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Circulating small non-coding RNAs 
associated with age, sex, smoking, 
body mass and physical activity
Trine B. Rounge  1, Sinan U. Umu  1, Andreas Keller  2, Eckart Meese3, Giske Ursin1, 
Steinar Tretli1, Robert Lyle4,5 & Hilde Langseth1

Small non-coding RNAs (sncRNA) are regulators of cell functions and circulating sncRNAs from the 
majority of RNA classes are potential non-invasive biomarkers. Understanding how common traits 
influence ncRNA expression is essential for assessing their biomarker potential. In this study, we 
identify associations between sncRNA expression and common traits (sex, age, self-reported smoking, 
body mass, self-reported physical activity). We used RNAseq data from 526 serum samples from 
the Janus Serum Bank and traits from health examination surveys. Ageing showed the strongest 
association with sncRNA expression, both in terms of statistical significance and number of RNAs, 
regardless of RNA class. piRNAs were abundant in the serum samples and they were associated to sex. 
Interestingly, smoking cessation generally restored RNA expression to non-smoking levels, although 
for some sncRNAs smoking-related expression levels persisted. Pathway analysis suggests that 
smoking-related sncRNAs target the cholinergic synapses and may therefore potentially play a role 
in smoking addiction. Our results show that common traits influence circulating sncRNA expression. 
It is clear that sncRNA biomarker analyses should be adjusted for age and sex. In addition, for specific 
sncRNAs, analyses should also be adjusted for body mass, smoking, physical activity and technical 
factors.

Approximately two thirds of the mammalian genome is transcribed to produce different RNA classes, the major-
ity of which are non-coding RNAs (ncRNA)1,2. The major ncRNA classes are microRNA (miRNA), transfer RNA 
(tRNA), piRNAs, long non-coding RNA (lncRNA), small nucleolar (snoRNA), small nuclear RNA (snRNA) and 
miscellaneous RNA (miscRNAs). In addition, fragments and isoforms of RNAs may have important biological 
roles independent of the canonical, full-length RNAs from which they derive3–5. Circulating snc RNAs (sncRNA) 
are secreted from cells, either bound to RNA binding proteins6, high-density lipoproteins7, within extracellular 
vesicles or released during cell death8. sncRNAs are protected from degradation, and miRNAs, the most stud-
ied sncRNA class, have been identified in all body fluids9–11. Aberrant expression of small and long regulatory 
non-coding RNAs are related to many diseases12,13.

Circulating ncRNAs have considerable potential as minimally invasive cancer biomarkers14–19, however, few if 
any have reached their translational potential. To be reliably used as biomarkers, variation and traits that influence 
sncRNA expression levels need to be identified in non-diseased individuals. Common traits may include age, 
sex, smoking, body mass and physical activity. Technical factors, such as sample processing and storage, may also 
influence RNA levels20,21. Almost all studies to date have focused on miRNAs, and have inadequate sample sizes 
to assess normal variation and identify the effects of traits on expression.

sncRNAs may be encoded on the sex chromosomes22 and sex-specific miRNA expression patterns have 
been shown in tissues23. Several steroid sex hormones, such as estradiol, progesterone and testosterone have 
been found to directly or indirectly regulate miRNA expression24–26 or Argonaute, Drosha and Dicer, the major 
enzymes of miRNA biogenesis27. Some isomiRs have also been shown to be sex-specific28.

Ageing is more strongly associated with circulating miRNA expression than sex. The miRNAs signif-
icantly influenced by age included hsa-miR-1284, hsa-miR-93–3p, hsa-miR-1262, hsa-miR-34a-5p, and 
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hsa-miR-145–5p29. This is in agreement with the first observations of altered circulating miRNA levels during 
ageing showing an increase in miR-34a in the plasma of old mice30. 127 of 150 miRNAs analysed were shown to 
be affected by age in a study on whole-blood from 5221 individuals. A miRNA age prediction model was devel-
oped using this large dataset and the miRNA predicted age correlated with chronological age with an r = 0.61 
adjusted for cell type composition31. Transforming growth factor beta signalling has been suggested as one of 
the main pathways regulated by the differentially expressed circulating miRNAs32. However, cellular senescence, 
ageing and age-related diseases, have been associated with alterations in miRNA expression that could have mul-
tiple physiological effects. Whether the changes have an etiological origin or are a consequence of deleterious 
age-induced dysfunctions is still unknown33.

A large study (N = 226) showed that smoking alters circulating miRNA expression. There was no significant finding 
when comparing former to never smokers34. A study of small airway epithelium from 10 smokers, identified differ-
ences in miRNA expression after smoking cessation which persisted in 8 out of the 34 (FDR <0.05) smoking-related 
miRNAs, with the Wnt/β-catenin signalling pathway being the most significant pathway35. A smaller study of 12 
never-smokers and 28 smokers, all males, identified 35 differentially expressed miRNAs, and target enrichment analy-
ses identified the immune system and hormone regulation as possible pathways differing between the groups36.

Studies of differential miRNA expression related to body mass have mostly focused on adipose tissue, and a 
small number of miRNAs were found to be differentially expressed in individuals with obesity and type 2 diabetes 
mellitus (T2DM)37. These miRNAs influence the expression and secretion of inflammatory proteins. Ameling et al.  
found 19 of 179 miRNAs to be associated with body mass in 372 population-based samples, 12 miRNAs were 
age-associated and 7 were sex-associated38.

Physical activity-related miRNAs have mainly been found in intervention studies, identifying 4 to 23 dif-
ferentially expressed miRNAs39–41. Oppose to changes in circulating miRNAs in acute exercise, the changes of 
circulating miRNAs in chronic exercise remain unclear42. A positive linear correlation between training-induced 
changes in circulating miR-20a levels and changes in VO2max has been shown, suggesting potential biomarkers 
of cardiorespiratory fitness trainability43.

With few exceptions, miRNAs are the only ncRNA class that have been studied in relationship to sex, age, 
body mass and physical activity. In addition, small sample sizes in most of these studies hampers discovery, and 
the widespread use of disease-related samples may introduce bias. tRNA, piRNAs, lncRNA, snoRNA, snRNA, 
miscRNAs and their isoforms may be potential biomarkers as long as they are stable, quantifiable, and population 
variation due to common traits is known.

In this study, we explore the relationship between sex, age, smoking, body mass, physical activity, technical 
factors and circulating ncRNA expression levels. We use RNAseq to high depth (on average 18 mill. sequences) 
from a large serum sample set (N = 526) of cancer-free donors from the Janus Serum Bank (JSB)44. This data, 
combined with high-quality survey information45, provides a unique opportunity to identify and compare trait 
associations that might influence sncRNA biomarker potential.

Results
Significant trait associations. We produced RNAseq expression profiles for sncRNAs 17 to 47 nucleotides 
long in serum samples from cancer-free JSB donors and analysed associations with age, sex, body mass, smoking, 
physical activity or technical factors (blood donor group (BDg), see Methods section) (Fig. 1). We analysed 27251 
sncRNAs, including 15217 mRNA fragments. 2362 trait associations (categorical and unadjusted) were signifi-
cant using an adjusted p-value < 0.05 cut-off (Supplementary File 1: Table S1). When applying a stricter cut-off 
(adjusted p-value < 0.001), 651 of the sncRNAs showed trait associations (Table 1).

Age had the highest number of trait associations with 1340 sncRNAs with adjusted p-value < 0.05 and 554 sncRNAs 
associated with adjusted p-value < 0.001 (Supplementary File 1:Tables S2 and S3). Only three sncRNAs were signifi-
cantly associated with blood donor group (adjusted p-value < 0.001; Table 1). Using age as a continuous variable, we 
identify 1311 sncRNAs associations compared to 554 sncRNAs with age as a categorical variable (p-value < 0.001). 
There is a correlation between age at donation and blood donor group in this cohort (Supplementary File 2: Figure S1). 
However, the age-associations are similar with and without adjusting for blood donor group (Supplementary File 2: 
Figure S4). Body mass as a continuous variable (body mass index, BMI) did not reveal additional associated sncRNAs.

We adjusted for age (categorical) in the analyses of sex, body mass, smoking and physical activity. Age-adjustment 
increased the significant associations from 33 to 439 for sex, 44 to 411 for body mass, 5 to 208 for physical activity 
and 11 to 182 for smoking (adjusted p-value < 0.001; Table 1 and Supplementary File 1:Table S4). In total, 1240  
sncRNAs were associated with sex, body mass, physical activity or smoking (categorical) after age adjustment 
(p-values < 0.001; Supplementary File 1:Table S5). The top 5 associated miRNAs, piRNAs, lncRNA and tRNAs 
are shown in Table 2.

Hierarchical clustering of adjusted p-values for all associations were visualized using heatmaps (Fig. 2). The 
age-associations were more numerous and with higher −log p-values than other traits and are an outgroup in 
the vertical dendrogram. Associations with sex, body mass, smoking and physical activity with age as a covar-
iate, showed more and stronger associations. Notably, piRNAs were associated with sex, after adjusting for age 
(Supplementary File 2: Figure S2).

Expression differences. The majority of sncRNAs showed log2fold transformed differences between 1 and −1 
(Fig. 3). However, numerous associations with age, and to a lesser extent blood donor groups, showed differences 
greater than +/−1. Specifically these larger differences were seen for: miRNAs and blood donor group and age; isomiRs 
and smoking, age and blood donor group; snRNAs and age; mRNA fragments and age. The majority of miRNAs were 
upregulated with age, while the majority of mRNA fragments were downregulated with age. snRNAs and lncRNAs 
were also downregulated with age.
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Adjusting for age in the association analyses with sex, body mass, smoking and physical activity, showed 
larger log2fold differences compared to unadjusted analyses (Supplementary File 2: Figure S3). The changes were 
striking when compared to the unadjusted analyses (Fig. 4), specifically for sncRNA associations with sex. miR-
NAs and piRNAs were upregulated and lncRNAs and mRNA fragments downregulated in men. Strong smoking 
differences between current and never smokers on sncRNA expression were also seen for tRNAs, isomiRs, tRNA 
fragments, snRNAs, lncRNAs and one piRNA. One sex and two body mass associations with mRNAs fragments 
have log2fold differences larger than two and −log10 adjusted p-values > 40.

Co-expression module analyses. Module analyses showed that age and blood donor group are more 
strongly correlated with co-expression modules than any other trait, followed by physical activity (p-value < 0.01; 
Supplementary File 2: Figure S5). A set of lncRNAs are strongly correlated with sex (Pearson r = 0.7). A module 
of 16 tRNA fragments were associated with sex, body mass and physical activity. Smoking is associated with fewer 
modules than the other traits.

KEGG Pathway analyses. We performed KEGG pathway analyses for mRNA fragments and miRNA tar-
gets (see Methods). Pathways were enriched for age-, sex- (age adjusted) and smoking-associated (age adjusted) 
mRNA fragments and miRNA targets (p-value < 0.05; Table 3). We did not detect any significant pathway enrich-
ments for body mass and physical activity. Four out of the top five age-related pathways are involved in carcino-
genesis, while all the top five smoking-related pathways have been associated with smoking.

Smoking and sncRNA associations. To identify sncRNAs associated with smoking cessation, we 
assessed differential expression in never vs current smokers, relative to never vs former smokers. We identified 
smoking-related differential expression in isomiRs, piRNA, lncRNA, tRNA and mRNA fragments which persist 
after smoking cessation. A single piRNA and two tRNAs show persistent expression differences after smoking 
cessation, while two smoking-associated miRNAs revert to never-smoking levels (Fig. 5).

The top three smoking-associated miRNAs show a slight increase in expression levels between never, former 
and current smokers (Supplementary File 2: Figure S6A). This effect became more pronounced in heavy smokers, 
specifically for individuals smoking more than 20 cigarettes per day for miR-3656 and miR-7704 (Supplementary 
File 2: Figure S6B).

Figure 1. Associations between traits and small non-coding RNAs (sncRNA) were investigated in samples from 
in total 526 Janus Serum Bank donors, including 156 Red Cross Blood Donors and 370 Health Examination 
Blood Donors. (A) The total number of samples included in each trait analyses after excluding samples with 
missing data and low sncRNA yielding samples. (B) Number of samples in each category for age, blood donor 
group (BDg), body mass, self-reported physical activity (phys act), sex and self-reported smoking. (C) Number 
of sncRNA counts on log scale after less stringent, medium and high stringent filtering.
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Discussion
Expression levels of circulating sncRNAs vary between healthy individuals46,47. However, not much is known 
about which traits influence this variation. Relationships between miRNA expression and age, sex, body mass, 
smoking and physical activity have been reported29,34,35,38,41,42, although most studies have small sample sizes and 

Nu. of 
sncRNAs

Age, 
categorical 
N = 520

Age**, 
N = 520

Blood 
donor 
group 
N = 378

Body 
mass 
N = 343

Body 
mass + age 
N = 343

Body 
mass** + age 
N = 343

Sex 
N = 459

Sex + age 
N = 459

PA 
N = 293

PA + age 
N = 293

Smoking 
N = 298

smoking + age 
N = 298

isomiRs 3376 26 117 3 7 26 30 4 21 0 17 2 18

tRF 3779 1 157 0 0 28 3 0 27 0 10 0 0

lncRNA 2974 30 69 0 5 43 25 3 53 0 24 0 31

miRNA 378 11 26 0 0 0 0 0 11 0 0 1 2

mRNA 
fragments 15217 428 807 0 23 257 137 22 265 4 144 0 108

piRNA 582 6 29 0 3 24 54 1 59 0 7 0 3

snoRNA 59 1 59 0 1 1 1 1 4 0 0 0 5

snRNA 196 48 32 0 5 5 23 0 1 0 1 8 12

tRNA 486 3 15 0 0 27 39 2 6 1 5 0 3

Total 27251 554 1311 3 44 411 312 33 447 5 208 11 182

Table 1. Number of differentially expressed small non-coding RNAs (adjusted p-value < 0.001). The number of 
significantly (p-value adjusted for multiple testing <0.001) differential expressed sncRNAs associated with age, 
body mass, blood donor group, sex, physical activity (PA) and smoking. Age and body mass (BMI) were tested 
as categorical and continuous variables, marked with **. Number of samples in each analysis are shown in the 
top row. Age significantly influenced expression, thus the number of RNA molecules associated with body mass, 
physical activity and smoking were also presented with age adjustment.

miRNA miRNA padj piRNA piRNA padj lncRNA lncRNA padj tRNA tRNA padj

age hsa-miR-3158-3p 1,30*10−06 piR-hsa-1077 0,0003 RP1-273N12,4 9,74*10−09 30789_Pro_tRNA 1,12*10−05

hsa-miR-4516 4,63*10−05 piR-hsa-1336 0,0003 LINC02174 1,52*10−08 36086_Leu_tRNA 2,91*10−05

hsa-miR-193a-5p 0,0002 piR-hsa-26747 0,0003 RP11-397H6,1 2,04*10−08 31872_Pseudo_tRNA 0,0007

hsa-miR-320d 0,0005 piR-hsa-26754 0,0003 RP11-634B22,4 2,04*10−08

hsa-miR-1228-5p 0,0006 piR-hsa-26946 0,0003 RP11-759A24,3 2,34*10−08

sex hsa-miR-4508 8,13*10−19 piR-hsa-1657 1,70*10−10 RP11-279O17,3 1,53*10−23 30986_Pseudo_tRNA 1,32*10−15

hsa-miR-486-3p 8,22*10−17 piR-hsa-9411 1,70*10−10 LINC01902 3,15*10−20 29255_Thr_tRNA 8,97*10−08

hsa-miR-378a-3p 3,37*10−16 piR-hsa-22415 5,00*10−10 LINC01446 1,57*10−17 20653_Gly_tRNA 2,88*10−05

hsa-miR-378c 3,37*10−16 piR-hsa-3586 5,42*10−10 MALAT1 3,17*10−16 22204_Lys_tRNA 2,88*10−05

hsa-miR-4433b-3p 2,27*10−13 piR-hsa-8791 2,20*10−09 SEMA6A-AS2 4,98*10−12 33323_Pseudo_tRNA 4,60*10−05

smoking hsa-miR-7704 0,0002 piR-hsa-27133 7,11*10−12 SEMA6A-AS2 5,60*10−14 21435_Lys_tRNA 3,62*10−13

hsa-miR-3656 0,0003 piR-hsa-27134 7,11*10−12 LINC01704 8,63*10−12 23497_Lys_tRNA 3,62*10−13

hsa-miR-203a-3p 0,0002 piR-hsa-26947 0,0002 LINC02213 1,77*10−09 30986_Pseudo_tRNA 4,77*10−12

hsa-miR-486-5p 0,0005 piR-hsa-1100 0,0089 RP11-298H24,1 1,12*10−07 31351_Sup_tRNA 0,0141

piR-hsa-12485 0,00889 RP11-70F11,8 1,37*10−07 20653_Gly_tRNA 0,0244

body size hsa-miR-9-5p 0,0117 piR-hsa-1100 1,21*10−07 CERNA1 2,74*10−11 21435_Lys_tRNA 3,93*10−10

piR-hsa-12485 1,21*10−07 LINC01446 2,74*10−11 23497_Lys_tRNA 3,93*10−10

piR-hsa-13893 1,21*10−07 LINC01801 1,39*10−
10 28620_Lys_tRNA 7,05*10−07

piR-hsa-23588 1,21*10−07 RP11-20A20,2 1,05*10−09 31871_Lys_tRNA 1,25*10−06

piR-hsa-23679 1,21*10−07 LINC01902 5,17*10−09 26893_Pseudo_tRNA 2,90*10−06

PA hsa-miR-486-5p 0,0024 piR-hsa-27133 4,61*10−17 LCMT1-AS1 3,24*10−06 21435_Lys_tRNA 3,87*10−15

piR-hsa-27134 4,61*10−17 SEMA6A-AS2 3,24*10−06 23497_Lys_tRNA 3,87*10−15

piR-hsa-29114 2,00*10−07 LINC01603 2,33*10−05 28620_Lys_tRNA 1,28*10−07

piR-hsa-26947 2,25*10−06 RP1-69D17,4 3,09*10−05 31351_Sup_tRNA 1,63*10−05

piR-hsa-2344 7,29*10−05 AC007179,1 4,76*10−05 33323_Pseudo_tRNA 0,0001

Table 2. Top 5 miRNAs, piRNAs, lncRNAs and tRNAs associated with the traits. Top 5 miRNAs, piRNAs, 
lncRNAs and tRNAs associated with the age, sex, smoking, body size and physical activity (PA). Sex, smoking, 
body size and physical activity are adjusted for age at donation. Only sncRNAs with adjusted p-value < 0.05 are 
listed.
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therefore will be unlikely to detect subtle changes in expression. Furthermore, very little has been reported about 
these traits in relationship to expression levels of other sncRNA classes and no other study to date that we are 
aware of has compared association between common traits within the same dataset.

Figure 2. Heatmaps of the hierarchical clustering of −log10 p-values adjusted for multiple testing from the 
associations between sncRNAs from the classes miRNAs, isomiRs, tRNAs, tRNA fragments, piRNAs, lncRNAs, 
miscRNAs, snRNAs and mRNA fragments and the attributes blood donor group (BDg), sex, body mass, 
smoking (current vs never smokers) and physical activity (low vs high activity). sncRNAs are visualized if any 
of the associations produced p-values < 0.01. Colors are yellow to orange for −log10 p-value 0 to 5 and red for 
−log10 p-values > 6.
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In this paper sncRNA association analyses show that ageing is strongly correlated with all sncRNA classes. 
The age-association was confirmed by analysing sncRNA co-expression modules. Our study is the largest to 
date showing a strong age effect for all sncRNA classes. The age effect has been consistently reported in previous 
studies only for miRNAs. However, the age-associated miRNAs reported in these studies differ presumably due to 
differences in biological materials, sample processing and sample size.

Age-associated miRNA expression has previously been shown in model organisms30, tissues48 and blood29. 
In agreement with our results, ageing was reported to be more strongly associated with miRNA expression than 
sex29. miRNA-320b was found to be age-related in both our study and in a large study on whole blood31. We 
found that the age-associated pathways are mostly signaling pathways such as Ras, PI3K-Akt, MAPK and AMPK. 
This may explain the role of aging in oncogenesis. Ageing is also known to affect dopamine receptors which can 
explain enrichment of dopaminergic synapse pathway for aging.

The relationship between age and circulating sncRNA expression implies that all sncRNA biomarker stud-
ies should take age at sampling into consideration when analysing and interpreting results. Sample groups 
should be age-matched, stratified by age, or age-adjusted. sncRNAs mediate a number of cellular functions, and 
age-associated expression changes may implicate these in ageing processes. Changes in blood cell counts with 
age49,50, may explain some of the differential sncRNA expression. The present study provides a valuable data set 
for studying mechanisms of ageing and age-related diseases such as cancer.

Our data also showed significant associations between sex, body mass, smoking and physical activity and the 
expression levels of 1240 sncRNAs after adjusting for age. Age is an important effect modifier for these associa-
tions since the differences with and without age-adjustment increase significant associations more than 10-fold.

We observed sex-related expression for all sncRNA classes. miRNA expression correlated with sex has previ-
ously been shown23,29 and in some cases directly or indirectly linked to hormonal regulation24–26. piRNAs were 
initially thought to be specific to germ cells51,52, however circulating piRNAs have recently been identified at 

Figure 3. Volcano plots showing differential expression in log2fold change on the x-axis and adjusted p-values 
from the associations in −log10 on the y-axis for miRNAs, isomiRs, tRNAs, tRNA fragments, piRNAs, 
lncRNAs, miscRNAs, snRNAs and fragments mapping mRNA and the traits; blood donor group (BDg), sex, 
body mass smoking (current vs never smokers) and physical activity (low vs high activity).
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significant levels11,53. Our dataset identified a large number of RNAs mapping to piRNA databases. JSB serum 
samples were stored at −25 °C for up to 40 years47, indicating that piRNAs are stable. The cellular origin of the 
piRNAs is unknown. We observe a difference in expression between males and females for a large fraction of 
piRNAs, indicating that some of the circulating piRNAs might originate from germ cells. Our data also showed 
sex-specific differences in lncRNAs and mRNA fragments. For example, one lncRNA co-expression module 
is highly correlated with sex and includes Y chromosome-derived lncRNA fragments. Based on our findings, 
matching or adjusting for sex in differential expression studies may be crucial.

Our data show that smoking alters expression levels for all classes of sncRNAs, which had previously only 
been shown for miRNAs34,35. Wang et al.35 indicated that only a portion of the smoking-related miRNAs revert to 
a never smoker expression level after smoking cessation. In contrast, our analyses indicate that miRNA expres-
sion in former smokers is similar to never smokers. Futhermore, the expression levels of isomiRs, lncRNAs and 
mRNA fragments, as well as two tRNA and one piRNA, are significantly different in former smokers compared 
to never smokers, indicating smoking-related expression persists after smoking cessation for these sncRNAs. 
Similar results have been shown for DNA methylation54,55. It is noteworthy that the top three smoking-related 

Figure 4. Volcano plots showing differential expression in log2fold change on the x-axis and adjusted p-values 
from the associations in −log10 on the y-axis for all sncRNAs associated to sex, smoking, body mass and 
physical activity. Associations without age as co-variable are shown in red and associations adjusted for age are 
shown in blue.

Age −log10(FDR) Sex, age adjusted −log10(FDR) Smoking, age adjusted −log10(FDR)

1 Ras signaling pathway 1.89 Axon guidance 2.45 Cholinergic synapse 2.20

2 PI3K-Akt signaling pathway 1.89 Focal adhesion 2.45 Thyroid hormone signaling 
pathway 2.20

3 Dopaminergic synapse 1.75 Endocytosis 2.16 Relaxin signaling pathway 2.02

4 MAPK signaling pathway 1.69 MAPK signaling 
pathway 1.75 Phosphatidylinositol 

signaling system 1.51

5 AMPK signaling pathway 1.69 Phospholipase D 
signaling pathway 1.75 VEGF signaling pathway 1.51

Table 3. Pathway enrichment analyses for miRNA targets and mRNA fragments. The top 5 significant enriched 
pathways for miRNA targets and mRNA fragments for the associations with age, sex adjusted for age and 
smoking adjusted for age.
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miRNAs (hsa-miR-7704, hsa-miR-3655 and hsa-miR-203-3p) showed a clear relationship between smoking-dose 
and expression levels. However, the status as canonical miRNAs are questioned for hsa-miR-7704, hsa-miR-3655. 
Interestingly, the top five age-adjusted smoking related pathways have previously been related to smoking. For 
example, the cholinergic synapse pathway is associated with nicotine addiction56, suggesting that sncRNAs play 
a role in smoking addiction. The relaxin signaling pathway is also disrupted by smoking57. Our results show that 
smoking-related pathway RNAs (e.g. mRNAs and miRNA targets) can be identified in serum.

Body size was associated with 411 sncRNAs of which 63% are mRNA fragments. No miRNAs were statisti-
cally significant (P < 0.001). 208 sncRNAs were associated with physical activity, of which 70% mapped to mRNA 
fragments. Notably, the overlap between body mass and physical activity related sncRNAs was observed for three 
tRNAs and 13 tRNA fragments. No comparable study, to our knowledge, is available showing physical activity 

Figure 5. Differential sncRNA expression in never vs current smokers relative to never vs former smokers 
suggesting smoking related sncRNA expression that persist after smoking cessation (upper right corner) and 
sncRNA expression that revert to never smoking levels (lower right corner). The −log10 p-value are shown for 
smoking associations in current smokers vs never smokers (x-axis) and the former smoker vs never smokers 
(y-axis). −log10 p-values > 2 in both analyses are marked in red, signifying associations both in current and 
former smokers. −log10 p-values > 2 in current, but not in former smokers are marked in blue, signifying 
associations in current smokers and not in former smokers. Associations with expression differences more than 
+/−0.5 in both analyses are marked with a cross, all other relationships are marked with a dot. The analyses 
were done for miRNAs, isomiRs, tRNAs, tRNA fragments, piRNAs, lncRNAs, miscRNAs, snRNAs and mRNA 
fragments.
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and body mass associations with circulating non-miRNA sncRNAs. Our results indicate that differential expres-
sion studies in obesity and exercise should consider studying other sncRNAs in addition to miRNAs.

The serum samples were stored long-term at −25 °C. Under these conditions all unstable RNAs have been 
degraded. We have shown that the total amount of miRNA was affected by the processing of the serum and 
to a lesser extent by storage time21. Also, the number of other sncRNAs decrease with storage47. The differen-
tial expression analyses between the blood donor groups shown here shed further light on which sncRNAs are 
affected by storage and processing. Since blood donor groups and age are correlated, some of the blood donor 
group associations identified might be due to age differences. SncRNA studies using JSB data should take blood 
donor group into consideration.

The primary functions of most RNA classes are known. For example, snRNAs are involved in mRNA splic-
ing, tRNAs decode mRNAs into peptides, snoRNAs carry chemical modifications to mRNA fragments, miRNA 
regulate post-transcriptional gene expression, piRNAs target and repress the expression of transposable elements 
and lncRNAs provide epigenetic control of gene expression and promoter-specific gene regulation58–61. However, 
secondary functions are largely unknown and therefore pathways and network approaches for functional analy-
ses are not yet feasible. Another challenge in the interpretation of the results are insufficient accuracy and com-
pleteness of the annotation databases. Recognized databases such as miRBase62, ENCODE1 and piRbase63, may 
include degradation products, misclassifications and mapping errors. Curated databases such as miRgenedb64 
may improve the interpretability. piRNAs are particularly difficult and there is a highly probable that the availa-
ble piRNA databases contain RNAs unrelated to the piRNAs produced by germ cells. However, the discovery of 
sncRNA biomarkers are less affected by poor annotation.

Circulating sncRNAs originate from multiple cell types, and cell type compositional differences might intro-
duce variation or confounding. Still, it is not known if all cell types display age-related miRNA expression65, and 
only small expression differences of cell type composition were seen in one of the largest studies to date31. In 
addition, traits such as obesity, low activity and smoking will likely affect RNA expression less than diseases like 
cancer, therefore, large samples sizes are needed to discover signal over noise.

The main strength of our study is the large sample size. 526 donors included in the study provided sufficient 
statistical power to detect small differences in expression. Linkage to a complete cancer registry ensures that 
all donors were free from cancer at least 10 years after sample donation, removing the effects of potential can-
cer progression on sncRNA expression. Harmonized and quality-assured smoking, body mass data improves 
the accuracy of the measured traits45. High sequence read-depth (on average 18 mill reads per sample) serum 
RNAseq data targeting RNAs between 17 and 47 nucleotides in length enables comprehensive assessment of all 
main RNA classes.

The primary limitation of the study is the long-term storage of the samples and the effect it might have on 
RNA quality. Although the advantage of long-term storage is long follow-up time for the disease outcome. The 
expression differences from storage and sample handling may affect the associations, however, the effects found 
in previous studies were minor21,47. Common with all sncRNA studies, problems with annotation and the lack of 
functional information makes interpreting the findings challenging. Trusted annotations are essential to correctly 
identify transcripts1, yet well-known annotation databases are not error free64,66. For example, piRNA annotations 
contain fragments corresponding to other sncRNAs67. Although the data has unprecedented sample size, the 
moderate-high physical activity group and individuals less than 40 years old are represented by fewer than 100 
individuals. Associations were calculated from variable samples sizes, due to missing data. This might to some 
extent reduce comparability between trait associations. Due to the historic nature of the questionnaires data, the 
validity of the physical activity variable has not been fully validated. However, the validity of self-reported leisure 
time physical activity, and its relationship to serum cholesterol, blood pressure and body mass index has been 
investigated in data from the health examination surveys68. Aires et al.68 find that that the slopes relating year of 
birth and serum cholesterol and BMI are parallel for self-reported physical activity, thus they state that the validity 
of the physical activity variable is confirmed.

In conclusion, our study showed that sncRNA expression levels in serum are strongly age-dependent, and 
therefore age should be considered in studies of circulating sncRNA expression. sncRNA expression also differed 
between sexes, and this difference may reflect key biological differences, such as germ cell specificity of piRNAs. 
Some of the expression signatures are also influenced by body mass, smoking, physical activity and sample pro-
cessing. The relationships between traits and sncRNA expression levels are of key importance in all sncRNA 
biomarker research and should be accounted for in the study design and analyses of data.

Methods
Study subjects. The Janus Serum Bank (JSB) is a population-based cancer research biobank containing pre-
diagnostic biospecimens from 318 628 Norwegians44. We identified 550 JSB donors that were cancer free at least 
10 years after sample donation using data from the Cancer Registry of Norway. Information on age at donation, 
processing of samples according to blood donor groups (BDg) and sex were available from all donors, body mass, 
smoking and physical activity were available for most of the health examination donors (Fig. 1A).

Inclusion criteria for each analysis were a high-quality sncRNA profile (see filtering criteria in the bioinfor-
matics section) and available trait information. 156 samples included were from red cross blood donors (RCBD) 
and 370 were from donors participating in health examinations (HEBD), in total 526. JSB has prospectively 
collected serum samples between 1972 and 2004. The collection procedure and serum processing have varied 
throughout the collection period. The samples were grouped according to sample collection period and pro-
cessing (Grp1:HEBD from 1972–1978, iodoactetate added, Grp2: HEBD from 1979–1986, Grp3: HEBD from 
1987–2004 collected in separating gel tubes, Grp4A: RCBD from 1973–1979, Grp4B: RCBD from 1973–1979, 
lyophilized, Grp5: RCBD from 1980–1990 and Grp6: RCBD from 1997–2004)21 (Fig. 1B). The number of sam-
ples in each blood donor (BD) group from 1 to 6 were 33, 143, 194, 62, 66 and 28, respectively. 171 women and 
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288 men (Fig. 1B) with a mean age of 50 (standard deviation 11.2) at donation were included. Age at donation 
was categorized into less than 40, between 40 and 60 and above 60, and used as a continuous variable (Fig. 1B 
and Supplementary File 2: Figure S1). Data from the health examination studies were available for the HEBD 
donors, including information on self-reported smoking habits, body mass and self-reported physical activity 
(Fig. 1B)45. The donors with smoking information were categorized into current (N = 107), former (N = 85) 
and never (N = 111) smokers. The number of cigarettes per day in current smokers were categorized into 1–9 
(N = 36), 10–14 (N = 33), 15–19 (N = 22), 20–24 (N = 19) or > = 25 (N = 5). There were 152 normal weight, 
4 underweight, 156 overweight and 39 obese donors using WHO standards. Analyses were done contrasting 
normal weight vs overweight and obese combined. Questionnaire data on physical activity was reported in four 
activity groups: sedentary (reading, watching tv, other sedentary activities, N = 37), moderate active (walking, 
bicycling, ≤4 hours per week, N = 177) or active (light sports, heavy gardening ≥ 4 hours per week, N = 70, and/
or hard exercise, competitive sports regularly, N = 9). The sedentary and moderate (N = 214) were compared to 
active and hard exercise (N = 79). (Fig. 1B).

RNA isolation and sequencing protocols. RNA was extracted from 2 × 200 µl serum using phenol- 
chloroform separation and the miRNeasy Serum/Plasma kit (Cat. no 1071073, Qiagen) on a QIAcube (Qiagen).  
Glycogen (Cat. no AM9510, Invitrogen) was used as carrier during the RNA extraction step. The eluate was 
concentrated using Ampure beads XP (Agencourt). Small RNAseq was performed using NEBNext® Small RNA 
Library Prep Set for Illumina (Cat. No E7300, New England Biolabs Inc.) with a cut size on the pippin prep 
(Cat. No CSD3010, Sage Science) covering RNA molecules from 17 to 47 nucleotides. Sequencing libraries were 
indexed and 12 samples were sequenced per lane on a HiSeq2500 (Illumina) to an average depth of 18 million 
reads per sample.

Bioinformatics analyses. The RNAseq reads were initially trimmed for adapters using AdapterRemoval 
(v2.1.7)69. We then mapped the collapsed reads (generated by FASTX v0.14) to the human genome (hg38) using 
Bowtie2 (10 alignments per read were allowed). All multi-mapped reads with equivalent mapping score were 
counted. We compiled a comprehensive annotation set from miRBase (v21)62 for miRNAs, pirBAse (v1.0) for 
piRNAs63, GENCODE (v26)1 for other RNAs and tRNAs. We used SeqBuster (v3.1)70 to get isomiR and miRNA 
profiles. To count the mapped reads, HTSeq (v0.7.2)71 was used. The candidate tRNA fragments (tRFs) were 
selected from the reads mapped to tRNA annotations. For biomarker purposes, we excluded RNAs with fewer 
than 10 reads in more than 20% of the samples (Fig. 1C medium stringent filtering). To show how filtering 
influenced the number of RNAs we produced tables with stringent and less stringent filtering cut-offs. Stringent 
filtering excluded RNAs with less than 10 reads in more than 50% of the samples. Less stringent filtering excluded 
RNAs with less than 1 read in more than 20% of samples (Fig. 1C).

Statistics. Differential gene expression analyses based on the negative binomial distribution and Wald signif-
icance tests were performed for each trait using the R package DESeq2 version 1.14.172. All traits were categorical 
when different traits were compared. Analyses with age and BMI as continuous variables are also presented. The 
analyses were performed with and without adjustment for age at donation. P-values after adjusting for multiple 
testing, using DESeq2 default adjustments, were reported72. Heatmaps of trait-associated RNAs were created 
using the heatmap.2 function in the gplots package. sncRNAs where any of the traits had adjusted p-value < 0.001 
for analyses not adjusted for age at donation and p-values < 0.01 for analyses adjusted for age at donation are 
shown. We performed variance stabilizing transformation (VST) from the fitted dispersion-mean relations and 
then transformed the normalized count data using the function varianceStabilizingTransformation. Variance sta-
bilized normalized counts were extracted and in-depth analyses of the top 3 strongest associations for smoking, 
body mass and physical activity were performed. For this, current, former, never smokers and number of ciga-
rettes per day were investigated. Body mass was categorized according to WHO standardized cutoffs and physical 
activity were analysed according to the levels low and high.

We performed KEGG pathway73 analysis on differentially expressed mRNA fragments and miRNA targets. 
The analysis was performed using R function kegga from the limma package. The miRNA targets were extracted 
from miRDB (v5.0) predictions74 (score cut off >60).

Co-expression module analysis. We used the weighted correlation network analysis (WGCNA) R pack-
age (v1.61)75 to determine co-expression modules among serum RNAs. A co-expression network shows a set of 
genes which tends to display a coordinated expression. This helps to identify genes that have common functions 
and regulators which can be missed by classical differential expression methods76.

The samples that have any missing values among their traits were filtered out and the remaining samples were 
utilized for co-expression module identification. The identified modules (min. module size is 10) were mapped 
to the sample traits to find significantly (p-values < 0.01) correlated associations between the modules and traits. 
The effect sizes were measured using Pearson correlation coefficients.

Ethics approval. This study was approved by the regional committees for medical and health research ethics, 
Oslo, Norway [2016/1290] and we confirm that all experiments were performed in accordance with the com-
mittee’s guidelines and regulations. The donors to the Janus Serum Bank have given their broad consent for their 
samples to be used for research. Samples collected in 1997 and onwards are based on an explicit informed con-
sent. The Norwegian Data Protection Authority has approved the use of data and serum samples collected in the 
period 1972–2009, based on a broad consent from the donors.
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Data Availability
Sequence data have been deposited at the European Genome-phenome Archive (EGA), which is hosted by the 
EBI, under accession number EGAS00001002814. Custom scripts are available from the corresponding author 
upon request.
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