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Abstract

In this thesis, we use boundary integral equations (BIE) as a powerful tool to gain new insights

into the dynamics of plasmas. On the theoretical side, our work provides new results regarding

the oscillation of bounded plasmas. With the analytical computation of the frequencies for

a general ellipsoid we contribute a new benchmark for numerical methods. Our results are

validated by an extensive numerical study of several three-dimensional problems, including a

particle accelerator with complex geometry and mixed boundary conditions. The use of Boundary

Element Methods (BEM) reduces the dimension of the problem from three to two, thus drastically

reducing the number of unknowns. By employing hierarchical methods for the computation of

the occurring nonlocal sums and integral operators, our method scales linearly with the number

of particles and the number of surface triangles, where the error decays exponentially in the

expansion parameter. Furthermore, our method allows the pointwise evaluation of the electric

field without loss of convergence order. As we are able to compute the occurring boundary

integrals analytically, we can precisely predict the electric field near the boundary. This property

makes our method exceptionally well suited for the numerical simulation of plasma sheaths near

irregular boundaries or of plasma-surface interaction such as etching of semiconductors.

Zusammenfassung

In der vorliegenden Arbeit nutzen wir Randintegralgleichungen als ein mächtiges Werkzeug, um

neue Einsichten in die Dynamik von Plasmen zu gewinnen. Auf theoretischer Seite entwickelt

diese Arbeit neue Resultate bezüglich der Oszillation beschränkter Plasmen. Durch die ana-

lytische Berechnung der Frequenzen im Fall eines allgemeinen Ellipsoids stellen wir ein neues

Testbeispiel für numerische Methoden bereit. Unsere Resultate werden durch umfangreiche

numerische Untersuchen dreidimensionaler Beispiele validiert, etwa einen Partikelbeschleuniger

mit komplexer Geometrie und gemischten Randwerten. Mithilfe der Randelementmethode

reduziert sich die Dimension des Problems von drei auf zwei, womit sich die Anzahl der Un-

bekannten drastisch reduziert. Dank der Nutzung hierarchischer Methoden zur Berechnung der

auftauchenden nichtlokalen Summen und Integraloperatoren skaliert unsere Methode linear mit

der Anzahl der Partikel und der Anzahl der Oberflächendreiecken, wobei der Fehler exponen-

tiell im Entwicklungsparameter abfällt. Des Weiteren erlaubt unsere Methode die Berechnung

des elektrischen Felds ohne Verringerung der Konvergenzordnung. Da wir die auftretenden

Randintegrale analytisch berechnen können, können wir präzise Aussagen über das elektrische

Feld nahe des Rands treffen. Dank dieser Eigenschaft ist unsere Methode außergewöhnlich gut

geeignet, um Plasmaränder nahe irregulärer Ränder oder Plasma-Oberflächen-Interaktionen,

etwa das Ätzen von Halbleitern, zu simulieren.
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Preface

Wer kann was Dummes, wer was

Kluges denken, das nicht die

Vorwelt schon gedacht?1

(Johann Wolfgang von Goethe)

A plasma is a mixture of positively charged ions, electrons and neutral atoms that, unlike in

neutrally charged gases, are able to move freely in space. Most of the observable mass in the

universe is in the state of a plasma. In our solar system, the largest accumulation of plasma is

the sun. At enormous temperature and pressure in its core atomic nuclei fuse, thus producing

energy in form of electromagnetic waves that illuminate the earth. Regularly, the sun erupts

plasma that is caught by the magnetic field of the earth and pushed towards the poles. There,

the plasma interacts with the gas in the atmosphere and light at specific wavelengths is emitted,

giving rise to the characteristic aurora. In August and September 1859, the earth was hit by an

extreme eruption of plasma [35]. Auroras were observable over all of Europe, North America

and as south as Cuba and Hawaii [36]. This solar storm massively disturbed the then recently

established telegraphy system.

If used in a controlled environment, however, plasmas contributed to major scientific and

technological breakthroughs in the last 150 years. With the invention of a powerful induction coil

(an early transformer) by Rühmkorff in the 1850s [127, p. 69], scientists were able to investigate

gas discharge plasmas that form between two coils. Without knowing that he was working with

plasma, von Siemens found in 1857 that the discharge produced ozone when oxygen or air flows

between coils. In his apparatus, the coils are placed outside the glass tube filled with gas, hence

giving his method the name silent discharge [96].

Today, gas discharge plasmas are employed in a wide range of applications [11]: Surface

modification such as etching in the semiconductor industry, different kind of lasers, e.g. the

He-Ne laser, electrodeless lamps with long lifetime, and, until a few years ago, in plasma display

panels. The ozone synthesised with von Siemens’ method is used to purify water, e.g. if it is

biologically contaminated. This invention marks the beginning of plasma medicine, a branch

of clinical medicine that is concerned with applications of plasmas for medical treatment [163].

In plasma spectroscopy [103] one exploits that the constituents of a particle beam emit light at

characteristic wavelengths when directly injected in a plasma, making it possible to determine

composition of the particle beam.

Perhaps the most challenging problem nowadays in plasma physics is the controlled fusion

inside a hydrogen plasma with the ultimate goal to produce energy. To that end, it is necessary

to confine the plasma by strong magnetic fields and to heat it to several million Kelvin. The

understanding of a plasma under these extreme conditions and the ability to control it require

the joint effort of theoretical and experimental physicists as well as engineers around the world.

Supported by 35 countries, scientists work at ITER in Saint-Paul-lès-Durance, France,2 the world’s

1“Who can think something stupid, who can think something smart that previous generations did not already

think?”
2https://www.iter.org/
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largest nuclear fusion reactor of tokamak type, with the aim to produce more electric power than

it consumes. At the same time, different fusion reactor designs are investigated, most notably

the stellarator Wendelstein 7-X (W7-X), located in Greifswald, Germany.3 In recent experiments

with W7-X, the hydrogen plasma reached a temperature of around twenty million Kelvin and

lasted more than one hundred seconds [117].

A curious application of plasmas are loudspeaker. Usually, the sound is generated by an

oscillating membrane. Owing to the large inertia of the membrane compared to air, the produced

tones are smeared over neighbouring frequencies. Plasma speakers mitigate this unpleasant effect.

The oscillation of a membrane is replaced by a plasma with direct contact to the surrounding air.

By applying an alternating current of varying frequency, the plasma oscillates, hence thrusting

the nearby air. We notice these density variations of the air as sound. A pioneer in this field was

the Saarlander Otto Braun.4 His “High-fidelity-Studio” in Saarbrücken, where he was working

on his plasma speakers since the 1960s, was well known to audio enthusiasts beyond Saarland. A

regular visitor of Braun’s studio in the 1980s I spoke with praised the outstanding audio quality

of the plasma speaker, saying that he had never experienced such a clear replay of music with

other devices.

The wide range of applications of plasmas presented above make it impossible to treat them all

with a single model. In this thesis, we focus on the Vlasov–Poisson system, a mathematical model

for plasmas with typical speed much smaller than the speed of light and where the generated

magnetic fields are negligible. For its theoretical analysis and numerical treatment, we combine

two well-established tools from different fields, namely the particle discretisation for kinetic

equations and boundary integral equations for the solution of (elliptic) boundary value problems.

As we shall see, this approach provides new ways for the theoretical study of plasmas and

enriches the family of numerical methods for the Vlasov–Poisson system, in particular, if effects

near the boundary are important.

3https://www.ipp.mpg.de/w7x
4Otto Braun was born on 10 July 1928 and died on 23 July 2020, aged 92 years [157].
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1. Introduction

Den Hrn. D’Alembert halte ich für einen grossen

mathematicum in abstractis; aber wenn er einen

incursum macht in mathesin applicatam, so höret

alle estime bey mir auf […] und wäre es oft besser

für den realen physicam, wenn keine Mathematik

auf der Welt wäre.1

(Daniel Bernoulli [60])

By heating a gas, the negative and positive charges comprising the neutral atoms are separated

and a new state of matter arises, a plasma. Owing to the conservation of electric charge, the

plasma has total charge equal to zero. If the length scale on which we observe the plasma, e.g.

the width of an electric trap used to confine the plasma, is much larger then its internal length

scale, known as Debye length, the plasma is almost neutral locally, meaning that the charge

densities of the positively and negatively charged constituents are almost equal in most of the

parts of the plasma. This condition is known as quasineutrality. The resulting nonvanishing

charge density % gives rise to an electric field E according to Gauß’ law,

divE D
1

"0
%;

with the vacuum permittivity "0. In the absence of boundaries the electric field reads

E.x/ D
1

4�"0

Z
R3

x � y

jx � yj3
%.y/ dy; x 2 R3;

if we ignore the magnetic field generated by electric current. The form of E highlights the

second important property of a plasma, namely its collective behaviour [31, Chapter 1]. For a

bounded subset � of the plasma with total chargeQ and centre of charges x0, the electric field

in the farfield reads

E1.x/ D
Q

4�"0

x � x0

jx � x0j3
; x 2 R3 n�:

Now, the average of E1 over a solid angle A � S2 is constant,

1

jAj

Z
A

r2E1.x0 C re/ dSe D
Q

4�"0

1

jAj

Z
A

e dSe ;

for any radius r > 0. Therefore, a change in the charge distribution in B affects all parts of the

plasma. In contrast to the interaction of neutral particles which is short-ranged and is thus local

in space, the interaction of the charged particles inside the plasma is nonlocal.

1“I consider Mr. D’Alembert to be a great mathematicum in abstractis; but if he makes an incursum in mathesin

applicatam, then all esteem stops with me […] and it would often be better for the real physicam if there were no

mathematics in the world.”

1



1. Introduction

There are numerous mathematical models for the evolution of plasmas. Fluid models are

among the most most accessible descriptions of plasma dynamics. Here, the state of the plasma

is described by few macroscopic quantities such as (number) density, velocity and temperature.

Their time evolution is governed by conservation laws similar to those of classical fluid dynamics.

The inherent problem of fluid models is that the equations involve quantities such as the diffusion

coefficients which cannot be computed within the model but need to be provided by a general

theory, the kinetic theory. In contrast to the fluid models, the state of the plasma comprising

the species S is described by a scalar function fs for each s 2 S , called (particle) distribution

function of the species s. For a time t > 0 it is defined on the six-dimensional phase space

R3 �R3 of positions x 2 R3 and velocities v 2 R3,

fs W .0;1/ �R
3
�R3 ! Œ0;1/; .t;x; v/ 7! fs.t;x; v/:

For a region A � B � R3 �R3 in phase space, the integralZ
A

Z
B

fs.t;x; v/ dv dx

equals the number of particles of species s in A with velocities in B at the time t > 0. Conse-

quently,

%.t;x/ D
X
s2S

qs

Z
R3

fs.t;x; v/ dv; j .t;x/ D
X
s2S

qs

Z
R3

vfs.t;x; v/ dv;

are the total charge and current density of the plasma, where qs denotes the particle charge of

species s. The distribution function evolves according to a collisionless Boltzmann equation,

@tfs C v � rxfs C
1

ms
Fs.t;x; v/ � rvfs D 0; (1.1)

where ms is the particle mass of species s and Fs is the Lorentz force exerted by all particles in

the plasma on particles of species s,

Fs.t;x; v/ D qs
�
E.t;x/C v �B.t;x/

�
;

for the particle charge qs . The electromagnetic fields .E ;B/ are computed from .%; j / by

Maxwell’s equations or approximations thereof, most notably the Darwin approximation [43]

and the electrostatic approximation [42]. For the latter, B D 0 and E D �r�, where the electric

potential � is the solution of

��� D
1

"0
%; (1.2)

supplied with the decay condition �.x/! 0 for jxj ! 1. Equations (1.1) and (1.2) constitute

the Vlasov–Poisson system. In case the plasma is confined to a bounded domain, the system

is augmented with boundary conditions for the distribution function and the electric potential.

We discuss this in Section 2.3. The Vlasov–Poisson system first appeared in the works of Jeans

on the dynamics of star clusters at the beginning of the 20th century and was independently

applied by Vlasov to plasma physics at the end of the 1930s [84]. Writing N for the total number

of particles,

N D
X
s2S

Z
R3

Z
R3

fs.t;x; v/ dv dx;

2



which is a conserved quantity under time evolution, the electric field reads

E.t;x/ D N
1

N

X
s2S

qs

4�"0

Z
R3

Z
R3

x � y

jx � yj3
fs.t;x; v/ dv dy:

Here, the term
qs

4�"0

x � y

jx � yj3
fs.t;y; v/

is the electric field density generated by particles of the species s at y with velocity v, evaluated

at x. Consequently, E is proportional to the average over the electric fields of the particles in

the plasma. That is why the Vlasov–Poisson system is known as the mean field limit of the

particle dynamics. We shall review this in more detail in Section 2.3. Since the interaction

.x � y/jx � yj�3 is only weakly singular, i.e. the negative power of the singularity for x D y is

smaller than the space dimension, the integral average is well-defined at all points, in particular

where the field of an individual particle would be not defined. Therefore, the mean-field limit of

the electric field provides a regularisation for the nearfield with the assumption of quasineutrality,

however, without sacrificing the long-range character of the interaction and hence the collective

behaviour of the plasma.

Owing to the quadratic nonlinearity in the Vlasov–Poisson system, analytic solutions are rare.

We thus have to rely on numerical approximations, see [44] for a review. To represent f in a

computer2 at a fixed time t > 0, we would first sample f .t;x; �/ in each direction at 200 points.

Storing the result as floating point numbers with double precision requires 8� 2003 B � 61MiB,

which is unproblematic on today’s hardware. To obtain full information on f at time t , we need

to repeat the sampling procedure at several points in space. Using 200 points per direction, the

total size sums up to 8 � 2006 B D 476 837GiB. This raises our memory requirements from the

cell phone in our pocket to the world’s largest supercomputers like Stampede2, operated by the

Texas Advanced Computing Center in Austin, TX, USA. Its 4200 Intel Xeon Phi Knights Landing

compute nodes provide in total 470 400GiB [153, Table 1], so that a typical discretisation of f at

one time point occupies all of Stampede2’s memory.

This unfavourable memory scaling is a major problem for semi-Lagrangian schemes [143],

see [128] for a recent review and [100] for a discussion of semi-Lagrangian schemes with

applications on supercomputers, where the numerical approximation of the distribution function

is interpolated on a grid in phase space after advection steps in space and velocity. One remedy is

to split the six-dimensional advection steps into several lower-dimensional ones [52, 53]. Another

possibility is to exploit low-rank tensor approximations of the particle density function on the

computational grid that reduce the memory requirements of the scheme [99, 101], see also [50].

Discontinuous Galerkin methods [45, 83, 111] use piecewise polynomials to approximate the

distribution function in phase space. By varying the grid size and the polynomial degree, a

reduction of degrees of freedom is possible in regions where the distribution function is smooth.

Moreover, the update rule per time step is local in phase space and thus is scalable on massively

parallel devices, e.g. GPUs [51].

Since the Vlasov–Poisson system is the mean field limit of the particle dynamics in the plasma,

it is tempting to approximate the distribution function by a finite sample of computational

particles, known as macroparticles. The use of particle methods for the numerical simulation

of plasmas can be traced back to as early as 1962 [38], see [39] for a historic and [160] for a

2Here and in the following, we suppress the species indices.
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1. Introduction

more recent review. In contrast to real particles, macroparticles represent the motion of a large

collection of real particles. Their interaction should be consistent with the long-range interaction

in the plasma and, at the same time, with the regularisation introduced by the mean field limit.

This is usually accomplished via the particle-in-cell method [9]. Here, the macroparticles evolve

according to Newton’s laws3 and only the acceleration of each particle needs to be computed.

To that end, a grid in space is introduced on which the electric field is computed, thus reducing

the six-dimensional phase space to a three-dimensional problem. This grid acts as moderator

between the particles. First, the charges of the particles are interpolated on the grid by evaluating

a rescaled (first order) B-spline at the grid points. This amounts to the regularisation of the

Dirac distribution, the singular point charge distribution, by a spline function. The scaling is

chosen such that in the limit of vanishing grid size, the Dirac distribution is recovered. Owing

to the compact support of the B-splines, this regularisation is local in space. In a next step, the

electric field is approximated on the grid by a standard solver for the Poisson equation, e.g. finite

difference, finite element or spectral methods. Implicit in this step is the global influence of the

local charge distribution, as the computation involves the solution of a linear system of equations,

or in case of Fourier-based spectral methods, the use of global basis functions. Afterwards, the

electric field is extrapolated from the grid onto the particle positions.

The use of boundary integral equations and their numerical approximation by Boundary

Element Methods (BEM) for the solution of the Poisson equation makes the regularisation in the

nearfield and the long-range character of the interaction explicit [34, 95]. In Fig. 1.1, we sketch

Figure 1.1.: Schematic comparison of the computation of the electric field for the particle-in-

cell method on the left and using BEM on the right. In the particle-in-cell method,

the interaction of the particles is moderated by the grid and the electric field is

interpolated from nearby grid points. In case of BEM, the particles interact via a

regularised Coulomb force and a harmonic correction to the field is constructed only

requiring the values of the particle field on the boundary.

the different approaches to the field computation for the particle-in-cell method and for the field

computation using BEM. The electric potential � is sought as a superposition of the regularised

particle fields plus a harmonic function �0 to account for boundary conditions,

�.x/ D
1

4�"0

npX
iD1

qi

Z
R3

ı�xi
.y/

jx � yj
dy C �0.x/: (1.3)

Here, np denotes the total number of particles and qi the charge of the i th particle at xi .

Its regularised charge distribution is given by ı�xi
, a function with integral equals one and,

3For f given by a sum of Dirac distributions, the Vlasov equation is equivalent to Newton’s laws, see Lemma 2.1.

4



additionally, such that for � ! 0, it converges to the Dirac distribution supported at xi . It is

noteworthy that � is always a (weak) solution of the Poisson equation,

��� D
1

"0

npX
iD1

qiı
�
xi
;

so the only approximation error of BEM is in the traces of � on the boundary.

If ı�xi
has compact support and is rotationally invariant around xi , the integrals on the right

hand side of (1.3) agree with the Coulomb potential,

qi

jx � xi j
; i D 1; : : : ; np;

outside any sufficiently large ball centred at xi ,
4 so the regularisation of the Coulomb field

obeys the same scaling in the farfield as the field of point charges. If furthermore, ı�xi
is square-

integrable, the regularised Coulomb potential is continuous.5 In Lemma 3.43 we review a

particular choice of ı�x for which is regularised Coulomb interaction is Lipschitz continuous.

It is crucial that the correction �0 can be computed using solely the data of the potential on

the boundary. First, this means that we only have to discretise the boundary, thus reducing the

dimension of the problem from three to two. Second, as we shall later see, r�0 obeys a similar

scaling as the regularised Coulomb field of the particles,

jr�0.x/j D O
�
R�2

�
;

where R denotes the distance of x to the boundary. Third, boundary formulation allows the

evaluation of r� at any point in the domain with no loss of order of convergence compared to

a point evaluation of �. Thus BEM offer a very good accuracy per degree of freedom for the

evaluation of the electric field, in particular in comparison with finite element methods.

This thesis is organised as follows. In Chapter 2 we review how the Vlasov–Poisson system is

derived from the microscopic particle dynamics and discuss the possibility to write the electric

potential as a function of its boundary traces by means of representation formula. Chapter 3

begins with a review of the necessary function spaces to derive the boundary integral equations

discretised by BEM later in this chapter. We develop BEM with a particular emphasis on its later

application to plasma dynamics. Hierarchical methods, presented in Chapter 4, are a standard

approximation technique to accelerate computations while preserving the long-range character

of the original formulation. Our analysis of plasma oscillations in Chapter 5 is a first example of

the fruitful application of boundary integral equations in kinetic plasma theory, both from an

analytical and numerical point of view. In Chapter 6, we validate our approach in a string of

numerical examples. We conclude this thesis in Chapter 7 and give an outlook on future research

topics.

4Without loss of generality we may assume x0 D 0. Outside any sufficiently large ball, the integral is a rotationally

symmetric harmonic function and thus has to be of the form C=jxj CD. The decay of the integral for jxj ! 1

impliesD D 0 and C D 1 follows by taking the limit jxj ! 1 of jxj times the integral.
5In this case, the regularised Coulomb potential resides in H2

loc.R
3/ by Theorem 3.40 which, by the Sobolev

embedding theorem [67, p. 158], is a subspace of the continuous functions onR3.
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2. Many Particle Dynamics

The word “plasma” will be used to designate that

portion of an arc-type discharge in which the

densities of ions and electrons are high but

substantially equal.

(Irving Langmuir and Lewi Tonks [156])

To understand the assumptions that lead us to the Vlasov–Poisson system for the description of

plasma dynamics, we begin with the general relativistic treatment of charged particle dynamics

in Section 2.1. Afterwards, we turn to the electrostatic approximation of the Maxwell–Lorentz

system in Section 2.2 where we also motivate the use of boundary integral operators to represent

the electric field. The final step towards the Vlasov–Poisson system is a specific mean limit

procedure discussed in Section 2.3. We close this chapter with a nondimensionalisation of the

Vlasov–Poisson equation in Section 2.4.

2.1. Maxwell–Lorentz System

A system of n particles with positions x1; : : : ;xn, charges q1; : : : ; qn and masses m1; : : : ; mn
evolves according to

Pxi .t/ D
1

mi
pi .t/;

Ppi .t/ D qi

�
E.t;xi .t//C vi .t/ �B

�
t;xi .t/

��
;

(2.1)

for any time t > 0 and i D 1; : : : ; n, see [145, p. 14] or [105, § 17]. The velocities and momenta

are coupled nonlinearly,

vi D 
.pi=mi /
�1 pi

mi
; i D 1; : : : ; n;

where 
 is the Lorentz factor,


.p=m/ D

s
1C

jpj2

m2c20
;

and c0 is the speed of light. The electromagnetic fields .E ;B/ are the solutions of Maxwell’s

equations,

divE D
1

"0

nX
jD1

qj ıxj
; divB D 0;

@tE C curlB D 0; @tB C "0�0 curlE D �0

nX
jD1

qjvj ıxj
:

(2.2)

7



2. Many Particle Dynamics

Here, "0, �0 are the vacuum permittivity and permeability, respectively. They are related to the

speed of light by

c0 D
1

p
"0�0

:

With ıx , x 2 R
3, we denote the Dirac distribution which equals the point evaluation at x,

h'; ıxi D '.x/

for a continuous function ' W R3 ! R.

BecauseMaxwell’s equation are linear, the collective fields are given as the sum of the individual

fields
�
.Ei ;Bi /

�n
iD1

. These are known as the Liénard–Wiechert fields [129, Chapter 19],

Ei .t;x/ D
qi

4�"0

 
.1 � v2i =c

2
0/

.yri � vi=c0/

.1 � yri � vi=c0/3jx � xi j2

C
yri � Œ.yri � vi=c0/ � Pvi=c0�

.1 � yri � vi=c0/3jx � xi j

!ˇ̌̌̌
ˇ
t D t reti

;

Bi .t;x/ D
yri

c0
�Ei .t;x/

ˇ̌̌̌
t D t reti

;

(2.3)

where

yri D
x � xi .t

ret
i /

jx � xi .t
ret
i /j

:

The retarded time t reti is the solution of the nonlinear equation

t reti D t �
jx � xi .t

ret
i /j

c0
;

which reflects the finite propagation speed of the electromagnetic fields. The computation of

t reti is very difficult and generally no closed form solution can be found. Note that t reti may be

negative, so it does not suffice to prescribe initial conditions for the positions and momenta to

get a well-posed initial value problem. For the system (2.1)-(2.2) to be well-defined, the time axis

has to be extended to .�1;1/ and, therefore, includes the whole history of the system [41].

Latter discussion excludes self-interaction, i.e. the acceleration of a particle by its own retarded

electromagnetic fields. Classical electrodynamics predicts exponential divergence of the particle

velocity by self-forces, incompatible with practical experience [145, Chapter 3.3]. Feynman,

Leighton, and Sands [56, Chapter 28] discuss physical consequences of this singularity and review

some attempts to resolve this issue.

2.2. Limit of Small Velocities

If the velocities of the particles are much smaller than c0 and light travels the maximum distance

max
i;jD1;:::;n

jxi � xj j

in a time much smaller than the typical time scale of the particle system, then


 � 1; t reti � t; i D 1; : : : ; n:
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2.2. Limit of Small Velocities

This means we are ignoring all effects that are caused by the finite propagation speed of .E ;B/.

Setting vi=c0 D 0 in the electric field (2.3) yields

Ei .t;x/ D
qi

4�"0

yri .t/

jx � xi .t/j2
;

which is parallel to yri .t/, so

Bi .t;x/ D
yri .t/

c0
�Ei .t;x/ D 0

for all i D 1; : : : ; n. These fields are the solution to the electrostatic approximation of Maxwell’s

equations,

divE D
1

"0

nX
jD1

qj ıxj
; curlE D 0: (2.4)

The equations of motion read

Pxi .t/ D vi .t/;

Pvi .t/ D
qi

mi
E.t;xi .t//;

(2.5)

for i D 1; : : : ; n. Because curlE D 0, there exists a scalar function �, called (electric) potential,

with E D �r�. Therefore, (2.4) is equivalent to

��� D
1

"0

nX
jD1

qj ıxj
; E D �r�: (2.6)

Supplemented with the decay condition

�.x/! 0; jxj ! 1;

the unique solution of (2.6) is

�.x/ D
1

"0

nX
jD1

qjU.x � xj /;

where U is the fundamental solution of the Laplace operator,

U.z/ D
1

4�jzj
; z 2 R3 n f0g:

If the particles are contained in a bounded domain� � R3, the decay condition on � is replaced

by some boundary conditions on � D @�. As a model problem, we consider a Dirichlet boundary

value problem with datum g, 8̂̂<̂
:̂
��� D

1

"0

nX
jD1

qj ıxj
in �;

� D g on �:

9



2. Many Particle Dynamics

The solution is constructed similar to the free space equation (2.6),

�.x/ D
1

"0

nX
jD1

qjG.x;xj /C

Z
�

n.y/ � ryG.x;y/g.y/ dSy ; (2.7)

where n denotes the outward normal vector field to� andG is the Green function of the Laplace

operator in � with Dirichlet boundary conditions,(
��G.�;y/ D ıy in �;

G.�;y/ D 0 on �:

It can be written as G.x;y/ D U.x � y/C zUy.x/, where zUy is the solution of(
�� zUy D 0 in �;

zUy D �U.� � y/ on �:

Even though properties such as symmetry, G.x;y/ D G.y;x/ [55, p. 35] and the singular

Laplacian, ��G.�;y/ D ıy , turn G into an ideal replacement for U.� � �/ in case of bounded

domains, its definition make it infeasible for a computational treatment of boundary value

problems. That is because each point evaluation ofG requires to solve a boundary value problem

and easily computable expressions for G are available only for certain simple geometries such as

balls or half spaces.

Therefore, we use an equivalent representation for �, called representation formula,

�.x/ D
1

"0

nX
jD1

qjU.x �xj /C

Z
�

U.x �y/ .y/ dSy C

Z
�

n.y/ �rU.x �y/ g.y/ dSy ; (2.8)

where  denotes the unknown normal derivative of � on � . We shall see in Section 3.3.5 how to

solve for  by means of boundary integral equations. Above formulation has the advantage that

the geometry enters only through the domain of integration; the rest is purely formulated in

terms of the easily computable fundamental solution U . Once we know  , we can evaluate �

and its derivatives of arbitrary order inside �, in particular the gradient r� which we need to

compute the acceleration of the particles.

2.3. Mean Field Limit and Vlasov Equation

In a real plasma, the number of particles n usually exceeds 1020. This makes a direct treatment

of (2.5) infeasible. Furthermore, the trajectories of every single particle are often not of interest

as they do not tell us how the plasma behaves on a global (macroscopic) scale. Collective effects

are hidden in the large sum (2.8) and cannot be observed by tracing the trajectories of single

particles. Thus, we bundle physical particles in so-called macroparticles, or marker, such that

• the system of macroparticles has the same total mass and total charge as the original

particle system,

• a macroparticle represents a specific species in the plasma, i.e. the charges and masses are

the same for all physical particles represented by the macroparticle.

10



2.3. Mean Field Limit and Vlasov Equation

For our analysis, we assume that the plasma consists of a single species with charge q0 and

mass m0. From now on, n denotes the number of macroparticles and
�
.xi ; vi /

�n
iD1

refer to the

trajectories of the macroparticles. The total energy of the system of macroparticles is

H D
1

2
zm

nX
iD1

jvi j
2
C

1

2"0
zq2

nX
i;jD1
j¤i

U.xi � xj /

where zq; zm are the charge and mass of a macroparticle, respectively. We assume that, initially,

the plasma is located in an open and bounded set� � R3. With n0, we denote its initial number

density, i.e. the average number of particles per cubic metre. The total number of physical

particles is thus given by n0j�j. In view of the definition of the macroparticles, we choose

zq D
q0

n
n0j�j; zm D

m0

n
n0j�j:

This scaling is known as pulverisation limit [123, Chapter 3]. The equations of motions are then

given by

Pxi D vi ;

Pvi D �
1

n

n0j�jq
2
0

"0m0

nX
jD1
j¤i

rxi
U.xi � xj /; (2.9)

for i D 1; : : : ; n. In contrast to the full particle description, the macroparticles are not accelerated

by the superposition of the inner-particle field rU but by its arithmetic mean. That’s why this

procedure is also known as mean field limit [146, Chapter 5].

By introducing the empirical measure

�nŒX ;V � D
1

n

nX
iD1

ıxi
˝ ıvi

;

for positionsX D .x1; : : : ;xn/ 2 R
3�n and velocities V D .v1; : : : ; vn/ 2 R

3�n of the particles

and the Hamiltonian flow .St /t�0 [3, Section 38],

St .X0;V0/ D solution of (2.9) at time t with initial conditions .X0;V0/;

the solution of (2.9) can be compactly written as

‰n D n0j�j
�
�n
�
St .X0;V0/

��
t�0
:

The mapping ‰n defines a measure on R �R
3 �R3. For � W R �R3 �R3 ! R continuous

with compact support we have

h�;‰ni D n0j�j
1

n

nX
iD0

1Z
0

�.t;xi .t/; vi .t// dt:

The system of ordinary differential equations (2.9) can be recast as a scalar partial differential

equation for ‰n.

11



2. Many Particle Dynamics

2.1 Lemma The measure ‰n is a weak solution of the initial value problem8̂̂̂<̂
ˆ̂:
@tf C v � rxf C

q0

m0
E Œf �.t;x/ � rvf D 0;

f .0/ D n0j�j
1

n

nX
iD1

ıx0
i
˝ ıv0

i
;

where X0 D .x
0
1 ; : : : ;x

0
n/, V0 D .v

0
1; : : : ; v

0
n/ and the electric field E Œf � is given by

E Œf �.t;x/ D �
q0

"0

Z
R3

Z
R3

f .t; v;y/rxU.x � y/ dv dy; x 2 R3:

This means that for all � W R �R3 �R3 ! R continuously differentiable that vanish outside a

compact set we have

�

D
@t�C v � rx�C

q0

m0
E Œ‰n� � rv�;‰n

E
D n0j�j

1

n

nX
iD1

�
�
0;x0i ; v

0
i

�
:

Proof. From the definition of the electric field we readily see

E Œ‰n�.t;xi .t// D �
q0

"0
n0j�j

1

n

X
jD1
j¤i

rxi
U.xi .t/ � xj .t// D

m0

q0
Pvi .t/; i D 1; : : : ; n:

Therefore,

�

D
@t�C v � rx�C

q0

m0
E Œ‰n� � rv�;‰n

E
D �n0j�j

1

n

nX
iD1

1Z
0

�
@t�

�
t;xi .t/; vi .t/

�
C Pxi .t/ � rx�

�
t;xi .t/; vi .t/

�
C Pvi .t/ � rv�

�
t;xi .t/; vi .t/

��
dt

D �n0j�j
1

n

nX
iD1

1Z
0

d

dt

�
�.t;xi .t/; vi .t//

�
dt D n0j�j

1

n

nX
iD1

�
�
0;x0i ; v

0
i

�
:

�

The partial differential equation and the expression for the electric field in Lemma 2.1 constitute

the Vlasov–Poisson system,8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@tf C v � rxf �
q0

m0
rx�.t;x/ � rvf D 0;

��x� D
q0

"0

Z
R3

f .t;x; v/ dv;

� ! 0; jxj ! 1;

f .0; �/ D f0;

(2.10)
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2.3. Mean Field Limit and Vlasov Equation

for the so-called particle distribution function f W .0;1/ �R3 �R3 ! Œ0;1/ and an initial

condition f0 W R
3 �R3 ! Œ0;1/. It has the following physical interpretation: For measurable

subsets A;B of R3 the integral Z
A

Z
B

f .t;x; v/ dv dx

is proportional to the number of particles contained in A with velocities from B at the time

t � 0. Macroscopic quantities of the plasma are related to f by its moments in velocity space,

for instance

n.t;x/ D

Z
R3

f .t;x; v/ dv; V .t;x/ D
1

n.t;x/

Z
R3

vf .t;x; v/ dv; (2.11)

T .t;x/ D
1

3n.t;x/

Z
R3

jv � V .t;x/j2f .t;x; v/ dv; (2.12)

for the local number density, mean velocity and temperature, respectively.

If the plasma is contained in an open, bounded set � � R3 we furthermore have to impose

boundary conditions on the distribution function f and the electric potential �. Typically, f D 0

on @�, which means that particles reaching the boundary are absorbed. Boundary conditions

for � are discussed in Section 3.3.

For an integrable initial condition f0 with support in � andZ
R3

Z
R3

f0.x; v/ dv dx D n0j�j;

we can draw a sequence of stochastically independent samples
�
.x0i ; v

0
i /
�1
iD1

. From the strong

law of large numbers [140, Chapter IV §3, Theorem 3] we know

n0j�j
1

n

nX
iD1

ıx0
i
˝ ıv0

i
! f0

weakly for n!1, which means for every � W R3 �R3 ! R continuous and bounded,

lim
n!1

n0j�j
1

n

nX
iD1

�
�
x0i ; v

0
i

�
D

Z
R3

Z
R3

�.x; v/f0.x; v/ dx dv:

This raises the question if the weak approximation of the initial condition by the independent

samples implies the (weak) approximation of the Vlasov equation, that is

‰n ! f weakly for n!1:

An affirmative answer was given by Neunzert and Wick [122] and refined in a sequence of

follow-up papers [121, 120, 119], see also [62] and [164] for different proofs. Apart from higher

regularity for the initial condition f0 in order to guarantee unique solvability of (2.10), they

require that (2.9) is fulfilled with a regularised fundamental solution U� , for instance

U� .z/ D
1

4�

1q
z21 C z

2
2 C z

2
3 C �

2

; z 2 R3;
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2. Many Particle Dynamics

with � > 0. The regularisation parameter � depends on time and the number of particles and

vanishes for t ! 1, n ! 1 with a rate dictated by the initial condition. Lazarovici and

Pickl [110] proved the weak convergence of the particle solution under nearly optimal conditions

on � and the regularisation U� . For their analysis it suffices to take � / n�1=3�" with " > 0. In

addition they relax the assumptions on the regularisation U� , allowing for

U� .z/ D
1

4�

8̂̂<̂
:̂
3

2�
�
jzj2

2�3
; jzj � �;

1

jzj
; jzj > �;

z 2 R3: (2.13)

In this form, U� is the potential generated by a charged ball at 0 with radius � and constant

charge density jB� .0/j
�1 D 3=.4��3/, see Lemma 3.43.

2.4. Nondimensional Vlasov–Poisson System

In this section we discuss typical scales for the physical quantities involved in the Vlasov–Poisson

system (2.10) and transform it into a system with nondimensional units.

Important quantities for the time evolution of the plasma are its characteristic temperature

T0 and its characteristic number density n0. The former influences the strength of the drift

part v � rxf of the Vlasov equation relative to the acceleration part �q0=m0rx� � rvf , which

is controlled by the number density n0. In equilibrium, the typical velocity V0 is the thermal

velocity,

V0 D

s
kBT0

m0
;

where kB is the Boltzmann constant. Since f is a density function on the phase space R3 �R3

it has dimension length�3
� velocity�3. Therefore, we make the ansatz

f .t;x; v/ D
n0

V 30

zf
�
t=t0;x=L0; v=V0

�
;

with a nondimensional function zf . Here, L0 is the typical length scale of the plasma and

t0 D L0=V0 its time scale. Plugging this into the Vlasov equation yields

@zt
zf C zv � rzx

zf �
q0L0

m0V
2
0

rx� � rzv
zf D 0;

where the electric potential is still expressed in unscaled variables. The quotient

m0V
2
0

q0L0
D
kBT0

q0L0

has the unit of the electric field and is equal to the strength of a uniform field that is needed to

accelerate a particle with charge q0 and mass m0 from zero velocity to V0 on the distance L0.

This motivates the nondimensional form of the electric potential,

�.t;x/ D
kBT0

q0
z�
�
t=t0;x=L0

�
;
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2.4. Nondimensional Vlasov–Poisson System

so the rescaled Vlasov equation reads

@zt
zf C zv � rzx

zf � rzx
z� � rzv

zf D 0:

Inserting this into the Poisson equation for the � yields

��zx
z� D

L20

�2D

Z
R3

zf .zt ; zx; zv/ dzv;

where �D is the Debye length,

�D D

s
"0kBT0

n0q
2
0

:

In total, we obtain the nondimensional Vlasov–Poisson system,8̂̂<̂
:̂
@tf C v � rxf � rx� � rvf D 0;

��� D
L20

�2D

Z
R3

f dv:

Here and in the following, we drop the tildes and use f and � to refer to the nondimensional

functions.
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3. Boundary Integral Formulation

The ultimate goal of this chapter is to solve (2.8) for the unknown density  purely by means

of a formulation of the problem on the boundary of the domain, thus avoiding a volume dis-

cretisation, see Section 3.5. This strategy is known as Boundary Element Method which we

study in Section 3.4. It is based on a discretisation of of boundary integral equations discussed

in Section 3.3. The involved operators are defined by means of the Newton potential whose

properties are given in Section 3.2. We begin with a review of the relevant function spaces for

the treatment of elliptic boundary value problems. Their use, however, is not limited to this

chapter. Especially distributions are employed in several parts of this thesis.

3.1. Function Spaces

[The existence of] a non-negative

test function ' with '.0/ > 0 is all

one needs to get distribution

theory started.

(Lars Hörmander [87])

For the rest of this section, let � � Rd denote an open set. The function spaces we need for the

analysis of boundary value problems are linear subspaces of the large space of distributions. In

the presentation of this material, we mostly follow [87], see also [135] for more information on

distributions and [58, 76, 158] for a detailed discussion on Sobolev spaces. Trèves [159] gives a

general review of topological vector spaces.

3.1 Definition (Fréchet space) A vector space X equipped with a metric d is called Fréchet or

F -space if

• the vector addition and the scalar multiplication on X are continuous with respect to d ,

• and .X; d/ is complete, i.e. every Cauchy sequence converges.

3.2 Lemma For a Fréchet space .X; d/ there are countably many seminorms

j � jk W X ! Œ0;1/; k 2 N;

such that the mapping

zd W X �X ! Œ0;1/; .x; y/ 7!

1X
kD0

1

2k

jx � yjk

1C jx � yjk

defines a metric on X which is equivalent to d . This means that U � X is open with respect to zd if

and only if it is open in .X; d/.

In particular, a sequence .xn/n2N converges to x 2 X in .X; d/ if and only if

jxn � xjk ! 0; n!1;
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3. Boundary Integral Formulation

for all k 2 N.

Fréchet spaces are generalisations of Banach and Hilbert spaces.

3.3 Definition (Banach and Hilbert spaces) A Fréchet space .X; d/ is a Banach space if d is

induced by a norm k � k on X , i.e.

d.x; y/ D kx � yk; x; y 2 X:

If k � k is induced by an inner product .�; �/,

kxk D
p
.x; x/; x 2 X;

we call .X; .�; �// a Hilbert space.

3.4 Remark By the Jordan–von Neumann theorem [91, Theorem 1], the norm of a Banach space

.X; k � k/ is induced by an inner product if and only if k � k obeys the parallelogram law,

kx C yk2 C kx � yk2 D 2
�
kxk2 C kyk2

�
; x; y 2 X:

In this case, we say that the space X endowed with k � k is a Hilbert space.

Classical examples for Fréchet and Banach spaces are the vector spaces of (locally) integrable

and differentiable functions.

3.5 Definition (Measurable functions) LetM � Rd . A function f W M ! R is called Borel-

measurable if for every interval .a; b/ � R there is an element A of the Borel �-algebra on Rd ,

called (Borel-) measurable set, such that

f �1Œ.a; b/� D A \M;

where f �1Œ�� is the preimage mapping of f . The function f is called Lebesgue-measurable if there

exits Z �M with Lebesgue measure zero such that f jMnZ is Borel-measurable.

3.6 Definition (Integrable functions) For p 2 Œ1;1/ andM � Rd Borel-measurable, the vector

space of Lebesgue-measurable functions f WM ! R whose p-th power is integrable,Z
M

jf .x/jp dx <1

is denoted by Lp.M/. Equipped with the norm

k � k W Lp.M/! Œ0;1/; f 7!

0@Z
M

jf .x/jp dx

1A1=p ;
Lp.M/ is a Banach space provided we identify functions that are equal outside sets of measure zero.

The space of locally integrable functions Lp;loc.�/ on an open set � � Rd is defined by

Lp;loc.�/ D ff W �! R W f 2 Lp.K/ 8K � � compactg:

Convergence is understood with respect to the seminorms

j � jK;p W Lp;loc.�/! R; f 7! kf kLp.K/;

where K � � is compact. This turns Lp;loc.�/ into a Fréchet space.
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3.1. Function Spaces

3.7 Remark In Definition 3.6 we define the convergence in Lp;loc.�/ via the convergence with

respect to an uncountable number of seminorms. However, it suffices to consider a particular

countable number of compact sets, called an exhaustion of �, defined next. The same argument

applies to the spaces of differentiable functions we review in the following.

3.8 Definition (Exhaustion of open sets) We say that the sequence .�`/`2N of compact subsets

of � is an exhaustion of � if

� D
[
`2N

�`;

and �` � int�`C1 for all ` 2 N, where intA denotes the interior of A � Rd .

3.9 Definition (Differentiable functions) For k 2 N, the space

C k.�/ D ff W �! R W f has continuous derivatives of order kg

is a Fréchet space with respect to the seminorms

j � jK;˛ W C
k.�/! Œ0;1/; f 7! sup

x2K

jD˛f .x/j;

where K � � compact and ˛ 2 Nd with j˛j � k and

D˛f .x/ D
@˛1

@x
˛1

1

: : :
@˛d

@x
˛d

d

f .x/; x 2 �:

3.10 Definition (Smooth functions) We denote by E.�/ the space of infinitely differentiable

functions on �,

E.�/ D
\
k2N

C k.�/:

The topology on E.�/ is given by the seminorms

j � jK;˛ W E.�/! Œ0;1/; ' 7! sup
x2K

jD˛'.x/j;

where K � � is compact and ˛ 2 Nd . This turns E.�/ into a Fréchet space.

Test functions on� are a subspace of E.�/ with a stronger topology. Its construction is called

LF -space.

3.11 Definition (LF -space) Let X be a vector space which is the union of an increasing sequence

of subspaces .Xn/n2N,

X D
[
n2N

Xn; Xn � XnC1; n 2 N:

If all .Xn/n2N are Fréchet spaces such that Xn ,! XnC1 continuously for all n 2 N, we call X

an LF -space given the following topology: A convex subset U � X is a neighbourhood of zero

iff U \ Xn is a neighbourhood of zero in Xn for all n 2 N. This definition is independent of the

sequence of subspaces .Xn/n2N used in the construction of the topology. We say thatX is the (strict)

inductive limit of .Xn/n2N.

3.12 Definition (Support of functions) LetM � Rd . For a function f W M ! R, we call the

closed set

suppf D
˚
x 2M W f .x/ ¤ 0

	
the support of f .
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3. Boundary Integral Formulation

3.13 Definition (Test functions) For A � � closed let DA denote the linear subspace of functions

inE.�/whose support lies inA. The spaceD.�/ of test functions is the inductive limit of .D�`
/`2N

for an exhaustion .�`/`2N. This means that a sequence .'n/n2N in D.�/ converges to 0 if there is

a compact subset K such that supp'n � K for all n 2 N and

D˛'n ! 0; n!1

uniformly on all K � � compact and ˛ 2 Nd .

Sometimes we need smooth functions with compact support that do not vanish on the bound-

ary.

3.14 Definition (Test functions on closed sets) For A � Rd closed, we set

D.A/ D fujA W u 2 D.Rd /g:

Here, Rd in the definition may be replaced by any open set that contains A.

3.15 Definition (Distributions) The space of distributions is the dual space of D.�/ and is denoted

by D 0.�/. The topology on D 0.�/ is the weak-� topology, i.e. a sequence .un/n2N converges to 0 if

h'; uni ! 0; n!1

for all ' 2 D.�/.

3.16 Example For x0 2 � the Dirac distribution

ıx0
W D.�/! R; ' 7! '.x0/

lies in D 0.�/. In general, every locally integrable function f defines a distribution via

' 7!

Z
�

' f dx D h'; Tf i:

Moreover, the inclusion

L1;loc.�/ ,! D 0.�/; f 7! Tf

is injective and with dense image. Distributions of this type are called regular. Irregular distri-

butions are often called singular [65, p. 4]. The Dirac distribution is an example for a singular

distribution.

By duality, we can extend differentiation, multiplication and change of variables to distribu-

tions.

3.17 Definition (Basic operations on distributions) Assume u 2 D 0.�/.

(a) For  2 E.�/ we define the product  u by

h'; ui D h' ; ui; ' 2 D.�/:

(b) For ˛ 2 Nd the derivativeD˛u is given by

h';D˛ui D .�1/j˛j
hD˛'; ui; ' 2 D.�/:
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3.1. Function Spaces

(c) Suppose z� � Rd open and � W z�! � a C1-diffeomorphism. The distribution u ı � on z�

is defined by ˝
z'; u ı �

˛
D
˝
j detD�j�1 z'; u

˛
; z' 2 D. z�/;

whereD� denotes the Jacobi matrix of �, .D�/i;j D @j�i , for i; j D 1; : : : ; d .

3.18 Remark Above definitions are consistent with the usual for smooth functions. In particular,

we have for all  2 E.�/, ' 2 D.�/ and ˛ 2 Nd :

h';D˛T i D .�1/
j˛j

Z
�

D˛ ' dx D

Z
�

' D˛ dx D h'; TD˛ i

and  T' D T ' .

The notion of supports extends to distributions.

3.19 Definition (Support of distributions) A distribution u 2 D 0.�/ is said to vanish outside a

closed set F � � if

' 2 D.�/; supp' � � n F H) h'; ui D 0:

The support is then defined as

suppu D
\

F�� closed
u vanishes outside F

F:

3.20 Lemma The distributions with compact support are exactly the elements of E 0.�/, the dual

space of E.�/.

The convolution of functions, or generally distributions, is an important concept for the

integral operators discussed later in this chapter.

3.21 Definition (Convolution) For u; v 2 D 0.Rd /, where one has compact support, the convolu-

tion u � v 2 D 0.Rd /, is defined by

h'; u � vi D ux.vy.'.x C y///; ' 2 D.Rd /;

where the indices on u and v indicate the variable they are acting on. If u and v are regular, so is

u � v,

.u � v/.x/ D

Z
Rd

u.x � y/v.y/ dy; x 2 Rd :

The following properties are direct consequences of the definition.

3.22 Lemma For u; v 2 D 0.Rd / with one having compact support, the convolution is symmetric,

u � v D v � u, and derivatives can be exchanged between the two distributions,

D˛.u � v/ D .D˛u/ � v D u � .D˛v/; ˛ 2 Nd :

To study the smoothness of distributions we define Sobolev space of arbitrary order. The key

to their definition is the Fourier transform whose natural domain of definition are Schwartz

functions.
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3. Boundary Integral Formulation

3.23 Definition (Schwartz functions) With �.Rd /, we denote the space of rapidly decaying

elements of E.Rd /, called Schwartz functions,

' 2 �.Rd / () 8˛;ˇ 2 Nd W j'j˛;ˇ D sup
x2Rd

jxˇD˛'.x/j <1:

The Fréchet space topology on �.Rd / is induced by the family of seminorms .j � j˛;ˇ/˛;ˇ2Nd .

3.24 Definition (Fourier transform) For ' 2 �.Rd /, the Fourier transform y' 2 �.Rd / is defined

by

y'.�/ D F Œ'�.�/ D

Z
Rd

exp.ix � �/ '.x/ dx;

and continuously maps Schwartz functions onto Schwartz functions. We have yy' D .2�/d {' with

{'.x/ D '.�x/, x 2 Rd . Therefore, the inverse operation of F is

F �1Œy'�.x/ D .2�/�d
Z
Rd

exp.� ix � �/ z'.�/ d�:

Clearly, D.Rd / � �.Rd /. Thus, the dual space of �.Rd / is a subspace of D 0.Rd / and

contains those distributions to which we can extend Fourier transform while keeping most of its

properties.

3.25 Definition (Tempered distributions) The tempered distributions � 0.Rd / are the dual space

of �.Rd /, equipped with the weak-� topology.

3.26 Lemma The Fourier transform continuously extends from �.Rd / to � 0.Rd /. For u 2 � 0.Rd /

the Fourier transform yu 2 � 0.Rd / is defined by

h'; yui D hy'; ui

for ' 2 �.Rd /.

3.27 Lemma For all '; 2 �.Rd /, a 2 Rd and ˛ 2 Nd , we have

(a) F Œ'.� � a/�.�/ D exp.i a � �/y'.�/,

(b) F ŒD˛'�.�/ D .� i/j˛j�˛ y'.�/,

(c) F Œx˛'�.�/ D ij˛jD˛ y'.�/,

(d) F Œ' �  � D y' y ,

(e) F Œ'  � D .2�/�d y' � y ,

(f)

Z
Rd

'  dx D .2�/�d
Z
Rd

y' y d� (Parseval’s identity)

3.28 Remark The first three properties in Lemma 3.27 also hold for tempered distributions and

(d) and (e) hold if one of the factors is a tempered distribution.
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3.1. Function Spaces

The spaces and their duals we defined so far embed continuously as

D.Rd / � �.Rd / � E.Rd /

and

E 0.Rd / � � 0.Rd / � D 0.Rd /:

The class of Sobolev spaces are subspaces of � 0.Rd / whose elements are characterised by the

decay behaviour of their Fourier transform.

3.29 Definition (Sobolev spaces in Rd ) For s 2 R we define the Sobolev space of orders s on Rd ,

H s.Rd / D
n
u 2 � 0.Rd / W h�is yu 2 L2.R

d /
o
;

where h�is D .1C j�j2/s=2 for � 2 Rd . Endowed with the inner product

.u; v/s D .2�/
�d

Z
Rd

h�i2syu.�/yv.�/ d�; u; v 2 H s.Rd /;

this space is a Hilbert space. Furthermore, �.Rd / ,! H s.Rd / with dense image.

3.30 Theorem ([58, Theorem 9.3.2]) Given the identification of .L2.R
d //0 D L2.R

d /, the dual

space ofH s.Rd / is isometrically isomorphic to the Sobolev space of opposite order,

.H s.Rd //0 Š H�s.Rd /:

The definition of the inner product onH s.Rd / is nonlocal. However, if s is a positive integer,

.�; �/s admits an alternative presentation in L2-norms of derivatives:

3.31 Theorem ([158, Remark 25.2], [87, p. 241]) For s � 0 of the form s D mC � with m 2 N

and � 2 Œ0; 1/, we have

u 2 H s.Rd / H) 8˛ 2 Nd ; j˛j � m W D˛u 2 L2.R
d /

and furthermore if � > 0, Z
Rd

Z
Rd

jD˛u.x/ �D˛u.y/j2

jx � yjdC2�
dx dy <1

for all ˛ 2 Nd with j˛j D m. An equivalent inner product onH s.Rd / is given by

.u; v/ D
X

˛2Nd

j˛j�m

.D˛u;D˛v/L2.Rd /

C

X
˛2Nd

j˛jDm

Z
Rd

Z
Rd

.D˛u.x/ �D˛u.y//.D˛v.x/ �D˛v.y//

jx � yjdC2�
dx dy;

for u; v 2 H s.Rd /. The sum in the last line is dropped in case of � D 0.
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3. Boundary Integral Formulation

We continue with the definition of Sobolev on �. To this end, we fix an exhaustion .�`/`2N
for � with �` � int�`C1 for all ` 2 N and .�`/`2N � D.�/ such that 0 � �` � 1, �` D 1

on �` and supp�` � int�`C1 for all ` 2 N.

For distributions in H s.Rd / with compact support in �, we can naturally define Sobolev

spaces on �. This is similar to Definition 3.13. For a closed set A � Rd we define

H s
A D

n
u 2 H s.Rd / W suppu � A

o
;

a closed subspace ofH s.Rd / and therefore a Hilbert (and consequently a Fréchet) space when

endowed with the subspace topology.

3.32 Definition (Sobolev spaces on subsets I) The space H s
comp.�/ is defined as the inductive

limit of .H s
�`
/`2N. We have

H s
comp.�/ D

[
`2N

H s
�`
D

[
K��

K compact

H s
K :

Clearly,H s
comp.�/ � E 0.�/ continuously. Furthermore, D.�/ is dense inH s

comp.�/.

3.33 Example For ˛ 2 Nd and x0 2 �, the Fourier transform ofD˛ıx0
is

F .D˛ıx0
/.�/ D .� i/j˛j�˛ exp.ix0 � �/; � 2 Rd ;

which is regular and grows like h�ij˛j. Therefore h�imF .D˛ıx0
/ is square-integrable if and only

if m is smaller than �j˛j � d=2. This meansD˛ıx0
2 H

�j˛j�d=2�"
comp .�/ for all " > 0.

We obtain a second family of Sobolev spaces via localisation.

3.34 Definition (Sobolev spaces on subsets II) For s 2 R, we define the space

H s
loc.�/ D

n
u 2 D 0.�/ W 8' 2 D.�/ W 'u 2 H s.Rd /

o
;

endowed with topology induced by the seminorms

j � js;` W H
s
loc.�/! Œ0;1/; u 7! k�`uks; ` 2 N:

This turnsH s
loc.�/ into a Fréchet space. Moreover, E.�/ is dense inH s

loc.�/.

The two family of Sobolev spaces on � are linked via their dual spaces.

3.35 Theorem ([76, Remark 6.26], [158, p. 228]) For s 2 R it holds

.H s
loc.�//

0
Š H�s

comp.�/; .H s
comp.�//

0
Š H�s

loc .�/:

3.2. The Newton Potential

Zur bequemern Handhabung der dazu dienenden

Untersuchungen werden wir uns erlauben, dieses V

mit einer besondern Benennung zu belegen, und

diese Gröſse das Potential der Massen, worauf sie

sich bezieht, nennen.1

(Carl Friedrich Gauß [63])

For the rest of this section we fix an open set � � R3.

1“For a more convenient handling of the investigations, we will take the liberty to assign a special designation to

this V , and call this quantity the potential of the masses to which it refers.”
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3.2. The Newton Potential

3.36 Definition (Fundamental solution) The function

U W R3 n f0g ! .0;1/; z 7!
1

4�jzj

is the fundamental solution for the Laplacian ��. This means

��U D ı0;

if U 2 L1;loc.R
3/ is considered as a distribution on R3.

3.37 Definition (Newton potential) The linear mapping N W D.�/! E.R3/,

N '.x/ D U � '.x/ D

Z
�

U.x � y/'.y/ dy; x 2 R3;

is called Newton potential. It is continuous and extends to a continuous mapping between E 0.R3/

and D 0.�/ by duality,

h';N ui D hN '; ui;

for u 2 E 0.R3/ and ' 2 D.�/.

The Newton potential is the inverse of the Laplace operator on E 0.�/.

3.38 Lemma For u 2 E 0.R3/ it holds

��N u D N .��u/ D uj�:

Proof. For ' 2 D.�/, we have

h';��N ui D hN .��/'; ui

D hU � .��'/; ui D h.��U/ � '; ui

D hı0 � '; ui D h'; ui

and analogously for N .��u/. �

3.39 Example As a first example, we consider the Newton potential of ıx0
, x0 2 �. Then

ıx0
2 E 0.�/ and for the convolution we get

U � ıx0
D U.� � x0/ D

1

4�j � �x0j
:

Thus,

N ıx0
D

1

4�j � �x0j
:

The spaces E 0.�/ and D 0.�/ are too large in order to examine the smoothing properties of

the Newton potential. Furthermore, we wish to study the mapping properties of the Newton

potential in stronger topologies. Our first example with a Dirac distribution already shows that

for a sequence .xn/n2N in � which converges to x 2 �, we have

1

4�j � �xnj
!

1

4�j � �xj
; n!1 (3.1)

in L2;loc.R
3/, which means that the convergence of .ıxn

/n2N to ıx in the weak-� topology

implies the stronger convergence of .N ıxn
/n2N in L2;loc.R

3/. In general, N smoothes by two

orders.
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3. Boundary Integral Formulation

3.40 Theorem ([138, Theorem 3.1.2], [88]) For s 2 R,

N W H s
comp.�/! H sC2

loc .R3/

continuously.

3.41 Example From Example 3.33 we know that ıx0
2 H

�3=2�"
comp .�/ for x0 2 � and " > 0.

Consequently, N ıx0
2 H

1=2�"
loc .�/. For the particular choice of " D 1=2, we recover our

observation (3.1).

In our case the Dirac distribution ıx0
is an idealised representation of a charged particle placed

at x0. Albeit calculations with convolution operators are drastically simplified by this charge

model, the singularity at x0 causes theoretical and numerical problems. Since ıx0
62 zH�1.�/,

the well-developed L2-theory for the numerical solution of the Poisson equation on Lipschitz

domains by Finite Element Methods does not apply. For instance, we observe in Example 3.93

that the numerical approximations converge with a suboptimal rate.

In the theoretical study of the mean field limit as reviewed in Section 2.3 the regularisation is

mitigated by different regularisations. The singular N ıx0
is replaced by

zU� .x � x0/ D
1

4�

1p
.x1 � x0;1/2 C .x2 � x0;2/2 C .x3 � x0;3/2 C �2

; x 2 R3;

see Neunzert [119], or

U� .x � x0/ D
1

4�

8̂̂<̂
:̂
3

2�
�
jx � x0j

2

2�3
; jx � x0j � �;

1

jx � x0j
; else;

x 2 R3: (3.2)

used by Lazarovici and Pickl [110]. The latter is the rescaled Newton potential of B� .x0/, the

ball of radius � centred at x0.

3.42 Lemma The family of functions inH
1=2�"
comp .R3/,

ı�x0
D

1

jB� .x0/j
1B� .x0/;

converges to ıx0
as � ! 0 in H

�3=2�"
comp .R3/ for any " > 0. Here, 1B� .x0/ denotes the indicator

function of B� .x0/.

Proof. We first prove that ı�x0
2 H

1=2�"
comp .R3/ for all " > 0. To that end, it suffices to consider

the case x0 D 0 as the Fourier transforms only differ by a constant factor, cf. Lemma 3.27. The

Fourier transform of ı�
0
reads

F
�
ı�0
�
.�/ D

1

jB� .0/j

Z
B� .0/

exp.ix � �/ dx

D
1

jB� .0/j

�Z
0

2�r2
1Z

�1

exp.i j�jr�/ d� dr

D
3

�3

�Z
0

r
sin.j�jr/

j�j
dr D

3

�2j�j2

�
sin.� j�j/

� j�j
� cos.� j�j/

�
; � 2 R3:
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3.2. The Newton Potential

The term in brackets is bounded on R3 and thus h�isF
�
ı�

0

�
is square-integrable if and only if

2.s � 2/C 2 < �1;

that is s < 1=2. By expanding the trigonometric functions into their Taylor series around zero it

follows

lim
�!0

F
�
ı�0
�
.�/ D 1 D F .ı0/.�/; � 2 R3:

Together with the dominated convergence theorem [106, Theorem 5.8 Chapter VI],Z
R3

h�i�3�2"
jF
�
ı�x0

�
.�/ � F Œı0�.�/j

2 d� ! 0; � ! 0;

that is

ı�x0
! ıx0

; � ! 0

inH
�3=2�"
comp for all " > 0. �

3.43 Lemma With the notation of Lemma 3.42 it holds

N ı�x0
D U� .� � x0/;

where U� is given by (3.2).

Proof. We first note that

N ı�x0
.z/ D

1

jB� .x0/j

Z
B� .x0/

1

4�jz � yj
dy; z 2 R3;

so by the mean value property of harmonic functions [55, p. 25]

N ı�x0
.z/ D

1

4�jz � x0j

for z 2 R3 outside xB� .x0/. If z lies inside the ball B� .x0/, then

N ı�x0
.z/ D

3

4��3
2��3

1Z
0

1Z
�1

1

4�
r2
�
r2 � 2

jz � x0j

�
r� C

jz � x0j
2

�2

�� 1
2

d� dr

D
1

4�

3

2

1Z
0

�

jz � x0j
r

�
jz � x0j

�
C r �

ˇ̌̌̌
jz � x0j

�
� r

ˇ̌̌̌�
dr

D
1

4�

�
3

2�
�
jz � x0j

2

2�3

�
;

concluding the proof. �

The Newton potential of ı�x0
agrees with that of a point charge outside B� .x0/ and only

regularises the singularity in zero. Furthermore, N ı�x0
is constant on @B� .x0/. By the following

result due to Fraenkel [57, Theorem 1.1] (see also [132]) this uniquely characterises ı�x0
up to a

constant factor.

3.44 Theorem If the Newton potential of an open and bounded set � � R3 is constant on @�,

then � is a ball, � D B� .x0/ for some � > 0 and x0 2 R
3.
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3. Boundary Integral Formulation

3.3. Boundary Value Problems

Partial differential equations are made by God, the

boundary conditions by the Devil.

(Alan Turing )

Although the Newton potential is primarily defined to study solutions of the free space equation

��u D f in R3;

we shall see in this section that it is a versatile tool to analyse boundary value problems of the

form 8̂<̂
:
��u D f in �;

u D gD on �D;

n � ru D gN on �N ;

(3.3)

with a bounded domain � � R3 whose boundary � D @� with outward normal vector field n

is decomposed in an open Dirichlet part �D and an open Neumann part �N such that

x�D [ x�N D �; �D \ �N D ¿;

and given right hand side f , Dirichlet datum gD and Neumann datum gN .

Before we discuss the application of N to (3.3) we need a precise notion of the boundary

values appearing in (3.3). To that end, we review Sobolev spaces on Lipschitz manifolds and

relate them to the domain by means of trace operators. Finally, we give a representation of u

purely by its traces on the boundary and the volume term f and discuss the mapping properties

of the involved operators.

3.3.1. Sobolev Spaces and Lipschitz Boundaries

The Sobolev spaces H s
loc.�/ and H

s
comp.�/, we have discussed so far, are well suited for the

investigation of convolution-type operators. The Newton potential from the previous section is

a typical example. However, these spaces are either too small or too large to sufficiently describe

values on the boundary. In case ofH s
comp.�/, all elements have zero trace on � , whereasH

s
loc.�/

contains the functions from E.�/ that generally can not be extended to x�. Therefore, we need

to further restrict the set of admissible functions. Since we need results for both � (d D 3) and

� (d D 2), we present the theory for general dimension d , � � Rd . Most of the material is

taken from [113, Chapter 3].

3.45 Definition (Sobolev spaces on subsets III) For s 2 R, we define the Sobolev spaceH s.�/ of

order s on � as the quotient space

H s.�/ D H s.Rd /=H s
�c ;

where u1; u2 2 H
s.Rd / are equivalent if u1 � u2 2 H

s
�c , i.e. u1 and u2 coincide on �. Together

with the quotient norm

kŒu�k D inf
v2H s

�c

ku � vks; Œu� 2 H s.�/;

H s.�/ is a Hilbert space. Here, Œ�� denotes the equivalent classes inH s.�/.
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3.3. Boundary Value Problems

3.46 Remark There is a one-to-one correspondence between the equivalence classes inH s.�/

and the restriction of elements inH s.Rd / on�. Specifically, for u1; u2 2 Œu�with Œu� 2 H
s.�/,

u1j� D u2j� C .u1 � u2/j� D u2j�;

since u1 D u2 on �. Thus, Œu� is uniquely described by u1j� and instead of working with

equivalence classes, we can think of H s.�/ as a space of certain restricted distributions. An

equivalent norm onH s.�/ is

kŒu�k D inf
zu2H s.Rd /

zuj�Du

kzuks; Œu� 2 H s.�/:

3.47 Remark Several properties that hold forH s.Rd / orH s
comp.�/ do not hold forH

s.�/ for

a general open set � � Rd . They crucially depend on the smoothness of the boundary @�, for

instance:

• In general, it is not possible to continuously select an element of the equivalence class for

u 2 H s.�/, i.e. an extension of u from � to Rd .

• Even though D.Rd / is dense inH s.Rd /, it is generally not true that D
�
x�
�
is dense in

H s.�/. However, E.�/ \ H s.�/ is always dense in H s.�/. This follows by a slight

generalisation of the classical paper “H D W ” by Meyers and Serrin [115].

For the characterisation of the dual space ofH s.�/, we need a second class of Sobolev spaces

on �.

3.48 Definition (Sobolev spaces on subsets IV) For s 2 R, zH s.�/ is defined as the completion of

D.�/ inH s.Rd /,

zH s.�/ D D.�/
H s.Rd /

:

From the definition we see
zH s.�/ � H s

x�
;

sinceH s
x�
is a closed subspace ofH s.Rd / that contains D.�/. For s � 0 of the form s D mC�

with m 2 N and � 2 Œ0; 1/, we conclude by Theorem 3.31:

D˛u 2 L2.�/ 8˛ 2 Nd W j˛j � m;Z
�

Z
�

.D˛u.x/ �D˛u.y//2

jx � yjdC2�
dx dy <1; 8˛ 2 Nd W j˛j D m:

(3.4)

for all u 2 H s.�/. To establish the converse inclusion, respectively, implication, we need

Lipschitz regularity of the boundary � .

3.49 Definition (Lipschitz boundary) An open set � � Rd has a Lipschitz boundary if for all

x 2 � D @�, there exist a1; : : : ; ad > 0, an open neighbourhood V and a Lipschitz continuous

function

� W

d�1Y
jD1

Œ�aj ; aj �! R
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3. Boundary Integral Formulation

such that after a rigidmotion, i.e. a rotation and translation, in a new coordinate system .y1; : : : ; yd /,

we have

V D f.y1; : : : ; yd / W �aj < yj < aj ; j D 1; : : : ; dg D V
0
� Œ�ad ; ad �

and

j�.y 0/j �
an

2
8y 0
2 V 0;

� \ V D f.y 0; yd / 2 V W yd < �.y
0/g;

� \ V D f.y 0; yd / 2 V W yd D �.y
0/g:

If � is unbounded, we additionally require that the Lipschitz constants of the local parametrisations

� are uniformly bounded.

3.50 Remark Every open set whose boundary is a smooth manifold has a Lipschitz boundary.

Moreover, the following holds [73, Corollary 1.2.2.3]:

3.51 Lemma Let � � Rd be a bounded open convex set. Then � has a Lipschitz boundary.

For open sets with Lipschitz boundary, the extension and density properties from Remark 3.47

hold true:

3.52 Lemma Let � have a Lipschitz boundary. Then D
�
x�
�
is dense inH s.�/ for all s 2 R.

3.53 Lemma Suppose that � has Lipschitz boundary. Then for all s � 0 there exists a continuous

operator, called Stein’s extension operator [147, p. VI.23],

E W H s.�/! H s.Rd /

such that .Eu/j� D u for all u 2 H s.�/. For smooth functions, also the values on the boundary

are preserved:

.E'/jx� D '; ' 2 D
�
x�
�
:

3.54 Proposition If � has Lipschitz boundary, then

zH s.�/ D H s
x�

for all s 2 R. Furthermore, if s D mC � with m 2 N and � 2 Œ0; 1/, then

Hm.�/ D
n
u 2 L2.�/ W 8˛ 2 Nd W j˛j � m W D˛u 2 L2.�/

o
and if � > 0,

H s.�/ D fu 2 Hm.�/ W 8˛ 2 Nd W j˛j D m W jD˛uj�;� <1g;

where the seminorm j � j�;� is given by

jvj2�;� D

Z
�

Z
�

.v.x/ � v.y//2

jx � yjdC2�
dx dy; v 2 H�.�/:

An equivalent norm onH s.�/ is

kuk2s;� D
X

˛2Nd

j˛j�m

kD˛uk2L2.�/
C

X
˛2Nd

j˛jDm

jD˛uj2�;�; u 2 H s.�/;

where the sum over the seminorms is dropped if � D 0.
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3.3. Boundary Value Problems

Sobolev spaces on Lipschitz domains admit an easy characterisation of their dual spaces.

3.55 Proposition For s 2 R and an open set � � Rd with Lipschitz boundary,

.H s.�//0 Š zH�s.�/; . zH s.�//0 Š H�s.�/:

3.3.2. Sobolev Spaces on Manifolds

By virtue of the local parametrisation for the Lipschitz boundary � , we can identify functions on

� with those on Rd�1. For the sake of convenience, the assume that the boundary � is compact.

Thus, there are open cubes V1; : : : ; Vn � R
d together with rigid motions R1; : : : ; Rn on R

d

and Lipschitz continuous functions �1; : : : ; �n defined on V
0
1; : : : ; V

0
n such that

� �

n[
iD1

RiVi

and for all x 2 � there exist i 2 f1; : : : ; ng and zx 2 V 0
i with x D Ri .zx; �i .zx//. For a partition

of unity .�i /
n
iD1 of � subordinate .RiVi /

n
iD1, we can rewrite every function u W � ! R as

zu.zx/ D

nX
iD1

.�iu/ ıRi .zx; �i .zx//; zx 2 Rd�1:

By Rademacher’s theorem [131], Lipschitz continuous functions are almost everywhere differen-

tiable. We can therefore define the surface gradient r� as the gradient of above representation.

The spaceH 1.�/ consists of those functions u on � for which zu is inH 1
loc.R

d�1/. For spaces

H s.�/ with s 2 .0; 1/, we use the characterisation from Theorem 3.31. This motivates the

following definition:

3.56 Definition (Sobolev spaces on manifolds) For s 2 .0; 1/, we define the Sobolev space of order

s on � as

H s.�/ D fu 2 L2.�/ W jujs;� <1g;

with

juj2s;� D

Z
�

Z
�

.u.x/ � u.y//2

jx � yjd�1C2s
dSy dSx:

Endowed with the norm

kuk2s;� D kuk
2
L2.�/

C juj2s;� ; u 2 H s.�/;

this normed space is a Hilbert space. Furthermore, we setH 0.�/ D L2.�/ and

H 1.�/ D fu 2 L2.�/ W kr�ukL2.�/ <1g;

which is a Hilbert space with respect to the norm

kuk21;� D kuk
2
L2.�/

C kr�uk
2
L2.�/

; u 2 H 1.�/:

Sobolev spaces of negative order are defined as the dual space of the respective Sobolev space,

H�s.�/ D .H s.�//0; s 2 Œ0; 1�:
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3. Boundary Integral Formulation

3.57 Remark By construction of the Sobolev spaces on � , the inclusion

� W H s.�/ ,! L2.�/

is continuous with dense image for all s 2 Œ0; 1�. Therefore, the adjoint

�0 W H�s.�/! L2.�/
0

is continuous and injective. Because H s.�/ is reflexive, �0 has a dense image [23, Chapter 5,

Remark 3]. Under the identification .L2.�//
0 D L2.�/, we have

H s.�/ ,! L2.�/ ,! H�s.�/

with dense inclusions. This situation is known as Gelfand triple [66, Chapter I, Section 4.2] or

rigged Hilbert spaces, frequently utilised inQuantum Mechanics, see the dissertation [112] and

the references cited therein.

In particular, for all ˆ 2 H�s.�/ there exists .�n/n2N in L2.�/ such that

sup
u2H s.�/
u¤0

jhu; �ni� �ˆ.u/j

kuks;�
! 0; n!1;

where h�; �i� denotes the L2.�/-pairing

L2.�/ � L2.�/! R; .u; v/ 7!

Z
�

u v dS:

Another application of Rademacher’s theorem shows that we can uniquely define an outward

normal vector almost everywhere on � .

3.58 Lemma Let � � Rd open with Lipschitz boundary � . There exits a measurable function

n W � ! Sd�1

which almost everywhere is the unique outward normal vector to � . Here, Sd�1 denotes the unit

sphere in Rd .

Proof. After rotation and translation and a partition of unity, we can assume that� has the form

� D f.y 0; yd / 2 V W yd < �.y
0/g

and furthermore

� D f.y 0; yd / 2 V W yd D �.y
0/g;

where V D Œ�a1; a1� � � � � � Œ�ad ; ad � D V
0 � Œ�ad ; ad � for a1; : : : ; ad > 0 and � W V

0 ! R

is Lipschitz continuous. Since y 7! yd � �.y
0/ equals zero on � and is almost everywhere

differentiable, � has a unique tangent plane for almost all y 0 2 V 0 with normal vector

n D
1p

1C jr�.y 0/j2

�
��.y 0/

1

�
By definition, y ! yd � �.y

0/ is negative on � and positive on x�c , so, because the gradient

points into the direction of the steepest ascent, the vector n.y/ is the outward normal vector of

� at y . �
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3.3. Boundary Value Problems

3.3.3. Trace Operators

Sobolev spaces on � naturally arise in the discussion of boundary values. An important result is

Gagliardo’s trace lemma [61], in the version of Costabel [37]:

3.59 Lemma For all s 2 .1=2; 3=2/, there is a unique continuous extension of


0 W E.R
d /! H s�1=2.�/; ' 7! 'j�

toH s
loc.R

d / for all open sets � � Rd with Lipschitz boundary.

The range .1=2; 3=2/ in the formulation in the trace lemma cannot be extended in general,

see Mikhailov [116]:

3.60 Lemma There is no bounded extension of the trace operator 
0 fromH
1=2
loc .R

d / to L2.�/ for

an open set � � Rd with Lipschitz boundary.

3.61 Lemma If s > 3=2 and � � Rd is an open set with Lipschitz boundary, then


0 W H
s
loc.R

d /! H 1.�/

is continuous.

For s 2 .1=2; 3=2/, we loose 1=2 order of regularity when applying the trace operator. This

result is sharp:

3.62 Lemma Let � be a bounded Lipschitz domain. For s 2 .1=2; 3=2/, the trace operator


0 W H
s
loc.R

d /! H s�1=2.�/

is surjective. There exits a continuous linear operator

E W H s�1=2.�/! H s
loc.R

d /;

called extension operator, such that


0Eu D u; 8u 2 H
s�1=2.�/:

With the definition of 
0 for Sobolev spaces, we proceed with the definition of the normal

derivative. For the ease of presentation, we restrict us to Sobolev spaces of integral order, namely

H 2.�/ andH 1.�/.

For u 2 H 2.�/, we have ru 2 H 1.�/d . Therefore, its componentwise trace 
0.ru/ is

well-defined. We set


1u D n � 
0.ru/;

where n is the outward normal vector to � , the boundary of the Lipschitz set � � Rd . Clearly,

this defines a continuous operator


1 W H
2.�/! L2.�/:

For our purposes, the definition of 
1 is too strict. First, we wish to study boundary values

problems and the associated integral operators in more generality. Second, the range of the

adjoint 
 0
1 W L2.�/!

zH�2.�/ is too large.

Thus, we extend above definition of 
1 fromH 2.�/ to a larger space. The crucial observation

is that we only need information on the normal trace of the gradient which can be defined for

less regularity than u 2 H 1.�/.
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3. Boundary Integral Formulation

3.63 Definition (Special Sobolev spaces) Let � � Rd be open. WithH.div; �/ we denote the

space of functions u 2 L2.�/
d such that the distributional divergence divu lies in L2.�/,Z

�

divu' dx D �

Z
�

u � r' dx; ' 2 D.�/:

Endowed with the graph norm

kuk2�;div D kuk
2
0;� C k divuk20;�; u 2 H.div; �/;

this space is a Hilbert space.

For v 2 D
�
x�
�
and u 2 D

�
x�
�d
, the divergence of the product vu is given by

div.vu/ D rv � uC v divu;

so an application of Gauß’ theorem the left hand side after integration over � yieldsZ
�

v u � n dSx D

Z
�

�
rv � uC v divu

�
dx:

Now, the right hand side is a continuous bilinear form onH.div; �/ �H 1.�/, so the left hand

side can be uniquely extended to�

0H

1.�/
�0

� 
0H
1.�/ D H�1=2.�/ �H 1=2.�/:

Therefore, it holds:

3.64 Lemma The normal trace


n W D
�
x�
�d
! L2.�/;u 7! n � 
0u

has a unique, surjective linear continuous extension to


n W H.div; �/! H�1=2.�/:

Since the normal derivative is the normal trace of the gradient, the additional requirement for

u 2 H 1.�/ to have a well-defined normal derivative is ru 2 H.div; �/, so

div
�
ru
�
D �u 2 L2.�/:

The space of such functions is denoted byH 1
�.�/,

H 1
�.�/ D fu 2 H

1.�/ W �u 2 L2.�/g:

It is a Hilbert space if equipped with the graph norm,

kuk2 D kuk21;� C k�uk
2
0;�; u 2 H 1

�.�/:
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3.3. Boundary Value Problems

3.65 Lemma (Normal derivative) For � � Rd open and bounded with Lipschitz boundary � , the

continuous linear mapping


1 W H
1
�.�/! H�1=2.�/;

defined by


1u D 
nru; u 2 H 1
�.�/;

is surjective and extends the normal derivative for u 2 H 2.�/, i.e.


1u D n � 
0.ru/:

For u 2 H 1
�.�/ and v 2 H

1.�/ we have by the definition of 
1,

h
0v; 
1ui� D hrv;rui� C hv;�ui�: (3.5)

This relation is known as Green’s first identity.

3.66 Lemma Let� � Rd be open and bounded with Lipschitz boundary � . The normal derivative


1 W H
1
�.�/! H�1=2.�/

is continuous and surjective ifH 1
�.�/ is endowed with the graph norm

kuk2
H1

�.�/
D kuk21;� C k�uk

2
0;�; u 2 H 1

�.�/:

3.3.4. Representation Formula

For the rest of the section we shall focus on three-dimensional boundary value problems. To

that end, we fix an open, bounded set � � R3 with Lipschitz boundary. With Green’s first

identity (3.5),

h
0v; 
1ui� D hrv;rui� C hv;�ui�;

h
0u; 
1vi� D hru;rvi� C hu;�vi�;

for u; v 2 H 1
�.�/. Subtracting the second from the first equation, we get

hv;�ui� � h�v; ui� D h
0v; 
1ui� � h
0u; 
1vi� : (3.6)

This is Green’s second identity. We now apply this result to boundary value problems of the

form (3.3), 8̂<̂
:
��u D f in �;


0u D gD on �D;


1u D gN on �N ;

(3.7)

where f 2 L2.�/, gD 2 H
1=2.�D/, gN 2 H

�1=2.�N / and the open sets �D; �N � �

comprise a partition of � ,

�D \ �N D ¿; x�D [ x�N D �:

Here, Sobolev spaces on open subsets �1 of � are defined by

zH s.�1/ D
˚
u 2 H s.�/ W suppu � x�1

	
; s 2 Œ�1; 1�;
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3. Boundary Integral Formulation

and similar to Definition 3.45,

H s.�1/ D H
s.�/= zH s.� n x�1/ Š

˚
uj�1

W u 2 H s.�/
	
; s 2 Œ�1; 1�:

With Green’s second identity (3.6), we see

h��v; ui� D h
0v; 
1ui� � h
0u; 
1vi� C hv; f i� 8v 2 H 1
�.�/;

where we have used that ��u D f in �. Rewriting the equation by the use of adjoints yields

h��v; ui� D hv; 

0
0
1ui� � hv; 


0
1
0ui� C hv; f i� 8v 2 H 1

�.�/:

Applying the Newton potential, we get Green’s third identity or representation formula:

3.67 Theorem ([113, Theorem 6.10], [138, Theorem 3.1.6]) For the solution u of the boundary

value problem (3.7) holds the following representation by the Cauchy datum .
0u; 
1u/ and right

hand side f :

u D .N 
 0
0/
1u � .N 
 0

1/
0uCN f: (3.8)

Proof. We start with the consequence from Green’s second identity,

h��v; ui� D hv; 

0
0
1ui� � hv; 


0
1
0ui� C hv; f i� 8v 2 H 1

�.�/:

From Lemma 3.38, we know that the Newton potential is the inverse of the negative Laplacian,

so

hv; ui� D hv;N 
 0
0
1ui� � hv;N 
 0

1
0ui� C hv;N f i� 8v 2 H 1
�.�/;

This shows

u D .N 
 0
0/
1u � .N 
 0

1/
0uCN f;

which concludes the proof. �

In the following, the study the mapping properties of N 
 0
0, N 
 0

1.

3.68Definition (Single-layer potential) The single-layer potentialV D N 
 0
0 is a linear continuous

mapping

V W H�1=2.�/! H 1
loc.R

3/;

in particular,

V W H�1=2.�/! H 1.�/:

The function V is harmonic in � [ x�c for all  2 H�1=2.�/. If  W � ! R is bounded and

measurable,

V .x/ D
1

4�

Z
�

1

jx � yj
 .y/ dSy ; x 2 R3:

Proof. From Lemma 3.59 we know


0 W H
1
loc.R

3/! H 1=2.�/

continuously. Thus with Theorem 3.35


 0
0 W H

�1=2.�/! H�1
comp.R

3/:
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3.3. Boundary Value Problems

Composing this with the Newton potential N ,

N W H�1
loc .R

3/! H 1
loc.R

3/;

yields

V W H�1=2.�/! H 1
loc.R

3/ ,! H 1.�/

continuously. To show that V is harmonic on � [ x�c D R3 n � , let ' 2 D.R3 n �/. Then,

h��';V i� D �hN�'; 
 0
0 i� D h'; 


0
0 i� D h
0'; i� D 0;

where the ultimate equality follows from 
0' D 0 since supp' is a proper subset ofR3 n� . �

3.69 Definition (Double-layer potential) The double-layer potential W D N 
 0
1 is a linear

continuous mapping

W W H 1=2.�/! H 1.�/;

with

W'.x/ D
1

4�

Z
�

.x � y/ � n.y/

jx � yj3
'.y/ dSy ; x 2 � [ x�c

for ' 2 H 1=2.�/. Furthermore, W' is harmonic in �.

Proof. The mapping property of W follows from that of V , N and the regularity of the solution

for the boundary value problem (3.7) [37, Theorem 1]. The harmonicity of W' for ' 2 H 1=2.�/

is proved similar to that of V , where 
0 is replaced by 
1. �

3.3.5. Boundary Integral Operators

With the single- and double-layer potential, we can rewrite the representation formula (3.8) as

u D V
1u �W
0uCN f:

Applying 
0 and 
1 on above equation gives us a system of coupled boundary integral equations,�

0u


1u

�
D

�
1
2
� K V

W 1
2
C K0

��

0u


1u

�
C

�
N0f

N1f

�
; (3.9)

where N0;N1 are the Dirichlet and Neumann traces of N , respectively, and V is the single-layer

operator, K is the double-layer operator andW is the hypersingular operator. Below, we collect

some of their properties [148, Chapter 6]:

3.70 Definition (Single-layer operator) The linear mapping

V D 
0V W H
�1=2.�/! H 1=2.�/

is called single-layer operator. It is continuous, self-adjoint and coercive, i.e. there is cV > 0 such

that

8 2 H�1=2.�/ W hV ; i� � cVk k
2
�1=2;� :

For  W � ! R bounded and measurable,

V .x/ D
1

4�

Z
�

1

jx � yj
 .y/ dSy ; x 2 �:
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3.71 Definition (Double-layer operator) The linear mapping

1

2
C K D 
0W W H

1=2.�/! H 1=2.�/

is continuous. For ' W � ! R measurable and bounded the double-layer operator K has the

representation

K'.x/ D
1

4�
lim
"!0

Z
�nB".x/

.x � y/ � n.y/

jx � yj3
'.y/ dSy ; x 2 �:

3.72 Definition (Hypersingular operator) The linear mapping

W D �
1W W H
1=2.�/! H�1=2.�/;

called hypersingular operator, is continuous and self-adjoint. It is semi-coercive, i.e. there is cW > 0

such that

8' 2 H 1=2.�/ W h';W'i� � cWj'j
2
1=2;� :

Restricted on zH 1=2.�1/, where �1 � � is open such that � n �1 is not a null set,W is coercive,

8' 2 zH 1=2.�1/ W h';W'i� � zcWk'k
2
1=2;� ;

with a constant zcW > 0. If � is piecewise smooth, then for '; 2 C.�/ that are piecewise smooth,

h ;W'i� D
1

4�

Z
�

Z
�

curl�  .x/ � curl� '.y/

jx � yj
dSy dSx:

Here curl� denotes the surface rotation,

curl� D n � r� :

3.73 Proposition The continuous linear mapping

C W H 1=2.�/ �H�1=2.�/! H 1=2.�/ �H�1=2.�/;

�
'

 

�
7!

�
1
2
� K V

W 1
2
C K0

��
'

 

�
is called Calderón projector and is indeed a projection, C2 D C.

With the Calderón projector we can expressN1 in terms ofN0 and the single- and double-layer

potential. This is especially useful in numerical applications.

3.74 Lemma In the situation of (3.9), it holds

N1f D V�1

�
�
1

2
C K

�
N0f D

�
�
1

2
C K0

�
V�1N0f:

Proof. We have �

0u


1u

�
D C

�

0u


1u

�
C

�
N0f

N1f

�
;

Applying C on both sides yields

C

�

0u


1u

�
D C2

�

0u


1u

�
C C

�
N0f

N1f

�
:
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3.3. Boundary Value Problems

Because of the projection property C2 D C this means

C

�
N0f

N1f

�
D

�
0

0

�
:

Inspecting the first equation of above system,

VN1f C

�
1

2
� K

�
N0f D 0;

shows

N1f D V�1

�
�
1

2
C K

�
N0f:

By the projection property of the Calderón projector, C2 D C, it follows

VK0
D KV;

and therefore

V�1

�
�
1

2
C K

�
N0f D

�
�
1

2
C K0

�
V�1N0f;

which proves the alternative formulation. �

From (3.7) the traces of u are known only on parts of the boundary. By choosing extensions

.xgD; xgN / 2 H
1=2.�/ �H�1=2.�/ of gD and gN , respectively, we can write


0u D xgD C zu;


1u D xgN C zt

with unknown zu 2 zH 1=2.�N / and zt 2 zH
�1=2.�D/. To solve for

�
zu; zt
�
, we also need to split the

operators fV;K;K0;Wg into contributions on �D and �N , respectively. For A 2 fV;K;K
0;Wg

that mapsH s1.�/ toH s2.�/ with s1; s2 2 Œ�1; 1�, we define ADN by the diagram

zH s1.�N / H s1.�/ H s2.�/ H s2.�D/;
A rD

where rD is the restriction map from � to �D . Analogously, we define ADD , ANN and AND .

Note that the adjoint of the restriction rD is the inclusion zH�s2.�D/ ,! H�s2.�/, so, for

instance, .ADN /
0 D A0

ND . With above notation we reformulate (3.9) into a system of equations

for .zu; zt /, �
VDD KDN
�K0

ND WNN

��
zt

zu

�
D

�
b1
b2

�
; (3.10)

where b1 2 H
1=2.�D/, b2 2 H

�1=2.�N / with

b1 D

�
1

2
C K

�
xgD � VxgN � N0f; b2 D

�
1

2
� K0

�
xgN �WxgD � N1f: (3.11)

3.75 Theorem If �D has positive surface measure, j�Dj > 0, then (3.10) has a unique solution

that continuously depends on .f; xgN ; xgD/.
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3. Boundary Integral Formulation

Proof. Since j�Dj > 0, VDD is coercive. We can therefore solve the first equation for zt ,

zt D .VDD/
�1
�
b1 � KDN zu

�
:

Inserting this in the second equations yields

�.KDN /
0.VDD/

�1
�
b1 � KDN zu

�
CWNN zu D b2;

so

Szu D b2 C .KDN /
0.VDD/

�1b1;

where S W zH 1=2.�N /! H�1=2.�N / is the Schur complement, given by

S DWNN C .KDN /
0.VDD/

�1.KDN /:

It is linear continuous, symmetric and coercive,

h'; S'i� D h';WNN'i� C hKDN'; .VDD/
�1KDN'i� � zcWk'k

2
1=2;�

for all ' 2 zH 1=2.�N / sinceWNN and .VDD/
�1 are coercive, as j� n�N j D j�Dj > 0. To show

that the solution
�
zt ; zu

�
continuously depends on the data .f; xgN ; xgD/, we first note that S

�1

and .VDD/
�1 are continuous, so .zt ; zu/ depends continuously on .b1; b2/. From definition of the

right hand side we see that .f; xgN ; xgD/ 7! .b1; b2/ is continuous and thus .f; xgN ; xgD/ 7! .zt ; zu/

is continuous. �

In preparation for a numerical treatment of (3.10) by means of a Galerkin formulation, we

reformulate Theorem 3.75 as a variational formulation:

3.76 Corollary Suppose j�Dj > 0. Then, the variational formulation8̂<̂
:
Find .zt ; zu/ 2 zH�1=2.�D/ � zH

1=2.�N / such that

hVzt ; 'i� C hKzu; 'i� � h ;K
0 zti� C h ;Wzui� D hb1; 'i� C h ; b2i�

for all .';  / 2 zH�1=2.�D/ � zH
1=2.�N /;

(3.12)

with .b1; b2/ as in (3.11), has a unique solution that continuously depends on .f; xgN ; xgD/.

3.4. Boundary Element Methods

In other words we want to find out whether or not

crime pays; fortunately for the finite element

method, it often does.

(Gilbert Strang [152])

Corollary 3.76 shows that we can uniquely determine the unknown traces zt D 
1uj�D
and

zu D 
0uj�N
in 8̂<̂

:
��u D f in �;


0u D gD on �D;


1u D gN on �N
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3.4. Boundary Element Methods

with the help of the variational formulation (3.12). The solution u and its derivatives can then be

evaluated by means of the representation formula (3.8),

u D V
�
xgN C zt

�
�W

�
xgD C zu

�
CN f: (3.13)

However, neither for (3.12) nor for (3.13) there exist closed expressions for general domains

that permit the rapid evaluation of the solution u or its traces. Therefore, we have to rely on

approximations of the exact solution u. The most widespread approximation scheme is called

Galerkin method. Its idea is to solve (3.12) for a sequence of finite-dimensional subspaces. The

variational formulation is then equivalent to the solution of a (large) linear system. In the

following, we describe the Galerkin method and study its convergence properties. To that end,

we set

H D zH�1=2.�D/ � zH
1=2.�N /;

endowed with the norm k.';  /k2 D k'k2
�1=2;�

C k k2
1=2;�

, and define the bilinear form

a W H �H ! R; ..zt ; zu/; .';  // 7! hVzt ; 'i� C hKzu; 'i� � h ;K
0 zti� C h ;Wzui� ;

as well as the linear form

` W H ! R; .';  / 7! hb1; 'i� C h ; b2i� :

The variational formulation then reads8̂<̂
:
Find .zt ; zu/ 2 H such that

a
�
.zt ; zu/; .';  /

�
D `

�
.';  /

�
for all .';  / 2 zH�1=2.�D/ � zH

1=2.�N /;

From the previous section we know that ` 2 H 0 and, furthermore, that a is continuous,

ja
�
.zt ; zu/; .';  /

�
j � c1k.zt ; zu/kk.';  /k;

for all .zu; zt /; .';  / 2 H and a constant c1 > 0. Furthermore, a is coercive, that is,

a
�
.zt ; zu/; .zt ; zu/

�
� c2k.zt ; zu/k

2

for all .zt ; zu/ 2 H with a constant c2 > 0.

We now consider a sequence of monotonically increasing finite dimensional subspaces .Hh/h,

indexed by a monotonically decreasing null sequence .hn/n2N. In addition, we require that the

union of the subspaces is dense inH , [
h2.0;1/

Hh D H:

The Galerkin approximation .th; vh/ 2 Hh is the unique solution to the finite-dimensional

variational formulation 8̂<̂
:
Find .th; uh/ 2 Hh such that

a
�
.th; uh/; .'h;  h/

�
D `

�
.'h;  h/

�
for all .'h;  h/ 2 Hh:

(3.14)

The key result for the convergence analysis of the Galerkin method is Céa’s Lemma [30, Proposi-

tion 3.1] in the formulation of Birkhoff, Schultz, and Varga [10, Theorem 13]:
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3. Boundary Integral Formulation

3.77 Lemma The error of the Galerkin method is bounded by the best approximation error,

k.zt ; zu/ � .th; uh/k �
c1

c2
inf

.'h; h/2Hh

k.zt ; zu/ � .'h;  h/k:

A direct consequence of Céa’s lemma is an abstract convergence result for the Galerkin method.

3.78 Lemma The sequence of Galerkin approximations .th; uh/h converges to .zu; zt /, the unique

solution of (3.12).

Proof. Let " > 0. By density of the subspaces .Hh/h inH , there is h0 > 0 and .'h0
;  h0

/ 2 Hh0

such that

k.zt ; zu/ � .'h0
;  h0

/k <
c2

c1
":

Since the spaces .Hh/h are nested, we obtain with Céa’s Lemma

k.zt ; zu/ � .th; uh/k �
c1

c2
inf

.'h; h/2Hh

k.zt ; zu/ � .'h;  h/k �
c1

c2

c2

c1
" D "

for all h � h0. �

This result is only of theoretical interest as the convergence speed may be arbitrarily slow,

depending on the choice of the spaces .Hh/h and the regularity of the solution .zt ; zu/. In numerical

applications, the approximation spaces are defined by means of a discretisation of the boundary

� into triangles. To avoid technical difficulties, we assume from now on that

� � R3 is a Lipschitz polyhedron,

defined below.

3.79 Definition (Lipschitz polyhedron) A convex polyhedron� � R3 is an open, bounded subset

which can be written as the intersection of finitely many half-spaces of the form

fx 2 R3 W x � e < bg;

with e 2 S2 and b 2 R. An open, bounded and connected set� � R3 is called Lipschitz polyhedron

if it is the finite union of convex polyhedra and the resulting boundary is Lipschitz.

3.80 Remark By Lemma 3.51 convex polyhedra are Lipschitz polyhedra. However, the union of

two convex polyhedra does not need to have a Lipschitz boundary. A classical counterexample

are two stacked bricks, where one of them is rotated by 90 degrees:

p

It is not possible to locally parameterise the boundary at p by two variables only. In particular,

the boundary is not the graph of a Lipschitz function.
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3.4. Boundary Element Methods

3.81 Definition (Triangulation) A triangulation .Th/h of � D @� is a sequence of meshes,

indexed by a monotonically decreasing null sequence .hn/n2N such that for all n 2 N:

• Thn
is a finite set of pairwise disjoint flat, open triangles in R3 with[

T2Thn

xT D �;

• and the diameters of all triangles in Thn
are bounded by hn,

sup
T2Thn

sup
x;y2T

jx � yj � hn:

The triangulation .Th/h is called regular if in addition for all n 2 N and T1; T2 2 Thn

xT1 \ xT2 D

8̂̂̂̂
<̂
ˆ̂̂:

¿; or

a common vertex; or

a common edge; or

xT1:

and the interior angles of all triangles in .Th/h are uniformly bounded from below.

3.82 Definition (Spline spaces) Let the polyhedron � have flat faces .�j /
p
jD1, called panels,

� D

p[
jD1

x�j

and let .Th/h be a regular triangulation that conforms to the panel decomposition, i.e. each triangle

in .Th/h lies completely in one of the panels .�j /
p
jD1. Furthermore, let �1 be the union of a subset

of panels .�j /
p
jD1. By Thj�1, we denote the set of all triangles in Th that lie in �1. We set

S0h .�1/ D fu 2 L2.�1/ W ujT D const. 8T 2 Thj�1g;

the vector space of piecewise constant splines, and

S1h .�1/ D
˚
u 2 C

�
x�1
�
W ujT is affine linear 8T 2 Thj�1 and uj@�1

D 0
	
;

the vector space of continuous piecewise affine linear splines. Here @�1 denotes the boundary of �1
relative to � , i.e. it is the union of all edges in Th for which one adjacent triangle lies in �1 and the

other in � n x�1.

The definition of the spline spaces on subsets of � insures that S0
h
.�D/ � S

1
h
.�N / is a linear

subspace of zH�1=2.�D/ � zH
1=2.�N / if �D and �N conform to the panel decomposition, i.e.

they are unions of the panels .�j /
p
jD1. Since the elements of S

0
h
.�D/ are piecewise constant on

Thj�D , their supports lie in x�1, so that

S0h .�D/ �
zH�s.�D/
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3. Boundary Integral Formulation

for all s 2 Œ0; 1�. For 'h 2 S
1
h
.�N /, we note that 'hjT continuously differentiable for every

T 2 Thj�N . Together with the continuity across the elements of Thj�N this means that 'h
admits a weak gradient, so 'h 2 H

1.�N /. Due to 'hj@�N
D 0, supp'h � x�N and thus

'h 2 zH
s.�N /

for all s 2 Œ0; 1�.

Let .Ti /
n
iD1, .xj /

m
jD1 be enumerations of the triangles in Thj�1 and vertices in Thj�1 without

those on @�1, respectively. Then .'0i /
n
iD1 defines a basis of S

0
h
.�/, where

'0i .x/ D

(
1; x 2 Ti

0; otherwise
; x 2 �; i D 1; : : : ; n:

Furthermore, the functions . 1j /
m
jD1 � S

1
h
.�/ uniquely determined by

 1j .xi / D ıij ; i; j D 1; : : : ; n:

form a basis of S1
h
.�/.

In the following, we assume that �D and �N conform to the panel decomposition of � and fix

a conforming, regular triangulation .Th/h with .nh/h triangles and .mh/h vertices. The abstract

approximation spaces .Hh/h from the beginning of the section are now

Hh D S
0
h .�D/ � S

1
h .�N /:

With the traces sought in the form


1u �

nhX
lD1

˛l'
0
l ; 
0u �

mhX
jD1

ǰ 
1
j ;

for ˛ 2 Rnh , ˇ 2 Rmh , the variational formulation (3.14) is equivalent to the linear system 
V DD
h

�KDN
h�

KDN
h

�>
W NN
h

!�
˛D

ˇN

�

D

 
1
2
MDD
h
CKDD

h
�V DN

h

�W ND
h

1
2

�
MNN
h

�>
�
�
KNN
h

�>
!�

ˇD

˛N

�
�

�
ND
0

NN
1

�
;

(3.15)

where

VhŒk; l� D
1

4�

Z
Tl

Z
Tk

1

jx � yj
dSy dSx;

WhŒi; j � D
1

4�

Z
�

Z
�

curl�  
1
i .x/ � curl�  

1
j .y/

jx � yj
dSy dSx;

KhŒk; j � D
1

4�

Z
Tk

Z
�

n.y/ � .x � y/

jx � yj3
 1j .y/ dSy dSx;

MhŒk; j � D

Z
Tk

 1j .y/ dSy ;

(3.16)
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3.4. Boundary Element Methods

for k; l D 1; : : : ; nh and i; j D 1; : : : ; mh. The superscripts of the matrix blocks in (3.15) indicate

that they are submatrices,

Vh D

 
V DD
h

V DN
h

V ND
h

V NN
h

!
; Wh D

 
W NN
h

W ND
h

W DN
h

W DD
H

!
;

Kh D

 
KDN
h

KDD
h

KNN
h

KND
h

!
; Mh D

 
MDN
h

MDD
h

MNN
h

MND
h

!
:

The triangles and vertices are enumerated such that the first nD
h
, respectively, mN

h
lie in �D ,

respectively, �N and the rest in the respective complement. Similarly, the superscripts at the

vectors mean that we only refer to the subvector that corresponds to triangles or vertices on the

given part of the boundary. Lastly, the vectors N0, N1 are given by

N0Œl � D

Z
Tl

N0f .y/ dSy ; N1Œj � D

Z
�

N1f .y/ 
1
j .y/ dSy ;

for l D 1; : : : ; nh, j D 1; : : : ; mh and N0, N1 are defined in (3.9). The coefficients
�
˛N ;ˇD

�
appearing on the right hand side are found by L2 projection of the boundary data .gN ; gD/

onto the corresponding spline spaces, see the discussion before Corollary 3.88.

In view of Céa’s Lemma 3.77, the next step would be to investigate the approximation error of

…Eh W H ! Hh; .';  / 7! argmin
.'h; h/2Hh

k.';  / � .'h;  h/k;

which, sinceH is a Hilbert space, is equivalent to

…Eh .';  / D .'
�
h ;  

�
h /;

where .'�
h
;  �
h
/ 2 Hh is the orthogonal projection of .';  / ontoHh,

8.�h; �h/ 2 Hh W
�
.'�
h ;  

�
h /; .�h; �h/

�
H
D
�
.';  /; .�h; �h/

�
H
:

However, this approach is computationally infeasible. The inner product on H involves the

nonlocal inner product onH 1=2.�/ with a singular kernel (cf. Definition 3.56),

.u; v/1=2;� D

Z
�

uv dSx C

Z
�

Z
�

�
u.x/ � u.y/

��
v.x/ � v.y/

�
jx � yj3

dSy dSx;

with u; v 2 H 1=2.�/, and the inner product on H�1=2.�/ is induced by the operator norm.

Thus, we study projections with respect to the computationally accessible L2 norm:

3.83 Definition (L2 projection onto spline spaces) Suppose �1 � � is open and conforms to the

panel decomposition of � . We define the projection operators

…k�1;h
W L2.�1/! Skh .�1/; u 7! argmin

vh2Sk
h
.�1/

ku � vhk0;�1
; k 2 f0; 1g:
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3. Boundary Integral Formulation

In the following, we shall review error estimates for the L2 projection. In order to get optimal

convergence rates for h! 0, we have to require higher regularity of the projected function than

(square-) integrability. Since the basis functions of the spline space are nonzero only on a small

part of the boundary, higher regularity is only needed locally, i.e. on individual patches. This

gives rise to piecewise Sobolev spaces. In a preparatory step, we define Sobolev spacesH s.�/

for s > 1 on flat panels � � � .

3.84 Definition (Higher order Sobolev spaces on panels) Let � � � be an open and flat panel.

Furthermore, let F be the plane that contains � . For s > 0, the Sobolev spaceH s.�/ is defined as

the restriction ofH s.F / on � .

For s 2 Œ0; 1� we have to show that this definition coincides with our previous definition of

H s.�/ as restriction ofH s.�/ on � . To that end, we consider the diagram

H sC1=2.R3/ H s.F /

H sC1=2.�/ H s.�/

H s.�/


F

rFE�


� r�

Here, E� denotes the continuous extension operator on � from Lemma 3.53, 
� and 
F are the

trace operators on � and F , respectively, and r� , rF the restriction operators on � from � and

F . The lower path in the diagram represents our previous definition ofH s.�/, the upper one

Definition 3.84. Let ' 2 D
�
x�
�
. By construction of the extension and trace operators, we have

.rF 
FE�/' D 'j� ;

which is also what we obtain when we restrict the trace 
�' D 'j� to � . Thus,

rF ı 
F ıE� D r� ı 
� on D
�
x�
�
:

Since D
�
x�
�
is dense in H sC1=2.�/ (Lemma 3.52) and all involved mapping are continuous,

equality holds on H sC1=2.�/. This proves that both definitions give rise to the same space

H s.�/ for s 2 Œ0; 1�.

3.85 Definition (piecewise Sobolev spaces) Let �1 � � be the union of flat panels .�j /j2P with

P � f1; : : : ; pg. For s � 0, the piecewise Sobolev space of order s on �1 is defined by

H s
pw.�1/ D fu 2 H

s�

.�1/ W 8j 2 P W uj�j 2 H
s.�j /g:

Here, s� D 0 for s 2 Œ0; 1� and equals 1 for s > 1. Furnished with the norm

H s
pw.�1/! Œ0;1/; u 7!

0@kuk2s�;�1
C

X
j2P

kuk2s;�j

1A1=2 ;
this space is a Hilbert space.

The error estimates for the L2 projection operators now follow by locally applying standard

estimates for polynomial approximation, see for instance [22, Chapter 4] and [54, Chapter 1],

as well as [138, Section 4.3] and [148, Chapter 10] for a derivation in the context of Boundary

Element Methods.
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3.86 Lemma Let .Th/h be a regular triangulation that conforms to the panel decomposition of � .

For the error of L2 projection onto the spline space Sk
h
.�1/ it holds

ku �…k�1;h
uk��;�1

� ChsCkC�
kukpw;sCk;�1

; u 2 H sCk
pw .�1/;

where �1 � � open is a collection of panels, k 2 f0; 1g, s 2 Œ0; 1� and � 2 Œ0; s�. The constant

C > 0 only depends on �1, the shape regularity of .Th/h and k; s and � .

A combination of Céa’s Lemma 3.77, the projection estimates from Lemma 3.86 and so-called

inverse estimates, which bound Sobolev norms of spline functions by lower order norms (cf. [148,

Section 10.2], [54, Section 1.7], [22, Section 4.5]), yields a convergence estimate for the Galerkin

method:

3.87 Theorem Assume that �D and �N conform to the panel decomposition of � . Let .Th/h be a

regular triangulation of � that also conforms to the panels. If the solution
�
zt ; zu

�
of the variational

formulation (3.12) fulfils �
zt ; zu

�
2 H 1

pw.�D/ �H
2
pw.�N /;

and we use

Hh D S
0
h .�D/ � S

1
h .�N /; h > 0;

as approximating spaces, then the following L2 estimates for the difference of .th; uh/, the solution

of (3.14), and
�
zt ; zu

�
hold:

kzt � thk0;�D
� Chkztkpw;1;�D

;

kzu � uhk0;�N
� Ch2kzukpw;2;�N

:

Here, the constant C > 0 only depends on �D , �N and the shape regularity of .Th/h.

So far our analysis focused on the bilinear form a in the variational formulation and thereby

ignoring the right hand side ` for which we have to compute .b1; b2/ from (3.11),

b1 D

�
1

2
C K

�
xgD � VxgN � N0f; b2 D

�
1

2
� K0

�
xgN �WxgD � N1f:

In most applications, it is difficult to find analytical expressions for the extensions .xgN ; xgD/ of

the boundary data. Therefore, we numerically construct .xgN ; xgD/ by projecting the extensions

by zero of .gN ; gD/ onto the spline space S
0
h
.�/�S1

h
.�/. In this way, we introduce an additional

error in our formulation (3.14) which, by Lemma 3.86, is in the same order as the Galerkin error.

By the use of the triangle inequality and the continuity of the solution with respect to the right

hand side, we immediately obtain

3.88Corollary Under the assumptions ofTheorem 3.87 with .xgN ; xgD/ replaced by theL2 projection

of .gN ; gD/, the following error estimates hold:

kzt � thk0;�D
� Ch

�
kztkpw;1;�D

C kgN kpw;1;�N

�
;

kzu � uhk0;�N
� Ch2

�
kzukpw;2;�N

C kgDkpw;2;�D

�
:

The method to derive estimates in weaker norms is known as Aubin–Nitsche lemma [54,

Lemma 2.31] and requires a priori estimates for the solution of the variational formulation in

higher order Sobolev norms. For Boundary Element Methods, these estimates rely on a result by

Verchota [161, Theorem 3.3]:
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3.89 Lemma The single-layer operator

V W L2.�/! H 1.�/

is continuous with a continuous inverse. By duality, this also holds for

V W H�1.�/! L2.�/:

With this lemma Steinbach [148, Theorem 12.3] concludes

3.90 Lemma In the situation of Corollary 3.88 we have

kzt � thk�1;� � Ch
2
�
kztkpw;1;�D

C kgN kpw;1;�N

�
;

where C > 0 only depends on �N , �D and the shape regularity of .Th/h.

With Corollary 3.88 and Lemma 3.90 we now discuss the error for the representation formula,

u D V
�
zt C xgN

�
�W

�
zuC xgD

�
CN f;

where .xgN ; xgD/ and
�
zt ; zu

�
are replaced by their Galerkin approximations. For x 2 �, the

functions 
0U.x � �/ and 
1U.x � �/ D �n � rU.x � �/ are smooth functions on � , i.e. they lie

in D.�/.

3.91 Lemma Let �D , �N and .Th/h fulfil the assumptions of Theorem 3.87 and let .xgN ; xgD/

constructed by L2 projection. With xuh, we denote the function obtained by inserting the Galerkin

approximations of the traces into the representation formula. For x 2 �, there exists C > 0 such

that

ju.x/ � xuh.x/j � Ch
2
�
kztkpw;1;�D

C kgN kpw;1;�N
C kzukpw;2;�N

C kgDkpw;2;�D

�
;

jru.x/ � r xuh.x/j � Ch
2
�
kztkpw;1;�D

C kgN kpw;1;�N
C kzukpw;2;�N

C kgDkpw;2;�D

�
:

Proof. Let x 2 �. With the panel decomposition

� D

p[
kD1

x�k;

the error in the representation formula is written as

ju.x/ � xuh.x/j D

ˇ̌̌̌
ˇ pX
kD1

Z
�k

U.x � y/
�

1u � th � xgN

�
.y/ dSy

C

Z
�k

nk � rU.x � y/
�

0u � uh � xgN

�
.y/ dSy

ˇ̌̌̌
ˇ

�

pX
kD1

ˇ̌
hU.x � �/; 
1u � th � xgN i�k

ˇ̌
C
ˇ̌
hnk � rU.x � �/; 
0u � uh � xgN i�k

ˇ̌
�

pX
kD1

kU.x � �/k1;�k
k
1u � th � xgN k�1;�

C knk � rU.x � �/k0;�k
0u � uh � xgN k0;�k
:
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3.4. Boundary Element Methods

Here nk D nj�k
denotes the constant outward normal vector on the flat panel �k , k D 1; : : : ; p.

We have 
0uj�D
D gD and 
0uj�N

D zu, so for panels in �D the L2 error is bounded by the

projection estimate in Lemma 3.86. For the terms on �N , we use the Galerkin estimates from

Corollary 3.88. With Lemma 3.90 and again Lemma 3.86, we estimate the negative Sobolev

norm of the Neumann traces. This proves that the error scales as h2 for h ! 0. The same

argument with U replaced by rU yields the error estimate for the gradient of the representation

formula. �

We conclude this section with two numerical examples that demonstrate the studied conver-

gence rates. For a sequence of meshes with number of triangles n1; n2; : : : we assume that the

error follows

errk D cnk
˛; k 2 N; (3.17)

for a constant c > 0 and the convergence rate ˛ 2 R. Based on this assumption, we compute

the estimated order of convergence (eoc),

eock D
log

errkC1

errk

log
nkC1

nk

; k 2 N;

which, for errors of the form (3.17), evaluates to ˛.

3.92 Example We choose � as the unit ball in R3,

� D B1.0/; � D S2;

and

�D D fx 2 S
2
W x3 > 0g; �N D � n x�D:

The data .f; gD; gN / are chosen such that the harmonic polynomial

u W �! R; x 7! x21 C x
2
2 � 2x

2
3

is the exact solution of the boundary value problem (3.7). Table 3.1 shows the approximation

Table 3.1.: Relative errors of the Cauchy datum, estimated order of convergence and number of

pcg iterations for homogeneous boundary value problem in Example 3.92.

nh k
1u � thk0;�=k
1uk0;� eoc k
0u � uhk0;�=k
0uk0;� eoc cgV cgS

320 7:80 � 10�2 — 1:51 � 10�2 — 19 13

1280 3:84 � 10�2 �0:51 3:67 � 10�3 �1:02 23 13

5120 1:91 � 10�2 �0:50 9:13 � 10�4 �1:00 25 14

20 480 9:69 � 10�3 �0:49 2:19 � 10�4 �1:03 26 16

81 920 4:75 � 10�3 �0:51 5:73 � 10�5 �0:97 26 18

error of the Cauchy datum .
1u; 
0u/ for a sequence of triangular meshes with nh elements

together with the estimated order of convergence with respect to nh. Since nh scales as h
�2 for

a regular triangulation, our results are in accordance with the convergence rates reported in

Corollary 3.88. We use the preconditioned conjugated gradient method (pcg) to solve the linear

system (3.15). For the inversion of VDD we use the preconditioner developed by Stevenson and

Venetië [151]. It is based on the hypersingular operator multiplied from the left and right with
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3. Boundary Integral Formulation

two sparse matrices that depend on the connectivity of the triangular mesh and can be assembled

in linear complexity with respect to the number of triangles.

Because its mapping properties are similar to that of the hypersingular operatorW, the Schur

complement S is preconditioned with a technique proposed by Stevenson and Venetië [150] for

W that relies on V multiplied with two sparse matrices. These matrices can be again assembled

in linear complexity. In contrast to the preconditioner in [148, p. 305], which uses a sparse mass

matrix whose inverse is fully populated, the preconditioner in [150] involves an inversion of a

diagonal matrix thus mitigating this issue.

Since the preconditioner is not directly designed for S, the number of pcg iterations is not

bounded with increasing nh but depends logarithmically on nh [148, p. 326], as shown in the

last column of Table 3.1.

3.93 Example We compute the electric field E of a particle c inside a grounded sphere. The

electric potential � satisfies (
��� D ı�c in B1.0/;


0� D 0 on S2;
(3.18)

with ı�c D jB� .c/j
�11B� .c/ and � > 0 such that xB� .c/ � B1.0/. The Green function for the

unit ball with Dirichlet boundary conditions is constructed by the method of image charges [129,

Section 3-5],

G.x;y/ D
1

4�

1

jx � yj
�

1

4�

1

jyjjx � y�j
; x;y 2 B1.0/;

where y� is the Kelvin transform of y ,

y�
D

y

jyj2
:

Written in terms of the Green function, the electric potential � has the form

�.x/ D

Z
B1.0/

G.x;y/ı�c .y/ dy D
1

jB� .c/j

Z
B� .c/

G.x;y/ dy; x 2 B1.0/:

For x 2 B1.0/ n xB� .c/, the integrand G.x; �/ is harmonic in an open neighbourhood of B� .c/.

Thus the integral simplifies to

�.x/ D G.x; c/; x 2 B1.0/ n xB� .c/;

by means of the mean value property. In Fig. 3.1, we compare the relative pointwise errors of

two different numerical methods for the solution of (3.18) at three points along the line

r 7! re.�=3;��=5/; (3.19)

where

e.#; '/ D

0@sin# cos'sin# sin'

cos#

1A ; # 2 Œ0; ��; ' 2 Œ��; ��:

The particle is put at c D .1=2; 0; 0/ with � D 1 � 10�3. The BEM solution is obtained by

solving (3.15). In accordance with the theoretical results of Lemma 3.91 the error decays linearly

with respect to the number of surface triangles, in particular close to the boundary.
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3.5. Application to Plasma Dynamics
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N�1
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N�1

r D 99
100

BEM first order FEM fourth order FEM

Figure 3.1.: Relative pointwise error of the gradient against degrees of freedom for the solution

of (3.18) at three points along the line (3.19).

A direct application of the Finite Element Method (FEM) to (3.18) yields suboptimal con-

vergence rates due to the low regularity of the right hand side, ı�c 2
zH 1=2�".�/, " > 0, cf.

Lemma 3.43. Therefore, why we approximate the solution of the auxiliary boundary value

problem (
���0 D 0 in B1.0/;


0�0 D �U.� � c/ on S2;

instead. Here, we have used that xB� .c/ � B1.0/ and, by Lemma 3.43, N ı�c D U.� � c/ outside

B� .c/. The results for linear and fourth order splines are calculated with the open source library

NGSolve.2 Standard convergence results on pointwise errors for FEM such as [22, Corollary

8.1.12] convey that the fourth order FEM should converge superlinearly and sublinearly if using

first-order splines. This is reflected in our numerical study: In the centre of the ball, r D 3=10,

the error decays very slowly. At r D 1=2, the error even increases in between. The good

performance of the FEM error near the boundary is an artefact of the auxiliary formulation.

Because the exact solution is imposed as Dirichlet condition, the evaluation of the gradient near

the boundary essentially uses the projected exact solution rather than the FEM solution.

3.5. Application to Plasma Dynamics

After we have discussed Boundary Element Methods for the Poisson equation, we now return

to our starting point, namely the computation of the electric field generated by a plasma. As

we already know from Sections 2.3 and 2.4, the (nondimensional) electric field E of np particles

with charges q1; : : : ; qnp
and positions x1; : : : ;xnp

in a bounded Lipschitz polyhedron � � R3

equals �r�, where � is the solution of the boundary value problem8̂̂̂̂
<̂
ˆ̂̂:
��� D

L20

�2D

nX
jD1

qj ı
�
xj

in �;


0� D gD on �D;


1� D gN on �N ;

2https://ngsolve.org/
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with given data .gN ; gD/ and the regularised Dirac distribution ı
�
x discussed in Lemma 3.43. We

now employ Boundary Elements Methods to find approximations of the exact Cauchy datum.

To that end, let .�h; �h/ 2 S
0
h
.�/ � S1

h
.�/ denote the discretisations of .
1�; 
0�/,

�h D

nhX
lD1

˛l'
0
l ; �h D

mhX
kD1

ˇk 
1
k ;

where we have used the notation of Section 3.4. The coefficient vectors ˛;ˇ are the solution

of (3.15), reprinted here for reference, 
V DD
h

�KDN
h�

KDN
h

�>
W NN
h

!�
˛D

ˇN

�
D

 
1
2
MDD
h
CKDD

h
�V DN

h

�W ND
h

1
2

�
MNN
h

�>
�
�
KNN
h

�>
!�

ˇD

˛N

�
�

�
ND
0

NN
1

�
:

The matrix-vector product on the right hand side only depends on the surface mesh and the

boundary conditions .gN ; gD/ and may be computed in advance. Only the vectors of the Newton

potential depend on the particle positions, with N0 given by

N0Œl � D
L20

�2D

npX
jD1

qj

Z
Tl

U� .y � xj / dSy ; l D 1; : : : ; nh;

where U� D N ı�
0
, c.f. (2.13) and Lemma 3.43. Afterwards, we compute N1 by means of the

discrete form of Lemma 3.74,

N1 D

�
�
1

2
M>
h CK

>
h

�
V �1
h N0;

thus avoiding an integration ofrU� over� . Here, the application of the inverse V
�1
h

is computed

efficiently with the cg method. Because we use the preconditioner [151], c.f. Example 3.92, we

only need a constant number of iterations to reach a given error tolerance, independent of the

number of triangles. Afterwards, we solve (3.15) as described in Example 3.92 with a combination

of the preconditioners [150, 151] for the Schur complement and for the single-layer operator,

respectively.

The approximate solution then reads

�h D V�h �W�h C
L20

�2D

npX
jD1

qjU� .� � xj /:

Note that �h is differentiable and by the harmonicity of the single- and double-layer potentials it

additionally holds

���h D
L20

�2D

npX
jD1

qj ı
�
xj
;
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3.5. Application to Plasma Dynamics

so �h is an exact solution of the Poisson equation and thus incorporates the physically relevant

long-range behaviour together with a nearfield smoothing consistent with the mean field limit.

Fully written out, the approximation of the electric field Eh at the position of the i -th particle is

Eh.xi / D
L20

�2D

npX
jD1

qj

4�

8̂̂<̂
:̂

xi � xj

�3
; jxi � xj j � �;

xi � xj

jxi � xj j3
; jxi � xj j > �;

C

nhX
lD1

˛l

4�

Z
Tl

xi � y

jxi � yj3
dSy

�

mhX
kD1

ˇk

4�

Z
supp 1

k

�
3

n.y/ � .xi � y/.xi � y/

jxi � yj5
�

n.y/

jxi � yj3

�
 1k .y/ dSy

(3.20)

for i D 1; : : : ; np . Here, the surface integrals can be computed analytically and a reliable

evaluation of Eh is ensured in all parts of the domain, in particular near the boundary [77]. In

this form, however, the computational time for the evaluation of the electric field at all particle

positions scales quadratically with their number np . Moreover, since the matrices in (3.15) are

fully populated, the complexity of solving for˛ and ˇ depends quadratically on nh. Consequently,

a direct computation of Eh is prohibitively expensive even for a moderate numbers of particles

and triangles. By the use of hierarchical approximations we review next, the computational

complexity is reduced from O.n2p C n
2
h
/ to O

�
r.np C nh/

�
with a parameter r � np; nh.
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4. Hierarchical Approximation

Bäume wachsen nicht in den Himmel.1

(German adage)

Hierarchical matrices (H -matrices) unify the treatment of tree-based approximation methods

such as the Barnes–Hut algorithm [5], the Fast Multipole Method [70, 72], or the panel cluster

method [79]. In this section, we focus on a specific subsets of H -matrices, called H2-matrices.

For their presentation, we follow [15], see also [78] and [7]. The monograph [134] is devoted to

applications of hierarchical methods in Boundary Element Methods.

The computation of the electric field of the particle system (3.20) involves the assembly of

fully populated matrices (3.16),

AŒi; j � D

Z
�

Z
�

 i .x/K.x;y/'j .y/ dSy dSx; i 2 	; j 2 J; (4.1)

for a singular kernel K, index sets 	;J, test functions . i /i2	 and trial functions .'j /j2J . For

the evaluation of the Newton potential, matrix-vector products with matrices of the form

AŒi; j � D K.xi ;yj /; i 2 	; j 2 J (4.2)

have be to performed. Here, .xi /i2	 and .yj /j2J may represent particle positions or quadrature

points on the boundary � . The treatment of these matrices is greatly simplified if the kernel has

a special structure:

4.1 Definition (Degenerated expansion) A kernel K W X � Y ! R, X; Y � R3, admits a

degenerated expansion if there exist r 2 N and functions gk W X ! R, hk W Y ! R for

k D 1; : : : ; r such that

K.x;y/ D

rX
kD1

gk.x/hk.y/; .x;y/ 2 X � Y:

In this case, r is called the rank of the expansion.

4.2 Lemma If the kernel K in (4.1) or (4.2) has a degenerated expansion
�
gk; hk

�r
kD1

, r 2 N, then

A 2 Rj	j�jJj can be written as

A D GH>

with G 2 Rj	j�r and H 2 RjJj�r . If r � minfj	j; jJjg, we say that A admits a low-rank

factorisation.

The storage complexity for A is reduced from O.j	j � jJj/ to O
�
r.j	j C jJj/

�
. In particular, a

matrix-vector multiplication is performed with O
�
r.j	j C jJj/

�
operations.

1“Trees do not grow to the sky.”
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4. Hierarchical Approximation

Proof. We only give the proof for (4.1),

AŒi; j � D

Z
�

Z
�

 i .x/K.x;y/'j .y/ dSy dSx; i 2 	; j 2 J;

the case of (4.2) being proved in complete analogy. For i 2 	; j 2 J we obtain after inserting

the degenerated expansion of K,

AŒi; j � D

rX
kD1

0@Z
�

 i .x/gk.x/ dSx

1A0@Z
�

hk.y/'j .y/ dSy

1A
D

rX
kD1

GŒi; k�H>Œk; j �;

where

GŒi; k� D

Z
�

 i .x/gk.x/ dSx; HŒj; k� D

Z
�

'j .y/hk.y/ dSy ; k D 1; : : : ; r:

The storage complexity for the matrices G and H is O.r j	j/ and O.r jJj/, respectively, so A

needs O
�
r.j	j C jJj/

�
words of memory. Since every element of A is touched once during the

matrix-vector multiplication, its complexity is O
�
r.j	j C jJj/

�
. �

The kernels in our application do not degenerate but belong to a set of functions that allow for

a degenerated expansion up to an error term that locally decays exponentially with increasing

rank.

4.3 Definition (Asymptotically smooth functions) The kernel K is asymptotically smooth if it

is smooth outside the diagonal f.x;x/ W x 2 R3g and there exists c > 0, � > 0 such that for all

˛;ˇ 2 N3

jD˛
xD

ˇ
y K.x;y/j � c.˛C ˇ/Š�j˛jCjˇj jK.x;y/j

jx � yjj˛jCjˇj
; x ¤ y 2 R3:

4.4 Example The fundamental solution

K.x;y/ D
1

4�

1

jx � yj
; x ¤ y 2 R3;

is asymptotically smooth with � D 1.

Before we construct exponentially converging degenerated expansions for asymptotically

smooth kernels by the use of a truncated Taylor expansion, we first introduce some notation.

For B1; B2 � R
3, the diameter of B1 is given by

diam.B1/ D sup
.x;y/2B1�B1

jx � yj:

With

dist.B1; B2/ D inf
.x;y/2B1�B2

jx � yj
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we denote the distance between B1 and B2. For a bounded function F W B1 � B2 ! R,

kFkB1�B2
D sup
.x;y/2B1�B2

jF.x;y/j

is its least upper bound.

4.5 Lemma Let K be asymptotically smooth with constants .c; �/ . For two open, bounded, convex

and disjoint sets B1; B2 � R
3 such that

� D
diam.B1/

dist.B1; B2/
<
1

�
; (4.3)

the Taylor series with respect to x converges exponentially, that is, the remainder of the Taylor

expansion

K.x;y/ D
X

j˛j�r

1

˛Š
D˛

xK.x0;y/.x � x0/
˛
CRx0;r.x;y/ (4.4)

fulfils

kRx0;rkB1�B2
�
c

2
kKkB1�B2

.r C 3/.r C 2/
�
��
�rC1

for all x0 2 B1 and r 2 N.

Proof. Let x0 2 B1. The remainder of the Taylor expansion of order r 2 N around x0 has the

form [98, p. 65]

Rx0;r.x;y/ D
X

j˛jDrC1

1

˛Š
D˛

xK.�;y/.x � x0/
˛; .x;y/ 2 B1 � B2;

for � on the line between x0 and x. With the estimate on the derivatives of K in Definition 4.3,

we conclude

jRx0;r.x;y/j � c
X

j˛jDrC1

�j˛j jK.�;y/j

j� � yjj˛j
jx � x0j

j˛j

D c�rC1

�
jx � x0j

j� � yj

�rC1

jK.�;y/j
X

j˛jDrC1

1

� c�rC1

�
diam.B1/

dist.B1; B2/

�rC1

jK.x;y/j
X

j˛jDrC1

1

D
c

2
.r C 3/.r C 2/

�
��
�rC1
jK.�;y/j:

Taking the supremum over all points in B1�B2 yields the desired estimate. For the computation

of the sum over all multiindices ˛ 2 N 3
0 with j˛j D r C 1, we use the following combinatorial

argument [154, pp. 15 f.]. Suppose we have k 2 N balls placed along a line,

� � �

We now divide them into d groups by inserting d � 1 sticks between them, where we also allow

empty groups,
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4. Hierarchical Approximation

� � �

Every multiindex of order k corresponds to exactly one of the possible configurations. To count

their total number, we note there are k C d � 1 positions where we can place the sticks to

separate the balls. Because the sticks are indistinguishable, there are 
k C d � 1

d � 1

!
D
.k C d � 1/Š

kŠ.d � 1/Š

different configurations. Applying this to our situation with zd D 3 and zk D r C 1 yields

X
j˛jDrC1

1 D

 
r C 3

2

!
D
1

2
.r C 3/.r C 2/;

thus proving the upper bound for the remainder. �

Apart from the asymptotical smoothness of the kernel function, an essential ingredient for

the exponential convergence of the remainder is condition (4.3) which means that B1 and B2
are well separated and thus admissible for a rapidly converging degenerate expansion. Since we

later focus on symmetric expansions, we slightly sharpen (4.3):

4.6 Definition (Admissibility condition) Two sets B1; B2 � R
3 are called �-admissible for � > 0

if

maxfdiam.B1/; diam.B2/g � � dist.B1; B2/:

4.7 Lemma Let K be asymptotically smooth. For B1; B2 � R
3 open, bounded and �-admissible

with sufficiently small � > 0, and given error tolerance " > 0, there exist r 2 N with r D O.log "/

and functions
�
.gk; hk/ W B1 � B2 ! R

�r
kD1

such that the least upper bound for the error

B1 � B2 ! R; .x;y/ 7! K.x;y/ �

rX
kD1

gk.x/hk.y/

is smaller than ".

Proof. This is a direct consequence of Lemma 4.5. Note that in (4.4), the variables are separated.

We thus set

g˛.x/ D
1

˛Š
.x � x0/

˛; h˛.y/ D D
˛
xK.x0;y/; .x;y/ 2 B1 � B2;

for a fixed point x0 2 B1, up to multiindices ˛ 2 N3 that guarantee an error not larger than ".

Since the remainder decays exponentially with growing j˛j, the maximum order of the derivatives

only grows logarithmically with the error threshold. �

Several schemes have been proposed to generate approximate degenerated expansions, for

instance the Fast Multipole Method [29, 32, 70, 72, 71], applied to Boundary Element Methods

in [125, 126], Adaptive Cross Approximation [6, 7, 8, 134], Lagrange interpolation [19, 20], Hybrid

Cross Approximation [18], or the Green hybrid method [17]. In the following, we elaborate on

Lagrange interpolation.
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4.8 Definition (Chebyshev nodes) The Chebyshev nodes of order m 2 N on Œ�1; 1� are given by

cos

�
2k � 1

2m
�

�
; k D 1; : : : ; m:

4.9 Definition (Lagrange polynomial) Let a;b 2 R3 with ai < bi for i D 1; 2; 3, and let

B D Œa1; b1� � Œa2; b2� � Œa3; b3�. For m 2 N and Chebyshev nodes .zk/
m
kD1

we define the kth

Lagrange polynomial,

L
.B/
k
.x/ D

3Y
iD1

zLki

�
xi � .bi C ai /=2

.bi � ai /=2

�
;

with k D .k1; k2; k3/ 2 N
3 and ki � m, i D 1; 2; 3, where zL` denotes the `th Lagrange basis

polynomial with respect to the Chebyshev nodes .zk/
m
kD1

,

zL`.z/ D

mY
kD1
k¤`

z � zk

z` � zk
; z 2 R:

Similar to approximation by Taylor expansion, the error for Lagrange interpolation decays

exponentially, but in this case, without restriction on the parameter �:

4.10 Lemma ([15, Theorem 4.22]) Let K be asymptotically smooth with parameters .c; �/. For

two �-admissible boxes B1; B2 � R
3, the error of the m-th order Lagrange interpolation,

R W B1 � B2 ! R; .x;y/ 7! K.x;y/ �
X

jkj1�m

X
j`j1�m

L
.B1/
k

.x/K
�
z
.B1/
k

; z
.B2/
`

�
L
.B2/
`

.y/;

decays exponentially,

kRkB1�B2
� 36c

�
2

�
log.mC 1/C 2

�6
.1C 2��/

�
��

1C ��

�m
kKkB1�B2

:

Here, jkj1 D maxfk1; k2; k3g and for a box B with lower left corner a 2 R3 and upper right

corner b 2 R3

z
.B/
k
D
1

2
.bC a/C

1

2
.b � a/ˇ

0@zk1

zk2

zk3

1A ;
whereˇ denotes the componentwise product and .zk/

m
kD1

are the Chebyshev nodes of order m.

With X and Y we denote the geometry associated to 	 and J, respectively. For BEM matri-

ces (4.1),

X D fsupp i W i 2 	g; Y D fsupp'j W j 2 Jg:

In view of the employed regularisation of the Dirac distribution, cf. Lemma 3.43, a suitable choice

for matrices of the kind (4.2) is

X D fB� .xi / W i 2 	g; Y D fB� .yj / W j 2 Jg;

with � > 0. By Xt (Ys), we denote the subset of X (Y ) whose elements correspond to indices

t � 	 (s � J). We say that the two index sets t and s are admissible if the geometries Xt and

Ys are admissible according to Definition 4.6. Since the Lagrange interpolation in Lemma 4.10

59



4. Hierarchical Approximation

relies on axis-parallel boxes, we furthermore associate a box Bt to Xt with Xt � Bt . In

practical computations, we replace Xt and Ys with their bounding boxes, that is Xt and Ys are

�-admissible if

maxfdiam.Bt/; diam.Bs/g � � dist.Bt; Bs/:

Note that the bounding boxes are supersets of Xt and Ys, so this condition implies the usual

one but is much simpler to check. To minimise the computational cost for the fully populated

matrices (4.1) and (4.2), we seek a partition P of 	 � J such that Ajb admits a exponentially

converging low-rank factorisation for a maximal number of b 2 P . However, the number of

partitions increases super-exponentially2 with j	j and jJj, so searching for the optimal partition

is computationally infeasible. Therefore, we construct partitions of 	 � J via partitions of 	 and

J. For further analysis and practical purposes, they are organised in a tree structure.

4.11 Definition (Cluster tree) A tree T .	/ whose nodes are subsets of 	 is called cluster tree if

• 	 is its root node,

• for t 2 T .	/ not a leaf node, t is the disjoint union of its sons,

• the number of sons of a non leaf node is larger than one.

4.12 Remark

• In actual computations, we furthermore require that the number of elements in a node is

bounded from below by nmin > 1. As we shall see later, this limits the minimal block size

in the matrix partition. Compared to an unrestricted cluster tree, a discretisation adopted

nmin typically improves the performance of the scheme.

• A cluster tree T .	/ for the geometryX is constructed as follows: Starting from a bounding

box that contains X , it is recursively subdivided into disjoint subboxes. There are several

possibilities for this step. One may split along each coordinate axis, resulting in eight

subboxes (octree), periodically cycle through the dimensions and split along the corre-

sponding axis, subdivide the boxes such that each new box contains the same number of

entities (cardinality splitting) or split the box orthogonal to the direction of largest extend

(principal component analysis), see [7, Section 1.4] for more details.

4.13 Definition (Block cluster tree) Let T .	/ and T .J/ be cluster trees and � > 0. The block

cluster tree T .	 � J/ is a cluster tree uniquely determined by its sons mapping,

sons.t � s/ D

8̂̂̂̂
<̂
ˆ̂̂:

¿; t � s is admissible or sons.t/ D ¿ D sons.s/;

sons.t/ � fsg; sons.t/ ¤ ¿; sons.s/ D ¿;
ftg � sons.s/; sons.t/ D ¿; sons.s/ ¤ ¿;
sons.t/ � sons.s/; else;

2The number of partitions of a set with n elements is known as the nth Bell number Bn [154, p. 20]. It obeys the

asymptotic expansion [24, p. 108]

logBn

n
D logn � log logn � 1C

log logn

logn
C

1

logn
C
1

2

�
log logn

logn

�2
CO

�
log logn

.logn/2

�
; n!1;

from which we infer that for n > 3,

Bn >

�
n

e logn

�n
:

60



starting with t � s D 	 � J.

The following definition specifies the requirements for partitions of 	�J we discussed before.

4.14 Definition (Admissible partition) An admissible partition P of 	 �J with respect to a block

cluster tree T .	 � J/ is a subset of T .	 � J/ such that its elements are mutually disjoint,

b1;b2 2 P H) b1 D b2 or b1 \ b2 D ¿;

and it contains all elements of 	 � J, [
b2P

b D 	 � J:

Moreover, every t � s 2 P is either admissible or

maxfjtj; jsjg � nmin:

With

P C
D fb 2 P W b is admissibleg; P �

D P nP C;

we denote the near- and farfield of P , respectively.

A direct consequence from the construction of the cluster trees and the resulting block cluster

tree is

4.15 Lemma The leafs of a block cluster tree form an admissible partition.

By utilising interpolation of order m 2 N for an admissible partition P of 	 � J, the

approximation of A reads

zA D
X

t�s2P �

Ajt�s C

X
t�s2P C

VtSt�sW>
s ;

where St�s is the coupling matrix,

St�sŒk; `� D K
�
z
.Bt/
k

; z
.Bs/
`

�
; jkj1; j`j1 � m;

and
�
Vt

�
t2T.	/

,
�
Ws

�
s2T.J/

are called cluster basis for T .	/ and T .J/, respectively. For BEM

matrices (4.1),

VtŒi;k� D

Z
�

 i .y/L
.Bt/
k

.y/ dSy ; i 2 t; jkj1 � m;

and point evaluations for (4.2),

VtŒi;k� D L
.Bt/
k

.xi /; i 2 t; jkj1 � m:

It is not necessary to compute the cluster basis for all nodes of the tree. Let t 2 T .	/ with son

t0. Both Lagrange bases
�
L
.B.t/

k

�
jkj1�m

and
�
L
.Bt0 /

k

�
jkj1�m

span the same polynomial space.

Therefore,

L
.Bt/
k

.x/ D
X

j`j1�m

L
.Bt/
k

�
z
.Bt0 /

`

�
L
.Bt0 /

`
.x/; x 2 Bt0 ;
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4. Hierarchical Approximation

and hence

VtŒi;k� D
X

j`j1�m

Vt0 Œi; `�Tt0;tŒ`;k�; i 2 t0; jkj1 � m;

where Tt0;t is the transfer matrix between t0 and t,

Tt0;tŒ`;k� D L
.Bt/
k

�
z
.Bt0 /

`

�
; jkj1; j`j1 � m:

Since the sons of t are a disjoint partition of t, we can use the transfer matrices to express Vt

by its sons,

Vt D

0B@Vt1
Tt1;t
:::

Vtp
Ttp;t

1CA ; sons.t/ D ft1; : : : ; tpg; p 2 N:

This motivates our next definition:

4.16 Definition (Nested cluster basis) For a given rank r 2 N and cluster tree T .	/, the set of

matrices

Vt 2 R
jtj�r ; t 2 T .	/;

is called nested cluster basis if for each non-leaf node t 2 T .	/ there are transfer matrices

Tt0;t 2 R
r�r ; t0

2 sons.t/

such that

Vt D

0B@Vt1
Tt1;t
:::

Vtp
Ttp;t

1CA ; sons.t/ D ft1; : : : ; tpg; p 2 N:

4.17 Definition (H2-matrix) A matrix A 2 Rj	j�jJj is called H2-matrix of rank r 2 N with

respect to an admissible partition P of 	 � J if there exist nested cluster bases
�
Vt

�
t2T.	/

,

.Ws/s2T.J/ such that for all b D t � s 2 P C

Ajb D VtSbW>
s

with a matrix Sb 2 R
r�r .

For H2-matrices the required storage and therefore the complexity for typical matrix opera-

tions like a matrix-vector multiplication are drastically reduced by exploiting its organisation in

a tree structure. Section 3.7 in [15] gives the algorithmic details for the efficient computation of

the H2-matrix-vector product.

4.18 Theorem ([15, Corollary 3.49]) If there exists a constant Csp > 0 such that

jfs 2 T .J/ W t � s 2 T .	 � J/gj; jft 2 T .	/ W t � s 2 T .	 � J/gj � Csp (4.5)

for all t 2 T .	/ and s 2 T .J/ independent of the discretisation parameter of the underlying

problem, then a H2-matrix of rank r 2 N needs

O
�
r � .j	j C jJj/

�
units of storage. Moreover, the matrix-vector multiplication can be performed in as many operations.

4.19 Remark Condition (4.5) can be interpreted as a sparsity condition, similar to the number

of nonzero entries of a sparse matrix. The influence of the geometry and the triangulation on

the constant Csp is discussed in [78, Section 6.4].
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5. Plasma Oscillations

Die folgenden Erörterungen werden uns nichts

Neues über die Prinzipien der Mechanik lehren. Die

große Bedeutung der Schwingungsvorgänge für

Physik und Technik fordert aber zu ihrer

gesonderten systematischen Behandlung auf.1

(Arnold Sommerfeld [142])

In equilibrium, the components of a two-component plasma consisting of electrons and positively

charged ions distribute such that the total charge density is locally zero. If the electrons are

uniformly displaced from equilibrium (the much heavier ions are assumed to be immobile), a

negative charge forms at one end of the plasma that gives rise to a positive net charge on the

opposite site. The generated electrical field then accelerates the electrons into the opposite

direction of their displacement. Once they reach the opposite end, the electric field forces the

electrons to move back to their equilibrium position, causing them to oscillate.

This phenomenon is called plasma oscillation and was first experimentally observed by Tonks

and Langmuir [156] in 1929. In their work, they also derive the frequency of the electron

oscillation in an infinite slab, known as plasma frequency,2

!p D

s
nee2

"0me
; (5.1)

where ne is the number density of the electrons, e is the elementary charge andme is the electron

mass. Bohm andGross [12, 13] extended this theory to account for nonzero temperature, collisions

or nonuniform electron densities. By a famous result of Landau [104], plasma oscillations are

exponentially damped with a rate that can be computed from the dispersion relation. This

analytically available information makes plasma oscillations and their exponential damping

one of the most used test cases for numerical methods, see the literature cited in Chapter 1.

Plasma oscillations can be also used to construct measuring instruments. The plasma absorption

probe [97, 109] exploits that the plasma is excited in resonance by an external electromagnetic

field close to a multiple of the plasma frequency. Since the only nonconstant quantity in the

definition of !p is the number density ne , this method allows to measure ne .

In this chapter, we utilise the single-layer potential and Boundary Element Methods to in-

vestigate oscillations of bounded plasmas with arbitrary shape. We show how to numerically

compute the frequencies and provide analytical expressions for the frequencies of a plasma of

ellipsoidal shape. This generalises the results of Dubin [48] for a spheroid (an ellipsoid with two

equal semiaxes) obtained from the linearisation of a fluid model for a one-component plasma

with uniform background charge. Numerical examples are presented in Section 6.1.

1“The following discussions will not teach us anything new about the principles of mechanics. However, the great

importance of oscillatory processes for physics and engineering calls for their separate systematic treatment.”
2The authors use the CGS system, so to convert the quantities to SI units, 1=4� has to be replaced by "0 in their

formulas.
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5. Plasma Oscillations

5.1. Theoretical Results

In the following, let � � R3 be open and bounded with Lipschitz boundary � . We assume that

the ions are uniformly distributed inside �, so that the number density is ne1�. The Vlasov

equation for the electron distribution function f reads

@tf C v � rxf C
e

me
rx� � rvf D 0;

where the solution of the Poisson equation with charge density

ene1� � e

Z
R3

f .�; v; �/ dv

in all R3 is given by the Newton potential,

�.x/ D
1

4�"0

Z
R3

1

jx � yj

 
ene1�.y/ � e

Z
R3

f .�; v;y/ dv

!
dy; x 2 R3:

We now assume that the positions of the electrons are uniformly shifted by d.t/ 2 R3,Z
R3

f .t;x; v/ dv D ne1�
�
x � d.t/

�
:

5.1 Lemma The linearisation of

�.x/ D
ene

4�"0

Z
R3

1

jx � yj
Œ1�.y/ � 1�.y � d/� dy; x 2 R3;

in d around 0 is given by

�0.x/ D �
ene

"0
.Vn/.x/ � d ; x 2 R3;

where V is the single-layer potential and n denotes the outward normal vector field of �.

Proof. The calculation is most conveniently carried out in Fourier space. With Lemma 3.27 we

get

y�.�/ D
ene

"0
yU.�/ Œ1 � exp.id � �/� y1�.�/

D
ene

"0
yU.�/.� id � �/y1�.�/CO.jd j2/

D
ene

"0
F
�
U � div.d1�/

�
.�/CO.jd j2/;

where div.d1�/ is the distributional divergence,

div.d1�/ D �

Z
R3

1�d � r dx D �

Z
�

div.d / dx D �

Z
�

d � n dS
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5.1. Theoretical Results

for  2 D.R3/. Therefore, in first order of jd j the potential is

�0 D
ene

"0
U � div.d1�/:

To compute the convolution, we use Definition 3.21,

.U � div.d1�// D �

Z
R3

Z
�

U.x/d � n.y/ .x C y/ dSy dx

D �

Z
R3

0@Z
�

U.x � y/d � n.y/ dSy

1A .x/ dx;  2 D.R3/;

where we identify the term in brackets as the single-layer potential for � , evaluated at d � n. �

The linearisation of E is now

E0.x/ D �r�0.x/ D
ene

"0
r.Vn/.x/d ; x 2 R3; (5.2)

where r.Vn/ is the transposed Jacobi matrix of Vn,

.r.Vn//i;j D
@Vnj

@xi
; i; j 2 f1; 2; 3g:

5.2 Lemma For x 2 �, the matrix r.Vn/.x/ is symmetric with trace equal to one.

Proof. Let x 2 � and " > 0 such that xB".x/ � �. For i; j 2 f1; 2; 3g, we compute

@Vnj

@xi
.x/ D �

Z
�

@

@yi
U.x � y/nj .y/ dSy

D �

Z
�

@

@yi
U.x � y/nj .y/ dSy C

Z
@B".x/

@

@yi
U.x � y/

yj � xj

"
dSy

�

Z
@B".x/

@

@yi
U.x � y/

yj � xj

"
dSy

D �

Z
�n xB".x/

@2

@yj @yi
U.x � y/ dy �

Z
@B".x/

@

@yi
U.x � y/

yj � xj

"
dSy ;

where the last equality follows from Gauß’ theorem for � n xB".x/. We now turn to the second

term,

�

Z
@B".x/

@

@yi
U.x � y/

yj � xj

"
dSy D �

1

4�

Z
@B".x/

xi � yi

jx � yj3
yj � xj

"
dSy

D
1

4�"4

Z
@B".x/

.yj � xj /.yi � xi / dSy

D
1

4�

Z
S2

yjyi dSy D
1

3
ıj i :
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5. Plasma Oscillations

To summarise, we have shown that

r.Vn/.x/ D
1

3
I3 �

Z
�n xB".x/

D2yU.x � y/ dy:

Since the right hand side is a symmetric matrix, so is r.Vn/.x/. Furthermore,

Trr.Vn/.x/ D 1 �

Z
�n xB".x/

�yU.x � y/ dy D 1;

as the fundamental solution U is harmonic on R3 n f0g. �

5.3 Lemma The eigenvalues of r.Vn/ are invariant under rigid motions of�. If� is convex, they

are also invariant under scaling of �.

Proof. Let R.y/ D Qy C b be a rigid motion with a vector b 2 R3 and an orthogonal matrix

Q 2 R3�3. Writing z� D R.�/ for the image after rotation and translation, we have

nz�
. zy/ D Qn�.R

�1
zy/

and z� D @ z� D R.�/. Therefore,

r.Vz�
nz�
/.zx/ D �

1

4�

Z
z�

zx � y

jRx � yj3
nz�
. zy/> dSzy

D �
1

4�

Z
�

R
R�1zx � y

jR�1zx � yj3
.Qn�.y//

> dSy :

Inserting the definition of R into the last integral yields

r.Vz�
nz�
/.zx/ D �

1

4�

Z
�

Q
R�1zx � y

jR�1zx � yj3
n�.y/

>Q> dSy �
1

4�

Z
�

bn�.y/
>Q> dSy :

The first term equalsQr.V�n�/.R
�1zx/. The second integral vanishes since every component

of the integrand is a linear polynomial in n� with constant coefficients andZ
�

nj .y/ dSy D

Z
�

div.ej / dy D 0

by Gauß’ theorem, where ej denotes the j th standard basis vector. Thus, .rVz�
nz�
/.zx/ and

.rV�n�/.R
�1zx/ are similar matrices and hence have the same eigenvalues.

Now let us assume that, in addition,� is convex. By the preceding discussion we may assume

that, after a suitable rigid motion, 0 2 � and x D 0. For � > 0 and a set A � R3, let

A� D f�x W x 2 Ag:

With � and x� the sets �� and x�� D �� are convex too. For convex sets, its interior and the

interior of its closure coincide [64, Korollar 2.10]. Therefore,

@�� D �� n int.�� / D x�� n�� D �� ;
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so the boundary of the rescaled set �� is the rescaled boundary �� . The outward normal to ��
is given by

n��
.y/ D n�.y=�/; y 2 �� :

Hence,

4�r.V��
n��

/.0/ D

Z
��

y

jyj3
n�.y=�/

> dSy D

Z
�

1

�2
y

jyj3
n�.y/�

2 dSy D 4�r.V�n�/.0/;

which proves the scaling invariance of the eigenvalues. �

Having derived the linearisation of E in (5.2), we use it to linearise the system of characteristic

curves,
PX.t/ D V .t/;

PV .t/ D �
e

me
E.X.t//;

for t > 0 and the initial conditions X.0/ D x0;V .0/ D 0.

5.4 Theorem The linearisation of above system is

Rd.t/ D �
e2ne

"0me
r.Vn/.x0/d.t/ D �!2p r.Vn/.x0/d.t/;

with the initial displacement d.0/ D d0 2 R
3 from the equilibrium position x0 2 � and velocity

Pd.0/ D 0. If the eigenvalues �1; �2; �3 of r.Vn/.x0/ are positive, the plasma locally oscillates

along three orthonormal directions with frequencies

!i D
p
�i!p; i D 1; 2; 3:

Proof. We write

X.t/ D x0 C d.t/; V .t/ D Pd.t/;

and use the linearisation of the electric field E from (5.2),

Rd.t/ D PV .t/ D �
e2ne

"0me
r.Vn/.x0/d.t/ D �!2p r.Vn/.x0/d.t/: (5.3)

From Lemma 5.2, we know that r.Vn/.x0/ is symmetric. Therefore, there exists an orthonormal

basis of eigenvectors .b1;b2;b3/with corresponding eigenvalues .�1; �2; �3/, which are positive

by assumption. In the eigenbasis, (5.3) is readily integrated,

d.t/ D

3X
iD1

d0 � bi cos
�p

�i!p t
�

bi ; t � 0;

which proves the last part of the theorem. �

It is an open problem to characterise the sets � for which r.Vn/ is positive definite in all

points of the domain. By the following lemma, see e.g. [67, Lemma 4.2], this problem is equivalent

to the concavity of the Newton potential.
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5. Plasma Oscillations

5.5 Lemma Let� � R3 be open and bounded with Lipschitz boundary. Then the Newton potential

w.x/ D .N 1�/.x/ D

Z
�

U.x � y/ dy; x 2 �;

is twice continuously differentiable with Hessian

D2w.x/ D �r.Vn/.x/; x 2 �:

The proof of Lemma 5.2 provides a second alternative expression for r.Vn/.

5.6 Lemma Let � � R3 be open and bounded with Lipschitz boundary. For x 2 � and " > 0

with xB".x/ � �,

r.Vn/.x/ D
1

3
I3 �

Z
�n xB".x/

D2yU.x � y/ dy:

Little is known about the concavity of the Newton potential, i.e. under which conditions

r.Vn/ is positive (semi-) definite. If, however, � is close to a ball, we are able to prove local

positive definiteness.

5.7 Lemma Let � � R3 be open and bounded with Lipschitz boundary. Suppose for a point

x 2 � there holds
j� n BR.x/j

jBR.x/j
<
1

2
;

where R D dist.x; @�/ denotes the distance of x to the boundary. Then, r.Vn/ is positive definite

in a neighbourhood of x.

5.8 Remark Visualised in two dimensions, the condition in Lemma 5.7 states that the shaded

area in Fig. 5.1 must be smaller than half of the area of BR.x/. It is related to the Fraenkel

x

BR.x/�

Figure 5.1.: Visualisation of the condition in Lemma 5.7.

asymmetry ˛.�/ of � [81, p. 99], frequently employed in potential theory [82] and for variants

of the isoperimetric inequality [59],

˛.�/ D inf
y2R3

j� n B%.y/j

jB%.y/j
;

where % > 0 is chosen such that j�j D jB%.0/j. In general, R < %, so our condition is more

restrictive than the requirement ˛.�/ < 1=2.
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5.1. Theoretical Results

Proof of Lemma 5.7. The function h.r/ D j� n Br.x/j=jBr.x/j, r 2 .0; R�, is continuous and

decreasing. By assumption, h.R/ < 1=2, so by continuity there exits r < R with h.r/ < 1=2

and furthermore xBr.x/ � � by the choice of R. Since r.Vn/.x/ is symmetric by Lemma 5.2

its smallest eigenvalue equals

inf
e2S2

e>
r.Vn/.x/e:

With Lemma 5.6 we have for all e 2 S2,

e>
r.Vn/.x/e D

1

3
�

Z
�n xBr .x/

e>D2yU.x � y/e dy

D
1

3
�

1

4�

Z
�n xBr .x/

1

jx � yj3

 
3

�
x � y

jx � yj
� e

�2
� 1

!
dy

�
1

3
�

2

4�

Z
�n xBr .x/

1

jx � yj3
dy;

where we have bounded the spherical polynomial 3.e0 � e/2 � 1 for two unit vectors e0; e by its

maximal value 2, attained for e0 D ˙e. Owing to y 2 � n xBr.x/ the integrand in the ultimate

inequality is bounded by 1=r3, yielding

e>
r.Vn/.x/e �

1

3
�
2

3

3

4�r3
j� n xBr.x/j D

1

3

 
1 � 2

j� n xBr.x/j

j xBr.x/j

!
> 0:

Since S2 is compact,

inf
e2S2

e>
r.Vn/.x/e > 0;

showing the the smallest eigenvalue is strictly positive. Because r.Vn/ is continuous, the

inequality remains strict in a neighbourhood of x. �

The example of a torus shows that the smallest eigenvalue may be negative in large parts of

�. Figure 5.2 depicts the three eigenvalues in a section of a torus,˚
x 2 R3 W x2 D 0; .x1 �R/

2
C x3

2 < r2
	
;

with major radius R D 1 and minor radius r D 1=5. Since the torus is rotationally invariant

around the x3-axis, the three-dimensional distribution of the eigenvalues in the torus is given by

rotating the two-dimensional distributions in Fig. 5.2 around the x3-axis. We see that for x1 < 1,

the smallest eigenvalue is negative. In particular near .4=5; 0/, one eigenvalue is negative while

the remaining two are positive, so the Newton potential is neither convex nor concave in a

neighbourhood of this point.

More is known about the concavity of the related torsion function u, the unique solution of(
��u D 1 in �;

u D 0 on �:

If � is convex, then
p
u is concave [92]. Clearly, the concavity of u˛ for ˛ � 0 implies that uˇ

is concave for all ˇ � ˛. If we set

˛�.�/ D supf˛ � 0 W u˛ is concaveg;
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5. Plasma Oscillations

Figure 5.2.: Eigenvalues of r.Vn/ in a section of the torus in ascending order from left to right.

then 1=2 � ˛�.�/ � 1, where the lower bound cannot be improved and the upper bound is

attained for ellipsoids [85]. Recently, Steinerberger [149] showed that u is concave, assuming

the curvature of the boundary of the convex set � in two dimensions is sufficiently small. His

proof, however, does not generalise to higher dimensions.

5.2. Analytical Results on Plasma Oscillation Eigenfrequencies

Usually, the frequency of the oscillation depends on the initial position and the direction of the

initial displacement. But for a special set of geometries, r.Vn/ is either constant or becomes

constant in a limit case.

5.9 Example For a ball of radius r0 > 0,

� D fx 2 R3 W jxj < r0g;

the matrix r.Vn/ is constant and diagonal,

r.Vn/ D
1

3
I3:

To see this, we calculate for x 2 �,

Vn.x/ D
1

4�

Z
r0S2

y=r0

jx � yj
dSy D

r0

4�

Z
S2

y

jx=r0 � yj
dSy

D
r0

2

1Z
�1

�x=jxjq
jxj2=r20 C 1 � 2jxj=r0�

d� D
r0

2

2jxj

3r0

x

jxj
D
1

3
x:

A ball of radius r0 therefore oscillates with a frequency of !p=
p
3, see [48, Eq. (3.8)].

For most geometries, analytically computing r.Vn/ is not possible. But with the tools we

have at our disposal from Boundary Element Methods, we can numerically compute r.Vn/

70



5.2. Analytical Results on Plasma Oscillation Eigenfrequencies

and thus the frequencies once we have discretised the boundary. To that end, we interpret the

evaluation of r.Vn/ as the gradient of the representation formula (3.13) with specific densities,

u D Vn D Vn �W0:

If � is a Lipschitz polyhedron, then n 2 S0
h
.�/ and 0 2 S1

h
.�/ for every triangulation .Th/h

since the normal vector is constant on every triangle of a given mesh. Hence,

r.Vn/.x/ D
X
T2Th

Z
T

rxU.x � y/n>
T dSy

for x 2 �. The integrals over the individual triangles can be calculated in closed form by means

of double-layer potential and one-dimensional integrals over the edges of the triangles [77].

5.10 Example We place a cylinder of height 10 and diameter 1 parallel to the x3-axis and

discretise its surface with 76 000 triangles. The matrix r.Vn/ is then evaluated at equidistant

points in the plane

fx 2 R3 W x2 D 0g:

Figure 5.3 shows the eigenvalues as a function of x1 and x3. In the homogeneous part in the

middle of the cylinder two eigenvalues close to 1=2, while the third one is about two magnitudes

smaller. Near the corners the smallest eigenvalue is negative as depicted in Fig. 5.4.

Figure 5.3.: Eigenvalues of r.Vn/ in a section of a cylinder parallel to the x3-axis in ascending

order from left to right.

For our last example, we calculate the frequencies of an oscillating ellipsoid. The results for

the previously examined geometries are recovered in certain limits.

5.11 Example Let

� D

(
x 2 R3 W

x21
a2
C
x22
b2
C
x23
c2

< 1

)
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5. Plasma Oscillations

Figure 5.4.: Smallest eigenvalue of r.Vn/ near the corner of a cylinder.

be an ellipsoid with semiaxes 0 < a � b � c. As first observed by Dirichlet, see [46] for a

modern exposition his argument and Bucerius [25] for a rigorous justification of his method, the

potential inside � is given by

w.x/ D
1

4
abc

1Z
0

 
1 �

x21
a2 C s

�
x22

b2 C s
�

x23
c2 C s

!
1p

.a2 C s/.b2 C s/.c2 C s/
ds;

where x 2 �. In view of Lemma 5.5, we see that r.Vn/ is a constant diagonal matrix with

entries

�` D
1

2
abc

1Z
0

1

`2 C s

1p
.a2 C s/.b2 C s/.c2 C s/

ds; ` 2 fa; b; cg:

The integrals are evaluated in detail in Appendix A. In the following, we summarise the results.

The triaxial case 0 < a < b < c gives

�a D
1

b2 � a2

�
b2 �

abc
p
c2 � a2

E.#; �/

�
;

�b D
1

b2 � a2

�
abc

p
c2 � a2

�
c2 � a2

c2 � b2
E.#; �/ �

b2 � a2

c2 � b2
F.#; �/

�
� a2

�
;

�c D
1

b2 � a2
b2 � a2

c2 � b2
abc

p
c2 � a2

�
F.#; �/ � E.#; �/

�
;

where

# D arcsin

p
c2 � a2

c
; � D

s
c2 � b2

c2 � a2
;
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and F and E denote the elliptic integrals of first and second kind, respectively,

F.'; k/ D

'Z
0

1
p

1 � k2 sin2 ˛
d˛;

E.'; k/ D

'Z
0

p
1 � k2 sin2 ˛ d˛:

The formulas for the eigenvalues simplify if two semiaxes have equal length. For an oblate

ellipsoid of revolution, a < b D c,

�a D
1

1 � a2=c2

 
1 �

a=cp
1 � a2=c2

arccot
a=cp

1 � a2=c2

!
;

�c D
1

2.1 � a2=c2/

 
a=cp

1 � a2=c2
arccot

a=cp
1 � a2=c2

�
a2

c2

!
:

The eigenvalues are depicted in Fig. 5.5 as a function of a=c. With above eigenvalues, we can

0 0:2 0:4 0:6 0:8 1

0

0:2

0:4

0:6

0:8

1

1

3

a=c

�

�a
�c

Figure 5.5.: Eigenvalues of r.Vn/ for an oblate ellipsoid of revolution with semidiameters a < c

as a function of a=c.

rigorously derive the classical result of Tonks and Langmuir [156] from the beginning of this

chapter. Suppose that we prepare a plasma in a spherical shape with radius r0 > 0. By squeezing

the plasma in one direction, for instance by an electromagnetic field, its shape changes to an oblate

ellipsoid of revolution with semiaxes a < c. Since the volume of the plasma is constant in this

transformation, we have a D �r0, c D �
�1=2r0 with � 2 .0; 1/. This means that a=c D �3=2

tends to 0 for � ! 0. In the limit � ! 0 the plasma fills a plane in R3. Thus, we can treat the

plasma as one-dimensional system since it is translation invariant on the two-dimensional plane.

Computing the eigenvalues in the limit � ! 0, we see

lim
�!0

.�a; �c ; �c/ D .1; 0; 0/;
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5. Plasma Oscillations

so by Theorem 5.4, the plasma oscillates with angular frequency !p .

In case of a prolate ellipsoid of revolution, a D b < c, we obtain

�a D
1

2.1 � a2=c2/

 
1 �

a2=c2p
1 � a2=c2

acoth
1p

1 � a2=c2

!
;

�c D
1

1 � a2=c2

 
a2=c2p
1 � a2=c2

acoth
1p

1 � a2=c2
�
a2

c2

!
;

(5.4)

see Fig. 5.6 for the eigenvalues as a function of a=c. Similar to the discussion on the oblate
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0

0:2

0:4
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1

3

a=c

�
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�c

Figure 5.6.: Eigenvalues of r.Vn/ for a prolate ellipsoid of revolution with semidiameters a < c

as a function of a=c.

ellipsoid of revolution, we use this result for the explanation of a previous example. Again, we

consider a ball plasma with radius r0. When we stretch it in one direction, the ball becomes a

prolate ellipsoid of revolution with semidiameters a < c. With the same argument as before, we

have a D �1=2r0 and c D �
�1r0 and thus a=c D �

3=2 tends to 0 when � ! 0. Eventually, the

ball degenerates to a line in R3. We have reduced the degrees of freedom of the plasma by one.

Furthermore,

lim
�!0

.�a; �a; �c/ D

�
1

2
;
1

2
; 0

�
;

explaining our observation in Example 5.10, where we numerically computed the eigenvalues

for a long cylinder and saw that they approach .1=2; 1=2; 0/ in the centre. By Theorem 5.4

the thin wire (or equivalently the infinite cylinder) oscillates with angular frequency !p=
p
2

perpendicular to its symmetry axis. Baldwin and Ignat [4] obtained the same result in their study

of resonances in an idealised plasma column of infinite height.
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Mein Zahlengedächtnis, sonst

erträglich fix, behält die Zahl der

Biergläser stets schlecht.1

(Ludwig Boltzmann [14])

In Section 3.5 we have seen how to compute the self-consistent electric field of a plasma by

discretisation of the boundary only. The approximation error of the electric field is O.h2/, in

particular close to the boundary. The computational complexity, however, scales quadratically

with the number of triangles and the number of particles. It can be drastically reduced by using

hierarchical approximations. Albeit they introduce a further approximation error, this error is

known to decay exponentially with the interpolation order, see Lemma 4.10. Thus, it usually does

not interfere with the BEM error for small- to mid-sized problems and with a mild (logarithmic)

increase of the interpolation order for larger degrees of freedom we are able to retain the optimal

convergence order. For the practical realisation of H2-matrices we use the software library

H2Lib.2

In the following, we validate the theoretical predictions for plasma oscillations from Chapter 5.

Since we consider a plasma in free space, the BEM discretisation reduces to the computation of

the Newton potential. This allows us analyse the influence of the hierarchical approximation on

the inter-particle forces. As the following results show, we obtain excellent agreement with the

analytically computed frequencies in Section 5.2.

The assembly of and operations on H2-matrices such as the matrix-vector product require to

traverse the associated block cluster tree. This can be parallelised by threads in combination with

an enumeration of the block cluster tree on a shared memory system [102] or by the Message-

Passing Interface [75, 74] on distributed memory systems [90]. Börm and Bendoraityte [16]

propose an algorithm for the efficient computation of the H2-matrix-vector product on dis-

tributed memory systems and prove its optimal scaling with the number of threads. For our

implementation on shared memory system we use OpenMP’s task directive, specifically designed

for nonstructured parallelism [130, Chapter 3]. In contrast to approaches cited above where

the execution order is determined at compile time, the use of OpenMP task leaves the execution

order to the OpenMP runtime. This allows for a greater flexibility (and only minimal changes in

the source code of a serial implementation) but may result in less performant code compared to

a finely grained, hand-written load balancing.

With the approximation of the electric field Eh, the i th macroparticle evolves (in the absence

of boundaries) according to

Pxi D vi ;

Pvi D
qi

mi
EhŒx1; : : : ;xnp

�.xi /;

1“My memory for numbers, otherwise reliable, always retains the number of beer glasses poorly.”
2http://h2lib.org/

75

http://h2lib.org/
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where the notation EhŒ: : : � emphasises that the electric field also depends on the position of all

macroparticles at a given time. Above system of ordinary differential equations is numerically

integrated by so-called symplectic methods [80]. They discretely conserve linear first integrals3

such as the total momentum but in general do not conserve quadratic first integrals. Rather, the

numerical value oscillates around the initial value with an amplitude that decays algebraically

with the time step size on exponentially large time intervals [80, Theorem 8.1, Chapter IX.8].

Additionally, a discrete version of Liouville’s theorem for volume-preserving flows [3, Section 16]

holds. For symplectic Runge–Kutta methods with at most two stages the associated numerical

flow is volume-preserving [80, Theorem 9.4, Chapter VI.9]. The Störmer–Verlet method that we

use for our computations is a one-stage Runge–Kutta method. For a discretisation of the time

interval with step size �t the state .xi
k; vi

k/ of the i th macroparticle at step k 2 N is updated

according to

vi
kC1=2

 vi
k
C
�t

2

qi

mi
Eh
�
x1
k; : : : ;xnp

k�.xi
k/; (6.1a)

xi
kC1
 xi

k
C�tvi

kC1=2; (6.1b)

vi
kC1
 vi

kC1=2
C
�t

2

qi

mi
Eh
�
x1
kC1; : : : ;xnp

kC1�.xi
kC1/: (6.1c)

Like the continuous equations the discrete system is time-reversible: Running the simulation

for k time steps with step size �t and then again k steps with ��t yields (assuming exact

arithmetic) the initial condition. Therefore, odd orders of �t in the analysis of the truncation

error cancel and we obtain a second-order accurate method. In total, the discretisation error is

O
�
.�t/2 C h2

�
.

Even though the electric field appears twice in the formulation of the Störmer–Verlet method

it needs to be computed only once per time step. The field at the positions at end of step k

in (6.1c) is equal to the field in (6.1a) for the next step zk D k C 1. It is only in the first time step

that we also have to compute the electric field twice. As pointed out by Feynman in his famous

“lost lecture”, the idea of Störmer–Verlet method was already used by Newton in his geometric

proof of Kepler’s second law [68, pp. 84 ff.].

In the presence of boundaries (6.1b) has to be modified. First, we check if the ray starting at

xi
k with direction vi

kC1=2 intersects the boundary in the parameter interval Œ0;�t�. This is a

classic problem in computational geometry, see [124, Chapter 7]. If the particle does not reach the

boundary within the time�t , we update its position according to (6.1b). Otherwise, we move the

particle until the first time of intersection with the boundary and apply the boundary condition.

The remaining time reduces to a fractional of �t . We then iterate above algorithm until the

remaining time is zero. The ray-boundary intersection can be computed in sublinear time by

exploiting the cluster tree of the boundary triangles we build for the hierarchical approximation of

the BEM matrices. Here, we first check if the ray intersects the hierarchical structured boundary

boxes [165]. Only at the leafs of the tree we actually compute the interaction with a small number

of triangles [118]. Thus, the computational cost is reduced from O.nh/ to O.r depthTh/, where

nh denotes the number of surfaces triangles and Th is their cluster tree with at most r triangles

in each leaf. For a regular triangulation of the boundary, the depth of the cluster tree depends

logarithmically on nh [7, pp. 36 ff.], so we obtain a complexity of O.r lognh/.

3A first integral is a conserved quantity that only involves the positions and velocities but not their derivatives [144,

p. 93].

76



6.1. Plasma Oscillations in Free Space

6.1. Plasma Oscillations in Free Space

To be able to observe oscillations we need two components in our plasma with opposite charges.

In the following simulations, one half of the np particles represent electrons, the other half

ions. Since we assume the ions to be immobile on our typical time scale, we choose qi D 1 and

mi D 10
10 for the charge and mass of ions relative to the electron charge and mass, respectively.

The first challenge we have to tackle is the preparation of an admissible initial state before we are

able to observe oscillations. In contrast to the continuum model, where the resulting electric field

equals zero if the number densities of the electrons and the ions coincide, the finite samples of

the initial condition generate a nonvanishing electric field. Therefore, the initial configuration is

not in equilibrium, so that our results for the linearisation of the forces do not apply. Displacing

the electrons will not result in a stable oscillation. By the rapid change of acceleration in the

first time step, electrons close to the boundary gain large momentum and escape the attractive

potential of the ions. To mitigate this issue, we prepare an admissible initial state similar to the

treatment of a real plasma in a laboratory.

At first, we add an external field with potential

�trap.t;x/ D �
1

2
„trap.t/jxj

2; t > 0; x 2 R3;

called trap potential with amplitude „trap. Depending on its strength, the trap confines the

electrons in a sphere not larger than the unit sphere. Since the additional potential adds energy

to our system, we have to add a cooling mechanism. In a laboratory, this is usually done via

laser cooling, see the recent publications [2, 107] and the reviews [28, 49]. A simple model is a

quadratic friction force,

Ffric.t; v/ D ��.t/jvjv; t > 0; v 2 R3:

Here, � is a nonnegative function describing the strength of the cooling. In total, the modified

equations of motion for the particles in nondimensional form read

Pxi .t/ D vi .t/;

Pvi .t/ D �
L20

�2D

1

n=2

npX
jD1
j¤i

qiqj

mi
rxi

U� .xi .t/ � xj .t//

�
qi

mi
rx�trap.t;xi .t//C

1

mi
Ffric.t; vi .t//;

for t > 0 and i D 1; : : : ; np . The regularisation parameter � is chosen equal to np
�1=3 and U�

is given by (2.13),

U� .x/ D
1

4�

8̂̂<̂
:̂
3

2�
�
jxj2

2�3
; jxj � �;

1

jxj
; else;

x 2 R3:

In actual computations, the sum over the regularised fundamental solution is replaced by the

hierarchical approximation reviewed in Chapter 4 which permits a rapid evaluation in linear

rather than quadratic complexity.

77



6. Numerical Examples

t1 t2 t3 t4

0

A

„trap � „exc

A 5 1 �25

t1=�t 0 0 450

t2=�t 0 0 452

t3=�t 300 300 453

t4=�t 400 400 455

Figure 6.1.: Continuous piecewise linear ramp profile. The table on the right shows the parameters

used for the simulation.

After a given time, we remove the trap and the cooling. The charges are then separated by a

shortly applied homogeneous external electric field Eexc,

Eexc.t;x/ D „exc.t/

0@10
0

1A ; t > 0; x 2 R3:

The amplitude of the oscillation decreases exponentially due to Landau damping [31, Section 7.4]

and was also observed by Dubin [47] in his numerical study of plasma oscillations.

In our simulation, „trap, � and „exc follow a simple ramp profile, see Fig. 6.1 for the sketch of

a sample graph and the parameters used for the subsequent computations. Furthermore, we fix

L0 D 0:1m; m0 D me; q0 D e;

and vary the characteristic number density n0 and temperature T0. We recall that the character-

istic time scale t0 depends on T0,

t0 D
L0

V0
D L0

r
m0

kBT0
: (6.2)

For the discretisation parameters, we choose

np D 1 � 10
5; �t D 1 � 10�2

and compute 1 � 103 time steps. Figure 6.2 shows the course of the electrons’ centre of mass

C for n0 D 2 � 1014m�3, kBT0 D 30 eV. and the energy spectrum of the first component,

i.e. the squared modulus of the coefficients of the discrete Fourier transform. To avoid a linear

growth of C due to single electrons escaping the potential barrier of �trap at the beginning, we

only consider electrons inside a ball of radius 2 for the calculation of the centre of mass. The

dominant frequency is found by fitting the function

� 7! a
�
Vp.ı; "I � � �/C Vp.ı; "I � C �/

�
(6.3)

on the energy spectrum with respect to the amplitude a, the width parameters ı and " and the

position of the peak �. Here, Vp denotes the Voigt profile, first derived by Voigt in 1912 for the
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Figure 6.2.: Time evolution of the electrons’ centre of mass C (left panel) and energy spectrum

of C1 (right panel) with fit (6.3) for kBT0 D 30 eV and n0 D 2 � 1014m�3. The

parameters are a D 0:763, ı D 0:269, " D 0:0001 and � D 3:174. In the energy

spectrum, the coefficient of the constant mode is set to zero.

intensity distribution of line spectra in gases [162]. For parameters ı; " > 0, Vp.ı; "I �/ is the

convolution of a Cauchy–Lorentz distribution with parameter ı,

� 7!
1

�ı

1

1C .�=ı/2

and a normal distribution with zero mean and standard deviation ".

Results on Temperature Dependency

According to our theoretical results in Section 5.1, the oscillation frequency should only depend

on n0 but not on T0. To investigate the temperature dependency, we fix a number density of

n0 D 2 � 10
14m�3 and vary kBT0 in a range from 2:5 eV to 40 eV. The resulting frequencies,

together with the theoretical prediction, are depicted in Fig. 6.3. For our particular choice of

parameters, the numerical value of plasma frequency is

!p D

s
n0q

2
0

"0m0
D 7:978 � 108Hz:

The characteristic time scale for kBT0 D 1 eV evaluates to

t0 D 2:384 � 10
�7 s;

so that for the nondimensional frequency4 of the unit ball,

1

2�
t0
!p
p
3
D 17:481:

4The plasma frequency is the angular frequency of the oscillation, so we have to divide by 2� in order to obtain the

frequency, i.e. the inverse of a period.
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Figure 6.3.: Dominating frequency in the energy spectrum of the electrons’ centre of mass for

fixed number density n0 D 2 � 10
14m�3 and varying temperature T0. The relative

error in the first data point is 11% and 6% for the second. For the remainig frequencies,

the relative error is below 1%.

Since t0 scales as T
�1=2
0 , cf. (6.2), we have

1

2�
t0
!p
p
3
D 17:481

.rkBT0

eV
(6.4)

for a general characteristic temperature T0. Therefore, the nondimensional plasma frequency

depends on T0, which is reflected in the numerical values for the frequencies in Fig. 6.3. Except

for the first two frequencies where the temporal resolution dominates the error, our results are

in very good agreement with the theoretical result (6.4).

Results on Number Density Dependency

Lastly, we fix kBT0 D 20 eV and vary the number density n0. From the definition of the plasma

frequency (5.1), it follows

1

2�
t0
!p
p
3
D 0:276

r
n0

1 � 1012m�3
:

As before, the dominating frequency of the oscillation is extracted from the power spectrum

of the electrons’ centre of mass by fitting the Voigt profile (6.3). The results are displayed in

Fig. 6.4 together with the theoretical prediction. With relative errors below 1%, the numerically

obtained frequencies match very well with theory.

Extension to General Domains

The procedure for exciting plasma oscillations does not change in principle when we treat

nonspherical geometries �; we still add a trap potential, cool the particles and apply a short

electric pulse to separate the different charges. The trap potential is adjusted according to

�trap.t;x/ D �
1

2
„trap.t/

3X
iD1

x2i

�2i
; t > 0; x 2 R3;
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Figure 6.4.: Dominating frequency in the power spectrum of the electrons’ centre of mass for

fixed temperature kBT0 D 20 eV and varying number density n0. The relative error

increases with n0 and is 0:1% for the left and 1:1% for the right data point.

where � D .�1; �2; �3/
> 2 R3 measures the extent of � along the coordinate axes. For an

axis-aligned ellipsoid, a possible choice for � are its semidiameters. As an example, we analyse

the frequencies of an ellipsoid with semidiameters .2; 1; 1/,

� D
˚
x 2 R3 W .x1=2/

2
C x22 C x

2
3 < 1

	
:

From Example 5.11 we know that the main axes of the oscillation are the coordinate axes with

eigenvalues that depend nonlinearly on the quotient of the semidiameters. In our case, the two

smaller semidiameters are equal. Therefore, the spectrum consists of two distinct eigenvalues,

see (5.4),

�1 D
1

1 � r2

�
r2

p
1 � r2

acoth
1

p
1 � r2

� r2
�
� 0:174;

�2 D
1

2.1 � r2/

�
1 �

r2
p
1 � r2

acoth
1

p
1 � r2

�
� 0:413;

where �1, �2 correspond to an oscillation along larger, respectively, smaller axis of the ellipsoid,

and r D 1=2 is the quotient of the semidiameters. With Theorem 5.4, we conclude that the

angular frequencies of the oscillation are

!1 D
p
�1!p; !2 D

p
�2!p:

Expressed in nondimensional units for n0 D 1 � 10
14m�3, kBT0 D 20 eV,

1

2�
t0!1 � 1:994;

1

2�
t0!2 � 3:077:

From the simulation data depicted in Fig. 6.5, we obtain by fitting the Voigt profile (6.3) on the

power spectrum,

�1 D 1:996; �2 D 3:088;
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Figure 6.5.: Time evolution of the electrons’ centre of mass for an axis-parallel ellipsoidal with

semidiameters .2; 1; 1/ after an excitation along the major axis (left panel) and a

minor axis (right panel). Relevant characteristic quantities are kBT0 D 20 eV and

n0 D 1 � 10
14m�3.

as numerical frequencies. The relative error is 6:0�10�4 for the first and 3:3�10�3 for the second

frequency. Choosing a larger regularisation parameter, for instance � D 2np
�1=3, hardly affects

the obtained results. The 99:994% confidence interval5 for the frequency � of the oscillation

along the short axis, obtained by the nonlinear regression of Voigt profile for reads

Œ2:9713; 3:1253�

and almost agrees with that for the original choice � D np
�1=3. For � smaller than np

�1=3,

individual particle interactions in the nearfield quickly dominate the dynamics after a few

oscillations since the maximal force increases quadratically with smaller � . Consequently, the

frequency of the fitted profile is shifted to a higher value.

Discussion of the Numerical Error

As we have seen in the previous paragraphs, the relative error of the frequencies is well below

1 � 10�2, usually in order of 1 � 10�3. However, it is generally hard to reduce the error further,

especially for higher frequencies. First of all, the Shannon sampling theorem [89, Section 7.3]

limits the maximal frequency present in the discrete spectrum and thus the inter-frequency

distance. This influences the approximation quality of the Voigt profile (6.3). Furthermore,

the frequencies are derived for the continuous Vlasov–Poisson system, whereas the numerical

frequencies are obtained form the dynamics of finitely many particles in the mean field scaling.

Even though important properties of the plasma frequency, such as temperature independence

and the square root dependency on the number density, hold, some phenomena are only present

in the discrete formulation, with the most important being electrons escaping the ions’ field. The

remaining plasma in � is then positively charged, such that our assumption on the neutrality

of the plasma does not hold. Furthermore, we compute the full forces on the particles. This

means that, in addition to the linear terms that lead to the plasma frequency, the numerically

obtained frequencies also include higher order corrections. All effects discussed so far become

5This corresponds to four standard deviations of a Gauß distribution.
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6.2. Formation of Plasma Sheaths And Mean Field Scaling

more dominant for higher frequencies. This is a possible explanation for higher deviations from

the prediction of the theory in the high frequency regime.

6.2. Formation of Plasma Sheaths And Mean Field Scaling

Consider a plasma of negatively charged electrons and positively charges ions confined in a

finite volume with grounded conducting walls that absorb outflowing particles. The much lighter

electrons of high velocity quickly reach the boundary of the volume are absorbed. Thus, a positive

net charge near the boundary forms. Because we impose a constant potential on the boundary

this gives rise to a negatively charged surface density that counters the positive potential of

the ions. Consequently, slower electrons are repelled by the potential barrier established by the

negative surface charges. A small area free of negative charge emerges near the boundary. This

particular area is called plasma sheath, a term coined by Langmuir [108], and has a diameter of a

few Debye lengths [133]. Sheaths were one of the first nonlinear plasma effects studied, see [1]

for a historic review, but their measurement is difficult and predictions of simple theoretical

models cannot be reproduced in experiments [86]. In case plasma parameters such as density

are measured by Langmuir or emissive probes that are placed in direct contact with the plasma,

the formation of sheaths needs to be taken into account both for their design and data analysis,

see the introductory article [114] and the review articles [33, 139]. The articles [40, 136] discuss

the probe design for fusion reactors.

In this section, we use the formation of sheaths as a validation of our discretisation in bounded

domains. Since the sheath is only a thin layer near the boundary it is of great importance

to accurately compute the electric field in this region. From our numerical study of plasma

oscillations in Section 6.1 we know that the particle discretisation together with the hierarchical

approximation of the Coulomb forces is able to accurately capture the theoretically predicted

frequencies. Example 3.93 shows that the BEM discretisation approximates the electric field

with the theoretical rate, in particular very close to the boundary. We thus expect that our

method precisely resolves the plasma sheath, i.e. the sudden drop of the electron density near

the boundary. Furthermore, we use this numerical example to verify the correct implementation

of the mean field scaling in our particle discretisation. In the limit np ! 1, the mean field

scaling guarantees that the discrete system converges to the Vlasov–Poisson system. For the

results of our simulation this means that the shape of the plasma sheath should approach the

(unknown) shape described by the solution of the Vlasov–Poisson system when increasing np .

In this example, we confine the electron plasma inside the unit sphere with absorbing boundary

and impose a zero Dirichlet condition for the potential �. The positively charged ions aremodelled

by constant background charge density. In nondimensional units the Poisson equation reads8̂̂<̂
:̂
��� D

L20

�2D

0@1 � jB1.0/j
np

npX
jD1

ı�xj

1A ; in B1.0/;

� D 0 on S2

for np electrons and the regularisation parameter � chosen as a function of np ,

� D
np

�1=3

100
:
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The constant charge density on the right hand side is eliminated by noting that

�ion.x/ D �
L20

�2D

�
jxj2

6
�
1

6

�
; x 2 R3;

is the unique solution of 8̂<̂
:���ion D �

L20

�2D
in B1.0/;

�ion D 0 on S2;

so we split � into � D �ion C �el, where �el describes the electric potential generated by the

electrons, 8̂̂<̂
:̂
���el D

L20

�2D

jB1.0/j

np

npX
jD1

ı�xj
; in B1.0/;

�el D 0 on S2:

(6.5)

For the numerical solution of (6.5) we discretise the unit sphere by a triangular mesh with 5120

elements. The cluster parameter � for the hierarchical approximation is equal to 2 for all particle

numbers. The choice of the interpolation order for the different choices of np is summarised

in Table 6.1. Initially, the particles are uniformly distributed inside the unit ball with velocities

Table 6.1.: Interpolation order of the H2-approximation for varying particle number in the

plasma sheath example.

np m

1 � 103 5

5 � 103 5

1 � 104 7

5 � 104 7

1 � 105 7

5 � 105 9

sampled from a centred Maxwellian with temperature equals one. As characteristic quantities we

choose L0 D 0:1m, kBT0 D 1 eV and n0 D 1 � 10
13m�3. The time evolution of the system is

computed with the Störmer–Verlet method using the time step size �t D 1 � 10�3 and 1 � 103

time steps. Figure 6.6 depicts the radial distribution of the particles at the time t D 1. Here, the

histograms are smoothed by convolution with a triangular kernel function of width b > 0,

Wb.s/ D 1 � js=bj

for s 2 Œ�b; b� and zero else. The bandwidth b depends on the input data and is calculated

according to Silverman’s rule [141, Chapter 3].

By inspecting the histograms for different number of particles we see that with the exception

of np D 1� 10
3 the radial particle distribution follow closely the radial distribution of a uniform

distribution on the ball with radius R D 0:925,

pR.r/ D
3

R3
r2; r 2 Œ0; R�:
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Figure 6.6.: Radial particle density in the unit ball at the time t D 1 for varying number of

initial particles np on the left. The dotted curve is the radial density of the uniform

distribution in a ball with radius 0:925. The right panel magnifies the area of the

plasma sheath near the boundary.

This is in accordance with the physical theory which predicts that the formation of sheaths is

a local phenomenon with little influence from the state of the plasma in the interior. Since we

started with a uniform distribution in equilibrium, this state is maintained throughout the time

evolution. Close to the boundary the radial density of the particle distribution strongly deviates

from the uniform distribution and exhibits the characteristic rapid decay in the region of the

sheath. For particle numbers larger than 1 � 104, the different curves are distinguishable only

under magnification on the right panel of Fig. 6.6. Here, we observe that for np above 1 � 10
4

the distributions almost agree. This confirms the expected behaviour of the solution for larger

np in which case we assumed that our results tend to the shape of the plasma sheath predicted

by the equation of the mean field limit, the Vlasov–Poisson system.

6.3. Particle Accelerator

As a last numerical example we consider a particle accelerator with mixed boundary conditions

for both the particle density function and the electric potential. The accelerator comprises

different chambers depicted in Fig. 6.7. The particles enter the first chamber from the left and

are mildly accelerated to reach the focal chamber. Here, the potential difference between the

beginning and the end of the chamber, together with the homogeneous Neumann condition

focuses the particle beam on the narrow accelerator chamber.

With the exception of the inflow part �in,

�in D
˚
x 2 R3 W x1 D �1=2; x2

2
C x3

2 < 1=4
	
;

the particles are absorbed at the boundary. The total mass of the inflowing particles over a time

interval �t is

Min D j�inj�t

Z
R3

in

jv � njfin.v/ dv:
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Figure 6.7.: Cross section of the radially symmetric accelerator profile. Dashed lines represent

the Dirichlet boundary, solid ones the homogeneous Neumann part. Labels show the

length of the corresponding segment, respectively the value of the electric potential

on the Dirichlet boundary.

For a Maxwellian inflow condition,

fin.v/ D
�

.2�T /3=2
exp

�
�
jv � V j2

2T

�
; v 2 R3in;

the integral simplifies to

Min D �j�inj�t

r
T

2�

�
exp

�
�
.V � n/2

2T

�
�
p
�

V � n
p
2T

erfc

�
V � n
p
2T

��
;

where erfc denotes the complementary error function,

erfc.z/ D
2
p
�

1Z
z

exp.��2/ d�:

The total number of inflowing particles per time step is chosen to match the inflowing mass. For

a given particle weight w D j�j=np
6 the number of inflow particles nin is the closest integer

to the quotient Min=w.
7 The positions and velocities of the nin inflow particles are sampled

according to fin. Since fin is independent of time and space, this amounts to generate the velocity

according to a Maxwell distribution on R3in and the positions according to a uniform distribution

on �in. For the latter, we exploit that �in is the union of triangles.

6.1 Lemma Let T1; : : : ; Tn be pairwise disjoint surface triangles that comprise �in. For random

variables X1; : : : ;Xn, where Xk is uniformly distributed on Tk , and a discrete random variable N

with values in f1; : : : ; ng and density vector�
jT1j

j�inj
; : : : ;

jTnj

j�inj

�
;

that is independent of .X1; : : : ;Xn/, the random variable XN is uniformly distributed on �in.

6Here, np does not refer to the actual number of particles but steers the granularity of the overall approximation.

The actual number of particles is determined by the boundary conditions, in particular absorption. However, we

can expect this number to have the same magnitude as np .
7A stochastic model of the inflow condition is a Markovian queue with an exponentially distributed waiting

time �t=nin, so that the number of inflowing particles per time interval is Poisson distributed with parameter

nin [21, Chapter 14]. Since the Poisson distribution is infinitely divisible [140, pp. 342 f.], the cumulative

distribution function is well approximated by that of normal distribution with mean nin and standard deviation
p
nin for large nin. The error is uniformly bounded by O

�
1=
p
nin
�
owing to the Berry–Esseen theorem [140,

p. 374]. Even for a moderate number of nin D 1 � 104, 99:85% of the inflowing particles lie in the interval�
nin � 3

p
nin; ninC 3

p
nin
�
D
�
9700; 10 300

�
. Therefore, the deviation around the mean is too small to affect the

qualitative results of this section.
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Proof. Let P denote the probability measure on the joint probability space of .X1; : : : ;Xn/ and

N . For a Borel subset A � �in we have, owing to the independence of N and .X1; : : : ;Xn/,

P ŒXN 2 A� D

nX
kD1

P ŒXk 2 A \ Tk; N D k� D

nX
kD1

jA \ Tkj

jTkj

jTkj

j�inj
D
jAj

j�inj
;

showing that XN is uniformly distributed on �in. �

Thus, generating a sample of a uniformly distributed random variable on �in reduces to the

generation of a uniform sample on a single triangle. This can be done via rejection sampling:

Starting with a uniform sampling on the unit square Œ0; 1�2, we only accept points inside the lower

triangle and then transform this point to the physical boundary � by the affine parametrisation.

Finally, the positions are updated by the given velocity and a time step uniformly distributed on

.0;�t/ to reflect that we compute the total inflow over a time interval of length �t during that

particles may enter the domain at any time.

Fig. 6.8 shows the two-dimensional electron density at t D 0:5 for

np D 1 � 10
6; �t D 1 � 10�2;

and a surface mesh with 4496 triangles. In total, 788 822 particles are inside the accelerator. The

values of the characteristic quantities are

L0 D 0:1m; n0 D 1 � 10
12m�3; kBT0 D 10 eV:

Initially, we start in vacuum with particles entering the domain through �in with temperature

T D 1 and velocity V D .1; 0; 0/>. The fully three-dimensional distribution at t D 0:5 is

Figure 6.8.: Integrated particle distribution along the x3-axis in the accelerator at t D 0:5. The

colour indicates their speed.

depicted in Fig. 6.9. We see that the accelerator works as expected. The wide particle beam is

focused on the centre of the accelerator at x1 D 2:5where the particles reach their maximal speed.

Afterwards, the beam widens because of the repulsive Coulomb force between the electrons.

They leave the accelerator to the right with a higher velocity than they entered it.
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Figure 6.9.: Distribution of the particles inside the accelerator at t D 0:5. The colour mapping is

the same as in Fig. 6.8.
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7. Conclusion

Wer das kapiert hat, den versteht

bald keiner mehr.1

(Peter Rühmkopf [137])

In this thesis, we have employed boundary integral equations to gain new theoretical results

on the oscillation of plasmas and to construct a numerical method for the Vlasov–Poisson

system that allows for the precise evaluation of the electric field generated by the particles. The

approximate electric field is always an exact solution to Gauß’ law of electrostatics. Hence, the

long-range character of the Coulomb forces between the particles of the plasma is preserved

on the discrete level. This is one reason for the very good performance of our method. The

second one is the absence of a volume mesh and a discretisation of the boundary only. On

the computational side, the number of unknowns is reduced by several orders of magnitude.

This allows us to simulate a three-dimensional particle accelerator of complex geometry with

relatively few unknowns. Moreover, the pointwise error of the electric field decays linearly with

the number of mesh elements, a scaling that is not achieved by typical finite difference or finite

element methods. With our discretisation we are furthermore able to analytically compute the

electric field, thus we do not need to use quadrature for the evaluation of the surface integrals.

This is particularly important in the vicinity of the boundary, where the contribution of the

surface potentials is most relevant.

The analytic computation of the electric field is a key element in our study of plasma oscillations

as it allows us to accurately compute the eigenfrequencies for arbitrarily shaped plasmas. Among

others, our computations have shown the linear instability of the oscillations in case of a torus.

This example is highly relevant in practice. In conjunction with an external magnetic field it may

serve as a model for plasma in a fusion reactor. It would be interesting to study the influence of

linear instability on the one hand and of the possible nonlinear stabilisation mechanism on the

other hand. The example of the cylinder of finite height justifies the assumption of an oscillating

plasma column of infinite height in the design of probes such as the plasma absorption probe. For

most parts of the cylinder, the eigenfrequencies resemble that of an infinite cylinder. It is only

in the corners of the cylinder that the eigenfrequencies significantly differ from the idealised

values and where the smallest squared frequency becomes negative. This is also of mathematical

interest as it tells us that the question of the concavity of the Newton potential is related to the

smoothness and curvature of the boundary. Our result concerning the local concavity of the

Newton potential is a first step into this direction. When using plasma oscillations as a test

case for numerical methods, domains with constant frequencies are of great interest. We have

proven that one important domain with constant frequency is the general ellipsoid, generalising

previously known results. A more general classification classification of those domains with

constant frequency remains an open research question.

The use of boundary integral equations is not limited to bounded domains. Since our method

only relies on the traces of the electric potential on the boundary, a simple change of its orientation

1“Whoever understands this will soon no longer be understood by anyone.”
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suffice to solve the problem in unbounded domains. This applies to problems that are naturally

posed in unbounded domains such as the modelling of a plasma propulsion engine or where the

region of interest is much smaller than the surrounding walls, e.g. surface modification of thin

layers or the formation of sheaths around probes.

Our strategy to express the electric field by boundary integral is also applicable to other models

for plasma dynamics. As one important example we mention gyrokinetic models, where the

three-dimensional Poisson equation degenerates in the presence of a strong external magnetic

field B to two-dimensional Poisson equations along the magnetic field lines. In order to account

for the rapid motion of the particles around the field lines, these models include an averaging

over small circles perpendicular to B . In our formulation, the numerical solution to the electric

potential is represented by harmonic functions or function that are harmonic outside a small set,

so these averages are equal to a simple point evaluation almost everywhere by the mean value

property. Finally, it is tempting to generalise the use of BEM for the computation of the Lorentz

force to Maxwell’s equations. So far, most literature is concerned with Maxwell’s equations in

frequency domain and a treatment in time domain would be a welcome addition.
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Appendix





A. Integrals for Example 5.11

For 0 < a � b � c, we set

�` D
1

2
abc

1Z
0

1

`2 C s

1p
.a2 C s/.b2 C s/.c2 C s/

ds; ` 2 fa; b; cg:

To calculate these integrals we use Table of Integrals, Series and Products by Gradshteyn and

Ryzhik [69]. First, we treat the case a < b < c. The integrals [69, 3.133 (6), (12), (18)] read

1Z
zu

1q
.x � za/3.x � zb/.x � zc/

dx D
2

.zb � za/
p
za � zc

E.z�; zq/C
2

za � zb

s
zu � zb

.zu � za/.zu � zc/
;

Œzu > za > zb > zc�;

1Z
zu

1q
.x � za/.x � zb/3.x � zc/

dx D
2
p
za � zc

.za � zb/.zb � zc/
E.z�; zq/ �

2

.zb � zc/
p
za � zc

F.z�; zq/

�
2

za � zb

s
zu � za

.zu � zb/.zu � zc/
; Œzu � za > zb > zc�;

1Z
zu

1q
.x � za/.x � zb/.x � zc/3

dx D
2

.zb � zc/
p
za � zc

�
F.z�; zq/ � E.z�; zq/

�
;

Œzu � za > zb > zc�;

where

z� D arcsin

r
za � zc

zu � zc
; zq D

s
zb � zc

za � zc
:

With the choice za D �a2, zb D �b2, zc D �c2 and zu D 0 we get

�a D
1

b2 � a2

�
b2 �

abc
p
c2 � a2

E.#; �/

�
;

�b D
1

b2 � a2

�
abc

p
c2 � a2

�
c2 � a2

c2 � b2
E.#; �/ �

b2 � a2

c2 � b2
F.#; �/

�
� a2

�
;

�c D
1

b2 � a2
b2 � a2

c2 � b2
abc

p
c2 � a2

�
F.#; �/ � E.#; �/

�
;

where

# D arcsin

p
c2 � a2

c
; � D

s
c2 � b2

c2 � a2
:

93
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For an oblate ellipsoid of revolution, a < b D c,

�` D
1

2
ac2

1Z
0

1

s C `2
1

.s C c2/
p
s C a2

ds

D ac2
1Z
a

1

.t2 C `2 � a2/.t2 C c2 � a2/
dt

D ac2
1Z
0

1

.t2 C 2at C `2/.t2 C 2at C c2/
dt; ` 2 fa; cg:

For ` D a, we decompose the integrand,

�a D
ac2

c2 � a2

1Z
0

1

.t C a/2
�

1

t2 C 2at C c2
dt

D
ac2

c2 � a2

�
1

a
�

1
p
c2 � a2

�
�

2
� arctan

a
p
c2 � a2

��
D

1

1 � a2=c2

 
1 �

a=cp
1 � a2=c2

arccot
a=cp

1 � a2=c2

!
:

To calculate �c , we use [69, 3.252 (1)],

1Z
0

1

.zax2 C 2zbx C zc/n
dx D

.�1/n�1

.n � 1/Š

@n�1

@zcn�1

"
1p
zazc � zb2

arccot
zbp
zazc � zb2

#
;

Œza > 0; zazc > zb2�;

(A.1)

which yields, with n D 2; za D 1; zb D a; zc D c2,

�c D
a

2.c2 � a2/

�
c2

p
c2 � a2

arccot
a

p
c2 � a2

� a

�
D

1

2.1 � a2=c2/

 
a=cp

1 � a2=c2
arccot

a=cp
1 � a2=c2

�
a2

c2

!
:

The last case of interest is that of a prolate ellipsoid of revolution, a D b < c,

�` D
1

2
a2c

1Z
0

1

s C `2
1

.s C a2/
p
s C c2

ds

D a2c

1Z
c

1

.t2 C `2 � c2/.t2 C a2 � c2/
dt

D a2c

1Z
0

1

.t2 C 2ct C `2/.t2 C 2ct C a2/
dt; ` 2 fa; cg:
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To compute �a, we first note that (A.1) can used in the case zazc < zb
2. Since

� i arccot.� i z/ D acoth z; z 2 R;

we have

1Z
0

1

.zax2 C 2zbx C zc/n
dx D

.�1/n�1

.n � 1/Š

@n�1

@zcn�1

"
1p
zb2 � zazb

acoth
zbp
zb2 � zazc

#
;

Œza > 0; zb2 > zazc�:

Thus, with n D 2; za D 1; zb D c; zc D a2,

�a D
c

2.c2 � a2/

�
c �

a2
p
c2 � a2

acoth
c

p
c2 � a2

�
D

1

2.1 � a2=c2/

 
1 �

a2=c2p
1 � a2=c2

acoth
1p

1 � a2=c2

!
:

By the use of the partial fraction decomposition, we compute

�c D
a2c

c2 � a2

1Z
0

1

t2 C 2ct C a2
�

1

.t C c/2
dt

D
a2c

c2 � a2

0@ 1Z
0

1

t2 C 2ct C a2
dt �

1

c

1A
D

a2c

c2 � a2

�
1

p
c2 � a2

acoth
c

p
c2 � a2

�
1

c

�
D

1

1 � a2=c2

 
a2=c2p
1 � a2=c2

acoth
1p

1 � a2=c2
�
a2

c2

!
:
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