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Abstract Blood-borne small non-coding (sncRNAs) are among the prominent candidates for

blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker

signatures. These have to be validated in larger cohorts and evaluated by adequate statistical learn-

ing approaches. Previously, we published high-throughput sequencing based microRNA (miRNA)

signatures in Alzheimer’s disease (AD) patients in the United States (US) and Germany. Here, we

determined abundance levels of 21 known circulating miRNAs in 465 individuals encompassing AD

patients and controls by RT-qPCR. We computed models to assess the relation between miRNA

expression and phenotypes, gender, age, or disease severity (Mini-Mental State Examination;

MMSE). Of the 21 miRNAs, expression levels of 20 miRNAs were consistently de-regulated in

the US and German cohorts. 18 miRNAs were significantly correlated with neurodegeneration

(Benjamini-Hochberg adjusted P < 0.05) with highest significance for miR-532-5p (Benjamini-

Hochberg adjusted P = 4.8 � 10�30). Machine learning models reached an area under the curve

(AUC) value of 87.6% in differentiating AD patients from controls. Further, ten miRNAs were sig-

nificantly correlated with MMSE, in particular miR-26a/26b-5p (adjusted P = 0.0002). Interest-

ingly, the miRNAs with lower abundance in AD were enriched in monocytes and T-helper cells,

while those up-regulated in AD were enriched in serum, exosomes, cytotoxic t-cells, and B-cells.

Our study represents the next important step in translational research for a miRNA-based AD test.
Introduction

Alzheimer’s disease (AD) represents one of the most demand-
ing challenges in healthcare [1,2]. In light of demographic
changes and failures in drug development [3], early detection
of the disease offers itself as one of the most promising

approaches to improve patients’ outcome in the mid- to long
term. Especially minimally invasive molecular markers seem
to have a significant potential to facilitate a diagnosis of AD,

even in early stages.
The importance of minimally invasive molecular markers

for AD is reflected by over 3000 original articles and reviews

related to AD diagnosis from blood, serum, or plasma samples
published and indexed in PubMed. Among the promising
approaches are plasma proteomic markers measured by mass
spectrometry [4], metabolic patterns [5], gene expression pro-

files [6], DNA methylation [7], and small non-coding RNAs
(sncRNAs) [8]. However, cohort sizes of such studies are often
limited and larger validation cohorts frequently did not always

match the original results [9]. One of the major challenges is
the complexity of signatures that is often required to reach
high specificity and sensitivity.

For AD, many miRNA-related studies from tissue [10],
blood [11], serum [12], exosomes, [13] or cerebrospinal fluid
(CSF) [12] have been performed. In one of the most compre-

hensive reviews [14], Hu and co-workers investigated 236
papers and reviewed the de-regulated miRNA abundance in
different parts of AD patients. In another comprehensive
recent review, Nagaraj and co-workers show that out of 137

miRNAs found to exhibit altered expression in AD blood,
36 have been replicated in at least one independent study.
Moreover, out of 166 miRNAs being differentially abundant

in AD CSF, 13 have been repeatedly found [15].
In previous studies, we performed deep sequencing to mea-
sure blood-borne AD miRNA signatures in a cohort of 54 AD

patients and 22 controls from the United States (USA) that
have been partially validated on a larger cohort of 202 samples
by RT-qPCR [8]. In a second study using the same technique,
we aimed to validate the results in a patient cohort collected in

Germany (GER) that included 49 AD cases, 55 controls and
110 disease controls [16]. The results of both studies were lar-
gely consistent with a correlation between both studies of 0.93

(95% confidence interval 0.89–0.96; P < 10�16).
Although deep-sequencing applications are increasingly

introduced into clinical care, they are mostly performed for

the analysis of DNA or RNAs coding for genes. Small non-
coding RNA profiling, however, is mostly achieved by
microarray and RT-qPCR based approaches. In the present

study, we provide further evidence that blood-borne miRNA
signatures can be measured by standard RT-qPCR, becoming
valuable tools for the minimally-invasive detection of AD.
From our above-mentioned studies and the literature, we

selected a set of 21 miRNAs and determined the abundance
of these miRNAs in the blood of 465 individuals. The 465 indi-
viduals consist of 169 individuals from our initial study (36%)

[8], 107 individuals from the second study (23%) [16] as well as
189 newly collected individuals (41%). An overview and sum-
mary on the German and US samples is provided in Fig-

ure 1A–C, the full details for each individual samples,
including age gender, diagnosis, Mini-Mental State Examina-
tion (MMSE), and the miRNA measurements, are provided
in Table S1.

With the present study we pursue the five main goals to
demonstrate that (1) miRNAs from NGS studies can be well
reproduced by RT-qPCR experiments; (2) given a reasonable

heterogeneity in samples still reproducible measurements in



Figure 1 Distribution of age, gender, diseases, and MMSE

A. Histogram for the age distribution in the different cohorts. The diagram shows for each cohort/disease the age distribution. Only the

OND group from the US shows a deviation towards younger patients, while all other groups have similar age ranges. B.Histogram for the

MMSE values. HCs and MCI patients show significantly larger MMSE values as compared to AD and OND patients. C. Metrics. For

each of the cohorts and diseases, the number of patients in the US and Germany, the mean and SD for age and MMSE as well as the

gender distribution are provided. GER, Germany; MMSE, Mini-Mental State Examination; AD, Alzheimer’s disease; OND, other

neurological diseases; HC, healthy control; MCI, mild cognitive impairment.
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larger cohorts are possible; (3) miRNAs are also correlated to
clinical features such as the MMSE value; (4) statistical learn-

ing approaches with as few as possible features lead to accurate
diagnostic results; (5) the miRNAs likely have functionality in
AD via targeting genes.

Results

Two endogenous control RNAs show concordant results

Because the selection of the most appropriate endogenous con-

trol RNAs for RT-qPCR experiments can be challenging, we
previously evaluated systematically whether different endoge-
nous controls lead to differences in miRNA measurements

[17]. Especially, most miRNAs seem to be affected by develop-
ment stages, tissues [18], or diseases [19], limiting their ability
as controls and calling for endogenous controls other than

miRNAs. Our results suggested that differences can be
observed that are however moderate. In the present study we
nonetheless evaluated and compared the performance of two
commonly used endogenous controls RNU48 and RNU6.

Both endogenous controls have been measured in duplicates.
In comparing the results, we verified the generally high concor-
dance between the two endogenous controls with a Pearson

correlation of 0.854 (95% CI: 0.828–0.877; P < 10�16). We
thus report the result in the current study based on our stan-
dard endogenous control RNU48.

In the same direction we also investigated the general stabil-
ity of RT-qPCR based miRNA measurement. One control
sample has been measured 12 times over the study for all miR-

NAs. The median Pearson correlation coefficient (PCC)
exceeded 0.99 as the heatmap and the box plot in Figure S1
show.
miRNAs are highly significantly correlatedwith neurodegeneration

In total, 465 participants have been analyzed by RT-qPCR. The

abundance levels of 18 of the 21 miRNAs were significantly dif-
ferent between the four groups considered, i.e., AD, mild cogni-
tive impairment (MCI), other neurological diseases (OND), and

healthy controls (HC). With an Benjamini-Hochberg (BH)
adjusted P value of 4.8 � 10�30, the most significant miRNA
was miR-532-5p, which showed markedly decreased levels in
AD patients, and slightly decreased levels in patients with

OND and MCI (Figure 2A). The abundance levels of miR-17-
3p, the miRNA with the second lowest P value
(P = 8.8 � 10�28), showed a similar pattern as miR-532-5p

(PCC > 0.9). The overall correlation matrix between the 21
miRNAs showed three large clusters of miRNAs with similar
expression in the following referred to as Clusters A, B, and C

(Figure 2B). The third and fourth most significant miRNAs in
ANOVA, i.e., miR-103a-3p and miR-107 (P = 2.4 � 10�18

and P = 3.6 � 10�15, respectively), came from Cluster C, like

miR-532-5p, and miR-17-3p. MiR-1468-5p (Cluster A,
P = 6.2 � 10�12; Figure 2C) shows an opposite expression pat-
tern, i.e. a higher abundance inADpatients as compared toHC.
The boxplots in Figure 2A/2C also underline that the deregula-

tion of these miRNAs is strongest in AD compared to the HC.
There is, however, a deregulation in MCI or OND, but to a les-
ser extent, such that the altered abundance is at least partially

specific for AD. This result is consistent with our previous work
based on high-throughput sequencing.



Figure 2 miRNAs are specifically dysregulated in the four cohorts and are partially co-expressed

A. Expression of miR-532-3p. The boxes display the 2nd and 3rd quartile of expression values for miR-532-3p in HC, patients with AD,

MCI, or OND. The range of expression values in the four groups is indicated by the error bars with outliers represented by unfilled dots.

Median expression of miR-532-3p is indicated as thick black line. B. Correlation of miRNA expression. This correlation matrix

graphically represents the pair-wise correlation coefficient for all miRNAs tested. According to the color scale on the right side of the

matrix, positive and negative correlations are indicated in shades of blue and red, respectively. PCC is given for each pair-wise correlation.

Three clusters of miRNAs with highly similar expression patterns are indicated as Clusters A, B, and C on the left side. C. Expression of

miR-1468-5p. The boxes display the 2nd and 3rd quartile of expression values for miR-1468-5p in HC, patients with AD, MCI, or OND.

The range of expression values in the four groups is indicated by the error bars with outliers represented by unfilled dots. Median

expression of miR-1468-5p is indicated as thick black line. PCC, Pearson correlation coefficient.
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For a more detailed understanding of the miRNAs and
their correlation to AD and other factors, we next assessed
whether the abundance levels were correlated to age or gender,
or, in case of AD and MCI with the MMSE results (Table 1).

As Table 1 highlights, none of the miRNAs was associated
with gender and five miRNAs were weakly associated with
age of patients. Following adjustment for multiple testing, 14

miRNAs showed a significant differential expression in AD
patients compared to controls (i.e., HC, MCI, and OND com-
bined). The above mentioned miR-532-5p and miR-17-3p were

again the most significant markers for AD. Furthermore, ten
miRNAs were significantly correlated with the MMSE value.
Interestingly, all three miRNAs of Cluster B (Figure 1B),
i.e., miR-26a, 26b-5p, and let-7f-5p, showed the highest signif-

icance for the correlation to MMSE (P< 0.005). Since neither
all miRNAs nor the MMSE values were normally distributed
we repeated the analyses with non-parametric and ranked

based Spearman correlation coefficient (SCC), overall leading
to comparable results (see Table S2).

Besides the comparison of healthy controls to AD we also

asked whether MCI patients can be separated from AD
patients using miRNAs. Indeed, eleven miRNAs had signifi-
cant differential expression in MCI versus AD following

adjustment for multiple testing: miR-17-3p (P = 10�12; down
in AD), miR-532-5p (P = 8 � 10�10; down in AD), miR-
103a-3p (P = 10�8; down in AD), miR-107 (P= 4 � 10�7;
down in AD), let-7d-3p (P = 9 � 10�7; up in AD), let-7f-5p
(P= 3 � 10�5; down in AD), miR-345-5p (P = 0.0002; down

in AD), miR-26a-5p (P = 0.002; down in AD), miR-26b-5p
(P= 0.009; down in AD), miR-1468-5p (P = 0.02; up in
AD), and miR-139-5p (P = 0.03; up in AD).

miRNA profiles from the US and German cohort show consistent

results

It is essential to understand whether biomarkers can be con-
cordantly determined in different cohorts. Although a direct
comparison of ethnic groups was not in the scope of our anal-

ysis we nonetheless asked whether miRNA profiles for one dis-
ease measured on two different continents are concordant to
each other. We thus compared the profiles measured from
GER and USA cohorts. As the GER cohort was about twice

as large as the USA cohort and P values depend on the num-
ber of individuals in each cohort, a comparison based only on
P values is potentially biased. Therefore, we computed the fold

changes (on a logarithmic scale) between AD and controls
(Figure 3A). In this plot miRNAs in the upper right quadrant
are down-regulated and miRNAs in the lower left quadrant



Figure 3 Differentially-expressed miRNAs are concordantly expressed in the German and the US cohorts and belong to specific blood

compounds

A. Fold change in the USA cohort compared to the GER cohort. The X- and Y-axes represent the fold change between AD and HC on a

log2 scale for the USA and GER patient cohorts, respectively. Each miRNA is represented by one dot. The dashed orange line is the

segregation between up- and down-regulation. miRNAs in the upper right or lower left quadrant are concordantly up- or downregulated

in AD compared to HC in both cohorts, respectively. The solid red line is a linear regression fit and the shaded area is the 95% confidence

interval of that fit. B. Radar chart showing the blood compound distribution. The plot shows the relative abundance of up-regulated,

down-regulated, and all miRNAs in different blood compounds. Since the relative abundance is provided, it is more appropriate to

compare the different groups within one specific compound rather than comparing different compounds to each other.

Table 1 Raw and adjusted P values of miRNAs for age, gender, AD, and MMSE

Note: P values for gender and AD were calculated based on t test; P values for age and MMSE were calculated based on Pearson’s

product moment correlation coefficient. P values were adjusted by the Benjamini-Hochberg procedure. Adjusted P values <0.05 are

indicted in orange and those <0.005 are put in bold with blue background. AD, Alzheimer’s disease; MMSE, Mini-Mental State

Examination.
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are up-regulated in AD compared to controls concordantly in
both cohorts. Of 21 miRNAs, only miR-4482-3p was down-

regulated in the GER cohort, but up-regulated in the USA
cohort. The differences in abundance levels of this miRNA
in AD compared to controls were, however, not significant,

neither in the GER nor in the USA cohort, nor in the
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combined analysis. Thus, miR-4482-3p likely represents a sin-
gle false positive marker from the initial deep-sequencing
based miRNA discovery study. In contrast, the results for

the remaining 20 miRNAs were concordant between the
USA and the GER cohort. Furthermore, eleven of these miR-
NAs were nominally significant in both cohorts, when analyz-

ing the USA cohort and the GER cohort separately, and
remained significant in the combined analysis. These signifi-
cant miRNAs include miR-103a-3p, miR-107, miR-1285-5p,

miR-139-5p, miR-1468-5p, miR-17-3p, miR-28-3p, miR-361-
5p, miR-5006-3p, miR-5010-3p, and miR-532-5p.

Up- and down-regulated miRNAs are expressed in different blood

compounds

We asked whether the miRNAs that are up- and down-
regulated are expressed to the same amount in different blood

cell types, serum or exosomes. To this end we made use of a
public miRNA blood cell type atlas [20]. For the up- and
down-regulated miRNAs we then compared the average

expression in the different compounds and compared them
to the background distribution of all human miRNAs (Fig-
ure 3B). Interestingly, we observed a highly specific pattern.

miRNAs up-regulated in AD were expressed mostly in serum,
exosomes, cytotoxic t-cells, and b-cells while those that were
down-regulated in AD were expressed in monocytes and t-
helper cells. These results suggest a complex regulatory pattern

of miRNAs in the different blood cell compounds which would
have been likely not observed if only a specific blood cell type
or serum would have been investigated.

Machine learning facilitates accurate diagnosis of AD

To obtain more accurate diagnostic results, molecular markers

can be considered as ‘‘weak learners” that can be combined by
machine learning approaches. For our present data set, we
explored common statistical and deep learning approaches
A AD vs. HC

Figure 4 miRNA classifiers show a high diagnostic performance to de

Diagnostic performance of the miRNA classifiers. A. ROC AUC for th

diagnosis of AD patients compared to all controls combined (HC, MCI

replicates and folds of the 5 � 10-fold cross-validation models, and the

AUC obtained over all replicates and folds is displayed for each classifi

under the curve.
including support vector machines, decision trees, neural net-

works and gradient boosted trees and others using five

repeated runs of a ten-fold cross validation. While the perfor-

mance of all approaches was similar (data not shown), the best

results were obtained by gradient boosted trees. Compared to

other classifiers, gradient boosted trees have the additional

advantage that missing values do not have to be imputed. In

the classification, two scenarios were modeled: First, the diag-

nosis of AD patients with unaffected controls (HC) as back-

ground group, and second, the diagnosis of AD patients

with all controls, i.e., HC, OND, and MCI combined, as back-

ground group. In the first and apparently less complex sce-

nario the gradient boosted tree model reached an area under

the curve (AUC) of 87.6% (Figure 4A). For the second and

more complex case, an AUC of 83.5% was reached (Fig-

ure 4B). A further advantage of the gradient boosted tree mod-

els is that sensitivity and specificity can be well balanced and

traded-off. Depending on whether a diagnosis trimmed for

sensitivity or for specificity is required e.g., in screening tests,

as confirmatory tests or tests for enrollment for clinical studies,

a sensitive or a specific model can be chosen.

Feature importance values for each miRNA based on the

relative gain obtained via their splits were extracted from both

models using the method provided by LightGBM (Table S3)

According to this metric, miR-17-3p had the highest impor-

tance value in both models, followed by miR-5010-3p. For

the model comparing AD to all controls, the next most impor-

tant miRNAs were let-7d-3p, miR-26b-5p, and miR-28-3p.

For the model comparing to unaffected controls, miR-361-

5p, let-7d-3p, and miR-532-5p were the next most important

features. Interestingly, let-7d-3p and miR-26b-5p were not sig-

nificantly associated with AD on their own, suggesting that

their discriminative power might come from the combination

with other miRNAs or their association with different stages

of the disease. For example, miR-26b-5p was recently reported

to be likely deregulated early in AD, even before the appear-

ance of clinical symptoms [21].
B AD vs. HC + OND + MCI

tect AD

e diagnosis of AD patients compared to HC. B. ROC AUC for the

, and OND). The black line indicates the average ROC values of all

gray area represents the resulting standard deviation. The average

cation scenario. ROC, receiver operator characteristics; AUC, area
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Figure 5 AD miRNAs regulate distinct pathways and form a dense regulatory core network

A. Heatmap of the miRPathDB results. The heatmap presents the negative decade logarithm of miRNAs and target pathways, and the

color represents the significance values. B. Overview of miRNAs in significant categories. For the three significant miEAA categories we

highlight the miRNAs participating in the respective categories. C. miRNA target network from miRTargetLink. From miRTargetLink

we extracted the target network of the miRNAs and generated a representation in R using the igraph library. Each node is a miRNA/gene

and an edge means that the miRNA targets that gene. As an example of an enrichment of target genes, the genes on the Notch pathway are

shown on the right side of the network.
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miRNAs are enriched in specific functional categories

To get insights into the targeting of the dysregulated miRNAs,

we performed different miRNA target analyses. First, we indi-
vidually searched for each miRNA those pathways that are
enriched with target genes of that miRNA. The result is pre-

sented as heat map in Figure 5A. Most significant pathways
were computed for miR-34a-5p miR-26a-5p followed by
miR-107. Among the pathways, many transcription regulated
categories have been observed. This result is however to be

expected since the main biological function of miRNAs is to
regulate the gene expression.

To get more insights, we next performed a miRNA Enrich-

ment analysis [22]. Following adjustment for multiple testing,
we identified three categories to be significantly enriched
including ‘‘Dys-regulation in AD” (P = 4.8 � 10�8), ‘‘Up-

regulation in AD” (P = 0.00018), and ‘‘Age” (P = 0.02).
Two of three categories were directly related to AD. Also this
is an expected result for miRNAs that were known to be asso-
ciated with AD. In addition, these miRNAs are negatively cor-

related with age. Although this was a weak correlation, it still
suggests that the abundances of these miRNAs are lower in
older patients. Figure 5B presents for each miRNA in the sig-

nature on which categories it has been observed. Performing
an enrichment analysis for each of the three miRNAs clusters
indicated in Figure 2B, we found cluster A to be especially
enriched with miRNAs that are ‘‘up-regulated in AD”

(P = 4.9 � 10�6) while for cluster B the only significant cate-

gory was ‘‘down-regulated in AD” (P = 0.04).
In a third analysis we analyzed all target genes of the miR-

NAs that had strong evidence in the miRTarBase and were

extracted from miRTargetLink. This analysis highlighted that
for most miRNAs in our signature, target genes that have been
experimentally validated are known. The target network

shown in Figure 5C highlighted a dense structure. This net-
work was enriched for genes associated with AD including
ABCA1, DAPK1, IGF1R, and VEGFA according to the
national institute of aging (NIA). Likewise, ‘‘DNA damage

response” represented by CCND1, CCNE1, CCNE2, CDK6,
MYC, RAD51, and RB1 was over represented. Moreover,
the genes in that network were also enriched for the notch sig-

naling pathway.

Discussion

In the current study we present results of our ongoing efforts
to develop a diagnostic test for AD patients based on circulat-
ing miRNA profiles extracted from blood cells.
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As Figure 1 and Table S1 highlight, the samples were lar-
gely homogenous with respect to the age and gender distribu-
tion. With respect to other characteristics the cohort was

however heterogenous (e.g., the origin of the samples from
two continents, different diagnostic procedures to identify
the patients, potentially different treatment regimens, or a

spectrum of patients with higher and lower MMSE values).
This heterogeneity helps us to understand whether the de-
regulation in miRNA patterns between AD patients and con-

trols is of general nature and helps to assess whether e.g., miR-
NAs are associated with the MMSE state.

The current outcomes are consistent with our previous
studies in the US and Germany on smaller cohorts. In contrast

to the previous studies relying on deep sequencing, we here
applied RT-qPCR as molecular profiling technique that can
be more easily driven towards application in clinical care. In

the context of the known variability and the bias introduced
by sample integrity and sample treatment [23–25] in deep
sequencing data, RT-qPCR offers a promising alternative for

routine application. But also for RT-qPCR experiments, there
is a debate whether RNA samples with low integrity, i.e., low
RIN values, compromise miRNA expression data [26,27]. In

our study, we also measured RIN as quality criterion for
RNA integrity of the samples. The markers that we validated
in this study seem to play partially an important role in differ-
ent diseases. As an example, our most significant marker miR-

532-5p is not only correlated and functionally associated to
cancer [28–30]. The miRNA and its target network is also asso-
ciated to sporadic amyotrophic lateral sclerosis [31]. Further,

the miR-532-5p has also been discovered in exosomes of mul-
tiple sclerosis patients [32] and in exosomes of patients with the
geriatric frailty syndrome [33]. Also, our analyses indicate a

very essential role of exosome derived miRNAs.
The results of the two cohorts from the US and from Ger-

many were highly concordant. As to be expected by the selec-

tion of AD-associated miRNAs for this study, the miRNAs
and the target genes of the miRNAs were both significantly
associated with the development of AD. Our test that is highly
reproducible can be applied with a model based on specificity,

sensitivity or trimmed for overall performance. The quality of
the results is indicated by an AUC of 87.6% for the compar-
ison between AD and unaffected controls, and an AUC of

83.5% for a comparison between AD and a combined group
of unaffected controls, MCI patients and patients with
OND. It is known that complex statistical learning approaches

can lead to overfitting, especially considering the curse of
dimensionality [34] and the fact that usually many more fea-
tures (p) are measured as compared to the number of patients
(n), the p�n problem. In our study we however measured

p = 21 markers and n= 465 individuals. Further, we even
select small subsets of these markers for our models and per-
form comprehensive re-sampling to prevent potential overfit-

ting. Although the de-regulation of miRNAs was generally
concordant between the GER and the USA cohort, miRNAs
have shown differences in the expression level in the two

cohorts. This might be due to technical reasons such as ship-
ment, other batch effects or biological differences. Despite this
fact, the statistical learning approach succeeded to separate

AD and controls in the GER and the USA cohort. In sum,
the performance of our diagnostic solution compares well to
other recently-developed tests, such as the plasma amyloid
marker introduced by Nakamura and co-workers [4]. While
already such single ‘‘omics” tests have a large potential, the
targeted combination of few representatives from different
‘‘omics” classes can add even more diagnostic information,

supporting clinicians in detecting AD patients in time. One
challenge of respective studies is that the clinical diagnosis
may be imperfect. The MCI patients that are an important sec-

ond control group besides the unaffected controls may have
already early forms of AD that are not yet detected with the
current diagnostic means.

A pathway based analysis of miRNAs and target genes
indicated a functional role of the miRNAs. This is further sup-
ported by a different blood compound distribution of those
miRNAs that are up- and down-regulated in AD. Respective

pathway analyses have however always considered with cau-
tion, especially when small sets of miRNAs are considered.
Although the results of the analysis seem to be reasonable, a

potential bias is hard to be excluded. e.g., we picked already
miRNAs known from literature to be associated with AD.
An enrichment of AD related miRNAs itself is thus an

expected result. Similarly, also the target gene analyses might
be biased for miRNAs and target genes that are in the focus
of many research groups.

As for other omics types, confounders including age and
gender potentially influence also the results of miRNA biomar-
ker studies [35]. To minimize the influence of such con-
founders, our cohorts largely show similar age and gender

distribution (Table 1). In addition, we investigated the influ-
ence of the age and gender on the miRNA profiles. Except
for a very modest influence of age, we found no evidence for

an influence of these confounders on the miRNA pattern.
Notably, miRNAs that are down-regulated in AD were par-
tially expected to be lower expressed with increasing age in a

normal population. Among the many different candidates
for minimally-invasive and potentially early stage tests for
AD, our study indicates that circulating miRNAs likely in

combination with other blood-born omics profiles will con-
tribute to stable tests applicable to specific diagnostic questions
with regard to this highly complex disease.

Materials and methods

Overview of the study

In the current study we included patients from the US [8] and

Germany [16] that were partially collected within the longitu-
dinal Tübinger Erhebung von Risikofaktoren zur Erkennung
von Neurodegeneration (TREND) study. From the former
studies we included those individuals, where a sufficient

amount of high-quality RNA was left for analysis. In detail,
169 individuals from our initial study (36%) [8], 107 individu-
als from the second study (23%) [16], as well as 189 newly col-

lected individuals (41%) were included in the study. The
studies were approved by the institutional review boards of
Charité – Universitätsmedizin Berlin (EA1/182/10), or the eth-

ical committee of the Medical Faculty of the University of
Tuebingen (Nr. 90/2009BO2). All subjects gave written
informed consent. Besides AD patients and HC, patients with
OND such as Parkinson’s disease (PD), schizophrenia or bipo-

lar disorder were included and grouped together, termed
OND. Further, patients with MCI were included to evaluate
the specificity of the miRNA markers for AD. For each of
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the four groups and separately for the USA and GER cohorts,
total number, age, gender distribution, and MMSE value are
presented in Table 1. Moreover, from one individual, 12 tech-

nical replicates were measured continuously during the project
as process control.

miRNA marker set selection

From our two previous studies [8,16] we selected the top miR-
NAs that were concordant between the two studies, and also

checked for evidence that the miRNAs are associated with
AD in literature. A final set of 21 miRNAs was selected. These
are listed in Supplemental Table 4 where additional selection

criteria are provided. In more detail, 17 miRNAs were signif-
icantly associated with AD in our first study, 14 miRNAs were
significant in our second study. miR-34a-5p was not detected
in our previous studies by NGS but in a study by Cosin-

Tomas [36]. Further, this miRNA is one of our main targets
regulating calcium signaling, NFKappaB pathway and T-cell
killing and is down-regulated significantly in aging [37,38].

miR-151-3p is one of the most stable miRNAs in our studies
as well as miR-486-5p, which is a red blood cell miRNA that
serves as positive control [20].

RNA extraction and quality control

Total RNA from PAX-Gene Blood Tubes (Catalog No.
762165, BD Biosciences, Franklin Lakes, NJ) was isolated

using the Qiacube robot with the PAXgene Blood miRNA
Kit (Catalog No. 763134, Qiagen, Hilden, Germany) accord-
ing to manufacturer’s instructions. In the tubes, 2.5 ml blood

are collected, typically yielding around 1 mg total RNA.
RNA quantity and quality were assessed using Nanodrop
(Thermo Fisher Scientific) and RNA Nano 6000 Bioanalyzer

Kit (Catalog No. 5067-1511, Agilent Technologies, Santa
Clara, CA). Mean RNA integrity number (RIN) value of the
RNA samples was 7.5 (STDEV 1.4).

RT-qPCR

Quantification of miRNAs was performed using miScript PCR
system and custom miRNA PCR arrays (all reagents from

Qiagen, Hilden, Germany). Custom miRNA PCR arrays were
designed in 96-well plates to measure the expression of 21
human miRNAs and RNU48 as well as RNU6 as two endoge-

nous controls in duplicates. Two process controls (miR-TC for
RT efficiency, PPC for PCR efficiency) were included as single
probes. A total of 100 ng total RNA was used as input for

reverse transcription reaction using miScriptRT-II kit accord-
ing to manufacturer’s recommendations in 20 ml total volume
(Catalog No. 218161). Subsequently, 1 ng cDNA was used

per PCR reaction. PCR reactions with a total volume of
20 ml were setup automatically using the miScript SYBR Green
PCR system (Catalog No. 218076) in a Qiagility pipetting
robot (Qiagen, Hilden, Germany) according to manufacturer’s

instructions. Data from samples that failed the quality criteria
for the process controls was excluded, leaving expression data
from 465 samples available for analysis. For process control

over the course of the project, eleven technical replicates of
one cDNA sample were measured throughout the course of
the project to estimate technical reproducibility. We computed
55 pair-wise correlation coefficients between any pair of the
replicates and found a median correlation of 0.996, indicating
high technical reproducibility of our assay.

Statistical approaches

From the Cq values, delta Cq values in relation to the endoge-

nous control (RNU48) were computed. Mean delta Cq value
per individual was scaled to zero. Missing values were not
imputed. As estimate of the expression on a linear scale,

2deltaCq values were computed. For multi group comparisons,
Analysis of Variance (ANOVA) was performed. Since the
miRNA data and partially the response variable were not

always normally distributed according to Shapiro Wilk tests,
we performed for the pair-wise comparisons and for the corre-
lation analysis parametric as well as non-parametric tests. For
pair-wise comparisons, both, parametric t-test and non-

parametric Wilcoxon Mann-Whitney test were calculated. If
not mentioned explicitly and where applicable, all P values
were adjusted for multiple testing by the Benjamini-

Hochberg approach. For correlating miRNAs to the age and
the MMSE value, the P value was computed based on para-
metric Pearson’s product moment correlation coefficient as

well as non-parametric Spearman Correlation. To find enrich-
ment of miRNAs in specific blood compounds we used data of
an NGS based blood cell miRNA repertoire [20]. Each
miRNA was normalized to 100% and the different expression

ratios in the different blood compounds were compared to
each other.

miRNA target analysis

We performed three different approaches on miRNA target
analysis. First, for each single miRNA the target pathways

have been extracted from miRPathDB [39] and the Cus-
tomHeatmap tool was used to find miRNAs that target at least
5 pathways and pathways targeted by at least 5 miRNAs from

biological GO processes. Next, we performed a so-called
miRNA set enrichment analysis relying on the hypergeometric
distribution using MIEAA [22]. Here, the miRNAs in the
study were compared to the background distribution of all

miRNAs and the procedure was repeated for the dys-
regulated miRNAs. All pathways with an adjusted P value
below 0.05 were considered to be significant. Finally, we used

the miRTargetLink tool [40] to extract the experimentally val-
idated targets of the miRNAs. In this analysis only the strong
target category from miRTarBase has been used to obtain

specific results. From that data we computed a network using
the R igraph package and performed an enrichment analysis of
the target genes in that network.

Machine learning

A prediction model based on the RT-qPCR Cq values was
developed using gradient boosted trees from the LightGBM

framework (version 2.1.0). Since not all miRNAs were consis-
tently measured for all patients, tree-based methods are partic-
ularly suited for this task, as they can handle missing values

and no imputation is required. LightGBM ignores the missing
values when computing the splits of the trees and assigns all
samples with missing values to the side that reduces the loss
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most. The performance of the model was assessed using five
repetitions of stratified ten-fold cross-validation using scikit-
learn 0.19.1 with Python 3.6.4 [41]. Each repetition was initi-

ated with an integer seed (0–4). Thus, in total 50 combinations
of different training and validation sets were considered. The
reported ROC AUC corresponds to the average performance

over all repetitions and folds of the model, on data not used
for training. The models were manually tuned (i.e., no grid
search was performed) over the number of leaves (testing

ranges between 5 and 50), number of estimators (between 40
and 120), learning rate (0.01 to 0.2), and depth (3 to no restric-
tion). The final model comparing patients with AD to all con-
trols uses 30 leaves, a learning rate of 0.1 and 100 estimators.

The model comparing patients with AD to unaffected controls
uses 9 leaves, a learning rate of 0.05 and 100 estimators. The
depth of both models was not restricted. Gradient boosted

trees outperformed other tree-based methods such as random
forests, or classifiers as Support Vector Machines or Neural
Networks (data not shown). As an input for the classification

task, the expression matrix of the delta Cq values has been
used.

Data availability

The full data set is available as Table S1 without any
restrictions.
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