological pathways or
categories from GeneTrail 3. For instance, users can test
systematically for a bias in a current network toward sex-
or age-associated miRNAs using the connected miEAA or
GeneTrail APIs, respectively. Finally, we added a one-click
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Figure 3. Use case 2––aniridia genes and miRNAs. (A) Interactions between downregulated miRNAs (blue nodes) and upregulated genes (green nodes)
with a minimum of three shared targets. (B) The enlarged core part of the interaction network shown in (A). (C) The opposite case upregulated miRNAs
and downregulated genes. (D) The enlarged central part of the interaction graph shown in (C). (E) Top 10 signi!cant miEAA pathways for the network
in panel (C). Following the category name, the raw and adjusted P-value are provided, followed by the expected number of miRNAs by chance and the
actual observed number.
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literature search functionality. Users can initiate a search
for a selected miRNA or gene in the context of age, sex or
function using PubMed.

Use case 1––mouse miRNA let-7a-5p target network

As the !rst use case, we studied the target gene and target
pathway network of mouse miRNA let-7a-5p. This miRNA
has previously been described in M. musculus with vari-
ous functions (37–39). The quick-search functionality high-
lighted 24 target genes, including IL6 and IL13. Addition-
ally, 17 pathways are targeted by this miRNA (Figure 2A).
To examine whether other miRNAs are also targeting these
genes, we increased the number of minimal targets. As a
result, we got a target network that only contains miR-
NAs and the aforementioned pathways (Figure 2B). To dis-
play all miRNAs in mouse targeting the hormone receptor
binding, we applied the third input option presented above,
resulting in a condensed set of 11 miRNAs (Figure 2C).
The total interaction set for mmu-let-7a-5p contains 129 en-
tries that are displayed below the interaction graph (Figure
2D). The results presented in this use case focus on a single
miRNA or a single pathway with an interaction graph of
only a few dozens of nodes and edges, which can be well in-
terpreted manually, not yet requiring gene and miRNA set
enrichment analysis. To further showcase this application,
we next evaluated human aniridia paired miRNA and gene
expression data.

Use case 2––integrated miRNA/gene analysis in human
aniridia

As second use case, we explored miRNA and mRNA ex-
pression patterns that were generated from the same case
and control samples, facilitating paired analysis of the two
RNA classes (40). From this study, we extracted both dys-
regulated genes and miRNAs. We then performed two anal-
yses, where we computed the network of upregulated genes
and downregulated miRNAs and, vice versa, the network of
upregulated miRNAs and downregulated genes. This oppo-
site direction of regulation was selected due to the dominant
biological role of miRNAs repressing the translation of tar-
get mRNAs. In all cases, we limited the input to the top
10 genes and miRNAs. In the !rst scenario, the interaction
graph contained 4609 edges. Even after requiring a mini-
mum shared number of three targets, the graph contains
422 edges (Figure 3A), however, revealing a central compo-
nent and the genes SLC24A3, EFNB2 and LBR with high
node degrees (Figure 3B). The opposite use case still high-
lighted 2474 entries in the initial interaction graph. Here,
228 edges remained in the collapsed network with a mini-
mal number of three shared targets (Figure 3C). The genes
central to the network were SEMA3E, EFCAB5, PRMT6
and several others (Figure 3D). To simplify the analysis of
the complex network, we performed miRNA set enrichment
analysis. The 10 most signi!cant pathways and categories
are provided as results table (Figure 3E). The top hit with
an adjusted P-value of 3 × 10−94 was the gene SEMA3E, ex-
actly validating a statistically signi!cant coverage by multi-
ple miRNAs in the interaction graph, more than one would
expect for a random enrichment. Second most signi!cant

was the Gene Ontology category chemorepellent activity
with an adjusted P-value of 4 × 10−31, followed by neuronal
pathways, cell adhesion and others. This use case demon-
strates how the practical application of miRTargetLink 2
guides researchers to focus on potentially more relevant bi-
ological !ndings.

DISCUSSION AND CONCLUSION

We present a signi!cant update of our web server miR-
TargetLink 2 for the integrative analysis of miRNA, tar-
get gene and target pathway interaction networks. While
the original version was focused on human data, we now
offer support for other highly relevant model organisms.
Altogether, the integrated knowledge base contains over 3
million entries of regulatory events between miRNAs and
genes, and miRNAs and pathways across the three sup-
ported species. By adding the layer of validated pathways to
the network view and providing quick access to frequently
used gene / miRNA set enrichment tools, we lower the
boundaries for potential users from life science to gener-
ate new insights into driving questions in fundamental bi-
ology and biomedicine. Due to the largely increased num-
ber of miRNA–target interactions and to prevent major
performance issues, we were required to completely reim-
plement both the front- and backend of the original web
server.

One current limitation of miRTargetLink is the restric-
tion of its scope to miRNAs. Other small RNA classes are
emerging and should be taken into account. Our tool miR-
Master (41) already includes all previously characterized
noncoding RNA classes. Among those most similar to miR-
NAs, tRNA fragments play a remarkable role. For exam-
ple, tRNA fragments can replace miRNA regulators in dis-
eases, as demonstrated for the cholinergic poststroke im-
mune blockade (42). As such, tRNA fragments will add to a
complete picture of how small RNAs regulate genes. Before
such information is added to available integrative miRNA
tools like miRTargetLink, the development of comprehen-
sive databases containing detailed and experimentally vali-
dated regulatory events of tRNAs is mandatory.

In addition to expanding miRTargetLink to other non-
coding RNA classes in the future, we will continue to add
new features requested by the community. One extension
could be to support uploading of expression or fold-change
scores together with the identi!ers such as to dynamically
modify node and edge strength in the inferred network. This
way, one could rank and select connected components in the
graph according to their importance in a particular research
context.
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Aging is a key risk factor for chronic diseases of the elderly. MicroRNAs regulate post-

transcriptional gene silencing through base-pair binding on their target mRNAs. We identified

nonlinear changes in age-related microRNAs by analyzing whole blood from 1334 healthy

individuals. We observed a larger influence of the age as compared to the sex and provide

evidence for a shift to the 5’ mature form of miRNAs in healthy aging. The addition of 3059

diseased patients uncovered pan-disease and disease-specific alterations in aging profiles.

Disease biomarker sets for all diseases were different between young and old patients.

Computational deconvolution of whole-blood miRNAs into blood cell types suggests that cell

intrinsic gene expression changes may impart greater significance than cell abundance

changes to the whole blood miRNA profile. Altogether, these data provide a foundation for

understanding the relationship between healthy aging and disease, and for the development

of age-specific disease biomarkers.
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Aging is the leading risk factor for cardiovascular disease,
diabetes, dementias including Alzheimer’s disease, and
cancer, together accounting for the majority of debilitat-

ing illnesses worldwide1. Uncovering common therapeutic targets
to prevent or treat these diseases simultaneously could convey
enormous benefits to quality of life. It is therefore essential to
model the cellular processes culminating in these diverse maladies
through an understanding of the molecular changes underlying
healthy and pathological aging2. Accordingly, a variety of mole-
cular studies have been conducted in humans, including whole
genome analysis of long-lived individuals3, transcriptomic ana-
lyses of tissues4, plasma proteomic profiling5, and the exploration
of epigenetic control of aging clocks6. Recent organism-wide
RNA-sequencing data of whole organs and single cells across the
mouse lifespan provide an important and complementary data-
base from which to build models of molecular cascades in
aging7,8.

Functional improvement of aged tissues has been achieved by
an expanding number of techniques, ranging from dietary
restriction9 to senescent cell elimination and partial cellular
reprogramming. This also includes heterochronic parabiosis, in
which an old mouse is exposed to a young circulatory system.
These experiments point to systemic factors in the blood of young
mice that modulate organ function in aged animals10,11. Indeed,
the list of individual plasma proteins with beneficial or detri-
mental effects on different tissues is growing. It is likely, however,
that each plasma protein interacts with complex intracellular
regulatory networks, and that alterations to such networks are a
key component of aging and rejuvenation.

Non-coding ribonucleic acids like microRNAs (miRNAs)
represent essential players governing these molecular cascades, and
they show a highly complex spectrum of biological actions12–14.
MicroRNAs are a family of short single stranded non-coding RNA
molecules that regulate post-transcriptional gene silencing through
base-pair binding on their target mRNAs13, thereby regulating
most if not all cellular and biological processes15. Yet, their
involvement in the aging process and rejuvenation of aged tissues
is often ignored by transcriptomic studies and is thus largely
uncharacterized. A single microRNA targets not only untranslated
regions (UTRs) of numerous genes, but it can also bind multiple
sites within a single UTR16. Similarly, a UTR of a specific gene can
contain target sites for dozens or even hundreds of miRNAs. Since
their discovery, miRNA changes have been reported for almost all
cancers and many non-cancer diseases like Alzheimer’s
disease17,18, multiple sclerosis19, or heart failure20. And although
relatively sparse, several studies have measured aging miRNA
expression in different human and primate tissues21. For example,
Somel and co-workers analyzed miRNA, mRNA, and protein
expression linked to development and aging in the prefrontal
cortex of humans and rhesus macaques over the lifespan22. Like-
wise, changes of miRNA levels in aging human skeletal muscle
have been characterized23, as have miRNA levels in body fluids
such as serum24,25. In whole blood, we previously reported a sig-
nificant number of age-related miRNAs26, and Huan and co-
workers measured a selection of miRNAs by RT-qPCR in whole
blood from over 5000 individuals from the Framingham Heart
Study27. While these initial studies are intriguing, they can be
limited by the use of discrete time points, incomplete lifespan
coverage, limited cohort sizes, and incomplete miRNA panels.

Here, we performed a comprehensive characterization of all
2549 annotated miRNAs (miRBase V21) in 4393 whole blood
samples from both sexes across the lifespan (30–90 years). To
understand the relationship between healthy aging and disease,
we included 1334 healthy controls (HC), 944 patients with
Parkinson’s disease (PD), 607 with heart diseases (HD), 586
with non-tumor lung diseases (NTLD), 517 with lung cancer

(LC), and 405 with other diseases (OD) (Fig. 1a, b; Supple-
mentary Data 1).

Results
miRNA profiles are stronger associated with the age as com-
pared to the sex. We first sought to model healthy aging as a
baseline for understanding disease. As males have shorter life-
spans than females, and each sex suffers a different array of age-
related diseases, we investigated the interplay between age and sex
on blood miRNA profiles. Confirming our previous observation
in a cohort of 109 individuals26, we found that age has a more
pronounced influence than sex. In fact, 1568 miRNAs sig-
nificantly correlated with age, but only 362 correlated with sex
according to Benjamini–Hochberg adjusted p-values of the Wil-
coxon Mann–Whitney test (Fig. 2a, b). While 231 miRNAs
overlapped between these groups, this number was not significant
(two-sided Fisher’s exact test p-value of 0.35; Pearson’s Chi-
squared Test of 0.36), suggesting that, in general, those miRNAs
changing with age are shared by both sexes, and those specific to
one sex do not change with age. In consequence, the Spearman
correlation coefficient (SC) of age-related changes between males
and females was high (SC of 0.884, p < 10−16, Fig. 2c).

We next sorted miRNAs by their correlation with age,
regardless of their significance, and assigned each to one of 5
groups: strongly decreasing with age (cluster 1: 174 miRNAs, SC
<−0.2), moderately decreasing (cluster 2: 382 miRNAs; −0.2 <
SC <−0.1), unaltered (cluster 3: 1451 miRNAs; −0.1 < SC < 0.1),
moderately increasing (cluster 4: 368 miRNAs; 0.1 < SC < 0.2),
and strongly increasing (cluster 5: 174 miRNAs, SC > 0.2)
(Supplementary Data 2). As miRNAs regulate a diverse array of
critical pathways28, we performed microRNA enrichment
analysis and annotation (miEAA) on this sorted list, thereby
calculating a running sum of miRNAs associated with each of
~14,000 biochemical categories and pathways. We revealed a
remarkable disequilibrium between the number of pathways
related to downregulated miRNAs (76 pathways) and upregulated
miRNAs (620 pathways; adjusted p-value < 0.05; Supplementary
Data 3). This is even more striking considering the number of
miRNAs increasing or decreasing did not differ significantly (556
with SC <−0.1; 542 with SC > 0.1), and suggests that miRNAs
increasing with age have a higher functional relevance. Reassur-
ingly, for miRNAs decreasing with age we found “Negative
Correlated with Age” (p= 4 × 10−10) among the most significant
categories (Fig. 2d). A large fraction of the top pathways
regardless of the miRNA direction were enriched for brain
function and neurodegeneration, including “Downregulated in
Alzheimer’s Disease” (p= 10−5), “regulation of synaptic trans-
mission” (p= 0.028), and “APP catabolic processes” (p= 0.032)
(Fig. 2e, Supplementary Fig. 1a–l).

Although such linear correlation analyses can reveal mean-
ingful biological features, the importance of nonlinear aging
changes, such as those found for plasma proteins5 and tissue gene
expression, is becoming increasingly evident. We therefore aimed
to use the high temporal resolution of the dataset to more
thoroughly understand whole blood miRNA dynamics across the
lifespan. We first plotted miRNA trajectories for each of the 5
clusters (Supplementary Fig. 2), confirming many miRNAs
exhibit non-linear patterns. By comparing linear and nonlinear
correlations for each, we uncovered nonlinear changes in 116 of
the 1098 miRNAs altered with age, of which 90 decreased and 26
increased (Fig. 2f, g, Supplementary Data 4). A miEAA analysis
highlighted a significant enrichment of miRNAs following
nonlinear trajectories with aging in basically all human tissues29
(Fig. 2h). This finding stands out considering the high degree of
tissue specificity of miRNAs. We thus speculate that diseases
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affecting these organs might be associated with changes in blood
miRNA profiles.

miRNA arm shifts are associated with aging. A shift in the
expression of the 3’ and 5’ mature arm of miRNAs is observed
between different tissues30 tissues but also in healthy and dis-
eased conditions such as cancer31. We speculated that likewise
aging may affect the arm distribution and searched for respective

arm shift events. Indeed, we observed a correlation of the arm
specific expression in 40 cases (Supplementary Data 5). For 27
miRNAs (67.5%) we observed increasing 5’ mature expression
and decreasing 3’ expression over age while in 13 cases 32.5% of
cases the 3’ form increased and the 5’ form decreased. These
results indicate a generally increasing 5’ mature miRNA
expression with aging. The largest absolute increase of 5’ mature
expression was identified for miR-6786. A miRSwitch analysis
highlighted that usually the 3’ form is dominating in H. sapiens
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with 5’ dominance mostly in plasma samples. For the miRNA
with the most decreasing 5’ expression ratio (miR-4423) we
found dominating 3’ expression mostly in breast milk, the heart,
testis, stem cells and blood cells. Our results thus suggest an
altered ratio of the 3’ to 5’ mature expression ratio that might be
attributed to or effect different tissues.

The association between age and miRNA expression is partially
lost in diseases. Although the cellular and molecular degeneration
of aging often instigates age-related disease, there are nonetheless
elderly individuals who have lived entirely disease-free lives. We
therefore asked what differentiates such healthy aging from aging
resulting in disease. For each disease and healthy controls, we
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computed the Spearman correlation (SC) with age for all 2549
miRNAs (Fig. 3a, Supplementary Data 6). Overall, healthy controls
reached the largest absolute SC, greater than twice that of the pooled
disease cohort, and larger than any individual disease. Using an
Analysis of variance, we found highly significant differences (p <
2.2 × 10−16) and a non-parametric Wilcoxon Mann–Whitney test
confirmed the significant differences of absolute Spearman corre-
lation in healthy versus diseased samples (p < 2.2 × 10−16). In line
with these findings, samples from healthy individuals showed far
more miRNAs with significant age correlations (Fig. 3b), suggesting
that the presence of an age-related disease may disrupt healthy aging
miRNA profiles (Wilcoxon Mann–Whitney test p < 2.2 × 10−16).
For example, lung cancer patients were enriched for a positive
correlation with age, while miRNAs in patients with heart disease
were enriched for negative correlation with age. We then compared
the miRNA trajectories from the 5 clusters of healthy individuals to
the matched clusters in diseased patients (Supplementary Fig. 2),
and similarly, miRNAs from diseased individuals show far weaker
aging patterns. This held true both when each disease was analyzed
separately, or pooled.

To determine the extent to which diseases affect miRNA
abundance compared to healthy controls, we computed the number
of differentially expressed miRNAs between cases and controls
using a sliding window analysis. That is, we first compared diseased
individuals aged 30–39 years to healthy individuals aged 30–39
years, then increased the window in increments of one year (31–40
years, 32–41 years, etc.) to the final window of 70–79 years (Fig. 3c,
Supplementary Fig. 3a, b). As the age distribution varied between
these groups, we excluded any window in which there were fewer
than 20 disease cases and 20 healthy controls. Interestingly, for all
diseases the number of differentially expressed miRNAs was high in
young adults but decreased sharply into middle age, plateauing
around age 60 for lung cancer and 50 for non-tumor lung diseases.
Heart diseases largely plateaued by the early 50s. Parkinson’s disease
(PD), on the other hand, reached a minimum around age 47 before
sharply increasing. With the exception of PD, these data show that
aged healthy and diseased individuals are more similar than
younger healthy and diseased individuals, perhaps suggesting that
aged healthy individuals share some phenotypic characteristics of
heart and lung disease.

We next asked if these diseases shared any miRNA alterations,
and surprisingly we found that those miRNAs most commonly
dysregulated were also those with the largest effect size (Fig. 3d).
These pan-disease miRNAs included miR-191-5p (Fig. 3e), which
targets mRNAs involved in cellular senescence28. We also
observed disease-specific miRNAs like miR-16-5p, which targets
the PI3K-Akt signaling pathway and microRNAs involved in lung

cancer28. In summary, miRNA expression seems to be orche-
strated in healthy aging with a loss of regulation in disease. In
addition to disease-specific miRNAs, there appears to be a group
of pan-disease miRNAs that change in a distinct manner. We
thus asked on the specificity of biomarkers for diseases, especially
in an age dependent context.

Distinct miRNA biomarker sets exist in young and old
patients. The previous analyses of biomarkers in diseases were
largely quantitative, i.e., we computed the number of dysregulated
miRNAs in diseases for young and old patients. Here, we set to
evaluate changes in the miRNA sets for young and old patients in
the diseases. In this context we made use of the dimension
reduction and visualization capabilities of self-organizing maps
(SOMs). First, we considered the effect sizes of miRNAs for the
two most global comparisons, i.e., healthy controls versus diseases
and old (60–79 years) versus young (30–59 years) individuals.
The heat map representation for the healthy versus disease
comparison (Fig. 4a) and for young versus old individuals
(Fig. 4b) highlights distinct patterns for the two comparisons and
indicates that the aging miRNAs are different from the general
disease miRNAs. This analysis however calls for a disease specific
consideration. To this end we computed for each of the four
diseases biomarkers in old and young patients using again the
effect size as performance indicator and the self-organizing map
analysis followed by a hierarchical clustering (Fig. 4c). While the
cluster heat maps identify larger differences between the disease
biomarker sets as compared to young and old biomarkers, also
the sets within the diseases vary greatly (Fig. 4c). In line with the
previous analyses we observe larger effects for all diseases but PD
in young patients (middle row of Fig. 4c). In old patients, the
respective biomarkers are partially lost. Only in few cases new
biomarkers emerge in old patients that are not present in young
patients. As the full annotation of the SOM grid shows, each SOM
cell has an average of 8 cluster members with a standard deviation
of 3.5 miRNAs (Supplementary Data 7). The distribution largely
corresponds to a normal distribution, only four cells (24, 62, 81,
and 82 in Supplementary Data 7) contain more than 15 miRNAs
(mean+ two times the standard deviation).

The previous analyses suggest distinct biomarker sets for young
and old patients in the different diseases. As a consequence,
future biomarker test based on miRNAs may not only be
established for a disease but for a specific age range of patients
with that disease.

Given the results from this and the previous section we
computed for each miRNA in each disease and each age window

Fig. 2 miRNAs dependency on age and gender. a Smoothed scatter plot of the two-tailed age and gender association p-value for 2549 miRNAs. P-values
for the sex are computed using Wilcoxon Mann–Whitney test and for the Spearman Correlation via the asymptotic t approximation. The p-values are
Benjamini–Hochberg adjusted. b Boxplot of the age and gender p-value from a for 2549 miRNAs. The box spans the 25% and 75% quantile, the solid
horizontal line represents the median and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from
the box. c Correlation of miRNAs with age in males and females. Gray dots: not significant; orange and blue dots: miRNAs significantly correlated with age
only in males or females; green dots: miRNAs significantly correlated with age in males and females. d Results of the miRNA enrichment analysis. Colored
curves in the background represent random permutations of miRNAs. The cluster membership is projected next to the order of miRNAs. The category
“negative correlated with age” is highly significant and confirms our data in general. Also, the category “downregulated in AD” is enriched with miRNAs
decreasing over age. e Regulation of synaptic transmission is among the categories being enriched in miRNAs going up with age. Moreover, APP catabolic
processes is another category being enriched in miRNAs going up with age. f Linear Pearson correlation versus non-linear distance correlation for the
association of age to miRNAs. Orange dots have a high non-linear correlation that is not explained by linear correlation and are decreasing with age, green
dots have a high non-linear correlation that is not explained by linear correlation and are increasing with. The orange dotted line represents a smoothed
spline and the four numbers in gray circles represent the position of miRNAs where examples are provided in g. g Examples of correlation for miRNAs with
age. (1) gray: no correlation; (2) orange dominantly positive linear correlation; (3) blue dominantly negative linear correlation; (4) non-linear correlation.
Each solid line is a smoothing spline. h Tissue enrichment for the miRNAs that are correlated with age in a non-linear fashion. The human model has all
organs highlighted in gray that are significantly enriched. The table on the right lists the organs with corresponding p-values. P-values have been computed
using the hypergeometric distribution and were adjusted for multiple testing using the Benjamini–Hochberg approach.
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the effect size (Supplementary Data 8). The respective supple-
mentary data provides detailed insights in how specific certain
miRNAs are for specific diseases and age ranges and can support
ongoing biomarker studies significantly.

All results obtained so far argue for a strong immunological
component of the miRNAs, and as a consequence of miRNA
target networks. Since our experimental system profiles whole

blood miRNAs, we set out to determine the cellular origin by
computational deconvolution.

White blood cells are the major repository of miRNAs in whole
blood. Circulating immune cells have been implicated in aging
and a variety of age-related diseases, and one of the most
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common diagnostic tests for disease is blood cell profiling. Since
miRNAs are known to be enriched in different blood cell types32,
we performed computational deconvolution of the whole blood
miRNA profile, thereby grouping miRNAs by their predicted cell
type(s) of origin (Fig. 5a). A total of 196 miRNAs were attributed
to one specific cell type, including 127 miRNAs arising from
monocytes. Most others derive from three or more types. For
example, the largest group of 139 miRNAs stems from a com-
bination of white and red blood cells (WBCs, RBCs), exosomes,
and serum. And the third largest group of 119 is restricted to six
types of WBCs. We also observed 31 miRNAs specific for NK
cells, 19 specific for T-helper cells, 11 specific for B cells, and
8 specific for cytotoxic T cells. Overall, for those miRNAs for
which we could assign a prospective origin, we found WBCs as
the main contributor, even though they represent a substantially
smaller volume of whole blood relative to RBCs and serum
(Fig. 5b).

We then applied this analysis to those miRNAs changing with
age, and found that those increasing appear to largely originate
from B cells, monocytes, NK cells, cytotoxic T cells, and serum
(Fig. 5c). In contrast, miRNAs decreasing with age are those
enriched in neutrophils, T helper cells, and RBCs. These data
indicate shifts in aging miRNA trajectories of specific blood cell
types (Supplementary Fig. 4). Interestingly, for the above cell
types, known age-related abundance changes largely follow
opposite trends: lymphocytes generally decrease with age while
neutrophils increase with age33. This suggests that cell-intrinsic
gene expression changes age may significantly contribute to the
observed whole blood miRNA profiles.

miRNAs associated with healthy aging regulate the expression
of plasma proteins. An increasing body of evidence points to
functional roles of systemic plasma proteins in aging and disease5.
These proteins may represent downstream targets of blood-borne
miRNAs. We thus compared our data to a recent dataset of
plasma proteins associated with age in healthy individuals5.
Because miRNAs regulate genes/proteins in a complex network,
miRNAs increasing with age do not necessarily lead to down-
regulation of all target genes/proteins, and vice versa. Accord-
ingly, we observed only one tendency: miRNAs decreasing with
age (cluster 1 and 2) showed a slight enrichment for regulating
proteins increasing with age (Fig. 6a). Considering such com-
plexity, we employed a network-based analysis. Using all pair-
wise interactions of miRNAs with plasma proteins, we first
computed a regulatory network (Fig. 6b). From this, we extracted
a core network containing the top 5% downregulated miRNAs

and the top 5% upregulated proteins, which was then further
refined by including only experimentally validated miRNA/target
genes mined from the literature34, as well as miRNA/target pairs
with an absolute Spearman correlation of at least 0.6. This
stringent core network consists of 36 miRNAs targeting 26 genes
(proteins) and splits into two larger and six smaller connected
components (Fig. 6c). The densest part of the core network
contains the axon guidance related semaphorin 3E (SEMA3E)
and serine and arginine rich splicing factor 7 (SRSF7), which were
targeted by 8 miRNAs including miR-6812-3p (Fig. 6d, Supple-
mentary Fig. 5, Supplementary Fig. 6). Intriguingly, there exist no
studies of this miRNA, but it targets SEMA3E in an age depen-
dent manner with a Spearman correlation of −0.89.

Finally, we investigated the possible cell type of origin of these
core miRNAs with deconvolution, which showed enrichment for
neutrophils, monocytes, and B cells (Fig. 6e). We then used
single-cell PBMC transcriptomic data to determine if SEMA3A or
SRSF7 were expressed in these same cell types. While SEMA3E
was not detectable, we did observe SRSF7 expression widely
across cell types, including neutrophils, monocytes, and B cells
(Fig. 6f, g). SRSF7 plays a role in alternative RNA processing and
mRNA export, but has no known role in aging or neurodegen-
eration. Further research will be required to determine if miRNAs
like miR-6812-3p do indeed target SRSF7 in these specific cell
types, and to uncover if this process contributes to the global
decline of transcription observed with age.

Discussion
Our analysis of blood derived microRNAs provides insights into
changes in microRNA abundance dependent on age, sex, and
disease. While age clearly contributes to expression changes, sex
has a more modest effect. In fact, most miRNAs show a similar
behavior over the lifespan in males and females. This is generally
in-line with recent results in transcriptomic mouse tissue aging7,8.
Generally, our results compare well to other studies of miRNAs in
aging27, especially regarding miRNAs increasing with age, for
which we observe high concordance. There are, however, miR-
NAs decreasing with age reported in the previous study for which
we did not find evidence. The most extreme examples are miR-
30d-5p and miR-505-5p, both increasing with age in our study in
the healthy individuals. Nonetheless, given different cohorts with
different ethnicity, varying age range, and distinct profiling
technologies, we observed remarkable concordance between the
studies.

Here, we observed that diseases globally disturb the normal
aging progression of blood-borne miRNAs. While linear

Fig. 3 Diseases miRNAs are affected by age effects. a Boxplot of the Spearman correlation coefficient for each miRNA to all samples, healthy individuals,
and patients. Group sizes: nHC= 1334, nPD= 944, nHD= 607, nNTLD, nLC= 517, nOD= 405. The box spans the 25% and 75% quantile, the solid horizontal
line represents the median and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.
b Boxplot of p-values for the Spearman correlation coefficient of each miRNA to all samples, healthy individuals, and patients from a. Group sizes: nHC=
1334, nPD= 944, nHD= 607, nNTLD, nLC= 517, nOD= 405. The box spans the 25% and 75% quantile, the solid horizontal line represents the median and
the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. The p-values have been
computed via the asymptotic t approximation. c Number of deregulated miRNAs in disease groups depending on different ages in a sliding window
analysis. Each solid line is a smoothing spline (green–heart diseases; red–non tumor lung diseases; gray–lung cancer; blue–Parkinson’s disease). The areas
represent the 95% confidence intervals. For all disease groups, the number of deregulated miRNAs decreases with age while it increases for Parkinson’s
Disease. d Smoothed scatterplot showing the average effect size per miRNA dependent on the number of diseases where the miRNA is associated with. In
the lower right corner (the y-axis value of 1) the specific miRNAs with high effect sizes can be found. In the upper right corner, miRNAs with high effect
sizes independent of the disease are located. The two numbers represent the location of the examples provided in e and f. e Example of a miRNA that is
downregulated in heart diseases of younger patients, upregulated in older Parkinson’s patients and not deregulated in lung diseases. Each solid line is a
smoothing spline (green–heart diseases; red–non tumor lung diseases; gray–lung cancer; blue–Parkinson’s disease). The areas represent the 95%
confidence intervals. f Example of a miRNA from the lower right part of Fig. 3d. The miRNA is significant upregulated in lung cancer independent of age but
basically not associated with other diseases. Color codes of panels c, e, and f are matched. Each solid line is a smoothing spline (green–heart diseases;
red–non tumor lung diseases; gray–lung cancer; blue–Parkinson’s disease). The areas represent the 95% confidence intervals.
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Fig. 4 Disease specificity of miRNA biomarkers. a Heat map representation of the SOM analysis as a 10 × 10 grid with 100 entries. Each cell contains at
least one miRNA and up to 20 miRNAs. The full annotation of miRNAs to cells are provided in Supplementary Data 7). The cells are colored by the effect
size of miRNAs for the comparison in old versus young. Red cells contain miRNAs with effect sizes >0.5 that are upregulated and in blue miRNAs that are
downregulated with effect sizes <−0.5. b Same heat map as in a but colored for the difference in young versus old. The scale for the effect size has been
kept the same as a. Thus fewer yellow/red, as well as blue spots indicate overall lower effect sizes. c Clustering of the SOM results in biomarkers for the
four diseases and in all biomarkers independently of age, biomarkers for young patients and biomarker for old patients. The dendrogram has been
computed from hierarchical clustering (complete linkage on the Euclidean distance). In all cases the biomarkers cluster by disease and not by age and the
old biomarker set is closest to the all biomarker set while the young biomarker set has larger distances. Overall, NTLD and LCa markers are closest to each
other, second closest are heart biomarkers and most different PD biomarkers. The SOM cells clearly highlight differences between biomarkers for diseases
in young and old patients.
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modeling insufficiently explained changes with aging, distance
correlation analysis identified 90 miRNAs that were decreasing
and 26 that were increasing with age in a non-linear manner.
These effects are, however, frequently not disease specific. If
disease specific effects occur, they appear to establish themselves
in given time windows throughout live. For example, lung and
heart diseases show the largest effect sizes in the 4th to 5th decade

of life, and Parkinson’s disease showed the largest effect size in the
6th to 7th decade. All known biological factors including age, sex,
and disease status together only explained part of the overall data
variance. Thus, unknown biological variables and technical fac-
tors also contribute to miRNA abundance.

Our results underline not only the importance of age as a con-
founder in biomarker studies, but they show that age needs to be

a

c

e

f

g

d

b

m
iR

N
A

 d
ec

re
as

in
g 

pr
ot

ei
ns

 d
ec

re
as

in
g

4.5 5.0 5.5

Celltype_encod
B-cells

SRSF7

CD4+ T-cells
CD8+ T-cells

3.42

3.44

3.46

3.48

3.50

hsa−miR−6812−3p

S
E

M
A

3E

30 40 50 60 70

age

h sa-mip5-041-R

AFGEV

h sa-mi701-R

h sa-mip5-61-R

h sa-mia991-Rp3-

1KPAM

h sa-mip5-39-R

h sa-mip5-71-R

h sa-mip5-591-R

h sa-mip5-b51-R

h sa-mia51-Rp5-

h sa-mia02-Rp5-

h sa-mip5-b02-R

h sa-mip5-89-R

CCL5

h sa-mip5-13-R

D K K 1

h sa-leta7-p5-

EWSR1

h sa-mip3-101-R

H K 2

h sa-mip3-241-R

ROCK2

h sa-letp5-f7-

SOCS3

CCL7

h sa-mip3-823-R

SFRP1

BDNF

h sa-mia72-Rp3-

GRB2

h sa-mia91-Rp3-

CXCL1 0

1TATS

CHGA

h sa-mip5-621-R

MRC1

h sa-mip5-1074-R

ST3 GAL1

IPFT

CRK

h sa-mip5-441-R

h sa-mi316-R

SSDA

CSK

HNRNPDL

MCFD2

ITGAV

h sa-mip5-381-R

ARFGAP2

h sa-mia301-Rp3-

HNRNPA1B2

GABARAPL1

ARL3

G G A 3

CAPN2

GRPEL1

CANT1

5STMADA

h sa-mip5-69-R

TOLLIP

ARHGAP1

h sa-mip5-23-R

DNAJ21B

h sa-mip5-b62-R

TAXPB13

RNASE1

MYBPC1

TGFBI

DIABLO

EIF1B2

1PTSG

SRSF6

RBM3

ARFIP2

DCTPP1

SFHTM

DCBLD2

GREM2

IGFLR1

FOPA

A N X A 1

1FMALS

NPSA

RNASE6

1TPT

RUALP

RMDN1

PEX1 4

EIF5

h sa-mip3-9221-R

KDM

IPG

h sa-mip3-8221-R

h sa-mip5-b031-R

PTPN1 1

h sa-mip3-b601-R

h sa-mip5-b691-R

TXNDC5

h sa-mia473-Rp5-

HMGB2

h sa-mip5-941-R

DIB

h sa-mip3-b72-R

2TMHE

RBM2 3

RPS7

CTSA

h sa-mia81-Rp5-

TRA2 B

SYT1 1

h sa-lete7-p5-

TNFRSF1 A

RPS4 X

h sa-mip3-0976-R

h sa-mip5-424-R

h sa-letp3-g7-

SMC3

h sa-mi8964-R

h sa-mi0234-R

CROT

h sa-mip3-d915-R

h sa-mip3-545-R

h sa-mip3-939-R
h sa-mip3-3163-R

h sa-mip3-0786-R

APAV

h sa-mip5-285-R

h sa-mi0563-R

PRKCB

h sa-mip5-b641-R

SA0011 2

SRSF7

PPPB3R1

h sa-mip5-9964-R

GCG

h sa-mip3-3321-R

h sa-mip5-4163-R

h sa-mi5281-R

3GSP

h sa-mip3-0105-R

CCD08C

h sa-mip3-4855-R

h sa-mi7281-R

G4BALT7

h sa-mip3-9464-R

h sa-mi049-R

h sa-mip3-8664-R
h sa-mip5-394-R

h sa-mip3-0074-R

HAVCR1

h sa-mi4844-R

1NGMH

HAVCR2

h sa-mip3-684-R

1NTN

PDIA5

h sa-mip5-0676-R

NBL1

h sa-mip3-8293-R

h sa-mia031-Rp5-

h sa-mic32-R

h sa-mi894-R

h sa-mip3-2976-R

h sa-mip3-4986-R

h sa-mip5-6915-R

h sa-mi6074-R

h sa-mip5-992-R

EIF1 AD

h sa-mia103-Rp3-

h sa-mip3-454-R

CHRDL1

GFRA1

BFGDP

ILAR5

h sa-mi9606-R

h sa-mip3-5976-R

h sa-mip3-3186-R

YPP

h sa-mip3-0464-R

7GTA

h sa-mi0054-R

h sa-letp5-g7-

h sa-mia2263-Rp3-

SCUBE1

SSR1

h sa-mip5-5274-R

h sa-mip3-2476-R

h sa-mi8134-R

h sa-mip5-b81-R

MAPK1 3

h sa-mia091-Rp5-

h sa-mia845-Rsp5-

h sa-mip5-351-R

CBR1

h sa-mip3-0521-R

h sa-mip5-631-R

FCGB3R

h sa-mi3924-R

h sa-mi1154-R

CXCL1 1

FCGA2R

h sa-mip3-881-R

EDA2 R

h sa-mi712-R

h sa-mip3-8886-R

h sa-mip3-4031-R

h sa-mip3-1476-R

h sa-mip3-0986-R

h sa-mi3513-R

h sa-mic203-Rp5-

h sa-mip3-b81-R

h sa-mip5-2-b055-R

h sa-mia055-Rp5-

h sa-mip3-9886-R

h sa-mia02-Rp3-

LRPAP1

h sa-mip3-89-R

h sa-letp3-1-f7-

h sa-letp3-b7-

h sa-mip3-1986-R

h sa-mi4797-R

KIAA0 0 4 0

h sa-mip3-7586-R

h sa-mip3-5586-R

h sa-mic298-Rp3-

h sa-mip3-5156-R

h sa-mip3-7664-R

SEMA3 E

h sa-mip3-8774-R

CCL1 6

AFGDP

h sa-mip3-767-R

h sa-mia103-Rp5-

LILRB2

h sa-mip3-2386-R

h sa-mip3-1376-R

h sa-mia51-Rp3-

h sa-mip3-2564-R

h sa-mi7621-R

STC1

h sa-mip3-b9676-R

h sa-mip3-5486-R

h sa-mip3-5686-R

h sa-mip3-7786-R

h sa-mip3-9186-R

TREM1

WISP1

h sa-mip3-6112-R

h sa-mip5-0813-R

CSAFN

ITPPIRL1

h sa-mip5-0913-R

ITGA1

h sa-mi8824-R

ARRDC3

h sa-mip3-8321-R

TBCA

h sa-mip3-6915-R

h sa-mip5-3244-R

h sa-mip3-2186-R

ITIH5

h sa-mip3-8486-R

h sa-mip3-71-R

TARIP

h sa-mip3-4321-R

h sa-mip5-1755-R

h sa-mip3-8586-R

h sa-mip3-7221-R

2MOYM

h sa-mi9524-R

h sa-mip5-9074-R

h sa-mip3-6776-R

h sa-mip3-4976-R

h sa-mi946-R

THSD7 A

FSTL3

FAM3 D

h sa-mip3-9474-R

h sa-mi3134-R

2XTPN

h sa-mip3-7776-R

h sa-mip5-8374-R

3LSYPD

GDF1 5

h sa-mi1821-R

h sa-mip3-441-R

LTBP4

h sa-mip3-b33-R

2PLPA

h sa-mip3-363-R

h sa-mip3-7964-R

h sa-mip3-7056-R

h sa-mi3708-R

h sa-mip3-739-R

h sa-mip5-8321-R

SHPB32

h sa-mi8724-R

h sa-mia845-Rp3-o

h sa-mip5-426-R

h sa-mip3-8276-R

h sa-mip3-0676-R

9TDUN

h sa-mi9824-R

h sa-mip3-0086-R

h sa-mip5-89-R

CCL5

HNRNPDL

h sa-mip3-241-R

MCFD2

ITGAV

CANT1

TFPI

ADAMTS5

h sa-mip5-941-R

BID

h sa-mip3-b72-R

HNRNPA2B1

h sa-mip5-424-R

GABARAPL1
h sa-mip3-3163-R

h sa-mip3-9464-R
HAVCR1

h sa-mi4844-R

PDIA5

h sa-mic32-R

h sa-mip5-0676-R

CHRDL1

h sa-mip5-6915-R

SCUBE1

h sa-mip5-5274-R

h sa-mip3-2476-R

h sa-mip3-0521-R

CBR1

EDA2R

PPP1R3B

h sa-mia055-Rp5-

h sa-mip3-9886-R

h sa-mic203-Rp5-

h sa-mip3-7664-R

SEMA3E h sa-mip3-4031-R

SRSF7

h sa-mip3-1376-R

h sa-mip3-0464-R

NFASC

h sa-mip3-8321-R

h sa-mip3-0105-R

PPY

TBCA

h sa-mip3-71-R

h sa-mip3-8486-R

h sa-mip3-8586-R

h sa-mip3-7221-R

h sa-mip3-89-RMYOM2

h sa-letp3-1-f7-

h sa-letp3-b7-

h sa-mi3134-R

NTN1

DCTPP1

h sa-mip3-0786-RPTPN11

h sa-mip5-4163-R

h sa-mip3-5686-R

h sa-mip3-0086-R

h sa-mip3-2186-R

0

5

10

15

20

Neutrophil

Monocyte

B cell

RBC

serum exosomes

NK cell

Cytotoxic T
cell

T helper 
cell

all miRNAs
miRNAs in network

31% (679)

20% (446)

26% (573)

22% (490)

E
xp

re
ss

io
n

(lo
g 

co
un

ts
)

0

CD8+
T-cells

CD4+
T-cells

DC

Monocytes

Monocytes
HSC

NK cells
NA

SRSF7

Eosinophiles

Eosinophiles
DC

3
2
1
0

Erythrocytes

Erythrocytes

NK cells

B cells

HSC

2

4

6

UMAP 1

U
M

A
P

 2

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19665-1

10 NATURE COMMUNICATIONS | ��������(2020)�11:5958� | https://doi.org/10.1038/s41467-020-19665-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


incorporated into the definition of disease biomarkers. The age
dependency of miRNA biomarkers may be even more prominent
for acute diseases that are accompanied by drastic molecular chan-
ges. Furthermore, the influence of a disease on healthy aging miRNA
patterns suggests that it is conceivable to define “negative bio-
markers”, i.e., biomarkers that reflect the degree of disturbance of a
given time-dependent pattern typically found in healthy individuals.

miRNAs comprise complex gene regulatory networks, and it is
essential to identify the miRNA-targets that are regulated by a
given miRNA network. However, this is already a demanding task
for static networks, and it becomes even more challenging when
considering how entire networks change with age. We attempted
to overcome this complexity and identify a core miRNA network
by implementing several stringent criteria: (i) the inclusion of
miRNA-gene pairs only if experimental evidence exists, (ii) lim-
iting the analysis to the top 5% of miRNAs decreasing with age,
and (iii) the top 5% of proteins increasing with age and with
pairwise absolute correlation of at least 0.6. This stringent para-
meter set identified a core network of 36 miRNAs and 26 proteins
organized in two larger hubs with eight miRNAs targeting the
axon guidance related semaphorin 3E (SEMA3E) and serine and
arginine rich splicing factor 7 (SRSF7). Semaphorines play crucial
roles during the development of the nervous system, especially in
the hippocampal formation35. SEMA3E suppresses endothelial
cell proliferation and angiogenic capacity, and in complex with
PlexinD1 it inhibits recruitment of pericytes in endothelial cells36.
Since we did not detect SEMA3E mRNA expression in single
blood cell data we also explored other sources such as the
Genotype-Tissue Expression (GTEx) project37. But also in the
GTEx data no expression for the gene was reported in bulk
sequencing data. It thus remains unclear how or if these miRNAs
directly or indirectly impact SEMA3E protein levels in plasma. In
this context, low abundant fractions of the blood such as exo-
somes might play a role. However, SRSF7, which belongs to a
protein family linking alternative RNA processing to mRNA
export38, is expressed across a variety of circulating immune cells.
This is intriguing as no role in aging or neurodegeneration
is known.

Often, different technologies are available for high-throughput
studies. To characterize the complete miRNome, usually micro-
arrays or high-throughput sequencing are used. The choice of the
best technology depends both, on technical factors and on the
underlying biological question to be addressed. We decided to use
microarray technology mostly because of the high dynamic range
of blood miRNAs. In whole blood, the majority of reads
(90–95%) are matching to few (2–5) miRNAs39. While generally a
depletion is feasible40, it bears the risk to alter the profile of other
miRNAs especially since it has to be tailored for the respective
sequencing technology. To use microarrays has however also
disadvantages. MicroRNAs are often modified and build so-called
isomiRs and basically all human miRNAs express different iso-
forms41. Likewise, data from the Rigoutsos lab demonstrate the
importance and presence of isomiRs42. To address the age specific
expression of isomiRs, single nucleotide resolution is required.
Improved library preparation and sequencing methods together

with increasing read numbers per sample will likely allow for an
in-depth characterization of isomiRs in challenging specimens
such as whole blood.

Another aspect for respective studies is the underlying speci-
men type. A literature search reveals that for human miRNA
biomarker studies mostly plasma, serum, and blood cells (either
PBMCs or whole blood) are considered with a more recent trend
towards exosomes. Since we are interested in the connection of
miRNA expression and the immune system by analyzing multiple
diseases43 we measured blood cells. Different aspects can be used
to provide an even more comprehensive systemic picture of
miRNAs and aging. First, the cell free part of the blood is also
correlated to miRNA aging44,45. One important aspect are vesi-
cles. Cellular senescence for example contributes to age-
dependent changes in circulating extracellular vesicle cargo46.
Moreover, the differential loading of vesicles is correlated to
different human diseases47–49. Likewise, for the cellular part,
resolution can be increased. For example, the miRNomes could be
investigated per blood cell type50. One challenge is in that the
purification of the different cell types by different isolation
techniques potentially alters the miRNA content. Positive and
negative selection, as well as Fluorescence-activated cell sorting
(FACS) have a highly significant influence on the physiological
miRNA content32. Here, single cell miRNA profiling might help
to improve our understanding of age-related miRNA patterns in
the future. At best, single cell miRNA data and cell free miRNA
profiles are combined in the future using advancing sequencing
technologies. Finally, such data might further our understanding
of miRNAs in aging, diseases and their interplay with organ
patterns that are only partially understood29,51.

Over recent years, numerous studies have emerged highlighting
systemic molecular aging factors detected with different omics
technologies, including epigenetics, transcriptomics, and pro-
teomics. Our study specifically extends our knowledge of blood
and plasma-based miRNA patterns in aging. In our study we
observe non-linear miRNA aging patterns. Moreover, the high
degree of age-related biomarker patterns challenges the concept
of age independent miRNA biomarker profiles, calling for dif-
ferent statistical models in aged and younger individuals. The
changes with aging are not only attributed to one mature form,
we also provide detailed insights into changes of the usage of the
3’ and 5’ mature arms in aging.

Furthering our understanding of age-related miRNA changes
in healthy individuals and diseased patients will not only increase
our understanding of age-related blood-borne gene regulation,
but also improve miRNA-based biomarker development, and aid
the development of RNA-based therapies.

Methods
Cohort. In this study, we processed data from ntotal= 4433 whole blood samples.
We excluded 40 individuals (0.9%) because of insufficient data quality or missing
clinical or demographic information. The final cohort consists thus of 4393 sam-
ples. These include unaffected controls (nHC= 1,334), Parkinson’s Disease (nPD=
944), heart diseases (nHD= 607), non-tumor lung diseases (nNTLD= 586), lung
cancer (nLC= 517), and other diseases (nOD= 405). The diseases can be split
further in sub-classes. For lung cancer, we included non-small cell, as well as small

Fig. 6 Age related miRNAs are correlated to age related proteins. a Correlation of miRNAs to proteins. miRNAs and proteins are sorted by increasing
correlation with age. Thin lines are miRNA/gene interactions between top/bottom 10% of miRNAs and proteins. Numbers represent actual count of edges.
b, c Core network. Proteins (larger nodes) are targeted by miRNAs (smaller nodes). Edge width correspond to the correlation. Blue nodes represent
increase with age, red nodes decrease with age. The outer circles of the protein nodes indicate an expected an influence of the miRNAs leading to an
increase with age. Panel c represents a more stringent version of the network from panel b. d One representative example of an edge from the network in b,
c: SEMA3E and miR-6812-3p. Each dot represents all individuals in a time interval of 10 years, shifted between 30 and 70 years. SEMA3E is high expressed
in older individuals while miR-6812-3p is low expressed (dark red points in the upper right corner). In young individuals the pattern is opposite (tale points
in the lower right corner). e Blood cell compound distribution. miRNAs from the core network come from neutrophils, monocytes and B cells. f Violin plot of
expression of SRSF7 in human blood cells. g UMAP embedding of human blood cells colored by expression of SRSF7.
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cell lung cancer. For non-small cell lung cancer, we can further divide them in
adenocarcinoma and squamous cell carcinoma. These split in low grade and high-
grade tumors according to the TNM grading. The lung cancer cohort has been
previously described in more detail52. The heart diseases include coronary artery
disease, dilated cardiomyopathies and acute coronary syndrome. The non-tumor
lung diseases include mostly chronic obstructive pulmonary diseases, the other
diseases include sepsis, liver cirrhosis, breast cancer, endometriosis, and melanoma
patients. We aggregate the diseases to an organ level (heart, brain and lung). Only
for the lung we split the cohort in cancer and non-cancer samples. This aggregation
level has been selected in a manner to be able to distinguish between healthy and
diseased aging by having sufficient cohort sizes. Detailed diagnoses for each sample
are provided in Supplementary Data 1. All participants gave informed consent. The
local ethics committee of Saarland University approved the study. The study has
been conducted in compliance with all relevant ethical regulations regarding the
use of human study participants.

RNA extraction and measurement of miRNAs. RNA from 4433 whole blood
samples in PAXgeneTubes (BD Biosciences, Franklin Lakes, NJ, USA) was isolated
using the PAXgene Blood miRNA Kit (Qiagen, Hilden, Germany) using manu-
facturers recommendation. The extractions were done manually or semi-
automatically on the Qiacube robot. The RNA was quantified using Nanodrop
(Thermo Fisher Scientific, Waltham, MA, USA) and the RNA integrity was
checked using a bioanalyzer with the RNA Nano Kit (Agilent Technologies, Santa
Clara, CA, USA). The genome-wide expression profiles of human mature miRNAs
was determined with Human miRNA microarrays and the miRNA Complete
Labeling and Hyb Kit (Agilent Technologies). The labeled RNA was hybridized to
the arrays for 20 h at 55 °C with 20 rpm rotation. The microarrays were subse-
quently washed twice, dried and scanned with 3 µm resolution in double-path
mode (Agilent Technologies). The raw data were extracted using the manufacturers
Feature Extraction software (Agilent Technologies). Details on the RNA extraction
and microarray measurement procedure have been also previously described53,54.
In difference to our previous studies we tried to further minimize any variability. In
this study, we thus only included genome wide miRNA profiles that have been
measured using the Agilent miRBase V21 biochip.

Blood cell deconvolution. To analyze the miRNA blood cell composition, we
made use of our previous study that presented a high-resolution representation of
human miRNAs in different blood compounds50. From the data, we asked which
miRNAs are present in at least one sample of the respective blood compound and
generated an upset plot from the data. In some detail, we included serum,
microvesicles, red blood cells, CD15, CD19, CD8, CD56, CD4, and CD14 cells.

Correlation of age and sex to miRNAs. To find associations between the sex and
the miRNA expression we applied 2-tailed non-parametric Wilcoxon
Mann–Whitney tests. To compute linear correlation values between the age and
miRNA expression values we computed the Pearson Correlation Coefficient (PC)
and Spearman Correlation (SC). Further, to detect potentially non-linear relations
between single miRNAs and the age we also computed the Distance Correlation
(DI) between age and sex. To relate the DI and the SC, we computed a smoothed
spline with eight degrees of freedom and computed the minimal Euclidean distance
of each data point from the spline. Points with a distance of 0.02 (the threshold of
0.02 has been computed by a histogram-based approach) were highlighted and are
considered to follow a non-linear trend with aging. In the further analyses, we
applied only the rank-based Spearman Correlation (SC) instead of the Pearson
Correlation that assumes linear effects in data. Beyond linear and non-linear
correlations between single miRNAs and the age we also performed different
standard dimension reduction technologies, including principal component ana-
lysis, t-stochastic neighborhood embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP). To calculate the fraction of variance
attributed to the age and sex we applied principal variant component analysis
(PVCA), originally developed to discover batch effects in microarray experiments.

Analysis of arm shift events. Recently, we developed the miRSwitch database and
analysis tool to identify and characterize human arm shift and arm switch events30.
To detect associations between aging and differential arm usage we considered the
following criteria. First, the percentage of the 5’ mature arm given the total
expression of 3’ and 5’ arm must correlate with an absolute Spearman Correlation
Coefficient > 0.2. Second, the correlation must reach a p-value of at least 0.05. The
p-value is computed by the R cor.test function via the asymptotic t approximation.
Third, the difference between the minimal and maximal percentage of 5’ arm
expression for any samples must exceed 0.2 (20%). As fourth and last condition,
the 3’ and 5’ mature form must have a different sign, i.e., the 5’ has to increase with
age and the 3’ to decrease or vice versa. The miRNAs that were discovered by this
procedure where then checked by miRSwitch.

Cluster analysis and miRNA enrichment analysis. We split the miRNAs in 5
groups, strongly decreasing with age (SC <−0.2), decreasing with age (SC between
−0.2 and −0.1), not changing with age (SC between −0.1 and 0.1), miRNAs
increasing with age (SC > 0.1 and <0.2) and miRNAs increasing strongly with age

(SC > 0.2). For each cluster, we computed smoothed splines for each miRNA and
the cluster average allowing three degrees of freedom. Further, we computed for
disjoint age windows of five years whether miRNAs are significantly higher or
lower in cases versus controls at an alpha level of 0.05 and colored them, respec-
tively, in red and green. To find categories that are significantly enriched either for
miRNAs increasing or decreasing over age we performed a miRNA enrichment
analysis using the miEAA tool55, which has been recently updated56. Thereby, for
over 14,000 categories running sum statistics are computed. The sorted list of
miRNAs (increasing correlation with age) is processed from left to right. Whenever
a miRNA is located in a category the running sum is increased otherwise it is
decreased. The running sum is then plotted along with 100 random permutation
tests. Notably, the p-value is not computed from the permutations but exactly by
using dynamic programming. A category showing a perfect “V” like shape would
contain miRNAs that are increasing over age while a category following a pyramid
like shape contains miRNAs that are decreasing over age.

Sliding window analysis based on Cohen’s d. Since p-values rely on the effect
size and the cohort size different group sizes bias the results frequently. In our
sliding window analysis, we observed substantial differences, i.e., cases and controls
are not equally distributed across the age range. We thus performed all analyses
using Cohen’s d as effect size. All effects with an absolute value of above 0.5 were
considered relevant. Negative effect sizes thereby characterize downregulation and
positive effect sizes upregulation. We computed effect sizes for each disease in
windows of 10 years, shifted by one year, starting from 30 and ending at 70 years
(i.e., the last window is from 70 to 79 years). Only when at least 20 cases and
control measurements were available effect sizes were computed. The calculated
effect sizes were then summarized and a smoothed spline with eight degrees of
freedom were computed.

Self-organizing map (SOM) for finding disease patterns. One task in high
dimensional data analysis is to group features and to generate lower dimensional
representation of high dimensional data. Self-organizing maps (SOMs) are one type
of artificial neural networks (ANNs), relying on competitive learning. As described
by Kohonen already in 198257, in a network of adaptive elements “receiving signals
from a primary event space, the signal representations are automatically mapped
onto a set of output responses in such a way that the responses acquire the same
topological order as that of the primary events”. From input data, a typically two-
dimensional discretized representation of the input space is derived that can be
visualized by heat maps. To compute self-organizing maps for patients and con-
trols in an age dependent manner we computed the effect size for each disease
group over all patients, for young patient (30–60 years) and for old patients (60–80
years) separately. Only 801 highest expressed miRNAs were included in this
analysis. For the biomarker sets, a 10 × 10 hexagonal som grid was used to train a
network. The data set was presented 10,000 times to the network. The learning rate
was set to be between 0.05 and 0.01, meaning that the learning rate linearly
decreased from 0.05 to 0.01 over the 10,000 iterations. To cluster the SOM cells, we
performed hierarchical clustering. In more detail, we applied the R hclust function
to carry out agglomerative complete linkage clustering. As distance measure we
computed the Euclidean distance using the R dist function.

Plasma proteomics measurements. We used data from a recent study investi-
gating the effect of aging on the human plasma proteome. In this study, 2925
proteins were measured using the SomaScan assay in 4264 subjects from the
INTERVAL and LonGenity cohorts5. The SomaScan platform is based on modified
single-stranded DNA aptamers binding to specific protein targets. Assay details
were previously described. Relative Fluorescence Units (RFUs) were log10-
transformed and we used a 10 years sliding window to estimate proteins trajec-
tories throughout lifespan.

Target analysis and target network analysis. The main biological function of
miRNAs is to bind the 3’ UTR of genes and to degrade the target mRNAs. In
reality, miRNAs and genes thereby follow a n:m relation, i.e., one miRNA can
regulate many genes and one gene is regulated by many miRNAs. Further, there
exist different confidence levels to assume a pair-wise regulation of a miRNA to a
target gene. Most relations are only predicted by one or several computational
analyses. Another set is composed of miRNA gene pairs with weak evidence, e.g.,
from microarray experiments. The most reliable category consists of miRNA gene
pairs with strong evidence, e.g., validated by reporter assays. We only considered
this most reliable set of miRNA gene interactions and extracted the set from the
miRTarBase database34,58. Our analysis highlighted that around 20% of miRNAs
are increasing with age, 20% are decreasing and 60% are not age dependent. We
assumed the same distribution for human plasma proteins changing with age and
asked how many miRNAs going down with age regulate genes/proteins going up
and down with age, respectively. Similarly, we asked how many miRNAs going up
with age regulate genes/proteins going up and down with the age.

To construct a reliable core network, we combined five stringed filtering
approaches and only considered those connections between miRNAs and genes
that fulfill all filtering criteria. In the least stringent version the filters include (a) a
strong experimental evidence of a target interaction from the literature; (b) one of
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the most decreasing miRNAs (5%) regulates (c) one of the most upregulated
proteins (5%) over aging. To avoid a bias towards genes/proteins that are targeted
only by one or few miRNAs, potentially also fragmenting the network, we (d) only
considered proteins that are regulated by more than eight miRNAs. Next, we
analyzed the correlation between miRNAs and genes/proteins in the network over
40 discrete age ranges from 30 to 70 years. Each age range thereby spans 10 years.
For the 40 data points corresponding to 40 age windows we computed the
Spearman correlation between miRNA expression in this age window and protein
expression. As last criterion we added (e) only edges that have an absolute
Spearman correlation of at least 0.6. This network has been visualized with the
igraph library. Nodes were colored with respect to changes in age and edges
weights relative to the absolute Spearman correlation.

Single cell analysis. We used data that have been made available by 10× genomics
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_10k_v3). The profiles were subsequently processed with scater59 and scran60
with default parameters, cell type annotations with singleR61.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw microarray measurements are freely available for any scientific purpose upon
request as Excel Table and Tab Delimited Text file (110 MB) to data@ccb.uni-saarland.
de. The use of the data for commercial purposes is prohibited.

Code availability
The data analysis has been performed using the R software for statistical computation (R
3.3.2 GUI 1.68 Mavericks build (7288)) using freely available packages. The following
packages were used: ROC, RColorBrewer, preprocessCore, tsne, effsize, UpSetR,
kohonen, fmsb, igraph. All packages are available from Bioconductor or CRAN.
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5. Conclusion

The dynamics of miRNA actions and the complexity of miRNA-mediated gene 

regulations in physiological and pathological conditions requires high throughput 

technologies to study their structures, pathways, expression profiles etc. In addition, 

high spatial and temporal resolutions will help to understand their intercellular and 

mode of actions in more comprehensive way. In the PhD studies, we demonstrated new 

technologies such as CoolMPS can be potentially used in a more accurate, cheaper way 

to enable large scale miRNA associated omics study. And miRNATargetlink also paves 

good way for miRNA targets and pathway studies, to enable biomarkers findings. 

In following studies, large scale miRNA sequencing with lower costs, and combine with 

other omics data cohort will be possible with CoolMPS. It is continuous effort to also 

explore single cell miRNA studies with more powerful math models to gain even more 

clearer complex miRNA regulatory networks.  

Further, miRNAs as good biomarkers can be potentially applied from dry blood spot, it 

is exciting to develop a sample to answer solution, to enable home sampling, non-

invasive, cost effective and most importantly get high sensitivity and specificity for 

Alzheimer early diagnosis or at least started monitoring the miRNA profiles changes 

from earlier ages to enable better interventions and aging care.   

This will be potential translational value from this PhD studies, which brings new 

projects of interests for miRNA at single cell level and the tissue level. At the same time, 

we must recognize the limitation of the work. The sncRNA data can be measured at 

scale only from complex mixtures but not at the single cell level. The next step of 

research that is mandatory to understand complex pathological pathways on a 

molecular level includes the parallel measurement of sncRNAs, gene expression, 

chromatin state, DNA methylation and other features from the same cells. Once 

available, respective protocols and data will pose however tremendous challenges to 

data scientist.   
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