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Symplectic Partitioned Runge-Kutta Methods for High-Order
Approximation in Linear-Quadratic Optimal Control of Hamiltonian
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Symplectic partitioned Runge-Kutta (SPRK) methods are known to be a good choice in forward simulations of Hamiltonian
systems due to their structure-preserving properties. Recent works study the application of SPRK methods to nonlinear and
linear-quadratic optimal control problems howing various advantages of these methods compared to standard non-symplectic
integration schemes. Now, our focus is on extending the comparison to SPRK and RK methods of higher orders. For
linear-quadratic optimal control problems, we consider the discrete-time Riccati feedback as well as the feedforward control
implementation. For applications in which computational power or computation time is limited, low sampling rates are of
particular interest. Hence we study this case for the n-fold harmonic oscillator.
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1 Introduction

We consider the linear-quadratic (LQ) optimal control problem for a linear time-varying (LTV) Hamiltonian system, i.e. the
system matrix A is Hamiltonian and the state x consists of configurations qi and momenta pi:
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u
J (u) = 1
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w.r.t. ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0, x(t) = (q1, . . . , qn, p1, . . . , pn)⊺ (t).
For this problem, the Ricatti equations can be derived by using the Hamilton function of the problem and applying Pontryagins
maximum principle. For its discrete-time counterpart, the Lagrangian is derived and the Karush-Kuhn-Tucker conditions are
applied. A sketch of both derivations is shown in Figure 1, where the costate is denoted as θ and the state-costate vector as
z ∶= [x, θ]1. The complete derivation of the discrete-time case for SPRK methods, including the undefined quantities, can be
found in [1].
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Fig. 1: Comparison of the derivation of the solution for the continuous-time and discrete-time case.
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2 Numerical Analysis of the Discrete-Time System Dynamics

In this section, we analyse the convergence of an implicit 3-stage, 4th order SPRK Gaussian method (cf. references in [1]) and
an explicit 7-stage, 6th order method, given in [2], with bi > 0 for all i = 1, . . . ,7. The non-zero weights are a prerequisite for
constructing the adjoint method characterized by the adjoint Butcher tableau (Ā, b̄ = b, c̄ = c), where Āi,j = (bibj − bjAj,i) /bi
and (A,b, c) as the original tableau. Following Butcher’s simplifying assumption C(2) [3], one usually sets b2 = 0. Thus, the
chosen explicit 6th-order method is exceptional and, to the best of the authors’ knowledge, there has not been found an explicit
method of higher order satisfying b2 ≠ 0.
Each simulation of the equations in the right column of Figure 1 yields sequences of states, costates, and inputs that are
compared with a reference solution which has been obtained numerically but with high accuracy. Our numerical analysis is
based on a Monte-Carlo simulation. Therefore n-fold harmonic oscillators with different size and random physical parameters
(resulting from the random number generator seed σ), are generated. For these systems the origin is to be stabilized. For each
Monte-Carlo run depending on the system (n,σ), chosen method r, step size h and state weighting matrix Q = Qcoeff ⋅ Q̃,
Qcoeff ∈ R, we compute the maximal error and average them over all systems used

ey,max (n,σ, r, h,Qcoeff) = max
k=0,...,N ∥yk − ybvp(k ⋅ h)∥∞ ⇒ ēy,max (r, h,Qcoeff) = (n̂ ⋅ σ̂)−1 ⋅ nn̂∑
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σσ̂∑
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ey,max(. . .),
where y ∈ {x, θ, u}. These averaged errors can be plotted logarithmically for each method r . The results are shown exemplarily
for the input u in Figure 2. In Figure 2(a), it can be seen that for a fixed step size the explicit method outperforms the SPRK

(a) Plotted over step size h. (b) Plotted over fct. evals. per (sim.) second.

Fig. 2: Errors w.r.t. the optimal input.

method when the maximal error is smaller than 10−2. The situation significantly changes when the function evaluations per
simulation second are fixed, see Figure 2(b). Now using the SPRK method is advantageous. The same qualitative behaviour
can be observed for the quantities x and θ and, also, the trajectory tracking case.

3 Conclusion

We compared a 4th-order SPRK to an explicit 6th-order method for the discretization of a linear-quadratic optimal control
problem using the discrete Riccati equations derived in [1]. As it is well known from numerical error analysis for numerical
integration, the higher-order method has smaller error norms for h→ 0. However, we showed that it can still be advantageous
to use the lower order method: As depicted in Figure 2, the lower-order symplectic method outperforms the other method a) for
large step sizes and b) when the number of function evaluations play a crucial role.
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