Aus dem Institut für Humangenetik Theoretische Medizin und Biowissenschaften der Medizinischen Fakultät der Universität des Saarlandes, Homburg/Saar

Regulation krankheitsassoziierter Signalwege durch differenziell exprimierte miRNAs im Parkinson-Zellkulturmodell

Dissertation

zur Erlangung des Grades einer Doktorin der Naturwissenschaften der Medizinischen Fakultät der UNIVERSITÄT DES SAARLANDES

2021

vorgelegt von Lena Krammes geb. am 28.04.1993 in Saarlouis

Tag der Promotion: 07.02.2022

Dekan: Univ.-Prof. Dr. med. M. D. Menger

Berichterstatter: Prof. Dr. Eckart Meese

Prof. Dr. Andreas Keller

Prof. Dr. Stefan Tenzer

"Wenn wir alles erforschen, werden wir die Wahrheit manchmal da finden, wo wir sie am wenigsten erwarten".

> Quintilian (um 30 - 96) römischer Rhetor, Schriftsteller

Inhaltsverzeichnis

Inł	naltsverze	eichnis	1
Ab	bildungs	verzeichnis	VI
Та	bellenver	zeichnis	VII
Ab	kürzungs	sverzeichnis	IX
1.	Zusamr	nenfassung	1
Su	mmary		2
2.	Einleitu	ng	3
2	2.1 <i>Moi</i>	<i>rbus</i> Parkinson (M. Parkinson, <i>Parkinson's Disease</i> , PD)	3
	2.1.1	Ätiologie von M. Parkinson	4
	2.1.2	Dopamin und dopaminerge Signalwege	5
	2.1.3	Zentrale Pathomechanismen von M. Parkinson	8
	2.1.4	Diagnose und Therapie von M. Parkinson	11
2	2.2 mic	roRNAs (miRNAs, miRs)	12
	2.2.1	miRNA-Biogenese	14
	2.2.2	Der Einfluss von miRNAs in humanen Erkrankungen	15
	2.2.3	miRNAs in neurodegenerativen Erkrankungen und M. Parkinson	16
2	2.3 Aus	sgangspunkt und Zielsetzung dieser Arbeit	18
3.	Materia	l und Methoden	20
(3.1 Mat	terial	20
	3.1.1	Humane Zelllinien	20
	3.1.2	Bakterienstämme	20
	3.1.3	Kulturmedien	20
	3.1.3.	1 Kulturmedien und Zusätze für humane Zelllinien	20
	3.1.3.	2 Kulturmedium und Zusätze für Bakterienkulturen	20
	3.1.4	Chemikalien	21
	3.1.5	Puffer und Lösungen	22
	3.1.6	Verbrauchsmaterial	23
	3.1.7	Geräte	

3.1.8	Enz	zyme	24
3.1.9	Vel	ktoren	25
3.1.9	.1	pSG5	25
3.1.9	.2	pSG5-miRNA-Expressionsplasmide	26
3.1.9	.3	pMIR-RNL-TK	26
3.1.9	.4	Zielgen 3'UTR-Reporterplasmide	27
3.1.10	Olię	gonukleotide	28
3.1.11	miF	RNA-Mimics	
3.1.12	miS	Script miRNA Primer Assays	31
3.1.13	Ant	ikörper	31
3.1.14	Rea	aktionskits	
3.1.15	Sor	nstiges	
3.1.16	Sof	tware	
3.2 Me	ethod	en	34
3.2.1	Zel	lbiologische Methoden	
3.2.1	.1	Kultivierung eukaryotischer Zelllinien	
3.2.1	.2	Kryokonservierung eukaryotischer Zellen	
3.2.1	.3	Transfektion von HEK293T mit Polyfect Transfection Reagent	
3.2.1	.4	Transfektion von SH-SY5Y mit HiPerfect Transfection Reagent	
3.2.1	.5	Parkinson-Zellkulturmodell	
3.2.2	Klo	nierung humaner DNA (Insert) in einen prokaryotischen Vektor	
3.2.2	.1	Polymerase-Kettenreaktion (polymerase chain reaction, PCR)	
3.2	2.2.1.	1 Overlap extension PCR	
3.2	2.2.1.	2 Kolonie-PCR	
3.2.2	.2	Hybridisierung von Oligonukleotiden	40
3.2.2	.3	Agarose-Gelelektrophorese	40
3.2.2	.4	DNA-Gelextraktion und -Aufreinigung	41
3.2.2	.5	Enzymatischer Restriktionsverdau doppelsträngiger DNA Restriktionsendonukleasen	mittels 41
3.2.2	.6	Ligation	42

	3.	2.3	Mik	robiologische Methoden	43
		3.2.3.	1	Transformation kompetenter Bakterien	43
		3.2.3.	2	Ansetzen der Bakterienflüssigkulturen und Plasmidisolation	43
	3.	2.4	RN	A-Techniken	44
		3.2.4.	1	RNA-Isolation	44
		3.2.4.	2	Reverse Transkription (RT)	44
		3.2.4.	3	Quantitative <i>Real-Time</i> -PCR (qRT-PCR)	45
		3.2.4.4	4	Microarray	46
		3.2.	4.4.1	1 Microarray-basierte Transkriptomanalyse	46
		3.2.	4.4.2	2 Microarray-basierte miRnom-Analyse	47
		3.2.4.	5	Northern Blot	47
	3.	2.5	Bioi	nformatische Zielgenauswahl	48
		3.2.5.	1	Generierung miR-34a-5p spezifischer Reporterkonstrukte	49
		3.2.5.2	2	Generierung einer Parkinson-spezifischen 3'UTR Reporterplasmidba	nk.49
		3.2.5.3	3	Auswahl miR-7-5p spezifischer Reporterkonstrukte aus der Park spezifischen 3'UTR Reporterplasmidbank	inson- 49
	3.	2.6	Hoc inte	chdurchsatz miRNA-Interaktions-Reporterassay (<i>High-throughput m</i>	niRNA 50
	3.	2.7	Pro	teinbiochemische Methoden	51
		3.2.7.	1	Proteinextraktion aus eukaryotischen Zellen	51
		3.2.7.2	2	Sodium Dodecyl Sulfate-Polyacrylamidgelelektrophorese (SDS-PAGI	Ξ)52
		3.2.7.3	3	Western Blot	52
	3.	2.8	Dat	enverarbeitung und statistische Analysen	53
		3.2.8.	1	Analyse der qRT-PCR mit Hilfe der 2 ^{-ΔΔCt} -Methode	53
		3.2.8.2	2	Datenprozessierung und Normalisierung des Microarrays	53
		3.2.8.	3	Quantifizierung der Bandenintensitäten von Proteinbanden	54
		3.2.8.4	4	Statistische Analyse	54
4.	E	rgebni	isse.		55
4	.1	Tra	nskri	ptomanalysen im Parkinson-Zellkulturmodell	55
4	.2	Diffe	eren	ziell exprimierte miRNAs im Parkinson-Zellkulturmodell	59

4.3	Sigr	nalweg-spezifische Zielgenauswahl mittels bioinformatischer Vorhersage63
4.4	Ekto	opische Expression der miR-34a-5p und miR-7-5p in HEK293T67
4.5	lder Sigr	ntifikation potenzieller Zielgene in Parkinson- und Dopamin-assoziierten nalwegen mittels HiTmIR-Assay68
4.5	.1	Identifikation potenzieller Zielgene der miR-34a-5p in Parkinson- und Dopamin- assoziierten Signalwegen
4.5	.2	Identifikation potenzieller Zielgene der miR-7-5p in Parkinson- und Dopamin- assoziierten Signalwegen
4.5	.3	Festlegung der Grenzwerte für positive Ergebnisse des HiTmIR-Assays 80
4.6	Vali kon	dierung der Ergebnisse des HiTmIR-Assays mit mutierten Reporter- strukten
4.6	.1	Validierung der Ergebnisse des HiTmIR-Assays mit mutierten Reporterkonstrukten für die miR-34a-5p
4.6	.2	Validierung der Ergebnisse des HiTmIR-Assays mit mutierten Reporterkonstrukten für die miR-7-5p
4.7	Ekto	opische Expression der miR-34a-5p und miR-7-5p in SH-SY5Y-Zellen85
4.8	Pos	ttranskriptionelle Regulation der Proteinexpression durch miRNAs
4.8	.1	Posttranskriptionelle Regulation der Proteinexpression durch die miR-34a-5p87
4.8	.2	Posttranskriptionelle Regulation der Proteinexpression durch die miR-7-5p 90
5. Dis	skuss	ion93
5.1	Der Zell	egulation zentraler Pathomechanismen von M. Parkinson im Parkinson- kulturmodell
5.2	miR	NA-Expressionsanalysen in M. Parkinson95
5.3	Die	miR-34a-5p und miR-7-5p als zentrale miRNAs in M. Parkinson
5.4	Vali	dierung von miRNA-Zielgeninteraktionen99
5.5	Reg miR	ulation zentraler Pathomechanismen in M. Parkinson durch die miR-34a-5p und -7-5p
5.5	.1	Regulation der dopaminergen Transmission und des Dopaminmetabolismus in M. Parkinson durch die miR-34a-5p und miR-7-5p
5.5	.2	Regulation des Ubiguitin-Proteasom-Systems und der mitochondrialen Funktion
0.0	_	durch die miR-34a-5p und miR-7-5p
5.6	Faz	it und Ausblick111

6.	Bibliographie	112
7.	Anhang	129
8.	Danksagung	146
9.	Publikationen	148
10.	Lebenslauf	149

Abbildungsverzeichnis

Abbildung 1: Postsynaptische dopaminerge Signalwege	6
Abbildung 2: Pathomechanismen der Parkinson-Erkrankung	8
Abbildung 3: miRNA-Biogenese.	. 14
Abbildung 4: Vektorkarte des pSG5-Expressionsplasmides (Agilent Technologies,	
Stratagene).	. 25
Abbildung 5: Vektorkarte des pMIR-RNL-TK-Reporterplasmides erstellt mit SnapGene	. 27
Abbildung 6: Schematische Darstellung der overlap extension PCR	. 38
Abbildung 7: Transkriptomanalyse der 50 mRNAs mit der stärksten Expressionserhöhung	
nach Induktion des Parkinson-ähnlichen (PD) Phänotyps in LUHMES-Zellen	. 56
Abbildung 8: Transkriptomanalyse der 50 mRNAs mit der stärksten Expressionsverringeru	ing
nach Induktion des Parkinson-ähnlichen (PD) Phänotyps in LUHMES-Zellen	. 57
Abbildung 9: miRnom-Analyse der 50 miRNAs mit der stärksten Expressionserhöhung nac	ch
Induktion des Parkinson-ähnlichen Phänotyps in LUHMES-Zellen	. 60
Abbildung 10: miRnom-Analyse der 50 miRNAs mit der stärksten Expressionsverringerung	g
nach Induktion des Parkinson-ähnlichen Phänotyps in LUHMES-Zellen	. 61
Abbildung 11: Validierung der miRnom-Analyse mittels qRT-PCR	. 62
Abbildung 12: Anreicherungsanalyse vorhergesagter miR-34a-5p (a) bzw. miR-7-5p (b)	
Zielgene	.65
Abbildung 13: Ektopische Expression der miR-7-5p in HEK293T-Zellen	. 67
Abbildung 14: Kontrollen der HiTmIR-Assays für die miR-34a und miR-7	. 69
Abbildung 15: HiTmIR-Assay der miR-34a-5p mit einer RLU kleiner 70 %	.70
Abbildung 16: HiTmIR-Assay der miR-34a-5p mit einer RLU zwischen 70 und 85 %	.71
Abbildung 17: HiTmIR-Assay der miR-34a-5p mit einer RLU größer 85 %	.72
Abbildung 18: Analyse der miR-34a-5p-Bindestellen (BS)	.74
Abbildung 19: HiTmIR-Assay der miR-7-5p mit einer RLU kleiner 75 %	.75
Abbildung 20: HiTmIR-Assay der miR-7-5p mit einer RLU zwischen 75 und 85 %	.76
Abbildung 21: HiTmIR-Assay der miR-7-5p mit einer RLU zwischen 85 und 95 %	.77
Abbildung 22: HiTmIR-Assay der miR-7-5p mit einer RLU größer 95 %	.78
Abbildung 23: Effekt der miR-7-5p-Bindestellen (BS) auf die RLU	.79
Abbildung 24: Kontrollen der HiTmIR-Assays mit mutierten Reporterkonstrukten für die mi	R-
34a und miR-7	. 81
Abbildung 25: Validierung des HiTmIR-Assays für die miR-34a-5p mit mutierten	
Reporterkonstrukten	. 83
Abbildung 26: Validierung des HiTmIR-Assays für die miR-7-5p mit mutierten	
Reporterkonstrukten	. 84
Abbildung 27: Ektopische Expression der miR-34a-5p und miR-7-5p in SH-SY5Y	. 86

Abbildung 28: Regulation der endogenen Proteinexpression von CLOCK durch die miR-34a-
5p
Abbildung 29: Regulation der endogenen Proteinexpression von GRIA4 und PARK2 durch
die miR-34a-5p
Abbildung 30: Regulation der endogenen Proteinexpression von TH durch die miR-34a-5p.
Abbildung 31: Regulation der endogenen Proteinexpression von AKT3 und CASK durch die
miR-7-5p90
Abbildung 32: Regulation der endogenen Proteinexpression von SDHC durch die miR-7-5p.
Abbildung 33: Regulation der endogenen Proteinexpression von UBE2G2 durch die miR-7-
5p92
Abbildung 34: Regulation der dopaminergen Transmission sowie dem
Dopaminmetabolismus durch die miR-34a-5p und miR-7-5p105
Abbildung 35: Regulation der Ubiquitin-Proteasom-Systems und der mitochondrialen
Funktion durch die miR-34a-5p und miR-7-5p109

Tabellenverzeichnis

Tabelle 1: Verwendete Vektor-spezifische forward (FOR) und reverse (REV) Oligonukleotid-
Primer
Tabelle 2: Verwendetes Oligonukleotid zur Erstellung der miR-7-5p RNA-Sonde29
Tabelle 3: Oligonukleotide zur Generierung des miR-7-5p PK Reporterkonstruktes
Tabelle 4: Verwendete Oligonukleotid-Primer zur zielgerichteten Mutagenese der miR-34a-5p
Bindestellen
Tabelle 5: Verwendete Oligonukleotid-Primer zur zielgerichteten Mutagenese der
miR-7-5p Bindestellen
Tabelle 6: Kultivierungsbedingungen humaner Zelllinien
Tabelle 7: Transfektionsbedingungen von HEK293T in unterschiedlichen Kultivierungs-
formaten
Tabelle 8: Komponenten eines Reaktionsansatzes zur Amplifikation eines spezifischen DNA-
Abschnittes
Tabelle 9: Temperaturprofil zur Amplifikation eines spezifischen DNA-Abschnittes im
Thermocycler
Tabelle 10: Komponenten eines Reaktionsansatzes der Kolonie-PCR
Tabelle 11: Temperaturprofil der Kolonie-PCR im Thermocycler

Tabelle 12: Komponenten eines Reaktionsansatzes zum enzymatischen Restriktions-
verdau42
Tabelle 13: Komponenten eines Reaktionsansatzes zur enzymatischen Ligation von DNA-
Fragmenten42
Tabelle 14: Komponenten eines Reaktionsansatzes der qRT-PCR45
Tabelle 15: Temperaturprofil der qRT-PCR im Real-Time-PCR-Thermocycler. 45
Tabelle 16: Liste der ausgewählten Parkinson- und Dopamin-assoziierten Signalwege48
Tabelle 17: Signifikant veränderte, "Hallmarks of Parkinson's disease"-assoziierte Signalwege
nach GeneTrail2-Analyse im Parkinson-Zellkulturmodell
Tabelle 18: Vergleich der miRNA-Expressionsanalysen von LUHMES-Zellen nach Induktion
des Parkinson-ähnlichen Phänotyps mittels Microarray und qRT-PCR63
Tabelle 19: Signalweg-spezifische Zielgenauswahl für miR-34a-5p und miR-7-5p64
Tabelle 20: Zusammenfassung der Anzahl von Reporterplasmiden innerhalb der definierten
Gruppen des HiTmIR-Assays für die miR-34a-5p
Tabelle 21: Zusammenfassung der Anzahl von Reporterplasmiden innerhalb der definierten
Gruppen des HiTmlR-Assays für die miR-7-5p
Taballa 00 Madaanaa da wiD 04. En Zialaana aya Dadiinaan yood Daramiin aa ajiintaa
Tabelle 22: Vornergesagte miR-34a-5p Zleigene aus Parkinson- und Dopamin-assozilerten
Signalwegen
Tabelle 22: Vornergesagte miR-34a-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. 129 Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten
Tabelle 22: Vornergesagte miR-34a-5p Zleigene aus Parkinson- und Dopamin-assoziierten Signalwegen. Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. 130
Tabelle 22: Vornergesagte miR-34a-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. 130 Tabelle 24: Verwendete Reporterplasmide der miR-34a-5p vorhergesagten Zielgene aus
 Tabelle 22: Vornergesagte miR-34a-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. Tabelle 24: Verwendete Reporterplasmide der miR-34a-5p vorhergesagten Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. 132
Tabelle 22: Vornergesagte miR-34a-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. 129 Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten 129 Signalwegen. 130 Tabelle 24: Verwendete Reporterplasmide der miR-34a-5p vorhergesagten Zielgene aus 130 Tabelle 25: Verwendete Reporterplasmide der miR-7-5p vorhergesagten Zielgene aus
Tabelle 22: Vornergesagte miR-34a-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. 129 Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten 129 Signalwegen. 130 Tabelle 24: Verwendete Reporterplasmide der miR-34a-5p vorhergesagten Zielgene aus 130 Tabelle 25: Verwendete Reporterplasmide der miR-7-5p vorhergesagten Zielgene aus 132 Tabelle 25: Verwendete Reporterplasmide der miR-7-5p vorhergesagten Zielgene aus 132 Tabelle 25: Verwendete Reporterplasmide der miR-7-5p vorhergesagten Zielgene aus 136
Tabelle 22: Vornergesagte miR-34a-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen. 129 Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten 130 Signalwegen. 130 Tabelle 24: Verwendete Reporterplasmide der miR-34a-5p vorhergesagten Zielgene aus 132 Parkinson- und Dopamin-assoziierten Signalwegen. 132 Tabelle 25: Verwendete Reporterplasmide der miR-7-5p vorhergesagten Zielgene aus 132 Tabelle 26: Positiv getestete Reporterplasmide der miR-34a-5p. 142

Abkürzungsverzeichnis

°C	Grad Celcius
μ	Mikro-
А	Ampere
AADC	Aromatische-L-Aminosäure-Decarboxylase
AChR	Acetylcholinrezeptor
Ago	Argonautenprotein
AMPA	α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
ANC	all stars negative control
ANOVA	one way analysis of variance
ATCC	American Type Culture Collection
ATP	Adenosintriphosphat
ATP7A	kupfertransportierende ATPase
bp	Basenpaare
BS	Bindestelle
BSA	Bovines Serumalbumin
cAMP	zyklisches Adenosinmonophosphat
cDNA/cRNA	complementary DNA/ complementary RNA
COMT	Catechol-o-methyltransferase
CST	Cell signaling technologies
Ct	cycle treshold
Cy3	Cyanine3-pCp
DAT	Dopamintransporter
db-cAMP	Dibutyryl-cAMP
DBH	Dopamin-β-Hydroxylase
DDC	DOPA-Decarboxylase
DGCR8	DiGeorge syndrome critical region 8
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
dNTP	Desoxyribonukleosidtriphosphat
DRD	Dopaminrezeptoren D
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen
dsRNA	doppelsträngige Ribonukleinsäure
E1	Ubiquitin-aktivierende Enzyme
E2	Ubiquitin-konjugierende Enzyme
E3	Ubiquitin-ligierende Enzyme
E. coli	Escherichia coli
EDTA	Ethylendiamintetraessigsäure
FCS	<i>fetal calf serum</i> , Fötales Kälberserum
for	forward
g	Gramm
GCH1	GTP-Cyclohydrolase I
GDNF	glial cell line-derived neurotrophic factor
GIRK	<i>G-protein-coupled inwardly-rectifying potassium channel</i> , G-Protein-aktivierter Kaliumkanal
GO	gene ontology

GSEA	gene set enrichment analysis
GSK3	Glykogensynthasekinase 3
GTP	Guanosin-5'-triphosphat
h	Stunde(n)
HEK	Human Embryonic Kidney
HiTmlR	High-throughput miRNA interaction reporter assay, Hochdurchsatz miRNA- Interaktions-Reporterassay
HRP	horseradish peroxidase, Meerrettichperoxidase
iPSC	induced pluripotent stem cells, induzierte pluripotente Stammzellen
kb	Kilobasenpaare
KEGG	Kyoto Encyclopedia of Genes and Genomes
I	Liter
LB	lysogeny broth
L-DOPA	L-3,4-Dihydroxyphenylalanin
IncRNA	long non-coding RNA, lange, nicht-kodierende RNA
LUHMES	Lund human mesencephalic
m	Milli-
Μ	Molar
M. Parkinson	Morbus Parkinson
MAOB	Monoaminoxidase B
MAPK	mitogen-activated protein kinase
min	Minute(n)
mind.	mindestens
miRNA, miR	microRNA
miRTC	miRNA reverse transcription control
MPP+	1-Methyl-4-phenylpyridinium
MPTP	1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin
mRNA	messenger RNA
mut	Mutante
NaOH	Natronlauge
n	Nano-
n	Stichprobenanzahl
NCBI	National Center for Biotechnology Information
NEB	New england biolabs
NGS	Next generation sequencing
nm	Nanometer
NMDA	N-Methyl-D-Aspartat
nt	Nukleotid(e)
OD	optische dichte
ori	origin of replication, Ursprung der Plasmidreplikation
р	Piko-
PAGE	Polyacrylamidgelelektrophorese
RAN	Ras-related Nuclear protein
PRKN/PARK2	Ubiquitin-Ligase Parkin
PBMC	peripheral blood mononuclear cell, Zelle des peripheren Blutes
PBS	Phosphate-Buffered Saline, phosphatgepufferte Salzlösung
PCR	Polymeraese chain reaction, Polymerasekettenreaktion

PD	Parkinson's disease
Pen/Strep	Penicillin/Streptomycin
Pi3K	Phosphoinositid-3-Kinase
PINK1	PTEN-induzierten Kinase 1
piRNA	piwi-interacting RNA
PK	Positivkontrolle
PKA	Proteinkinase A
PLB	passive lysis buffer
PLC	Phospholipase C
POL	Polymerase
PTEN	Phosphatase and Tensin homolog
PTGS	posttranscriptional gene silencing
pre-miRNA	precursor miRNA, Vorläufer-miRNA
pri-miRNA	primäre miRNA
qRT-PCR	guantitative <i>Real-Time</i> -PCR
RAN	Ras-related Nuclear protein
RAP	rAPid Alkaline Phosphatase, alkalische Phosphatase
rev	reverse
RISC	RNA induced silencing complex
RLU	relative luciferase unit, relative Luciferase-Aktivität
RNA	Ribonukleinsäure
RNAi	RNA-Interferenz
RNase	Ribonuklease
ROS	reactive oxygen species, reaktive Sauerstoffspezies
rpm	revolutions per minute, Umdrehungen pro Minute
RS	Restriktionsschnittstelle
RT	reverse Transkription
S	Sekunde(n)
SB	Sample Buffer
SDS	Sodium Dodecyl Sulfate, Natriumdodecylsulfat
siRNA	small interfering RNAs
SOC	super optimal broth with catabolite repression
SV40	Simian-Virus 40
TAE	TRIS-Acetat-EDTA
Taq	Thermus aquaticus
TBS	Tris-buffered saline, Tris-gepufferte Kochsalzlösung
TBST	TBS mit <i>Tween</i>
ТН	Tyrosinhydroxylase
Tris	Tris(hydroxymethyl)-aminomethan
TYR	Tyrosinase
U	<i>Unit</i> , Enzymeinheit
UPR	unfolded protein response
UTR	untranslatierte Region
UV	Ultraviolett
V	Volt
VDCC	voltage-gated calcium channels, spannungsgesteuerten Kalziumkanäle
VMAT2	vesikuläre Monoamintransporter 2

1. Zusammenfassung

Morbus Parkinson stellt eine schwerwiegende neurodegenerative Erkrankung dar, deren Komplexität sowohl die Diagnosestellung als auch die Therapie bis heute erschwert. Im letzten Jahrzehnt wurden unter anderem deregulierte microRNAs (miRNAs, miRs) als vielversprechende Kandidaten für neue Diagnose- und Therapiemöglichkeiten identifiziert (Condrat et al., 2020; Hanna et al., 2019). Ziel dieser Arbeit war es daher die miRNA-Signatur in erkrankten dopaminergen Neuronen anhand eines etablierten Parkinson-Zellkulturmodells genauer zu untersuchen sowie regulatorische Zielgennetzwerke differenziell exprimierter miRNAs zu identifizieren, die zur Progression der Erkrankung beitragen könnten. Zunächst erfolgte eine Charakterisierung des zellulären Parkinson-ähnlichen Phänotyps anhand einer Transkriptomanalyse sowie anschließender Signalweganalyse, in der die Deregulation der zentralen molekularen Pathomechanismen von Morbus Parkinson im Parkinson-Zellkulturmodell auf molekularer Ebene abgebildet werden konnte. Die nachfolgende miRnom-Analyse identifizierte dreizehn miRNAs mit signifikanter Expressionsveränderung nach Induktion des Parkinson-ähnlichen Phänotyps, darunter die induzierte miR-34a-5p und reprimierte miR-7-5p. Aufgrund dieser Ergebnisse sowie weiterer Studien, die einen signifikanten Einfluss der miR-34a-5p und miR-7-5p auf die Viabilität von dopaminergen Neuronen nachweisen, wurde im weiteren Verlauf dieser Arbeit der Fokus auf diese zentralen deregulierten miRNAs gelegt, um deren Zielgennetzwerke, die zur Progression von Morbus Parkinson beitragen, umfassend zu entschlüsseln. Durch eine kombinierte in silico Zielgenvorhersage mit anschließender Anreicherungsanalyse wurden insgesamt 112 Zielgensequenzen mit miR-34a-5p-Bindestellen und 160 Zielgensequenzen mit miR-7-5p-Bindestellen aus 14 Parkinson- und Dopamin-assoziierten Signalwegen zur experimentellen Validierung ausgewählt. Mittels Hochdurchsatz-miRNA-Interaktions-Reporterassay konnte eine miRNA-Zielgeninteraktion für 73,2 % der 112 Zielgensequenzen der miR-34a-5p und 51,9 % der 160 Zielgensequenzen der miR-7-5p verifiziert werden. In der nachfolgenden Analyse des Effektes der Länge und Anzahl von miRNA-Bindestellen auf die miRNA-bedingte Regulation konnte eine verstärkte Regulation mit einer erhöhten Anzahl potenziell bindender Nukleotide erfasst werden. Die Validierung der Ergebnisse des Hochdurchsatz-miRNA-Interaktions-Reporterassay mit mutierten Reporterkonstrukten konnte 90 % der zuvor erfassten Zielgeninteraktionen der miR-34a-5p und 60 % der Zielgeninteraktionen der miR-7-5p bestätigen. Zudem konnte für ausgewählte Zielgene die zuvor mittels Hochdurchsatz-miRNA-Interaktions-Reporterassay erfasste miRNA-bedingte Regulation ebenso auf Proteinebene verifiziert werden. Die in dieser Arbeit erfassten miRNA-Zielgeninteraktionen bilden die Grundlage zur Entschlüsselung der zentralen miRNAregulierten Pathomechanismen von Morbus Parkinson und könnten in Zukunft zur spezifischen Modulation krankheitsassoziierter Signalwege genutzt werden.

1

Summary

Regulation of disease-associated signaling pathways by differentially expressed miRNAs in a cell culture model of Parkinson's Disease.

Parkinson's Disease is a severe neurodegenerative disorder whose complexity impedes diagnosis as well as therapeutic approaches until now. In the last decade, microRNAs (miRNAs, miRs) were identified as promising candidates for new diagnostic and therapeutic approaches (Condrat et al., 2020; Hanna et al., 2019). Hence, the aim of this thesis was to examine the miRNA signature in diseased dopaminergic neurons based on a well-established Parkinson's disease cell culture model as well as to identify gene regulatory networks that could contribute to the progression of the disease. First, transcriptome analysis and subsequent pathway analysis was performed to characterize the cellular Parkinson's disease like phenotype. In this analysis, deregulation of the central pathogenic mechanisms of Parkinson's disease was shown on molecular level. The following miRnome analysis identified thirteen miRNAs that showed a significant expression change upon induction of Parkinson's disease like phenotype including the upregulated miR-34a-5p and the downregulated miR-7-5p. Based on these results as well as other studies that showed a significant impact of miR-34a-5p and miR-7-5p on the viability of dopaminergic neurons, these central miRNAs were focused in the following to decipher the gene regulatory networks that contribute to the progression of Parkinson's disease. The combination of *in silico* target gene prediction with subsequent enrichment analysis led to the identification of 112 target sequences with miR-34a-5p binding sites and 160 target sequences with miR-7-5p binding sites in 14 signaling pathways associated with Parkinson's disease and dopamine. High throughput miRNA interaction reporter assay verified miRNA targeting for 73.2 % of the 112 target sequences for miR-34-5p as well as for 51,9 % of the 160 target sequences for miR-7-5p. Further examination on the effects of length and number of miRNA binding sites on miRNA-mediated regulation revealed an augmented regulation with increasing number of potentially binding nucleotides. Validation of the results obtained from the high throughput miRNA interaction reporter assay with mutated reporter constructs verified 90 % of the miRNA-target interactions for miR-34a-5p and 60 % for miR-7-5p. The miRNA-mediated regulation was also verified for selected target genes on protein level. The miRNA-target-interactions detected in this study provide a basis for deciphering the central miRNA-regulated pathogenic mechanism of Parkinson's disease and could be used in the future for specific modulation of disease-associated signaling pathways.

2. Einleitung

2.1 Morbus Parkinson (M. Parkinson, Parkinson's Disease, PD)

Morbus Parkinson (M. Parkinson, Parkinson's Disease, PD) bildet nach M. Alzheimer die zweithäufigste neurodegenerative Erkrankung weltweit. Derzeit sind schätzungsweise 0,3 % der Weltbevölkerung betroffen, allerdings lassen sich mit fortschreitendem Alter Inzidenzen von bis zu 3 % in der Bevölkerung über 80 Jahren verzeichnen (Balestrino, Schapira, 2020). Erstmals beschrieben wurde die Erkrankung im Jahre 1817 von James Parkinson, der sie aufgrund der dominierenden Symptomatik als Paralysis Agitans (Schüttellähmung) bezeichnete (Parkinson, 1817). Neben dem charakteristischen Tremor zählen eine versteifte Muskulatur (Rigor), eine verlangsamte Bewegung (Bradykinesie bzw. Hypokinesie) sowie Störungen des Gleichgewichtes (posturale Instabilität) zur klinischen Symptomatik, die nach Manifestation der Krankheit auftreten (De Rijk et al., 1997; Postuma et al., 2015). Darüber hinaus lassen sich unspezifische Symptome wie Schlafstörungen, Depressionen, Störungen des Geruchsinns oder erektile Dysfunktionen bereits zu einem frühen Zeitpunkt des langen Prodromalstadiums der Erkrankung beobachten (Postuma, Berg, 2019). Die auftretende Symptomatik ist die Folge einer spezifischen Degradation einer Neuronensubpopulation, den dopaminergen Neuronen, innerhalb verschiedener Hirnareale. Das hiervon am stärksten betroffene Hirnareal, die Substantia nigra pars compacta, ist innerhalb des Mesencephalons lokalisiert und zeichnet sich durch einen hohen Anteil an dopaminergen Neuronen sowie namensgebend durch einen hohen Eisen- und Neuromelanin-Gehalt aus (Fearnley, Lees, 1991; Poewe et al., 2017). Von dieser Region ausgehend erstrecken sich dopaminerge Projektionen bis zu den Basalganglien und Synapsen des Corpus striatum. Über dieses nigrostriatale System erfolgt die Regulation von Verhalten, Lernfähigkeit, Schmerzempfinden sowie motorischer Bewegungen (Klein et al., 2019). Die Degradation der dopaminergen Neuronen führt innerhalb der Substantia nigra pars compacta zu einem striatalen Dopaminmangel, der letztendlich die Ursache der auftretenden motorischen Symptome darstellt (Scherman et al., 1989). Abhängig von der Progression der Erkrankung werden post mortem in Hirnbiopsien lediglich noch 10-20 % der dopaminerge Neuronen in der Substantia nigra pars compacta detektiert (Hartmann, 2004). Darüber hinaus zeichnen sich post mortem Hirnbiopsien von an M. Parkinson erkrankten Patienten (im Folgenden Parkinson-Patienten genannt) pathologisch durch eosinophile zytoplasmatische Einschlüsse aus. Diese Einschlüsse werden auch als Lewy-Körperchen bezeichnet und sind neben der Substantia nigra pars compacta auch in weiteren Hirnregionen, wie der Medulla oblongata, dem Mesocortex oder dem Neocortex, lokalisiert (Braak et al., 2003). Anhand der Lokalisation der Lewy-Körperchen innerhalb verschiedener Hirnareale definierten Braak et al. im Jahr 2003 pathologischen Stadien von M. Parkinson, welche die Progression der Erkrankung abbilden

3

(Braak *et al.*, 2003). In weiteren pathologischen Untersuchungen konnten vermehrte zelluläre Schädigungen, bedingt durch oxidativen Stress sowie eine verstärkte Neuroinflammation, durch aktivierte Mikroglia im Hirngewebe von Parkinson-Patienten nachgewiesen werden (Bosco *et al.*, 2006; Mcgeer *et al.*, 1988). Darüber hinaus zeigen verschiedene Publikationen eine verringerte Aktivität der mitochondrialen Komplexe I, II und III in betroffenem Hirngewebe von Parkinson-Patienten (Haas *et al.*, 1995; Schapira *et al.*, 1990).

2.1.1 Ätiologie von M. Parkinson

Die genauen Ursachen der Entstehung von M. Parkinson konnten bis heute nicht vollständig entschlüsselt werden. Aufgrund der Heterogenität der Erkrankung wird davon ausgegangen, dass sowohl genetische Mutationen, Umwelteinflüsse sowie ein Zusammenspiel beider Faktoren das Risiko einer Parkinson-Erkrankung erhöhen (Antony *et al.*, 2013; Noyce *et al.*, 2012).

Die familiäre Form der Erkrankung, welche sich durch vererbte Mutationen in Parkinsonassoziierten Genen, den sogenannten PARK-Genen, auszeichnet, bildet lediglich 5-15 % aller Fälle (Balestrino, Schapira, 2020; Poewe et al., 2017). Die zugrundeliegenden Mutationen werden sowohl autosomal dominant als auch autosomal rezessiv vererbt und können je nach betroffenem Genlokus auf Misssense- oder Nonsense-Mutationen, Insertionen oder Deletionen sowie Genmultiplikationen zurückgeführt werden (Lin, Farrer, 2014). Das erste beschriebene PARK-Gen SNCA, welches für das Protein α-Synuclein kodiert, wurde im Jahr 1997 von Polymeropoulos et al. identifiziert (Polymeropoulos et al., 1997). Verschiedene Mutationen, wie *Misssense*-Mutationen und Genduplikationen bzw. -deletionen innerhalb des Genlokus, erhöhen die Wahrscheinlichkeit der Bildung von fehlgefalteten a-Synuclein-Monomeren, die sich zu Oligomeren sowie Fibrillen anordnen und innerhalb der dopaminergen Neuronen aggregieren (Chartier-Harlin et al., 2004; Conway et al., 1998; Polymeropoulos et al., 1997). Fehlgefaltetes, aggregierendes α -Synuclein bildet neben Ubiquitin die Hauptkomponente der charakteristischen Lewy-Körperchen, die sowohl in familiären als auch in sporadischen Formen der Erkrankung auftreten (Spillantini et al., 1997). Daneben bilden Mutationen in den PARK-Genen PRKN (PARK2), UCHL1 (PARK5), PINK1 (PARK6), DJ-1 (PARK7) und LRRK2 (PARK8) die häufigsten Ursachen der familiären Form von M. Parkinson (Simon et al., 2020).

Die sporadische Form von M. Parkinson ist zumeist auf verschiedene Umweltfaktoren zurückzuführen, die das Risiko einer Erkrankung erhöhen. Unter anderem wurden vorangegangene Kopfverletzungen, die Einnahme von β-Blockern sowie verschiedene neurotoxische Pestizide, wie beispielsweise Paraquat, als mögliche Risikofaktoren identifiziert

(Kalia, Lang, 2015). Anfang der 1980er Jahren wurden zudem vermehrt Patienten registriert, die nach Einnahme von synthetischem Heroin eine Parkinson-ähnliche Symptomatik entwickelten. Die Grundlage dieses synthetischen Heroins bildete das Neurotoxin 1-Methyl-4phenyl-1,2,3,6-tetrahydropyridin (MPTP), welches eine hohe strukturelle Ähnlichkeit zu dem Pestizid Paraguat besitzt und die Ursache der auftretenden Symptomatik darstellt (Davis et al., 1979; Langston et al., 1983). MPTP besitzt aufgrund seiner hoch lipophilen Eigenschaft die Fähigkeit die Blut-Hirn-Schranke direkt zu passieren. Im Gehirn angelangt wird MPTP durch das Enzym Monoaminoxidase B (MAOB) oxidiert, wodurch das aktive Neurotoxin 1-Methyl-4-phenylpyridinium (MPP+) entsteht. MPP+ gelangt aufgrund der hohen Affinität zum Dopamintransporter (DAT) spezifisch in dopaminerge Neuronen und akkumuliert dort im Zytoplasma (Nicklas et al., 1987). Im Anschluss kann das Toxin aufgrund des mitochondrialen Membranpotenzials in diese diffundieren und dort den Komplex I der Atmungskette inhibieren (Nicklas et al., 1987; Ramsay, Singer, 1986). Infolgedessen wird der Elektronentransport der Atmungskette beeinträchtigt, wodurch es zur Hemmung der Adenosintriphosphat (ATP)-Synthese sowie der Bildung von reaktiven Sauerstoffspezies (reactive oxygen species, ROS) kommt (Chan et al., 1991; Zawada et al., 2011). Es entsteht oxidativer Stress in der Zelle, der letztendlich als ursächlich für das Absterben der dopaminergen Neuronen betrachtet wird (Antony et al., 2013). Aufgrund der Eigenschaft spezifisch in dopaminerge Neuronen zu diffundieren und dort den Zelltod zu induzieren, werden MPTP und MPP+ in der heutigen Forschung zur Generierung von in vivo und in vitro Parkinson-Modellen verwendet (Donnan et al., 1986; Lopes et al., 2017; Meredith, Rademacher, 2011).

2.1.2 Dopamin und dopaminerge Signalwege

Das Absterben dopaminerger Neuronen bedingt, wie bereits erwähnt, einen striatalen Mangel des Neurotransmitters Dopamin (Scherman *et al.*, 1989). Aufgrund seiner fundamentalen Rolle in Bewegungsabläufen, der Schlafregulation sowie im Belohnungssystem des Gehirns, führt der Dopaminmangel neben der charakteristischen Symptomatik von M. Parkinson auch zu weiteren Symptomen wie Depressionen sowie Lust- und Antriebslosigkeit. Diese können bereits im Prodromalstadium von M. Parkinson auftreten, aber auch durch andere Erkrankungen oder Drogenmissbrauch hervorgerufen werden (Klein *et al.*, 2019). Dopamin wird als Vorstufe von Adrenalin und Noradrenalin durch mehrere Reaktionsschritte aus der Aminosäure Tyrosin metabolisiert. Tyrosin wird hierbei zunächst durch das Enzym Tyrosin-hydroxylase (TH) zu L-Tyrosin zu L-3,4-Dihydroxyphenylalanin (L-DOPA, Levodopa) umgewandelt, welches im Anschluss durch die DOPA-Decarboxylase (DDC) bzw. die Aromatische-L-Aminosäure-Decarboxylase (AADC) zu Dopamin umgesetzt wird (Fernstrom, Fernstrom, 2007; Nagatsu *et al.*, 1964). Aufgrund des erhöhten Risikos zur Autoxidation wird freies

Einleitung

Dopamin im Zytosol in Vesikeln gespeichert oder durch die Enzyme Catechol-omethyltransferase (COMT) und MAOB abgebaut (Klein *et al.*, 2019; Stokes *et al.*, 1999). Die Speicherung von Dopamin in zytoplasmatischen Vesikeln erfolgt durch den vesikuläre Monoamintransporter 2 (VMAT2) (Eiden, Weihe, 2011). Die dopaminerge Transmission kann sowohl phasisch durch ein Aktionspotenzial als auch tonisch durch andere Neurotransmitter, wie Glutamat, ausgelöst werden (Floresco *et al.*, 2003; Klein *et al.*, 2019). Infolgedessen verschmelzen die zytoplasmatischen Vesikel mit der Zellmembran, wodurch Dopamin im synaptischen Spalt freigesetzt werden kann. In der postsynaptischen Zelle bindet Dopamin an die G-Protein-gekoppelten Dopaminrezeptoren D1-D5 (DRD1-5), welche je nach Typ des gekoppelten G-Proteins sowohl inhibierend als auch aktivierend wirken können (s. Abbildung 1) (Aosaki *et al.*, 1998; Chio *et al.*, 1994).

Abbildung 1: Postsynaptische dopaminerge Signalwege. Nach Freisetzung von Dopamin in den synaptischen Spalt bindet dieses an die postsynaptischen Dopaminrezeptoren D1-D5. Die Rezeptorgekoppelten G-Proteine modulieren infolgedessen durch die Regulation von cyclischem Adenosinmonophosphat (cAMP) und der Phospholipase C (PLC) eine Vielzahl intrazellulärer Signalkaskaden. Dopamin bewirkt zudem eine direkte Regulation des Phosphoinositid-3-Kinase (PI3K)/Akt/Glykogen-synthasekinase 3 (GSK3)-Signalweges. Darüber hinaus beeinflusst die Bindung von Dopamin an die Dopaminrezeptoren die Aktivität von N-Methyl-D-Aspartat (NMDA)-Rezeptoren, αamino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA)-Rezeptoren, spannungsgesteuerte Calciumkanäle (*voltage-gated calcium channels*, VDCCs) oder G-Protein-aktivierte Kaliumkanälen (*G protein-coupled inwardly-rectifying potassium channels*, GIRKs). Die Abbildung wurde mit Hilfe der Motifolio *Illustration Toolkits for Scientific Presentations and Publications* erstellt (modifiziert nach Klein *et al.*, 2019). Die Bindung von Dopamin an die Dopaminrezeptoren bewirkt eine Aktivierung bzw. Inhibition der Adenylatcyclase, wodurch die Expression von cyclischem Adenosinmonophosphat (cAMP) reguliert wird (Aosaki et al., 1998; Chio et al., 1994). Das cAMP induziert die Proteinkinase A (PKA), welche wiederum eine Vielzahl von Zielproteinen, wie beispielsweise Transkriptionsfaktoren, Glutamat- und GABA-Rezeptoren sowie verschiedene Ionenkanäle, aktivieren kann (Klein et al., 2019). Darüber hinaus kann die Bindung von Dopamin an den Dopaminrezeptor der Postsynapse die Aktivierung der Phospholipase C (PLC) induzieren, wodurch es zu einer Erhöhung des intrazellulären Calciums und damit zur Aktivierung einer Vielzahl an intrazellulären Signalwegen kommt (Felder et al., 1989). Dopaminrezeptoren sowie die gekoppelten G-Proteine können zudem mit verschiedenen Rezeptoren und Kanälen auf der Zellmembran interagieren. Hierbei werden beispielsweise N-Methyl-D-Aspartat (NMDA)-Rezeptoren, α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA)-Rezeptoren, spannungsgesteuerte Calciumkanäle (voltage-gated calcium channels, VDCCs) oder G-Protein-aktivierte Kaliumkanälen (G-protein-coupled inwardly-rectifying potassium channels, GIRKs) aktiviert, wodurch der Ionenaustausch der Zelle beeinflusst werden kann (Hu et al., 2005; Klein et al., 2019; Kuzhikandathil et al., 1998; Valjent et al., 2005). Die dadurch entstehende Spannungsänderung des Membranpotentials der Zellen kann wiederum weitere zentrale Signalkaskaden, wie der mitogen-activated protein kinase (MAPK)-Signalweg, induzieren (Klein et al., 2019). Zusätzlich inhibiert Dopamin durch Bindung des postsynaptischen DRD2 die Phosphoinositid-3-Kinase (PI3K)/Akt-Signalkaskade, wodurch die Aktivierung der Glykogensynthasekinase 3 (GSK3) erfolgt (Beaulieu et al., 2007). Nach der Signaltransmission kann freies Dopamin aus dem synaptischen Spalt durch den Dopamintransporter wieder in die präsynaptische Zelle aufgenommen werden, wo es wiederum in Vesikeln gespeichert oder durch die Enzyme COMT und MAOB katabolisiert wird (Carboni et al., 1990; Stokes et al., 1999).

M. Parkinson zeichnet sich folglich neben einem striatalen Dopaminmangel durch eine verminderte Dopamintransmission aus, wodurch eine synaptische Dysfunktion hervorgerufen wird (Poewe *et al.*, 2017). Darüber hinaus wurde eine signifikante Deregulation der Schlüsselenzyme des Dopaminmetabolismus, wie beispielsweise TH, in M. Parkinson beobachtet, wodurch das zelluläre Dopaminlevel weiter vermindert wird (Haavik, Toska, 1998). Diese Störungen des Dopaminmetabolismus und der dopaminergen Transmission tragen neben weiteren zellulären Dysfunktionen zur Pathogenese von M. Parkinson bei (Antony *et al.*, 2013).

2.1.3 Zentrale Pathomechanismen von M. Parkinson

Die Degradation dopaminerger Neuronen wird durch ein Zusammenspiel diverser zellulärer Mechanismen bedingt. Im Jahre 2013 fassten Anthony *et al.* die charakteristischen Eigenschaften von M. Parkinson sowie die zugrundeliegenden Pathomechanismen in der Publikation *"Hallmarks of Parkinson's Disease"* zusammen (Antony *et al.*, 2013). Hierzu zählen Proteinfehlfaltungen, mitochondriale und synaptische Dysfunktionen, Beeinträchtigungen der Calcium-Homöostase und des Lysosom-Proteasom-Systems, die Akkumulation von ROS, ein Ungleichgewicht im Eisen-Metabolismus, die Neuroinflammation sowie letztendlich als Folge der zellulären Dysfunktionen die Apoptose dopaminerger Neuronen (s. Abbildung 2).

Abbildung 2: Pathomechanismen der Parkinson-Erkrankung. Aggregierendes α-Synuclein in dopaminergen Neuronen bildet toxische Oligomere in zytoplasmatischen Einschlüssen, den Lewy-Bodies. Folglich kommt es zu einer Inhibition des Ubiquitin-Proteasom-Systems, der Autophagie sowie zu mitochondrialen und synaptischen Dysfunktionen. Der damit verbundene oxidative Stress sowie Störungen in der Calcium-Homöostase und im Eisenmetabolismus induzieren apoptotische Signalwege, die das Absterben der dopaminergen Neuronen bedingen. Daneben kommt es durch aktivierte Mikroglia zur Neuroinflammation in der *Substantia nigra pars compacta*. Die Abbildung wurde mit Hilfe der Motifolio *Illustration Toolkits for Scientific Presentations and Publications* erstellt (modifziert nach Poewe *et al.*, 2017).

Die Akkumulation von α -Synuclein und weiterer Proteine bildet sowohl in der familiären als auch in der sporadischen Form von M. Parkinson eine zentrale Schlüsselrolle in der Pathogenese der Erkrankung. Neben Mutationen innerhalb des kodierenden Gens *SNCA* kann die Aggregation von α -Synuclein durch Beeinträchtigungen molekularer Mechanismen zur Proteinqualitätskontrolle, wie des Ubiquitin-Proteasom-Systems oder des LysosomAutophagie-Systems, bedingt werden (Xilouri et al., 2013; Xilouri et al., 2009). Die damit verbundene verminderte Aktivität kann sowohl altersbedingt als auch durch Mutationen in den Schlüsselkomponenten der Mechanismen verursacht werden (Kaushik, Cuervo, 2015; Poewe et al., 2017). Ein Teil der PARK-Gene, wie beispielsweise LRRK2 (PARK8), PRKN (PARK2) und UCHL1 (PARK5), kodieren für Schlüsselenzyme des Ubiquitin-Proteasom-Systems bzw. des Lysosom-Autophagie-Systems. Mutationen der entsprechenden Loci wurden in familiären, aber auch in sporadischen Formen von M. Parkinson, mit einer verminderten Aktivität der entsprechenden Mechanismen assoziiert (Imai et al., 2000; Leroy et al., 1998; Volpicelli-Daley et al., 2016). Zusätzlich konnte gezeigt werden, dass α -Synuclein sowohl das Ubiguitin-Proteasom-System als auch die Autophagie inhibieren kann, wodurch die Akkumulation des Proteins weiter verstärkt wird (Emmanouilidou et al., 2010; Winslow et al., 2010). Die Mechanismen der Proteingualitätskontrolle nehmen eine entscheidende Funktion in allen Körperzellen, ebenso in dopaminergen Neuronen, ein. Das Ubiguitin-Proteasom-System kontrolliert unter anderem die synaptische Transmission, in dem es sowohl prä- als auch postsynaptisch die Abundanz der an der Signalweiterleitung beteiligten Proteine, wie Vesikel-Proteine oder Proteine von Signalkaskaden, reguliert (Tai, Schuman, 2008). In diesem Kontext konnte zudem in verschiedenen Parkinson-Zellkulturmodellen auch auf zellulärer Ebene eine Beeinträchtigung der Dopamin-Transmission beobachtet werden (Janezic et al., 2013; Larsen et al., 2006; Oyama et al., 2010; Venda et al., 2010). Dieser Effekt wird zusätzlich noch direkt durch α-Synuclein verstärkt, indem das Protein die präsynaptische Neurotransmitterfreisetzung inhibiert (Nemani et al., 2010).

Neben Proteinfehlfaltungen zählen mitochondriale Dysfunktionen und der damit einhergehende oxidative Stress in den dopaminergen Neuronen zu einer der zellulären Schlüsselkomponenten in der Pathogenese von M. Parkinson, die, wie bereits erwähnt, ebenso in post mortem Hirnbiopsien von Patienten abgebildet werden kann (Bosco et al., 2006; Haas et al., 1995; Schapira et al., 1990). Speziell dopaminerge Neuronen zeigen aufgrund ihres Dopaminmetabolismus eine erhöhte Anfälligkeit zur Produktion von ROS, da beim Abbau von Dopamin vermehrt toxische Nebenprodukte entstehen. Zudem besitzt freies Dopamin aufgrund des physiologischen pH-Wertes im Zytosol eine hohe Anfälligkeit zur mehrstufigen Oxidation zu Aminochrome, was wiederum zur vermehrten ROS-Bildung und folglich oxidativem Stress führt (Klein et al., 2019; Stokes et al., 1999). Die Substantia nigra pars compacta erhält ihren Namen aufgrund der hohen Konzentration an Neuromelanin und Eisen der dopaminergen Neuronen (Double et al., 2003). Bei oxidativem Stress ist Eisen in der Lage mit Superoxidradikalen und Wasserstoffperoxid zu reagieren, wodurch hochreaktive Hydroxydradikale entstehen, welche die schädlichste Form der ROS darstellen (Kehrer, 2000). Sowohl in familiären als auch in sporadischen Formen von M. Parkinson wurde ein deregulierter Eisenmetabolismus sowie eine erhöhte Eisenkonzentration in der Substantia

9

nigra detektiert, wodurch Eisen eine zusätzliche Rolle in der Degradation der dopaminergen Neuronen zugeschrieben wird (Dexter et al., 1989; Funke et al., 2013). Daneben zeigen auch weitere Metalle wie Zink und Kupfer eine veränderte Expression in der Substantia nigra von Parkinson-Patienten, die vermutlich ebenso den oxidativen Stress der dopaminergen Neuronen beeinflussen (Dexter et al., 1989). Als Hauptquelle in der Entstehung von zellulärem ROS tragen Mitochondrien erheblich zum oxidativen Stress in dopaminergen Neuronen bei (Antony et al., 2013; Chen et al., 2003). Die zentrale Rolle der mitochondrialen Dysfunktion und des oxidativen Stresses in M. Parkinson konnte Anfang der 1980er in einer Reihe von Patienten anhand der auftretenden Parkinson-ähnlichen Symptomatik nach Administration des Komplex I-Inhibitors MPTP nachgewiesen werden (Davis et al., 1979; Langston et al., 1983). Die verminderte Expression der mitochondrialen Komplexe I, II und III der Atmungskette im Hirn von Parkinson-Patienten legen zusätzlich eine direkte Beeinträchtigung der mitochondrialen Atmungskette nahe (Haas et al., 1995; Schapira et al., 1990). Darüber hinaus spielen die PARK-Gene PRKN (PARK2), PINK1 (PARK6), und DJ-1 (PARK7) eine zentrale Rolle in der mitochondrialen Funktion. Sowohl Parkin (PRKN, PARK2) als auch PINK1 (PARK6) sind direkt in die Mitophagie, einem zellulären Schutzmechanismus zum selektiven Abbau defekter bzw. fehlerhafter Mitochondrien durch Autophagie, involviert (Ding, Yin, 2012). Durch Fehlregulationen dieses Mechanismus, unter anderem bedingt durch Mutationen von PRKN (PARK2) und PINK1 (PARK6), lassen sich in M. Parkinson vermehrt Akkumulationen defekter Mitochondrien beobachten (Antony et al., 2013). Neben der Hauptfunktion als zellulärem Energielieferanten wird Mitochondrien zudem eine wichtige Aufgabe in der Calciumhomöostase sowie dem programmierten Zelltod zu teil (Duchen, 2000; Green, Reed, 1998). Neurodegenerative Erkrankungen, somit auch M. Parkinson, zeichnen sich durch Beeinträchtigungen in der Calciumhomöostase aus, jedoch ist bisher unklar, ob es sich hierbei um eine Ursache oder eine Folge der mitochondrialen Dysfunktionen handelt (Antony et al., 2013; lacopino, Christakos, 1990).

Ebenso bildet die beobachtete Neuroinflammation einen komplexen Mechanismus, dessen Beitrag zur Pathogenese von M. Parkinson ebenfalls bis heute nicht vollständig entschlüsselt werden konnte. Auch in diesem Zusammenhang stellt sich die Frage, ob die Neuroinflammation Ursache oder Folge der neuronalen Degradation darstellt und ob die Inflammation ggf. eine protektive oder gar eine die Erkrankung fördernde Wirkung hat (Antony *et al.*, 2013). Bekannt ist jedoch, dass es zu einer chronischen Aktivierung von Mikroglia sowie der Infiltration weiterer Immunzellen, wie peripheren T-Lymphozyten, in der *Substantia nigra pars compacta* kommt (Mcgeer *et al.*, 1988).

2.1.4 Diagnose und Therapie von M. Parkinson

Sowohl die Diagnose als auch die Therapie von M. Parkinson stellen bis heute eine Herausforderung dar. Die Diagnose erfolgt mit Hilfe definierter Kriterien der International Parkinson and Movement Disorder Society in erster Linie anhand der klinischen Symptomatik des Patienten (Postuma et al., 2015). Hierbei gelten die charakteristischen motorischen Symptome, also die auffallend veränderte bzw. verlangsamte Bewegung der Patienten sowie das Auftreten von Tremor oder Rigor, als grundlegende Indizien von M. Parkinson (Goetz et al., 2008; Postuma et al., 2015). Allerdings ist in diesem Stadium der Erkrankung bereits ein Verlust der dopaminergen Neuronen in der Substantia nigra von circa 50-70 % zu verzeichnen. wodurch keine frühzeitige Diagnose gestellt werden kann (Fearnley, Lees, 1991; Hartmann, 2004). Zudem kann die Diagnosestellung durch atypische Parkinson-Syndrome erschwert werden, da diese eine ähnliche Symptomatik aufweisen, jedoch auf andere Erkrankungen wie der Multi-System-Atrophie oder der progressiven supranukleäre Blickparese zurückzuführen sind (Levin et al., 2016). Zur unterstützenden Diagnostik werden daher bildgebende Verfahren, wie beispielsweise die Einzelphotonen-Emissionscomputertomographie oder Positronen-Emissions-Tomografie angewandt, anhand derer atypische Parkinson-Syndrome ausgeschlossen und die Integrität der dopaminergen Neuronen analysiert werden können (Balestrino, Schapira, 2020; Brucke et al., 1993; Morrish et al., 1996; Tolosa et al., 2006). Trotz verschiedener Ansätze kann eine endgültige Diagnose lediglich pathologisch anhand der von Braak et al. definierten Stadien in post mortem Hirnbiopsien getroffen werden (Braak et al., 2003; Rizzo et al., 2016). Daher ist die Suche nach möglichen, frühzeitigen Biomarkern ein grundlegender Ansatzpunkt der aktuellen Forschung.

Daneben bildet die Entwicklung innovativer Therapien zur Behandlung von M. Parkinson einen weiteren Schwerpunkt der Forschung. Die derzeitige symptomatische Therapie basiert hauptsächlich auf pharmakologischer Medikation, es werden jedoch zusätzlich physiotherapeutische Ansätze sowie die tiefe Hirnstimulation angewandt (Fox *et al.*, 2018). Die tiefe Hirnstimulation beschreibt in diesem Zusammenhang eine Methodik, bei der Elektroden im Hirn des Patienten implantiert werden, anhand derer elektrische Impulse erzeugt werden, von denen wiederholt eine positive, die Symptomatik lindernde Wirkung gezeigt werden konnte (Limousin *et al.*, 1998; Obeso *et al.*, 2001). Durch die angewandten Therapieformen lässt sich die auftretende Symptomatik vermindern, wodurch eine verbesserte Bewegung und folglich eine erhöhte Lebensqualität der Patienten beobachtet werden kann. Die pharmakologische Medikation zielt in erster Linie auf eine direkte Erhöhung der striatalen Dopaminkonzentration im Hirn des Patienten ab (Marino *et al.*, 2020). In diesem Kontext bildet L-DOPA, der direkte Vorläufer von Dopamin, den Goldstandard der Medikation. L-DOPA kann die Blut-Hirn-Schranke direkt passieren und wird dort durch die AADC durch Decarboxylierung in aktives Dopamin umgewandelt (Lewitt, Fahn, 2016; Marino *et al.*, 2020). Zur Regulation des

Einleitung

peripheren Dopaminlevels werden in Kombination zur Medikation mit L-DOPA AADC-Inhibitoren eingesetzt. Durch die verminderte Decarboxylierung von L-DOPA in der Peripherie kann dieses vermehrt über die Blut-Hirn-Schranke in das zentrale Nervensystem gelangen. Erst dort wird es zu aktivem Dopamin umgewandelt, wodurch das Dopaminlevel im Hirn weiter erhöht wird und auftretenden Nebenwirkungen wie Übelkeit oder Hypotonie aufgrund zu hoher Dopaminkonzentrationen im peripheren Nervensystem entgegengewirkt werden (Balestrino, Schapira, 2020; Poewe *et al.*, 2017). Zur Aufrechterhaltung der dopaminergen Transmission werden Dopamin-Agonisten verabreicht, die eine direkte Stimulation der postsynaptischen Dopaminrezeptoren D2-D4 bewirken (Fox *et al.*, 2018; Perez-Lloret, Rascol, 2010). Darüber hinaus werden Inhibitoren von Schlüsselenzymen des Dopamin-Katabolismus eingesetzt, wodurch der physiologische Abbau des intrazellulären Dopamins verringert werden soll. Als Angriffspunkte in diesem Zusammenhang dienen die Enzyme COMT und MAOB, welche direkt an der Inaktivierung und dem Abbau von Dopamin beteiligt sind (Fox *et al.*, 2018; Lyytinen *et al.*, 1997). Trotz verschiedener Therapieansätze ist die Suche nach einer Kausaltherapie weiterhin Gegenstand aktueller Forschungsarbeiten.

Sowohl in der Diagnostik als auch in der Therapie stellen die sogenannten microRNAs (miRNAs oder miRs), eine Klasse kleiner regulatorischer RNAs, vielversprechende Kandidaten dar (Condrat *et al.*, 2020; Hanna *et al.*, 2019). Aufgrund ihrer hohen Stabilität können sie in gesunden als auch in erkranktem Gewebe sowie in diversen Körperflüssigkeiten, wie Urin, Blut oder Plasma, nachgewiesen werden (Condrat *et al.*, 2020; Turchinovich, Burwinkel, 2012; Valadi *et al.*, 2007). Ebenso in neurodegenerativen Erkrankungen konnte eine differenzielle Expression von miRNAs in verschiedenen Körperflüssigkeiten gezeigt werden, wodurch sie als potenzielle klinische Biomarker in Betracht gezogen wurden (Condrat *et al.*, 2020). Darüber hinaus zeichnen sich viele Erkrankungen durch eine differenzielle Expression von miRNAs in betroffenem Gewebe aus. Aufgrund ihrer grundlegenden zellulären Funktion kann eine deregulierte miRNA-Expression zur Pathogenese einer Erkrankung beitragen, wodurch sie in der derzeitigen Forschung als potenzielle Angriffspunkte zur Therapie verschiedener Krankheitsformen betrachtet werden (Hanna *et al.*, 2019).

2.2 microRNAs (miRNAs, miRs)

Bei miRNAs handelt es sich um 21-23 Nukleotide lange, nicht-kodierende RNAs, die aufgrund ihrer zellulären Funktion einen Teil der RNA-Interferenz (RNAi) bilden. Die RNAi beschreibt einen eukaryotischen Mechanismus zur posttrankriptionellen Genregulation (*posttranscriptional gene silencing*, PTGS) durch kleine Ribonukleinsäuren (*ribonucleic acids*, RNAs) (Agrawal *et al.*, 2003; Bartel, 2004). Neben den miRNAs umfasst die RNAi zwei weitere

Klassen von RNA-Molekülen, die *small interfering* RNAs (siRNAs) und *piwi-interacting* RNA (piRNA), die sich erster Linie anhand ihrer zellulären Prozessierung unterscheiden lassen. Hierbei besitzen siRNAs einen exogenen Ursprung und werden zumeist nach einer Virus-Infektion aus viraler RNA prozessiert, wohingegen die keimbahnspezifischen piRNA sowie die miRNAs endogen im Genom kodiert werden (Agrawal *et al.*, 2003; Bartel, 2004; Mcmanus, Sharp, 2002; Ozata *et al.*, 2019).

Die Klasse der miRNAs zeichnet sich durch eine imperfekte Haarnadel-Vorläuferstruktur aus, die anhand von mehreren Prozessierungsschritten unter Verwendung verschiedener Endonukleasen zu einem miRNA-Duplex prozessiert wird (Lee et al., 2002). Die Einzelstränge des miRNA-Duplex können als reife miRNA durch Bindung an ihre Ziel-mRNA die Expression der Ziel-mRNA regulieren. Je nach Komplementarität zwischen miRNA und Ziel-mRNA kann die Bindung eine Translationsinhibition, eine Destabilisierung oder einen Abbau der mRNA zur Folge haben (Bartel, 2004; Giraldez et al., 2006; Lewis et al., 2005; Mathonnet et al., 2007). Die Bindung der miRNA an ihre Ziel-mRNA erfolgt zumeist innerhalb der 3' untranslatierten Region (UTR), eine Regulation kann jedoch in seltenen Fällen auch innerhalb des kodierenden Bereiches bzw. der 5'UTR eines Gens erfolgen (Lai, 2002; Lytle et al., 2007; Moretti et al., 2010). In der Regel erfolgt die Bindung der miRNA durch Komplementarität ihrer sogenannten Seed-Region, welche die Nukleotide zwei bis acht umfasst, mit der Zielgen-3'UTR (Bartel, 2009; Lewis et al., 2003). Seit der Identifikation der ersten miRNAs lin-4 und let-7 im Modellorganismus Caenorhabditis elegans im Jahre 1993 wurden miRNAs in 271 Organismen, wie beispielsweise Viren, Insekten und Pflanzen, beschrieben (Kozomara et al., 2019; Lee et al., 1993). Hierbei zeichnen sich miRNAs durch eine hohe Konservierung zwischen verschiedenen Spezies aus, wodurch eine entscheidende Rolle der miRNAs in der Regulation zentraler zellulärer Signalwege geschlussfolgert wurde (Lee et al., 2007; Xiong et al., 2019). Im Menschen wurden bisher insgesamt 1917 humane Vorläufer miRNAs (precursor miRNA, premiRNA) und 2654 reife miRNAs detektiert (Kozomara et al., 2019). Die ursprüngliche Nomenklatur der miRNAs basierte auf der Annahme, dass nur ein Strang des miRNA-Duplex als funktioneller Regulator der Genexpression agieren kann. Der funktionelle Strang wurde daher mit dem Namen der miRNA betitelt, wohingegen der nicht funktionelle Gegenstrang als passenger strand oder star strand bezeichnet und namensgebend mit einem Stern gekennzeichnet wurde (Desvignes et al., 2015). Neuere Untersuchungen zeigten jedoch, dass auch star strands die Genexpression diverser Zielgene regulieren können, wodurch die Nomenklatur von miRNAs angepasst wurde (Griffiths-Jones, 2004; Okamura et al., 2008). Gegenwärtig werden die miRNA-Einzelstränge anhand ihrer Position innerhalb der pre-miRNA mit 5p am 5'Ende der pre-miRNA bzw. 3p am 3'Ende der pre-miRNA betitelt (Kozomara, Griffiths-Jones, 2014).

2.2.1 miRNA-Biogenese

Die miRNA-kodierenden Gene können sowohl einzeln als auch in Gen-Cluster transkribiert werden und als eigene Transkriptionseinheit, in intergenischen Bereichen oder innerhalb anderer Gene vorliegen. Die Transkription der miRNA-kodierenden Gene erfolgt im Nukleus durch die RNA Polymerase II (s. Abbildung 3) (Lee *et al.*, 2004).

Abbildung 3: miRNA-Biogenese. Nach Transkription des miRNA-Gens durch die RNA-Polymerase II faltet sich das entstandene Transkript zurück und bildet eine Haarnadelstruktur, die sogenannte primäre miRNA (pri-miRNA). Im Anschluss wird diese durch den Mikroprozessorkomplex Drosha/DGCR8 geschnitten, wodurch die Vorläufer-miRNA (*precursor miRNA*, pre-miRNA) gebildet wird. Nach Export ins Zytoplasma durch Exportin 5 wird die pre-miRNA weiter von der Endonuklease Dicer prozessiert, sodass ein imperfekter miRNA-Duplex entsteht. Einer der beiden Einzelstränge des miRNA-Duplex wird in den *RNA induced silecing complex* (RISC) geladen und kann so als reife miRNA die Expression verschiedener Zielgene durch Destabilisierung bzw. Degradation der mRNA oder Inhibition der Translation regulieren. Die Abbildung wurde mit Hilfe der Motifolio *Illustration Toolkits for Scientific Presentations and Publications* erstellt (modifziert nach Bartel *et al.*, 2018).

Das entstandene Transkript, die sogenannte primäre miRNA (pri-miRNA), faltet sich im Anschluss zurück und bildet eine imperfekte Haarnadelstruktur, die aus mehreren Kilobasen bestehen kann und sowohl 5'*Cap* als auch eine 3'Polyadenylierung besitzt (Cai *et al.*, 2004; Lee *et al.*, 2004). Durch einen Mikroprozessorkomplex bestehend aus der Endonuklease Drosha sowie dem Doppelstrang-bindenden Partnerproteine *DiGeorge syndrome critical region 8* (DGCR8) erfolgt die Prozessierung der pri-miRNA. Hierbei schneidet Drosha die Haarnadelschleife elf Nukleotide entfernt vom Übergang der einzelsträngigen RNA zur doppelsträngigen DNA mit Hilfe seiner zwei RNase III-Domänen (Kwon *et al.*, 2016; Nguyen *et al.*, 2015). Diese Prozessierung resultiert in der circa 60-110 nt langen pre-miRNA, welche

im Anschluss durch Exportin 5 unter Ras-related Nuclear protein (RAN)-Guanosin-5'triphosphat (GTP)-Verbrauch aus dem Nukleus ins Zytoplasma transportiert wird (Bohnsack et al., 2004; Kim, 2004; Yi et al., 2003). Im Zytoplasma wird die pre-miRNA durch den Mikroprozessorkomplex, bestehend aus der Endonuklease Dicer sowie dem dsRNAbindenden Partnerprotein TRBP, weiter prozessiert. Hierbei entfernt Dicer die Haarnadelschleife, wodurch ein circa 22 nt langer imperfekter miRNA-Duplex mit einem 2 nt langem Überhang am 3' Ende entsteht (Hutvagner et al., 2001; Ketting et al., 2001). Die Regulation der Genexpression erfolgt mit Hilfe eines Ribonukleoproteinkomplexes, dem sogenannten RNA induced silencing complex (RISC), dessen Hauptkomponenten die Argonautenproteine (Ago) 1-4 bilden. Die Ago-Proteine sind hierbei in der Lage RNAs zu binden, wodurch sie die Rekrutierung eines Strangs des miRNA Duplex in den RISC induzieren (Pratt, Macrae, 2009; Schwarz et al., 2003). Welcher der beiden Stränge des miRNA Duplex in den RISC geladen wird, hängt von der thermody-namischen Stabilität der Einzelstränge ab. Hierbei wird präferenziell der Strang des miRNA-Duplex in den RISC integriert, der am 5' Ende die Nukleotide Uridin oder Adenosin aufweist bzw. der Strang, der die geringere Stabilität der Basenpaarung am 5' Ende zeigt (Frank et al., 2010; Khvorova et al., 2003). Der entsprechende Gegenstrang wird im Anschluss degradiert. Die Bindung des miRNA-RISC-Komplexes an die Ziel-mRNA induziert das PTGS, welches zur Inhibition der Translation, Destabilisierung oder Degradation der mRNA führen kann. MiRNAs regulieren eine Vielzahl an zellulären Genen in unterschiedlichen zellulären Prozessen (Bartel, 2004; Giraldez et al., 2006; Lewis et al., 2005; Mathonnet et al., 2007). Hierbei kann eine miRNA mehrere Zielgene besitzen, gleichzeitig können Zielgene auch von verschiedenen miRNAs reguliert werden. Dadurch ergibt sich eine enorme Vielfalt möglicher miRNA-Zielgen-Interaktionen, die innerhalb von regulatorischen Netzwerken ganze Signalwege modulieren können (Bartel, 2018). Die Entschlüsselung dieser komplexen Netzwerke stellt eine zentrale Fragestellung der aktuellen miRNA-Forschung dar.

2.2.2 Der Einfluss von miRNAs in humanen Erkrankungen

Durch ihr ausgeprägtes miRNA-Zielgennetzwerk sind miRNAs in der Lage eine Vielzahl grundlegender zellulärer Mechanismen, wie beispielsweise das Zellwachstum, die Proliferation, die Differenzierung oder die Apoptose, zu regulieren (Bartel, 2004; Cheng *et al.*, 2005; Shim, Nam, 2016). MiRNAs zeigen eine dynamische Expression, die unter anderem abhängig von dem Zelltyp sowie dem Entwicklungsstatus ist, sodass eine strikte Kontrolle der miRNA-Expression zwingend notwendig ist (Neilson *et al.*, 2007; Ruegger, Grosshans, 2012). Diverse humane Erkrankungen konnten mit einer aberranten miRNA-Expression assoziiert werden, welche direkt zur Pathogenese der Erkrankung beitragen kann. In diesem Zusammenhang wurde eine

Einleitung

miRNA-Expression veränderte unter anderem in verschiedenen Karzinomen, kardiovaskulären und neurodegenerativen Erkrankungen sowie Autoimmunerkrankungen nachgewiesen (Di Leva et al., 2014; Hanna et al., 2019; Junn, Mouradian, 2012; Wojciechowska et al., 2017). Hierbei konnte die spezifische miRNA-Signatur nicht nur im erkrankten Gewebe, sondern auch in diversen Körperflüssigkeiten, wie Vollblut, Plasma oder Urin, detektiert werden. MiRNAs zeigen durch ihre Bindung an Proteine, wie beispielsweise Ago-Proteine, sowie der Verpackung in extrazellulären Vesikeln eine erhöhte Stabilität gegenüber anderen RNAs. Durch diese Eigenschaft besitzen miRNAs ein großes Potenzial, als nicht-invasive Biomarker für diverse Erkrankungen zu fungieren (Condrat et al., 2020; Turchinovich, Burwinkel, 2012; Valadi et al., 2007). Zirkulierende miRNAs können unter anderem im Blut oder Serum der Patienten sowohl zur Diagnostik und Prognostik herangezogen werden, aber auch als prädiktiver Biomarker zur Entwicklung der therapeutischen Strategie dienen (Madhavan et al., 2013). Aktuell lassen sich insgesamt 149 klinische Studien zu miRNA-Biomarkern in der Datenbank ClinicalTrials.gov des National Center for Biotechnology Information (NCBI) verzeichnen (Stand Februar 2021), wodurch das Potenzial der miRNAs in diversen Krankheitsformen unterstrichen wird (Zarin et al., 2016).

Daneben werden miRNAs ebenso als mögliche therapeutische Angriffspunkte diskutiert. Vor allem in der Karzinogenese wurde die spezifische Rolle von miRNAs definiert, die abhängig von dem Zielgenspektrum der jeweiligen miRNA sowohl tumorsuppressiv als auch tumorfördernd wirken können. Aufgrund ihrer regulatorischen Fähigkeiten bieten miRNAs daher die Möglichkeit zur direkten Modulation von Tumorsuppressor- und Onkogenen, weswegen sowohl miRNA-Mimics als auch miRNA-Antagonisten bereits als Therapieformen in ersten klinischen Studien eingesetzt werden (Hanna *et al.*, 2019; Iorio, Croce, 2012). Neben ihrer fundamentalen Rolle in der Karzinogenese rücken miRNAs sowohl als Biomarker-Kandidaten als auch als therapeutische Strategien für neurodegenerativen Erkrankungen, wie M. Alzheimer oder M. Parkinson, immer weiter in den Fokus der aktuellen Forschung.

2.2.3 miRNAs in neurodegenerativen Erkrankungen und M. Parkinson

Verschiedene Studien zu neurodegenerativen Erkrankungen, wie M. Alzheimer, M. Huntington oder M. Parkinson, untersuchten die miRNA-Signaturen der Patienten sowohl in betroffenen Hirngeweben als auch in Körperflüssigkeiten wie Vollblut, Plasma oder der Cerebrospinalflüssigkeit. Vor allem in Hinblick auf M. Alzheimer lassen sich eine Vielzahl an miRNA-Expressionsstudien mit unterschiedlichen Signaturen verzeichnen (Qiu *et al.*, 2014). Zwischen 2012 und 2016 wurden alleine 19 Publikationen zu miRNA-Signaturen im Blut von

Alzheimer-Patienten erfasst, mit steigender Tendenz (Swarbrick et al., 2019). Zu den deregulierten miRNAs zählen unter anderem die miR-9, miR-34a, miR-107 und miR-125b, für die sowohl in Blutproben, die abhängig von der Studie aus Plasma, Serum oder in mononukleären Zellen des peripheren Blutes (peripheral blood mononuclear cells, PBMCs) bestanden, als auch in verschiedenen Hirngeweben eine differenzielle Expression detektiert wurde (Cogswell et al., 2008; Leidinger et al., 2013; Lukiw, 2007; Sarkar et al., 2016; Schipper et al., 2007; Tan et al., 2014; Wang et al., 2008). Weitaus weniger miRNA-Expressionsstudien wurden bisher bei Parkinson-Patienten durchgeführt. Allerdings weisen auch diese eine ähnliche Heterogenität wie die beschriebenen Alzheimer-Studien auf (Qiu et al., 2014). Hierbei zeigen beispielsweise die miRNAs miR-19b, miR-24 und miR-195 eine differenzielle Expression im Serum von Parkinson-Patienten, welche in einem unabhängigen Patientenkollektiv von verschiedenen Arbeitsgruppen bestätigt werden konnte (Botta-Orfila et al., 2014; Cao et al., 2017; Ding et al., 2016; Vallelunga et al., 2014). Eine aktuelle Studie von Grossi et al. aus dem Jahr 2021 beschreibt eine erhöhte miR-34a-5p-Expression in zirkulierenden extrazellulären Vesikeln im Plasma von Parkinson-Patienten (Grossi et al., 2021). Daneben deuten verschiedenen Publikationen ebenso auf ein heterogenes miRNA-Expressionsprofil in post mortem Hirnbiopsien von Parkinson-Patienten hin, welches abhängig von der untersuchten Hirnregion, dem Stadium der Erkrankung sowie der Therapie variiert (Leggio et al., 2017). Die erste in diesem Rahmen durchgeführte Studie stammt von Kim et al. aus dem Jahr 2007, in der die Autoren in erster Linie eine verminderte miR-133b-Expression im Mittelhirn detektierten (Kim et al., 2007). Nachfolgende Publikationen erfassten unter anderem eine aberrante miRNA-Signatur der miR-34b und miR-34c (Minones-Moyano et al., 2011), der miR-126 (Kim et al., 2014), der miR-7 (Mcmillan et al., 2017) sowie der miR-132 und miR-184 (Briggs et al., 2015), allerdings konnten keine übereinstimmenden Ergebnisse in diesen Studien generiert werden.

Trotz einer bislang nicht eindeutig definierten miRNA-Signatur in neurodegenerativen Erkrankungen wurde ein entscheidender Einfluss von miRNAs auf die neuronale Viabilität im Kontext von M. Parkinson nachgewiesen. In der Studie von Kim *et al.* aus dem Jahr 2007 wurde ein Dicer-*knock-out* spezifisch in dopaminergen Neuronen von Mäusen generiert. Dieser führte zu einer spezifischen Degradation der dopaminergen Neuronen, was in einer verminderten Mobilität der Mäuse resultierte. Diese Beobachtung ließ die Autoren eine signifikante Bedeutung der miRNAs in dopaminergen Neuronen schlussfolgern (Kim *et al.*, 2007). In einer vorangegangenen Studie unserer Arbeitsgruppe konnte bereits gezeigt werden, dass die miR-34a-5p durch Modulation der *Unfolded Protein Response* (UPR), einem zellulären Mechanismus zur Proteinqualitätskontrolle, zur Neurodegeneration beitragen kann (Krammes *et al.*, 2020). Daneben wurden ausgewählte PARK-Gene als Ziele verschiedener miRNAs beschrieben. In diesem Zusammenhang wurde eine Regulation des α -Synuclein kodierenden Gens *SNCA* durch die miR-7, miR-153, miR-34b und miR-34c beschrieben (Doxakis, 2010;

17

Junn *et al.*, 2009; Kabaria *et al.*, 2015). Weitere Publikationen wiesen die Regulation von *DJ-1* durch die miR-494 sowie von *LRRK2* durch die miR-205 nach (Cho *et al.*, 2013; Xiong *et al.*, 2014). Nachfolgende Publikationen konnten anhand von *in vitro* und *in vivo* Parkinson-Modellen den direkten Einfluss von miRNAs auf die neuronale Viabilität nachweisen. Hierbei ließ sich eine erhöhte Viabilität durch ektopische Expression der miR-7 und miR-124 sowie durch Inhibition der miR-34a und miR-126 beobachten (Fragkouli, Doxakis, 2014; Horst *et al.*, 2017; Kim *et al.*, 2014; Saraiva *et al.*, 2016). Diese vielversprechenden Ergebnisse unterstreichen die Bedeutung der miR-7 in M. Parkinson, wodurch diese miRNA bereits als therapeutischer Angriffspunkt in M. Parkinson diskutiert wird (Titze-De-Almeida, Titze-De-Almeida, 2018).

2.3 Ausgangspunkt und Zielsetzung dieser Arbeit

Das Ziel der vorliegenden Arbeit war es den Einfluss von differentiell exprimierten miRNAs in einem etablierten Parkinson-Zellkulturmodell auf zelluläre, krankheitsassoziierte Signalwege zu untersuchen. Diverse Studien beschreiben eine aberrante miRNA-Expression sowohl in Körperflüssigkeiten als auch in postmortalen Gewebeproben der *Substantia nigra pars compacta* von Parkinson-Patienten (Leggio *et al.*, 2017). Trotz der Heterogenität der erfassten miRNA-Signaturen lässt sich ein entscheidender Einfluss von miRNAs auf die Viabilität von dopaminergen Neuronen eindeutig nachweisen (Kim *et al.*, 2007). Daher rücken miRNAs als potenzielle Modulatoren der Pathogenese von M. Parkinson immer weiter in den Fokus der Forschung. Allerdings wird die Untersuchung der zellulären Pathomechanismen sowie den spezifischen miRNA-Signaturen von M. Parkinson noch immer aufgrund der zumeist erst spät gestellten Diagnose sowie dem Absterben der betroffenen Neurone im Gehirn der Patienten erschwert (Hartmann, 2004; Lopes *et al.*, 2017). Aus diesem Grund werden *in vitro* und *in vivo* Parkinsonmodelle verwendet, um die Progression der Erkrankung auf molekularer Ebene zu analysieren (Lopes *et al.*, 2017; Salari, Bagheri, 2019).

Trotz des vielseitigen Einsatzes des in dieser Arbeit untersuchten Parkinson-Zellkulturmodells fehlen vollständige Charakterisierungen der zugrundeliegenden zellulären Veränderungen des molekularen Parkinson-ähnlichen Phänotyps, insbesondere hinsichtlich der miRNA-Signatur. Daher war das erste Teilziel dieser Arbeit das verwendete Parkinson-Zellkulturmodell im Rahmen von Transkriptom- und miRnom-Analysen näher zu charakterisieren. Anhand der Transkriptom-Analyse sollte zudem überprüft werden, inwiefern die zentralen Pathomechanismen von M. Parkinson mit dem angewandten Parkinson-Zellkulturmodell auch auf molekularer Ebene abgebildet werden können. Daneben sollte anhand der miRnom-Analysen die miRNA-Signatur in erkrankten dopaminergen Neuronen beschrieben und insbesondere die zentralen, deregulierten miRNAs, welche die Progression der Erkrankung beeinflussen, identifiziert werden.

Auf Grundlage der erfassten miRNA-Signatur sollte im zweiten Teilziel dieser Arbeit der Einfluss der zuvor als dereguliert identifizierten miRNA-Kandidaten auf die Pathogenese von M. Parkinson untersucht werden. Hierbei sollten zentrale Zielgene der deregulierten miRNAs innerhalb von Dopamin- bzw. krankheitsassozijerten Signalwegen durch die Kombination aus in silico-basierter Zielgenauswahl und experimenteller Validierung identifiziert werden. Das Kernstück der experimentellen Validierung bildete ein Hochdurchsatz miRNA-Interaktions-Reporterassay (High-throughput miRNA interaction reporter assay, HiTmIR-Assay), mit Hilfe dessen direkte Interaktionen zwischen miRNA und entsprechender Zielgen-3'UTR für eine Vielzahl an potenziellen Zielgenen analysiert werden kann (Kern et al., 2021). Anhand der Ergebnisse des HiTmIR-Assays sollte der Einfluss der Länge und der Anzahl von miRNA-Bindestellen auf die miRNA-bedingte Regulation genauer untersucht werden, um die zugrundeliegenden Mechanismen der miRNA-Zielgen-Regulation besser zu verstehen. Zudem sollten die hier generierten Ergebnisse das miRNA-Zielgennetzwerk in dopaminergen Neuronen und in Parkinson-assoziierten Signalwegen identifizieren und damit die molekulare Wirkweise von miRNAs auf die Pathogenese der Erkrankung genauer entschlüsseln. Die neu Erkenntnisse schaffen Grundlage zur spezifischen gewonnenen die Modulation krankheitsassoziierter Signalwege und belegen die potenzielle Eignung der untersuchten miRNAs als Biomarker.

3. Material und Methoden

3.1 Material

3.1.1 Humane Zelllinien

Zelllinie	Hersteller; Firmensitz
Human Embryonic Kidney (HEK293)-T	Deutsche Sammlung von Mikroorganismen und
	Zellkulturen (DSMZ); Leibniz, Deutschland
SH-SY5Y	DSMZ; Leibniz, Deutschland

3.1.2 Bakterienstämme

Bakterienstamm	Hersteller; Firmensitz
NEB 5-alpha <i>competent</i> E. coli	New England Biolabs (NEB); Frankfurt, Deutschland

3.1.3 Kulturmedien

3.1.3.1 Kulturmedien und Zusätze für humane Zelllinien

Kulturmedium	Hersteller; Firmensitz
Gibco Dulbecco's Modified Eagle Medium (DMEM)	Life Technologies; Darmstadt, Deutschland
Fötales Kälberserum (<i>fetal calf serum</i> , FCS)	Corning; Corning, New York, USA
Gibco™ Penicillin-Streptomycin (Pen/Strep)	Life Technologies; Darmstadt, Deutschland
10,000 U/mL	

3.1.3.2 Kulturmedium und Zusätze für Bakterienkulturen

Kulturmedium	Komponenten	Hersteller; Firmensitz
LB-Medium	Bacto™ Tryptone	BD Biosciences; San Jose, Kalifornien, USA
	Bacto™ Yeast Extract	BD Biosciences; San Jose, Kalifornien, USA
	Bacto™ Agar	BD Biosciences; San Jose, Kalifornien, USA
	Natriumchlorid	Carl Roth; Karlsruhe, Deutschland
SOC-Medium	-	NEB; Frankfurt, Deutschland

Kulturmedium	Komponenten	Hersteller; Firmensitz
Ampicillin Natriumsalz	-	Carl Roth; Karlsruhe, Deutschland

3.1.4 Chemikalien

Bezeichnung	Hersteller; Firmensitz
10x PCR-Puffer	Sigma Aldrich: St. Louis, Missouri, USA
3-Mercapto-1.2-propanediol	Sigma Aldrich: St. Louis, Missouri, USA
2-Propanol ROTISOLV [®] ≥99.9 %	Carl Roth: Karlsruhe. Deutschland
6x Gel Loading Dve. Purple	NEB: Frankfurt. Deutschland
Bio Magermilchpulver	Heirler Cenovis Gmbh; Radolfzell, Deutschland
Bovines Serumalbumin (BSA)	Sigma Aldrich; St. Louis, Missouri, USA
Bromphenolblau	Serva Electrophoresis GmbH; Heidelberg
•	Deutschland
CutSmart Buffer	NEB; Frankfurt, Deutschland
Dimethylsulfoxid (DMSO)	Carl Roth; Karlsruhe, Deutschland
Gel Loading Dye Purple (6x)	NEB; Frankfurt, Deutschland
Essigsäure	Carl Roth; Karlsruhe, Deutschland
Ethanol ROTIPURAN [®] ≥99,8 %	Carl Roth; Karlsruhe, Deutschland
Ethidiumbromid-Lösung 1% (10 mg/ml)	Carl Roth; Karlsruhe, Deutschland
Ethylendiamintetraessigsäure (EDTA)	Sigma Aldrich; St. Louis, Missouri, USA
Expand™ Long Range dNTPack	Roche AG; Basel, Schweiz
Gibco Phosphate-Buffered Saline (PBS)	Life Technologies; Darmstadt, Deutschland
Glycerin	Sigma Aldrich; St. Louis, Missouri, USA
HiPerfect Transfection Reagent	Qiagen; Hilden, Deutschland
Methanol ROTISOLV [®]	Carl Roth; Karlsruhe, Deutschland
Natriumchlorid	Carl Roth; Karlsruhe, Deutschland
Natriumdodecylsulfat (Sodium Dodecyl Sulfate,	Carl Roth; Karlsruhe, Deutschland
SDS)	
Nuklease freies H ₂ O	Invitrogen; Carlsbad, Deutschland
Polyfect Transfection Reagent	Qiagen; Hilden, Deutschland
PonceauS™	Sigma Aldrich; St. Louis, Missouri, USA
Precision Plus Protein [™] Dual Color Standard	Bio-Rad; Hercules, Kalifornien, USA
QIAzol Lysis Reagent	Qiagen; Hilden, Deutschland
Quick-Load Purple 1 kb Plus DNA Ladder	NEB; Frankfurt, Deutschland
T4 DNA Ligase Reaction Buffer	NEB; Frankfurt, Deutschland
Trichlormethan/Chloroform	Carl Roth; Karlsruhe, Deutschland
Tris(hydroxymethyl)-aminomethan (Tris)	Carl Roth; Karlsruhe, Deutschland

Bezeichnung	Hersteller; Firmensitz
Tween®20	Carl Roth; Karlsruhe, Deutschland
UltraPure™ Agarose	Invitrogen; Carlsbad, Deutschland

3.1.5 Puffer und Lösungen

Puffer/Lösungen	Zusammensetzung
1x SDS-Laufpuffer	25 mM Tris-HCl
	190 mM Glycin
	0,1 % SDS
10x Tris-gepufferte Kochsalzlösung (Tris-	1x TBS
<i>buffered saline,</i> TBS) mit 0,1% Tween20 (TBST)	0,1 % Tween20
1x Transferputter	25 mM Tris-HCl
	190 mM Glycin
	0,1 % SDS
	20 % Methanol
10x TBS	24 a Tris-HCl
	88 g NaCl
100x TRIS-Acetat-EDTA (TAE)-Puffer (pH = 8,8)	1 M Essigsäure
	50 mM EDTA
	2 M Tris-HCl, pH 8,0
Qu Camala Duffan	
	10 % 3-Mercapto-1,2-propanedio
	(0,05 % Bromphenolblau)
Blockingpuffer (5 % BSA/TBST)	5 % BSA
	1x TBST
Blockingpuffer (5 % Milch/TBST)	5 % Magermilchpulver
	1x TBST
Puffer/Lösungen	Zusammensetzung
-----------------	--------------------
LB-Medium	1 % Trypton
	0,5 % Hefeextrakt
	1 % NaCl
	(1,5 % Bacto-Agar)

3.1.6 Verbrauchsmaterial

Bezeichnung	Hersteller; Firmensitz				
epMotion Reservoir (10 ml, 30 ml)	Eppendorf; Hamburg, Deutschland				
eTIPS Motion Pipettenspitzen (50 μl, 300 μl,	Eppendorf; Hamburg, Deutschland				
1000 µl)					
Kryogefäße (2 ml)	Greiner BioOne; Frickenhausen, Deutschland				
LUNA-FL™ Counting Slides	Logos Biosystems; Villeneuve d'Ascq,				
	Frankreich				
Mikroplatte (96-well, weiß)	Eppendorf; Hamburg, Deutschland				
Nitrocellulose Transfermembran	GE Healthcare; Uppsala, Schweden				
Parafilm M	Bemis; Neenah, Wisconsin, USA				
Pipetten (5 ml, 10 ml, 25 ml)	Greiner BioOne; Frickenhausen, Deutschland				
Pipettenspitzen (10 μl, 20 μl, 200 μl, 1000 μl)	Sorenson BioScience; Salt Lake City, Utah, USA				
Reaktionsgefäße (1,5 ml, Safe-Lock)	Eppendorf; Hamburg, Deutschland				
Reaktionsgefäße (15 ml, 50 ml)	Greiner BioOne; Frickenhausen, Deutschland				
Twin tec PCR Platte (96-well)	Eppendorf; Hamburg, Deutschland				
Whatman [™] -Papier	GE Healthcare; Uppsala, Schweden				
Zellkulturflaschen (25 cm², 75 cm²)	Greiner BioOne; Frickenhausen, Deutschland				
Zellkulturplatten (6-well, 24-well)	Greiner BioOne; Frickenhausen, Deutschland				
Zellkulturplatten (96-well, transparent)	Eppendorf; Hamburg, Deutschland				
Zellkulturplatten (96-well, schwarz)	Greiner BioOne; Frickenhausen, Deutschland				

3.1.7 Geräte

Bezeichnung	Hersteller; Firmensitz			
Accu-iet [®] pro	Brand: Wertheim Deutschland			
Axiovert25	Zeiss: Jena Deutschland			
ChemiDoc™ Touch Imaging System	Bio-Rad: Hercules, Kalifornien, USA			
DeVision DBOX	Decon Science Tec GmbH; Hohengandern,			
	Deutschland			

Electrophoresis power supply EV231	neoLab Migge GmbH; Heidelberg, Deutschland
epMotion 5075 liquid handling system	Eppendorf; Hamburg, Deutschland
G2545A Hybridization Oven	Agilent Technologies; Santa Clara, Kalifornien,
	USA
Galaxy 170 S CO2 Inkubator	Eppendorf; Hamburg, Deutschland
GlowMax navigator microplate luminometer	Promega; Mannheim, Deutschland
Heraeus HB 2448 K Sicherheitswerkbank	Heraeus Holding GmbH; Hanau, Deutschland
Kühlzentrifuge (2-16K)	Sigma; Osterode am Harz, Deutschland
LUNA-FL™ Dual Fluorescence Cell Counter	Logos Biosystems; Villeneuve d'Ascq,
	Frankreich
Magnetrüher (IKAMAG RCT)	IKA; Staufen, Deutschland
Microarray Scanner G2565BA	Agilent Technologies; Santa Clara, Kalifornien,
	USA
mini-PROTEAN Tetra Cell	Bio-Rad; Hercules, Kalifornien, USA
Multitron II Inkubationsschüttler	Infors; Basel, Schweiz
NanoDrop™ 2000 Spektralphotometer	Thermo Fisher Scientific; Waltham,
	Massachusetts USA
PeqStar 2X Thermocycler	VWR; Radnor, Pennsylvania, USA
ProFlex PCR Thermocycler	Applied Biosystems; Foster City, Kalifornien,
	USA
Schüttelwasserbad 1086	GFL; Burgwedel, Deutschland
Standard Power Pack P25T	Biometra GmbH; Göttingen, Deutschland
StepOnePlus™ Real-Time PCR System	Applied Biosystems; Foster City, Kalifornien,
	USA
TE42 und TE62 Tank Blotting-Einheit	Hoefer Inc; Holliston, Massachusetts, USA
ThermoCell Mixing Block MB-102	Bioer; Hangzhou, China
Thermomix [®] BU Wasserbad	B. Braun; Welsungen, Deutschland
UNIVAPO 100 H	Uniequip Laborgerätebau- und Vertriebs GmbH;
	Planegg, Deutschland
Zentrifuge 5417 R	Eppendorf; Hamburg, Deutschland
Zentrifuge 5425	Eppendorf; Hamburg, Deutschland

3.1.8 Enzyme

Enzym Hersteller; Firmensitz			
BamH I-HF	NEB; Frankfurt, Deutschland		
Bg/ II	NEB; Frankfurt, Deutschland		
EcoR I-HF	NEB; Frankfurt, Deutschland		
Gibco Trypsin-EDTA	Life Technologies; Darmstadt, Deutschland		
Nael	NEB; Frankfurt, Deutschland		

Enzym	Hersteller; Firmensitz
Nru I-HF	NEB; Frankfurt, Deutschland
Pml I	NEB; Frankfurt, Deutschland
rAPid Alkaline Phosphatase (RAP)	Sigma Aldrich; St. Louis, Missouri, USA
Sac I-HF	NEB; Frankfurt, Deutschland
Spe I-HF	NEB; Frankfurt, Deutschland
T4 DNA-Ligase	NEB; Frankfurt, Deutschland
Taq-Polymerase	Sigma Aldrich; St. Louis, Missouri, USA

3.1.9 Vektoren

3.1.9.1 pSG5

Bei dem in dieser Arbeit verwendeten pSG5-Vektor der Firma Agilent Technologies handelt es sich um ein eukaryotisches, *high-copy* Expressionsplasmid, welches zur Expression von Vorläufer miRNAs dient (s. Abbildung 4). Das Plasmid besitzt zur effizienten *in vitro*-Expression ein β-Globin-Intron, ein SV40 Polyadenylierungssignal (pA) sowie einen SV40-Promotor. Daneben ermöglicht ein T7-Promotor die effiziente *in vitro*-Expression klonierter Inserts. Zur Klonierung der gewünschten Sequenz dienten die in der *multiple cloning site* befindlichen Restriktionsschnittstellen für die Enzyme *Eco*R I, *Bam*H I sowie *Bg*I II. Zudem besitzt das Plasmid zwei Replikationsursprünge, die zur autonomen Replikation (prokaryotisch, pUC ori) sowie zur Synthese von Einzelstrang-DNA (filamentöser Phage, f1 ori) verwendet werden können. Zur Selektion transformierter Bakterien diente ein Ampicillin-Resistenzgen.

Abbildung 4: Vektorkarte des pSG5-Expressionsplasmides (Agilent Technologies, Stratagene).

3.1.9.2 pSG5-miRNA-Expressionsplasmide

Das in dieser Arbeit verwendete Expressionsplasmid pSG5-miR-34a wurde von Herrn Dr. rer. nat. Martin Hart (Institut für Humangenetik, Universität des Saarlandes) zur Verfügung gestellt. Hierbei wurde die Vorläufer-Seguenz der humanen miR-34a sowie circa 100 bp der umliegenden Sequenz (Nukleotide 9151617-9151816 von Chromosom 1) von der Firma Deutschland) synthetisiert und Eurofins Genomics (Ebersberg, mit Hilfe der Restriktionsschnittstellen der Enzyme EcoR I und Bgl II in das pSG5-Expressionsplasmid kloniert. Die ektopische Expression sowie die Prozessierung der reifen miR-34a-5p aus der Vorläufer miRNA wurden mittels Northern Blot und guantitativer Real-Time-PCR (gRT-PCR) überprüft (Hart et al., 2016).

Das Expressionsplasmid pSG5-miR-7 wurde im Rahmen dieser Arbeit generiert. Hierzu wurde die Sequenz der humanen Vorläufer-miR-7 sowie circa 100 bp der umliegenden Sequenz (Nukleotide 88611724-88612046 von Chromosom 15) von der Firma Eurofins Genomics (Ebersberg, Deutschland) synthetisiert und mit Hilfe der Restriktionsenzyme *Eco*R I und *Bam*H I in das pSG5-Expressionsplasmid kloniert. Die ektopische Expression sowie die Prozessierung der reifen miR-7-5p wurde von Frau Dr. rer. nat. Jennifer Menegatti am Institut für Virologie (AG Grässer, Universität des Saarlandes) mittels Northern Blot validiert.

3.1.9.3 pMIR-RNL-TK

Zur Untersuchung der Effekte der miRNA auf die jeweilige 3'UTR ihrer Ziel-mRNAs im HiTmIR-Assay wurde in dieser Arbeit der eukaryotische Vektor pMIR-RNL-TK verwendet. Das Grundgerüst des verwendeten Vektors pMIR-RNL-TK bildet der kommerziell verfügbare eukaryotische Vektor pMIR-REPORT™ (Ambion; Oberursel, Deutschland). Dieser wurde von der Arbeitsgruppe Meister (Max-Planck-Institut, Martinsried, Deutschland) so modifiziert, dass er neben dem für die Firefly-Luciferase kodierenden Gen zusätzlich das für die Renilla-Luciferase kodierende Gen beinhaltet. Hierzu wurden die Sequenz der Renilla-Luciferase sowie des SV40-Promotors und des Polyadenylierungssignals in einer Polymerasekettenreaktion (polymerase chain reaction, PCR) amplifiziert und mit Hilfe des Restriktionsenzyms Ssp I in das Grundgerüst kloniert. Durch den SV40-Promotor kann bei endogener T-Antigen-Expression eine konstante Expression der Renilla-Luciferase gewährleistet werden. Zusätzlich wurde die Sequenz des HSV-TK-Promotors upstream des für die Firefly-Luciferase kodierenden Gens eingefügt (Beitzinger et al., 2007). In dieser Arbeit wurde die zu untersuchende 3'UTR Sequenz in die multiple cloning site des modifizierten Vektors eingefügt, welche downstream des für die Firefly-Luciferase kodierenden Gens liegt. Dadurch kann eine Bindung der miRNA innerhalb der 3'UTR durch verringerte Expression der

26

Luciferase nachgewiesen werden. Die konstante Expression der Renilla-Luciferase diente zur Normierung der Luciferase-Aktivität und der Kontrolle der Transfektionseffizienz im Reaktionsansatz.

Abbildung 5: Vektorkarte des pMIR-RNL-TK-Reporterplasmides erstellt mit SnapGene.

3.1.9.4 Zielgen 3'UTR-Reporterplasmide

Die im Rahmen dieser Arbeit verwendeten Reporterplasmide der Zielgen-3'UTRs für die miR-34a-5p wurden von der Firma Eurofins Genomics (Ebersberg, Deutschland) synthetisiert. Hierzu wurden die miRNA-Bindestelle sowie die umliegenden Sequenzen innerhalb der 3'UTRs der entsprechenden Zielgene in maximal 475 bp großen Fragmenten über die Restriktionsschnittstellen der Enzyme *Spe* I und *Sac* I in den Vektor pMIR-RNL-TK kloniert. Falls sich innerhalb der 3'UTR-Sequenz eine Restriktionsschnittstelle der Enzyme *Spe* I bzw. *Sac* I wurden die Sequenzen durch den Austausch von zwei Nukleotiden modifiziert, um unerwünschte Restriktion der Sequenz zu verhindern. Zudem wurde die mutierte 3'UTR des Zielgens *TH* von Eurofins Genomics (Ebersberg, Deutschland) in einem Transfervektor synthetisiert. Hierbei wurden die Sequenzen der zwei miR-34a-5p Bindestellen innerhalb der 3'UTR durch die Sequenzen der Restriktionsschnittstellen der Enzyme *Nru* I und *PmI* I ersetzt. Die entsprechenden Reporterplasmide sind in Tabelle 24 (Anhang) zusammengefasst. Als

Positivkontrolle für die HiTmiR-Assays der miR-34a-5p diente das Reporterplasmid pMIR-TCRA, welches die 3'UTR des validierten Zielgens *TCRA* beinhaltet, und von Herrn Dr. rer. nat. Martin Hart (Institut für Humangenetik, Universität des Saarlandes) zur Verfügung gestellt wurde (Hart *et al.*, 2018).

Die verwendeten Reporterplasmide der Zielgen-3'UTRs für die miR-7-5p wurden aus der generierten Parkinson 3'UTR Reporterplasmid-Bank ausgewählt (Tabelle 25, Anhang). Diese enthält 1280 Reporterplasmide mit bis zu 740 bp großen 3'UTR Fragmenten für 416 Gene aus 14 Parkinson- und Dopamin-assoziierten Signalwegen. Für die meisten Zielgene wurden je nach Größe der 3'UTR-Sequenz mehrere Reporterkonstrukte generiert, die fortlaufend, beginnend am 5' Ende der 3'UTR-Sequenz nummeriert wurden. Die Plasmide wurden von der Firma BGI (Shenzhen, China) synthetisiert und die Sequenz des klonierten Inserts mittels Sanger-Sequenzierung durch die Firma SeqIT (Kaiserslautern, Deutschland) überprüft. Alle 3'UTR-Sequenzen wurden mit Hilfe der Restriktionsenzyme *Spe* I und *Sac* I in den pMIR-RNL-TK-Vektor kloniert. Falls sich innerhalb der 3'UTR-Sequenz eine Restriktionsschnittstelle der Enzyme *Spe* I bzw. *Sac* I wurden die Sequenzen durch den Austausch von zwei Nukleotiden modifiziert, um unerwünschte Restriktion der Sequenz zu verhindern. Als Positivkontrolle (PK) für die HiTmiR-Assays der miR-7-5p wurde die komplementäre miR-7-5p Sequenz zweimal mit zusätzlichen 20 bp *up*- und *downstream* mit Hilfe der Restriktionsenzyme *Spe* I und *Sac* I in den

3.1.10 Oligonukleotide

Alle in dieser Arbeit verwendeten, lyophilisierten Oligonukleotide wurden von der Firma Eurofins Genomics (Ebersberg, Deutschland) bezogen und in einer Konzentration von 100 µM in Nuklease-freiem Wasser gelöst. Die verwendeten Oligonukleotide sind in den nachfolgenden Tabellen 1-5 zusammengefasst:

Primer.				
Name	Sequenz (5' – 3')			
pSG5 pCAG FOR	GCAACGTGCTGGTTATTGTG			
pSG5 EBV REV	GATGAGTTTGGACAAACCAC			
pMIR FOR	GAAGTACCGAAAGGTCTTACCG			
pMIR REV	CCAAGCTAGCGGCCGCATACAA			

Tabelle	1:	Verwendete	Vektor-spezifische	forward	(FOR)	und	reverse	(REV)	Oligonukleotid-
Primer.									

Name	Sequenz (5' – 3')
miR-7-5p Sonde	TGGAAGACTAGTGATTTTGTTGTTCCTGTCTC

Tabelle 3: Oligonukleotide zur Generierung des miR-7-5p PK Reporterkonstruktes. Die angefügten Restriktionsschnittstellen wurden kenntlich gemacht (Restriktionsschnittstelle für *Spe* I in fett und kursiv Restriktionsschnittstelle für *Nae* I in fett und unterstrichen).

Oligonukleotid	Sequenz (5' – 3')	Restriktionsschnittstellen
miR-7-5p PK FOR	GG GAGCTC GGCGTCAGGGTAGGTATGAACAACAAAATCA CTAGTCTTCCAGGCGTCAGGGTAGGTATGAACAACAAAAT CACTAGTCTTCCAGGCGTCAGGGTAGGTATG <u>GCCGGC</u> GG	Spe I + 2x G, Nae I + 2x G
miR-7-5p PK REV	GG <u>GCCGGC</u> CATACCTACCCTGACGCCTGGAAGACTAGTG ATTTTGTTGTTCATACCTACCCTGACGCCTGGAAGACTAG TGATTTTGTTGTTCATACCTACCCTGACGCCC <i>GAGCTC</i> GG	Nae I + 2x G, Spe I + 2x G

Tabelle 4: Verwendete Oligonukleotid-Primer zur zielgerichteten Mutagenese der miR-34a-5p Bindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-34a-5p Bindestelle durch Restriktionsschnittstellen ersetzt. Die Restriktionsschnittstellen wurden kenntlich gemacht (Kleinbuchstaben, unterstrichen).

Oligonukleotid	Sequenz (5' – 3')	Eingefügte Mutation
CACNA1C_1 mut FOR	CTTTCTTGATTCCTTTT <u>tcgcgag</u> ATCAAGGTCCTCTAG	Nru I + zusätzliches G
CACNA1C_1 mut REV	CTAGAGGACCTTGAT <u>ctcgcga</u> AAAAGGAATCAAGAAAG	Nru I + zusätzliches C
CLOCK_1 mut FOR	GTTACAGAGGACATAC <u>tcgcgag</u> ATGTCAGGGGTTTGC	Nru I + zusätzliches G
CLOCK_1 mut REV	GCAAACCCCTGACAT <u>ctcgcga</u> GTATGTCCTCTGTAAC	Nru I + zusätzliches C
CLOCK_2 mut FOR	CTTCCATACACAGtcgcgagCAGTAAAGCAGTGTTGG	Nru I + zusätzliches G
CLOCK_2 mut REV	CCAACACTGCTTTACTGctcgcgaCTGTGTATGGAAG	Nru I + zusätzliches C
GRIA4 mut FOR	CGTCTTGACGCCTG <u>tcgcga</u> CAAAGGCTGTACACAC	Nru I
GRIA4 mut REV	GTGTGTACAGCCTTTG <u>tcgcga</u> CAGGCGTCAAGACG	Nru I
HTT_3 mut FOR	CTGTGCTCATCGGAG <u>tcgcga</u> CCACGGCCCTGTCAG	Nru I
HTT_3 mut REV	CTGACAGGGCCGTGG <u>tcgcga</u> CTCCGATGAGCACAG	Nru I
HTT_4 mut FOR	GCAATCTGGGTGGTA <u>tcgcgag</u> GCCTTGGAGGATCG	Nru I + zusätzliches G
HTT_4 mut REV	CGATCCTCCAAGGC <u>ctcgcga</u> TACCACCCAGATTGC	Nru I + zusätzliches C
KIF5C mut FOR	GAATAATGGCTGGATA <u>tcgcga</u> GAAGTAAGCGCCGCTC	Nru I
KIF5C mut REV	GAGCGGCGCTTACTTC <u>tcgcga</u> TATCCAGCCATTATTC	Nru I
PARK2 mut FOR	GTCCCTCTTTTCCTAtcgcgaTAAGATAACCCATTTC	Nru I
PARK2 mut REV	GAAATGGGTTATCTTA <u>tcgcga</u> TAGGAAAAGAGGGAC	Nru I
SLC6A3_1 mut FOR	GAAACCAGCTCAGGCT <u>tcgcga</u> ACTCAGGCAGCCTGTG	Nru I
SLC6A3_1 mut REV	CACAGGCTGCCTGAGT <u>tcgcga</u> AGCCTGAGCTGGTTTC	Nru I

Tabelle 5: Verwendete Oligonukleotid-Primer zur zielgerichteten Mutagenese der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestellen. Zur Mutagenese der miRNA-Bindestelle wurde die Sequenz der miR-7-5pBindestelle durch Restriktionsschnittstellen wurden kenntlich gemacht(Kleinbuchstaben, unterstrichen).

Oligonukleotid	Sequenz (5' – 3')	Eingefügte Mutation
AKT3_6 mut REV	CGAGCTCGCAGTACATTATCA <u>ctcgcga</u> GTTAATGAAAAGC	Nru I + zusätzliches C
	TAC	
CASK_3 BS1 mut	CCATCTCATAACtcgcgaATGAAGTCACATTC	Nru I
FOR		
CASK_3 BS1 mut	GAATGTGACTTCAT <u>tcgcga</u> GTTATGAGATGG	Nru I
REV		
CASK_3 BS2 mut	CCATGAAGTCACAT <u>cacgtg</u> AATACAGGAGATTCG	Pml I
FOR		
CASK_3 BS2 mut	CGAATCTCCTGTATT <u>cacgtg</u> ATGTGACTTCATGG	Pml I
REV		
CREB3L2_6 mut FOR	CCATGTTTTTTTTT <u>tcgcga</u> TAAATCTCTTGGTTC	Nru I
CREB3L2_6 mut REV	GAACCAAGAGATTTA <u>tcgcga</u> AAAAAAAAAAAACATGG	Nru I
GNB5_8 mut FOR	GAGAGAATTGGGTCAC <u>tcgcgag</u> GACATACCACAGACTC	Nru I + zusätzliches G
GNB5_8 mut REV	GAGTCTGTGGTATGTC <u>ctcgcga</u> GTGACCCAATTCTCTC	Nru I + zusätzliches C
GSK3B_8 mut FOR	CAGTACCCAACCC <u>tcgcga</u> TTCACCCTACTATTTTGC	Nru I
GSK3B_8 mut REV	GCAAAATAGTAGGGTGAA <u>tcgcga</u> GGGTTGGGTACTG	Nru I
RAB3B_17 mut FOR	CTAATGAGGCTGACAAtcgcgaCTACTTCACAAAATAG	Nru I
RAB3B_17 mut REV	CTATTTTGTGAAGTAG <u>tcgcga</u> TTGTCAGCCTCATTAG	Nru I
RAB3B_7 mut FOR	GACTAGTCAACTTGTCCTGGATTTAA <u>tcgcga</u> TCAACAATC	Nru I
	C	
SDHC_3 mut FOR	GTCTTTTTCTTCTCT <u>tcgcgag</u> AATCACTTTAATATC	<i>Nru</i> I + zusätzliches G
SDHC_3 mut REV	GATATTAAAGTGATT <u>ctcgcga</u> AGAGAAGAAAAAGAC	Nru I + zusätzliches C
SNCA mut FOR	CAGTGTATCTCGAAtcgcgagATCAGCAGTGATTGAAG	Nru I + zusätzliches G
SNCA mut REV	CTTCAATCACTGCTGAT <u>ctcgcga</u> TTCGAGATACACTG	Nru I + zusätzliches C
UBE2G2_1 mut FOR	GTCCATTACTTCCTT <u>tcgcga</u> TTCATATTTTACAGG	Nru I
UBE2G2_1 mut REV	CCTGTAAAATATGAA <u>tcgcga</u> AAGGAAGTAATGGAC	Nru I

3.1.11 miRNA-Mimics

Die in dieser Arbeit verwendeten miRNA-Mimics wurden von der Firma Qiagen (Hilden, Deutschland) bezogen. Als Negativkontrollen dienten die Allstars *Negative Control* siRNA (ANC). Diese Kontrollen besitzt keine Sequenzhomologie zu humanen Genen und somit keine direkten Zielgene in humanen Zellen. Die verwendeten miScript miRNA-Mimic sind nachfolgend aufgelistet.

miRNA Mimic	Zielsequenz (5' – 3')
Syn-hsa-miR-34a-5p miScript miRNA-Mimic	UGGCAGUGUCUUAGCUGGUUGU
Syn-hsa-miR-7-5p miScript miRNA-Mimic	UGGAAGACUAGUGAUUUUGUUGU
AllStars Negative Control siRNA	Nicht bekannt

3.1.12 miScript miRNA Primer Assays

miScript miRNA Primer Assay	Zielsequenz (5' – 3')
Ctrl miRTC 1 miScript Primer Assav	Nicht bekannt
hsa-miR-4284 Custom miScript Primer Assay	GGGCUCACAUCACCCCAU
Hs_miR-7_2 miScript Primer Assay	UGGAAGACUAGUGAUUUUGUUGU
Hs_miR-34a_1 miScript Primer Assay	UGGCAGUGUCUUAGCUGGUUGU
Hs_miR-106b*_1 miScript Primer Assay	CCGCACUGUGGGUACUUGCUGC
Hs_miR-129_1 miScript Primer Assay	CUUUUUGCGGUCUGGGCUUGC
Hs_miR-129*_1 miScript Primer Assay	AAGCCCUUACCCCAAAAAGUAU
Hs_miR-134_2 miScript Primer Assay	UGUGACUGGUUGACCAGAGGGG
Hs_miR-181a*_1 miScript Primer Assay	ACCAUCGACCGUUGAUUGUACC
Hs_miR-335*_1 miScript Primer Assay	UUUUUCAUUAUUGCUCCUGACC
Hs_miR-412-5p_1 miScript Primer Assay	UGGUCGACCAGUUGGAAAGUAAU
Hs_RNU6-2_11 miScript Primer Assay	Nicht bekannt

3.1.13 Antikörper

Antikörper	Hersteller; Firmensitz
Mouse monoclonal anti-IgG Peroxidase antibody	Sigma Aldrich; St. Louis, Missouri, USA
Mouse monoclonal anti-β-actin	Sigma Aldrich; St. Louis, Missouri, USA
Rabbit monoclonal anti-AKT3	Cell Signaling Technology (CST); Danvers,
	Massachusetts, USA
Rabbit monoclonal anti-CASK	CST; Danvers, Massachusetts, USA
Rabbit monoclonal anti-CLOCK	CST; Danvers, Massachusetts, USA
Rabbit monoclonal anti-GAPDH	CST; Danvers, Massachusetts, USA
Rabbit monoclonal anti-GRIA4	CST; Danvers, Massachusetts, USA
Rabbit monoclonal anti-IgG Peroxidase antibody	Sigma Aldrich; St. Louis, Missouri, USA
Rabbit monoclonal anti-UBE2G2	CST; Danvers, Massachusetts, USA
Rabbit polyclonal anti-PARK2	CST; Danvers, Massachusetts, USA
Rabbit polyclonal anti-SDHC	Invitrogen; Carlsbad, Deutschland
Rabbit polyclonal anti-TH	CST; Danvers, Massachusetts, USA

3.1.14 Reaktionskits

Reaktionskit	Hersteller; Firmensitz
Clarity ECL Western Blotting Substrat	Bio-Rad: Hercules, Kalifornien, USA
Dual-Luciferase-Reporter-Assay System	Promega; Mannheim, Deutschland
Low Input, one-color, Quick Amp Labeling	Agilent Technologies; Santa Clara, Kalifornien,
	USA
miRNA Complete Labeling and Hyb Kit	Agilent Technologies; Santa Clara, Kalifornien,
	USA
miRNeasy mini Kit	Qiagen; Hilden, Deutschland
miScript II RT Kit	Qiagen; Hilden, Deutschland
NucleoBond™ Plasmid-Aufreinigungskit	Macherey-Nagel; Düren, Deutschland
NucleoSpin™ Gel- und PCR-Clean Up Kit	Macherey-Nagel; Düren, Deutschland
QuantiTect SYBR Green PCR Kit	Qiagen; Hilden, Deutschland
RNeasy Kit	Qiagen; Hilden, Deutschland
SignalFire™ ECL Reagenz	CST; Danvers, Massachusetts, USA
SignalFire™ Elite ECL Reagenz	CST; Danvers, Massachusetts, USA

3.1.15 Sonstiges

Bezeichnung	Hersteller; Firmensitz
8-16% mini-PROTEAN® TGX Stain-Free™ Protein Gel	Bio-Rad; Hercules, Kalifornien, USA
SureHyb Hybridization Chamber	Agilent Technologies; Santa Clara, Kalifornien, USA
SurePrint G3 Human Gene Expression 8x60K	Agilent Technologies; Santa Clara, Kalifornien,
v2 Microarray	USA
SurePrint G3 human miRNA 80x60K	Agilent Technologies; Santa Clara, Kalifornien,
Microarrays	USA

3.1.16 Software

Softwarename	Hersteller/Internetseite; Firmensitz			
Agilent Scan Control	Agilent Technologies: Santa Clara, Kalifornien, USA			
AGW Feature Extraction Software	Agilent Technologies: Santa Clara, Kalifornien, USA			
(Version 10.7.1.1)	Agient reemologies, oana olara, hamomen, ook			
	Orand Orangentiere Ottown Konsels			
CoreIDRAW 12.0	Corel Corporation; Ottawa, Kanada			
DeVision G Vers. 2.0	Decon Science Tec GmbH			
EndNote X7	Clarivate Analytics			
GeneSpring (Version 14.9)	Agilent Technologies; Santa Clara, Kalifornien, USA			
GeneTrail2	https://genetrail2.bioinf.uni-sb.de/			
Illustration Toolkits for Scientific	Motifolio Inc.; Ellicott City, Maryland, USA			
Presentations and Publications				
Image Lab Software	Bio-Rad; Hercules, Kalifornien, USA			
Microsoft Office 2016	Microsoft Corporation; Redmond, Washington, USA			
miRBase	http://www.mirbase.org/			
miRTarBase	http://mirtarbase.cuhk.edu.cn/			
miRWalk 2.0	https://genetrail2.bioinf.uni-sb.de/			
National Center for Biotechnology	https://www.ncbi.nlm.nih.gov/			
Information (NCBI)				
Oligo Calc: Oligonucleotide Properties	http://www.basic.northwestern.edu/biotools/oligocalc.html			
Calculator				
Prism 7	GraphPad; San Diego, Kalifornien, USA			
SnapGene	GSL Biotech LLC; San Diego, Kalifornien, USA			
TargetScan 7.1	http://www.targetscan.org/vert_71/			
Webcutter 2.0	http://rna.lundberg.gu.se/cutter2/			

3.2 Methoden

3.2.1 Zellbiologische Methoden

3.2.1.1 Kultivierung eukaryotischer Zelllinien

Die beiden in dieser Arbeit verwendeten adhärenten, eukaryotischen Zelllinien wurden als Monolayer in Zellkulturflaschen (75 cm²) bei 37 °C und 5 % CO₂ kultiviert. Zum einen wurde die kommerziell verfügbare Zelllinie 293-T bzw. HEK293T verwendet. Hierbei handelt es sich um eine von der humanen, embryonalen Nierenzelllinie HEK abstammende Zelllinie, die durch Transfektion das große T-Antigen des SV40-Virus stabil exprimiert. Zum anderen wurde die kommerziell verfügbare Zelllinie SH-SY5Y verwendet. Die humane Zelllinie SH-SY5Y ist ein Subklon der Neuroblastomzelllinie SK-N-SH, der mittels Knochenmarkbiopsie einer vierjährigen Patientin isoliert wurde. Die Kulturbedingungen der einzelnen Zelllinien sind in Tabelle 6 zusammengefasst:

Zelllinie	Medium	Supplement	Subkultivierung
HEK203T		10 % FCS	1:10 – 1:30
HER2931	DIVIEIVI	1 % Pen/Strep	2x wöchentlich
		20 % FCS	1:2 – 1:4
36-3131	DIVIEIVI	1 % Pen/Strep	2x wöchentlich

Tabelle 6: Kultivierungsbedingungen humaner Zelllinien.

Die Subkultivierung der Zellen erfolgte bei Erreichen einer Konfluenz von circa 80 - 90 % zweimal wöchentlich in dem in Tabelle 6 angegebenen Verhältnis in Abhängigkeit von der Zelllinie. Hierzu wurde zunächst das Medium der Zellen entfernt und die Zellen mit 1 ml Trypsin-EDTA-Lösung gewaschen, um tote Zellen sowie verbliebene Mediumreste zu entfernen. Im Anschluss erfolgte nach erneuter Zugabe von 1 ml Trypsin-EDTA-Lösung eine kurze Inkubation im Brutschrank. Bei Trypsin handelt es sich um eine Protease, welche die Oberflächenproteine der Zellen abbaut, wodurch die Zellen nicht mehr an dem Kulturflaschenboden haften können. Durch die anschließende Zugabe von 9 ml FCS-haltigem Medium wurde die Reaktion des Trypsins gestoppt und die Zellen wurden in entsprechender Verdünnung in neue Zellkulturflaschen mit frischem Medium überführt.

3.2.1.2 Kryokonservierung eukaryotischer Zellen

Neben der Subkultivierung wurden die Zellen zur späteren Verarbeitung kryokonserviert. Hierzu wurden die Zellen analog zur Subkultivierung mit Trypsin-EDTA-Lösung gewaschen und abgelöst (s. 2.1.1), bevor sie im Anschluss in 10 % DMSO- und 30 % FCS-haltigem DMEM aufgenommen wurden. Durch das enthaltene DMSO wurde die Bildung von Eiskristallen verhindert, welche die Zellmembran beim Einfrieren zerstören würde. Abschließend wurde die Zellsuspension in Kryogefäße überführt, mit einer konstanten Abkühlrate von 1 °C/min zunächst für mindestens 24 h bei -70 °C gelagert und im Anschluss in flüssigem Stickstoff (- 196 °C) eingelagert.

3.2.1.3 Transfektion von HEK293T mit Polyfect Transfection Reagent

Zur Transfektion von HEK293T mit Plasmid-DNA wurde das Polyfect Transfection Reagent verwendet. Hierbei handelt es sich um eine Dendrimer-basierte Transfektionsmethode, bei der die zu transfizierende Nukleinsäure zusammen mit aktivierten Dendrimeren einen Komplex bildet, der von den zu transfizierenden Zellen endozytotisch aufgenommen werden kann. In Tabelle 7 sind die Bedingungen der Transfektion für die jeweiligen Zellkulturformate angeben.

Format	Zellzahl pro	Plasmid-DNA	Volumen DMEM	Volumen Polyfect
	Well	[bd]	[µ]	[µ]
6-Well	2,5 – 4 x 10 ⁵	2	100	10
96-Well	3 – 3,4 x 10 ⁴	0,2	20	1

Tabelle 7: Transfektionsbedingungen von HEK293T in unterschiedlichen Kultivierungsformaten.

Zunächst wurden die adhärenten Zellen gelöst (s. 2.1.1), die Zellzahl mit Hilfe des LUNA-FL[™] Dual Fluorescence Cell Counter bestimmt, in der angegebenen Zellzahl ausgesät und über Nacht bei 37 °C und 5 % CO₂ inkubiert. Am nächsten Tag wurde die entsprechende Menge an Plasmid-DNA in DMEM mit dem äquivalenten Volumen an Polyfect vermischt, für 10 min bei Raumtemperatur inkubiert und anschließend auf die Zellen getropft. Nach 48-stündiger Inkubation bei 37 °C und 5 % CO₂ erfolgten weiterführende Analysen der transfizierten Zellen (s. 3.2.4, 3.2.6).

3.2.1.4 Transfektion von SH-SY5Y mit HiPerfect Transfection Reagent

Zur Transfektion von SH-SY5Y mit miRNA-Mimics wurde das HiPerfect Transfection Reagent verwendet, welches für die Transfektion von kleinen RNAs, wie siRNA und miRNAs, optimiert wurde. Hierbei kann die RNA innerhalb von kationischen bzw. neutralen Lipiden endozytotisch in die Zelle aufgenommen werden. Zur Transfektion der SH-SY5Y im 6-Well-Format wurden die adhärenten Zellen gelöst (s. 2.1.1), die Zellzahl mit Hilfe des LUNA-FLTM Dual Fluorescence Cell Counter bestimmt, in einer Dichte von 2,5 – 4 x 10⁵ Zellen pro Well ausgesät und über Nacht bei 37 °C und 5 % CO₂ inkubiert. Am darauffolgenden Tag wurden 150 ng

miRNA bzw. 150 ng der Negativkontrolle All Stars Negative Control (ANC) mit 100 μ l DMEM und 12 μ l HiPerfect vermischt. Nach zehnminütiger Inkubation bei Raumtemperatur wurde der RNA-Transfektionsmix auf die Zellen getropft. Nach 48-stündiger Inkubation bei 37 °C und 5 % CO₂ erfolgten weiterführende Analysen der transfizierten Zellen (s. 3.2.4.3, 3.2.7).

3.2.1.5 Parkinson-Zellkulturmodell

Das Parkinson-Zellkulturmodell sowie die RNA-Isolation der entsprechenden Proben wurden von Frau Karin Danz am Fraunhofer Institut für Biomedizinische Technik durchgeführt und als Grundlage für die hier durchgeführten Analysen bereitgestellt. Hierzu wurde die *Lund human mesencephalic* (LUHMES)-Zelllinie der Firma *American Type Culture Collection* (ATCC; Manassas, Virginia, USA) verwendet. Diese Zelllinie ist einen Subklon der MESC2.10-Zellline, welche aus dem Mesencephalon eines achtwöchigen Fötus isoliert wurde und durch Tetrazyklin-abhängige *v-myc* Expression immortalisiert wurde. Durch Zugabe von Tetrazyklin, *glial cell line-derived neurotrophic factor* (GDNF) und Dibutyryl-cAMP (db-cAMP) kann einer Differenzierung der LUHMES-Zelllinie zu reifen, dopaminergen Neuronen ermöglicht werden. Die Induktion eines Parkinson-ähnlichen Phänotyps erfolgt im Anschluss durch die Zugabe des Neurotoxins MPP+. Dieses gelangt aktiv durch den Dopamintransporter in dopaminergen Zellen und kann dort den Komplex I der mitochondrialen Atmungskette inhibieren (s. 2.1.1).

Im Rahmen der vorliegenden Arbeit wurden LUHMES-Zellen in vier unabhängigen Replikaten nach dem Protokoll von Scholz *et al.* (Scholz *et al.*, 2011) über sechs Tage durch Zugabe von 1 mM db-cAMP, 2 ng/mL GDNF und 1 μ g/mL Tetracyclin zu reifen, dopaminergen Neuronen differenziert. Die anschließende MPP+-Behandlung mit einer Konzentration von 10 μ M erfolgte über einen Zeitraum von 48 h. Als Kontrolle wurden differenzierte LUHMES-Zellen mit H₂O behandelt. Abschließend wurden die Zellen durch Zugabe des Qiazol Lysis Reagenz geerntet und die Gesamt-RNA für weitere Analysen isoliert (s. 3.2.4.1).

3.2.2 Klonierung humaner DNA (Insert) in einen prokaryotischen Vektor

3.2.2.1 Polymerase-Kettenreaktion (polymerase chain reaction, PCR)

In der vorliegenden Arbeit wurden DNA-Abschnitte mittels PCR spezifisch amplifiziert. Die PCR setzt sich aus drei sich zyklisch wiederholenden Schritten zusammen, die durch unterschiedliche Temperaturen ablaufen (Mullis *et al.*, 1986). Zunächst erfolgt die Hitze-Denaturierung der doppelsträngigen DNA bei 95 – 98 °C. Anschließend werden in der Primer-Hybridisierung bei 58 – 62 °C sequenzspezifische Oligonukleotide (Primer) an ihre komplementären DNA-Sequenzen gebunden. Durch den letzten Schritt, die Elongation bei

68 – 72 °C, erfolgt die Verlängerung der gebundenen Primer mit Desoxyribonukleosidtriphosphaten (dNTPs), sodass am Ende jedes Zyklus ein doppelsträngiges Amplifikat der Zielsequenz vorliegt. Durch mehrfache Wiederholung des beschriebenen Zyklus wird eine exponentielle Amplifikation der Zielsequenz ermöglicht. Die PCR wurde in dieser Arbeit mit Hilfe der thermostabilen DNA-Polymerase aus dem Bakterium *Thermus aquaticus* (Taq-Polymerase) durchgeführt. Der Reaktionsansatz setzte sich aus den folgenden Komponenten zusammen:

 Tabelle 8: Komponenten eines Reaktionsansatzes zur Amplifikation eines spezifischen DNA-Abschnittes.

Reagenzien	Volumen [µl]	Endkonzentration
Nuklease-freies H ₂ O	ad 50	-
PCR-Puffer (10x)	5	1x
dNTPs (je 2,5 mM)	2	je 1 mM
forward Primer (25 µM)	1	0,5 µM
<i>reverse</i> Primer (25 µM)	1	0,5 µM
DNA-Template (1 µg/µl)	0,4 – 1	8 – 25 ng/µl
Taq Polymerase (5 u/µl)	0,5	0,05 u/µl

Nach Herstellung des PCR-Ansatzes wurde dieser entsprechend des in Tabelle 9 angegebenen Temperaturprofils im Thermocycler inkubiert:

Tabelle	9:	Temperaturprofil	zur	Amplifikation	eines	spezifischen	DNA-Abschnittes	im
Thermo	cycl	er.						

	Temperatur [°C]	Zeit [s]	Zyklen
Initial	95	180	1
Denaturierung	95	50	
Primer-Hybridisierung	58 – 63	60	38
Elongation	72	60 s/kb	
Finale Elongation	72	180 s/kb	1

Das Ergebnis der PCR wurde mittels Agarose-Gelelektrophorese überprüft (s. 3.2.2.3). Positive Produktbanden wurden aus dem Agarose-Gel herausgeschnitten und im Anschluss wurde die DNA isoliert (s. 3.2.2.4).

3.2.2.1.1 Overlap extension PCR

Die *overlap extension* PCR wurde zur zielgerichteten Mutagenese der miRNA-Bindestellen (BS) angewendet (Ho *et al.*, 1989). Hierzu wurden Mutagenese-Primer (Mut-Primer) sowohl in *forward-* als auch *reverse*-Richtung generiert, die anstelle der miRNA-Bindestelle eine Restriktionsschnittstelle (RS) trugen. Zudem enthielten die Oligonukleotide auf beiden Seiten der eingefügten Restriktionsschnittstelle mindestens 15 Nukleotide (nt) der umliegenden komplementären Sequenz. Mit Hilfe dieser Oligonukleotide wurden zwei unabhängige Amplifikate aus den zu mutierenden Reporterkonstrukten generiert, die sich im Bereich der zu mutierenden Sequenz überlappten. Hierbei dienten die für das Reporterplasmid pMIR-RNL-TK spezifischen Primer (pMIR-RNL-TK FOR, pMIR-RNL-TK REV) als entsprechende Gegenprimer zu den generierten Oligonukleotiden. Durch eine dritte PCR, die mit den Primern pMIR-RNL-TK FOR und pMIR-RNL-TK REV und den zuvor generierten Amplifikaten als Template durchgeführt wurde, konnten beide DNA-Abschnitte zu einem doppelsträngigen DNA-Fragment mit mutierter miRNA-Bindestelle vereinigt werden (s. Abbildung 6).

1. + 2. PCR Reporterkonstrukt mit wildtypischer miR-BS

Reporterkonstrukt mit mutierter miR-BS

Abbildung 6: Schematische Darstellung der overlap extension PCR. Mit Hilfe der generierten Mutagenese-Primer (Mut-Primer), die anstelle der miRNA-Bindestelle (miR-BS) eine Restriktionsschnittstelle (RS) trugen, und den Vektor-spezifischen pMIR-RNL-TK-Primern wurden zwei unabhängige Amplifikate generiert. Diese wurden in einer weiteren Amplifikation mit den Vektor-spezifischen pMIR-RNL-TK-Primern fusioniert, sodass ein Reporterkonstrukt mit mutierter miR-BS generiert wurde.

In dieser Arbeit dienten als Ausgangsmaterial für die Mutagenese der miRNA-Bindestellen Reporterkonstrukte mit miR-34a-5p und miR-7-5p Bindestellen, die zuvor im HiTmlR-Assay als positives Ergebnis erfasst wurden (s. 4.5.3). Hierbei wurden 800 - 1200 ng des jeweiligen Reporterkonstruktes, die spezifischen Mutagenese-Primer sowie die Vektor-spezifische pMIR-RNL-TK-Primer in die ersten Amplifikationen eingesetzt. Nach Überprüfung der PCR mittels Agarose-Gelelektrophorese (s. 3.2.2.3) sowie Isolation der positiven Produktbanden aus dem Agarose-Gel (s. 3.2.2.4) erfolgte die dritte PCR mit Vektor-spezifischen pMIR-RNL-Primer und je 7,5 µl der zuvor generierten Amplifikate. Das Ergebnis der PCR wurde mittels Agarose-Gelelektrophorese überprüft (s. 3.2.2.3). Positive Produktbanden wurden aus dem Agarose-Gel herausgeschnitten und im Anschluss wurde die DNA isoliert (s. 3.2.2.4).

3.2.2.1.2 Kolonie-PCR

Im Anschluss an die Transformation (s. 3.2.3.1) wurde die Kolonie-PCR durchgeführt, die der Überprüfung der korrekten Ligation von Insert und Vektor diente (Gussow, Clackson, 1989; Sandhu *et al.*, 1989). Hierbei wurden als Ausgangstemplate einzelne Bakterienkolonien eingesetzt, die nach der Transformation auf Agarplatten gewachsen sind. Durch eine verlängerte initiale Inkubation bei 95 °C erfolgte der Bakterienaufschluss sowie die Freisetzung der transformierten Plasmid-DNA. Mit Hilfe von Insert-flankierenden Primern, die innerhalb des Ziel-Vektors binden, wurde die erfolgreiche Insertion der gewünschten DNA-Sequenz in den Ziel-Vektor überprüft. Die Komponenten des Reaktionsansatz der Kolonie-PCR sind in Tabelle 10 zusammengefasst:

Reagenzien	Volumen [µl]	Endkonzentration
Nuklease freies H ₂ O	20,25	-
PCR-Puffer (10x)	2,5	1x
dNTPs (je 2,5 mM)	1	je 1 mM
<i>forward</i> Primer (25 μM)	0,5	0,5 µM
<i>reverse</i> Primer (25 µM)	0,5	0,5 µM
Taq Polymerase (5 U/µI)	0,25	0,05 u/µl

Tabelle 10: Komponenten eines Reaktionsansatzes der Kolonie-PCR.

Abschließend wurde eine Bakterienkolonie von der LB-Agarplatte gepickt und in den Reaktionsansatz gegeben. Die gepickten Kolonien wurden nach Zugabe in den Reaktionsansatz zusätzlich auf einer LB-Agarplatte ausplattiert und für vier bis sechs Stunden bei 37 °C im Brutschrank inkubiert. Der Reaktionsansatz der Kolonie-PCR wurde unter folgenden Temperaturbedingungen im Thermocycler inkubiert:

	Temperatur [°C]	Zeit [s]	Zyklen
Initial	95	300	1
Denaturierung	95	50	
Primer-Hybridiesierung	57	60	38
Elongation	72	60 s/kb	
Finale Elongation	72	180 s/kb	1

Tabelle 11: Temperaturprofil der Kolonie-PCR im Thermocycler.

Das Ergebnis der Kolonie-PCR wurde mittels Agarose-Gelelektrophorese überprüft (s. 3.2.2.3).

3.2.2.2 Hybridisierung von Oligonukleotiden

Die im HiTmIR-Assay verwendete Positivkontrolle pMIR-miR-7-5p PK wurde durch Hybridisierung von Oligonukleotiden generiert. Hierzu wurden mit Hilfe von einzelsträngigen, komplementären Oligonukleotiden doppelsträngige DNA-Templates generiert, die im weiteren Verlauf in den Zielvektor kloniert werden konnten. Hierzu wurden 2,5 nmol des jeweiligen *forward* bzw. *reverse* Oligonukleotides in 40 µl Nuklease-freiem Wasser zunächst für 10 min bei 95 °C denaturiert und im Anschluss mit einer Abkühlrate von 1 °C/min im Thermocycler auf eine Temperatur von 25 °C abgekühlt. Das doppelsträngige DNA-Template konnte direkt in den Restriktionsverdau eingesetzt werden.

3.2.2.3 Agarose-Gelelektrophorese

Die Überprüfung der PCR erfolgte durch die Agarose-Gelelektrophorese (Aaij, Borst, 1972). Aufgrund der negativen Ladung der DNA kann diese im elektrischen Feld innerhalb eines Agarose-Gels der Größe nach aufgetrennt werden. Durch die Zugabe des DNAinterkalierenden Fluoreszenzfarbstoffes Ethidiumbromid, kann diese im ultravioletten (UV)-Licht sichtbar gemacht werden. Je nach Größe des PCR-Produktes wurden 1,5 % (Produktgrößen oberhalb 500 bp) bzw. 2 % (Produktgrößen unterhalb 500 bp) TAE-Gele verwendet, um eine bestmögliche Auftrennung der Produkte zu gewährleisten. Hierbei wurde die entsprechende Menge Agarose in 1x TAE-Puffer durch Aufkochen gelöst, nach Abkühlen auf circa 60 °C mit Ethidiumbromid (0,56 μ g/ml) versetzt und in einem vorbereiteten Gelschlitten auspolymerisiert. Die in der PCR generierten Amplifikate wurden mit 5 μ l des 6x Purple Gel Loading Dye Ladepuffers versetzt und bei 1000 mA und 150 V gelelektrophoretisch in einer mit 1x TAE-Puffer gefüllten Gelkammer für 45 – 60 min aufgetrennt. Als Größenstandard dienten die DNA-Marker 1 kb DNA Ladder und Low Molecular Weight DNA Ladder. Zur weiteren Verarbeitung wurden die erhaltenen Produktbanden aus dem Gel ausgeschnitten und die jeweiligen DNA-Fragmente aus dem Agarose-Gel anschließend isoliert. Die Dokumentation der Agarose-Gelelektrophorese erfolgte mittels DeVision Geldokumentation.

3.2.2.4 DNA-Gelextraktion und -Aufreinigung

Zur DNA-Gelextraktion sowie zur Aufreinigung von DNA aus Reaktionsansätzen wurde das NucleoSpin[™] Gel- und PCR-Clean Up Kit entsprechend der Herstellerangaben verwendet. Hierbei handelt es sich um eine säulenbasierte Aufreinigungsmethode, bei der die DNA aufgrund ihrer negativen Ladung unter bestimmten pH- und Pufferbedingungen an die positiv geladene Silicamembran der Säulen bindet. Durch mehrere Zentrifugations- und Waschschritte lässt sich die DNA von den restlichen Bestandteilen des Reaktionsansatzes bzw. des Gelstückes trennen und abschließend zur weiteren Verwendung eluieren.

3.2.2.5 Enzymatischer Restriktionsverdau doppelsträngiger DNA mittels Restriktionsendonukleasen

Der enzymatischen Verdau der DNA erfolgte mittels Restriktionsendonukleasen, welche die DNA sequenzspezifisch schneiden. Abhängig von dem eingesetzten Restriktionsenzym entstehen hierbei glatte Enden (*blunt ends*) oder Enden mit Nukleotid-Überhängen (*sticky ends*). Die in dieser Arbeit verwendeten Enzyme generierten im Restriktionsverdau ausschließlich *sticky ends*. Durch die Verwendung zwei unterschiedlicher Restriktionsenzyme kann eine gerichtete Klonierung in den entsprechenden Vektor gewährleistet werden.

In dieser Arbeit dienten als Ausgangstemplate für den enzymatischen Restriktionsverdau generierte PCR-Produkte und die zugehörigen Vektoren sowie von der Firma Eurofins Genomics synthetisierte Plasmide. Die synthetisierten Plasmide trugen das benötigte Insert in einem Standard-Vektor, welches für die weiteren Versuche in die entsprechenden Ziel-Vektoren kloniert wurde. Der Standard-Ansatz des enzymatischen Restriktionsverdaus setzte sich aus den in Tabelle 12 aufgelisteten Komponenten zusammen.

Reagenzien	Volumen [µl]
Nuklease freies H ₂ O	ad 20
DNA-Template	2 – 16
CutSmart Puffer	2
Restriktionsenzym I	1
Restriktionsenzym II	1

Tabelle 12: Komponenten eines Reaktionsansatzes zum enzymatischen Restriktionsverdau.

Die Komponenten des Restriktionsansatzes wurden vermischt und für mindestens 2 h bzw. über Nacht bei 37 °C inkubiert. Für den Verdau der PCR-Produkte wurden 16 µl des aufgereinigten PCR-Ansatzes verwendet. Die Linearisierung der Vektor-DNA bzw. der Verdau der synthetisierten Plasmide erfolgte mit 0,5 – 2 µg eingesetzter DNA. Die verwendeten Restriktionsenzyme sind in Kapitel 3.1.8 zusammengefasst. Um eine Re-Zirkularisierung des Ziel-Vektors zu verhindern, wodurch der Einbau des Inserts erschwert wird, erfolgte zusätzlich eine Dephosphorylierung des Ziel-Vektors mit Hilfe der RAP. Hierzu wurde dem Restriktionsansatz der Vektor-Linearisierung zusätzlich 1 µl der RAP zugegeben. Um Pufferund Enzymreste für die anschließenden Reaktionen zu entfernen, erfolgte im Anschluss eine Aufreinigung der geschnittenen DNA im Reaktionsansatzes bzw. nach gelelektrophoretischer Auftrennung (s.3.2.2.4).

3.2.2.6 Ligation

Unter Verwendung der T4-DNA-Ligase erfolgte im Anschluss an den Restriktionsverdau die Verbindung des geschnittenen aufgereinigten Inserts in den ebenso geschnittenen dephosphorylierten und aufgereinigten Vektor. Hierbei wurden die durch den Restriktionsverdau entstandenen *sticky ends* über komplementäre Bindung ligiert, wodurch ein doppelsträngiges zirkuläres Plasmid mit eingefügtem gewünschtem Insert entstehen konnte. Um eine effiziente Ligation zu gewährleisten, wurden Insert und Plasmid-DNA in äquimolaren Verhältnissen eingesetzt. Der in dieser Arbeit durchgeführte Reaktionsansatz ist in Tabelle 13 zusammengefasst:

Tabelle 13: Komponenten eines Reaktionsansatzes zur enzymatischen Ligation von DNA-Fragmenten.

Reagenzien	Volumen [µl]
Insert	4 – 7
Vektor	1 – 4
10x T4-Ligase-Puffer	1
T4 DNA-Ligase	1

Die Komponenten des Ligationsansatzes wurden vermischt und über Nacht bei 4 °C inkubiert.

3.2.3 Mikrobiologische Methoden

3.2.3.1 Transformation kompetenter Bakterien

Zur Vervielfältigung sowie anschließender Selektion eines gewünschten Insert-Vektor-Konstruktes wurde eine Transformation in *Escherichia coli* (*E. coli*) durchgeführt. Bei der Transformation wird durch einen kurzzeitigen Hitzeschock die Membrandurchlässigkeit der Zellwand für DNA-Moleküle erhöht, sodass eine Aufnahme der DNA in die Zellen ermöglicht wird. Hierzu wurde 1 µl des Ligationsansatzes mit 10 µl der kompetenten *E. coli*-Zellen (NEB 5-alpha *competent E. coli*) vermischt und für 30 min auf Eis inkubiert. Anschließend erfolgte der Hitzeschock für 30 s bei 42 °C, gefolgt von einer zweiminütigen Inkubation auf Eis. Nach Zugabe von 100 µl SOC-Medium wurden die Bakterien bei 37 °C und 200 rpm für 45 – 60 min vorkultiviert. Abschließend wurden die Bakterien auf LB-Ampicillin-Agarplatten ausplattiert und über Nacht bei 37 °C kultiviert. Am darauffolgenden Tag wurde mit den über Nacht gewachsenen Kolonien eine Kolonie-PCR (s. 3.2.2.1.2) durchgeführt.

3.2.3.2 Ansetzen der Bakterienflüssigkulturen und Plasmidisolation

Nach Überprüfung der Kolonie-PCR durch die Agarose-Gelelektrophorese wurden positive Kolonien durch das Animpfen einer Flüssigkultur über Nacht vervielfältigt. Hierzu wurden Erlenmeyerkolben mit 100 ml LB-Medium sowie 100 µl Ampicillin vorbereitet. Die positiven Kolonien wurden von der Agarplatte gepickt, in vorbereitete Erlenmeyerkolben gegeben und anschließend über Nacht bei 37 °C und 200 rpm kultiviert. Am darauffolgenden Tag erfolgte die Isolation der Plasmide aus den Flüssigkulturen nach Angaben des Herstellers unter Verwendung des NucleoBond[™] PC 100 Plasmid-Aufreinigungskits. Die Aufreinigung wurde hierbei durch alkalische Lyse der Bakterien sowie anschließender Neutralisation mit Kaliumacetat ermöglicht. Dadurch wurde eine Rekonstitution der zuvor denaturierten Plasmid-DNA erreicht. Im Gegensatz dazu präzipitierten die chromosomale DNA sowie weitere zelluläre Komponenten in der Lösung. Durch eine anschließende säulenbasierte Aufreinigung mittels Anionen-Austausch-Chromatographie wurde die Plasmid-DNA isoliert. Im Gegensatz zum Herstellerprotokoll wurden alle Zentrifugationsschritte bei 5.000 rpm durchgeführt und die Säulen mit 5 ml N3-Puffer gewaschen. Zudem wurde die Zeit der DNA-Fällung auf 60 – 120 min ausgeweitet. Die isolierte Plasmid-DNA wurde in 50 µl Nuklease-freiem Wasser über Nacht bei 4 °C gelöst und die Konzentration mit Hilfe des NanoDrop™ 2000 Spektralphotometers bestimmt.

3.2.4 RNA-Techniken

3.2.4.1 RNA-Isolation

Die Isolation der Gesamt-RNA aus eukaryotischen Zellen erfolgte nach dem Prinzip der Phenol-Chloroform-Extraktion, mit der neben der Extraktion von RNA ebenso eine Isolation von Proteinen und DNA möglich ist. Die RNA-Isolation erfolgte aus Monolayer-Zellkulturen, die im 6-Well-Format mit Plasmid-DNA oder miRNA-Mimic wurden (s. 3.2.1.3, 3.2.1.4). Zur RNA-Isolation wurde zunächst das Medium der Zellen abgenommen, die Zellen durch Zugabe von 700 µl pro Well des Phenol-Guanidin-basierenden Reagenz Qiazol abgelöst und in ein Eppendorf-Gefäß überführt. Nach fünfminütiger Inkubation erfolgte die Zugabe von 140 µl Chloroform, ein anschließendes Vortexen für 15 s und eine erneute Inkubation für 2 min. Im Anschluss wurden die Zellextrakte für 15 min bei 12.000 xg und 4°C zentrifugiert, wodurch es zur Phasentrennung der Lösung kam. In der unteren, Phenol-Chloroform-haltigen Phase befanden sich die zellulären Proteine, in der Interphase sammelte sich DNA an, während die obere, wässrige Phase ausschließlich RNA enthielt. Die wässrige Phase wurde vorsichtig abgenommen und in ein neues Eppendorf-Gefäß überführt, wodurch die RNA für die weiteren Schritte von den restlichen Zellbestandteilen separiert wurde. Die weitere Isolation erfolgte mit Hilfe des säulenbasierten miRNeasy mini Kits entsprechend der Herstellerangaben. Dieses ermöglicht neben der Isolation der Gesamt-RNA zusätzlich eine Anreicherung von kleinen RNA-Molekülen, insbesondere miRNAs. Die Konzentrationsbestimmung der isolierten RNA erfolgte mit Hilfe des NanoDrop™ 2000 Spektralphotometers. Für die weiteren Versuche wurde die isolierte RNA bei -80°C gelagert.

3.2.4.2 Reverse Transkription (RT)

Zur quantitativen Analyse spezifischer miRNAs wurde die isolierte Gesamt-RNA zunächst durch reverse Transkription (RT) in *complementary* DNA (cDNA) umgeschrieben werden. Zu diesem Zweck wurde ein Oligo-dT-Primer, der an den Poly-A-Schwanz der mRNAs bindet, sowie eine Reverse Transkriptase verwendet, die von einem Oligo-dT-Primer ausgehend die Ziel-mRNA in cDNA revers transkribiert. Zur Analyse von miRNAs erfolgt zunächst eine Polyadenylierung der miRNAs mit Hilfe einer Poly(A)-Polymerase, wodurch eine komplementäre Bindung des Oligo-dT-Primers ermöglicht wird. Es wurden 150 ng Gesamt-RNA mit Hilfe des miScript II RT Kit unter Verwendung des HiSpec Buffers nach Angaben des Herstellerprotokolls in cDNA umgeschrieben. Die erhaltene cDNA wurde für die anschließende qRT-PCR 1:2 – 1:4 verdünnt und bei -20°C gelagert.

3.2.4.3 Quantitative *Real-Time-PCR* (qRT-PCR)

Die Quantifizierung spezifischer RNAs erfolgte mit Hilfe der qRT-PCR. Analog zu einer herkömmlichen PCR wurde hier ausgehend von spezifischen Primerpaaren das gewünschte cDNA-Template vervielfältigt. Durch den zusätzlichen Einsatz des mit doppelsträngiger DNA interkalierenden Fluoreszenzfarbstoffes SybrGreen ließ sich durch Messung des Fluoreszenzsignals nach jedem Zyklus eine Aussage über die Menge der amplifizierten DNA treffen. Die zur spezifischen Analyse der miRNAs verwendeten Primer, die zur Normalisierung verwendeten Kontrollen RNU6B und die *miRNA reverse transcription control* (miRTC), die zur Bestimmung der RT-Effizienz diente, wurden als miScript Primer Assay von der Firma Qiagen bezogen (s. Tabelle 14).

Neben den miRNA-spezifischen Primern diente ein Universal-Primer als *reverse* Primer, der komplementär zu einem Universal-*Tag* des in der RT verwendeten Oligo-dT-Primer ist, sodass eine Amplifikation der kurzen miRNA-Sequenzen ermöglicht wird. Der Reaktionsansatz der qRT-PCR setzte sich aus den folgenden Komponenten zusammen:

Reagenzien	Volumen [µl]
2x QuantiTect Sybr Green PCR Mastermix	10
Nuklease-freies H ₂ O	4
miScript Primer Assay	2
Universalprimer	2
cDNA	2

Tabelle	14:	Komponenten	eines	Reaktionsansatzes	der	qRT-PCR.
		•				

Nach Herstellung des Reaktionsansatzes der qRT-PCR wurde dieser entsprechend des in Tabelle 15 angegebenen Temperaturprofils im Thermocycler inkubiert:

	Temperatur [°C]	Zeit [s]	Zyklen
Initial	95	900	1
Denaturierung	94	15	
Primer-Hybridisierung	55	30	40
Elongation*	70	30	

* Datenerfassung

Die PCR sowie die Datenerfassung der Fluoreszenzsignale erfolgte mit Hilfe des StepOnePlus Real-Time PCR System. Im Anschluss an die PCR-Amplifikation wurde zusätzlich eine Schmelzkurve der generierten Amplifikate generiert, um eventuell entstandene, unspezifische Nebenprodukte zu detektieren. Hierzu wurde die Temperatur mit einer konstanten Rate von 0,3 °C pro 15 s von 60 °C auf 95 °C erhöht und das entstandene Fluoreszenzsignal am Ende jeden Heizschrittes detektiert. Die in der PCR erhaltenen Fluoreszenzsignale der Amplifikate wurden nach der 2^{-ΔΔCt}-Methode unter Einbeziehung der endogenen Kontrolle RNU6B analysiert (Livak, Schmittgen, 2001).

3.2.4.4 Microarray

Der Microarray beschreibt eine molekularbiologische Methode, bei der mit Hilfe von sequenzspezifischen Oligonukleotiden auf einem Mikrochip (Microarray) eine Expressionsanalyse von Genen und Transkripten ermöglicht wird. Hierbei wird das zu untersuchende Template fluoreszenzmarkiert, wodurch die Bindung von spezifischen DNA- bzw. RNA-Sequenzen an komplementäre Oligonukleotide des Microarrays ein fluoreszierendes Signal induziert. Dieses Signal kann mit Hilfe eines Microarray-Scanners in Bildern erfasst und quantifiziert werden. In dieser Arbeit wurden mit Hilfe der Microarray-Methode differentielle Expressionen des Transkriptom und des miRnom ermittelt. Als Ausgangsmaterial diente in beiden Fällen Gesamt-RNA aus LUHMES-Zellen, in denen ein Parkinson-ähnlicher Phänotyp induziert wurde, sowie entsprechende Kontrollen (s. 3.2.1.5).

3.2.4.4.1 Microarray-basierte Transkriptomanalyse

Zur Analyse differentieller Expressionen von mRNAs wurde der SurePrint G3 Human Gene Expression 8x60K v2 Microarray verwendet. Die Probenvorbereitung erfolgte mittels Low Input, one-color, Quick Amp Labeling Kit nach Angaben des Herstellers. Hierzu wurden 100 ng RNA zunächst mit Hilfe des T7-Primers bei 40 °C für 2 Stunden reverse transkribiert. Im Anschluss wurde die generierte cDNA in einem zweistündigen Inkubationsschritt bei 40 °C durch eine T7 RNA-Polymerase in *complementary* RNA (cRNA) transkribiert und gleichzeitig mit Cyanine3-pCp (Cy3) fluoreszenzmarkiert. Die erhaltene fluoreszenzmarkierte cRNA wurde mit Hilfe des RNeasy mini Kit nach den Angaben des One-Color Microarray Gene Expression Protocol aufgereinigt und die Konzentration mittels NanoDrop™ 2000 Spektralphotometers bestimmt. Hierzu wurde das Microarray Messprotokoll verwendet, welches neben der Konzentration der RNA (Absorption bei 260 nm) ebenso die Konzentration des Cy3-Farbstoffes (Absorption bei 550 nm) in der Probe ermittelt. Anhand dieser Werte war es möglich, die spezifische Aktivität (Konzentration Cy3 [pmol/µl]/Konzentration cRNA [ng/µl] x1000) für jede Probe zu ermitteln, die für die weitere Probenverarbeitung einen Schwellenwert von 6 pmol/µg überschreiten musste. Für die Hybridisierungsreaktion wurden 600 ng cRNA eingesetzt und

auf dem SurePrint G3 Human Gene Expression 8x60K v2 Microarray für 17 h bei 65 °C mit 20 rpm in der SureHyb-Kammer hybridisiert. Am darauffolgenden Tag wurde der Microarray zweimal gewaschen, getrocknet und die Fluoreszenzsignale mit Hilfe des Microarray Scanner visualisiert. Die anschließende Analyse der erhaltenen Bilder erfolgte mit der Agilent AGW Feature Extraction Software, wobei für jeden Spot des Microarrays Fluoreszenzsignale ermittelt wurden. Zur weiteren Hintergrundkorrektur, Normalisierung der Fluoreszenzwerte und statischen Analysen wurde die "*Biological Significance Analyse*" mittels GeneSpring durchgeführt (s. 3.2.8.2).

3.2.4.4.2 Microarray-basierte miRnom-Analyse

Die Expressionsanalyse von miRNAs erfolgte durch SurePrint G3 human miRNA 80x60K Microarrays unter Verwendung des miRNA Complete Labeling and Hyb Kit nach Angaben des Herstellers. Als Ausgangsmaterial wurden analog zu den mRNA Microarrays 100 ng RNA eingesetzt. Zunächst wurde die eingesetzte RNA durch die *Calf Intestinal Phosphatase* bei 37 °C für 30 min dephosphoryliert. Nach einem Denaturierungsschritt bei 100 °C für 10 min unter Verwendung von 100 % DMSO, erfolgte die Fluoreszenzmarkierung mit Cy3 durch die T4 DNA-Ligase für 2 h bei 16 °C. Die anschließende Hybridisierung der RNA auf den SurePrint G3 human miRNA 80x60K Microarray erfolgte bei 55 °C für 20 h mit 20 rpm in der SureHyb-Kammer. Am darauffolgenden Tag wurde der Microarray zweimal gewaschen, getrocknet und die Fluoreszenzsignale mit Hilfe des Microarray Scanner visualisiert. Die anschließende Analyse der erhaltenen Bilder erfolgte mit der Agilent AGW Feature Extraction Software, wobei für jeden Spot des Microarrays Fluoreszenzwerte und statischer Analysen wurde GeneSpring mit Hilfe der Biologischen Signifikanz-Analyse verwendet.

3.2.4.5 Northern Blot

Die ektopische Expression sowie die Prozessierung der reifen miR-7-5p wurde mittels Northern Blot validiert. Die Durchführung erfolgte durch Frau Dr. rer. nat. Jennifer Menegatti am Institut für Virologie (AG Grässer, Universität des Saarlandes). Hierbei wird die isolierte RNA in einem denaturierenden Harnstoff-Polyacrylamidgel durch das Anlegen eines elektrischen Feldes anhand ihrer Größe aufgetrennt und kann im Anschluss auf eine Nylonmembran übertragen werden. Mit Hilfe von radioaktiv-markierten RNA-Sonden wird die gewünschte RNA-Sequenz komplementär gebunden und kann dadurch visualisiert werden. Die zur Analyse der miR-7-5p verwendete radioaktiv-markierte RNA-Sonde ist in Tabelle 2 aufgelistet.

47

3.2.5 Bioinformatische Zielgenauswahl

Zur *in silico* Vorhersage potenzieller Zielgene für die miR-34a-5p und die miR-7-5p wurde die Software miRWalk2.0 verwendet (Dweep, Gretz, 2015). Dieses Programm vereinigt die Informationen der zwölf verschiedenen Vorhersagealgorithmen von miRWalk, miRDB, PITA, MicroT4, miRMap, RNA22, miRanda, miRNAMap, RNAhybrid, miRBridge, PICTAR2 sowie TargetScan zur Zielgenanalyse. In dieser Arbeit wurde eine Zielgenvorhersage mittels miRWalk2.0 durchgeführt, die eine minimale *Seed*-Länge der jeweilige miRNA von 6 nt berücksichtigte. Zur spezifischen Analyse von Parkinson- sowie Dopamin-assoziierten Zielgenen erfolgte eine Pathway-Analyse mit Hilfe von GeneTrail2, einem Web-Interface, das statistische Analysen von Transkriptom-, miRNom-, Genom- und Proteasom-Datensets ermöglicht (Stockel *et al.*, 2016). Hierbei wurden alle potenziellen Zielgene der miRWalk2.0-Vorhersage, die von mindestens vier Vorhersagealgorithmen erfasst wurden, in einer Anreicherungsanalyse (*overrepresentation analysis*) spezifisch auf Anreicherungen bzw. Depletionen in Signalwegen untersucht sowie in ihre entsprechenden Signalwege eingeordnet. Zur spezifischen Validierung potenzieller Zielgene im Kontext von M. Parkinson wurden 14 Parkinson- und Dopamin-assoziierte Signalwege festgelegt (s. Tabelle 16).

Datenbank	Pathway	Bezeichnung
Kyoto Encyclopedia of Genes	Parkinson's disease	hsa05012
and Genomes (KEGG)	Dopaminergic synapse	hsa04728
	Dopamine metabolism	WP2436
WikiPathways	Dopaminergic neurogenesis	WP2855
	Parkinsons disease pathway	WP2371
	Dopamine biosynthetic process	GO:0042416
	Dopamine catabolic process	GO:0042420
	Dopamine metabolic process	GO:0042417
Gene Ontology (GO) -	Dopamine receptor signaling pathway	GO:0007212
Biological Process	Dopamine secretion & regulation of dopamine secretion	GO:0014046
	Dopamine transport	GO:0015872
	Dopaminergic neuron differentiation	GO:0071542
Reactome - Pathways	Dopamine neurotransmitter release cycle	R-HSA-212676
	Pink/Parkin mediated mitophagy	R-HSA-5205685

Tabelle 16: Liste der ausgewählten Parkinson- und Dopamin-assoziierten Signalwege.

3.2.5.1 Generierung miR-34a-5p spezifischer Reporterkonstrukte

Zur Validierung potenzieller Zielgene wurden die mittels miRWalk2.0 für die miR-34a-5p vorhergesagten Zielgene der Parkinson- und Dopamin-assoziierten Signalwege zunächst auf Bindestellen für die miR-34a-5p untersucht. Hierzu erfolgte ein Sequenzabgleich der 3'UTR der Zielgene mit der Referenz-Datenbank des *National Center for Biotechnology Information* (NCBI) mit der miR-34a-5p-Zielsequenz (O'leary *et al.*, 2016). Für die weiteren Schritte wurden nur Zielgene berücksichtigt, die nach Sequenzabgleich eine miR-34a-5p Bindestelle aufwiesen. Zudem wurden Zielgene ausgeschlossen, die bereits von anderen Arbeitsgruppen positiv validiert wurden. Hierzu erfolgte ein Abgleich mit Hilfe der miRTarBase, einer Datenbank, die mit Hilfe bekannte miRNA-Zielgeninteraktionen zusammenfasst (Huang *et al.*, 2020). Zusätzlich wurde die Literatur-Datenbank des NCBI PubMed genutzt (White, 2020). Anhand dieser Filterkriterien wurden für die verbliebenen Zielgene die Sequenz der miR-34a-5p-Bindestelle sowie die umliegenden Sequenzen innerhalb der 3'UTRs der entsprechenden Zielgene in 475 bp große Fragmente unterteilt sowie mit den Restriktionsschnittstellen der Enzyme *Spe* I und *Sac* I zur späteren Synthese in das Reporterplasmid pMIR-RNL-TK versehen.

3.2.5.2 Generierung einer Parkinson-spezifischen 3'UTR Reporterplasmidbank

Zur miRNA-unabhängigen Validierung von Zielgenen aus Parkinson- und Dopaminassoziierten Signalwegen wurde eine Parkinson-spezifische 3'UTR-Reporterplasmidbank erstellt. Die Sequenzverarbeitung wurde von Frau Dr. rer. nat. Christina Backes und Herrn Fabian Kern im Zentrum für klinische Bioinformatik (AG Keller, Universität des Saarlandes) durchgeführt. Hierzu wurden alle Gene aus den 14 definierten Signalwegen isoliert und in 675 bp große Fragmente mit einem Überlappungsbereich von 30 bp unterteilt sowie mit den Restriktionsschnittstellen der Enzyme *Spe* I und *Sac* I zur späteren Synthese in das Reporterplasmid pMIR-RNL-TK versehen.

3.2.5.3 Auswahl miR-7-5p spezifischer Reporterkonstrukte aus der Parkinsonspezifischen 3'UTR Reporterplasmidbank

Die Auswahl der zu validierenden Reporterkonstrukte der miR-7-5p erfolgte auf Basis der Zielgenvorhersage mit Hilfe von miRWalk2.0 sowie einem direkten Sequenzabgleich der miR-7-5p Bindestelle mit den Reporterplasmiden der Parkinson-spezifischen 3'UTR Reporterplasmidbank. Hierbei wurden nur Reporterplasmide der Zielgene verwendet, die vorhergesagt wurden, und die eine Bindestelle in der Reporterplasmid-Sequenz aufwiesen. Lag die Bindestelle im Überlappungsbereich zwei aufeinanderfolgender Reporterplasmide eines Zielgens, wurde das Reporterplasmid ausgewählt, welches die Bindestelle der miR-7-5p an seinem 3'Ende aufwies, um mögliche 3' komplementäre Bindung der miRNA zu ermöglichen.

3.2.6 Hochdurchsatz miRNA-Interaktions-Reporterassay (*High-throughput miRNA interaction reporter assay*, HiTmIR-Assay)

Das HiTmIR-Assay erfolgte nach Kern et al. (Kern et al., 2021). Hierbei handelt es sich um eine teilautomatisierte Hochdurchsatz-Methode zur Identifikation von miRNA-Zielgen-Interaktionen. Die Grundlage dieser Methode bildet ein Dual-Luciferase-Reporter-Assay, welches auf der katalytischen Aktivität von Luciferasen beruht, die in Anwesenheit ihres entsprechenden Substrates eine Lichtreaktion hervorrufen können. Das in dieser Arbeit verwendete Reporterplasmid pMIR-RNL-TK beinhaltet das Gen zur Expression der Firefly-Luciferase und der Renilla-Luciferase unter der Kontrolle zwei verschiedener Promotoren. Hierbei erfolgt die Lichtreaktion der Firefly-Luciferase durch die Oxidation des Substrates Luciferin unter Mg²⁺ sowie ATP-Verbrauch zu Oxyluciferin. Die Lichtreaktion der Renilla-Luciferase wird durch die Umsetzung des Substrates Coelenterazine unter O₂-Verbrauch zu Colenteramid hervorgerufen. Durch die Kombination beider Luciferasen kann die Luciferase-Aktivität beider Enzyme durch aufeinanderfolgende Zugabe des jeweiligen Substrates in einem Reaktionsansatz bestimmt werden. Hierbei bildet die Renilla-Luciferase die interne Kontrolle und kann zur Normalisierung der Luciferase-Aktivität der Firefly-Luciferase verwendet werden. Innerhalb des Reporterplasmides liegt das Gen der Firefly-Luciferase direkt vor der multiple cloning site, wodurch die Sequenz der gewünschten 3'UTR einer entsprechenden Ziel-mRNA direkt hinter den ORF der Luciferase kloniert werden kann. Dadurch können miRNAs durch Interaktion mit der 3'UTR die Expression der Luciferase und folglich auch deren Aktivität verringern, was anhand einer reduzierten Lichtreaktion nachverfolgt werden kann.

Zunächst wurden HEK293T-Zellen abgelöst, die Zellzahl mittels LUNA-FL[™] Dual Fluorescence Cell bestimmt, mit Hilfe des *liquid handling systems* epMotion 5075 in 96-well-Platten mit einer Dichte von 3 – 3,4 x 10⁴ pro Well ausgesät und über Nacht bei 37 °C und 5 % CO₂ kultiviert. Um ein gleichmäßiges Zellwachstum sowie konstante Wärmeversorgung innerhalb der Zellkulturplatte zu gewährleisten und sogenannte Rand-Effekte zu reduzieren, wurde steriles PBS in die Zwischenräume der Wells pipettiert. Am darauffolgenden Tag erfolgte eine automatisierte Transfektion mittels epMotion 5075. Die Transfektionsbedingungen im 96-Well-Format sind in Tabelle 7 zusammengefasst. Nach 48-stündiger Inkubation der Zellen mit den DNA-Transfektionsmixen erfolgte die Zelllyse sowie die Messung der Luciferase-Aktivität nach Angaben des Herstellers. Hierzu wurde zunächst das Medium

50

manuell aus den Wells entnommen, die Zelllyse erfolgte automatisiert mittels epMotion 5075 durch die Zugabe von 100 µl 1x Passive Lysis Buffer (PLB). 10 µl der lysierten Extrakte wurden nach 15-minütiger Inkubation mittels epMotion 5075 in Messplatten pipettiert und die Aktivität der beiden Luciferasen mit Hilfe des GlowMax Navigator Microplate Luminometer gemessen. Der GlowMax Navigator Microplate Luminometer injizierte zunächst 50 µl des Substrates der Firefly-Luciferase "LARII" und erfasste mit einer Messzeit von 10 s die Aktivität der Firefly-Luciferase. Im Anschluss injizierte das Gerät 50 µl des Substrates der Renilla-Luciferase "Stop&Glo", welches zusätzlich die Aktivität der Firefly-Luciferase inhibiert, und erfasste mit einer Messzeit von 10 s die Aktivität der Renilla-Luciferase. Zur Analyse der erhaltenen Lumineszenzen wurde zunächst die relative Luciferase-Aktivität (relative luciferase unit, RLU) ermittelt, die durch die Normalisierung der Lumineszenz der Firefly-Luciferase auf die Lumineszenz der Renilla-Luciferase berechnet wurde. Im Anschluss erfolgte für jede getestete 3'UTR eine Normalisierung der RLUs in Bezug auf den Mittelwert der Kotransfektion aus entsprechendem 3'UTR Reporterplasmid und leerem Expressionsvektor. Zur Visualisierung der Daten wurden die erhaltenen RLUs der 3'UTR-Reporterplasmide auf die RLU des leeren Reporterplasmides normalisiert.

3.2.7 Proteinbiochemische Methoden

3.2.7.1 Proteinextraktion aus eukaryotischen Zellen

Zur Untersuchung miRNA-induzierter Effekte auf Proteinebene mittels Western Blot-Analysen wurden zunächst Gesamtproteinextrakte aus eukaryotischen Zellen isoliert. Hierzu wurden die adhärenten Zellen zunächst trypsiniert und für 10 min bei 1.100 rpm pelletiert. Nach einem Waschschritt mit PBS (1.100 rpm, 10 min) wurde das Zellpellet in 2x Sample Buffer aufgenommen und zur weiteren Verarbeitung auf Eis gehalten. Der 2x Sample Buffer enthält zur Auflösung von Sekundär- und Tertiärstrukturen der Proteine neben 3-Mercapto-1,2-propanediol auch SDS, welches die Proteine zusätzlich mit einem einheitlichen Ladungs-/Masseverhältnis versieht. Im Anschluss erfolgte eine Ultraschallbehandlung der Zelllysate für 3x 5 s, gefolgt von der Denaturierung für 10 min bei 99 °C. Abschließend wurden die Zelllysate bei 13.000 rpm für 10 min zentrifugiert und der Überstand in ein neues Reaktionsgefäß überführt. Konzentrationsbestimmung Die erfolgte durch photometrisch Bestimmuna der Proteinkonzentration in 0,1 M NaOH. Durch Ermittlung der optischen Dichte (OD) bei 280 nm konnte die Proteinkonzentration anhand folgender Formel ermittelt werden:

$$\frac{0,213}{OD_{280}} = \mu g \text{ Protein/}\mu I$$

Die isolierten Proteine konnten bis zur weiteren Verarbeitung bei -20 °C gelagert werden.

3.2.7.2 Sodium Dodecyl Sulfate-Polyacrylamidgelelektrophorese (SDS-PAGE)

Die SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) basiert auf der Methodik von Laemmli und wurde verwendet, um Proteine anhand ihres Molekulargewichtes im elektrischen Feld aufzutrennen (Laemmli, 1970). Aufgrund des negativ geladenen SDS, welches sowohl im 2x Sample Buffer, im Laufpuffer als auch im Polyacrylamidgel vorhanden war, wurden die Proteine sowohl denaturiert als auch einheitlich negativ geladen. Dadurch erfolgte die Auftrennung im elektrischen Feld lediglich anhand ihres Molekulargewichtes. Im Rahmen dieser Arbeit wurden ausschließlich die Gradienten-Polyacrylamidgele (4–15%) mini-PROTEAN[®] TGX[™] Precast Protein Gels der Firma BioRad verwendet, um eine bestmögliche Auftrennung von Proteinen mit unterschiedlichem Molekulargewicht zu gewährleisten. Für die SDS-PAGE wurden 15 µg Gesamtzellproteinextrakt aufgetrennt. Als Größenstandard wurde der Molekulargewichtsmarker Precision Plus Protein[™] Dual Color der Firma Bio-Rad Laboratories verwendet. Die Auftrennung der Proteine im Polyacrylamidgel erfolgte senkrecht in einer mit Laufpuffer befüllten Gelelektrophoresekammer für zunächst 10 min bei 20 mA pro Gel und im Anschluss für circa 45 min bei 40 mA pro Gel, bis der Molekulargewichtsmarker vollständig aufgetrennt war.

3.2.7.3 Western Blot

Im Anschluss an die SDS-PAGE erfolgte der Transfer der aufgetrennten Proteine auf eine Nitrocellulosemembran im Western Blot, um die Proteine abschließend anhand spezifischer Antikörper zu detektieren. Analog zur SDS-PAGE wurden die Proteine durch das Anlegen einer elektrischen Spannung aufgrund ihrer negativen Ladung in Richtung von Anode angezogen, wodurch sie auf die Nitrocellulosemembran transferiert werden konnten. Für diesen Proteintransfer wurde zunächst die Gelkassette des Western Blots luftblasenfrei in einer transferpuffergefüllten Wanne folgendermaßen vorbereitet: ein Schwammtuch, zwei Whatman-Papiere, das Polyacrylamidgel, die Nitrocellulosemebran, wiederum zwei Whatman-Papiere und ein Schwammtuch. Die Gelkassette wurde in eine mit Transferpuffer gefüllte Blotkammer gesetzt, wobei die Membran in Richtung Anode und das Polyacrylamidgel in Richtung Kathode positioniert wurden. Der Proteintransfer erfolgte bei einer Stromstärke von 400 mA für 1,5 – 2 h. Zur Überprüfung des erfolgreichen Proteintransfers wurde die Membran für 5 min in Ponceau S gefärbt und mit H₂O abgespült. Im Anschluss erfolgte durch eine 30-minütige Inkubation der Membran in Blocking-Puffer die Blockierung von unspezifischen Bindestellen. Der Blocking-Puffer bestand abhängig von dem eingesetzten Primärantikörper entweder aus 5 % Milchpulver in TBST oder 5 % BSA in TBST. Die verwendeten Primärantikörper wurden in 10 ml des entsprechenden Blocking-Puffers 1:800 – 1:1.000 verdünnt und über Nacht bei 4 °C auf der Membran in einem 50 ml Reaktionsgefäß inkubiert. Am darauffolgenden Tag

wurde die Membran zunächst dreimal für 15 min in TBST unter Schütteln gewaschen, um Reste von nicht gebundenem Primärantiköper zu entfernen. Im Anschluss wurden Meerrettichperoxidase (*horseradish peroxidase*, HRP) -gekoppelte Sekundärantikörper, die gegen die konstante Region des Primärantikörpers gerichtet waren, 1:5.000 in 10 ml des entsprechenden *Blocking*-Puffers verdünnt und für 1 h bei 4 °C auf der Membran inkubiert. Nach dreimaligem Waschen der Membran für 15 min in TBS, um Reste von nicht gebundenem Sekundärantiköper zu entfernen, erfolgte die Detektion der Antikörper-gebundenen Proteine mittels Chemilumineszenz. Hierzu wurde die Membran mit ECL-Reagenz nach Angaben des Herstellers inkubiert. Die erhaltene Chemilumineszenz wurde mit Hilfe des ChemiDoc™ Touch Imaging Systems dokumentiert. Die Quantifizierung der Bandenintensitäten erfolgte mittels Image Lab™ Software.

3.2.8 Datenverarbeitung und statistische Analysen

3.2.8.1 Analyse der qRT-PCR mit Hilfe der 2^{-ΔΔCt}-Methode

Die in der qRT-PCR detektierten *cycle threshold* (Ct)-Werte wurden nach der $2^{-\Delta\Delta Ct}$ -Methode unter Einbeziehung der Kontrolle RNU6B analysiert (Livak, Schmittgen, 2001). Hierzu wurde zunächst der Δ Ct-Wert für jede Probe ermittelt, indem die erhaltenen Ct-Werte auf die Kontrolle RNU6B normalisiert wurden. Anhand dieses Wertes konnte im Anschluss der Expressionsunterschied zwischen der zu untersuchenden Bedingung in Bezug auf die jeweilige Kontrolle mit dem $\Delta\Delta$ Ct-Wert berechnet werden. Expressionsveränderung (*fold change*) wurde als $2^{-\Delta\Delta Ct}$ angegeben.

3.2.8.2 Datenprozessierung und Normalisierung des Microarrays

Zur Auswertung des Microarrays wurden die generierten Bilddaten zunächst mittels Agilent AGW Feature Extraction Software prozessiert. Das Programm ermittelte automatisch mit Hilfe der erhaltenen Microarray Scan Bilddaten nach Hintergrundkorrektur für jeden Spot des Microarrays Roh-Expressionswerte, eliminierte Ausreißer der einzelnen Replikate und führte eine Qualitätskontrolle der erhaltenen Fluoreszenzsignale durch. Zur Normalisierung der Expressionswerte wurde im weiteren Verlauf der Modus *"Biological Significance"* des Programms GeneSpring verwendet. Diese Analyse basiert auf voreingestellten Parametern, anhand derer eine Quantilnormalisierung sowie eine *Baseline*-Transformation der erhaltenen Expressionswerte auf den Median aller Proben durchgeführt wurde. Zur weiteren Analyse wurden nur mRNAs bzw. miRNAs berücksichtigt, die in allen getesteten Proben detektiert wurden. Die erhaltenen Expressionswerte der Transkriptom- und miRnom-Analysen wurden in der *gene expression omnibus*-Datenbank des NCBI hinterlegt, die Microarray- bzw. Sequenzierungs-Datensätze von Gen- und RNA-Expressionsprofilen verschiedener Studien zusammenfasst (*Accession number*: GSE135151). Die statistische Signifikanz der differenziell exprimierten mRNAs bzw. miRNAs der vier unabhängigen Replikate des Parkinson-Zellkulturmodells wurde anhand des gepaartem t-Tests mit Hilfe von GeneSpring analysiert. Die erhaltenen P-Werte wurden nach der Benjamini-Hochberg-Methode für multiples Testen adjustiert. Als Output wurden normalisierte, log₂-transformierte Expressionswerte generiert, anhand derer die Expressionsveränderung (*fold change*) durch Induktion des Parkinson-Zellkulturmodells für alle Paare in Bezug zur jeweiligen Kontrolle berechnet wurde. Zur standardisierten Visualisierung der Daten wurde zudem der *Z-Score* anhand folgender Formel berechnet:

 $Z-Score = \frac{\log_2 expression (x) - Mittelwert \log_2 expression}{Standardabweichung}$

3.2.8.3 Quantifizierung der Bandenintensitäten von Proteinbanden

Die Quantifizierung der Bandenintensitäten der erhaltenen Proteinbanden erfolgte mittels Image Lab[™] Software der Firma Bio-Rad. Hierbei wurden die erhaltenen Spuren des Western Blots manuell festgelegt und die Banden automatisch detektiert. Anhand dessen wurden Bandenintensitäten durch die Software berechnet, die zur weiteren Auswertung verwendet wurden. Hierbei erfolgte zunächst eine Normalisierung der Bandenintensität des jeweiligen zu untersuchenden Proteins auf die Bandenintensität des entsprechenden Haushaltsgenes. Zur Darstellung der Ergebnisse wurden die relativen Proteinmengen der zu untersuchenden Bedingungen in Bezug auf die jeweilige Kontrolle berechnet.

3.2.8.4 Statistische Analyse

Soweit nicht anders angegeben, wurden alle in dieser Arbeit durchgeführten Experimente in mindestens drei unabhängigen biologischen Replikaten durchgeführt. Unabhängige Replikate wurden zur Darstellung als Mittelwert zusammengefasst sowie der jeweilige Standardfehler angegeben. Zur Analyse der Daten auf statistische Signifikanz zwischen zwei Gruppen wurde unter Annahme einer Normalverteilung ein zweiseitig gepaarter t-Test mit Hilfe des Programms GraphPad Prism 7 durchgeführt. Die statistische Signifikanz zwischen mehreren Gruppen wurde unter Annahme einer Normalverteilung durch die einseitige Varianzanalyse (*one way analysis of variance*, ANOVA) mit dem Tukey Post-hoc-Test mit Hilfe des Programms GraphPad Prism 7 berechnet. Unterschiede zwischen zwei Gruppen mit P < 0,05 wurden als signifikant definiert.

4. Ergebnisse

Die in dieser Arbeit dargelegten Ergebnisse wurde größtenteils im Rahmen der Publikation "*Validation of human microRNA target pathways enables evaluation of target prediction tools*" im Journal *Nucleic Acid Research* veröffentlicht (Kern *et al.*, 2021).

4.1 Transkriptomanalysen im Parkinson-Zellkulturmodell

Die Differenzierung der LUHMES-Zellen zu reifen, dopaminergen Neuronen sowie die Induktion des Parkinson-ähnlichen Phänotyps durch die 48-stündige Behandlung mit dem Neurotoxin MPP+ erfolgte in vier unabhängigen Experimenten durch Frau Karin Danz am Fraunhofer Institut für Biomedizinische Technik (s. 3.2.1.5). Als Kontrollzellen dienten differenzierte LUHMES-Zellen ohne MPP+-Behandlung. Die Zellen wurden im Anschluss lysiert, die RNA isoliert und im Rahmen dieser Arbeit sowohl Transkriptom- als auch miRnom-Analysen mittels Microarray durchgeführt (s. 3.2.4.4). Im Rahmen dieser Arbeit wurde mit Hilfe von Transkriptomanalysen die Expressionsveränderung nach Induktion des Parkinsonähnlichen Phänotyps von Transkripten für insgesamt 26.083 Gene und 30.606 lange, nichtkodierende RNAs (long non-coding RNA, IncRNA) untersucht. Hierbei wurde die Expression von insgesamt 25.010 der untersuchten Transkripte in allen acht getesteten Proben, also in den vier Proben des Parkinson-Zellkulturmodells sowie in den vier zugehörigen Kontrollen, detektiert. Zur weiteren Analyse wurden nur Transkripte betrachtet, die in der Referenz-Datenbank des NCBI als mRNA annotiert und durch eine NM-Nummer ausgewiesen wurden. Diese beliefen sich insgesamt auf 16.932 Transkripte. Für 2.602 dieser Transkripte mit gleicher NM-Nummer befanden sich mehrere Oligonukleotide mit unterschiedlichen Sequenzmotiven der Transkripte auf dem Microarray. Zur weiteren Analyse wurden die erhaltenen log₂-transformierte Expressionswerte der verschiedenen Oligonukleotide von Transkripten mit gleicher NM-Nummer als Mittelwert zusammengefasst, sodass insgesamt 13.934 verschiedene Transkripte im weiteren Verlauf analysiert wurden. Innerhalb der Gruppe der Transkripte mit NM-Nummer wurde nach statistischer Analyse und anschließender P-Wert-Adjustierung für 1.486 mRNAs eine signifikante Expressionsänderung im Parkinson-Zellkulturmodell im Vergleich zu den Kontrollzellen beobachtet. Nach Anwendung des definierten Grenzwertes (log₂ fold change > 0,3 bzw. <-0,3) wurden innerhalb der signifikant veränderten Transkripte insgesamt 1.205 Transkripte mit einer veränderten Expression nach Induktion des Parkinsonähnlichen Phänotyps detektiert, wobei 705 Transkripte eine verstärkte Expression und 500 eine verringerte Expression zeigten. Die stärksten Expressionsänderungen nach Induktion des Parkinson-ähnlichen Phänotyps wurden für die mRNAs der Gene PRSS56, ASS1, SLC7A11 und FABP3 mit signifikanter Induktion im Vergleich zur Kontrolle (Abbildung 7), sowie TXNIP, NTRK3, LYPD1 und SCLM4 mit signifikanter Reduktion erfasst (Abbildung 8).

Abbildung 7: Transkriptomanalyse der 50 mRNAs mit der stärksten Expressionserhöhung nach Induktion des Parkinson-ähnlichen (PD) Phänotyps in LUHMES-Zellen. LUHMES-Zellen wurden in vier unabhängigen Replikaten zu dopaminergen Neuronen differenziert. Im Folgenden wurde durch die Behandlung mit dem Neurotoxin MPP+ ein Parkinson-ähnlicher Phänotyp induziert. Kontrollzellen wurden mit H₂O behandelt. Anschließend wurden die Zellen Iysiert, die RNA isoliert und Transkriptomanalysen mittels Microarray durchgeführt. Dargestellt sind die Z-transformierte Expressionswerte der Replikate.

Abbildung 8: Transkriptomanalyse der 50 mRNAs mit der stärksten Expressionsverringerung nach Induktion des Parkinson-ähnlichen (PD) Phänotyps in LUHMES-Zellen. LUHMES-Zellen wurden in vier unabhängigen Replikaten zu dopaminergen Neuronen differenziert. Im Folgenden wurde durch die Behandlung mit dem Neurotoxin MPP+ ein Parkinson-ähnlicher Phänotyp induziert. Kontrollzellen wurden mit H₂O behandelt. Anschließend wurden die Zellen lysiert, die RNA isoliert und Transkriptomanalysen mittels Microarray durchgeführt. Dargestellt sind die Z-transformierte Expressionswerte der Replikate.

Zur Identifikation signifikant deregulierter Signalwege innerhalb des Parkinson-Zellkulturmodells wurde eine gene set enrichment-Analyse (GSEA) mit Hilfe von GeneTrail2 durchgeführt (Stockel et al., 2016). Hierzu wurden als Ausgangsset wiederum alle Transkripte mit NM-Nummer nach ihrem fold change aufsteigend sortiert verwendet. Im Rahmen dieser Analyse erfolgte zunächst ein Abgleich mit der NCBI Referenzsequenzdatenbank, um falsch annotierte Transkripte für die weiteren Analysen auszuschließen. Im Zuge dessen konnten 13.932 der 13.934 analysierten Transkripte eindeutig zugeordnet werden und wurden für die weitere Analyse berücksichtigt. Mit Hilfe dieser Analyse wurden die nach ihrem fold change sortierten Transkripte auf Anreicherungen bzw. Depletionen in ihren zugehörigen Signalwegen untersucht. Die GSEA ergab für insgesamt 111 Signalwege signifikante Anreicherung bzw. Depletion der untersuchten Transkripte. Innerhalb dieser Gruppe konnten diverse Signalwege identifiziert werden, die in Zusammenhang mit den von Anthony et al. beschriebenen "Hallmarks of Parkinson's disease" (Antony et al., 2013) stehen (Tabelle 17).

Datenbank	Signalweg	Adj. P-Wert
KEGG	Oxidative phosphorylation	0,036
REGG	Pyruvate metabolism	0,036
	Mitochondrial translational initiation	<0,001
GO - Biological	Mitochondrial translation	<0,001
Process	Mitochondrial translational elongation	<0,001
	Mitochondrial translational termination	<0,001
	Organellar ribosome & mitochondrial ribosome	<0,001
	Ubiquitin ligase complex	0,011
	Postsynapse	0,025
GO - Cellular	Inner mitochondrial membrane protein complex	0,026
Component	Mitochondrial protein complex	0,028
	Organellar small ribosomal subunit & mitochondrial small	0,042
	Mitochondrial membrane part	0,044
GO - Molecular	Ubiquitin like protein ligase activity	0,004
Function	Ubiquitin protein ligase activity	0,004
	Mitochondrial translation initiation	<0,001
Reactome - Pathways	Mitochondrial translation elongation	<0,001
	Mitochondrial translation termination	<0,001
	Respiratory electron transport	0,007
	Antigen processing: ubiquitination & proteasome degradation	0,009
WikiPathways	Electron transport chain	0,019

Tabelle 17: Signifikant veränderte, *"Hallmarks of Parkinson's disease"-assoziierte Signalwege nach GeneTrail2-Analyse im Parkinson-Zellkulturmodell.*
Die meisten in der Signalweganalyse erfassten signifikant veränderten Signalwege waren mitochondrial assoziiert. Hierzu zählten Signalwege der mitochondrialen Translation, des Citratzyklus, der Atmungskette sowie der mitochondrialen Membran. Daneben wurden signifikant veränderte Signalwege in Zusammenhang mit dem Ubiquitin-Proteasom-System sowie der Signalweg Postsynapse erfasst.

4.2 Differenziell exprimierte miRNAs im Parkinson-Zellkulturmodell

Neben der Transkriptomanalyse wurde zusätzlich das miRnom nach Induktion des Parkinson-Phänotyps ähnlichen mittels Microarray untersucht. Nach Normalisierung und bioinformatischer Analyse des Microarrays wurden 686 miRNAs der insgesamt 2.549 auf dem Microarray befindlichen miRNAs in allen acht getesteten Proben detektiert. Analog zu den Transkriptomanalysen wurden die miRNAs als differenziell exprimiert definiert, die einen log₂ fold change größer 0,3 bzw. kleiner -0,3 zeigten. Insgesamt handelte es sich hierbei um 68 differenziell exprimierte miRNAs, wovon 45 miRNAs eine verstärkte Expression und 23 miRNAs eine verringerte Expression nach Induktion des Parkinson-ähnlichen Phänotyps aufwiesen. Die statistische Analyse und anschließende P-Wert-Adjustierung ergab für 13 miRNAs eine signifikante Expressionsänderung nach Behandlung mit MPP+. Hierbei wiesen die neun miRNAs miR-34a-5p, miR-129-5p, miR-129-1-3p, miR-335-3p, miR-378a-3p, miR-423-5p, miR-1973, miR-3659 und miR-4485-3p eine signifikant erhöhte Expression nach Induktion des Parkinson-ähnlichen Phänotyps auf. Im Gegensatz dazu wurde für die miRNAs miR-7-5p, miR-181a-3p, miR-4284 und miR-4485-5p eine signifikant verringerte Expression erfasst. In der Gruppe der signifikant veränderten miRNAs ließ sich für miR-423-5p, miR-3659 und miR-378a-3p nur eine geringfügige Änderung im durchschnittlichen log₂ fold change (<0,3 bzw. >-0,3) feststellen, wodurch diese für die weiteren Analysen ausgeschlossen wurden. Die miRNAs, welche die stärksten Expressionsveränderung nach Induktion des Parkinsonähnlichen Phänotyps zeigten, sind in Abbildung 9 und Abbildung 10 zusammengefasst.

Abbildung 9: miRnom-Analyse der 50 miRNAs mit der stärksten Expressionserhöhung nach Induktion des Parkinson-ähnlichen Phänotyps in LUHMES-Zellen. LUHMES-Zellen wurden in vier unabhängigen Replikaten zu dopaminergen Neuronen differenziert. Im Folgenden wurde durch die Behandlung mit dem Neurotoxin MPP+ ein Parkinson-ähnlicher Phänotyp induziert. Kontrollzellen wurden mit H₂O behandelt. Anschließend wurden die Zellen lysiert, die RNA isoliert und die miRnom-Analyse mittels Microarray durchgeführt. Dargestellt sind die Z-transformierte Expressionswerte der Replikate. Signifikant veränderte miRNAs nach Induktion des Parkinson-ähnlichen Phänotyps sind gekennzeichnet (* $P_{adj} < 0.05$)

Abbildung 10: miRnom-Analyse der 50 miRNAs mit der stärksten Expressionsverringerung nach Induktion des Parkinson-ähnlichen Phänotyps in LUHMES-Zellen. LUHMES-Zellen wurden in vier unabhängigen Replikaten zu dopaminergen Neuronen differenziert. Im Folgenden wurde durch die Behandlung mit dem Neurotoxin MPP+ ein Parkinson-ähnlicher Phänotyp induziert. Kontrollzellen wurden mit H₂O behandelt. Anschließend wurden die Zellen lysiert, die RNA isoliert und die miRnom-Analyse mittels Microarray durchgeführt. Dargestellt sind die Z-transformierte Expressionswerte der Replikate. Signifikant veränderte miRNAs nach Induktion des Parkinson-ähnlichen Phänotyps sind gekennzeichnet (* $P_{adj} < 0.05$). Zur Validierung der Ergebnisse des Microarrays wurden sieben miRNA-Kandidaten ausgewählt, die eine signifikante Veränderung nach MPP+-Behandlung (miR-34a-5p, miR-129-5p, miR-129-1-3p, miR-335-3p, miR-7-5p, miR-4284, miR-181a-3p) zeigten, sowie drei miRNAs, die zwar eine nicht-signifikante, jedoch eine starke Expressionsänderung aufwiesen (miR-106b-3p, miR-134-5p, miR-412-5p). Die Ergebnisse der Validierung mittels qRT-PCR sind in Abbildung 11 dargestellt.

Abbildung 11: Validierung der miRnom-Analyse mittels qRT-PCR. Die RNA der LUHMES-Zellen wurde nach Induktion des Parkinson-ähnlichen Phänotyps isoliert und in cDNA reverse transkribiert. Mit miRNA-spezifischen Primern wurde die Expression der miRNAs in der qRT-PCR detektiert und mit Hilfe der internen Kontrolle RNU6 normalisiert. Der *fold change* wurde unter Verwendung der $2^{-\Delta\Delta Ct}$ -Methode in Bezug zur Kontrolle berechnet. (a) Validierung der miRNAs mit erhöhter Expression durch MPP+-Behandlung im Microarray mittels qRT-PCR. (b) Validierung der miRNAs mit verringerter Expression durch MPP+-Behandlung im Microarray mittels qRT-PCR. Dargestellt ist der Mittelwert des *fold changes* in Bezug zur Kontrolle von vier unabhängigen Replikaten in Doppelbestimmung sowie zugehöriger Standardfehler. Statistische Signifikanz zwischen dem PD-ähnlichen Phänotyp und der Kontrolle wurden kenntlich gemacht (***P < 0,001; *P < 0,05).

Analog zu den Grenzwerten des Microarrays wurde in der qRT-PCR-Analyse für acht der zehn getesteten miRNAs eine differenzielle Expression beobachtet (miR-34a-5p, miR-129-5p, miR-129-1-3p, miR-335-3p, miR-7-5p, miR-134-5p, miR-412-5p, miR-4284). Innerhalb dieser Gruppe zeigten die miRNAs miR-34a-5p (P < 0,001), miR-129-1-3p (P < 0,05) und miR-4284 (P < 0,05) eine signifikante Expressionsveränderung zwischen der Kontrollgruppe und der Gruppe des Parkinson-Zellkulturmodells. Für die getesteten miRNAs miR-106b-3p und

miR-181a-3p konnte in der qRT-PCR-Analyse im Gegensatz zu den Ergebnissen des Microarrays keine differentielle Expression detektiert werden (\log_2 fold change = 0,03 bzw. 0,01). Der direkte Vergleich beider Methoden ist in Tabelle 18 dargestellt.

miRNA	Microarray		qRT-PCR		P-Wert (Microarray
	Log₂ FC	Adj. P-Wert	Log₂ FC	P-Wert	vs qRT-PCR)
miR-34a-5p	0,30	0,041	1,24	< 0,001	< 0,001
miR-106-3p	1,10	0,085	0,03	0,919	0,01
miR-129-5p	0,77	0,002	0,58	0,072	0,44
miR-129-1-3p	0,62	0,041	1,24	0,014	0,09
miR-335-3p	1,07	0,041	0,93	0,115	0,77
miR-7-5p	-0,74	0,041	-0,89	0,181	0,78
miR-134-5p	-0,37	0,097	-0,49	0,066	0,45
miR-181a-3p	-0,36	0,041	0,01	0,970	0,20
miR-412-5p	-0,75	0,085	-0,82	0,108	0,82
miR-4284	-2,41	0,040	-1,46	0,020	0,09

Tabelle 18: Vergleich der miRNA-Expressionsanalysen von LUHMES-Zellen nach Induktion des Parkinson-ähnlichen Phänotyps mittels Microarray und qRT-PCR.

Im direkten Vergleich ließ sich für die miRNAs miR-7-5p, miR-134-5p, miR-181a-3p, miR-412-5p, miR-4284, miR-129-5p, miR-129-1-3p und miR-335-3p kein signifikanter Unterschied der beiden Methoden im \log_2 *fold change* detektieren. Im Gegensatz dazu zeigten miR-34a-5p und miR-106b-3p einen signifikanten Unterschied im \log_2 *fold change* zwischen den beiden Methoden. In beiden Methoden ließ sich für die miR-34a-5p eine erhöhte Expression beobachten, allerdings war der Effekt in der qRT-PCR-Analyse stärker ausgeprägt.

4.3 Signalweg-spezifische Zielgenauswahl mittels bioinformatischer Vorhersage

Auf Grundlage der Ergebnisse des Parkinson-Zellkulturmodells sowie übereinstimmenden Expressionsmustern in vergleichbaren Studien wurde im weiteren Verlauf der Fokus dieser Arbeit auf die induzierte miR-34a-5p und die reprimierte miR-7-5p gelegt (Shanesazzade *et al.*, 2018; Smirnova *et al.*, 2016). Durch die Kombination einer Signalweg-spezifischen Zielgenauswahl sowie anschließender experimenteller Validierung wurde ein mögliches Zielgenspektrum der beiden miRNAs genauer untersucht. Hierzu erfolgte zunächst eine bioinformatische Zielgenvorhersage für beide miRNAs (Tabelle 19).

	miR-34a-5p	miR-7-5p
Insgesamt vorhergesagte Transkripte mit miRWalk2.0	57.374	55.587
Von mind. vier Algorithmen vorhergesagte Transkripte	12.802	13.382
Übereinstimmung mit NCBI Referenzsequenzdatenbank	9.753	10.381
(RefSeq)		
Signifikant veränderte Signalwege nach GeneTrail2-Analyse	4.002	3.869

Taballa 40. Clamabura	, ana-ifiaaha 7ialaan		En und main 7 En
Tabelle 14. Signalwer	1-Shezitische Zielden:	answani fiir mik-34a	-30 IINO MIK-/-30
Tabolio Ioi olgilaino	j opozinioonio Eloigoni		

Zunächst wurden mögliche Zielgene unter Berücksichtigung einer minimalen Seed-Länge von 6 nt durch die zwölf verschiedenen Vorhersagealgorithmen von miRWalk2.0 vorhergesagt. Aufgrund der hohen Anzahl vorhergesagter Transkripte für beide miRNAs wurden im Anschluss lediglich Transkripte in die weitere Analyse eingeschlossen, die von mindestens vier der zwölf verwendeten Algorithmen detektiert wurden. Um ferner zu evaluieren, ob ein signifikanter Anteil der Transkripte innerhalb bestimmter Signalwege überrepräsentiert vorlag, wurde im Weiteren eine Anreicherungsanalyse (*overrepresentation analysis*) mittels GeneTrail2 durchgeführt. Zu Beginn dieser Analyse erfolgte zunächst ein Abgleich mit der NCBI Referenzsequenzdatenbank, um falsch annotierte, vorhergesagte Ziel-Transkripte für weitere Analysen auszuschließen. Im Zuge dessen konnten 9.753 Ziel-Transkripte der miR-34a-5p und 10.381 Ziel-Transkripte der miR-7-5p eindeutig zugeordnet werden, welche in der weiteren Analyse berücksichtigt wurden. Die anschließende Anreicherungsanalyse ergab für die miR-34a-5p in 4.002 Signalwegen und für miR-7-5p in 3.689 Signalwegen eine signifikante Anreicherung der vorhergesagten Zielgene. Die 15 Signalwege mit dem geringsten ermittelten P-Wert sind in Abbildung 12 zusammengefasst.

Ergebnisse

Abbildung 12: Anreicherungsanalyse vorhergesagter miR-34a-5p (a) bzw. miR-7-5p (b) Zielgene. Zielgene, die von mindestens vier Vorhersagealgorithmen der miRWalk2.0-Analyse vorhergesagt wurden, wurden in einer Anreicherungsanalyse mittels GeneTrail2 in verschiedene Signalwege eingeteilt.

Die Anreicherungsanalyse mittels GeneTrail2 erzielte für beide miRNAs den geringsten P-Wert im Signalweg "*Pathways in cancer*". Zudem wurde mit 133 die höchste Anzahl von potenziellen Zielgenen der miR-34a-5p sowie mit 132 die zweithöchste Anzahl von potenziellen Zielgenen der miR-7-5p in diesem Signalweg detektiert. Hierbei handelt es sich um einen Referenz-Signalweg, der mehrere Krebs-assoziierte Signalwege, wie beispielsweise den "*Wnt signaling pathway*", "*Jak-STAT signaling pathway*" und "*PI3K-Akt signaling pathway*", zusammenfasst. Letzterer zeigte in der Anreicherungsanalyse der miR-7-5p vorhergesagten Zielgene den zweitniedrigsten P-Wert sowie mit 136 vorhergesagten Zielgenen die höchste Anzahl innerhalb eines Signalweges. Die Anreicherungsanalyse der miR-34a-5p vorhergesagten Zielgene ergab zudem eine Vielzahl an hochsignifikanten Signalwegen (P < 0,001), die in Zusammenhang mit der Bildung von Organen während der Embryogenese und verschiedener Differenzierungsprozesse stehen (Abbildung 11a). Unter anderem ließen sich in dieser Kategorie die Signalwege "embryonic organ morphogenesis", "*in utero*

Ergebnisse

embryonic development" und *"stem cell differentiation*" detektieren. In der Anreicherungsanalyse der miR-7-5p vorhergesagten Zielgene wurde eine Vielzahl an hochsignifikanten Signalwegen (P < 0,001) detektiert, die mit intra- und interzellulärem Transport assoziiert sind (Abbildung 11b). Unter anderem handelte es sich hierbei um die Signalwege *"endosomal transport*", *"vesicle organization*", *"Golgi vesicle transport*" und *"neurotransmitter transport*".

Zur spezifischen Zielgenvalidierung im Kontext von M. Parkinson wurden im Vorfeld 14 Parkinson- und Dopamin-assoziierte Signalwege festgelegt (s. Tabelle 16). Hierbei zeigte sich nach Anreicherungsanalyse der vorhergesagten Zielgene der miR-34a-5p in neun der 14 ausgewählten Signalwegen eine signifikante Anreicherung (s. Tabelle 22, Anhang). Die Anreicherungsanalyse für die miR-7-5p ergab für acht der 14 ausgewählten Signalwegen eine signifikante Anreicherung (s. Tabelle 23, Anhang). Zur experimentellen Validierung wurden die vorhergesagten Zielgene aus allen ausgewählten Parkinson- und Dopamin-assoziierten Signalwegen ausgewählt. Insgesamt handelte es sich hierbei um 125 potenzielle Zielgene für die miR-34a-5p sowie 124 potenzielle Zielgene für die miR-7-5p. Im weiteren Verlauf wurden die miRNA-Bindestellen mit Hilfe eines Sequenzabgleiches innerhalb der 3'UTR der potenziellen Zielgene überprüft. Für die miR-34a-5p wurden die in der Datenbank NCBI hinterlegten 3'UTR-Sequenzen der vorhergesagten Zielgene auf mögliche Bindestellen untersucht. Zudem erfolgte ein Abgleich mit Hilfe der miRTarBase, um bereits validierte Zielgene in den weiteren Analysen auszuschließen. Mit Hilfe dieser Filterkriterien wurden insgesamt 83 Zielgene zur experimentellen Validierung ausgewählt. Zur Generierung der Reporterkonstrukte wurden die miRNA-Bindestelle sowie die umliegenden Sequenzen innerhalb der 3'UTRs der entsprechenden Zielgene in 475 bp großen Fragmenten über die Restriktionsschnittstellen Spe I und Sac I in den Vektor pMIR-RNL-TK kloniert. 22 der getesteten 83 Zielgene zeigten verschiedene, mehrere 100 bp getrennt liegende miR-34a-5p-Bindestellen innerhalb der 3'UTR, sodass mehrere Reporterplasmide für ein Zielgen generiert werden mussten. Zusammenfassend wurden für die miR-34a-5p insgesamt 112 Reporterplasmide für 83 vorhergesagte Zielgene aus 14 Parkinson- und Dopaminassoziierten Signalwegen zur experimentellen Validierung ausgewählt (s. Tabelle 24, Tabelle 25, Anhang).

Für die miR-7-5p erfolgte der Abgleich der miRNA-Bindestelle mit den Sequenzen der Reporterplasmide der Parkinson-spezifischen 3'UTR-Reporterplasmidbank. Insgesamt konnte für 302 Reporterplasmide eine Sequenzübereinstimmung mit der miR-7-5p-Bindestelle beschrieben werden. Der Abgleich der zugehörigen Zielgene mit den vorhergesagten Zielgenen aus den Parkinson- und Dopamin-assoziierten Signalwegen der Zielgenvorhersage ergab 92 Übereinstimmungen. Hierbei wiesen 163 Reporterplasmide der 92 vorhergesagten Zielgene eine miR-7-5p-Bindestelle auf. Drei der miR-7-5p-Bindestellen lagen im Überlappungsbereich zwei aufeinanderfolgender Reporterplasmide eines Zielgens (s.

66

3.2.5.2). In diesen Fällen wurde das Reporterplasmid ausgewählt, welches die Bindestelle der miR-7-5p an seinem 3'Ende aufwies, um mögliche 3'-Komplementaritäten der miRNA-Bindung zur ermöglichen. Zusammenfassend wurden für die miR-7-5p insgesamt 160 Reporterplasmide für 92 vorhergesagte Zielgene aus 14 Parkinson- und Dopamin-assoziierten Signalwegen zur experimentellen Validierung ausgewählt (s. Tabelle 25, Anhang).

4.4 Ektopische Expression der miR-34a-5p und miR-7-5p in HEK293T

Die experimentelle Validierung der bioinformatisch vorhergesagten Zielgene erfolgte mit Hilfe des HiTmIR-Assays (s. 3.2.6). Das in dieser Arbeit verwendete Expressionsplasmid pSG5-miR-34a wurde von Herrn Dr. rer. nat. Martin Hart zur Verfügung gestellt. Die ektopische Expression der miR-34a-5p in HEK293T-Zellen nach Transfektion mit dem Expressionsplasmid pSG5-miR-34a wurde bereits in früheren Publikationen beschrieben (Hart *et al.*, 2016). Das im Rahmen dieser Arbeit generierte Expressionsplasmid pSG5-miR-7 diente der ektopischen Expression der miR-7-5p in HEKT293T und wurde mittels Northern Blot validiert. Hierzu wurden HEK293T-Zellen mit dem Expressionsplasmid pSG5-miR-7 bzw. dem leeren Expressionsvektor pSG5 für 48 h transfiziert und anschließend deren RNA isoliert. Der Northern Blot wurde von Frau Dr. rer. nat. Jennifer Menegatti am Institut für Virologie (AG Grässer, Universität des Saarlandes) durchgeführt.

Abbildung 13: Ektopische Expression der miR-7-5p in HEK293T-Zellen. HEK293T-Zellen wurden mit dem leerem Expressionsvektor pSG5 oder dem miR-7 Expressionsplasmid pSG5-miR-7 für 48 h transfiziert. Die Zellen wurden anschließend lysiert und die Gesamt-RNA isoliert. Nach gelelektrophoretischer Auftrennung der RNA und Transfer auf eine Nylonmembran wurde die Expression der miR-7-5p mit Hilfe einer spezifischen radioaktiv-markierten Sonde nachgewiesen. Als Ladekontrolle wurde das verwendete Gel vor dem RNA-Transfer mit Ethidiumbromid angefärbt.

In kontrolltransfizierten Zellen konnte eine minimale Expression der reifen miR-7-5p nachgewiesen werden, die nach Transfektion mit dem generierten Expressionsplasmid pSG5-miR-7 deutlich verstärkt wurde (s. Abbildung 13). Somit konnte mit Hilfe des Northern Blots die ektopische Expression sowie die Prozessierung der miR-7-5p in HEK293T validiert werden. Auf Grundlage dieser Ergebnisse konnte das generierte Expressionsplasmid pSG5-miR-7 für die weiteren HiTmIR-Assays verwendet werden.

4.5 Identifikation potenzieller Zielgene in Parkinson- und Dopamin-assoziierten Signalwegen mittels HiTmIR-Assay

Zur Validierung der vorhergesagten Zielgene der miR-34a-5p und miR-7-5p mittels HiTmIR-Assay wurden HEK293T-Zellen mit dem jeweiligen Reporterplasmid und dem leeren Expressionsplasmid pSG5 oder mit dem miRNA-Expressionsplasmid pSG5-miR-34a bzw. pSG5-miR-7 für 48 h kotransfiziert. Die Zellen wurden im Anschluss lysiert und die Luciferase-Aktivität der Renilla- und Firefly-Luciferase bestimmt. Die Bindung der miRNA an die entsprechende 3'UTR des vorhergesagten Zielgenes konnte hierbei anhand einer verringerten RLU detektiert werden, welche die Folge einer miRNA-bedingten Translationsinhibition der mRNA der Luciferase darstellt. Als Negativkontrolle diente in allen durchgeführten HiTmIR-Assays das leere Expressionsplasmid pSG5 und das leere Reporterplasmid pMIR-RNL-TK. Als Positivkontrollen wurden die Reporterplasmide pMIR-TCRA für die miR-34a-5p und pMIR-miR-7-5p-PK für die miR-7-5p mitgeführt. Die Ergebnisse der Negativ- und Positivkontrollen aller durchgeführten HiTmIR-Assays beider miRNAs sind in Abbildung 14 zusammengefasst. Die Kotransfektion des leeren Reporterplasmides pMIR-RNL-TK mit dem Expressionsplasmid pSG5-miR-34a zeigte eine signifikante Reduktion in der relativen Luciferase-Aktivität von 7,9 % im Vergleich zur Kontrolltransfektion (pSG5 + pMIR-RNL-TK). Durch Kotransfektion der Positivkontrolle pMIR-TCRA mit pSG5-miR-34a ließ sich eine signifikante Reduktion um 47,5 % im Vergleich zur Kontrolltransfektion beobachten (pSG5 + pMIR-TCRA). Die Transfektion mit pSG5-miR-34a resultierte in einer signifikanten Reduktion zwischen pMIR-TCRA und dem leeren Reporterplasmid pMIR-RNL-TK (P < 0.001).

Durch die Kotransfektion von pMIR-RNL-TK mit pSG5-miR-7 ließ sich eine signifikante Erhöhung der Luciferase-Aktivität um 37,3 % im Vergleich zur Kontrolltransfektion (pSG5 + pMIR-RNL-TK) beobachten. Die Positivkontrolle zeigte eine signifikante Reduktion von 62,4 % im Vergleich zur Kontrolltransfektion (pSG5 + pMIR-miR-7-5p PK). Im Vergleich zum leeren Reporterplasmid ließ sich nach Transfektion mit pSG5-miR-7 ein signifikanter Unterschied zu der Positivkontrolle pMIR-miR-7-5p PK detektieren (P < 0,001).

Abbildung 14: Kontrollen der HiTmlR-Assays für die miR-34a und miR-7. HEK293T-Zellen wurden mit dem leeren Reporterplasmid pMIR-RNL-TK oder der jeweiligen Positivkontrolle pMIR-TCRA bzw. pMIR-miR-7-5p PK und dem leeren Expressionsplasmid pSG5 oder dem miRNA-Expressionsplasmid pSG5-miR-34a bzw. pSG5-miR-7 für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. (a) Kontrollen des HiTmlR-Assays der miR-34a-5p. (b) Kontrollen des HiTmlR-Assays der miR-34a-5p. (b) Kontrollen des HiTmlR-Assays der zugehörige Standardfehler aus 28 (a) bzw. 32 unabhängigen Experimenten (b) in jeweils vier technischen Replikaten. Die statistische Signifikanz zwischen der Kotransfektion pSG5-miR-34a+pMIR-RNL-TK und pSG5-miR-34a+pMIR-TCRA (a) bzw. pSG5-miR-7+pMIR-RNL-TK und pSG5-miR-7 und pMIR-miR-7-5p PK (b) wurden kenntlich gemacht (***P < 0,001).

4.5.1 Identifikation potenzieller Zielgene der miR-34a-5p in Parkinson- und Dopaminassoziierten Signalwegen

Die Analyse des potenziellen Zielgenspektrums der miR-34a-5p in Parkinson- und Dopaminassoziierten Signalwegen erfolgte für die 83 in der Analyse mit miRWalk2.0 vorhergesagten Zielgene. Insgesamt wurden 112 Reporterplasmide im HiTmIR-Assay durch Kotransfektion mit dem leeren Expressionsvektor pSG5 oder dem miRNA-Expressionsplasmid pSG5-miR-34a getestet. Die Analyse der erhaltenen Lumineszenzen wurde wie zuvor beschrieben durchgeführt (s. 4.5). Die statistische Analyse erfolgte zwischen der Kotransfektion von pSG5-miR-34a mit dem jeweiligen Reporterplasmid und der Kotransfektion von pSG5-miR-34a mit dem leeren Reporterplasmid pMIR-RNL-TK. Zur vereinfachten Darstellung der Daten und zur Analyse des direkten Effektes der miR-34a-5p auf die 3'UTR-Sequenz des jeweiligen Reporterplasmides wurde die RLU des jeweiligen Reporterplasmids in relativen Bezug zur Kontrolle pMIR-RNL-TK gesetzt. Die Ergebnisse des HiTmIR-Assays für die miR-34a-5p sind in Abbildung 15, Abbildung 16 und Abbildung 17 zusammengefasst:

Abbildung 15: HiTmIR-Assay der miR-34a-5p mit einer RLU kleiner 70 %. HEK293T-Zellen wurden mit dem jeweiligen Reporterplasmid und dem miRNA-Expressionsplasmid pSG5-miR-34a für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. Die RLU der Reporterplasmide wurde in Bezug auf die Transfektion von pSG5-miR-34a+pMIR-RNL-TK dargestellt. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet.

Insgesamt zeigten 43 Reporterplasmide eine starke Reduktion der RLU auf unter 70 % (s. Abbildung 15). Innerhalb dieser Gruppe wurde für 41 Reporterplasmide ein P-Wert kleiner 0,001 und für zwei Reporterplasmide (pMIR-TH, pMIR-GNG12) ein P-Wert kleiner 0,01 detektiert. Die stärksten Effekte auf die RLU ließen sich bei den Reporterplasmiden pMIR-KIF5C mit einer RLU von 33,0 % (P < 0,001), pMIR-CLOCK_1 mit 32,2 % (P < 0,001) und pMIR-CACNA1C_1 mit 35,6 % (P < 0,001) beobachten. Zwölf der getesteten Plasmide wiesen eine RLU unter 50 % auf, neun Reporterplasmide eine RLU zwischen 50 und 60 % und 22 Reporterplasmide eine RLU zwischen 60 und 70 %. Für die sieben potenziellen Zielgene *CHRNB2, GNAQ, GSK3B, HTT, KCNJ5, MAPK13* und *PPP2R3A* ließ sich für mehrere Reporterplasmide, die jeweils ein Teilstück der 3'UTR mit unterschiedlichen miR-34a-5p-Bindestellen beinhalten, eine RLU unter 70 % detektieren. Hierzu zählten die Plasmide pMIR-CHRNB2_1 (47,4 %) und pMIR-CHRNB2_2 (38,1 %); pMIR-GNAQ_1 (66,2 %), pMIR-GNAQ_2 (65,4 %) und pMIR-GNAQ_3 (65,8 %); pMIR-GSK3B_1 (70,0 %) und pMIR-GSK3B_2 (64,5 %); pMIR-HTT_2 (65,3 %), pMIR-HTT_3 (48,0 %) und pMIR-HTT_4 (38,1 %);

pMIR-KCNJ5_2 (46,0 %) und pMIR-KCNJ5_4 (49,1 %); pMIR-MAPK13_1 (65,8 %) und pMIR-MAPK13_2 (50,4 %) sowie pMIR-PPP2R3A_1 (65,6 %) und pMIR-PPP2R3A_2 (43,9 %).

Abbildung 16: HiTmlR-Assay der miR-34a-5p mit einer RLU zwischen 70 und 85 %. HEK293T-Zellen wurden mit dem jeweiligen Reporterplasmid und dem miRNA-Expressionsplasmid pSG5-miR-34a für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. Die RLU der Reporterplasmide wurde in Bezug auf die Transfektion von pSG5-miR-34a+pMIR-RNL-TK dargestellt. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet.

Insgesamt 39 der getesteten Reporterplasmide zeigten eine moderate Reduktion in der RLU auf 70 – 85 % (s. Abbildung 16). Die statistische Analyse dieser Gruppe ergab für 21 Reporterplasmide einen P-Wert < 0,001, für 14 Reporterplasmide einen P-Wert < 0,01 und für drei Reporterplasmide einen P-Wert < 0,05. Das Reporterplasmid pMIR-PPP2R5CA zeigte eine nicht-signifikante Veränderung mit einer RLU von 71,4 % (P = 0,27). Innerhalb der Gruppe der Reporterplasmide mit einer RLU zwischen 70 und 85 % zeigten die stärksten Effekte pMIR-GRIA4 mit einer RLU von 70,4 % (P < 0,01), pMIR-PRKX_1 mit einer RLU von 70,5 % (P < 0,001) und pMIR-GNG7 mit einer RLU von 70,8 % (P < 0,001). Für 19 der getesteten Reporterplasmide wurde die RLU auf 70-80 % reduziert, für 20 Reporterplasmide eine RLU auf 80- 85 %. Für die vier potenziellen Zielgene *KCNJ5*, *PRXK*, *SLC6A3* und *SYT11* ließ sich für mehrere Reporterplasmide eine RLU zwischen 70 und 85 % detektieren. Hierzu zählten die Plasmide pMIR-KCNJ5_1 (80,6 %) und KCNJ5_3 (80,6 %); pMIR-PRXK_1 (70,5 %) und

pMIR-PRXK_2 (80,9 %); pMIR-SLC6A3_1 (82,0 %) und pMIR-SLC6A3_2 (75,7 %) sowie pMIR-SYT11_1 (76,1 %) und pMIR-SYT11_2 (83,1 %). Für die sechs potenziellen Zielgene *CACNA1C*, *CLOCK*, *COMT*, *HTT*, *KCNJ5* und *RAB3B* konnten unterschiedliche Teilstücke beiden Gruppen, also Reporterplasmide mit einer RLU kleiner 70 % oder Reporterplasmide mit einer RLU zwischen 70 und 85 %, zugeordnet werden.

Abbildung 17: HiTmIR-Assay der miR-34a-5p mit einer RLU größer 85 %. HEK293T-Zellen wurden mit dem jeweiligen Reporterplasmid und dem miRNA-Expressionsplasmid pSG5-miR-34a für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. Die RLU wurde jeweils in Bezug auf die Transfektion von pSG5-miR-34a+pMIR-RNL-TK dargestellt. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet.

Insgesamt 30 Reporterplasmide zeigten eine geringfügige Reduktion in der RLU von weniger als 15 % (Abbildung 17). Innerhalb dieser Gruppe ließ sich für fünf Reporterplasmide eine signifikante Reduktion mit einem P-Wert kleiner 0,01 und für zehn Reporterplasmide ein P-Wert kleiner 0,05 detektieren. 15 der getesteten Reporterplasmide mit einer RLU über 85 % zeigten keine signifikante Veränderung im Vergleich zum leeren Reporterplasmid pMIR-RNL-TK. In dem Bereich mit einer RLU von mehr als 85 % zeigten die Reporterplasmide pMIR-PRKACB_2 mit einer RLU von 85,1 % (P < 0,01), pMIR-UNC13B mit einer RLU von 85,1 % (P < 0,05) und pMIR-SYN2_1 mit einer RLU von 85,1 % (P < 0,01) die stärkste Reduktion. Zudem ließ sich für 14 Reporterplasmide eine RLU zwischen 85 und 90 % sowie für 13 Reporterplasmide eine RLU zwischen 90 und 100 % beobachten. Drei Reporterplasmide zeigten eine leichte, jedoch nicht signifikante Erhöhung der RLU (100,8 – 112,5 %). Mehrere Reporterplasmide mit 3'UTR-Teilstücken der vier potenziellen Zielgene CYCS, *GDNF*, *UBE2L3* und *UQCRQ* wurden der Gruppe der Reporterplasmide mit einer RLU größer 85 % zugeordnet. Hierzu zählten die Reporterplasmide pMIR-CYCS_1 (90,6 %) und pMIR-CYCS_2 (86,5 %); pMIR-GDNF_1 (112,5 %) und pMIR-GDNF_2 (90,7 %); pMIR-UBE2L3_1 (86,4 %) und pMIR-UBE2L3_2 (94,7 %) sowie pMIR-UQCRQ_1 (97,4 %) und pMIR-UQCRQ_2 (95,5 %). Ein weiteres Reporterplasmid des Zielgens CYCS wurde bereits zuvor der Gruppe der Reporterplasmide mit einer RLU zwischen 70 und 80 % zugeordnet (pMIR-CYCS_3, RLU 73,8 %).

Die Ergebnisse aller definierten Gruppen wurden in Tabelle 20 zusammengefasst:

Tabelle 20: Zusammenfassung der Anzahl von Reporterplasmiden innerhalb der definierten Gruppen des HiTmlR-Assays für die miR-34a-5p.

RLU	P < 0,001	P < 0,01	P < 0,05	P > 0,05	Σ
< 40 %	5	-	-	-	5
40–50 %	7	-	-	-	7
50-60 %	9	-	-	-	9
60-70 %	20	2	-	-	22
70-85 %	21	14	3	1	39
85-95 %	-	4	10	9	23
> 95 %	-	1	-	6	7
Σ	62	21	13	16	112

Im nächsten Schritt wurde der Effekt der miRNA-Bindestelle auf die RLU genauer untersucht. Hierzu wurden die Reporterplasmide anhand der Länge und Anzahl der miR-34a-5p-Bindestellen eingeteilt. Im Anschluss wurden die Mittelwerte der RLU in Bezug zu pMIR-RNL-TK aller Reporterkonstrukte mit gleicher Bindestelle zusammengefasst. In Abbildung 18 sind die Ergebnisse dieser Analyse dargestellt. Bei Betrachtung der miR-34a-5p-Bindestellen innerhalb der Reporterplasmide zeigte sich, wie erwartet, mit einer erhöhten Anzahl möglicher komplementärer Nukleotide eine geringere RLU im HiTmIR-Assay (Abbildung 18a). In diesem Kontext ließ sich für Reporterplasmide mit einer 6mer-Bindestelle eine durchschnittliche RLU von 78,2 %, für Reporterplasmide mit einer 7mer-A1-Bindestelle eine durchschnittliche RLU von 73,7 % und für Reporterplasmide mit einer 8mer-Bindestelle eine durchschnittliche RLU von 63,7 % beobachten. Die statistische Analyse resultierte in einer signifikanten Reduktion der RLU zwischen Reporterplasmiden mit einer 8mer-Bindestelle im Vergleich zur 6mer-Bindestelle (P < 0,05). Im Vergleich der RLU hinsichtlich der Anzahl der Bindestellen zeigte sich die Tendenz einer reduzierten RLU bei erhöhter Anzahl von Bindestellen, jedoch wurde

Ergebnisse

nur ein Reporterplasmid mit drei Bindestellen getestet (Abbildung 18b). Im Durchschnitt zeigten die Reporterplasmide mit einer Bindestelle eine RLU von 74,2 % und mit zwei Bindestellen eine RLU von 70,6 %. Nur ein Reporterplasmid (pMIR-MAPK13_2) wurde mit insgesamt drei miR-34a-5p-Bindestellen getestet, was in einer RLU von 50,4 % resultierte.

Abbildung 18: Analyse der miR-34a-5p-Bindestellen (BS). Die Ergebnisse der Reporterplasmide mit gleicher miRNA-Bindestelle wurden in Gruppen zusammengefasst. Dargestellt sind jeweils die mittleren RLUs der einzelnen Reporterplasmide in Bezug zu pMIR-RNL-TK sowie der Mittelwert innerhalb einer Gruppe. (a) Effekt der Länge der miRNA-Bindestelle auf die RLU (n=30 für 6mer; n=18 für 7mer-A1; n=36 für 7mer-m8; n=13 für 8mer). Die statistische Signifikanz zwischen zwei Gruppen wurde kenntlich gemacht (* P < 0,05). (b) Effekt der Anzahl von miRNA-Bindestellen auf die RLU.

4.5.2 Identifikation potenzieller Zielgene der miR-7-5p in Parkinson- und Dopaminassoziierten Signalwegen

Die Analyse des potenziellen Zielgenspektrums der miR-7-5p in Parkinson- und Dopaminassoziierten Signalwegen erfolgte für die 92 in der miRWalk2.0 vorhergesagten Zielgene. Insgesamt wurden 160 Reporterplasmide im HiTmiR-Assay getestet. Die Analyse der erhaltenen Lumineszenzen erfolgte wie im vorherigen Abschnitt beschrieben. Die Ergebnisse des HiTmiR-Assays für die miR-7-5p sind in Abbildung 19, Abbildung 20, Abbildung 21 und Abbildung 22 zusammengefasst.

Abbildung 19: HiTmIR-Assay der miR-7-5p mit einer RLU kleiner 75 %. HEK293T-Zellen wurden mit dem jeweiligen Reporterplasmid und dem miRNA-Expressionsplasmid pSG5-miR-7 für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. Die RLU wurde jeweils in Bezug auf die Transfektion von pSG5-miR-7+pMIR-RNL-TK dargestellt. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet.

Insgesamt zeigten 24 Reporterplasmide eine starke Reduktion der mittleren RLU auf unter 70 % (s. Abbildung 19). Innerhalb dieser Gruppe ließ sich für 21 Reporterplasmide ein P-Wert < 0,001 und für drei Reporterplasmide (pMIR-NQO1_2, pMIR-CALM3_1 und pMIR-CASK_3) ein P-Wert < 0,01 detektieren. Die Reporterplasmide pMIR-CREB3L2_6 mit einer RLU von 40,4 % (P < 0,001), pMIR-SDHC_3 mit einer RLU von 53,9 % (P < 0,001) und pMIR-CXC12_4 mit einer RLU 56,7 % (P < 0,001) wiesen die stärkste Reduktion der getesteten Reporterplasmide auf. Eine RLU unter 60 % konnte für insgesamt vier Reporterplasmide beobachtet werden. Insgesamt 20 Reporterplasmide zeigten eine RLU von unter 70 %. Jeweils zwei Reporterplasmide mit 3'UTR-Teilstücken der vorhergesagten Zielgene *GRIN2A* und *TGFB2* wurden der Gruppe mit einer RLU unter 70 % zugeordnet. Darunter fielen die Reporterplasmide pMIR-GRIN2A_2 (69,7 %) und pMIR-GRIN2A_13 (67,1 %) sowie pMIR-TGFB2_3 (60,2 %) und pMIR-TGFB2_4 (57,7 %).

Abbildung 20: HiTmIR-Assay der miR-7-5p mit einer RLU zwischen 75 und 85 %. HEK293T-Zellen wurden mit dem jeweiligen Reporterplasmid und dem miRNA-Expressionsplasmid pSG5-miR-7 für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. Die RLU wurde jeweils in Bezug auf die Transfektion von pSG5-miR-7+pMIR-RNL-TK dargestellt. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet.

In die Gruppe der Reporterplasmide mit einer RLU zwischen 70 und 85 % wurden 62 Reporterplasmide eingeordnet (Abbildung 20). Hiervon wurde für 21 Reporterplasmide ein P-Wert kleiner 0,001, für 30 Reporterplasmide ein P-Wert kleiner 0,01 und für acht Reporterplasmide ein P-Wert kleiner 0,05 berechnet. Die stärksten Reduktionen der RLU innerhalb dieser Gruppe wurden für pMIR-GRIN2A_6 mit einer RLU von 70,4 % (P < 0,001), pMIR-GSK3B_7 mit einer RLU von 70,6 % (P < 0,001) und pMIR-RAB3B_17 mit einer RLU von 70,8 % (P < 0,01) ermittelt. Für zwei der getesteten Reporterplasmide mit einer RLU zwischen 70 und 85 % ließ sich keine signifikante Reduktion im Vergleich zur Kontrolle feststellen. Hierbei handelte es sich um pMIR-SEPT5_1 mit einer RLU von 83,0 % (P = 0,054) und pMIR-PPP2R2B mit einer RLU von 84,5 % (P = 0,1). Insgesamt 40 Reporterplasmide wiesen eine RLU zwischen 70 und 80 % auf und 21 Reporterplasmide eine RLU zwischen 80 und 85 %. Für 14 potenzielle Zielgene wurden mehrere Reporterplasmide mit einer RLU zwischen 70 und 85 % identifiziert. Hierbei wiesen die Zielgene *APBA1*, *ATP7A*, *CACNA1C*, *CREB1*, *GNAI3*, *GNAQ*, *GSK3B*, *KLF16*, *MAOA*, *PRKCA*, *RAB3B* und *SEPT5* jeweils zwei Reporterkonstrukte

auf, die potenziellen Zielgene *GRIN2A* und *SDHC* jeweils drei Reporterkonstrukte. Daneben konnte für weitere Teilstücke der Zielgene *CACNA1C*, *GNAI3*, *GRIN2A*, *SDHC*, *UBE2J1* und *UQCRB* bereits eine RLU unter 70 % nachgewiesen werden.

Abbildung 21: HiTmIR-Assay der miR-7-5p mit einer RLU zwischen 85 und 95 %. HEK293T-Zellen wurden mit dem jeweiligen Reporterplasmid und dem miRNA-Expressionsplasmid pSG5-miR-7 für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. Die RLU wurde jeweils in Bezug auf die Transfektion von pSG5-miR-7+pMIR-RNL-TK dargestellt. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet.

Für 75 Reporterplasmide konnte nur eine geringfügige Reduktion bzw. eine Induktion der RLU von weniger als 15 % detektiert werden (s. Abbildung 21, Abbildung 22). Darunter befanden sich 24 Reporterplasmide mit einer signifikanten Veränderung der RLU, wovon für zwei Reporterplasmide ein P-Wert < 0,001, für fünf ein P-Wert < 0,01 und für 13 ein P-Wert < 0,05 ermittelt wurde. Für die restlichen 51 Reporterplasmide konnte keine signifikante Veränderung nachgewiesen werden. Den stärksten Effekt innerhalb in der Gruppe mit einer RLU größer 85 % zeigten die Reporterplasmide pMIR-RAB3B_6 mit einer RLU von 85,5 % (P < 0,05), pMIR-PPP2RA2_3 mit einer RLU von 85,8 % (P = 0,06) und pMIR-FOXA2_2 mit einer RLU

von 86,2 % (P < 0,05) (s. Abbildung 22). Zudem ließ sich für 22 Reporterplasmide eine RLU zwischen 85 und 90 % sowie für 25 Reporterplasmide eine RLU zwischen 90 und 100 % beobachten.

Abbildung 22: HiTmIR-Assay der miR-7-5p mit einer RLU größer 95 %. HEK293T-Zellen wurden mit dem jeweiligen Reporterplasmid und dem miRNA-Expressionsplasmid pSG5-miR-7 für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. Die RLU wurde jeweils in Bezug auf die Transfektion von pSG5-miR-7+pMIR-RNL-TK dargestellt. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus vier unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen in Bezug zum leerem Reporterplasmid pMIR-RNL-TK wurden farblich gekennzeichnet.

28 der getesteten Reporterplasmide zeigten eine Erhöhung der RLU um maximal 15 %, von denen 24 Reporterplasmide keinen signifikanten Effekt auf die RLU hervorriefen (Abbildung 22). Die RLU der vier Reporterplasmide pMIR-DMRTA2_1 (109,8 %; P < 0,05), pMIR-CLOCK_1 (110,3 %; P < 0,05), pMIR-RAB3B_13 (113,5 %, P < 0,01) und pMIR-PPP3CA_3 (114,1 %; P < 0,05) war signifikant erhöht. Die fünf potenziellen Zielgene *GNB5*, *MAOB*, *PLCB1*, *PRKCA* und *RAB3B* wiesen jeweils zwei Reporterplasmide mit einer geringfügigen Reduktion der RLU auf. Hiervon wurden weitere Reporterplasmide der Gene *GNB5*, *PLCB1*, *PRKCA* und *RAB3B* bereits mit einer RLU unter 85 % getestet. Darüber hinaus wiesen die Zielgene *ADCY5*, *ADCY6*, *APBA1*, *CALM3*, *CHRNB2*, *CLOCK*, *GRIN2A*, *NKX2-2*, *PPP2CA*, *SDHC*, *SQSTM1*, *SYN1* und *UBE2G2* neben den Reporterplasmiden mit einer RLU über 85 %

weitere Reporterplasmide mit jeweiligem 3'UTR-Teilstück mit einer RLU unter 85 % auf. Die Ergebnisse aller definierten Gruppen wurden in Tabelle 21 zusammengefasst:

RLU	P < 0,001	P < 0,01	P < 0,05	P > 0,05.	Σ
< 40 %	-	-	-	-	-
40–50 %	1	-	-	-	1
50-60 %	3	-	-	-	3
60-70 %	17	3	-	-	20
70-85 %	21	30	8	2	61
85-95 %	2	5	13	13	33
> 95 %	-	1	3	38	42
Σ	44	39	24	53	160

Tabelle 21: Zusammenfassung der Anzahl von Reporterplasmiden innerhalb der definierten Gruppen des HiTmlR-Assays für die miR-7-5p.

Zusätzlich wurde, wie bereits für die miR-34a-5p beschrieben, eine Analyse des Effektes der Länge sowie der Anzahl der miR-7-5p-Bindestellen auf die RLU durchgeführt. Die zugehörigen Ergebnisse sind in Abbildung 23 dargestellt.

Abbildung 23: Effekt der miR-7-5p-Bindestellen (BS) auf die RLU. Die Mittelwerte der RLUs der Reporterplasmide mit gleicher miRNA-Bindestelle wurden zusammengefasst. (a) Effekt der Länge bzw. Art der miRNA-BS auf die RLU (n=68 für 6mer; n=39 für 7mer-A1; n=10 für 7mer-m8; n=9 für 8mer). Statistische Signifikanzen zwischen zwei Gruppen wurden kenntlich gemacht (***P < 0,001; *P < 0,05). (b) Effekt der Anzahl vob miRNA-Bindestellen auf die RLU (n=129 für 1 BS; n=27 für 2 BS; n=4 für 3 BS; n=3 für 4 BS).

In Übereinstimmung mit den Ergebnissen der miR-34a-5p zeigte sich auch für die miR-7-5p eine Reduktion der RLU mit erhöhter Anzahl potenziell bindender Nukleotide (Abbildung 23a). Das Vorhandensein einer 6mer-Bindestelle reduzierte die RLU im Durchschnitt auf 86,5 %,

einer 7mer-A1-Bindestelle auf durchschnittlich 86,6 % und das Vorhandensein einer 7mer-m8-Bindestelle auf durchschnittlich 82,0 %. Die größte Reduktion der RLU wurde durch eine 8mer-Bindestelle im Reporterkonstrukt auf durchschnittlich 65,3 % hervorgerufen. Die statistische Analyse ergab eine signifikante Reduktion der RLU bedingt durch die 8mer-Bindestelle im Vergleich zu allen anderen Bindestellen (P < 0,001 für 6mer vs. 8mer; P < 0,001 für 7mer-A1 vs 8mer; P < 0,05 für 7mer-m8 vs 8mer). Im Gegensatz dazu ließen die Analysen der Anzahl von miRNA-Bindestellen innerhalb eines Reporterkonstruktes keine klare Tendenz erkennen (Abbildung 23b). So ließ sich bei einer Bindestelle eine durchschnittliche Reduktion der RLU auf 84,7 %, bei zwei Bindestellen auf 84,5 %, bei drei Bindestellen auf 86,9 % und bei vier Bindestellen auf 82,5 % beobachten.

4.5.3 Festlegung der Grenzwerte für positive Ergebnisse des HiTmlR-Assays

Zur Interpretation der Ergebnisse des HiTmIR-Assays wurde ein Grenzwert festgelegt, nach dem ein positives Ergebnis definiert und somit eine direkte Interaktion der miRNA mit dem jeweiligen 3'UTR-Sequenz des entsprechenden Zielgens nachgewiesen werden konnte. Anhand dieses Grenzwertes konnte die Validierungsrate aus der Anzahl der positiv getesteten Reporterplasmide in Bezug auf die getesteten Reporterplasmide einer miRNA ermittelt werden. Hierzu wurden zunächst nur signifikante Ergebnisse in Erwägung gezogen, woraus sich eine Validierungsrate von 85,7 % für die miR-34a-5p bzw. 66,9 % für die miR-7-5p berechnen ließ. Diese Validierungsraten umfassen allerdings auch signifikante Induktionen der RLU, woraus keine direkte miRNA-3'UTR-Interaktion geschlussfolgert werden kann. Daher wurde zusätzlich die Reduktion der RLU als weiteres Kriterium zur Definition eines positiven Ergebnisses des HiTmIR-Assays herangezogen. In diesem Kontext wurde eine starke bis moderate Reduktion der RLU, also eine RLU kleiner 85 %, als Grenzwert festgelegt. Anhand der Grenzwerte einer signifikanten Reduktion der RLU auf unter 85 % ließ sich im Kontext der miR-34a-5p eine Validierungsrate von 73,2 % und für die miR-7-5p eine Validierungsrate von 51,9 % ermitteln. Die anhand dieser Grenzwerte als positiv definierten Reporterplasmide wurden in Tabelle 26 und Tabelle 27 (Anhang) zusammengefasst. Zur Validierung der Ergebnisse des HiTmIR-Assays sowie der festgelegten Grenzwerte wurden erneute HiTmIR-Assays mit mutierten Reporterkonstrukten durchgeführt.

4.6 Validierung der Ergebnisse des HiTmlR-Assays mit mutierten Reporterkonstrukten

Die Validierung der im HiTmIR-Assay generierten Ergebnisse erfolgte durch die Mutation der miRNA-Bindestellen sowie anschließender erneuter Testung im HiTmIR-Assay. Hierzu wurden für beide miRNAs jeweils zehn Reporterplasmide ausgewählt, die im HiTmIR-Assay eine starke Reduktion der RLU auf unter 70 % oder eine moderate Reduktion der RLU zwischen 70 und 85 % zeigten. Die jeweilige miRNA-Bindestelle dieser Reporterplasmide wurde im Anschluss mit Hilfe einer *overlap extension*-PCR mutiert, wodurch die Bindung der jeweiligen miRNA an die 3'UTR-Sequenz verhindert werden sollte. Die mutierten, sowie die wildtypischen Reporterkonstrukte wurden anschließend erneut im HiTmIR-Assay getestet. Zur vereinfachten Darstellung wurden analog zu den initialen HiTmIR-Assays alle Ergebnisse der getesteten Reporterkonstrukte in Bezug zur Kontrolle pMIR-RNL-TK dargestellt. Die zugehörigen Kontrollen der HiTmIR-Assays mit mutierten Reporterkonstrukten sind in Abbildung 24 dargestellt.

Abbildung 24: Kontrollen der HiTmlR-Assays mit mutierten Reporterkonstrukten für die miR-34a und miR-7. HEK293T-Zellen wurden mit dem leeren Reporterplasmid pMIR-RNL-TK oder der jeweiligen Positivkontrolle pMIR-TCRA bzw. pMIR-miR-7-5p PK und dem leeren Expressionsplasmid pSG5 oder dem miRNA-Expressionsplasmid pSG5-miR-34a bzw. pSG5-miR-7 für 48h kotransfiziert. Die Zellen wurden anschließend lysiert und die Luciferase-Aktivität bestimmt. (a) Kontrollen des HiTmlR-Assays mit mutierten Reporterkonstrukten der miR-34a-5p. (b) Kontrollen des HiTmlR-Assays mit mutierten Reporterkonstrukten der miR-34a-5p. (b) Kontrollen des HiTmlR-Assays mit mutierten Reporterkonstrukten der miR-75p. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten (b) in jeweils vier technischen Replikaten. Die statistische Signifikanz zwischen zwei Gruppen wurden kenntlich gemacht (***P < 0,001, n.s. – nicht signifikant).

Wie bereits in den initialen Assays wurde sowohl in den HiTmIR-Assays mit mutierten Reporterkonstrukten der miR-34a-5p als auch der miR-7-5p eine stabile RLU der Kontrollen detektiert. Durch Kotransfektion des leeren Reporterplasmides pMIR-RNL-TK mit dem Expressionsplasmid pSG5-miR-34a ließ sich im Gegensatz zu den initialen HiTmIR-Assays keine signifikante Änderung der relativen Luciferase-Aktivität im Vergleich zur Kontrolltransfektion (pSG5 + pMIR-RNL-TK) detektieren. Die Kotransfektion der Positivkontrolle pMIR-TCRA mit pSG5-miR-34a zeigte wie bereits in den initialen HiTmIR-Assays eine vergleichbare signifikante Reduktion um 45,8 % im Vergleich zur Kontrolltransfektion (pSG5 + pMIR-TCRA) (P < 0,001).

Durch Kotransfektion von pMIR-RNL-TK mit pSG5-miR-7 ließ sich HiTmIR-Assay eine Induktion der Luciferase-Aktivität um 59,0 % im Vergleich zur Kontrolltransfektion (pSG5 + pMIR-RNL-TK) beobachten. Die beobachtete Induktion der RLU war in den HiTmIR-Assays mit mutierten Reporterkonstrukten deutlich erhöht gegenüber den initialen HiTmIR-Assay. Die Positivkontrolle zeigte eine signifikante Reduktion von 67,7 % im Vergleich zur Kontrolltransfektion (pSG5 + pMIR-miR-7-5p PK) (P < 0,001).

4.6.1 Validierung der Ergebnisse des HiTmlR-Assays mit mutierten Reporterkonstrukten für die miR-34a-5p

Zur Validierung der Ergebnisse des HiTmIR-Assays für die miR-34a-5p wurden sechs Reporterkonstrukte mit starker Reduktion in der RLU und vier Reporterkonstrukte mit moderater Reduktion in der RLU ausgewählt. Abbildung 25 zeigt die Ergebnisse des HiTmIR-Assays der zehn mutierten Reporterkonstrukten für die miR-34a-5p.

Die Mutation der miR-34a-5p Bindestellen resultierte bei neun der zehn getesteten Reporterplasmiden in einer signifikanten Erhöhung der RLU im Vergleich zu der wildtypischen Sequenz. In diesem Kontext zeigte die Mutation der miR-34a-5p-Bindestelle für pMIR-CACNA1C_1 eine Erhöhung der RLU von 53,5 % (P < 0,001), für pMIR-CLOCK_1 eine Erhöhung von 45,6 % (P < 0,001), für pMIR-CLOCK_2 eine Erhöhung von 22,0 % (P < 0,01), für pMIR-GRIA4 eine Erhöhung von 23,4 % (P < 0,05), für pMIR-HTT_4 eine Erhöhung von 22,6 % (P < 0,01), für pMIR-KIF5C eine Erhöhung von 31,0 % (P < 0,001), für pMIR-PARK2 eine Erhöhung von 21,5 % (P < 0,001), für pMIR-SLC6A3_1 eine Erhöhung von 13,6 % (P < 0,01) und für pMIR-TH eine Erhöhung von 15,8 % (P < 0,01). Der geringste Effekt durch Mutation der Bindestelle war für das Reporterplasmid pMIR-HTT_3 zu beobachten, welches eine nicht-signifikanten Erhöhung von 10,8 % aufwies (P = 0,48). Im Vergleich zu den initialen HiTmIR-Assays konnte für pMIR-HTT_3 und pMIR-HTT_4 die ursprüngliche Reduktion der RLU nicht mehr erfasst werden. Hierbei wurde ein Unterschied im Mittelwert der beiden HiTmIR-Assays von 34,3 % bzw. 34,7 % detektiert. Das Reporterplasmid pMIR-HTT 4 wurde dennoch mit einer signifikanten Reduktion der RLU auf 75,8 % weiterhin als positives Ergebnis definiert. Insgesamt ließ sich für die mutierten Reporterkonstrukte pMIR-CACNA1C 1mut, pMIR-CLOCK 1mut, pMIR-CLOCK 2mut, pMIR-GRIA4mut, pMIR-HTT 4mut, pMIR-PARK2mut und pMIR-SLC6A3 1mut keine signifikante Veränderung zu dem leeren Reporterplasmid pMIR-RNL-TK detektieren. Die posttranskriptionelle Regulation der getesteten 3'UTR Sequenzen durch die miR-34a-5p konnte somit vollständig revertiert werden. Im Gegensatz dazu konnte der Effekt der verringerten RLU nach Mutation der miR-34a-5p-Bindestellen für die Reporterplasmide pMIR-KIF5C und pMIR-TH nicht vollständig aufgehoben werden. Die statistische Analyse der mutierten Reporterkonstrukte in Bezug auf das leere pMIR-RNL-TK-Reporterplasmid ergab eine signifikante Reduktion der RLU (P < 0,05 für pMIR-KIF5Cmut; P < 0.01 für pMIR-THmut).

Abbildung 25: Validierung des HiTmIR-Assays für die miR-34a-5p mit mutierten Reporterkonstrukten. Die Reporterkonstrukte wurden durch Austausch der miR-34a-5p-Bindestelle mutiert und zusammen mit den wildtypischen Reporterkonstrukten erneut im HiTmIR-Assay getestet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen zwischen wildtypischen und mutierten Reporterkonstrukten wurden kenntlich gemacht.

4.6.2 Validierung der Ergebnisse des HiTmIR-Assays mit mutierten Reporterkonstrukten für die miR-7-5p

Zur Validierung der Ergebnisse des HiTmIR-Assays für die miR-7-5p wurden, analog zur miR-34a-5p, sechs Reporterkonstrukte mit starker Reduktion in der RLU und vier Reporterkonstrukte mit moderater Reduktion in der RLU ausgewählt. Abbildung 26 zeigt die Ergebnisse des HiTmIR-Assays der zehn mutierten Reporterkonstrukten für die miR-7-5p.

Abbildung 26: Validierung des HiTmIR-Assays für die miR-7-5p mit mutierten Reporterkonstrukten. Die Reporterkonstrukte wurden durch Austausch der miR-7-5p-Bindestelle mutiert und zusammen mit den wildtypischen Reporterkonstrukten erneut im HiTmIR-Assay getestet. Dargestellt sind der Mittelwert sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten in technischen Duplikaten. Statistische Signifikanzen zwischen wildtypischen und mutierten Reporterkonstrukten wurden kenntlich gemacht.

Für sechs der zehn mutierten Reporterkonstrukte war nach Mutation der miR-7-5p-Bindestelle eine signifikante Erhöhung der RLU zu erkennen. Hierbei resultierte die Mutation in einer Erhöhung der RLU von 21,2 % für pMIR-AKT3_6 (P < 0,01), von 25,9 % für pMIR-CASK_3 (P < 0,01), von 51,3 % für pMIR-CREB3L2_6 (P < 0,001), von 27,8 % für pMIR-GNB5_8 (P < 0,01), von 29,3 % für SDHC_3 (P < 0,001) und von 27,9 % für pMIR-SNCA (P < 0,001). Die Mutation des Reporterplasmides pMIR-RAB3B_7 zeigte keinen Effekt auf die RLU (1,0 %). Für das Reporterplasmid GSK3B_8 war nach Mutation der miR-7-5p eine signifikante Reduktion der RLU um 17,6 % zu beobachten (P < 0,05). In beiden Fällen wurde für das wildtypische Reporterplasmid keine vergleichbare Reduktion der RLU zu den vorangegangen HiTmIR-Assays detektiert. Im Gegensatz dazu wurde für das Reporterplasmid pMIR-UBE2G2 1 nur eine geringfügige Erhöhung der RLU um 6,7 % durch Mutation der miR-7-5p-Bindestelle erreicht (P = 0,23). Auch hier konnte das in den initialen HiTmIR-Assays positive Ergebnis für das Reporterplasmid pMIR-UBE2G2 1 nicht bestätigt werden. Es ließ sich zwar eine signifikante Reduktion der RLU detektieren, allerdings lag diese mit 88,3 % geringfügig über dem festgelegten Grenzwert (P < 0.05). Im Vergleich zu den initialen HiTmIR-Assays wurde eine signifikante Reduktion der RLU in Bezug auf pMIR-RNL-TK nur noch bei sieben der zuvor zehn signifikant veränderten Reporterplasmide erfasst. Neben dem bereits erwähnten pMIR-GSK3B 8 galt dies ebenso für die Reporterplasmide pMIR-RAB3B 7 und pMIR-RAB3B 17. Im Vergleich zu pMIR-RNL-TK konnte für die mutierten Reporterplasmide pMIR-AKT3 6mut. pMIR-CASK 3mut, pMIR-CREB3L2 6mut, pMIR-GNB5 8mut, pMIR-SDHC 3mut und pMIR-UBE2G2 1 keine signifikante Reduktion der RLU mehr festgestellt werden. Die Mutation der miR-7-5p-Bindestelle erbrachte somit die erwartete Reversion der im initialen HiTmIR beschriebenen posttranskriptionellen Regulation der getesteten 3'UTR Sequenzen durch die miR-7-5p. Im Gegensatz dazu konnte für pMIR-SNCAmut weiterhin eine signifikante Reduktion im Vergleich zum leeren pMIR-RNL-TK beschrieben werden (P < 0,05), allerdings handelte es sich nur um eine geringfügige Reduktion der RLU von 9,8 %.

4.7 Ektopische Expression der miR-34a-5p und miR-7-5p in SH-SY5Y-Zellen

Die weitere Validierung der posttrankriptionellen Regulation der getesteten Zielgene durch die miR-34a-5p und miR-7-5p erfolgte auf Proteinebene mittels Western Blot. Hierzu wurde die neuronale Zelllinie SH-SY5Y ausgewählt, um die endogene Proteinexpression der ausgewählten, teils neuronal exprimierten Zielgene zu gewährleisten. Der Nachweis erfolgte durch Transfektion mit miRNA-Mimics und anschließender Untersuchung der Expression von Proteinen ausgewählter im HiTmIR validierten Zielgene. Zur Kontrolle der ektopischen Expression der miRNAs wurde eine qRT-PCR nach Transfektion mit den miRNA-Mimics durchgeführt. Hierzu wurden SH-SY5Y-Zellen mit ANC oder miR-34a-5p- bzw. miR-7-5p-Mimic für 48 h transfiziert, lysiert und die RNA wurde isoliert. Nach reverser Transkription erfolgte die qRT-PCR unter Verwendung spezifischer Primer für die miR-34a-5p und miR-7-5p. Die Ergebnisse der ektopischen Expression der miR-34a-5p und miR-7-5p.

Abbildung 27: Ektopische Expression der miR-34a-5p und miR-7-5p in SH-SY5Y. SH-SY5Y wurden für 48 h mit ANC oder miR-34a-5p-Mimic(a) bzw. miR-7-5p-Mimic (b) transfiziert. Die Zellen wurden anschließend lysiert und die Gesamt-RNA wurde isoliert. Nach reverser Transkription erfolgte die qRT-PCR unter Verwendung spezifischer Primer für die miR-34a-5p bzw. miR-7-5p. Als interne Kontrolle diente die RNU6B, die zur Ermittlung des Δ Ct-Wertes herangezogen wurde. Dargestellt sind der Mittelwert sowie Standardfehler aus drei unabhängigen Experimenten in technischen Duplikaten. Signifikante Unterschiede zwischen kontrolltransfizierten Zellen (ANC) und Mimic-transfizierten Zellen wurden kenntlich gemacht (***P < 0,001). (a) Ektopische Expression der miR-34a-5p in SH-SY5Y-Zellen.

In beiden Fällen konnte nach Transfektion mit dem jeweiligen miRNA-Mimic eine Verringerung des ΔCt-Wertes und somit eine erhöhte Expression der jeweiligen miRNA in der qRT-PCR mit miRNA-spezifischen Primern detektiert werden. Mit Hilfe der 2^{-ΔΔCt}-Methode ließ sich für die miR-34a-5p eine mittlere Expressionsveränderung (*fold change*) von 755,0 berechnen. Die Expressionsveränderung der miR-7-5p betrug 124,5. Zusammenfassend konnte im Rahmen dieser Analysen die ektopische Expression der miR-34a-5p und miR-7-5p in SH-SY5Y nachgewiesen werden.

4.8 Posttranskriptionelle Regulation der Proteinexpression durch miRNAs

Auf Basis der im HiTmIR-Assay generierten Ergebnisse wurden zum Nachweis der Zielgenregulation durch die miR-34a-5p und miR-7-5p in einer neuronalen Zelllinie jeweils vier potenzielle Zielgene ausgewählt. Zur ektopischen Expression der miRNAs wurden SH-SY5Y für 48 h mit ANC oder miR-34a-5p bzw. miR-7-5p-Mimic transfiziert. Im Anschluss wurden die Gesamtproteinextrakte der Zellen isoliert. Nach gelelektrophoretischer Auftrennung und Transfer auf eine Nitrocellulosemembran konnte die Expression der ausgewählten Proteine mit spezifischen Antikörpern nachgewiesen werden.

4.8.1 Posttranskriptionelle Regulation der Proteinexpression durch die miR-34a-5p

Mit Hilfe der Western Blot-Analyse wurde die Regulation der endogenen Proteinexpression der Zielgene *CLOCK*, *GRIA4*, *PARK2* und *TH* durch die miR-34a-5p bestimmt. Die Ergebnisse sind in Abbildung 28, Abbildung 29 und Abbildung 30 dargestellt.

Abbildung 28: Regulation der endogenen Proteinexpression von CLOCK durch die miR-34a-5p. SH-SY5Y wurden für 48 h mit ANC oder miR-34a-5p-Mimic transfiziert. Das endogene Proteinlevel von CLOCK und GAPDH als interne Kontrolle wurde im Western Blot mit spezifischen Antikörpern nachgewiesen. Zur quantitativen Analyse wurde die Bandenintensität des Proteins CLOCK bestimmt und in Bezug zur internen Kontrolle gesetzt. (a) Repräsentativer Western Blot für CLOCK nach miR-34a-5p-Mimic-Transfektion. (b) Quantitative Western-Blot-Analyse für CLOCK nach miR-34a-5p-Mimic-Transfektion. Dargestellt sind der Mittelwert der relativen Expression in Bezug zu kontrolltransfizierten Zellen (ANC) sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten. Statistische Signifikanz zwischen ANC-transfizierten Zellen und miR-34a-5p-transfizierten Zellen wurde kenntlich gemacht (*P < 0,05).

In den initialen HiTmIR-Assays sowie der anschließenden Validierung mit mutierten Reporterkonstrukten konnte bereits eine Interaktion der miR-34a-5p mit den beiden Teilstücken der 3'UTR-Sequenz des vorhegesagten Zielgens *CLOCK* nachgewiesen werden. In diesem Zusammenhang resultierte die Transfektion mit dem miRNA-Expressionsplasmid pSG5-miR-34a in einer Reduktion der RLU, die durch Mutation der miRNA-Bindestelle aufgehoben wurde. Auch nach Transfektion mit dem miR-34a-5p-Mimic ließ sich die posttranskriptionelle Regulation auf Proteinlevel beobachten (Abbildung 28). Die relative Expression des Proteins CLOCK wurde durch die miR-34a-5p signifikant auf 76,4 % reduziert (P < 0,05).

Ergebnisse

Analog zu CLOCK wurde die Regulation der Proteinexpression von GRIA4 und PARK2 durch die miR-34a-5p bestimmt. Für beide Zielgene konnte bereits in den initialen HiTmIR-Assays eine Regulation durch die miR-34a-5p nachgewiesen werden. In diesem Zusammenhang zeigte sich für pMIR-GRIA4 und pMIR-PARK2 eine signifikante Reduktion der RLU. In der Validierung der Ergebnisse mit Hilfe von mutierten Reporterkonstrukten konnte die Regulation der miR-34a-5p durch Mutation der Bindestelle revertiert werden. Auch auf Proteinlevel ließ sich die posttranskriptionelle Regulation der Zielgene *GRIA4* und *PARK2* erkennen. Die Transfektion mit dem miR-34a-5p-Mimic resultierte in einer signifikanten Reduktion der relativen Expression beider untersuchten Proteine (P < 0,01 für GRIA, P < 0,05 für PARK2). Die Quantifizierung ergab für GRIA4 eine relative Proteinexpression von 72,1 % und für PARK2 von 60,2 %. Die Ergebnisse der Western Blot-Analyse für GRIA4 und PARK2 sind in Abbildung 29 zusammengefasst.

Abbildung 29: Regulation der endogenen Proteinexpression von GRIA4 und PARK2 durch die miR-34a-5p. SH-SY5Y wurden für 48 h mit ANC oder miR-34a-5p-Mimic transfiziert. Das endogene Proteinlevel von GRIA4, PARK2 und GAPDH als interne Kontrolle wurde im Western Blot mit spezifischen Antikörpern nachgewiesen. Zur quantitativen Analyse wurde die Bandenintensität der Proteine GRIA4 und PARK2 bestimmt und in Bezug zur internen Kontrolle gesetzt. (a) Repräsentativer Western Blot für GRIA4 und PARK2 nach miR-34a-5p-Mimic-Transfektion. (b) Quantitative Western-Blot-Analyse für GRIA4 und PARK2 nach miR-34a-5p-Mimic-Transfektion. Dargestellt sind der Mittelwert der relativen Expression in Bezug zu kontrolltransfizierten Zellen (ANC) sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten. Statistische Signifikanz zwischen ANC-transfizierten Zellen und miR-34a-5p-Mimic transfizierten Zellen wurde kenntlich gemacht (*P < 0,05; **P < 0,01).

Darüber hinaus wurde die Wirkung der miR-34a-5p auf die Proteinexpression des Zielgens *TH* genauer untersucht. Die Western Blot-Analysen der miRNA-Mimic-transfizierten SH-SY5Y sind in Abbildung 30 dargestellt. In den initialen HiTmIR-Assays wurde für das zugehörige Reporterplasmid pMIR-TH eine signifikante Reduktion der RLU durch die miR-34a-5p ermittelt. Die Mutation der miR-34a-5p konnte die Regulation nicht vollständig aufheben, es ließ sich jedoch ein signifikanter Anstieg der RLU beobachten. Wie bereits für die zuvor untersuchten Proteine konnte die posttranskriptionelle Regulation durch die miR-34a-5p für TH auch auf Proteinlevel bestätigt werden. Hierbei zeigte sich durch miR-34a-5p-Mimic-Transfektion eine signifikante Reduktion der relativen Proteinexpression auf 66,4 %.

Abbildung 30: Regulation der endogenen Proteinexpression von TH durch die miR-34a-5p. SH-SY5Y wurden für 48 h mit ANC oder miR-34a-5p-Mimic transfiziert. Das endogene Proteinlevel von TH und β -Aktin als interne Kontrolle wurde im Western Blot mit spezifischen Antikörpern nachgewiesen. Zur quantitativen Analyse wurde die Bandenintensität des Proteins TH bestimmt und in Bezug zur internen Kontrolle gesetzt. (a) Repräsentativer Western Blot für TH nach miR-34a-5p-Mimic-Transfektion. (b) Quantitative Western-Blot-Analyse für TH nach miR-34a-5p-Mimic-Transfektion. Dargestellt sind der Mittelwert der relativen Expression in Bezug zu kontrolltransfizierten Zellen (ANC) sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten. Statistische Signifikanz zwischen ANC-transfizierten Zellen und miR-34a-5p-Mimic-transfizierten Zellen wurde kenntlich gemacht (*P < 0,05).

4.8.2 Posttranskriptionelle Regulation der Proteinexpression durch die miR-7-5p

Die Regulation der Proteinexpression durch die miR-7-5p wurde für die Zielgene *AKT3*, *CASK*, *SHDC* und *UBE2G2* mittels Western Blot analysiert. Die Bindung der miR-7-5p an die 3'UTR-Teilstücke der Zielgene *AKT3* und *CASK* konnte bereits im Rahmen der HiTmIR-Assays nachgewiesen werden. In diesem Zusammenhang konnte eine signifikante Reduktion der RLU beschrieben werden, die durch Mutation der Bindestelle aufgehoben wurde. Analog dazu führte die ektopische Expression der miR-7-5p in SH-SY5Y zu einer signifikanten Reduktion der Proteinexpression von AKT3 und CASK auf 69,2 % bzw. 74,0 % (s. Abbildung 31).

Abbildung 31: Regulation der endogenen Proteinexpression von AKT3 und CASK durch die miR-7-5p. SH-SY5Y wurden für 48 h mit ANC oder miR-7-5p-Mimic transfiziert. Das endogene Proteinlevel von AKT3, CASK und GAPDH als interne Kontrolle wurde im Western Blot mit spezifischen Antikörpern nachgewiesen. Zur quantitativen Analyse wurde die Bandenintensität der Proteine AKT3 und CASK bestimmt und in Bezug zur internen Kontrolle gesetzt. (a) Repräsentativer Western Blot für AKT3 und CASK nach miR-7-5p-Mimic- Transfektion. (b) Quantitative Western-Blot-Analyse für AKT3 und CASK nach miR-7-5p-Mimic-Transfektion. Dargestellt sind der Mittelwert der relativen Expression in Bezug zu kontrolltransfizierten Zellen (ANC) sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten. Statistische Signifikanz zwischen ANC-transfizierten Zellen und miR-7-5p-Mimic-transfizierten Zellen wurde kenntlich gemacht (*P < 0,05).

Ergebnisse

Zudem wurde die posttranskriptionelle Regulation für das Zielgen SDHC auf Proteinlevel untersucht. In Abbildung 32 ist das Ergebnis der Western Blot-Analyse für SDHC dargestellt. Die 3'UTR-Sequenz von SDHC wies insgesamt acht miR-7-5p-Bindestellen auf, sodass im HiTmIR-Assav sieben Reporterkonstrukte getestet wurden. Fünf der aetesteten Reporterkonstrukte zeigten eine signifikante Reduktion der RLU, wobei für das Reporterkonstrukt pMIR-SDHC 3 der stärkste Effekt beobachtet werden konnte. Durch Mutation der miR-7-5p-Bindestelle konnte die Reduktion der RLU für dieses 3'UTR-Teilstück aufgehoben werden. In der Western Blot-Analyse wurde die Regulation der endogenen SDHCmRNA auch mit vollständiger 3'UTR nachgewiesen. Die Transfektion des miR-7-5p-Mimic resultierte in einer signifikanten Reduktion des relativen Proteinlevels von SDHC auf 52,0 %.

Abbildung 32: Regulation der endogenen Proteinexpression von SDHC durch die miR-7-5p. SH-SY5Y wurden für 48 h mit ANC oder miR-7-5p-Mimic transfiziert. Das endogene Proteinlevel von SDHC und GAPDH als interne Kontrolle wurde im Western Blot mit spezifischen Antikörpern nachgewiesen. Zur quantitativen Analyse wurde die Bandenintensität des Proteins SDHC bestimmt und in Bezug zur internen Kontrolle gesetzt. (a) Repräsentativer Western Blot für SDHC nach miR-7-5p-Mimic-Transfektion. (b) Quantitative Western Blot-Analyse für SDHC nach miR-7-5p-Mimic-Transfektion. Dargestellt sind der Mittelwert der relativen Expression in Bezug zu kontrolltransfizierten Zellen (ANC) sowie der zugehörige Standardfehler aus drei unabhängigen Experimenten. Statistische Signifikanz zwischen ANC-transfizierten Zellen und miR-7-5p transfizierten Zellen wurde kenntlich gemacht (*P < 0,05).

Ergebnisse

Zuletzt wurde die Wirkung der miR-7-5p auf die Proteinexpression des Zielgens *UBE2G2* genauer untersucht. In Abbildung 33 sind die Western Blot-Analysen für UBE2G2 dargestellt. Wie bereits für die zuvor analysierten Proteine beschrieben, konnte die Regulation von UBE2G2 durch die miR-7-5p auf Proteinebene bestätigt werden. In den initialen HiTmIR-Assays wurde eine deutliche Reduktion der RLU für das Reporterplasmid pMIR-UBE2G2_1 detektiert. Diese konnte jedoch bei erneuter Messung nicht validiert werden. Es ließ sich aller-dings durch Mutation der Bindestelle eine geringe Erhöhung der RLU beobachten. Auf Proteinlevel zeigte sich die Regulation von UBE2G2 durch die miR-7-5p erneut deutlich. Die quantitative Analyse ergab nach ektopischer Expression der miR-7-5p eine signifikante Reduktion der relativen Proteinexpression auf 66,6 %.

5. Diskussion

M. Parkinson stellt eine schwerwiegende neurodegenerative Erkrankung dar, deren Komplexität sowohl die Diagnosestellung als auch die Therapie bis heute erschwert. Zurzeit erfolgt die Diagnosestellung auf Basis der vielschichtigen und teils komplexen Symptomatik: eine definitive Diagnose kann jedoch erst post mortem durch Biopsien betroffener Hirngewebe von Parkinson-Patienten getroffen werden (Braak et al., 2003; Postuma et al., 2015). Neben den rein klinischen Diagnosemöglichkeiten gibt es bis heute keine effektive Therapie zur Heilung von M. Parkinson. Die zurzeit angewandten Therapieansätze zielen lediglich auf die Milderung der Symptomatik ab (Fox et al., 2018). Eine mögliche Ursache der bislang fehlenden kausalen Therapie stellt das weiterhin unzureichende Verständnis der Pathogenese sowie der Krankheitsprogression dar. Die Untersuchungen der zugrundliegenden molekularen Mechanismen werden durch eine zumeist erst spät gestellte Diagnose sowie dem Absterben der betroffenen Neurone im Gehirn der Patienten erschwert (Hartmann, 2004; Lopes et al., 2017). Um vor allem frühe zelluläre Dysregulationen experimentell näher zu beleuchten, werden daher insbesondere in vitro und in vivo Parkinsonmodelle angewandt (Lopes et al., 2017; Salari, Bagheri, 2019). In dieser Arbeit diente die MPP+-Applikation in dopaminergen LUHMES-Zellen als etabliertes in vitro Parkinson-Zellkulturmodell der Untersuchung der Regulation der zentralen Pathomechanismen, im Speziellen der miRNA-Signatur, die zur Progression von M. Parkinson beitragen könnten (Scholz et al., 2011).

5.1 Deregulation zentraler Pathomechanismen von M. Parkinson im Parkinson-Zellkulturmodell

In der Transkriptomanalyse des Parkinson-Zellkulturmodells mittels Microarray ergaben sich die stärksten Veränderungen unter anderem in der Expression der Gene *ASS1*, *SLC7A11* sowie *TXNIP*. Eine vergleichbare Analyse des Parkinson-Zellkulturmodells mittels DNA-Microarray sowie RNA-Sequenzierung von Krug *et al.* aus dem Jahr 2014 erzielte für diese Gene übereinstimmende Expressionsveränderungen (Krug *et al.*, 2014). Diese Gene nehmen eine entscheidende Rolle in dem zentralen Kohlenstoff-Stoffwechsel, dem Aminosäurestoffwechsel sowie in der Reaktion auf oxidativen Stress ein. Die Regulation dieser zentralen Stoffwechselwege stellt die zelluläre Adaptation bedingt durch die Applikation von MPP+ dar (Krug *et al.*, 2014; Smirnova *et al.*, 2016). Die in dieser Arbeit detektierte induzierte Expression von *ASS1* nach MPP+-Behandlung konnte zudem in einem dreidimensionalen Parkinson-Zellkulturmodell nachgewiesen werden (Smirnova *et al.*, 2016). Die beobachteten Genexpressionsänderungen des Parkinson-Zellkulturmodells konnten demnach ebenso von anderen Arbeitsgruppen gezeigt werden.

Die anschließende Signalweganalyse der in dieser Arbeit erhobenen Transkriptom-Daten bestätigte auf zellulärer Ebene einen Parkinson-ähnlichen Phänotyp durch die signifikante Deregulation spezifischer Signalwege, die in direktem Zusammenhang mit den von Antony et al. beschriebenen zentralen Pathomechanismen von M. Parkinson stehen (Antony et al., 2013). In erster Linie konnten Veränderungen in mitochondrialen Signalwegen wie z. B. der Atmungskette, dem Ubiguitin-Proteasom-System sowie der postsynaptischen Transmission nachgewiesen werden. Die mitochondriale Dysfunktion gehört zu den zentralen zellulären Pathomechanismen in M. Parkinson, die das Absterben der dopaminergen Zellen bedingen, und wird im Parkinson-Zellkulturmodell durch das Neurotoxin MPP+ induziert (Chan et al., 1991; Vogralik, Meshkov, 1987). MPP+ inhibiert den mitochondrialen Komplex I der Atmungskette, wodurch es zu einer verringerten ATP-Synthese sowie der Bildung von ROS kommt (Chan et al., 1991; Zawada et al., 2011). Analog dazu wurde bereits 1990 von Schapira et al. eine reduzierte Aktivität des mitochondrialen Komplex I in der Substancia nigra pars compacta von Parkinson-Patienten beschrieben (Schapira et al., 1990). Die mitochondriale Dysfunktion steht im direkten Zusammenhang mit der Deregulation weiterer zellulärer Mechanismen wie der Calciumhomöostase, des Eisenmetabolismus oder der Apoptose, die zur Pathogenese von M. Parkinson beitragen (Antony et al., 2013). Auch wenn in der hier durchgeführten Signalweganalyse keine signifikante Veränderung von Calcium- oder Apoptose-assoziierter Signalwege erfasst wurde, so zeigte sich für einzelne Gene der Signalwege teilweise eine signifikante Änderung der mRNA-Expression. Auf Grundlage dieser Expressionsveränderungen lässt sich ebenso ein Einfluss auf die gesamten Signalwege durch die Induktion des Parkinson-ähnlichen Phänotyps vermuten.

Zusätzlich wurden signifikant veränderte Signalwege identifiziert, die in Zusammenhang mit dem Ubiquitin-Proteasom-System stehen. Das Ubiquitin-Proteasom-System ist ein zellulärer Mechanismus zur Proteinqualitätskontrolle und bildet neben dem Lysosom-Autophagie-System eine Schlüsselrolle in der Pathogenese von M. Parkinson (Xilouri *et al.*, 2013; Xilouri *et al.*, 2009). Zudem deutet der signifikant veränderte Signalweg "Postsynapse" auf eine Dysregulation der Signalweiterleitung hin, die ebenso in weiteren Parkinson-Modellen beschrieben wurde und eine weitere charakteristische Eigenschaft von M. Parkinson darstellt (Antony *et al.*, 2013; Janezic *et al.*, 2013; Larsen *et al.*, 2006; Oyama *et al.*, 2010; Venda *et al.*, 2010). Anhand der Signalweganalyse sowie der signifikanten Deregulation einzelner Gene innerhalb von Parkinson-assoziierten Signalwegen konnten die zentralen Pathomechanismen von M. Parkinson, wie sie auch in betroffenem Hirngewebe von Parkinson-Patienten beschrieben wurden, auch auf molekularer Ebene abgebildet werden. Diese Ergebnisse deuten darauf hin, dass die generierten Ergebnisse des Parkinson-Zellkulturmodells ebenso auf M. Parkinson übertragen werden könnten.
5.2 miRNA-Expressionsanalysen in M. Parkinson

Nach der erfolgreichen Validierung des Parkinson-ähnlichen Phänotyps mittels Transkriptomanalyse erfolgte im Rahmen dieser Arbeit analog die miRnom-Analyse. Diese ergab für insgesamt zehn miRNAs eine signifikante Expressionsveränderung (log₂ *fold change* >0,3 bzw. <-0,3) im Vergleich zu den Kontrollzellen. 80 % der mittels Microarray detektierten Expressionsveränderungen konnten mittels qRT-PCR bestätigt werden. Im Rahmen der Microarray-Analyse wurden für einige miRNAs niedrige Expressionswerte nachgewiesen. Dadurch ist es denkbar, dass die Expressionsveränderung einzelner miRNAs aufgrund der zu geringen Expression im Microarray schwer zu detektieren waren, was eine Ursache für die auftretenden Diskrepanzen zwischen den beiden Methoden darstellen könnte.

Neben bereits mit M. Parkinson assoziierten miRNAs wurden vier der signifikant veränderten miRNAs (miR-1973, miR-4284, miR-4485-5p und miR-4485-3p) bisher noch nicht im Kontext von M. Parkinson beschrieben. Eine mögliche Erklärung hierfür ist unter anderem, dass durch den Einsatz von Hochdurchsatzmethoden wie dem next generation sequencing (NGS) zur Detektion von kleinen RNAs in den letzten Jahren eine Vielzahl neuer miRNAs identifiziert und in der miRNA-Datenbank miRBase hinterlegt wurden. Diese wurden meist mit hohen Ziffern über 1000 betitelt (Zhou et al., 2011). Es ist daher denkbar, dass einige der hier detektierten miRNAs in bisherigen Expressionsanalysen im Kontext von M. Parkinson nicht berücksichtigt wurden, da sie zum Analysezeitpunkt noch nicht in der miRNA-Datenbank annotiert waren. Darüber hinaus ist es möglich, dass bei der Identifikation neuer miRNAs aufgrund unterschiedlicher Qualität der Sequenzierergebnisse, wie beispielsweise einer geringen Anzahl von erfassten reads für eine miRNA, fälschlicherweise kurze RNA-Sequenzen als miRNAs annotiert wurden, die nach Validierung mit unabhängigen Methoden nicht als solche bestätigt werden konnten (Alles et al., 2019; Kozomara, Griffiths-Jones, 2014). In diesem Zusammenhang wurde die in dieser Arbeit signifikant veränderte miR-4284 bereits im Rahmen einer Studie unserer Arbeitsgruppe mittels Northern Blot analysiert und konnte entgegen der Annotation nicht als miRNA bestätigt werden (Alles et al., 2019). Diese Studie legt die Vermutung nahe, dass es sich auch bei den weiteren erfassten miRNA-Kandidaten mit hohen Annotationsnummern nicht um miRNAs handeln könnte. Eine Validierung dieser miRNA-Kandidaten analog zur Studie von Alles et al. mittels Northern Blot könnte Aufschluss darüber geben, ob es sich bei den im Rahmen dieser Arbeit detektierten miRNAs mit hohen Annotationsnummern ebenfalls um kurze RNA-Moleküle, die fälschlicherweise als miRNAs annotiert wurden, handelt (Alles et al., 2019).

Der Abgleich der miRnom-Analyse dieser Arbeit mit bisherigen Publikationen ergibt teils widersprüchliche Ergebnisse. Dies ist nicht unerwartet, da die in der Literatur beschriebenen Daten auf verschiedenen Versuchsmodellen oder Patientenproben basieren. Verschiedene Arbeitsgruppen analysierten die miRNA-Signaturen von post mortem Hirnbiopsien der Parkinson-Patienten mit teils widersprüchlichen Ergebnissen. Die erste Studie, die diesbezüglich veröffentlicht wurde, stammt von Kim et al. aus dem Jahr 2007. In dieser wurde die Expression von miRNA-Vorläufern in verschiedenen Hirnregionen von Parkinson-Patienten mit gesunden Kontrollen verglichen. Die Autoren detektierten neben einer verringerten Expression des miR-133b-Vorläufers eine erhöhte Expression der pre-miR-7-1, pre-miR-7-2, pre-miR-34a und pre-miR-129-2 sowie eine verringerte Expression der pre-miR-335 im Mittelhirn von Parkinson-Patienten (Kim et al., 2007). In Übereinstimmung mit den Ergebnissen dieser Arbeit zeigten die reifen miRNAs miR-34a-5p und miR-129-5p eine erhöhte Expression, wohingegen für die reifen miRNAs miR-7-5p, miR-335-5p und miR-335-3p widersprüchliche Ergebnisse erfasst wurden. Hierbei muss jedoch beachtet werden, dass die Expression der VorläufermiRNA nicht zwangsläufig mit der Expression der reifen miRNA korreliert, da auch negative Korrelationen der Expression von reifer miRNA und miRNA-Vorläufer bereits in früheren Studien beschrieben wurden (Gan, Denecke, 2013). Auch nachfolgende Publikationen zu Expressionsprofilen von reifen miRNAs im Hirngewebe von Parkinson-Patienten konnten die Ergebnisse von Kim et al. nicht validieren (Cardo et al., 2014; Kim et al., 2007; Kim et al., 2014; Minones-Moyano et al., 2011; Schlaudraff et al., 2014). Neben widersprüchlichen Ergebnissen zur Expression der miR-133b wurden die miRNAs miR-34a-5p, miR-129-5p und miR-335-5p mit einer geringfügigen, nicht signifikanten Reduktion in der Substantia nigra pars compacta beschrieben (Cardo et al., 2014). Zudem zeigten in einer weiterführenden Studie die reifen Formen der miR-129 eine signifikante Reduktion der miR-129-5p sowie eine nicht-signifikante Reduktion der miR-129-3p in der Substantia nigra pars compacta von Parkinson-Patienten (Briggs et al., 2015). Auch diese Ergebnisse stehen im Widerspruch zur Expression der Vorläufer-miRNAs im Mittelhirn der Studie von Kim et al. sowie den Ergebnissen des Parkinson-Zellkulturmodells dieser Arbeit (Kim et al., 2007). Neben der veränderten miR-129-5p-Expression identifizierten Briggs et al. weitere miRNAs, darunter ebenso die miR-335-5p, die im Hirngewebe von Parkinson-Patienten signifikant erhöht war (Briggs et al., 2015). In Übereinstimmung mit dieser Studie konnte eine erhöhte Expression der miR-335-5p sowie eine signifikant erhöhte Expression der miR-335-3p im hier angewandten Parkinson-Zellkulturmodel festgestellt werden. Die in dieser Arbeit signifikant induzierte miR-34a-5p konnte in der Studie von Briggs et al. im Hirngewebe von Parkinson-Patienten nur leicht erhöht detektiert werden (Briggs et al., 2015). Darüber hinaus beschrieben McMillan et al. in Konkordanz mit den in dieser Arbeit generierten Ergebnissen eine signifikante Reduktion der miR-7-5p in der Substantia nigra pars compacta von Parkinson-Patienten (Mcmillan et al., 2017). Folglich lassen sich in den verschiedenen Publikationen insgesamt unterschiedliche Expressionsmuster von miRNAs erkennen. Dies kann unter anderem auf die Lokalisation der jeweils angewandten Biopsie zurückzuführen sein, die je nach Studie das gesamte Mittelhirn

(Kim et al., 2007) oder speziell die Substantia nigra pars compacta beinhalteten (Briggs et al., 2015; Cardo et al., 2014; Mcmillan et al., 2017). Diese Diskrepanz ist zudem dadurch zu erklären, dass neben der Degeneration von dopaminergen Neuronen der Substantia nigra pars compacta auch ein Rückgang dieser Zellen in weiteren Teilen des Mittelhirns von Parkinson-Patienten erfasst wurde. Während in der Substantia nigra pars compacta durchschnittlich 80-90 % der dopaminergen Neuronen absterben, ist der Verlust an dopaminergen Neuronen in der Area tegmentalis ventralis mit 40-50 % und in der Substantia grisea centralis mit 2-3 % deutlich geringer ausgeprägt (Hartmann, 2004; Hirsch et al., 1988). Folglich können Hirnbiopsien das miRNA-Expressionsprofil in den erkrankten Neuronen nur schwer abbilden. da zum einen der größte Anteil der dopaminergen Neuronen zu diesem Zeitpunkt bereits abgestorben ist und nicht mehr erfasst werden kann und zum anderen das miRNA-Expressionsprofil umliegender Zellen, wie beispielsweise Astrozyten oder Mikroglia, sowie infiltrierender Immunzellen mitberücksichtigt wird, wodurch die Ergebnisse voneinander abweichen können. Cardo et al. beschrieben in diesem Zusammenhang ebenso ein sehr heterogenes miRNA-Expressionsprofil zwischen verschiedenen Parkinson-Patienten (Cardo et al., 2014; Leggio et al., 2017). Erschwerend kommt hinzu, dass post mortem Hirnbiopsien lediglich den Endpunkt der Neurodegeneration in M. Parkinson abbilden, der abhängig von der Progression der Erkrankung variieren kann. Daneben können verschiedene Therapieansätze zur Behandlung der Symptomatik sowie die Dauer der Medikation das miRNA-Expressionsprofil beeinflussen. Dynamische Expressionsveränderungen sowie Deregulationen einzelner miRNAs in der frühen Phase von M. Parkinson können folglich in Hirnbiopsien nicht vollständig erfasst werden, jedoch könnten diese eine entscheidende Rolle in der Manifestation der Erkrankung einnehmen (Hartmann, 2004; Leggio et al., 2017). Zusammenfassend lassen sich als Ursachen für die Heterogenität der miRNA-Signaturen in Hirnbiopsien neben der Untersuchung verschiedener Hirnareale ebenso interindividuelle Unterschiede, die zusätzlich durch die Progression der Erkrankung sowie die angewandte Therapie beeinflusst werden, identifizieren. Zum besseren Verständnis der Pathogenese von M. Parkinson werden daher in vitro und in vivo Modelle zur Rekonstruktion der zentralen Pathomechanismen eingesetzt (Lopes et al., 2017).

Bisher ist nur eine geringfügige Anzahl von *in vivo* Studien zu miRNA-Signaturen in Parkinson-Modellen veröffentlicht worden, die zumeist lediglich die Expressionen einzelner miRNAs untersuchen. Hierbei wurde im Vergleich zu der miRnom-Analyse dieser Arbeit neben einer übereinstimmenden Reduktion der miR-7 eine gegensätzliche Expression der murinen miR-129 beobachtet (Junn *et al.*, 2009; Xia *et al.*, 2019). Verschiedene Publikationen mit vergleichbaren Parkinson-Zellkulturmodellen untersuchten in erster Linie die Expression einzelner miRNAs, wie der miR-34a-5p und der miR-7-5p, die auch in dieser Arbeit bestätigt werden konnten (Rostamian Delavar *et al.*, 2018; Smirnova *et al.*, 2016; Xia *et al.*, 2019). In

diesem Kontext bewirkte eine MPP+-Behandlung in vergleichbaren Parkinson-Zellkulturmodellen mit PC12 und SH-SY5Y-Zellen analog zu den Ergebnissen dieser Arbeit eine Induktion der miR-34a-5p-Expression (Rostamian Delavar *et al.*, 2018; Shanesazzade *et al.*, 2018). Zudem konnte eine in Übereinstimmung mit der in dieser Arbeit detektierten Expressionsänderung eine verringerte miR-7 Expression in einem dreidimensionalen Parkinson-Zellkulturmodell nachgewiesen werden (Smirnova *et al.*, 2016).

Zur Untersuchung möglicher Zielgenspektren von miRNAs in M. Parkinson bzw. dopaminergen Neuronen wurden die miRNA-Kandidaten im Rahmen dieser Arbeit aufgrund der beschriebenen Heterogenität der miRNA-Signaturen in Hirnbiopsien anhand der generierten Ergebnisse des Parkinson-Zellkulturmodells sowie weiterer Publikationen, die bereits eine fundamentale Rolle der miRNA-Kandidaten in der Neuropathologie nachweisen konnten, ausgewählt (Chua, Tang, 2019; Titze-De-Almeida, Titze-De-Almeida, 2018).

5.3 Die miR-34a-5p und miR-7-5p als zentrale miRNAs in M. Parkinson

Als vielversprechende Kandidaten, die einen direkten Einfluss auf die Pathogenese von M. Parkinson nehmen könnten, wurden die miRNAs miR-34a-5p und miR-7-5p identifiziert. Neben einer signifikanten Expressionsveränderung der miR-34a-5p und miR-7-5p in dieser Arbeit konnten übereinstimmende miRNA-Expressionsprofile in vergleichbaren *in vitro* Parkinson-Zellkulturmodellen durch andere Arbeitsgruppen beschrieben werden (Rostamian Delavar *et al.*, 2018; Shanesazzade *et al.*, 2018; Smirnova *et al.*, 2016). Der Parkinson-ähnliche Phänotyp wurde in diesen Studien analog zu dem Modell dieser Arbeit durch MPP+-Applikation hervorgerufen, jedoch wurden in der Expressionsanalyse der miR-34a-5p andere Zelllinien, wie PC12 oder SH-SY5Y, verwendet (Rostamian Delavar *et al.*, 2018; Shanesazzade *et al.*, 2018). Zusätzlich konnte die Induktion der miR-34a-5p ebenso in Parkinson-Zellkulturmodellen basierend auf der Applikation von *6-Hydroxydopamin*, Paraquat oder Rotenon nachgewiesen werden (Alural *et al.*, 2015; Ba *et al.*, 2015; Horst *et al.*, 2017). Diese Publikationen bestätigen die in dieser Arbeit detektierte miR-34a-5p-Expressions-erhöhung, die unabhängig von der verwendeten Zelllinie und des Neurotoxins erfasst wurde, wodurch ein direkter Zusammenhang zu M. Parkinson naheliegend ist.

Darüber hinaus wiesen verschiedene Studien einen signifikanten Einfluss der miR-34a-5p und miR-7-5p auf die Viabilität von dopaminergen Neuronen nach. In diesem Kontext konnte gezeigt werden, dass eine miR-34a-5p-Inhibition durch den Einsatz des stimmungsstabilisierenden Medikamentes Lithium, des Antioxidans Schisandrin B oder von miR-34a-5p-Inhibitoren eine Neuroprotektion in Parkinson-Zellkulturmodellen bewirkt (Alural *et al.*, 2015; Ba *et al.*, 2015; Horst *et al.*, 2017). Die funktionelle Bedeutung der miR-7-5p in dopaminergen Neuronen wurde durch die Regulation von *SNCA* sowie einer neuroprotektiven Rolle in Parkinson-Zellkulturmodellen nachgewiesen, wodurch sie bereits als therapeutischer Angriffspunkt für Parkinson-Patienten diskutiert wird (Choi *et al.*, 2014; Fragkouli, Doxakis, 2014; Kong *et al.*, 2016; Titze-De-Almeida, Titze-De-Almeida, 2018). Auf Grundlage der beschriebenen Studien sowie den in dieser Arbeit generierten Ergebnissen wurde der Fokus im weiteren Verlauf dieser Arbeit auf die beiden miRNAs miR-34a-5p und miR-7-5p gelegt, um den Einfluss der beiden miRNAs auf die Pathogenese von M. Parkinson genauer zu untersuchen.

5.4 Validierung von miRNA-Zielgeninteraktionen

Durch die in dieser Arbeit angewandte, kombinierte Zielgenvorhersage mit anschließender Anreicherungsanalyse wurde eine Identifikation spezifischer miRNA-regulierter Signalwege ermöglicht. Diese Signalweganalyse im Falle von miR-34a-5p und miR-7-5p ergab den geringsten P-Wert für den Signalweg *"pathways in cancer"*. Dies entspricht den vorherigen Erwartungen, da sowohl für die miR-34a-5p als auch für die miR-7-5p bereits eine tumorsuppressive Funktion der beiden miRNAs in verschiedenen Studien nachgewiesen werden konnte. In diesem Kontext wurde neben einer verminderten Expression der beiden miRNAs in verschiedenen Karzinomen, wie beispielsweise Brust- oder Lungenkrebs, ebenso eine Regulation verschiedener Onkogene durch die miR-34a-5p und miR-7-5p beschrieben (Cui *et al.*, 2017; Li *et al.*, 2013; Li *et al.*, 2019; Misso *et al.*, 2014; Su *et al.*, 2018; Tafsiri *et al.*, 2015). Zur Entschlüsselung der Rolle beider miRNAs in der Regulation der zentralen Pathomechanismen, die zum Absterben von dopaminergen Neuronen führen, wurden 14 Parkinson- und Dopaminassoziierte Signalwege ausgewählt.

Die experimentelle Validierung erfolgte mittels HiTmIR-Assay, einem teilautomatisiertem, dualem Luciferase-Reporterassay (Kern *et al.*, 2021; Kuhn *et al.*, 2008). Mit Hilfe des HiTmIR-Assays lassen sich direkte Interaktionen der untersuchten miRNA mit der entsprechenden 3'UTR nachweisen. Diese Interaktionen geben allerdings nur Hinweise auf mögliche Zielgene einer miRNA und können durch die ektopische Expression der miRNA beeinflusst werden (Kuhn *et al.*, 2008). Fehlinterpretationen der Ergebnisse aus Reporterassay-basierten Methoden führen daher häufig zu falsch positiv identifizierten Zielgenen. Durch die Festlegung eines Grenzwertes kann der prozentuale Anteil falsch positiver Ergebnisse reduziert werden. Im Zuge dessen lassen sich positive Ergebnisse mit höherer Wahrscheinlichkeit durch unabhängige Methoden verifizieren und somit definitive miRNA-regulierte Zielgene identifizieren. Allerdings können strikt festgelegte Kriterien auch zu einer hohen Anzahl von falsch negativen Ergebnissen führen (Kern *et al.*, 2021). In dieser Arbeit wurde daher neben

dem Signifikanzniveau zusätzlich eine moderate Reduktion der RLU in der Grenzwertdefinition berücksichtigt. Durch die Validierung mittels Western Blot konnte der definierte Grenzwert für beide miRNAs bestätigt werden. Hierbei konnten die Ergebnisse des HiTmIR-Assays für alle getesteten Proteine validiert werden. Insbesondere grenzwertige Ergebnisse, wie beispielsweise das Ergebnis des HiTmIR-Assays von GRIA4 der miR-34a-5p, konnten ebenso bestätigt werden. In manuellen Analysen potenzieller Zielgene der miR-34a-5p in unserer Arbeitsgruppe wurden vergleichbare Validierungsraten erfasst (Hart et al., 2019). Andere Reporterassaybasierte Hochdurchsatzmethoden weisen eine deutlich geringere Validierungsrate auf, die zumeist auf unterschiedlichen Kriterien zur Auswahl der experimentell validierten Zielgene beruhen (Ito et al., 2017; Wolter et al., 2014). In der Publikation von Ito et al. wurde eine 3'UTR-Reporterbank verwendet und unabhängig von einer bioinformatorischen Zielgenvorhersage auf mögliche Zielgen-miRNA-Interaktionen getestet. Mit Hilfe dieses Ansatzes ließen sich von den getesteten 4900 möglichen Zielgen-Kandidaten lediglich zwölf Zielgene bestätigen (Ito et al., 2017). Diese geringe Anzahl positiver Ergebnisse ist vermutlich auf die fehlende bioinformatorische Zielgenvorhersage zurückzuführen. Im Gegensatz dazu wurde in der Studie von Wolter et al. analog zu dieser Arbeit zunächst eine Zielgenvorhersage durchgeführt, anhand derer 32 % der vorhergesagten Zielgene durch experimentelle Validierung bestätigt werden konnten (Wolter et al., 2014). Durch die in dieser Arbeit angewandte Anreicherungsanalyse der vorhergesagten Zielgene lassen sich potenzielle miRNA-regulierte Signalwege identifizieren und analysieren. In der Literatur finden sich verschiedene Publikationen, welche die Regulation ganzer Signalwege von spezifischen miRNAs beschreiben (Ben-Hamo, Efroni, 2015; Hart et al., 2020; Hart et al., 2019). Diese Erkenntnis legt die Vermutung nahe, dass die vergleichsweise hohe Validierungsrate dieser Arbeit aufgrund der an die Zielgenvorhersage angeknüpfte Signalweganalyse ermöglicht wurde. Zudem unterstreichen die Ergebnisse die Regulation einer Vielzahl von Genen innerhalb von Signalkaskaden durch spezifische miRNAs, wodurch das Potential von miRNAs als zentrale Modulatoren ganzer Signalwege hervorgehoben wird.

Die Ergebnisse des HiTmIR-Assays dienten zudem einer Analyse des Effektes der miRNA-Bindestelle auf die regulatorische Aktivität. In diesem Zusammenhang konnte gezeigt werden, dass mit einer erhöhten Anzahl von potenziell bindenden Nukleotiden eine signifikant verstärkte Regulation zu beobachten war. Diese Ergebnisse stehen in Einklang mit verschiedenen Studien, in denen miRNA/mRNA-Expressionen mittels Hochdurchsatzverfahren wie Microarrays untersucht wurden (Bartel, 2009; Grimson *et al.*, 2007; Nielsen *et al.*, 2007). Zudem wurden auch Reporterplasmide mit einer starken Reduktion der RLU erfasst, die nur eine geringe Anzahl potenziell bindender Nukleotide aufwiesen. Neben der Bindung der Seed-Sequenz kann die miRNA-bedingte Regulation durch weitere Faktoren, wie beispielsweise zusätzliche 3'Komplementaritäten oder Basenfehlpaarungen

Diskussion

beeinflusst werden (Bartel, 2009, 2018). Daher kann auch eine geringfügige Anzahl von potenziell bindenden Nukleotiden in einer starken Zielgenregulation resultieren. Die generierten Ergebnisse schaffen Raum für bioinformatische Sequenzanalysen zur Identifikation spezifischer Sequenzmotive, die sich auf die miRNA-bedingte Regulation auswirken. Anhand dieser Analysen könnte ein besseres Verständnis zur miRNA-bedingten Regulation gewonnen werden, wodurch nachfolgende Zielgenvorhersagen angepasst werden können. Aufgrund der geringen Anzahl von Reporterplasmiden, die mehrere Bindestellen aufweisen, lässt sich allerdings keine konkrete Aussage über die Auswirkungen der Anzahl von miRNA-Bindestellen treffen. Im Gegensatz zu den Ergebnissen des HiTmIR-Assays der miR-34a-5p, lassen die Ergebnisse des HiTmIR-Assays der miR-7-5p auch keine Tendenz eines möglichen Effektes der Anzahl der miRNA-Bindestellen auf die Zielgenregulation erkennen. Zudem konnte für insgesamt 14 Zielgene eine gemeinsame potenzielle Regulation durch die beiden miRNAs miR-34a-5p und miR-7-5p im HiTmIR-Assay detektiert werden. Mehrere Bindestellen der gleichen miRNA aber auch von verschiedenen miRNAs innerhalb einer Zielgen-3'UTR können die Regulation des Zielgens beeinflussen. Abhängig von der Entfernung der Bindestellen, können multiple Bindestellen entweder zu einer kooperativen miRNA-bedingten Regulation führen, wodurch die Repression der Ziel-mRNA verstärkt wird oder zu einer kompetitiven Regulation, was in einer verminderten Repression resultiert (Grimson et al., 2007; Saetrom et al., 2007; Schmitz et al., 2014). Daher ist es denkbar, dass die geringfügigen Unterschiede in den hier erfassten HiTmIR-Assays bezüglich der Anzahl der miRNA-Bindestellen auf verschiedene Mechanismen der Regulation zurückzuführen sind. Zudem kann anhand der generierten Ergebnisse des HiTmIR-Assays keine genaue Aussage über die tatsächliche Regulation getroffen werden, da die Zielgene kooperativ, aber auch reguliert werden könnten. Durch eine weiterführende bioinformatische kompetitiv Sequenzanalyse könnte eine mögliche Korrelation zwischen der Entfernung der miRNA-Bindestellen und den erfassten Effekten im HiTmIR-Assay untersucht werden. Im Kontext der HiTmIR-Assays muss jedoch beachtet werden, dass die 3'UTR-Sequenzen der entsprechenden Zielgene zur Synthese der verwendeten Reporterplasmide in Fragmente untergliedert wurden. Mögliche Effekte über mehrere miRNA-Bindestellen sowie Bindestellen verschiedener miRNAs, die innerhalb der 3'UTR liegen jedoch in verschiedenen Reporterplasmiden lagen, lassen sich dadurch nicht untersuchen. Nachfolgende HiTmIR-Assays bzw. Western Blot-Analysen, in denen die miR-34a-5p und miR-7-5p koexprimiert werden, könnten Aufschluss über eine kooperative oder kompetetive Regulation gemeinsamer Zielgene durch die beiden miRNAs geben.

Zur weiteren Überprüfung der im HiTmIR-Assay generierten Ergebnisse wurden jeweils zehn zuvor als positiv definierte Reporterkonstrukte ausgewählt und die jeweilige miRNA-Bindestelle ausgetauscht. Durch die Mutation der Bindestelle wird die Bindung der miRNA an die 3'UTR Sequenz des entsprechenden Reporterplasmides verhindert, was zu einer erhöhten RLU führt (Kuhn et al., 2008). In dieser Arbeit resultierte die Mutation der miR-34a-5p-Bindestelle bei neun der zehn getesteten Reporterkonstrukte in einer signifikanten Erhöhung der RLU. Im HiTmIR-Assay mit mutierten Reporterkonstrukten der miR-7-5p konnte für 60 % der getesteten Reporterkonstrukte die Interaktion der miRNA mit der zugehörigen Bindestelle bestätigt werden. Für beide miRNAs konnte für eine geringe Anzahl zuvor positiv getesteter Reporterplasmide (ein Reporterplasmid der miR-34a-5p, drei Reporterplasmide der miR-7-5p) bei erneuter Testung der ursprünglichen Reduktion der RLU nicht mehr reproduziert werden. Es lassen sich nur schwer Ursachen für diese Beobachtung finden. Die mitgeführten Kontrollen zeigen, wie bereits in den initialen HiTmIR-Assays, nur eine geringfügige Abweichung zwischen den Replikaten, jedoch lassen sich Unterschiede in der RLU im Vergleich zu den initialen HiTmIR-Assays feststellen. Während die Negativkontrollen der HiTmIR-Assays der miR-34a-5p nur marginale Abweichungen zeigte (<10,1 %), wurde in den HiTmIR-Assays der miR-7-5p eine Differenz von 21,7 % erfasst. Durch die starke Induktion der RLU des leeren Reporterplasmids durch die miR-7-5p werden miRNA-bedingte Effekte eventuell überlagert und somit abgeschwächt. Vor allem Zielgen-3'UTRs, die nur eine geringfügige Reduktion der RLU zeigten, könnten hiervon betroffen sein.

Zur Validierung eines miRNA-Zielgens bedarf es dem endogenen Nachweis der miRNA-Zielgenregulation. Eine Möglichkeit diese zu analysieren, bildet die Untersuchung der posttranskriptionellen Regulation des Zielgens durch die miRNA auf Proteinebene mittels Western Blot-Analyse, wie sie im Rahmen dieser Arbeit durchgeführt wurde (Kuhn et al., 2008). Hierzu wurden im Rahmen des HiTmIR-Assays untersuchte Zielgene ausgewählt. Eine Voraussetzung hierfür war eine nachgewiesene Interaktion der 3'UTR-Sequenz mit der miR-34a-5p bzw. miR-7-5p im HiTmIR-Assay. Für alle untersuchten Proteine konnte die Regulation der miR-34a-5p bzw. miR-7-5p auch endogen nachgewiesen werden. Aktuelle vergleichbare Studien unserer Arbeitsgruppe konnten die Ergebnisse der Luciferase-basierten Reporterassays in 93 % der Fälle auch auf Proteinebene mittels Western Blot-Analyse nachbilden (Diener et al., 2018; Hart et al., 2020; Hart et al., 2019; Krammes et al., 2020). Allerdings handelt es sich bei der Western Blot-Analyse nach wie vor um eine zeitaufwändige Methode, die sich lediglich zur Validierung einzelner Zielgene eignet. Eine Alternative zur Untersuchung der miRNA-bedingten Regulation auf Proteinebene bildet die Analyse der Proteinexpression mittels Massenspektrometrie. In einer Studie von Beak et al. untersuchten die Autoren das Zielgenspektrum der murinen miR-223 durch die Anwendung von Massenspektrometrie. In diesem Ansatz wurden deregulierte Proteine nach miRNA-Transfektion bzw. Inhibition detektiert, allerdings kann es sich hierbei teilweise auch um sekundäre Effekte handeln, denen keine direkte miRNA-Zielgeninteraktion zugrunde liegt (Baek et al., 2008). Ein vergleichbarer Ansatz

zu der Studie von Beak *et al.* zur Untersuchung der Proteinexpression mittels Massenspektrometrie nach ektopischer Expression bzw. Inhibition der miR-34a-5p oder miR-7-5p könnte die Ergebnisse des HiTmIR-Assays weiterführend validieren. Durch die Kombination der in dieser Arbeit generierten Ergebnisse und der Untersuchung der posttranskriptionellen Regulation des Zielgens durch die miRNA auf Proteinebene mittels Massenspektrometrie könnte ein besserer Überblick über das gesamte miRNA-Zielgenspektrum gewonnen werden.

5.5 Regulation zentraler Pathomechanismen in M. Parkinson durch die miR-34a-5p und miR-7-5p

Ein aktueller Schwerpunkt der miRNA-Forschung liegt in der Suche nach möglichen miRNAbasierten Therapiemöglichkeiten, die für verschiedene Krankheiten, wie beispielsweise verschiedene Karzinome, eingesetzt werden können. Die erste klinische Phase I Studie mit miR-34a-5p als Therapeutikum wurde bereits im Jahr 2013 begonnen. In dieser wurde durch intravenöse Administration ein liposomaler Mimic der tumorsuppressiven miR-34a-5p (MRX34) zur Therapie verschiedener Formen des Leberzellkarzinoms sowie weiterer Karzinome eingesetzt (NCT01829971) (Beg et al., 2017). Aufgrund schwerer Nebenwirkungen, die zum Teil zum Tode der Patienten führten, wurde die Phase I Studie im September 2016 eingestellt. Die auftretenden Nebenwirkungen waren unter anderem auf unkontrollierte Reaktionen des Immunsystems zurückzuführen (Hong et al., 2020). Neben der tumorsupressiven Funktion konnte in den letzten Jahren zudem eine spezifische immunmodulatorische Rolle der miR-34a-5p gezeigt werden, welche eine mögliche Ursache der auftretenden Nebenwirkungen bei intravenöser Administration bilden könnte (Hart et al., 2020; Hart et al., 2019). Diese initiale Studie unterstreicht die Relevanz der Identifikation von miRNA-Zielgenspektren, um bei potenzieller miRNA-basierter Therapie unerwünschte Nebenwirkungen zu vermeiden. Aufgrund der posttranskriptionellen Regulation von α-Synuclein sowie ihrem Einfluss auf die Entwicklung, Physiologie und die Neurogenese, wird die miR-7-5p bereits als Therapiemöglichkeit im Kontext von M. Parkinson diskutiert (Titze-De-Almeida, Titze-De-Almeida, 2018). Allerdings ist ebenso zu vermuten, dass das Zielgenspektrum dieser miRNA durchaus vielfältiger ist und bis heute nicht vollständig entschlüsselt wurde. Neben der miRNA-bedingte Regulation ganzer Signalwege konnten anhand der im Rahmen dieser Arbeit generierten Ergebnisse einzelne, zentrale Zielgene der beiden miRNAs miR-34a-5p und miR-7-5p innerhalb der Dopamin- und Parkinson-assoziierten Signalwege identifiziert werden. Durch die miRNA-bedingte Regulation zentraler Komponenten innerhalb dieser Signalwege kann eine Regulation des gesamten Signalwegs geschlussfolgert werden, da die nachfolgenden Signalweiterleitung beeinträchtigt wird. Daher können anhand der Ergebnisse dieser Arbeit Rückschlüsse auf ein mögliches Zielgenspektrum der beiden miRNAs miR-34a-5p und miR-7-5p im Kontext von M. Parkinson sowie den funktionellen Konsequenzen der miRNA-Zielgeninteraktionen in dopaminergen Neuronen gezogen werden, welche die Pathogenese von M. Parkinson beeinflussen könnten.

5.5.1 Regulation der dopaminergen Transmission und des Dopaminmetabolismus inM. Parkinson durch die miR-34a-5p und miR-7-5p

Durch das Absterben dopaminerger Neuronen in der Substancia nigra pars compacta von Parkinson-Patienten entsteht ein striataler Dopaminmangel, der die Ursache für das Auftreten der charakteristischen Symptomatik darstellt. Neben einem Dopaminmangel wurden auch Beeinträchtigungen der Dopaminsekretion sowie der Signaltransduktion ebenso auf zellulärer Ebene in verschiedenen Parkinson-Modellen beschrieben (Janezic et al., 2013; Larsen et al., 2006; Oyama et al., 2010; Venda et al., 2010). Im Rahmen dieser Arbeit wurden mittels HiTmIR-Assay potenzielle Zielgene der miR-34a-5p und miR-7-5p identifiziert, die eine Dysregulation des Dopamin-Signalweges bewirken können (s. Abbildung 34). Unter anderem wurde die Regulation einer Vielzahl von Rezeptoren und Kanälen, die der postsynaptischen Signalweiterleitung dienen, durch die beiden miRNAs nachgewiesen. Hierzu zählen neben dem Dopaminrezeptor DRD2, dessen 3'UTR-Sequenz im HiTmIR-Assay eine Regulation durch die miR-34a-5p aufwies, Untereinheiten von Acetylcholinrezeptoren (AChRs), α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA)-Rezeptoren, Cannabinoid-Rezeptoren sowie von VDCCs. Die Regulation von GRIA4, einer Untereinheit des ionotropen AMPA-Rezeptors, durch die miR-34a-5p konnte in dieser Arbeit auch endogen mittels Western Blot-Analyse nachgewiesen werden. In der Parkinson-Demenz sowie weiteren Demenzassoziierten Erkrankungen wurde bereits eine verringerte Expression von GRIA4 in der Postsynapse beschrieben (Bereczki et al., 2018). Die in dieser Arbeit generierten Daten zeigen, dass die miR-34a-5p zur Deregulation von GRIA4 in der Parkinson-Demenz beitragen könnte. Die Signalweiterleitung könnte durch einen verminderten postsynaptischen Calcium-Einstrom, bedingt durch die Regulation der VDCC-Untereinheiten Cav1.2 (CACNA1C) und Cav2.1 (CACNA1A) von der miR-34a-5p und miR-7-5p weiter beeinflusst werden. Darüber hinaus wurden im Rahmen dieser Arbeit diverse G-Protein-Untereinheiten als potenzielle Zielgene der miR-34a-5p und der miR-7-5p identifiziert. Hierzu zählen GNA/2, GNAO1, GNG12 und GNG7 als potenzielle Zielgene der miR-34a-5p sowie GNAI1, GNAI3 und GNB5 als potenzielle Zielgene der miR-7-5p. Für das Zielgen GNAQ wurde eine direkte Interaktion der 3'UTR mit der miR-34a-5p und miR-7-5p mittels HiTmIR-Assay nachgewiesen. Nicht nur die Expression und folglich die Aktivität der G-Proteine könnten von einer möglichen Regulation durch die miR-34a-5p und miR-7-5p beeinträchtigt sein, ebenso nachfolgende Komponenten der postsynaptischen Signalkaskade könnten ebenfalls betroffen sein. Hierzu zählen die im HiTmIR

positiv getesteten Zielgene der Familie der Adenylatcyclasen, Proteinphosphatasen, der Proteinkinasen und MAPK, die maßgeblich an der Signalweiterleitung in dopaminergen Neuronen beteiligt sind (Klein *et al.*, 2019).

Abbildung 34: Regulation der dopaminergen Transmission sowie dem Dopaminmetabolismus durch die miR-34a-5p und miR-7-5p. Mittels HiTmIR-Assay sowie Western Blot-Analyse wurden eine Vielzahl an potenziellen Zielgenen identifiziert, die in der dopaminergen Transmission sowie dem Dopaminmetabolismus beteiligt sind. Die potenzielle Regulation der an den Signalkaskaden beteiligten Komponenten durch die miR-34a-5p (rot) und der miR-7-5p (grün) sowie durch beide miRNAs (rot/grün) wurde farblich gekennzeichnet. Die Abbildung wurde mit Hilfe der Motifolio *Illustration Toolkits for Scientific Presentations and Publications* erstellt (modifziert nach Klein *et al.*, 2019).

Zusätzlich zum Dopamin-Signalweg wurden im HiTmIR-Assay potenzielle Zielgene der miR-34a-5p und miR-7-5p identifiziert, die eine Dysregulation des Dopamin-Metabolismus bewirken könnten (s. Abbildung 34). Aufgrund der erhöhten Anfälligkeit zur Produktion von ROS im Dopamin-Metabolismus kann ein Ungleichgewicht in der Dopamin-Homöostase zur Toxizität und somit zum Absterben der Zellen führen (Chen *et al.*, 2008). Anhand des in dieser Arbeit durchgeführten HiTmIR-Assays wurden potenzielle Zielgene identifiziert, die im direkten

Zusammenhang mit dem Dopamin-Metabolismus stehen. In diesem Kontext wurde die Regulation der TH durch die miR-34a-5p sowohl im HiTmIR-Assay als auch in der anschließenden Western Blot-Analyse nachgewiesen. Daneben wurde in den HiTmIR-Assays eine Interaktion der miR-34a-5p mit der 3'UTR der GTP-Cyclohydrolase I (GCH1) nachwiesen, die eine Rolle in der Bildung des TH-Kofaktors Biopterin spielt (Kurian et al., 2011; Meiser et al., 2013). Eine erhöhte miR-34a-5p-Expression könnte in diesem Zusammenhang durch eine verringerte Expression der TH sowie eine potenzielle Inhibition der Bildung des Kofaktors zu einer zusätzlich verminderten Dopamin-Synthese führen. Beide Schlüsselenzyme weisen eine verringerte Expression sowie Funktionalität in dopaminergen Neuronen auf und werden bereits als Angriffspunkte zur Therapie von M. Parkinson diskutiert (Bisaglia et al., 2013). Darüber hinaus lassen die Ergebnisse des HiTmIR-Assay der miR-7-5p eine Regulation des Enzyms Tyrosinase (TYR), welche sowohl an der Umsetzung von Tyrosin zu Dopamin als auch an der Melanin-Biosynthese beteiligt ist, vermuten. Ebenso die Dopamin- β -Hydroxylase (DBH) sowie die kupfertransportierende ATPase (ATP7A), welche direkt an der Umsetzung von Dopamin zu Noradrenalin beteiligt sind, zeigen im HiTmIR-Assay eine Regulation durch die miR-7-5p (Meiser et al., 2013; Schmidt et al., 2018). Somit könnte die miR-7-5p in diesem Zusammenhang das Dopaminlevel im Zytosol weiter beeinflussen. Ein Ungleichgewicht in der DBH-Synthese sowie im Kupfermetabolismus wurden im Kontext von Morbus Wilson als Ursache für eine Parkinson-ähnliche Symptomatik beschrieben (Telianidis et al., 2013). Daneben könnten auf Grundlage der Ergebnisse des HiTmIR-Assays sowohl die zelluläre Aufnahme von Dopamin durch den DAT (SLC6A3) durch die miR-34a-5p sowie der Transport des Dopamins in zelluläre Vesikel durch den VMAT2 (SLC18A2) durch die miR-7-5p beeinflusst werden. Richardson et al. beschrieben im Jahr 2006 eine veränderte Anfälligkeit für die Toxininduzierte Neurodegeneration bedingt durch ein differenzielles DAT/VMAT2-Verhältnis in einem in vivo Parkinsonmodell (Richardson et al., 2006). Zusätzlich zur Dopamin-Biosynthese wurden auch potenzielle Zielgene, die zum Abbau von Dopamin beitragen, nachgewiesen. In diesem Zusammenhang wurde im HiTmIR-Assay eine Interaktion der miR-34a-5p mit der 3'UTR von MAOA und COMT sowie eine Interaktion der miR-7-5p mit der MAOA-3'UTR nachgewiesen. Beide Enzyme spielen eine Schlüsselrolle im Katabolismus von Dopamin und gelten daher bereits als Therapie-Angriffspunkt zur Erhöhung des zellulären Dopaminlevels dopaminerger Neuronen (Finberg, 2019). Zusammenfassend weisen die Ergebnisse die Rolle der miR-34a-5p und miR-7-5p als zentrale Modulatoren der dopaminergen Transmission und des Dopaminmetabolismus nach. Diese Eigenschaft könnte in Zukunft genutzt werden, um spezifisch Komponenten der dopaminergen Transmission sowie dem Dopaminmetabolismus zu modulieren, um so das Dopaminlevel und die Signalweiterleitung von dopaminergen Neuronen zu beeinflussen.

5.5.2 Regulation des Ubiquitin-Proteasom-Systems und der mitochondrialen Funktion durch die miR-34a-5p und miR-7-5p

Darüber hinaus lassen die Ergebnisse des HiTmIR-Assays einen Einfluss der beiden miRNAs miR-34a-5p und miR-7-5p auf Proteinfaltung sowie das Ubiquitin-Proteasom-System vermuten. In vorangegangen Studien unserer Arbeitsgruppe konnte bereits gezeigt werden. dass die miR-34a-5p als Regulator zentraler Komponenten der UPR den Signalweg negativ beeinflusst. In dieser Studie konnte in funktionellen Analysen zudem gezeigt werden, dass die Modulation der UPR durch die miR-34a-5p zur Neurodegeneration in SH-SY5Y-Zellen beitragen kann (Krammes et al., 2020). M. Parkinson und weitere neurodegenerativen Erkrankungen, wie Alzheimer oder Huntington, sind durch die Akkumulation fehlgefalteter Proteine von einer verstärkten Aktivierung der UPR gekennzeichnet (Hoozemans et al., 2007; Hoozemans et al., 2009; Kalathur et al., 2015). Bei M. Parkinson handelt es sich hierbei in erster Linie um α-Synuclein, welches innerhalb von Lewy-Körperchen aggregiert, und eine Schlüsselrolle in der Pathogenese der Erkrankung einnimmt. In zwei kurzzeitig aufeinanderfolgenden Publikationen von Junn et al. und Doxakis wurde eine Regulation der endogenen α-Synuclein-Expression durch die miRNA miR-7-5p beschrieben (Doxakis, 2010; Junn *et al.*, 2009). Diese Beobachtungen wurden im Rahmen des hier durchgeführten HiTmIR-Assays der miR-7-5p, aber auch für die miR-34a-5p, bestätigt. Daneben wurden β -Synuclein und y-Synuclein als potenzielle Zielgene der miR-7-5p bzw. miR-34a-5p identifiziert. Die genaue Funktion der beiden Synucleine ist bisher nicht bekannt, allerdings wurde bereits ein geringeres Risiko zur Aggregation im Vergleich zu α-Synuclein erfasst (Biere *et al.*, 2000). Zusätzlich deuten die Ergebnisse dieser Arbeit auf einen möglichen Einfluss der miR-34a-5p und miR-7-5p auf die Expression von Ubiquitin-aktivierenden (E1), -konjugierenden (E2) und -ligierenden (E3) Enzymen hin, wodurch der Abbau von fehlgefalteten Proteinen weiter verringert wird (s. Abbildung 35). Die miRNA-regulierten Enzyme sind direkt an der Ubiguitinierung beteiligt, einem zellulären Mechanismus zur Proteingualitätskontrolle. Hierbei wird das Protein Ubiguitin in mehreren Reaktionsschritten mit Beteiligung dieser Enzyme auf diverse Zielproteine transferiert, wodurch diese unter anderem für den proteasomalen Abbau markiert werden (Hershko et al., 1983; Lim, Tan, 2007). Im HiTmIR-Assay wurde das Ubiquitinaktivierende Enzym 1 (UBA1) als potenzielles Zielgen der miR-34a-5p sowie die Ubiquitinkonjugierenden Enzyme UBE2G1, UBE2G2, UBE2J1 und UBE2J2 als potenzielle Ziele der miR-34a-5p und/oder der miR-7-5p identifiziert. Die posttranskriptionelle Regulation des Zielgens UBE2G2 durch die miR-7-5p konnte zudem auf Proteinebene in der neuronalen Zelllinie SH-SY5Y nachgewiesen werden. Daneben wurde die miR-34a-5p als Regulator der Ubiguitin-Ligase Parkin (PARK2) sowohl im HiTmIR-Assay als auch in Western Blot-Analysen validiert. Die Funktion der Ubiquitin-assoziierten Enzyme in neurodegenerativen Erkrankungen ist bis heute noch nicht vollständig entschlüsselt, es finden sich jedoch in der Literatur vermehrt Hinweise auf eine pathologische Rolle in M. Parkinson und anderen neurodegenerativen Erkrankungen. Vor allem die Ubiguitin-Ligase Parkin (PARK2) spielt bei M. Parkinson eine entscheidende Rolle, da das kodierende Gen PARK2 durch verschiedene Mutationen mit familiären aber auch mit sporadischen Formen von M. Parkinson in Verbindung gebracht wird (Kitada et al., 1998; Matsumine et al., 1997). In erster Linie führen die verschiedenen Mutationen zu einer verminderten Expression sowie einer Inaktivierung von Parkin, zum anderen kann das Parkin-Defizit durch dopaminergen oder oxidativen Stress bedingt werden (Lavoie et al., 2005; Wang et al., 2005). Darüber hinaus könnte die Parkin-Expression bedingt durch die posttranskriptionelle Regulation durch die miR-34a-5p vor allem in sporadischen Formen von M. Parkinson zusätzlich verringert werden. Für ein in der Literatur beschriebenes Zielprotein von Parkin, Synaptogamin X (SEPT5), konnte im HiTmIR-Assay eine Interaktion der miR-7-5p mit dem Reporterplasmid pMIR-SEPT5 2 nachgewiesen werden. Dies legt die Vermutung nahe, dass die verminderte Expression von Parkin, zu einer Akkumulation von SEPT5 im Gehirn von Parkinson-Patienten führt. Darüber hinaus könnte dieser Effekt durch miR-7-5p-Expression und die damit einhergehende die reduzierte verminderte posttranskriptionelle Regulation von SEPT5 verstärkt werden und zu einer vermehrten Akkumulation von SEPT5 führen. Diese Hypothese kann durch die Publikation von Choi et al. gestützt werden. In dieser Studie wurde die Akkumulation von SEPT5 im Gehirn von Patienten mit einer spezifischen Form von M. Parkinson beschrieben (Choi et al., 2003). Parkin ist neben der Ubiguitinierung an diversen zellulären Prozessen beteiligt, wie der mitochondrialen Qualitätskontrolle, der synaptischen Transmission, der Endozytose zellulärer Vesikel, der Aufnahme von Fetten, der Inflammation und dem Immunsystem (Bayne, Trempe, 2019; Goldberg et al., 2003; Kim et al., 2011; Matheoud et al., 2016; Narendra et al., 2008; Sliter et al., 2018; Trempe et al., 2009). Darüber hinaus bildet Parkin zusammen mit der Phosphatase and Tensin homolog (PTEN)-induzierten Kinase 1 (PINK1), welches ebenfalls mit einer Vielzahl von Mutationen im Zusammenhang mit M. Parkinson assoziiert ist, eine Schlüsselrolle in der Mitophagie. Die Mitophagie bezeichnet einen zellulären Schutzmechanismus zum selektiven Abbau defekter bzw. fehlerhafter Mitochondrien durch Autophagie (Ding, Yin, 2012). Mittels dem in dieser Arbeit durchgeführten HiTmIR-Assay konnte eine Interaktion der miR-34a-5p mit der 3'UTR der Gene MFN2 und TOMM22, welche direkt in die Mitophagie involviert sind, nachgewiesen werden (s. Abbildung 35). Neben Parkin wurden somit weitere potenzielle Angriffspunkte der miR-34a-5p identifiziert, die im direkten Zusammenhang mit der Mitophagie stehen, wodurch der Signalweg gestört werden könnte und folglich defekte Mitochondrien verstärkt akkumulieren könnten (Ding, Yin, 2012).

Abbildung 35: Regulation der Ubiquitin-Proteasom-Systems und der mitochondrialen Funktion durch die miR-34a-5p und miR-7-5p. Mittels HiTmIR-Assay sowie Western Blot-Analyse wurden eine Vielzahl an potenziellen Zielgenen identifiziert, die in der dopaminergen Transmission sowie dem Dopaminmetabolismus beteiligt sind. Die potenzielle Regulation der an den Signalkaskaden beteiligten Komponenten durch die miR-34a-5p (rot) und der miR-7-5p (grün) sowie durch beide miRNAs (rot/grün) wurde farblich gekennzeichnet. Die Abbildung wurde mit Hilfe der Motifolio *Illustration Toolkits for Scientific Presentations and Publications* erstellt.

Wie bereits erwähnt spielen mitochondriale Dysfunktionen eine entscheidende Rolle in der Pathogenese von M. Parkinson. Neben einer verminderten Expression der Komplexe I, II und III der Atmungskette wird M. Parkinson mit einer erhöhten ROS-Produktion und folglich oxidativem Stress in den betroffenen Neuronen assoziiert (Bosco *et al.*, 2006; Haas *et al.*, 1995; Schapira *et al.*, 1990). Die Ergebnisse des HiTmIR-Assays deuten auf verschiedene Zielgene der miR-34a-5p und miR-7-5p hin, die in der mitochondrialen Atmungskette involviert sind (s. Abbildung 35). In diesem Zusammenhang stehen vor allem verschiedene Untereinheiten der NADH-Ubichinon–Oxidoreduktase (Komplex I) mit den kodierenden Genen *NDUFC2*, *NDUFA4* und *NDUFA6* im Fokus, die sowohl durch die miR-34a-5p als auch durch die miR-7-5p reguliert werden könnten. Daneben wurden auch die Cytochrom-b560-Untereinheit (*SDHC*) der Succinat-Dehydrogenase (Komplex II) bzw. die Untereinheit 7A2 (*COX7A2*) der Cytochrom-c-Oxidase (Komplex IV) als mögliche Angriffspunkte der miR-7-5p bzw. der miR-34a-5p identifiziert. Die mitochondriale Atmungskette bildet die zelluläre Hauptquelle zur Generation von ROS, wodurch ein striktes Gleichgewicht des Elektronentransportes gewährleistet werden muss (Antony *et al.*, 2013; Chen *et al.*, 2003). Eine miRNA-bedingte

Diskussion

differenzielle Expression der einzelnen Komponenten könnte daher die gesamte Atmungskette negativ beeinflussen und zur vermehrten ROS-Bildung führen.

Die mitochondriale Dysfunktion in M. Parkinson steht in direktem Zusammenhang mit Beeinträchtigungen in der Calciumhomöostase (Antony et al., 2013). Vorangegangene Studien unserer Arbeitsgruppe konnten bereits die miR-34a-5p als funktionellen Regulator des speichergesteuerten Calciumeinstroms identifizieren (Diener et al., 2018). Die in dieser Arbeit generierten Ergebnisse deuten ebenso auf einen Einfluss der miR-34a-5p und miR-7-5p auf weitere Signalwege der Calciumhomöostase hin (s. Abbildung 34). Neben der bereits erwähnten Regulation des Calciumeinstroms durch die miR-34a-5p und miR-7-5p ist vor allem das Calcium-bindende Protein Calmodulin hervorzuheben, welches als sekundärer Botenstoff die Signalweiterleitung durch die Aktivierung einer Vielzahl an Zielproteinen initiiert (Chin, Means, 2000). Die kodierenden Gene CALM1 und CALM3 wurden als potenzielle Zielgene der miR-7-5p mittels HiTmiR-Assay identifiziert. Darüber hinaus wurde eine potenzielle Regulation der Calcium/Calmodulin-abhängigen Serin-Proteinkinase (CASK) durch die miR-34a-5p und miR-7-5p nachgewiesen (Fallon et al., 2002). Für die miR-7-5p wurde CASK zudem als Zielgen in den Western Blot-Analysen validiert. CASK kann durch direkte Interaktion mit VDCCs den Calcium-Einstrom in Neuronen regulieren, wodurch CASK eine entscheidende Rolle in der neuronalen Calciumhomöostase zu Teil wird (Maximov, Bezprozvanny, 2002; Nafzger, Rougier, 2017). Zusätzlich interagiert CASK direkt mit Parkin, wodurch ein direkter Einfluss des Proteins in der synaptischen Transmission geschlussfolgert wurde (Fallon et al., 2002). Aberrante Expressionen der miR-34a-5p und miR-7-5p könnten daher durch die Regulation von CASK die synaptische Transmission sowie die Calciumhomöostase innerhalb der Neurone weiter beeinflussen.

Durch die identifizierten Angriffspunkte der miR-34a-5p und miR-7-5p in zentralen zellulären Mechanismen, wie der Ubiquitinierung und der mitochondrialen Funktion, kann eine Deregulationen der beiden miRNAs schwerwiegende Auswirkungen auf die zelluläre Homöostase haben. Diese posttranskriptionelle Regulation könnten folglich auch in M. Parkinson durch die beobachtete aberrante Expression der miR-34a-5p und miR-7-5p zu der Pathogenese der Erkrankung beitragen.

5.6 Fazit und Ausblick

Zusammenfassend lassen sich potenzielle Angriffspunkte der beiden miRNAs miR-34a-5p und miR-7-5p in der dopaminergen Transmission, dem Dopaminmetabolismus, des Ubiquitin-Proteasom, der Mitophagie, der mitochondrialen Atmungskette, der Generierung von ROS sowie der Calciumhomöostase identifizieren, die in frühen Stadien von M. Parkinson zur Pathogenese beitragen könnten. Anhand dieser Ergebnisse kann eine Regulation der zentralen Pathomechanismen von M. Parkinson durch die beiden miRNAs geschlussfolgert werden (Antony *et al.*, 2013). Durch die Ergebnisse dieser Arbeit kann sowohl ein Einblick in die miRNA-Signatur von erkrankten dopaminergen Neuronen erhalten als auch die Auswirkungen einer aberranten miRNA-Expression auf die zelluläre Homöostase anhand der identifizierten miRNA-Zielgeninteraktionen besser abgeschätzt werden.

In weiterführende Analysen könnten die miRNA-Signatur in betroffenen dopaminergen Neuronen genauer entschlüsselt werden. In diesem Kontext könnten longitudinale Studien von *in vitro* Parkinson-Zellkulturmodellen Aufschluss über dynamische miRNA-mRNA-Expressionsmuster geben, wodurch ein besseres Verständnis der miRNA-regulierten Prozesse vor allem in der frühen Pathogenese der Erkrankung gewonnen werden könnte. In diesem Zusammenhang könnte ein zusätzliches Modell basierend auf induzierten pluripotenten Stammzellen (*induced pluripotent stem cells*, iPSC) von Parkinson-Patienten die miRNA-Signatur in der Pathogenese der Erkrankung nochmals genauer abbilden, da es zur Entwicklung des Parkinson-Phänotyps keiner weiteren Induktion durch beispielsweise die Verwendung eines Neurotoxins bedarf (Beevers *et al.*, 2013). Um der Heterogenität der bisher beschriebenen *in vivo* miRNA-Signaturen entgegenzuwirken, könnten zukünftig Analysen von Hirnbiopsien auf Einzelzellebene die miRNA-Signatur in den dopaminergen Neuronen von Parkinson-Patienten besser abbilden. Zudem könnten diese weiterführenden Analysen die differenziellen Expressionen der in dieser Arbeit erfassten miRNAs bestätigen.

Die in dieser Arbeit generierten Ergebnisse bilden die Grundlage zur Entschlüsselung der miRNA-bedingten Regulation der zentralen Pathomechanismen von M. Parkinson und können in Zukunft in Kombination mit den beschriebenen weiterführenden Analysen genutzt werden, um die Komplexität der Pathogenese von M. Parkinson besser zu verstehen.

6. Bibliographie

- 1. Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta 269:192-200
- Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657-685
- 3. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, Hart M, Abu-Halima M, Grasser FA, Lenhof HP, Keller A, Meese E (2019) An estimate of the total number of true human miRNAs. Nucleic Acids Res 47:3353-3364
- 4. Alural B, Ozerdem A, Allmer J, Genc K, Genc S (2015) Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cells. Front Cell Neurosci 9:209
- 5. Antony PM, Diederich NJ, Kruger R, Balling R (2013) The hallmarks of Parkinson's disease. FEBS J 280:5981-5993
- 6. Aosaki T, Kiuchi K, Kawaguchi Y (1998) Dopamine D1-like receptor activation excites rat striatal large aspiny neurons in vitro. J Neurosci 18:5180-5190
- 7. Ba Q, Cui C, Wen L, Feng S, Zhou J, Yang K (2015) Schisandrin B shows neuroprotective effect in 6-OHDA-induced Parkinson's disease via inhibiting the negative modulation of miR-34a on Nrf2 pathway. Biomed Pharmacother 75:165-172
- 8. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64-71
- 9. Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27:27-42
- 10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297
- 11. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-233
- 12. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20-51
- 13. Bayne AN, Trempe JF (2019) Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell Mol Life Sci 76:4589-4611
- Beaulieu JM, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov RR, Borrelli E, Caron MG (2007) Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 27:881-885
- Beevers JE, Caffrey TM, Wade-Martins R (2013) Induced pluripotent stem cell (iPSC)derived dopaminergic models of Parkinson's disease. Biochem Soc Trans 41:1503-1508
- 16. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic,

administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35:180-188

- 17. Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4:76-84
- 18. Ben-Hamo R, Efroni S (2015) MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 6:1594-1604
- 19. Bereczki E, Branca RM, Francis PT, Pereira JB, Baek JH, Hortobagyi T, Winblad B, Ballard C, Lehtio J, Aarsland D (2018) Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain 141:582-595
- 20. Biere AL, Wood SJ, Wypych J, Steavenson S, Jiang Y, Anafi D, Jacobsen FW, Jarosinski MA, Wu GM, Louis JC, Martin F, Narhi LO, Citron M (2000) Parkinson's disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 275:34574-34579
- 21. Bisaglia M, Greggio E, Beltramini M, Bubacco L (2013) Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies. FASEB J 27:2101-2110
- 22. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185-191
- 23. Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P, Jr., Lerner RA, Kelly JW (2006) Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol 2:249-253
- 24. Botta-Orfila T, Morato X, Compta Y, Lozano JJ, Falgas N, Valldeoriola F, Pont-Sunyer C, Vilas D, Mengual L, Fernandez M, Molinuevo JL, Antonell A, Marti MJ, Fernandez-Santiago R, Ezquerra M (2014) Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson's disease. J Neurosci Res 92:1071-1077
- 25. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24:197-211
- 26. Briggs CE, Wang Y, Kong B, Woo TU, Iyer LK, Sonntag KC (2015) Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network. Brain Res 1618:111-121
- 27. Brucke T, Wenger S, Asenbaum S, Fertl E, Pfafflmeyer N, Muller C, Podreka I, Angelberger P (1993) Dopamine D2 receptor imaging and measurement with SPECT. Adv Neurol 60:494-500
- 28. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957-1966
- 29. Cao XY, Lu JM, Zhao ZQ, Li MC, Lu T, An XS, Xue LJ (2017) MicroRNA biomarkers of Parkinson's disease in serum exosome-like microvesicles. Neurosci Lett 644:94-99
- 30. Carboni E, Tanda GL, Frau R, Di Chiara G (1990) Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 55:1067-1070

- 31. Cardo LF, Coto E, Ribacoba R, Menendez M, Moris G, Suarez E, Alvarez V (2014) MiRNA profile in the substantia nigra of Parkinson's disease and healthy subjects. J Mol Neurosci 54:830-836
- 32. Chan P, DeLanney LE, Irwin I, Langston JW, Di Monte D (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem 57:348-351
- 33. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364:1167-1169
- 34. Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ, Zhuang X (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28:425-433
- 35. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027-36031
- 36. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290-1297
- 37. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322-328
- Chio CL, Lajiness ME, Huff RM (1994) Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 45:51-60
- 39. Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, Sun L, Ma B, Ding J, Vancraenenbroeck R, Lobbestael E, Baekelandt V, Taymans JM, He P, Troncoso JC, Shen Y, Cai H (2013) MicroRNA-205 regulates the expression of Parkinson's diseaserelated leucine-rich repeat kinase 2 protein. Hum Mol Genet 22:608-620
- 40. Choi DC, Chae YJ, Kabaria S, Chaudhuri AD, Jain MR, Li H, Mouradian MM, Junn E (2014) MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA. J Neurosci 34:12725-12737
- 41. Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, Lim K, Chung KK, Kehoe K, D'Adamio L, Lee JM, Cochran E, Bowser R, Dawson TM, Wolozin B (2003) SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res 117:179-189
- 42. Chua CEL, Tang BL (2019) miR-34a in Neurophysiology and Neuropathology. J Mol Neurosci 67:235-246
- 43. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27-41
- 44. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC (2020) miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 9

- 45. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318-1320
- 46. Cui YX, Bradbury R, Flamini V, Wu B, Jordan N, Jiang WG (2017) MicroRNA-7 suppresses the homing and migration potential of human endothelial cells to highly metastatic human breast cancer cells. Br J Cancer 117:89-101
- 47. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249-254
- 48. de Rijk MC, Rocca WA, Anderson DW, Melcon MO, Breteler MM, Maraganore DM (1997) A population perspective on diagnostic criteria for Parkinson's disease. Neurology 48:1277-1281
- 49. Desvignes T, Batzel P, Berezikov E, Eilbeck K, Eppig JT, McAndrews MS, Singer A, Postlethwait JH (2015) miRNA Nomenclature: A View Incorporating Genetic Origins, Biosynthetic Pathways, and Sequence Variants. Trends Genet 31:613-626
- 50. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem 52:1830-1836
- 51. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287-314
- 52. Diener C, Hart M, Alansary D, Poth V, Walch-Ruckheim B, Menegatti J, Grasser F, Fehlmann T, Rheinheimer S, Niemeyer BA, Lenhof HP, Keller A, Meese E (2018) Modulation of intracellular calcium signaling by microRNA-34a-5p. Cell Death Dis 9:1008
- 53. Ding H, Huang Z, Chen M, Wang C, Chen X, Chen J, Zhang J (2016) Identification of a panel of five serum miRNAs as a biomarker for Parkinson's disease. Parkinsonism Relat Disord 22:68-73
- 54. Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547-564
- 55. Donnan GA, Kaczmarczyk SJ, Solopotias T, Rowe P, Kalnins RM, Vajda FJ, Mendelsohn FA (1986) The neurochemical and clinical effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in small animals. Clin Exp Neurol 22:155-164
- 56. Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MB, Riederer P, Ben-Shachar D (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66:489-494
- 57. Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285:12726-12734
- 58. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529 Pt 1:57-68
- 59. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12:697
- 60. Eiden LE, Weihe E (2011) VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216:86-98

- 61. Emmanouilidou E, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging 31:953-968
- 62. Fallon L, Moreau F, Croft BG, Labib N, Gu WJ, Fon EA (2002) Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem 277:486-491
- 63. Fearnley JM, Lees AJ (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114 (Pt 5):2283-2301
- 64. Felder CC, Jose PA, Axelrod J (1989) The dopamine-1 agonist, SKF 82526, stimulates phospholipase-C activity independent of adenylate cyclase. J Pharmacol Exp Ther 248:171-175
- 65. Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137:1539S-1547S; discussion 1548S
- 66. Finberg JPM (2019) Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson's disease. J Neural Transm (Vienna) 126:433-448
- 67. Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968-973
- 68. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, Coelho M, Sampaio C, Movement Disorder Society Evidence-Based Medicine C (2018) International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease. Mov Disord 33:1248-1266
- 69. Fragkouli A, Doxakis E (2014) miR-7 and miR-153 protect neurons against MPP(+)induced cell death via upregulation of mTOR pathway. Front Cell Neurosci 8:182
- 70. Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465:818-822
- 71. Funke C, Schneider SA, Berg D, Kell DB (2013) Genetics and iron in the systems biology of Parkinson's disease and some related disorders. Neurochem Int 62:637-652
- 72. Gan L, Denecke B (2013) Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation. Microarrays (Basel) 2:24-33
- 73. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75-79
- 74. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society URTF (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129-2170

- 75. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628-43635
- 76. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309-1312
- 77. Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109-111
- 78. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91-105
- 79. Grossi I, Radeghieri A, Paolini L, Porrini V, Pilotto A, Padovani A, Marengoni A, Barbon A, Bellucci A, Pizzi M, Salvi A, De Petro G (2021) MicroRNA34a5p expression in the plasma and in its extracellular vesicle fractions in subjects with Parkinson's disease: An exploratory study. Int J Mol Med 47:533-546
- 80. Gussow D, Clackson T (1989) Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res 17:4000
- 81. Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol 37:714-722
- 82. Haavik J, Toska K (1998) Tyrosine hydroxylase and Parkinson's disease. Mol Neurobiol 16:285-309
- 83. Hanna J, Hossain GS, Kocerha J (2019) The Potential for microRNA Therapeutics and Clinical Research. Front Genet 10:478
- 84. Hart M, Rheinheimer S, Leidinger P, Backes C, Menegatti J, Fehlmann T, Grasser F, Keller A, Meese E (2016) Identification of miR-34a-target interactions by a combined network based and experimental approach. Oncotarget 7:34288-34299
- 85. Hart M, Kern F, Backes C, Rheinheimer S, Fehlmann T, Keller A, Meese E (2018) The deterministic role of 5-mers in microRNA-gene targeting. RNA Biol 15:819-825
- 86. Hart M, Walch-Rückheim B, Krammes L, Kehl T, Rheinheimer S, Tänzer T, Glombitza B, Sester M, Lenhof HP, Keller A, Meese E (2019) miR-34a as hub of T cell regulation networks. J Immunother Cancer 7:187
- 87. Hart M, Nickl L, Walch-Rueckheim B, Krammes L, Rheinheimer S, Diener C, Taenzer T, Kehl T, Sester M, Lenhof HP, Keller A, Meese E (2020) Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4(+), CD8(+) T cells, and M1 macrophages. J Immunother Cancer 8
- 88. Hartmann A (2004) Postmortem studies in Parkinson's disease. Dialogues Clin Neurosci 6:281-293
- 89. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206-8214
- 90. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334:345-348

- 91. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51-59
- 92. Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, Shin S, Becerra CR, Falchook G, Stoudemire J, Martin D, Kelnar K, Peltier H, Bonato V, Bader AG, Smith S, Kim S, O'Neill V, Beg MS (2020) Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 122:1630-1637
- 93. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun 354:707-711
- 94. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am J Pathol 174:1241-1251
- 95. Horst CH, Titze-de-Almeida R, Titze-de-Almeida SS (2017) The involvement of Eag1 potassium channels and miR-34a in rotenone-induced death of dopaminergic SH-SY5Y cells. Mol Med Rep 15:1479-1488
- 96. Hu XT, Dong Y, Zhang XF, White FJ (2005) Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. J Neurophysiol 93:1406-1417
- 97. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y, Xu JT, Li YM, Cai XX, Zhou ZY, Chen XH, Pei YY, Hu L, Su JJ, Cui SD, Wang F, Xie YY, Ding SY, Luo MF, Chou CH, Chang NW, Chen KW, Cheng YH, Wan XH, Hsu WL, Lee TY, Wei FX, Huang HD (2020) miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48:D148-D154
- 98. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834-838
- 99. Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A 87:4078-4082
- 100. Imai Y, Soda M, Takahashi R (2000) Parkin suppresses unfolded protein stressinduced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275:35661-35664
- 101. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143-159
- 102. Ito Y, Inoue A, Seers T, Hato Y, Igarashi A, Toyama T, Taganov KD, Boldin MP, Asahara H (2017) Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc Natl Acad Sci U S A 114:3927-3932
- 103. Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, Parkkinen L, Senior SL, Anwar S, Ryan B, Deltheil T, Kosillo P, Cioroch M, Wagner K, Ansorge O, Bannerman DM, Bolam JP, Magill PJ, Cragg SJ, Wade-Martins R (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110:E4016-4025

- 104. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052-13057
- 105. Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133:142-150
- 106. Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E (2015) Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson's disease. FEBS Lett 589:319-325
- 107. Kalathur RK, Giner-Lamia J, Machado S, Barata T, Ayasolla KR, Futschik ME (2015) The unfolded protein response and its potential role in Huntington's disease elucidated by a systems biology approach. F1000Res 4:103
- 108. Kalia LV, Lang AE (2015) Parkinson's disease. Lancet 386:896-912
- 109. Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21:1406-1415
- 110. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43-50
- 111. Kern F, Krammes L, Danz K, Diener C, Kehl T, Kuchler O, Fehlmann T, Kahraman M, Rheinheimer S, Aparicio-Puerta E, Wagner S, Ludwig N, Backes C, Lenhof HP, von Briesen H, Hart M, Keller A, Meese E (2021) Validation of human microRNA target pathways enables evaluation of target prediction tools. Nucleic Acids Res 49:127-144
- 112. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654-2659
- 113. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209-216
- 114. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220-1224
- 115. Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, Noguchi A, Springer D, Bocharov AV, Eggerman TL, Suen DF, Youle RJ, Amar M, Remaley AT, Sack MN (2011) Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 121:3701-3712
- 116. Kim VN (2004) MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol 14:156-159
- 117. Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM, Sonntag KC (2014) miR-126 contributes to Parkinson's disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35:1712-1721
- 118. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605-608

- 119. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 39:31-59
- 120. Kong B, Wu PC, Chen L, Yang T, Yuan YQ, Kuang YQ, Cheng L, Zhou HT, Gu JW (2016) microRNA-7 Protects Against 1-Methyl-4-Phenylpyridinium lodide-Induced Cell Apoptosis in SH-SY5Y Cells by Directly Targeting Krupple-Like Factor 4. DNA Cell Biol 35:217-225
- 121. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68-73
- 122. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155-D162
- 123. Krammes L, Hart M, Rheinheimer S, Diener C, Menegatti J, Grasser F, Keller A, Meese E (2020) Induction of the Endoplasmic-Reticulum-Stress Response: MicroRNA-34a Targeting of the IRE1alpha-Branch. Cells 9
- 124. Krug AK, Gutbier S, Zhao L, Pöltl D, Kullmann C, Ivanova V, Förster S, Jagtap S, Meiser J, Leparc G, Schildknecht S, Adam M, Hiller K, Farhan H, Brunner T, Hartung T, Sachinidis A, Leist M (2014) Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis 5:e1222
- 125. Kuhn DE, Martin MM, Feldman DS, Terry AV, Jr., Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44:47-54
- 126. Kurian MA, Gissen P, Smith M, Heales S, Jr., Clayton PT (2011) The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 10:721-733
- 127. Kuzhikandathil EV, Yu W, Oxford GS (1998) Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cell Neurosci 12:390-402
- 128. Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN, Woo JS (2016) Structure of Human DROSHA. Cell 164:81-90
- 129. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685
- 130. Lai EC (2002) Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363-364
- 131. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979-980
- 132. Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ, Savalle M, Nemani V, Chaudhry FA, Edwards RH, Stefanis L, Sulzer D (2006) Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26:11915-11922
- 133. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214-1221

- 134. Lee CT, Risom T, Strauss WM (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 26:209-218
- 135. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854
- 136. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663-4670
- 137. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051-4060
- Leggio L, Vivarelli S, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B, Iraci N (2017) microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. Int J Mol Sci 18
- 139. Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stahler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78
- 140. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson's disease. Nature 395:451-452
- 141. Levin J, Kurz A, Arzberger T, Giese A, Hoglinger GU (2016) The Differential Diagnosis and Treatment of Atypical Parkinsonism. Dtsch Arztebl Int 113:61-69
- 142. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787-798
- 143. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20
- 144. LeWitt PA, Fahn S (2016) Levodopa therapy for Parkinson disease: A look backward and forward. Neurology 86:S3-12
- 145. Li L, Yuan L, Luo J, Gao J, Guo J, Xie X (2013) MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med 13:109-117
- 146. Li M, Pan M, You C, Dou J (2019) The Therapeutic Potential of miR-7 in Cancers. Mini Rev Med Chem 19:1707-1716
- 147. Lim KL, Tan JM (2007) Role of the ubiquitin proteasome system in Parkinson's disease. BMC Biochem 8 Suppl 1:S13
- 148. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 339:1105-1111
- 149. Lin MK, Farrer MJ (2014) Genetics and genomics of Parkinson's disease. Genome Med 6:48

- 150. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408
- 151. Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F (2017) Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. Neuromolecular Med 19:241-255
- 152. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 18:297-300
- 153. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A 104:9667-9672
- 154. Lyytinen J, Kaakkola S, Ahtila S, Tuomainen P, Teravainen H (1997) Simultaneous MAO-B and COMT inhibition in L-Dopa-treated patients with Parkinson's disease. Mov Disord 12:497-505
- 155. Madhavan D, Cuk K, Burwinkel B, Yang R (2013) Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet 4:116
- 156. Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva C, Taft CA, Hage-Melim LIS (2020) Parkinson's Disease: A Review from Pathophysiology to Treatment. Mini Rev Med Chem 20:754-767
- 157. Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y, Gagnon E, McBride HM, Desjardins M (2016) Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell 166:314-327
- 158. Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317:1764-1767
- 159. Matsumine H, Saito M, Shimoda-Matsubayashi S, Tanaka H, Ishikawa A, Nakagawa-Hattori Y, Yokochi M, Kobayashi T, Igarashi S, Takano H, Sanpei K, Koike R, Mori H, Kondo T, Mizutani Y, Schaffer AA, Yamamura Y, Nakamura S, Kuzuhara S, Tsuji S, Mizuno Y (1997) Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet 60:588-596
- 160. Maximov A, Bezprozvanny I (2002) Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci 22:6939-6952
- 161. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38:1285-1291
- 162. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737-747
- 163. McMillan KJ, Murray TK, Bengoa-Vergniory N, Cordero-Llana O, Cooper J, Buckley A, Wade-Martins R, Uney JB, O'Neill MJ, Wong LF, Caldwell MA (2017) Loss of MicroRNA-7 Regulation Leads to alpha-Synuclein Accumulation and Dopaminergic Neuronal Loss In Vivo. Mol Ther 25:2404-2414

- 164. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34
- 165. Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson's disease: an update. J Parkinsons Dis 1:19-33
- 166. Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E (2011) MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067-3078
- 167. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gulla A, Tagliaferri P, Tassone P, Caraglia M (2014) Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 3:e194
- 168. Moretti F, Thermann R, Hentze MW (2010) Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame. RNA 16:2493-2502
- 169. Morrish PK, Sawle GV, Brooks DJ (1996) An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain 119 (Pt 2):585-591
- 170. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51 Pt 1:263-273
- 171. Nafzger S, Rougier JS (2017) Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current. Cell Calcium 61:10-21
- 172. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine Hydroxylase. The Initial Step in Norepinephrine Biosynthesis. J Biol Chem 239:2910-2917
- 173. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795-803
- 174. Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578-589
- 175. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66-79
- 176. Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC, Hohng S, Kim VN, Woo JS (2015) Functional Anatomy of the Human Microprocessor. Cell 161:1374-1387
- 177. Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721-729
- 178. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13:1894-1910
- 179. Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, Schrag A (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72:893-901

- 180. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733-745
- 181. Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE (2001) Deepbrain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 345:956-963
- 182. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol 15:354-363
- 183. Oyama G, Yoshimi K, Natori S, Chikaoka Y, Ren YR, Funayama M, Shimo Y, Takahashi R, Nakazato T, Kitazawa S, Hattori N (2010) Impaired in vivo dopamine release in parkin knockout mice. Brain Res 1352:214-222
- 184. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20:89-108
- 185. Parkinson J (1817) An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci 14:223-236; discussion 222
- 186. Perez-Lloret S, Rascol O (2010) Dopamine receptor agonists for the treatment of early or advanced Parkinson's disease. CNS Drugs 24:941-968
- 187. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013
- 188. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:2045-2047
- 189. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 30:1591-1601
- 190. Postuma RB, Berg D (2019) Prodromal Parkinson's Disease: The Decade Past, the Decade to Come. Mov Disord 34:665-675
- 191. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile genesilencing machine. J Biol Chem 284:17897-17901
- 192. Qiu L, Zhang W, Tan EK, Zeng L (2014) Deciphering the function and regulation of microRNAs in Alzheimer's disease and Parkinson's disease. ACS Chem Neurosci 5:884-894

- 193. Ramsay RR, Singer TP (1986) Energy-dependent uptake of N-methyl-4phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine, by mitochondria. J Biol Chem 261:7585-7587
- 194. Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW (2006) Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease. FASEB J 20:1695-1697
- 195. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (2016) Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis. Neurology 86:566-576
- 196. Rostamian Delavar M, Baghi M, Safaeinejad Z, Kiani-Esfahani A, Ghaedi K, Nasr-Esfahani MH (2018) Differential expression of miR-34a, miR-141, and miR-9 in MPP+treated differentiated PC12 cells as a model of Parkinson's disease. Gene 662:54-65
- 197. Ruegger S, Grosshans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37:436-446
- 198. Saetrom P, Heale BS, Snove O, Jr., Aagaard L, Alluin J, Rossi JJ (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35:2333-2342
- 199. Salari S, Bagheri M (2019) In vivo, in vitro and pharmacologic models of Parkinson's disease. Physiol Res 68:17-24
- 200. Sandhu GS, Precup JW, Kline BC (1989) Rapid one-step characterization of recombinant vectors by direct analysis of transformed Escherichia coli colonies. Biotechniques 7:689-690
- 201. Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L (2016) MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. J Control Release 235:291-305
- 202. Sarkar S, Jun S, Rellick S, Quintana DD, Cavendish JZ, Simpkins JW (2016) Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139-151
- 203. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54:823-827
- 204. Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y (1989) Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann Neurol 26:551-557
- 205. Schipper HM, Maes OC, Chertkow HM, Wang E (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1:263-274
- 206. Schlaudraff F, Grundemann J, Fauler M, Dragicevic E, Hardy J, Liss B (2014) Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease. Neurobiol Aging 35:2302-2315
- 207. Schmidt K, Ralle M, Schaffer T, Jayakanthan S, Bari B, Muchenditsi A, Lutsenko S (2018) ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-beta-hydroxylase. J Biol Chem 293:20085-20098

- 208. Schmitz U, Lai X, Winter F, Wolkenhauer O, Vera J, Gupta SK (2014) Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res 42:7539-7552
- 209. Scholz D, Poltl D, Genewsky A, Weng M, Waldmann T, Schildknecht S, Leist M (2011) Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 119:957-971
- 210. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199-208
- 211. Shanesazzade Z, Peymani M, Ghaedi K, Nasr Esfahani MH (2018) miR-34a/BCL-2 signaling axis contributes to apoptosis in MPP(+) -induced SH-SY5Y cells. Mol Genet Genomic Med 6:975-981
- 212. Shim J, Nam JW (2016) The expression and functional roles of microRNAs in stem cell differentiation. BMB Rep 49:3-10
- 213. Simon DK, Tanner CM, Brundin P (2020) Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med 36:1-12
- 214. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258-262
- 215. Smirnova L, Harris G, Delp J, Valadares M, Pamies D, Hogberg HT, Waldmann T, Leist M, Hartung T (2016) A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Arch Toxicol 90:2725-2743
- 216. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839-840
- 217. Stockel D, Kehl T, Trampert P, Schneider L, Backes C, Ludwig N, Gerasch A, Kaufmann M, Gessler M, Graf N, Meese E, Keller A, Lenhof HP (2016) Multi-omics enrichment analysis using the GeneTrail2 web service. Bioinformatics 32:1502-1508
- 218. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659-665
- 219. Su C, Han Y, Zhang H, Li Y, Yi L, Wang X, Zhou S, Yu D, Song X, Xiao N, Cao X, Liu Z (2018) CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-kappaB signalling. J Cell Mol Med 22:3097-3107
- 220. Swarbrick S, Wragg N, Ghosh S, Stolzing A (2019) Systematic Review of miRNA as Biomarkers in Alzheimer's Disease. Mol Neurobiol 56:6156-6167
- 221. Tafsiri E, Darbouy M, Shadmehr MB, Zagryazhskaya A, Alizadeh J, Karimipoor M (2015) Expression of miRNAs in non-small-cell lung carcinomas and their association with clinicopathological features. Tumour Biol 36:1603-1612
- 222. Tai HC, Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9:826-838
- 223. Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N, Wang YL, Sun L, Jiang T, Tan L (2014) Circulating miR-125b as a biomarker of Alzheimer's disease. J Neurol Sci 336:52-56

- 224. Telianidis J, Hung YH, Materia S, Fontaine SL (2013) Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 5:44
- 225. Titze-de-Almeida R, Titze-de-Almeida SS (2018) miR-7 Replacement Therapy in Parkinson's Disease. Curr Gene Ther 18:143-153
- 226. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson's disease. Lancet Neurol 5:75-86
- 227. Trempe JF, Chen CX, Grenier K, Camacho EM, Kozlov G, McPherson PS, Gehring K, Fon EA (2009) SH3 domains from a subset of BAR proteins define a UbI-binding domain and implicate parkin in synaptic ubiquitination. Mol Cell 36:1034-1047
- 228. Turchinovich A, Burwinkel B (2012) Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 9:1066-1075
- 229. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654-659
- 230. Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC, Greengard P, Herve D, Girault JA (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci U S A 102:491-496
- 231. Vallelunga A, Ragusa M, Di Mauro S, Iannitti T, Pilleri M, Biundo R, Weis L, Di Pietro C, De Iuliis A, Nicoletti A, Zappia M, Purrello M, Antonini A (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson's disease and Multiple System Atrophy. Front Cell Neurosci 8:156
- 232. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2010) alpha-Synuclein and dopamine at the crossroads of Parkinson's disease. Trends Neurosci 33:559-568
- 233. Vogralik VG, Meshkov AP (1987) [Mild form of arterial hypertension: a situational view and its spontaneous dynamics]. Ter Arkh 59:122-125
- 234. Volpicelli-Daley LA, Abdelmotilib H, Liu Z, Stoyka L, Daher JP, Milnerwood AJ, Unni VK, Hirst WD, Yue Z, Zhao HT, Fraser K, Kennedy RE, West AB (2016) G2019S-LRRK2 Expression Augments alpha-Synuclein Sequestration into Inclusions in Neurons. J Neurosci 36:7415-7427
- 235. Wang C, Ko HS, Thomas B, Tsang F, Chew KC, Tay SP, Ho MW, Lim TM, Soong TW, Pletnikova O, Troncoso J, Dawson VL, Dawson TM, Lim KL (2005) Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum Mol Genet 14:3885-3897
- 236. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213-1223
- 237. White J (2020) PubMed 2.0. Med Ref Serv Q 39:382-387
- 238. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O'Kane CJ,

Rubinsztein DC (2010) alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 190:1023-1037

- 239. Wojciechowska A, Braniewska A, Kozar-Kaminska K (2017) MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med 26:865-874
- 240. Wolter JM, Kotagama K, Pierre-Bez AC, Firago M, Mangone M (2014) 3'LIFE: a functional assay to detect miRNA targets in high-throughput. Nucleic Acids Res 42:e132
- 241. Xia D, Sui R, Zhang Z (2019) Administration of resveratrol improved Parkinson's disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J Cell Biochem 120:4942-4951
- 242. Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009) Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One 4:e5515
- 243. Xilouri M, Brekk OR, Stefanis L (2013) alpha-Synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 47:537-551
- 244. Xiong P, Schneider RF, Hulsey CD, Meyer A, Franchini P (2019) Conservation and novelty in the microRNA genomic landscape of hyperdiverse cichlid fishes. Sci Rep 9:13848
- 245. Xiong R, Wang Z, Zhao Z, Li H, Chen W, Zhang B, Wang L, Wu L, Li W, Ding J, Chen S (2014) MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 35:705-714
- 246. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011-3016
- 247. Zarin DA, Tse T, Williams RJ, Carr S (2016) Trial Reporting in ClinicalTrials.gov The Final Rule. N Engl J Med 375:1998-2004
- 248. Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WS, Jones SM (2011) Generation of reactive oxygen species in 1-methyl-4phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidasedependent two-wave cascade. J Neuroinflammation 8:129
- 249. Zhou L, Li X, Liu Q, Zhao F, Wu J (2011) Small RNA transcriptome investigation based on next-generation sequencing technology. J Genet Genomics 38:505-513

7. Anhang

Tabelle 22: Vorhergesagte miR-34a-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen.

Daten- bank	Signalweg	Zielgene	Adj. P- Wert
KEGG	Parkinson's Disease	ADCY5, COX7A2, CYCS, DRD2, GNAI2, GNAL, NDUFC2, PARK2, PRKACB, PRKX, SDHC, SLC18A1, SLC6A3, SNCA, TH, UBA1, UBE2G1, UBE2G2, UBE2J2, UBE2L3, UQCRB, UQCRQ	0,070
	Dopaminergic synapse	ADCY5, AKT2, CACNA1A, CACNA1C, CALM3, CALML3, CALML5, CAMK2B, CLOCK, COMT, CREB1, CREB3L1, CREB3L2, CREB3L3, CREB5, DRD2, FOS, GNAI2, GNAL, GNAO1, GNAQ, GNAS, GNB3, GNG12, GNG2, GNG7, GRIA1, GRIA4, GRIN2A, GSK3B, ITPR1, ITPR2, ITPR3, KCNJ5, KIF5C, MAOA, MAPK10, MAPK13, MAPK8, PLCB1, PLCB4, PPP1CC, PPP2R1A, PPP2R1B, PPP2R3A, PPP2R5A, PPP2R5B, PPP2R5C, PPP2R5D, PRKACB, PRKCA, PRKCB, PRKX, SCN1A, SLC18A1, SLC6A3, TH	<0,001
Wiki-Pathways	Dopamine metabolism	COMT, MAOA, NQO1, PRKACB, TH	0,094
	Dopaminergic Neurogenesis	CDKN1C, EN2, LMX1B, NEUROD1, NR4A2, RET, SLC6A3, STAT3, TH, WNT1	0,014
	Parkinsons Disease Pathway	ATXN2, CASP2, CCNE2, CYCS, MAPK13, PARK2, SLC6A3, SNCA, SYT11, TH, UBA1, UBE2G1, UBE2G2, UBE2J2, UBE2L3	0,006
GO - Biological Process	Dopamine biosynthetic process	CHRNA7, DAO, GCH1, NR4A2, SLC6A3, SNCA, TGFB2, TH	0,001
	Dopamine catabolic process	COMT, MAOA, SLC6A3	0,345
	Dopamine metabolic process	CHRNA7, CHRNB2, COMT, DAO, DRD2, GCH1, GRIN2A, MAOA, NR4A2, PARK2, PDE1B, SLC6A3, SNCA, TGFB2, TH	<0,001
	Dopamine receptor signaling pathway	ADCY5, ARPP19, DRD2, GNAL, GNAO1, GNAQ, GNAS, GNG2, HMP19, HTT, NSG1, OPRM1, SLC9A3R1	<0,001
	Dopamine secretion & regulation of dopamine secretion	CHRNA4, CHRNB2, CNR1, CXCL12, DRD2, GDNF, HTR2A, KCNA2, PARK2, SLC18A1, SNCA, SNCG	<0,001
	Dopamine transport	CHRNA4, CHRNB2, CNR1, CXCL12, DRD2, GDNF, HTR2A, KCNA2, PARK2, RAB3B, SLC18A1, SLC22A3, SLC6A3, SNCA, SNCG, TOR1A	<0,001

Daten- bank	Signalweg	Zielgene	Adj. P- Wert
GO - Biological Process	dopaminergic neuron differentiation	HIF1A, NR4A2, RSPO2, TSHR, VEGFA, WNT1	0,080
Reactome- Pathways	Dopamine neurotrans- mitter release cycle	APBA1, CASK, PPFIA1, RIMS1, SNAP25, STX1A, STXBP1, SYN2, SYT1, UNC13B, VAMP2	0,004
	Pink/Parkin mediated mitophagy	ATG5, MFN2, PARK2, TOMM22, TOMM70A, UBA52	0,335

Tabelle 23: Vorhergesagte miR-7-5p Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen.

Daten- bank	Signalweg	Zielgene	Adj. P-
			Wert
KEGG	Parkinson's disease	ADCY5, ATP5G3, CASP9, GNAI1, GNAI3, GNAL, LRRK2, NDUFA11, NDUFA4, NDUFA4L2, NDUFA6, NDUFB5, PARK2, PPIF, PRKACB, PRKX, SDHC, SDHD, SEPT5, SLC18A2, SNCA, UBE2G1, UBE2G2, UBE2J1, UCHL1, UQCRB, VDAC1, VDAC3	0,003
	Dopaminergic synapse	ADCY5, AKT2, AKT3, CACNA1C, CALM1, CALM3, CAMK2A, CAMK2D, CLOCK, COMT, CREB1, CREB3L2, FOS, GNAI1, GNAI3, GNAL, GNAO1, GNAQ, GNB5, GNG12, GNG2, GNG4, GNG7, GRIA3, GRIA4, GRIN2A, GSK3A, GSK3B, KIF5B, KIF5C, MAOA, MAOB, MAPK10, MAPK8, MAPK9, PLCB1, PLCB2, PLCB4, PPP1R1B, PPP2CA, PPP2R1B, PPP2R2A, PPP2R2B, PPP2R3A, PPP2R5A, PPP3CA, PRKACB, PRKCA, PRKCB, PRKCG, PRKX, SLC18A2	<0,001
Wiki-Pathways	Dopamine metabolism	COMT, MAOA, MAOB, NQO1, PPP2CA, PRKACB, TYR	0,009
	Dopaminergic neurogenesis	ASCL1, EN2, FOXA2, LMX1A, MSX1, NEUROD1, NKX2-2, RET, SLC18A2, SOX2	0,0197
	Parkinsons disease pathway	CASP7, CASP9, CCNE1, LRRK2, PARK2, SEPT5, SNCA, SYT11, UBE2G1, UBE2G2, UBE2J1, UCHL1	0,106
GO - Biological Process	Dopamine biosynthetic process	GCH1, SNCA, TGFB2	1
Anhang

Daten-	Signalwog	Zielgene	Adj. P-
bank	Signalweg		Wert
	Dopamine		
	catabolic	COMT, DBH, MAOA, MAOB	0,092
	process		
	Dopamine	ATP7A CHRNB2 COMT DBH GCH1 GRIN2A MAQA MAQB	
	metabolic	PARK2 PDF1B SNCA SNCB TGFB2	0,001
	process		
	Dopamine		
sess	receptor	ADCY5, ADCY6, ARPP19, DTNBP1, FLNA, GNAL, GNAO1, GNAQ,	<0.001
Proc	signaling	GNG2, HRH2, HTT, KLF16, LRRK2, NSG1, PALM, SLC9A3R1	-0,001
call	pathway		
30 - Biologi	Dopamine		
	secretion &		
	regulation of	CHRNB2, CXCL12, DTNBP1, PARK2, SNCA	0,592
Ŭ	dopamine		
	secretion		
	Dopamine	CHRNB2, CXCL12, DTNBP1, PARK2, RAB3B, SLC18A2, SLC22A2,	0.079
	transport	SLC22A3, SNCA	0,013
	Dopaminergic		
	neuron	DMRTA2, FOXA2, LMX1A, PHOX2A, PHOX2B, TSHR, WNT5A	0,0306
	differentiation		
~	Dopamine		
vays	neurotrans-	APBA1, BZRAP1, CASK, LIN7B, PPFIA1, PPFIA3, RAB3A, RIMS1,	0.006
athv	mitter release	SLC18A2, SYN1, VAMP2	0,000
ъ Ч	cycle		
tom	Pink/Parkin		
teac	mediated	PARK2, SQSTM1, VDAC1	1
	mitophagy		

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
ADCY5	pMIR-ADCY5_1	chr3:123283255- 123283705 [-]	465	
ADCY5	pMIR-ADCY5_2	chr3:123282584- 123283040 [-]	471	
ARPP19	pMIR-ARPP19	chr15:52547589- 52548065 [-]	491	
ATG5	pMIR-ATG5	chr6:106186060- 106186539 [-]	494	
CACNA1A	pMIR-CACNA1A	chr19:13206564- 13206926 [-]	377	
CACNA1C	pMIR-CACNA1C_1	chr12:2693816-2694273 [+]	472	
CACNA1C	pMIR-CACNA1C_2	chr12:2695384-2695864 [+]	494	
CALML3	pMIR-CALML3	chr10:5525760-5526238 [+]	493	
CALML5	pMIR-CALML5	chr10:5498695-5498997 [-]	317	
CAMK2B	pMIR-CAMK2B	chr7:44219040-44219524 [-]	499	
CASK3	pMIR-CASK3	chrX:41516708- 41517186 [-]	493	
CDKN1C	pMIR-CDKN1C	chr11:2883220-2883599 [-]	394	
CHRNA7	pMIR-CHRNA7	chr15:30361830- 30362292 [-]	477	Spe I RS ersetzt
CHRNB2	pMIR-CHRNB2_1	chr1:154578378- 154578847 [+]	484	
CHRNB2	pMIR-CHRNB2_2	chr1:154579453- 154579875 [+]	437	
CLOCK	pMIR-CLOCK_1	chr4:55434707-55435161 [-]	469	
CLOCK	pMIR-CLOCK_2	chr4:55429300-55429777 [-]	492	
CNR1	pMIR-CNR1	chr6:88144291-88144747 [-]	471	
СОМТ	pMIR-COMT_1	chr22:19968720- 19969206 [+]	498	
COMT	pMIR-COMT_2	chr22:19968900- 19969334 [+]	449	
COX7A2	pMIR-COX7A2	chr6:75237677-75237850 [-]	188	
CYCS	pMIR-CYCS	chr7:25123244-25123711 [-]	482	
CYCS	pMIR-CYCS_2	chr7:25122372-25122837 [-]	480	
CYCS	pMIR-CYCS_3	chr7:25120997-25121474 [-]	492	
DAO	pMIR-DAO	chr12:108900536- 108900932 [+]	411	
DRD2	pMIR-DRD2_1	chr11:113410257- 113410735 [-]	493	

Tabelle 24: Verwendete Reporterplasmide der miR-34a-5p vorhergesagten Zielgene aus Parkinson- und Dopamin-assoziierten Signalwegen.

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
DRD2	pMIR-DRD2_2	chr11:113409702- 113410183 [-]	496	
EN2	pMIR-EN2	chr7:155463399- 155463863 [+]	479	
GCH1	pMIR-GCH1	chr14:54843549- 54844016 [-]	482	
GDNF	pMIR-GDNF_1	chr5:37814592-37815055 [-]	464	
GDNF	pMIR-GDNF_2	chr5:37813862-37814334 [-]	473	
GNAI2	pMIR-GNAI2	chr3:50258812-50259254 [+]	494	
GNAO1	pMIR-GNAO1	chr16:56345184- 56345662 [+]	493	
GNAQ	pMIR-GNAQ_1	chr9:77719191-77719588 [-]	412	
GNAQ	pMIR-GNAQ_2	chr9:77717416-77717814 [-]	413	
GNAQ	pMIR-GNAQ_3	chr9:77716727-77717128 [-]	416	
GNB3	pMIR-GNB3	chr12:6846899-6847380 [+]	496	
GNG12	pMIR-GNG12	chr1:67703458-67703917 [-]	474	
GNG2	pMIR-GNG2	chr14:51966688- 51967150 [+]	477	
GNG7	pMIR-GNG7	chr19:2512971-2513408 [-]	452	
GRIA1	pMIR-GRIA1	chr5:153812989- 153813456 [+]	482	
GRIA4	pMIR-GRIA4	chr11:105974471- 105979881 [+]	408	
GRIN2A	pMIR-GRIN2A	chr16:9755446-9755915 [-]	484	
GSK3B	pMIR-GSK3B_1	chr3:119825275- 119825723 [-]	463	
GSK3B	pMIR-GSK3B_2	chr3:119824301- 119824716 [-]	430	
HTT	pMIR-HTT_1	chr4:3212057-3215177 [+]	492	
HTT	pMIR-HTT_2	chr4:3228931-3235335 [+]	492	
HTT	pMIR-HTT_3	chr4:3241011-3241480 [+]	484	
НТТ	pMIR-HTT_4	chr4:3243450-3243796 [+]	361	
KCNJ5	pMIR-KCNJ5_1	chr11:128918559- 128918957 [+]	413	
KCNJ5	pMIR-KCNJ5_2	chr11:128919647- 128920041 [+]	409	
KCNJ5	pMIR-KCNJ5_3	chr11:128920045- 128920422 [+]	392	
KCNJ5	pMIR-KCNJ5_4	chr11:128920431- 128920846 [+]	430	
KIF5C	pMIR-KIF5C	chr2:149026098- 149026547 [+]	464	

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
LMX1B	pMIR-LMX1B	chr9:126696462- 126696945 [+]	498	Sac I RS ersetzt
MAOA	pMIR-MAOA	chrX:43746357- 43746824 [+]	482	
MAPK13	pMIR-MAPK13_1	chr6:36139350-36139801 [+]	466	
MAPK13	pMIR-MAPK13_2	chr6:36141835-36142266 [+]	446	
MFN2	pMIR-MFN2	chr1:12011567-12012049 [+]	494	
NDUFC2	pMIR-NDUFC2	chr11:78069416- 78069864 [-]	463	
NEUROD1	pMIR-NEUROD1	chr2:181677438- 181677788 [-]	365	
NQO1	pMIR-NQO1	chr16:69709526- 69710005 [-]	494	
NSG1	pMIR-NSG1	chr4:4418326-4418785 [+]	474	
PARK2	pMIR-PARK2	chr6:161348297- 161348753 [-]	471	
PDE1B	pMIR-PDE1B	chr12:54578808- 54579239 [+]	446	
PLCB1	pMIR-PLCB1	chr20:8881846-8882323 [+]	492	
PPFIA1	pMIR-PPFIA1	chr11:70384038- 70384499 [+]	476	
PPP1CC	pMIR-PPP1CC	chr12:110720670- 110721087 [-]	432	
PPP2R3A	pMIR-PPP2R3A_1	chr3:136145551- 136146019 [+]	483	Spe I RS ersetzt
PPP2R3A	pMIR-PPP2R3A_2	chr3:136147218- 136147676 [+]	473	
PPP2R5C	pMIR-PPP2R5C	chr14:101926018- 101926490 [+]	487	
PPP2R5A	pMIR-PPP2R5A	chr1:212361314- 212361792 [+]	493	Spe I + Sac I RS ersetzt
PPP2R5D	pMIR-PPP2R5D	chr6:43011287-43011762 [+]	490	
PRKACB	pMIR-PRKACB_1	chr1:84236261-84236745 [+]	499	
PRKACB	pMIR-PRKACB_2	chr1:84238007-84238442 [+]	450	
PRKX	pMIR-PRKX_1	chrX:3606563-3606990 [-]	442	
PRKX	pMIR-PRKX_2	chrX:3604413-3604724 [-]	326	
RAB3B	pMIR-RAB3B_1	chr1:51919500-51919956 [-]	471	
RAB3B	pMIR-RAB3B_2	chr1:51913959-51914413 [-]	469	
RAB3B	pMIR-RAB3B_3	chr1:51910926-51911372 [-]	461	
RIMS1	pMIR-RIMS1	chr6:72402223-72402699 [+]	491	
RSPO2	pMIR-RSPO2	chr8:107899797- 107900257 [-]	475	

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
SCN1A	pMIR-SCN1A	chr2:165990572- 165991020 [-]	463	
SDHC	pMIR-SDHC	chr1:161362618- 161363084 [+]	481	
SLC18A1	pMIR-SLC18A1	chr8:20144856-20145145 [-]	304	
SLC6A3	pMIR-SLC6A3_1	chr5:1393823-1394281 [-]	473	
SLC6A3	pMIR-SLC6A3_2	chr5:1392962-1393441 [-]	494	
SLC9A3R1	pMIR-SLC9A3R1	chr17:74768819- 74769268 [+]	464	
SNAP25	pMIR-SNAP25	chr20:10306345- 10306777 [+]	447	
SNCA	pMIR-SNCA	chr4:89725670-89726113 [-]	458	
SNCG	pMIR-SNCG	chr10:86962642- 86963260 [+]	344	
STAT3	pMIR-STAT3	chr17:42313411- 42313831 [-]	435	
STXBP1	pMIR-STXBP1	chr9:127691261- 127691741 [+]	495	
SYN2	pMIR-SYN2_1	chr3:12184312-12184734 [+]	437	
SYN2	pMIR-SYN2_2	chr3:12185250-12185675 [+]	440	
SYT11	pMIR-SYT11_1	chr1:155882059- 155882464 [+]	420	
SYT11	pMIR-SYT11_2	chr1:155884223- 155884644 [+]	436	
ТН	TH pMIR-TH [-]		257	
TOMM22	pMIR-TOMM22	chr22:38684382- 38684758 [+]	391	
TOR1A	pMIR-TOR1A	chr9:129813590- 129814027 [-]	452	
TSHR	pMIR-TSHR	chr14:81145521- 81145952 [+]	446	
UBA1	pMIR-UBA1	chrX:47214930- 47215127 [+]	212	
UBA52	pMIR-UBA52	chr19:18575477- 18575940 [+]	478	
UBE2G1	pMIR-UBE2G1	chr17:4269217-4269611 [-]	402	
UBE2G2	pMIR-UBE2G2	chr21:44768765- 44769224 [-]	474	
UBE2J2	pMIR-UBE2J2	chr1:1254932-1255288 [-]	371	
UBE2L3	pMIR-UBE2L3_1	chr22:21621903- 21622327 [+]	439	
UBE2L3	pMIR-UBE2L3_2	chr22:21622646- 21622999 [+]	368	
UNC13B	pMIR-UNC13B	chr9:35404713-35405167 [+]	469	
UQCRB	pMIR-UQCRB	chr8:96228083-96228520 [-]	452	
UQCRQ	pMIR-UQCRQ_1	chr5:132867818- 132868281 [+]	478	
UQCRQ	pMIR-UQCRQ_2	chr5:132868463- 132868838 [+]	390	

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
ADCY5	pMIR-ADCY5_3	chr3:123282643- 123283317 [-]	689	
ADCY5	pMIR-ADCY5_4	chr3:123282296- 123282673 [-]	391	
ADCY6	pMIR-ADCY6_1	chr12:48767916- 48768590 [-]	689	
ADCY6	pMIR-ADCY6_2	chr12:48767271- 48767945 [-]	689	
AKT2	pMIR-AKT2_4	chr19:40231262- 40231936 [-]	689	
AKT2	pMIR-AKT2_5	chr19:40230617- 40231291 [-]	689	
AKT3	pMIR-AKT3_6	chr1:243501349- 243502024 [-]	689	
APBA1	pMIR-APBA1_1	chr9:69430652-69431326 [-]	689	
APBA1	pMIR-APBA1_5	chr9:69428072-69428746 [-]	689	
APBA1	pMIR-APBA1_6	chr9:69427530-69428101 [-]	586	
ATP7A	pMIR-ATP7A_3	chrX:78047861- 78048535 [+]	689	
ATP7A	pMIR-ATP7A_4	chrX:78048506- 78049180 [+]	689	
CACNA1C	pMIR-CACNA1C_5	chr12:2693780-2694454 [+]	689	
CACNA1C	pMIR-CACNA1C_7	chr12:2695070-2695744 [+]	689	
CACNA1C	pMIR-CACNA1C_8	chr12:2695715-2696389 [+]	689	Sac I RS ersetzt
CALM1	pMIR-CALM1_5	chr14:90407298- 90407972 [+]	689	
CALM3	pMIR-CALM3_1	chr19:46609154- 46609828 [+]	689	
CALM3	pMIR-CALM3_2	chr19:46609799- 46610473 [+]	689	
CAMK2A	pMIR-CAMK2A_1	chr5:150222035- 150222709 [-]	689	
CASK	pMIR-CASK_3	chrX:41518455- 41519129 [-]	689	
CASP7	pMIR-CASP7_2	chr10:113730186- 113730903 [-]	732	
CASP9	pMIR-CASP9	chr1:15492270-15492942 [-]	687	
CCNE1	pMIR-CCNE1	chr19:29823778- 29824308 [+]	545	
CHRNB2	pMIR-CHRNB2_2	chr1:154576578- 154577252 [+]	689	
CHRNB2	pMIR-CHRNB2_3	chr1:154577223- 154577897 [+]	689	Sac I RS ersetzt
CHRNB2	pMIR-CHRNB2_5	chr1:154578513- 154579187 [+]	689	

Tabelle 25: Verwendete Reporterplasmide der miR-7-5p vorhergesagten Zielgene aus Parkinsonund Dopamin-assoziierten Signalwegen.

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
CHRNB2	pMIR-CHRNB2_6	chr1:154579158- 154579832 [+]	689	Sac I RS ersetzt
CLOCK	pMIR-CLOCK_1	chr4:55434740-55435414 [-]	689	
CLOCK	pMIR-CLOCK_5	chr4:55432160-55432834 [-]	689	
CREB1	pMIR-CREB1_1	chr2:207597059- 207597733 [+]	689	Sac I RS ersetzt
CREB1	pMIR-CREB1_6	chr2:207600284- 207600958 [+]	689	Spe I + Sac I RS ersetzt
CREB3L2	pMIR-CREB3L2_6	chr7:137876576- 137877250 [-]	689	
CXCL12	pMIR-CXCL12_4	chr10:44370718- 44371392 [-]	689	
DBH	pMIR-DBH_1	chr9:133658448- 133659122 [+]	689	
DMRTA2	pMIR-DMRTA2_1	chr1:50417990-50418664 [-]	689	
EN2	pMIR-EN2_2	chr7:155463333- 155464007 [+]	689	
FLNA	pMIR-FLNA	chrX:154348526- 154348848 [-]	337	Spe I RS ersetzt
FOS	pMIR-FOS_1	chr14:75281425- 75282099 [+]	689	
FOXA2	pMIR-FOXA2_2	chr20:22581005- 22581204 [-]	214	
GCH1	pMIR-GCH1_1	chr14:54843342- 54844016 [-]	689	
GNAI1	pMIR-GNAI1_12	chr7:80224589-80225263 [+]	689	Sac I RS ersetzt
GNAI1	pMIR-GNAI1_8	chr7:80222009-80222683 [+]	689	
GNAI3	pMIR-GNAI3_11	chr1:109598795- 109599469 [+]	689	Sac I RS ersetzt
GNAI3	pMIR-GNAI3_12	chr1:109599440- 109600114 [+]	689	
GNAI3	pMIR-GNAI3_21	chr1:109605245- 109605919 [+]	689	Sac I RS ersetzt
GNAI3	pMIR-GNAI3_22	chr1:109605890- 109606564 [+]	689	
GNAI3	pMIR-GNAI3_29	chr1:109610405- 109611079 [+]	689	Spe I RS ersetzt
GNAI3	pMIR-GNAI3_32	chr1:109612340- 109613014 [+]	689	
GNAI3	pMIR-GNAI3_35	chr1:109614275- 109614949 [+]	689	
GNAQ	pMIR-GNAQ_1	chr9:77720648-77721322 [-]	689	
GNAQ	pMIR-GNAQ_7	chr9:77716778-77717452 [-]	689	Spe I RS ersetzt
GNB5	pMIR-GNB5_3	chr15:52120792- 52121466 [-]	689	
GNB5	pMIR-GNB5_5	chr15:52119502- 52120176 [-]	689	
GNB5	pMIR-GNB5_8	chr15:52117567- 52118241 [-]	689	

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
GNG12	pMIR-GNG12_1	chr1:67704776-67705450 [-]	689	
GNG2	pMIR-GNG2_1	chr14:51966688- 51967362 [+]	689	
GNG4	pMIR-GNG4_2	chr1:235550832- 235551463 [-]	646	
GNG7	pMIR-GNG7_2	chr19:2513702-2514376 [-]	689	
GNG7	pMIR-GNG7_3	chr19:2513057-2513731 [-]	689	
GRIA3	pMIR-GRIA3_1	chrX:123488713- 123489387 [+]	689	
GRIA4	pMIR-GRIA4_2	chr11:105980385- 105981059 [+]	689	
GRIA4	pMIR-GRIA4_3	chr11:105981030- 105981704 [+]	689	
GRIN2A	pMIR-GRIN2A_1	chr16:9762474-9763148 [-]	689	
GRIN2A	pMIR-GRIN2A_13	chr16:9754734-9755408 [-]	689	
GRIN2A	pMIR-GRIN2A_2	chr16:9761829-9762503 [-]	689	
GRIN2A	pMIR-GRIN2A_4	chr16:9760539-9761213 [-]	689	
GRIN2A	pMIR-GRIN2A_6	chr16:9759249-9759923 [-]	689	
GRIN2A	pMIR-GRIN2A_9	chr16:9757314-9757988 [-]	689	
GSK3B	pMIR-GSK3B_5	chr3:119823533- 119824207 [-]	689	
GSK3B	pMIR-GSK3B_7	chr3:119822243- 119822917 [-]	689	
GSK3B	pMIR-GSK3B_8	chr3:119821598- 119822272 [-]	689	
KIF5B	pMIR-KIF5B_1	chr10:32010842- 32011516 [-]	689	
KLF16	pMIR-KLF16_1	chr19:1853784-1854458 [-]	689	
KLF16	pMIR-KLF16_2	chr19:1853139-1853813 [-]	689	
LIN7B	pMIR-LIN7B	chr19:49118374- 49118460 [+]	101	
LMX1A	pMIR-LMX1A_1	chr1:165203205- 165203879 [-]	689	
LMX1A	pMIR-LMX1A_3	chr1:165201867- 165202589 [-]	737	
MAOA	pMIR-MAOA_1	chrX:43744514- 43745188 [+]	689	
MAOA	pMIR-MAOA_2	chrX:43745159- 43745833 [+]	689	
MAOA	pMIR-MAOA_3	chrX:43745804- 43746478 [+]	689	
MAOB	pMIR-MAOB_1	chrX:43766791- 43767465 [-]	689	
MAOB	pMIR-MAOB_2	chrX:43766611- 43766820 [-]	224	

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
MAPK10	pMIR-MAPK10_1	chr4:86016553-86017227 [-]	689	
MAPK8	pMIR-MAPK8_5	chr10:48437476- 48438150 [+]	689	
MAPK9	pMIR-MAPK9_1	chr5:180235709- 180236383 [-]	689	Spe I RS ersetzt
MAPK9	pMIR-MAPK9_3	chr5:180234419- 180235093 [-]	689	
MAPK9	pMIR-MAPK9_4	chr5:180233774- 180234448 [-]	689	
NDUFA4	pMIR-NDUFA4_1	chr7:10932961-10933635 [-]	689	
NDUFA4L2	pMIR-NDUFA4L2	chr12:57234903- 57235562 [-]	674	
NDUFA6	pMIR-NDUFA6	chr22:42085527- 42086182 [-]	670	
NXK2	pMIR-NKX2-2_1	chr20:21511248- 21511922 [-]	689	
NXK2	pMIR-NKX2-2_2 chr20:21511010- 21511277 [-]		282	Sac I RS ersetzt
NQO1	pMIR-NQO1_2	chr16:69709656- 69710330 [-]	689	
NSG1	pMIR-NSG1	chr4:4417436-4417927 [+]	506	Sac I RS ersetzt
PALM	pMIR-PALM_2	chr19:747460-748134 [+]	689	Sac I RS ersetzt
PDE1B	pMIR-PDE1B_1	chr12:54577860- 54578534 [+]	689	
PHOX2A	pMIR-PHOX2A	chr11:72239077- 72239748 [-]	686	Sac I RS ersetzt
PHOX2B	pMIR-PHOX2B_2	chr4:41744487-41745161 [-]	689	
PLCB1	pMIR-PLCB1_1	chr20:8881622-8882296 [+]	689	
PLCB1	pMIR-PLCB1_3	chr20:8882912-8883586 [+]	689	
PLCB1	pMIR-PLCB1_5	chr20:8884202-8884889 [+]	702	
PLCB2	pMIR-PLCB2_1	chr15:40288040- 40288714 [-]	689	
PPFIA3	pMIR-PPFIA3_1	chr19:49150236- 49150910 [+]	689	Sac I RS ersetzt
PPIF	pMIR-PPIF_1	chr10:79353843- 79354517 [+]	689	
PPP1R1B	pMIR-PPP1R1B_1	chr17:39635866- 39636540 [+]	689	
PPP1R1B	pMIR-PPP1R1B_2	chr17:39636511- 39636626 [+]	130	
PPP2CA	pMIR-PPP2CA_2	chr5:134196452- 134197126 [-]	689	Spe I RS ersetzt
PPP2CA	pMIR-PPP2CA_3	chr5:134195807- 134196481 [-]	689	
PPP2R2A	pMIR-PPP2R2A_3	chr8:26371704-26372378 [+]	689	
PPP2R2B	pMIR-PPP2R2B	chr5:146589507- 146589946 [-]	454	Spe I RS ersetzt

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
PPP2R5A	pMIR-PPP2R5A_2	chr1:212361416- 212361863 [+]	462	Spe I + Sac I RS ersetzt
PPP3CA	pMIR-PPP3CA_3	chr4:101023900- 101024574 [-]	689	
PRKACB	pMIR-PRKACB_1	chr1:84235306-84235980 [+]	689	Sac I RS ersetzt
PRKCA	pMIR-PRKCA_10	chr17:66809843- 66810517 [+]	689	
PRKCA	pMIR-PRKCA_3	chr17:66805328- 66806002 [+]	689	
PRKCA	pMIR-PRKCA_4	chr17:66805973- 66806647 [+]	689	
PRKCA	pMIR-PRKCA_6	chr17:66807263- 66807937 [+]	689	Sac I RS ersetzt
PRKCB	pMIR-PRKCB	chr16:24220114- 24220611 [+]	512	
PRKCG	pMIR-PRKCG_2	chr19:53907541- 53907652 [+]	126	
PRKX	pMIR-PRKX_7	chrX:3604370-3605075 [-]	720	Sac I RS ersetzt
RAB3B	pMIR-RAB3B_13	chr1:51911512-51912186 [-]	689	
RAB3B	pMIR-RAB3B_16	chr1:51909577-51910251 [-]	689	Spe I RS ersetzt
RAB3B	pMIR-RAB3B_17	chr1:51908932-51909606 [-]	689	
RAB3B	pMIR-RAB3B_19	chr1:51907956-51908316 [-]	375	
RAB3B	pMIR-RAB3B_3	chr1:51917962-51918636 [-]	689	2x Sac I RS ersetzt
RAB3B	pMIR-RAB3B_5	chr1:51916672-51917346 [-]	689	
RAB3B	pMIR-RAB3B_6	chr1:51916027-51916701 [-]	689	
RAB3B	pMIR-RAB3B_7	chr1:51915382-51916056 [-]	689	
SDHC	pMIR-SDHC_1	chr1:161362434- 161363108 [+]	689	
SDHC	pMIR-SDHC_11	chr1:161368884- 161369558 [+]	689	
SDHC	pMIR-SDHC_17	chr1:161372754- 161373428 [+]	689	
SDHC	pMIR-SDHC_2	chr1:161363079- 161363753 [+]	689	
SDHC	pMIR-SDHC_3	chr1:161363724- 161364398 [+]	689	
SDHC	pMIR-SDHC_4	chr1:161364369- 161365043 [+]	689	
SDHC	pMIR-SDHC_6	chr1:161365659- 161366333 [+]	689	
SEPT5	pMIR-SEPT5_1	chr22:19722485- 19723159 [+]	689	
SEPT5	pMIR-SEPT5_2	chr22:19723130- 19723319 [+]	204	
SLC18A2	pMIR-SLC18A2_1	chr10:117277267- 117277941 [+]	689	

Zielgen	Reporterplasmid	Position der 3'UTR Sequenz im humanen Genom (GRCh38/hg38)	Insert- Größe [bp]	Modifikation
SLC9A3R1	pMIR-SLC9A3R1	chr17:74768657- 74769353 [+]	711	
SNCA	pMIR-SNCA	chr4:89726053-89726627 [-]	589	
SNCB	pMIR-SNCB	chr5:176620241- 176620810 [-]	584	
SQSTM1	pMIR-SQSTM1_1	chr5:179836594- 179837268 [+]	689	
SQSTM1	pMIR-SQSTM1_2	chr5:179837239- 179837913 [+]	689	
SYN1	pMIR-SYN1_1	chrX:47572189- 47572863 [-]	689	
SYN1	pMIR-SYN1_2	chrX:47571898- 47572218 [-]	335	
SYT11	pMIR-SYT11_5	chr1:155884089- 155884763 [+]	689	
TGFB2	pMIR-TGFB2_3	chr1:218442653- 218443327 [+]	689	
TGFB2	pMIR-TGFB2_4	chr1:218443298- 218443972 [+]	689	
TYR	pMIR-TYR	chr11:89295367- 89295759 [+]	407	
UBE2G1	pMIR-UBE2G1_2	chr17:4271197-4271871 [-]	689	Sac I RS ersetzt
UBE2G2	pMIR-UBE2G2_1	chr21:44770702- 44771376 [-]	689	
UBE2G2	pMIR-UBE2G2_4	chr21:44768767- 44769441 [-]	689	
UBE2J1	pMIR-UBE2J1_2	chr6:89328359-89329033 [-]	689	
UBE2J1	pMIR-UBE2J1_4	chr6:89327069-89327743 [-]	689	
UCHL1	pMIR-UCHL1	chr4:41268074-41268429 [+]	370	
UQCRB	pMIR-UQCRB_3	chr8:96229090-96229764 [-]	689	
UQCRB	pMIR-UQCRB_4	chr8:96228445-96229119 [-]	689	
VAMP2	pMIR-VAMP2_3	chr17:8159149-8159564 [-]	430	
VDAC1	pMIR-VDAC1_2	chr5:133971915- 133972125 [-]	225	
WNT5A	pMIR-WNT5A_6	chr3:55466192-55466866 [-]	689	

Zielgen	Departerpleamid	DI II	P Wort	Validierung	
Zielgen	Reporterplasmid	RLU	P-wert	Mut	WB
ADCY5	ADCY5_2	56,27	3,73E-07		
ARPP19	ARPP19	47,27	4,07E-06		
ATG5	ATG5	78,10	5,69E-03		
CACNA1A	CACNA1A	68,39	2,10E-05		
CACNA1C	CACNA1C_1	35,59	4,16E-07	+	
CACNA1C	CACNA1C_2	80,91	1,02E-02		
CALML3	CALML3	47,43	8,53E-08		
CASK	CASK	82,19	2,54E-03		
CDKN1C	CDKN1C	67,07	2,15E-04		
CHRNA7	CHRNA7	66,84	2,59E-04		
CHRNB2	CHRNB2_1	47,43	1,34E-07		
CHRNB2	CHRNB2_2	38,07	7,33E-08		
CLOCK	CLOCK_1	34,21	1,03E-06	+	+
CLOCK	CLOCK_2	80,78	2,03E-04	+	+
CNR1	CNR1	68,85	7,77E-06		
COMT	COMT_1	75,96	2,00E-03		
COMT	COMT_2	57,66	9,54E-07		
COX7A2	COX7A2	81,04	1,73E-03		
CYCS	CYCS_3	73,80	1,19E-04		
DAO	DAO	63,89	1,40E-05		
DRD2	DRD2_1	80,18	1,19E-03		
GCH1	GCH1	55,62	1,19E-06		
GNAI2	GNAI2	82,89	4,54E-04		
GNAO1	GNAO1	83,45	9,79E-03		
GNAQ	GNAQ_1	66,24	8,46E-04		
GNAQ	GNAQ_2	65,39	3,44E-05		
GNAQ	GNAQ_3	65,78	3,20E-04		
GNG12	GNG12	66,56	3,17E-03		
GNG7	GNG7	70,83	4,31E-06		
GRIA1	GRIA1	69,24	1,05E-04		
GRIA4	GRIA4	70,43	3,06E-03	+	+
GSK3B	GSK3B_1	69,92	3,41E-07		
GSK3B	GSK3B_2	64,52	5,44E-06		
HTT	HTT_1	80,38	6,02E-05		
HTT	HTT_2	65,34	1,29E-04		
HTT	<u>HTT_3</u>	47,95	8,55E-08	-	
HTT	HTT_4	38,13	4,56E-07	+	
KCNJ5	KCNJ5_1	80,58	2,59E-03		
KCNJ5	KCNJ5_2	45,95	5,43E-07		
KCNJ5	KCNJ5_3	71,90	6,11E-06		
KCNJ5	KCNJ5_4	49,16	4,26E-06		
KIF5C	KIF5C	32,95	7,76E-09	+	
LMX1B	LMX1B	73,21	1,74E-06		
MAOA	MAOA	65,66	1,26E-06		
MAPK13	MAPK13_1	65,84	1,74E-06		
MAPK13	MAPK13_2	50,44	5,47E-08		
MEN2	MEN2	55,33	4,87E-07		
NDUFC2	NDUFC2	53,78	2,67E-06		
NEUROD1	NEUROD1	50,45	6,33E-07		
NQU1	NQU1	83,21	1,09E-03		
NSG1	NSG1	82,59	9,74E-04		
PARK2	PARK2	/1,/6	1,21E-05	+	+
	PUE1B	84,42	1,10E-02		
PLCB1	PLCB1	53,74	2,16E-06		
PPFIA1	PPFIA1	/6.1/	3.66E-06	1	1

Tabelle 26: Positiv getestete Reporterplasmide der miR-34a-5p.

Zielgen	Reporterplasmid	RLU	P-Wert	Validierung		
				Mut	WB	
PPP1CC	PPP1CC	78,04	3,09E-04			
PPP2R3A	PPP2R3A_1	65,61	8,13E-05			
PPP2R3A	PPP2R3A_2	43,90	3,46E-07			
PPP2R5D	PPP2R5D	60,61	6,10E-05			
PRKACB	PRKACB_1	68,16	1,83E-06			
PRKX	PRKX_1	70,49	7,79E-05			
PRKX	PRKX_2	80,91	6,85E-03			
RAB3B	RAB3B_1	75,00	1,93E-05			
RAB3B	RAB3B_3	60,84	8,93E-05			
SCN1A	SCN1A	56,34	6,74E-07			
SLC6A3	SLC6A3_1	82,19	3,05E-04	+		
SLC6A3	SLC6A3_2	75,73	2,19E-04			
SNCA	SNCA	68,09	1,20E-04			
SNCG	SNCG	74,61	1,22E-04			
STAT3	STAT3	79,14	1,12E-04			
STXBP1	STXBP1	82,14	1,24E-03			
SYN2	SYN2_2	78,00	2,29E-03			
SYT11	SYT11_1	76,16	9,48E-04			
SYT11	SYT11_2	83,13	3,93E-04			
TH	TH	65,41	1,13E-03	(+)	+	
TOMM22	TOMM22	81,53	5,57E-04			
TOR1A	TOR1A	80,68	6,82E-04			
TSHR	TSHR	81,82	1,29E-03			
UBA1	UBA1	79,23	1,40E-03			
UBE2G2	UBE2G2	62,33	3,87E-04			
UBE2J2	UBE2J2	82,72	1,12E-02			

Tabelle 27: Positiv getestete Reporterplasmide der miR-7-5p.

Zielgen	Reporterplasmid	RLU	P-Wert	Validierung		
				Mut	WB	
ADCY5	ADCY5_4	77,14	3,60E-03			
ADCY6	ADCY6_2	77,70	1,71E-04			
AKT3	AKT3_6	67,24	3,85E-04	+	+	
APBA1	APBA1_5	74,87	1,12E-02			
APBA1	APBA1_6	75,63	8,91E-03			
ATP7A	ATP7A_3	71,67	3,56E-04			
ATP7A	ATP7A_4	81,99	9,98E-03			
CACNA1C	CACNA1C_7	68,68	6,96E-06			
CACNA1C	CACNA1C_8	74,10	8,01E-03			
CACNA1C	CACNA1C_5	82,50	5,98E-03			
CALM1	CALM1_5	78,14	6,48E-04			
CALM3	CALM3_1	65,32	1,10E-03			
CASK	CASK_3	68,63	1,02E-03	+	+	
CHRNB2	CHRNB2_6	82,24	1,59E-03			
CLOCK	CLOCK_5	81,55	3,38E-03			
CREB1	CREB1_1	76,19	4,69E-04			
CREB1	CREB1_6	77,27	7,98E-04			
CREB3L2	CREB3L2_6	40,38	1,40E-06	+		
CXCL12	CXCL12_4	56,68	4,21E-06			
DBH	DBH_1	71,72	1,48E-03			
FLNA	FLNA	75,95	9,27E-03			
GNAI1	GNAI1_8	78,65	3,88E-04			
GNAI3	GNAI3_21	62,42	3,21E-06			
GNAI3	GNAI3_29	75,51	8,37E-05			
GNAI3	GNAI3_12	76,12	1,13E-02			

Zielgen	Reporterplasmid	RLU	P-Wert	Validie	Validierung	
				Mut	WB	
GNAQ	GNAQ_1	73,42	4,07E-03			
GNAQ	GNAQ_7	75,28	1,63E-04			
GNB5	GNB5_8	82,74	1,72E-04	+		
GRIN2A	GRIN2A_13	67,15	1,80E-05			
GRIN2A	GRIN2A_2	69,69	7,57E-04			
GRIN2A	GRIN2A_6	70,42	1,81E-04			
GRIN2A	GRIN2A_4	73,87	4,88E-04			
GRIN2A	GRIN2A_1	77,74	1,92E-03			
GSK3B	GSK3B_7	70,62	1,09E-04			
GSK3B	GSK3B_8	80,54	7,41E-03	-		
KIF5B	KIF5B_1	66,17	1,74E-04			
KLF16	KLF16_1	79,99	5,00E-04			
KLF16	KLF16_2	81,48	3,59E-02			
LMX1A	LMX1A_3	84,45	1,41E-02			
MAOA	MAOA_1	76,20	5,81E-03			
MAOA	MAOA_3	82,95	2,95E-02			
MAPK10	MAPK10_1	83,29	3,37E-02			
MAPK8	MAPK8_5	69,15	7,39E-04			
MAPK9	MAPK9_4	64,33	4,47E-05			
NDUFA4	NDUFA4_1	78,89	2,63E-04			
NDUFA4L2	NDUFA4L2	75,05	5,46E-04			
NDUFA6	NDUFA6	73,95	5,28E-04			
NKX2-2	NKX2-2_1	67,68	1,29E-04			
NQO1	NQO1_2	64,61	6,43E-03			
PHOX2A	PHOX2A	77,69	1,25E-03			
PHOX2B	PHOX2B_2	84,47	9,35E-03			
PLCB1	PLCB1_3	83,92	6,89E-03			
PLCB2	PLCB2_1	80,51	3,37E-04			
PPIF	PPIF_1	63,47	7,23E-05			
PPP2CA	PPP2CA_2	82,31	4,58E-02			
PPP2R5A	PPP2R5A_2	74,17	4,94E-03			
PRKCA	PRKCA_3	73,16	1,56E-04			
PRKCA	PRKCA_10	81,38	1,37E-02			
PRKCB	PRKCB	77,93	1,12E-03			
RAB3B	RAB3B_17	70,84	1,17E-03	(+)		
RAB3B	RAB3B_7	75,72	2,36E-03	-		
SDHC	SDHC_3	53,94	1,26E-05	+	+	
SDHC	SDHC_2	73,32	4,51E-03		+	
SDHC	SDHC_11	79,43	3,86E-03		+	
SDHC	SDHC_1	83,02	4,62E-03		+	
SEPT5	SEPT5_2	76,39	3,53E-03			
SLC18A2	SLC18A2_1	81,92	2,42E-03			
SNCA	SNCA	68,18	3,45E-04	+		
SNCB	SNCB	82,98	4,95E-03			
SQSTM1	SQSTM1_2	76,37	4,62E-03			
SYN1	SYN1_1	70,97	3,43E-04			
SYT11	SYT11_5	84,56	6,44E-03			
TGFB2	TGFB2_4	57,70	7,52E-04			
TGFB2	TGFB2_3	60,19	3,31E-06			
TYR	TYR	79,09	4,78E-03			
UBE2G1	UBE2G1_2	65,44	2,38E-04			
UBE2G2	UBE2G2_1	61,31	1,52E-05	(+)	+	
UBE2J1	UBE2J1_2	63,42	1,41E-05			
UBE2J1	UBE2J1_4	79,14	3,04E-03			
UQCRB	UQCRB_3	69,77	6,09E-04			
UQCRB	UQCRB_4	71,88	2,43E-04			

Zielgen	Reporterplasmid	RLU	P-Wert	Validierung	
				Mut	WB
VDAC1	VDAC1_2	66,94	2,18E-05		
WNT5A	WNT5A_6	73,02	9,06E-04		

8. Danksagung

Hiermit danke ich allen, die mich im Rahmen meiner Promotion unterstützt haben. Allen voran danke ich Herrn Prof. Dr. Eckart Meese für die Möglichkeit meine Promotion am Institut für Humangenetik durchzuführen und das Überlassen dieses interessanten Themas. Zudem möchte ich ihm für das Vertrauen in meine Arbeit danken, wodurch es mir möglich war, eigenständig und flexibel zu arbeiten, und er dennoch als stetiger Ansprechpartner bei allen Fragen zur Verfügung stand.

Weiterhin bedanke ich mich bei der Stefan-Morsch-Stiftung, im speziellen bei der Vorstandsvorsitzenden Frau Susanne Morsch und Herrn Bruno Zimmer sowie dem Leiter für Forschung und Entwicklung Herrn Dr. Wolfgang Peter, für die Zusammenarbeit und die Förderung meiner Promotionsarbeit. Darüber hinaus möchte ich ebenso Herrn Prof. Dr. Andreas Keller für die Zusammenarbeit und Unterstützung sowohl während meiner Masterarbeit als auch dieser Promotion danken.

Ich danke den Kooperationspartnern Frau Karin Danz (Fraunhofer-Institut für Biomedizinische Technik, Sulzbach) für die Durchführung des Parkinson-Zellkulturmodells, Frau Dr. rer. nat. Christina Backes und Herrn Fabian Kern (Universität des Saarlandes, Zentrum für Bioinformatik, AG Keller) für die Sequenzverarbeitung der Parkinson-spezifischen 3'UTR-Reporterplasmidbank und Frau Dr. rer. nat. Jennifer Menegatti (Universität des Saarlandes, Institut für Virologie, AG Grässer) für die Durchführung des Northern Blots.

Allen Mitarbeitern des Instituts für Humangenetik möchte ich für die freundliche Aufnahme in die Arbeitsgruppe danken. Ein ganz besonderer Dank gilt Herrn Dr. rer. nat. Martin Hart, der mich in der Zeit meiner Promotion stets bestärkt und motiviert hat. Durch sein offenes Ohr bei allen Fragen, die stetige Diskussionsbereitschaft, seine Unterstützung und die gemeinsame Zusammenarbeit an verschiedenen Projekten konnte ich viel über den Laboralltag, das Verfassen von wissenschaftlichen Arbeiten, die selbstständige Planung und Durchführung von Projekten und die wissenschaftliche Welt lernen, wofür ich ihm besonders danken möchte. Ein großes Dankeschön möchte ich ebenso an Frau Stefanie Rheinheimer richten, die mich bei der Laborarbeit stets unterstützt hat, bei allen Fragen des Laboralltags eine Antwort parat hatte und mir in meinem Arbeitsalltag immer Freude bereitet hat. Frau Dr. Nicole Ludwig möchte ich danken für ihre Hilfe bei allen Fragen zu RNA-Methodiken. Zudem danke ich den (ehemaligen) Doktoranden der Humangenetik Caroline Diener, Laura Gröger, Laura Nickl und Giuseppe Rigogliuso für die gegenseitige Unterstützung in der gemeinsamen Promotionszeit, der Ablenkung von dem alltäglichen Stress und den schönen Stunden auch nach der Arbeitszeit.

Zuletzt möchte ich meiner Familie und meinen Freunden danken für die Unterstützung während des Studiums und der Promotion. Mein größter Dank gilt meinen Eltern, ohne deren Unterstützung und Motivation in allen Situationen ich niemals so weit gekommen wäre. Besonders danken möchte ich außerdem Kevin Barthel, der alle Höhen und Tiefen des Studiums und der Promotion mit mir durchgestanden hat und mir immer eine Stütze während der gesamten Zeit war.

9. Publikationen

Im Rahmen der vorliegenden Dissertation am Institut für Humangenetik unter Leitung von Herrn Prof. Dr. Eckart Meese wurden folgende wissenschaftliche Publikationen veröffentlicht:

Krammes L*, Kern F*, Danz K, Diener C, Kehl T, Küchler O, Fehlmann T, Kahraman M, Rheinheimer S, Aparicio-Puerta E, Wagner S, Ludwig N, Backes C, Lenhof HP, von Briesen H, Hart M[#], Keller A[#], Meese E[#] (2021). Validation of human microRNA target pathways enables evaluation of target prediction tools. *Nucleic Acids Research*

Latta L*, Ludwig N*, **Krammes L**, Stachon T, Fries FN, Mukwaya A, Szentmáry N, Seitz B, Wowra B, Kahraman M, Keller A, Meese E, Lagali N, Käsmann-Kellner B (2020). Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. *The Ocular Surface*

Hart M*, Nickl L*, Walch-Rückheim B, **Krammes L**, Rheinheimer S, Diener C, Tänzer T, Kehl T, Sester M, Lenhof HP, Keller A, Meese E (2020). Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4+, CD8+ T cells, and M1 macrophages. *Journal for ImmunoTherapy of Cancer*

Diener C*, Hart M*, Kehl T, Rheinheimer S, Ludwig N, **Krammes L**, Pawusch S, Lenhof K, Tänzer T, Schub D, Sester M, Walch-Rückheim B, Keller A, Lenhof HP, Meese E (2020). Quantitative and time-resolved miRNA pattern of early human T cell activation. *Nucleic Acids Research*

Krammes L*, Hart M*, Rheinheimer S, Diener C, Menegatti J, Grässer F, Keller A, Meese E (2020). Induction of the Endoplasmic-Reticulum-Stress Response: MicroRNA-34a Targeting of the IRE1α-Branch. *Cells*

Hart M, Walch-Rückheim B, **Krammes L**, Kehl T, Rheinheimer S, Tänzer T, Glombitza B, Sester M, Lenhof HP, Keller A, Meese E (2019). miR-34a as hub of T cell regulation networks. *Journal for ImmunoTherapy of Cancer*

*Die Erstautoren trugen gleichermaßen zu dieser Arbeit bei.

[#]Die Letztautoren trugen gleichermaßen zu dieser Arbeit bei.

10. Lebenslauf

Aus datenschutzrechtlichen Gründen wird der Lebenslauf in der elektronischen Fassung der Dissertation nicht veröffentlicht.