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Statement of Contributions to Jointly Authored Works Con-
tained in this Thesis

This thesis is partly of cumulative nature including publications that were the result of the
work I have carried out since the commencement of my candidature for a higher research
degree. In particular, it contains two publications in which I have co-authored as first author
and three publications in which I have co-authored as a secondary author. In the following, I
present the statements of contributions to the jointly authored works contained in this thesis.

First authorship

Two-Dimensional Quantum-Link Lattice Quantum Electrodynamics at Finite Den-
sity Physical Review X, 10 [37] - Incorporated as Chapter 4

In this publication, we developed and applied a Tensor Network to study lattice gauge
theories in two spacial dimensions. This study includes two main challenges: On one hand,
there is a theoretical challenge of reformulating a two-dimensional lattice gauge theory with
fermionic matter into a system of local gauge-invariant dressed sites which can be used as
a computational basis for the numerical analysis (i.e. does not exhibit any Jordan-Wigner
strings outside the dressed sites). On the other hand, this reformulation resulted in a com-
plex optimisation problem with numerous optimisation constraints which happens to be a
numerical challenge for current Tensor Network algorithms.

Prof. Dr. Simone Montangero and Dr. Pietro Silvi initialised the project and defined
the problem together with the conceptual strategy on how to deploy Tensor Networks for
this particular application. Prof. Simone Montangero further supervised the execution. The
above-mentioned theoretical challenge was mainly solved by Dr. Pietro Silvi while I developed
the Tensor Network software addressing the above-mentioned numerical challenge. Dr. Mario
Collura defined further physical cases validating the numerical correctness of the developed TN
algorithm and managed the writing of the manuscript. The numerical analysis was executed
by myself under the supervision of Dr. Mario Collura and with a joined interpretation of the
results from all the authors.

Dr. Mario Collura prepared the first draft of the manuscript. All of the authors con-
tributed to refining the manuscript by reviewing and editing accordingly. Further, in the
comprehensive appendix, the Appendices A,B,D,E were mainly written by myself, Appendices
C,F,G by Dr. Pietro Silvi and the Appendices H-I by Dr. Mario Collura. The Introduction
and conclusion were written in mutual agreement with Dr. Pietro Silvi, Dr. Mario Collura
and Prof. Simone Montangero as main contributors.

Efficient Tensor Network ansatz for high-dimensional quantum many-body prob-
lems Physical Review Letters, 126 [23] - Incorporated in Chapter 5

In this publication, we developed a novel Tensor Networks geometry, the augmented Tree
Tensor Network (aTTN), for studying quantum many-body problems in higher dimensions.
The clear goal here was to find a Tensor Networks geometry which on one hand encodes the
so-called area-law for quantum states in higher dimensions and which on the other hand comes
with efficient use of computational resources, i.e. is efficiently contractable and optimisable.

Prof. Dr. Simone Montangero initialised the project and defined the goal for this work.
The theory and the conceptual idea behind the novel TN geometry were developed by my-
self together with Prof. Simone Montangero in supervision. Further, I developed the Tensor
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Network software implementing the aTTN geometry, including the conception, planning, de-
velopment and testing of the software. I benchmarked the software in the numerical study of
the Ising model and the Heisenberg model, comparing it with alternative numerical methods.
Dr. Simone Notarnicola further introduced the study of interacting Rydberg-atoms in 2D as
a novel physical application where he defined the problem and applied the TN software in an
extensive study. Prof. Dr. Simone Montangero supervised and merged this research.

The first draft on the introduction of the developed aTTN was written by myself including
the theoretical sections Augmented Tree Tensor Network and Area Law in aTTN as well as
the benchmark sections Ising model and Heisenberg model. Dr. Simone Notarnicola wrote
the parts regarding the analysis on the Rydberg-atoms resulting in the section Interacting
Rydberg atoms. All of the authors contributed to refining the manuscript by reviewing and
editing accordingly. Further, Dr. Simone Notarnicola wrote the section Rydberg atom phase
diagram analysis in the appendix, while I wrote the remaining parts including among other
more technical details about the aTTN.

Second authorship

On the descriptive power of Neural-Networks as constrained Tensor Networks
with exponentially large bond dimension SciPost Physics Core, 4 [98] - Incorporated
as Chapter 6

In this publication, we compared Tensor Networks against Neural Networks in their ability
to represent quantum wave-functions. All authors agreed on the approach to pursuing this
work and contributed to the interpretation of the results and to the writing of the manuscript.
Prof. Dr. Luca Dell’Anna conceived the work. Dr. Mario Collura and I performed the
numerical simulations. Prof. Dr. Simone Montangero supervised and merged the research.

In particular, the implementation of the Tensor Network software (MPS) used for the
comparison against neural network states in one dimension was done by Dr. Mario Collura,
while I developed the Tree Tensor Network software used for the comparison in the two-
dimensional Heisenberg model. Accordingly, Dr. Mario Collura performed the numerical
study in 1D, while I performed the numerical simulations for the 2D scenario.

Dr. Mario Collura and Prof. Dr. Luca Dell’Anna wrote most of the theoretical section 2
introducing the "constrained" Matrix Product State and highlighting the differences between
RBM and uRBM. Dr. Mario Collura further wrote in section 3 the numerical analysis for
the one-dimensional comparison (section 3.1) while I strongly contributed to the writing for
the two-dimensional comparison (section 3.2). The Introduction and conclusion were written
with the mutual contribution of all authors.

Lattice Quantum Electrodynamics in (3+1)-dimensions at finite density with Ten-
sor Networks accepted for publication in Nature Communications [144] - Incorporated as
Appendix A

Following up on our publication Two-Dimensional Quantum-Link Lattice Quantum Elec-
trodynamics at Finite Density dealing with lattice gauge theories, we here applied a Tensor
Network to study lattice gauge theories in three spatial dimensions.

Prof. Dr. Simone Montangero initialised the project and supervised the execution. Dr.
Pietro Silvi provided the theoretical strategy of mapping the lattice gauge theory into the
proper computational basis. Dr. Giuseppe Magnifico applied this strategy for the three-
dimensional study while I developed the Tensor Network software used to solve the underlying
numerical optimisation problem. The numerical analysis was executed by Dr. Giuseppe
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Magnifico with me in a supporting role on how to best apply the Tensor Network software.
The interpretation of the results was mainly done by Dr. Giuseppe Magnifico, Dr. Pietro
Silvi and Prof. Dr. Simone Montangero.

Dr. Giuseppe Magnifico prepared the first draft of the manuscript. All of the authors
contributed to refining the manuscript by reviewing and editing accordingly. The Introduc-
tion and conclusion were written in mutual agreement with Dr. Pietro Silvi, Dr. Giuseppe
Magnifico and Prof. Simone Montangero as main contributors.

Optimizing Radiotherapy Plans for Cancer Treatment with Tensor Networks
[99]- Incorporated as Appendix B

In this manuscript, we applied Tensor Networks in Intensity-Modulated Radiation Ther-
apy, a particular medical treatment technique for curing cancer. Concretely, we optimised
the underlying radiotherapy plans for this therapy which included two main challenges: (i)
Mapping the radiotherapy optimisation problem to a many-body system, and (ii) numerically
finding the ground state of this system with Tensor Networks.

Prof. Dr. Simone Montangero, Dr. Marta Paiusco and Samuele Cavinato proposed the
project. Dr. Marta Paiusco and Dr. Marco Fusella defined the underlying optimisation prob-
lem while all authors worked out the conceptual strategy on how to deploy Tensor Networks
for this particular application together. Samuele Cavinato developed the theoretical strategy
of mapping the radiotherapy optimisation problem to a many-body system. I developed the
Tensor Network software used for the numerical study. The numerical analysis was mainly
executed by Samuele Cavinato with myself supporting the application of the Tensor Network
software while all the authors contributed to the interpretation of the results.

The manuscript was initialised and structured by myself while Samuele Cavinato mainly
wrote the content of section II. (Describing the radiotherapy optimisation problem), section
III.A (mapping the problem) and section IV. (numerical analysis); whereas I wrote the section
III.B (solving the mapped problem via Tensor Networks). All of the authors contributed to
refining the manuscript by reviewing and editing accordingly. The Introduction and conclusion
were written with the mutual contribution of all authors.
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Abstract

This thesis presents the development of a numerical simulation technique, the Tree Tensor Net-
work, aiming to overcome current limitations in the simulation of two- and higher-dimensional
quantum many-body systems. The development and application of methods based on Ten-
sor Networks (TNs) for such systems are one of the most relevant challenges of the current
decade with the potential to promote research and technologies in a broad range of fields rang-
ing from condensed matter physics, high-energy physics, and quantum chemistry to quantum
computation and quantum simulation. The particular challenge for TNs is the combination
of accuracy and scalability which to date are only met for one-dimensional systems by other
established TN techniques. This thesis first describes the interdisciplinary field of TN by
combining mathematical modelling, computational science, and quantum information before
it illustrates the limitations of standard TN techniques in higher-dimensional cases. Following
a description of the newly developed Tree Tensor Network (TTN), the thesis then presents its
application to study a lattice gauge theory approximating the low-energy behaviour of quan-
tum electrodynamics, demonstrating the successful applicability of TTNs for high-dimensional
gauge theories. Subsequently, a novel TN is introduced augmenting the TTN for efficient sim-
ulations of high-dimensional systems. Along the way, the TTN is applied to problems from
various fields ranging from low-energy to high-energy up to medical physics.

vii
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Kurzbeschreibung

In dieser Arbeit wird die Entwicklung einer numerischen Simulationstechnik, dem Tree Tensor
Network (TTN), vorgestellt, die darauf abzielt, die derzeitigen Limitationen bei der Simula-
tion von zwei- und höherdimensionalen Quanten-Vielteilchensystemen zu überwinden. Die
Weiterentwicklung von auf Tensor-Netzwerken (TN) basierenden Methoden für solche Sys-
teme ist eine der aktuellsten und relevantesten Herausforderungen. Sie birgt das Potential,
Forschung und Technologien in einem breiten Spektrum zu fördern, welches sich von der
Physik der kondensierten Materie, der Hochenergiephysik und der Quantenchemie bis hin
zur Quantenberechnung und Quantensimulation erstreckt. Die besondere Herausforderung
für TN ist die Kombination von Genauigkeit und Skalierbarkeit, die bisher nur für eindimen-
sionale Systeme erfüllt wird. Diese Arbeit beschreibt zunächst das interdisziplinäre Gebiet
der TN als eine Kombination von mathematischer Modellierung, Computational Science und
Quanteninformation, um dann die Grenzen der Standard-TN-Techniken in höherdimension-
alen Fällen aufzuzeigen. Nach einer Beschreibung des neu entwickelten TTN stellt die Arbeit
dessen Anwendung zur Untersuchung einer Gittereichtheorie vor, die das Niederenergieverhal-
ten der Quantenelektrodynamik approximiert und somit die erfolgreiche Anwendbarkeit von
TTNs für hochdimensionale Eichtheorien demonstriert. Anschließend wird ein neuartiges TN
eingeführt, welches das TTN für effiziente Simulationen hochdimensionaler Systeme erweit-
ert. Zusätzlich wird das TTN auf diverse Probleme angewandt, die von Niederenergie- über
Hochenergie- bis hin zur medizinischen Physik reichen.

ix
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1
Introduction

Quantum physics describes the core theory behind our understanding of nature and re-
cently gave rise to various technologies [1, 2]. The understanding of quantum many-body
systems plays a key role in unveiling novel insights in a broad range of modern research, since
many fundamental phenomena only occur for a large number of interacting particles [3]. The
underlying quantum physics encompasses phenomena in Condensed Matter Physics, such as
high-temperature superconductivity [4, 5], governs applications in Quantum Information [6, 7]
and forms the foundation in High Energy Physics to promote our understanding of the fun-
damental elements of our universe [8, 9]. Furthermore, quantum many-body problems occur
in applied science, among others when investigating electronic structures in molecular sys-
tems [10, 11], in the development of quantum technologies, such as quantum computers,
quantum sensors, or quantum simulators [12–15], and in material science for studying and
engineering material properties [16].

Consequently, it is fundamental to have theoretical and numerical methods for describing
such systems accurately, not only to advance numerous research areas in science but further
to enable the development of novel cutting-edge quantum technologies impacting our daily
life [17]. However, the investigation progress in the field of quantum many-body physics
is often hindered by the lack of general analytical solutions. Especially strong interacting
systems, where perturbation theory fails, seek a stable and scalable numerical method to
unveil the rationale behind these complex quantum systems.

In the last decades, Tensor Network methods have proven to successfully solve quantum
many-body problems on a classical computer and rapidly became the state-of-the-art numeri-
cal tool for one-dimensional (1D) systems. They offer an efficient representation of a quantum
many-body state by taking advantage of the underlying entanglement properties of the sys-
tem. Crucially, in this Tensor Network representation, the amount of information can be
controllably compressed regarding the available computation resources towards an accurate
approximation [18]. At the current state of research, this class of numerical methods is es-
pecially relevant for problems where competing methods fail, such as Quantum Monte Carlo
methods which are limited by the infamous sign-problem [19].

1



2 Introduction

However, most two-dimensional problems still pose a non-trivial challenge for current Ten-
sor Network simulations, especially when operating on standard computational resources [20–
24]. The realisation of efficient methods for the simulation of two- or even higher-dimensional
quantum many-body systems is not only a highly challenging but as well crucially important
task for numerous scientific cases: Among others, such methods can be used to benchmark
future quantum computer algorithms, or quantum simulators [25–33]. Moreover, their reali-
sation enables the observation of topologically ordered phases [34], the study of the quantum
Hall effect [35], and the classification of two-dimensional phases of matter based on the en-
tanglement entropy [36], all of which being topics at the heart of the research in statistical
and condensed matter physics. Consequently, the study of high-dimensional quantum systems
could open up new fields of research, for instance in the context of the numerical implemen-
tation of Lattice Gauge Theories at finite density [37–39] or open quantum systems [40, 41],
giving access to a huge amount of very rich and promising physics almost unexplored today.

Thus, by continuing the development of Tree Tensor Networks for high-dimensional sys-
tems, this thesis aims to bridge the existing gap in the investigation of quantum many-body
physics towards systems that are currently out of reach. The first concrete applications of the
developed algorithm are in the field of Lattice Gauge Theories [37], the discretised version of
quantum field theory, which represents a fundamental theoretical tool for our understanding
of the microscopic processes governing the dynamics of elementary particles (see Chapt. 4). In
fact, many of the collective phenomena arising in these theories, including the phase diagram,
have not been fully characterised yet [37, 42]. This is especially the case for Lattice Gauge
Theories in higher spatial dimensions and at finite charge density where the sign problem
prevents the use of Monte Carlo methods [19, 39].

Furthermore, in the course of this thesis, we introduced a novel Tensor Network geometry
based on a Tree Tensor Network which combines accuracy and scalability for simulations of
high-dimensional systems [23]: This augmented Tree Tensor Network (aTTN) enables to reach
larger system sizes with more degrees of freedom while maintaining a precise description of the
systems. Consequently, the aTTN overcomes the current limitation of Tensor Network meth-
ods and therefore provides a powerful pathway to boost the research in all aforementioned
fields of physics. Finaly, this direction of development can potentially have a cutting-edge im-
pact on the theoretical understanding of the quantum nature of complex many-body systems
and, at the same time, support the experimental realization of physical devices in different
technological fields.

On the shoulders of Quantum many-body systems

In its most original form, the quantum many-body problem describes the dynamics of electrons
in matter as a continuum problem in three dimensions with strongly interacting particles.
From a mathematical point-of-view, we know the theory of everything behind this problem
since we simply have to solve the corresponding Schroedinger Equation H|ψ〉 = E|ψ〉1. In
other words, we just need to solve an underlying eigenvalue problem while all properties
of the quantum system are enclosed in the eigenstates |ψ〉 of the systems Hamiltonian H.
However, the Hilbert space H of the system and thereby the underlying eigenvalue problem
grows exponentially with system size: As an example, for N interacting spin-1

2 particles, the
number of possible basis states is 2N . Thus, for a system with N > 130 sites, the number
of amplitudes required to describe the complete wave function is greater than the number of
atoms in the known universe (estimated in the order O(1080)). So we could use all atoms

1or i∂t|ψ〉 = H|ψ〉 accordingly for dynamical problems
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of the complete universe to store the information of N = 130 sites, but we would already
need two universes for N = 131 sites. Looking at a small physcial system with N ∼ 1023

particles (which is the order of the Avogadro constant), the total state space would be of the
order dim{H } = O(21023

) which is even exponentially larger than the number of atoms in
the universe. Thus, to rephrase the problem in the words of Paul Dirac: "The underlying
physical laws necessary for the mathematical theory [are] completely known, and the difficulty
is only that the exact application of these laws leads to equations much too complicated to
be soluble" [43].

Basically, we know exactly what to do analytically, but we do not have a simple way to
access the information directly due to the, in theory, exponentially growing Hilbert space. But
can nature itself really work this way and store such exponentially large information in a single
quantum many-body system? Or in other words, are the amplitudes of a general, realistic
many-body wave-function all different or is there, in reality, some kind of simplifying structure
that makes the wave-function a feasible concept to work with? And in fact, in the last 30
years, a physical phenomenon has increasingly been linked as the key to understanding an
underlying structure of quantum many-body wave-functions: quantum entanglement [44–48].

Now, knowing that there is an underlying structure, could we just try to guess the wave-
function? Even though this might seem far-fetched, an educated guess can indeed work: In
this way, Laughlin famously found ground-state and excited-state wave functions describ-
ing the condensation of a two-dimensional electron gas [49]. More sophisticated methods,
however, include techniques which rely on perturbation theory, such as series expansion tech-
niques. Still, this analytical approach famously works well only for weakly-coupled systems
and breakes down for stronger interactions which are typical for complex quantum many-body
systems. Another well-studied approach for such systems is theMean field theory which can be
successfully deployed for certain strongly interacting quantum systems but fails to faithfully
represent the quantum correlations in the systems. Quantum Monte Carlo, on the other hand,
has established itself early on as one of the most successful methods without the draw-backs
of all the above-mentioned techniques: By stochastically reconstructing the partition function
of the system, it can accurately describe the quantum properties of a system making it today
an extremely successful tool for a broad scale of applications [50–53]. Nevertheless, this tech-
nique faces severe difficulties when analysing systems for which the stochastic distribution to
be sampled over becomes negative, or even complex, known as the sign-problem [19]. At this
point, Tensor Networks offer a fundamental tool to faithfully represent the information and
by capturing the underlying structure of a quantum many-body state.

A brief history of Tensor Networks

The history of Tensors in theoretical physics dates back to 1898 in the mathematical context
of researching the physical properties of crystals [54]. However, their application as variational
methods in numerical analysis has started way after computers have established themselves
as a workhorse for complex computations. In fact, in the early stages of complex numerical
analysis in classical physics, Monte Carlo methods have established themselves as the main
simulation tool. These methods have been well developed early on and still to date present
one of the most efficient numerical methods available. However, as mentioned above, they
suffer from the sign problem under certain conditions which makes the method diverge, and
thus are infeasible, for simulating some of the highly relevant quantum systems [19].

A particular key development for Tensor Networks was the Density Matrix Renormalisa-
tion Group (DMRG) developed by S. White in the early 90s [55, 56]. In its introduction,
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this technique was not yet brought into the context of Tensors but rather reformulates the
established numerical renormalisation group method [57, 58] towards an efficient application
on quantum many-body systems: Instead of performing the renormalisation procedure in real
space, White performed it in the density matrix eigenspace. This change of space enabled to
efficiently identify the physically relevant degrees of freedom in the renormalisation procedure
for computing the low-energy eigenstates of one-dimensional Hamiltonians. Thereby, White
laid the foundation of Tensor Networks, as he demonstrated that the relevant information
for representing quantum many-body states is to be found in the degrees of freedom cor-
responding to the entanglement of the quantum wave-function. Eventually, it was unveiled
that all states obtained by the DMRG algorithm are so-called finitely-correlated states, also
referred to as Matrix-Product-States (MPS), which can be represented by a set of connected
Tensors [44, 59, 60]. Thus, the fundamental idea of Tensor Networks was built: They param-
eterise the wavefunction of interest by recasting the system’s degrees of freedom as a Network
of several connected Tensors (see Fig. 1.1). In fact, in this framework, it became evident that
the DMRG can be understood as a variational optimisation over an MPS [59, 61]. The success
of the DMRG was a breakthrough in the analysis of quantum systems and rapidly became
the state-of-the-art tool for low-energy states of one-dimensional systems.

The second boom of development came in the mid-2000s: Further investigations in quan-
tum theory helped to increasingly understand that there was a certain structure of the entan-
glement. It was proven that gapped one-dimensional systems obey the so-called area law and
that this exact entanglement structure is naturally encoded in MPS [48]. On the other hand,
the MPS representation allowed to expand the available techniques from finding low-energy
states in equilibrium to concepts for out-of-equilibrium evolution [62, 63] and finite tempera-
tures [64, 65]. Further, novel Tensor Network structures, such as the Multi-scale Entanglement
Renormalisation Ansatz (MERA) [66] and the Tree Tensor Network (TTN) [67, 68], have been
developed addressing different problems ranging from the analysis of critical systems [66, 68]
to systems with periodic boundary conditions [69, 70]. In this wave of development, the
natural desire for an equivalently efficient representation of quantum many-body states in
two-dimensions arose which gave rise to the Projected Entangled Pair States (PEPS) [71].
Further, the established network geometries, i.e. MPS, MERA and TTN, have been applied
to two dimensional systems with various degrees of success [22, 72, 73]. However, as we will
see in more detail within this thesis, the developments of Tensor Network methods is still
ongoing for two- or even higher-dimensional quantum systems, since combining of accuracy
and scalability in simulating such high-dimensional systems represents an open challenge for
Tensor Networks [21, 24].

Tensor Networks in a Nutshell

The concept behind Tensor Network is a very general yet simple idea: As illustrated in
Fig. 1.1, they decompose a large tensor into a set of smaller tensors that are connected over
some auxiliary indices being summed over, called bond-links. The number of bond-links that
are left unsummed denotes the indices of the original tensor. In this representation, the bond-
links of the network can be upper-bounded by a controllable bond-dimension m. Increasing m
allows to control the amount of information captured in the Tensor Network. Thus, formally
both, the complete tensor and the Tensor Network, live in the same space while the latter just
occupies a corner of that space. Representing the information in such a Tensor Network gives
raise to major benefits, such as an exponential reduction in memory, an exponential speedup of
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|ψ〉
Decompose−→
Contract←−

(a) (b)

Figure 1.1: (a) High-order tensor |ψ〉 describing a quantum many-body wavefunction exactly
with all exponentially many coefficients. (b) A possible Tensor Network decomposition of the same
wavefunction where the tensors are illustrated in different colors and connected with each other over
internal bond-links. The dimension of the bond-links can be control to compress the information
represented within the network.

computations, a theoretical insight and interpretation, an estimation of missing or corrupted
entries and many optimisation algorithms and strategies. Consequently, Tensor Networks
are, in general, an efficient linear algebra tool for problems in exponentially high-dimensional
spaces.

In quantum many-body physics, Tensor Networks are used to efficiently represent the
exponentially large wavefunction by decomposing the complete quantum state vector. In this
representation, the bond-dimension m can be seen as a control parameter which allows to
interpolate between a product state (m = 1) and the exact, but inefficient, representation.
Based on the exact decomposition of the complete, exponentially large state, different network
geometries can be defined. In a nutshell, the Matrix Product States (MPS) are the established
Tensor Network geometry for equilibrium and, in many cases, even for out-of-equilibrium
problems of one-dimensional systems while MERA provides an efficient representation for
critical systems [66, 74–76]. The most prominent Tensor Network representations for higher
dimensions are at the current stage the Projected Entangled Pair States (PEPS) [45, 71, 77–79]
for two-dimensional systems, and the Tree Tensor Networks (TTN) [22, 24, 35, 37, 67, 68, 80]
which, in principle, can be defined for any system dimensionality (see Sec. 2.2.2 for more
details).

Even though Tensor Networks can efficiently represent a quantum many-body state, the
underlying simulations still rapidly reach the computational limits of current classical ma-
chines, especially for highly entangled systems. One powerful way to drastically reduce the
required numerical resources can be achieved by exploiting the symmetries of the underlying
quantum system. Thus, the incorporation of symmetries has become a standard add-on for
many Tensor Network algorithms [59, 81] in order to significantly push forward the capabilities
of numerical methods for studying quantum many-body systems (see Sec. 2.3). Consequently,
the implementation and development of Tensor Networks has become an interdisciplinary
field combining elements from mathematics, such as linear algebra and group theory, with
High-Performance computing and Quantum Information.

Black Holes and Baby Universes and Tensor Networks beyond quantum
systems

By now, you might have noticed that all section titles in this introduction are variations
of books by Stephen Hawking and reading this title you might wonder what Tensor Net-
works have to do with Black Holes and Baby Universes. While Tensor Networks have origi-
nally mostly been applied to problems between Quantum Information and Condensed Matter
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Figure 1.2: Overview of some of the interdisciplinary applications of Tensor Networks in Quantum
Physics and beyond which are touched on in this thesis. Subpicture High Energy Physics adapted from
Ref. [94], Classical Optimisation taken from Ref. [95] and Machine Learning adapted from Ref. [96].

Physics, the applications of Tensor Networks have expanded into numerous scientific fields
of research in recent years. In Quantum Gravity, for instance, the MERA has indeed been
linked to the geometry of space via the Anti-de Sitter (AdS) / Conformal Field Theory (CFT)
correspondence [75, 82] which in return has been brought in context to black holes by, to some
extend, resolving the black hole information paradox [83, 84]. Since Tensor Networks are a
general tool for information processing based on correlations and entanglement, they can es-
sentially flourish for any problem where a certain structure of correlations is present. Thus,
it is no wonder that since the late 2000s, Tensor Networks have become increasingly of inter-
est for the applied math community as well [85–87]. In this community, the idea of Matrix
Product States was rediscovered as Tensor Trains [88] and Tree Tensor Networks have been
proposed as Hirarchical Tucker Trees [89], thus highlighting the potential of Tensor Networks
as a general tool for information processing. This potential makes Tensor Networks further
able to perform Machine Learning tasks as a novel competitor to state-of-the-art neural net-
works (NN) [90, 91]. First approaches of Machine Learning with Tensor Networks already
yield comparable results when performing supervised learning on standardised datasets [91–
93]. Consequently, in the last decades, the development and application of Tensor Networks
has rapidly evolved into an interdisciplinary field of research.

In fact, beyond developing a novel Tensor Network for high-dimensional quantum many-
body systems, this thesis showcases some of these unconventional, interdisciplinary applica-
tions of Tree Tensor Networks. In particular, in the course of this thesis, the developed TTN
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was used to perform simulations to solve classical optimisation problems in medical research,
to analyse a system of Rydberg-atoms in the pursuit of benchmarking novel quantum tech-
nologies and to investigate Lattice Gauge systems in High-Energy physics aiming to provide
a new step in our understanding of the universe. Fig. 1.2 provides a brief overview of all
applications discussed in the thesis.

Brief answers to big questions - Thesis outline

The outline of this thesis is presented as a set of questions, one for each chapter and one
question for the complete thesis:

Are Tensor Networks able to efficiently simulate quantum many-body systems
in high-dimensions on a classical computer? The main goal of this thesis was the
development of a Tensor Network algorithm capable to analyse quantum many body-systems
on a classical computer in any spacial dimension. Therefore, a TTN has been implemented
for simulating such quantum systems and successfully applied to high-dimensional problems
in quantum physics and further to selected problems beyond quantum physics. Moreover,
this Tensor Network geometry has a clear bottleneck as it fails to capture the area law for
high-dimensional systems with increasing system sizes. Thus, as a result of this research, an
augmentation of the underlying TTN, the aTTN, has been developed to address this lack of
scalability of the network in higher dimensions. This novel Tensor Network opens the pathway
to investigating large-scale quantum systems, enabling to promote numerous fields of physics,
including quantum technologies, quantum field theories, and condensed matter.

The following provides a guidance on the structure of the thesis going from the theoretical
background over the obtained results and even up to the applications on problems beyond
quantum physics.

Chapter 2: What makes a Tensor Network a good Tensor Network state? The first
chapter provides an overview of Tensor Networks, starting from the theoretical introduction
of tensors and their operations as the fundamental building blocks of every Tensor Network
in Sec. 2.1. By formally introducing Tensor Network states and algorithms in Sec. 2.2, we will
see that a good Tensor Network shall satisfy the same entanglement bounds under real-space
bi-partitions as the physical states they represent. Further, in this section, it is illustrated how
the numerical complexity ζ = O(poly(N)poly(m)) naturally scales polynomial in the system
size N and the network’s bond-dimension m. However, by introducing the different Tensor
Network geometries, we will see that finding a proper balance between sufficiently satisfying
the entanglement bounds and keeping the numerical complexity feasibly low poses in practice
a highly non-trivial challenge for systems in higher dimensions.

The closing section (Sec. 2.3) of this chapter gives additional insights into how to further
decrease the computational costs by incorporating symmetries in the Tensor Network state.
After a description of typical symmetries in quantum many-body states, and an explanation
of how a Tensor Network is affected by the incorporation of such symmetries, we will see that
exploiting symmetries can not only drastically improve the Tensor Network computations but
further enables to target specific global symmetry sectors in an analysis, thus enabling to
easily fix for instance the total charge of U(1) symmetric model.
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Chapter 3: What are Tree Tensor Networks and how do they work? Having
gained an overview on Tensor Networks, this subsequential chapter formally and technically
introduces Tree Tensor Networks and their implementation for high-dimensional quantum
systems.

Starting from the reason why this thesis addresses the quantum many-body problem with
a TTN, instead of alternative methods, Sec. 3.1 presents the definition and fundamental idea
of TTNs. It illustrates that the natural loop-less, hierarchical structure of a TTN on the
one hand greatly benefits the underlying algorithms, such as finding the ground state of a
quantum many-body system, and on the other hand is the key for the unique flexibility of
TTNs to be applied to various problems in any spacial dimension.

In Sec. 3.2, we will see that the concrete structure of a TTN is crucial for the analysis of
systems in two spatial dimensions and beyond, which is defined by a technically non-trivial
mapping problem. As a hands-on summary regarding the ground-state search with a TTN,
the chapter provides a step-by-step example for a (4 × 4)-system. Finally, with Sec. 3.3,
the chapter provides an in-depth description of the technical part of implementing TTNs for
high-performance computations giving some hands-on illustration.

Chapter 4: Why are Tree Tensor Networks interesting in higher dimensions? It
is reasonable to wonder why one should be interested in TTNs compared to other numerical
methods, such as QMC, or even compared to competing Tensor Networks, like the PEPS. To
answer this question, Chapt. 4 consists of the publication [37] which illustrates the application
of the TTN to study Lattice Gauge Theories at finite density in two dimensions. In fact, this
study belongs to a set of fundamental problems in which QMC simulations suffer from the sign
problem, alongside quantum chromodynamics, quantum electrodynamics at finite density, and
fermionic systems. Furthermore, the study of these systems with alternative Tensor Network
methods, such as PEPS, poses a non-trivial challenge due to an underlying, reasonably large
local Hilbert space which can streightforwardly be addressed by the natural TTN structure.
Thus, this chapter shows the potential of TTNs to promote the understanding of fundamental
elements of the universe in future research of High Energy Physics. Finally, it illustrates that
this potential, together with the possibility to analyse systems unfeasible for QMC, makes
a TTN a highly promising candidate for the analysis of general high-dimensional quantum
many-body systems.

Chapter 5: Is it possible to capture area law with Tree Tensor Networks? Having
gained insights into TTNs in Chapt. 3 and having presented first applications in Chapt. 4, it
becomes evident that their main bottleneck is the fact that they indeed fail to incorporate the
area law by design. Thus, with increasing system size and dimensionality, they eventually fail
to faithfully represent a quantum many-body state. Therefore, the question naturally arises
whether it is possible to capture area law in higher dimensions with TTNs by its structure?

To address this drawback, Chapt. 5 introduces the aforementioned augmentation of the
TTN structure, the aTTN, which encodes the area law by construction. Thus, this aTTN
offers better scalability and can help to overcome fundamental limitations of TTNs in high
dimensional systems. In particular, this chapter includes the publication [23] in which we
show that this novel technique outperforms competing methods and reaches unprecedented
system sizes in two-dimensions making it the ideal candidate to, among other applications,
benchmark and validate state-of-the-art quantum technologies, such as quantum simulators
or quantum computers. In addition to the publication, this chapter features a more in-depth
technical presentation of the novel aTTN.
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Chapter 6: Can we compare Neural Networks and Tensor Networks in quantum
physics? In this introduction, Tensor Networks have already been compared to Neural
Networks as alternative method for performing Machine Learning tasks and, in return, Neural
Networks can also be used as a valid alternative for representing a quantum many-body
state [97]. Thus, a scientific comparison can bring light to the fundamental connection between
the two variational methods.

Chapt. 6 consists of the publication [98] which aims to find a fair comparison between
Tensor Networks and Neural Network states as a representation of quantum many-body wave
functions. Along the way, it introduces a novel mapping that illustrates a mathematical con-
nection between the networks, before analysing one-dimensional and two-dimensional critical
systems with different Tensor Network approaches and Neural Network approaches. Finally,
we point out that comparing quantum state representations in higher dimensions, in general,
is a non-trivial task seeking profound measures for a fair comparison.

Appendix A: What about Tree Tensor Networks for three dimensional systems?
In fact, the aforementioned chapters present numerical results for two-dimensional systems
and include only theoretical discussion on the extension towards three-dimensional systems.
However, App. A presents a manuscript that illustrates the numerical application of the de-
veloped TTN on three-dimensional systems in the field of Lattice Gauge Theory. Thus, this
manuscript extends the publication presented in Chapt. 4 and, in fact, provides the first suc-
cessful attempt to simulate a Lattice Gauge Theory in (3+1) dimensions via Tensor Networks.
Consequently, it shows that Tensor Networks, and in particular Tree Tensor Networks, can
be a fruitful direction to solve fundamental long-standing problems not only in two- but even
in higher dimensions.

Appendix B: So, Tree Tensor Networks seem great, but can we cure cancer with
them? Well, not yet; However, App. B presents the publication [99] showing an approach on
how Tensor Networks, in particular the TTN, can be deployed to optimise radiotherapy plans
for cancer treatment. It provides a successful proof-of-principle for this approach including
a realistic anatomical scenario simulating prostate cancer. Along the road, it defines a clear
strategy to map the classical problem to simulated quantum-like hardware. Since Tensor
Networks are particular examples of quantum circuits [100], this study might open the way
to the application of quantum computation to cancer treatment, for example through the
application of hybrid quantum-classical optimization algorithms [101].
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Tensor Networks: An overview

|ψ〉 ?
=

Tensor Networks have become increasingly popular as a numerical tool to address quantum
many-body problems on classical computers [21, 24, 37, 38, 61, 102–105]. The fundamental
idea in these methods is to efficiently parametrise the wavefunction of the physical system
in the form of a network consisting of several interconnected tensors. Thus, as illustrated in
Fig. 2.1, the wavefunction is decomposed into a set of local tensors: Like the DNA carries the
genetic instructions - or information if you wish - of living organisms and like neurons consti-
tute the main components of nervous systems such as our brain, tensors are the fundamental
building blocks for representing a quantum state via Tensor Networks. Accordingly, a Tensor
Network is composed out of local tensors which are connected to each other and hold the
information encoded in the complete network. This construction crucially reduces the total
number of parameters from an exponential O(eN ) to a polynomial O(poly(N)) dependency
on the system size N . In practice, each bond-link connecting two tensors defines the structure
of the underlying entanglement in the quantum state where its bond-dimension m can be a
quantitative measure of the amount of the present entanglement. Thus, the entanglement
within the quantum system glues the connected tensors within the network together.

For the sake of compactness, a graphical representation for the underlying mathematical
tensor notation has been established during the introduction of Tensor Networks in physics.
In a nutshell, Tensor Networks are represented by circles (or similarly closed objects) for
the tensors and lines for the links (see Fig. 2.1). Each link connecting two different tensors
indicates a contraction over a coinciding index. Here, the tensor elements are depicted in
arbitrary colours, while the colour for each tensor is usually adapted for highlighting purposes.
This graphical representation allows representing complex equations of the underlying tensor
algebra in visual diagrams. Once you get used to this notation, it surely is more convenient
and intuitive than explicitly writing down the underlying rigorously long equations.

The implementation and development of Tensor Networks for solving cutting edge prob-
lems in research have become an interdisciplinary field combining elements from mathematics,

11
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(a)

Tensor

Tensor Network

⇒ |ψ〉
Quantum state

(b)

DNA Chromosome

⇒

Human

Figure 2.1: (a) Graphical representation of an arbitrary Tensor Network state: A tensor (left
inlet) is the fundamental building block for representing the quantum many-body state |ψ〉 via Tensor
Networks. Each tensor is typically represented graphically by a circle-like object with several links
which can be open or connected to other tensors and contains a certain amount of information about
the state. (b) The DNA similarly constitutes the fundamental building stone of a chromosome, and
ultimately of a human.

such as linear algebra and graph theory, with High-Performance computing and Quantum In-
formation. In this context, the exploitation of symmetries has become a crucial, state-of-the-
art add-on for many Tensor Network algorithms that are deployed nowadays to investigate
quantum many-body Systems [59, 81]. This incorporation of symmetries reduces the numeri-
cal resources needed and thereby helps to push forward the limitations of simulating quantum
systems on classical computers via Tensor Networks. For global symmetries, this can be
realised independent of the network geometry by decomposing each tensor into smaller, in-
dependent subspaces [106, 107]. Furthermore, such symmetrically invariant Tensor Networks
offer to efficiently investigate physical properties regarding certain selected symmetry sectors
as towards the end of the chapter.

This chapter introduces selected topics on Tensor Network methods crucial for their theo-
retical understanding and further aims to grant a broad overview of the state-of-the-art Tensor
Network states and algorithms. In particular, the chapter is divided into three main sections:
The first section (Sec. 2.1) formally introduces the mathematical concepts behind Tensors
and the important operations for Tensor Network algorithms. Afterwards, Sec. 2.2 is dedi-
cated to the description of general Tensor Network states and algorithms. Therein, Tensor
Networks and their mathematical properties are formally defined followed by a discussion on
the importance for efficient Tensor Networks to (i) satisfy the same area-law of the quantum
states they represent and (ii) to be efficiently contractable at the same time. Further, this
section provides a general overview of different Tensor Network states and common Tensor
Network algorithms. The last section (Sec. 2.3.1) illustrated the benefits of exploiting sym-
metries in Tensor Network simulations and presents how symmetries can be incorporated in
Tensor Networks rounding up this introduction to Tensor Networks.
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2.1 Tensors and Tensor Operations

In the application of Tensor Network algorithms, the Tensors making up the network are
constantly manipulated in order to achieve the goal of the algorithm, such as finding the
ground state of a Hamiltonian or investigating the dynamics of a quantum system. The
most important numerical operations thereby are the contraction of two tensors, reshaping
a tensor or performing a factorisation. In a sophisticated algorithm, these operations are
executed several thousand or even millions of times. Thus, these operation form the low-level
toolbox for Tensor Network algorithms and their numerical efficiency is key to a successful
application of Tensor Networks.

This section formally introduces the tensor object together with a selected set of these
operations which serve as the low-level toolbox of all Tensor Network algorithms. In practice,
the tensors of a Tensor Network are complex (or in some cases real) numerical data stored in
a computer memory device and manipulated on a processing unit. In the following, the math-
ematical tensor object is formally and graphically introduced followed by the basic operations
commonly performed on these tensors.

It is worth mentioning that Ref. [24] and Ref. [108] offer a similar in-depth description
with the former focusing in particular on the practical implementation of tensors and their
operations.

2.1.1 Tensors

From a mathematical point of view, a single tensor T is a multidimensional array describing
linear relations of several different vector spaces. It can be seen as the generalisation of the
well-known vectors and matrices from linear algebra: While a vector is an element of a single
vector spaces V ∈ Cd and a matrix is assigned to the product space of two vector spaces
V1 × V2, a tensor represents information in a general space composed out of arbitrarily many
vector spaces V1 × ...× Vr.

Definition 2.1.1: (Tensor).

A complex tensor T ∈ Cd1×d2×...×dR is defined as a dense R-dimensional array of
complex numbers mapping the R-dimensional manifold to a complex scalar:

T : V1 × ...× VR → C .

Remarks.

• We also refer to d1 × d2 × ...× dR as the shape of a tensor.

• The total number of vector spaces R of the tensor T is its order.

• Each element Ti1,...iR of the tensor can be addressed by a set of indices ir ∈
{1, ..., dr} assigned to vector spaces Vr (r ∈ {1, ..., R}). The range of values
{1, ..., dr} which the index ir may take is defined as the link νr of the tensor
assigned to the vector space Vr.

• To simplify the notation, we often use the same notation exchangeable for the
link νr and the corresponding index ir within the same vector space Vr; whether
it is referred to the entire link or individual entries is easily distinguishable by
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c v M T T

Figure 2.2: Graphical representation of (a) a scalar c ∈ C (i.e. zero-link tensor), (b) a one-link
tensor (i.e. a vector) v ∈ Cd1 , (c) a matrix M ∈ Cd1×d2 (i.e. a two-leg tensor), (d) a three link tensor
T ∈ Cd1×d2×d3 and (e) an arbitrary order-R tensor. The tensor elements are depicted here by blue
areas, while the open-ending links represent the indices of the tensor.

context. Thus, in order to explicitly indicate the specific shape of a tensor T ,
we may write T = Tν1,...,νR overloading the expression for addressing a certain
element Ti1,...,iR in T .

• Considering all dr-dimensional spaces Vr, a tensor consists of ξ =
∏R
r=1 dr ele-

ments.

• The norm of a tensor shall be the Frobenuius norm

||T || = ||T ||F ≡

√√√√
d1∑

i1=1

d2∑

i2=1

...

dR∑

iR=1

||Ti1,...iR ||2

• Similarly to this definition, we can define a real tensor T ∈ Rd1×d2×...×dR as a
dense R-dimensional array of real numbers.

From Def. 2.1.1, it becomes evident that a vector is equivalent to an order-1 tensor with one
corresponding link addressing a certain vector element by the index i1. Further, a matrix forms
an order-2 tensor with two indices i1 and i2 for its row and column respectively. Equivalently,
you may imagine an order-3 tensor T ∈ V1 × V2 × V3, as a three-dimensional cube with
one index for each dimension. This conceptual procedure can be extended towards tensors
with higher order r even though we as humans may lack the ability to imagine these objects
geometrically. Fig. 2.2 illustrates the typical graphical representation for different tensors of
various orders.

In practical applications, Tensor Networks exploit, or consist of, special tensors which
obey additional conditions. The most important ones which are frequently used in different
Tensor Network states and algorithms are isometries and disentanglers.

Isometry The first special kind of tensors to be introduced as a vital tool in Tensor Networks
are isometries. An isometry can be seen as the generalisation of a matrix U with orthonormal
rows towards higher-order tensors. Similar to UU † = 1 for such a matrix U , an isometry T
becomes an identity when contracting it with its complex conjugate over the proper links.
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Figure 2.3: Graphical representation of the condition for an order-3 isometry (a) and a disentangler
(b): When contracting one of them with their complex conjugate over the proper links, they become
an identity indicated by a straight line.

Definition 2.1.2: (Isometry).

Let T be an order-(R > 1) tensor with the links (i1, ..., iR), then T is called an isometry
with respect to the link ik (with k ∈ {1, ..., R}) if it obeys the isometry condition

∑

{ir}\ik

(T )i1,...,iR(T †)i′1,...,i′R = δik,i′k .

Fig. 2.3a shows this isometry condition for an order-3 tensor in the graphical notation.
In general, a tensor can be isometrised by performing QR-decompositions as described in
Sec. 2.1.2. An important example is the insometry T[i1,i2,i3] of order R = 3 which when it is
isometrised with respect to i3 performs a unitary renormalisation on the two subspaces (i1, i2).
In Chapt. 3, it is described that this kind of tensor is crucial for an efficient implementation
of a Tree Tensor Network. In particular, therein we will see that the Tree Tensor Network
developed within this thesis is mainly composed out of order-3 isometries.

Disentanglers A disentangler can be seen as the generalisation of a unitary matrix U
towards an order-4 tensor (see. Fig. 2.3b). Indeed, every disentangler uk is a unitary when
reshaping it into a matrix by fusing its first two and its last two indices respectively (see
Sec. 2.1.2 for more details on the corresponding link-fusion operation).

Definition 2.1.3: (Disentangler).

Let u be an order-4 tensor with the links (i1, i2, i3, i4), then u is called a disentangler
if it obeys the unitary condition

∑

i3,i4

(u)i1,i2i3,i4
(u†)i3,i4

i′1,i
′
2

= δi1,i′1δi2,i′2 .

Hence, one disentangler uk performs a unitary transformation on the two subspaces ad-
dressed by i1 and i2. In practical Tensor Network applications, this transformation aims to
locally decouple - or disentangle - relevant degrees of freedom in a quantum many-body state
(hence the name disentangler). This particular tensor was introduced as a key ingredient
of the MERA geometry [73, 73, 74] which is described in more detail later on in Sec. 2.2.
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Further, it plays a crucial role in the novel aTTN method [23] developed within the scope of
this thesis (see Chap. 5 for an in-depth presentation of the aTTN).

2.1.2 Tensor Operations

Having formally introduced the tensor object, this section is dedicated to the description of
selected tensor operations to manipulate tensor objects. These operations can be seen as a
generalisation of linear algebra towards a tensor algebra. We will see throughout this sec-
tion that many tensor operations have defining similarities with corresponding linear algebra
operations and further that some tensor operations are numerically executed via linear alge-
bra libraries, such as the Basic Linear Algebra Subprograms (BLAS) [109, 110] or the Linear
Algebra PACKage (LAPACK) [111].

In general, the following tensor operations can be separated into two classes: (i) Reshaping
operations, such as the tensor transposition or a link fusion, aiming to reshuffle the data of
a tensor without changing its information content and (ii) tensor algebra operations, such as
the tensor contraction or a tensor decomposition, performing actual floating-point operations
on one or more tensor objects. It is worth mentioning that there are various established
numerical libraries available able to perform all or a subset of existing tensor operations (for
a detailed overview see Ref. [112]).

Tensor Transposition

Similar to the matrix transposition, the tensor transposition reshapes the entries of a tensor
by reordering its indices. However, considering the higher order of a tensor, and thereby the
several different indices, this idea generalises to a permutation of the tensor links.

Definition 2.1.4: (Tensor Transposition).

Let T ∈ Cd1×...×dR be a tensor of order R with link indices (i1, ..., iR) and further let
π be a permutation of size R, then the transposed tensor T π under the permutation π
is defined as reordering its elements

Ti1,...,iR → T πi′1,...,i′R = Tπ(i1,i2,...,iR) ,

where the link indices i1, ..., iR of T permute to π(i1, ..., iR) = iπ(1), ..., iπ(R).

Remark.

The permutation of the links leaves the order of the tensor invariant. We call the
resulting tensor transposed under the permutation π. The numerical complexity of this
operation is linear in the number of elements O{ξ}.

As an example, Fig. 2.4a shows the transposition of an order-5 tensor Ti1,i2,i3,i4,i5 under the
permutation π = (1, 2, 4, 5, 3). The orange shade marks the effect of the permutation on the
tensor T . After the operation, the resulting tensor has the elements T πi1,i2,i5,i3,i4 = Ti1,i2,i3,i4,i5 .
Further, in agreement to linear algebra, the transposition of an order-2 tensor equals the
matrix-transposition MT

mn = Mnm.
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Figure 2.4: Different reshaping operations for tensors. (a) Transposition of the tensor T →
T π under the permutation π = (1, 2, 4, 5, 3). Graphically, this transposition is illustrated by the
permutation of the links within the orange-shaded area. (b) Fusing the links i1 and i2 of the tensor T
resulting in the tensor T̃ with link i1,2. The gray tensor denotes the so called fuse tensor. (c) Splitting
the link i1,2 again into the links i1 and i2.

Fusing and splitting

Another form of reshaping a tensor without changing the information content it contains is
the operation of fusing or splitting links. The former operation combines several adjacent
links of a tensor into a single fused link while the latter describes the inverse operation which
splits one single fused link again into its original decomposed links.

Definition 2.1.5: (Link fusion and splitting).

Let (ν1, ν2, ..., νk) be a tuple of links with corresponding indices (i1, i2, ..., ik), then the
fusion ν of the links (ν1, ν2, ..., νk) is defined by the Cartesian product of all fused links

ν = ν1 × ν2 × ...× νk ,

where the index i of the fused link runs over all possible combinations for
i← (i1, i2, ..., ik) within the spanned product space ν.

On the flip-side, we define the operation of splitting links as the inverted process of a
link fusion, i.e. splitting one link i of a product space i ∈

(⊗k
κ=1 Vκ

)
into k different

links i1, i2, ..., ik inverting the process of fusing links.

Remark.
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The targeted fused link ν contains every possible index pair of the initial links and
consequently exhibits the dimension di =

∏k
κ=1 dim{iκ}.

The combination of spaces itself can be represented by a so-called fuse-tensor containing
the links of i1, i2, ..., ik and i. To complete the fusion, the original tensor will be
contracted with the fuse-tensor. The tensor rank will be reduced by this operation.

As an example, Fig. 2.4 illustrates both operations, the fusion and splitting of two links.
The grey tensor therein is the fuse-tensor which in the case of fusing links and consequently
splitting them again is equivalent for both operations.

As another crucial example, a tensor Ti1,i2,...,iR of arbitrary order R > 2 can be converted
into a matrix by bipartiting all links of the tensor and fusing both sets of links i1, ..., ij and
ij+1, ..., iR respectively (with 0 < j < R). This fusion results in a Tensor with two indices
m = (i1, ..., ij) and n = (ij+1, ..., iR), or i.e. a matrix

Mmn = T(i1,...,ij),(ij+1,...,iR) .

This fusion is an important part of many Tensor Network algorithms as this operation enables
to apply matrix operations from classical linear algebra straightforwardly to tensors with more
than two links.

Contraction

The contraction of two tensors generalises the matrix-matrix-multiplication towards the tensor
algebra: It combines the two tensors A and B to a resulting third tensor C = AB with different
properties and elements while preserving the underlying information content. Differently from
the matrix-multiplication, the operands can be of arbitrary order so that the tensor contraction
can be performed over several coinciding links m1, ...,mµ (see Fig. 2.5).

Definition 2.1.6: (Tensor Contraction).

Let A and B be an order-ra and an order-rb tensor, respectively, with coinciding links
m1, ...,mµ, then a tensor contraction is defined as the summation over all indices mk ∈
{m1, ...,mµ} of the coinciding links

Cl,n =
∑

m

Al,mBm,n ,

with l = (l1, ..., lλ),m = (m1, ...,mµ)

and n = (n1, ..., nν)

where the links lk ∈ {l1, ..., lλ} and nk ∈ {n1, ..., nν} remain after the contraction as the
links of the resulting tensor C. Consequently, the order of C is rc = λ+ν = ra+rb−µ.

In this tensor algebra, the matrix-multiplication itself can be seen as a contraction of two
order-2 tensors over the coinciding link m as illustrated in Fig. 2.5 showing the graphical
representation of both, the matrix-multiplication as well as a general tensor contraction.

While matrix-matrix multiplications are typically carried out with optimised linear al-
gebra libraries, such as GEMM [113], there exist three main ways for the computational
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Figure 2.5: Graphical representation of different Tensor Contractions: A Matrix-Matrix-
multiplication (a) can be generalised to a tensor contraction for two tensors T [1] and T [2] of arbitrary
orders (b). A special kind of tensor contraction is the trace of an order-2 tensor, i.e. a matrix (c).
As another example a vector-matrix multiplication can be written in the graphical tensor notation as
well (d).

implementation of tensor contractions. The most prominent one is the Transpose-Transpose-
GEMM-Transpose (TTGT) approach [24, 114], in which the two tensors are reshaped into
matrix shape by proper transposition and link fusion, before performing the contraction as op-
timised matrix-matrix multiplication. Crucially at this step, the algorithm can exploit efficient
linear algebra libraries, such as the GEMM routine from LAPACK [111]. Finally, the result-
ing matrix, i.e. order-2 tensor, is reshaped by splitting its links again into the original links
of the now contracted tensors. As alternative methods, Loops-over-GEMM (LoG) [115–118]
or GEMM-Like Tensor-Tensor Contraction (GETT) [118] are the potentially more efficient
strategies trying to get rid of the pre- and post-processing steps of the common TTGT to solve
the contraction without changing the shapes of the tensors. However, they are non-trivial to
implement and yet to be implemented in a highly optimised way to compete with the TTGT
strategy.

The computational complexity of the tensor contraction O
(
dl1 ...dlλdm1 ...dmµdn1 ...dnν

)

scales with the dimensions of all links involved1. Due to this complexity increasing with
the number of links, the contractions play a crucial role for the efficiency of Tensor Network
algorithms. Thus, the contraction schemes have to be thought-through when designing and
developing an efficient Tensor Network from the computational point of view.

Factorisation

Each tensor can be factorised by taking advantage of classical linear algebra by using matrix
decompositions. Therefore, the tensor to be decomposed will be reshaped into an order-
2 tensor by fusing the links of two different subsets as described in Sec. 2.1.2. After the
factorisation, the links are properly split with respect to the two different sets of its links.
The most prominent decompositions for tensors (applied in matrix-shape) are the Singular
Value Decomposition (SVD) and the reduced QR-decomposition.

1when carried out as numerically optimised multiplication, the complexity can be reduced in practical
applications
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Definition 2.1.7: (Reduced QR-Decomosition).

Let M ∈ Cm×n be a complex matrix. Then, the reduced QR-decomposition is defined
as

M = QR

decomposing M into a Q ∈ Cm×min {m,n} featuring Q†Q = 1 and a matrix R ∈
Cmin {m,n}×m consisting of non-vanishing entries only on and above its diagonal.

Remark.

For m ≤ n, R becomes square and thus forms an upper triangular matrix, whereas in
the case of m ≥ n, Q equals a unitary matrix with Q†Q = QQ† = 1.
This factorisation refers to the reduced or thin QR-decomposition while by the conven-
tional definition the full matrix Qf is always a squared matrix, which can be achieved
for m < n by filling the missing entries in the reduced Q with orthonormal columns
Qc and R with zeros. Thus, it contains the same amount of information while being
beneficial for computational purposes.

Definition 2.1.8: (Singular Value Decomposition).

Let M ∈ Cm×n be a complex matrix, then the singular value decomposition is defined
as

M = USV †

decomposingM into a matrix U ∈ Cm×min {m,n} with orthonormal columns, a diagonal
matrix S ∈ Rmin {m,n}×min {m,n} and a matrix V † ∈ Cmin {m,n}×n consisting of orthonor-
mal rows. Thus, U obeys U †U = 1 where its orthonormal colums are referred to as left
singular vectors of M . Analogously, V †V = 1 holds true where the orthonormal rows
of V † are the right singular vectors of M . The diagonal matrix S contains only real,
non-negative elements referred to as singular values of M . The number of non-zero
singular values is the rank of the matrix M .

Fig. 2.6 illustrates the SVD (QR-decomposition) following Def. 2.1.8 (Def. 2.1.7) applied
on an order-5 tensor T : Firstly a direction of truncation has to be defined, i.e. which sets of
links shall be fused before decomposing the tensor in the resulting matrix shape. After the
decomposition, the first set, here (i1, i2), is attached to the U (Q) tensor, while the other set,
here (i3, i4, i5), is attached to the V (R) tensor. After splitting the links again, U , V and Q
are isometries obeying Def. 2.1.2.

In practical applications, the SVD is a key tool of Tensor Networks: On one hand, the
SVD enables to establish a desired gauge in a Tensor Network (see Sec. 2.2 for more details
on gauge-freedom in Tensor Networks) which in return can provide higher efficiency in certain
computations, such as the calculation of observables (see Sec. 3.1.3). Additionally, the singular
values can be used to measure entanglement properties within loop-less networks as described
later on in more detail for Tree Tensor Networks (see Sec. 3.2.2). Furthermore, the SVD can
be deployed to efficiently compress a tensor or even a complete Tensor Network:
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Figure 2.6: Graphical representation of tensor factorisations. (a) The tensor T is decomposed
using a singular value decomposition (top) or using a QR-decomposition (bottom). The former de-
composes T into three tensors: Two isometries U and V and the diagonal matrix σ containing the
singular values. The latter decomposes T into an isometry Q and a second tensorR. (b) All isometries
(blue) obey the isometry condition of Def. 2.1.2 when contracted with their complex conjugate over
the open links of the decomposition.

Lemma 1. For a given matrix M , the SVD enables to approximate M by another matrix M̃
with lower rank r̃ < r, i.e. living in a smaller space, with a minimal deviation introduced in
its Frobenius norm ||M ||2F :=

∑
ij |Mij |2 = tr {MM †}.

Proof. The SVD on M yields

||M ||2F = tr {USV †V S†U †} = tr {SS†} =
r∑

i=1

σ2
i ,

where r is the Schmidt rank of the matrix M . Consequently, the deviation εr̃(M,M̃) =
|||M ||2F−||M̃ ||2F | due to the approximation M̃ is minimal for considering the highest r̃ singular
values, together with their corresponding singular vectors. If all σi are ordered descendingly,
the deviation εr̃ introduced can be computed by the discarded singular values σk.

||M̃ ||2F =
r̃∑

i=1

σ2
i = ||M ||2F −

r∑

k=r̃+1

σ2
k

︸ ︷︷ ︸
=εr̃

Thus, M̃ is the best possible approximation of M for a lower rank r̃ with respect to the
Frobenius norm. q.e.d.
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2.2 Tensor Network states and algorithms

|ψ〉

i1 i2 i3 iN

Decompose−→
Contract←−

T [1] ν1

T [2]

ν2

T [K]

i1 i2 i3 · · · · · · · · · iN

(a) (b)

Figure 2.7: (a) High-order tensor |ψ〉 describing a quantum many-body wavefunction exactly
with all exponentially many coefficients. (b) A possible Tensor Network decomposition of the same
wavefunction where the tensors are illustrated in different colours and connected with each other over
internal bond-links. The dimension of the bond-links can be controlled to compress the information
represented within the network.

In quantum mechanics, Tensor Network states represent an arbitrary pure quantum many-
body state |Ψ〉 ∈ H on a lattice L with corresponding Hilbert space H . In general, the
lattice L can be any D-dimensional lattice containing N sites, where each site k ∈ [1, ..., N ]
is described by a local Hilbert space Hk with finite dimension dk, so that the complete Hilbert
space of L is spanned by H = ⊗Nk=1Hj . The most general pure state living on such a lattice
can be written as

|ψ〉 =

d1∑

i1=1

d2∑

i2=1

...

dN∑

iN=1

Ψi1,...,iN |i1〉 ⊗ |i2〉 ⊗ ...⊗ |iN 〉 , (2.1)

where |ik〉 denotes the local state space of the site k. For sake of simplicity, we assume
in the following that all local dimensions are of equal size (∀k : dk = d) which is frequently
the case in various quantum systems of interest. The complete state vector seeks for an
exponentially growing number of coefficients Ψi1,...,iN with increasing system size, namely

dim{Ψ} =
∏N
k=1 dk

dk=d
= dN . Due to the separable Hilbert spaces H , the wave function can

be recast in an order-N tensor, where each link ik of this tensor corresponds to a local Hilbert
space Hk (see Fig. 2.7).

As denoted in the introduction of this chapter, the idea of Tensor Networks is to decompose
this exponentially large tensor into a set of connected local tensors {T [k]}. Some of these
tensors take on the links {ik} of the complete tensor as open links corresponding to the local
Hilbert spaces Hk of the physical system. Thus, we can formally define a Tensor Network
similar to a graph in graph theory with the addition of these physical links {ik} by Def. 2.2.1

Definition 2.2.1: (Tensor Network).

A Tensor Network shall be defined, as a tuple G = (T,N) consisting of a set T = {T }
of two or more tensors and a set N = {ν} of corresponding links. The set N is further
divided into internal links {χ} connecting the tensors with each other and external
or physical links {i} which are connected to one tensor only, thus having one open
ending each.
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T [1]

U †

T [2]

U

Figure 2.8: Gauge freedom in a Tensor Network: At every internal link an identity 1 = UU†

can be inserted without changing the global state representation. When contracting U (U†) into
the nearest tensor, the structure of the original Tensor Network is restored, giving an alternative
description of the same information content.

Further, we denote:

• The size of the network K shall be defined as the total number of tensors within
the tuple G, i.e. the size G or T respectively.

• The total number of physical links N , i.e. the size of {i}, is the system size.

• The typical literature introduces to dk = dim{ik} as the dimension of the physical
link ik. Depending on the network and description, the dimension of an internal
link is typically referred to as χ, m, or D. With some exceptions, this thesis
uses mk = dim{χk} describing the dimension of the internal link χk, i.e. its
bond-dimension.

• Every Tensor Network should, in theory, allow to be contracted to a single ten-
sor Ψ{i} when contracting the constituting tensors over all internal links {χ},
following

Ψi1,...,iN =

m1∑

χ1=1

m2∑

χ2=1

· · ·
mN∑

χN=1

(
K∏

k=1

T [κ]
{i}κ,{χ}κ

)
, (2.2)

where T [k]
{i}κ,{χ}κ is the κ-th tensor in the set T with the links {i}κ and {χ}κ

denoting the set of all physical and internal links respectively attached to the κ-
th tensor. Noting that each internal link χk occurs twice within the set of tensors
T and shall be contracted over, while each physical link occurs only once within
T.

• Finally, we define the maximum dimension of all internal links as the bond-
dimension of the network m = maxk=1,...,K{dim{χk}}.

Lemma 2. Every Tensor Network has a gauge freedom.

Proof. Let T [1] and T [2] be two tensors within a Tensor Network connected by the link ν of
dimension n, such that the tensors can be contracted over ν to

T [12] = T [1]T [2] .
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Further be U ∈ Cn×n a unitary matrix, then

T [12] = T [1]T [2] = T [1]U︸ ︷︷ ︸
≡T̃ [1]

U †T [2]
︸ ︷︷ ︸
≡T̃ [2]

= T̃ [1]T̃ [2]

holds true. This basis transformation can be applied to any link connecting two tensors within
the complete Tensor Network as illustrated in Fig 2.8. q.e.d.

Depending on the way of decomposing the complete state vector Ψi1,...,iN , several Ten-
sor Network geometries have been established over the last decades. The most prominent of
which are the Matrix Product States (MPS), the Tree Tensor Networks (TTN), the Multi-
scale Entanglement Renormalisation Ansatz (MERA) and the Projected Entangled Pair States
(PEPS) which are discussed in more detail in the upcoming Sec. 2.2. However, before going
to this section, let us first briefly raise the daring question: What is the best Tensor Net-
work geometry? Or in other words, what makes a Tensor Network a good Tensor Network
state? Well, that one is easy to answer theoretically: On the one hand, the Tensor Network
should faithfully describe the properties of the quantum many-body state they represent. For
such a faithful description, a good Tensor Network has to be able to accurately capture the
underlying quantum entanglement of the system. In particular, they shall satisfy the same
entanglement bounds under real-space bipartitions as the physical states they represent. On
the other hand, since Tensor Networks are a numerical tool, a good Tensor Network shall be
numerically efficient, thus, the underlying operations performed on the network shall include
a minimum amount of FLoating point OPerations (FLOPs). In other words, the numerical
complexity ζ = O(poly(N)poly(m)) shall scale as low as possible with respect to the system
size N and the network’s bond-dimension m.

The following section addresses the first point regarding the faithfulness of the repre-
sentation by discussing the properties of the quantum entanglement of quantum many-body
systems and how they translate into a general Tensor Network representation of a state. The
subsequent section is then dedicated to the different Tensor Network geometries and further
aims to illustrate that, in fact, there is no Tensor Network which generally is the best since
the accuracy of each network highly depends on the system they investigate.

2.2.1 Area law and Entanglement Properties

Quantum entanglement is one of the most impactful properties separating quantum many-
body states from classical many-body systems. It gives rise to the high potential of quantum
systems in capturing an exponentially large amount of information. When formally introduc-
ing Tensor Networks, it already became evident that a general quantum wavefunction lives in
a with the number of constituents exponentially growing vector space and therefore is able to
capture such a large information content from a mathematical point of view. In this respect,
when decomposing such a random state into a Tensor Network, this Tensor Network would
require an exponentially large bond-dimension to represent the exponentially large wavefunc-
tion exactly. This would make the use of Tensor Networks as a quantum state representation
practically unfeasible.

However, most physical quantum states obey certain entanglement bounds under real-
space bipartitions, also known as Area Laws making it possible to decompose these states
very efficiently into a Tensor Network structure, to a high degree even loss-less. The key-
point for such an efficient decomposition into a Tensor Network is the remarkable feature of
Tensor Network states that their entanglement properties can be controlled by the network
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topology itself. Therefore, it is crucial for an efficient numerical implementation that the
Tensor Network topology satisfies the same entanglement bounds as the physical states they
represent. In what follows, these entanglement bounds are discussed in more detail for the
Tensor Network states.

In information theory, entropy as such is used as a measure of the information content
inherent in a system [6, 119, 120]. This information content, or amount of quantum entangle-
ment incorporated in a quantum state, can be measured utilizing the entanglement entropy
S which describes the shared information between two bipartitions. The Von Neumann en-
tropy, as a measure of the entanglement, can be assessed by the Schmidt decomposition, which
formally decomposes the state |ψ〉 into two bipartitions |Ψ[A]〉 and |Ψ[B]〉 [6].

Theorem 2.2.1: (Schmidt Decomposition).

Every bipartite quantum state |ψ〉 ∈HA ⊗HB can be decomposed as

|Ψ〉 =

χ∑

α=1

λ[A,B]
α |Ψ[A]〉 ⊗ |Ψ[B]〉 ,

into two orthonormal bases |Ψ[A] (|Ψ[B]), or Schmidt bases, corresponding to the
Hilbert-space HA (HB) of the bipartition A (B), and the Schmidt-coefficients λ[A,B]

α .

Remark.

In practical applications, this decomposition can be performed using an SVD where the
state is first rewritten as a matrix Ψ =

∑
{i} ψ(i1,...,ik),(ik+1,...,iN )|i1, ..., ik〉A|ik+1, ..., iN 〉B

with respect to the two bipartitions which is consequently decomposed into Ψ = UσV †.
Here, U (V ) with U †U = 1 (V V † = 1) span the orthonomal basis, while the non-zero,
normalised singular values of σ are the Schmidt-coefficients λ[A,B]

α .

The Schmidt decomposition is directly linked to the entanglement of the state Ψ over its
Schmidt-coefficients: The entanglement entropy S between the bipartitions A and B equals

S = −
χ∑

α=1

|λ[A,B]
α |2 log {|λ[A,B]

α |2} .

Consequently, the minimal entropy S = 0 is reached only when there is only one non-zero
singular value, or Schmidt coefficient, λ1 = 1 while λα 6=1 = 0. In this case, the two bipartitions
can be completely separated since they do not share any information, i.e. the bipartitions
are not entangled. In contrast, a higher S > 0 indicates shared information between the two
bipartitions, thus the state is increasingly entangled with growing S. Evidently, this Von
Neumann entropy is bounded by S ≤ logχ.

Applying this upper bound to a general random state obeying Eq. (2.1) leads to the
so-called volume law stating that the entanglement entropy scales with the volume of the
system: Considering for instance a D-dimensional system with equal system sizes L (such
that the total number of sites N = LD), this volume law would suggest that the entanglement
entropy when bipartiting the system indeed scales extensively with S ∼ LD. However, in the
recent year it has become evident that most physical states do not hold up to this amount of
entanglement and rather exhibit significantly less entanglement following to the so-called Area
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Figure 2.9: Quantum many-body Hilbert space spanning the complete manifold for pure states
|ψ〉. The states |ψArea−Law〉 that obey an area law scaling of entanglement entropy occupy a tiny,
distinct corner of the complete manifold.

law [45, 46, 121]. Thus, the physical states live in a tiny fraction of the complete Hilbert space
as illustrated in Fig. 2.9 which can be ideally accessed by Tensor Network representations.

As we will see in the following, the family of Tensor Network states precisely targets this
corner of relevant states in the complete Hilbert space [48, 121, 122]. Due to the renormalisa-
tion group nature of Tensor Networks, they are able to identify and keep track of the relevant
degrees of freedom in a quantum many-body system.

Area laws in physical systems — The entanglement entropy of quantum states obeying
area law is expected to increase proportionally to the boundary area of the bipartitions rather
than the volume of the bipartitions:

S = O(∂A)
(
∼ LD−1

)

The latter proportion in brackets describes the entanglement behavior for area law states in

aD-dimensional system with each linear system dimension equaling L, i.e. N =
∏D
i=1 Li

(Li=L)
=

LD. Such an area law behaviour of the entanglement properties of a state has been proven
for various systems of different dimensions: In D = 1, it is well-known that all gaped models
obey the area law with S ∼ O(1) [48, 123–125] while only critical states corresponding to a
conformal field theory may exhibit a logarithmic behaviour of the entropy S ∼ logL [126–
128]. Further, area laws of S ∼ LD−1 are proven for D > 1 among others for ground states
of gaped models in the same phase as ones satisfying an area law [129, 130], for frustration-
free spin models, in free gaped bosonic and fermionic systems [131, 132], and even in critical
bosonic systems [133] while in the gap-less case of Fermions, for instance, the entropy scales
slightly higher with S ∼ LD−1 logL [133–135]. However, in general, it is expected that all
gaped lattice models satisfy such a behaviour of the entanglement properties governed by the
area law. For an in-depth review on entanglement properties in various quantum systems, see
Ref. [121].

The entanglement properties of a quantum many-body state, and in particular the insight
that most physical states obey an area law, has direct implications on the Tensor Networks
designed to represent such a quantum state since they define an upper bound for the entan-
glement in the system.
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Figure 2.10: Possible Tensor Network bipartitions with the links {ik}A (blue) and {ik}B (orange)
addressing the physical sites within the bipartitions A and B, respectively. Each cut-through link
gives an entropy contribution ≤ logmn upper-bounded by its bond-dimension mn.

Entanglement bounds in Tensor Networks — Let Ψ be a Tensor Network representa-
tion as introduced in Def. 2.2.1 with physical links {ik}. Further, among the physical links,
the disjoint subsets {ik}A ({ik}B) shall address the physical sites belonging to a bipartition
A (B) as illustrated in Fig. 2.10. Then, the network can be bipartitioned with respect to the
two the physical partitions A and B by cutting through a set of internal links {χn}. The Von
Neuman entanglement entropy captured within the network for such a bipartition satisfies
the inequality

S
[A,B]
TN ≤ min

{n}

[∑

n
logmn

]
, (2.3)

where mn denotes the bond-dimension of the link χn. Consequently, this minimum over all
possible cuts through the network which result in the same bipartition gives an upper bound
for the entanglement entropy the network is able to represent.

As an example, Fig. 2.10 illustrates different possibilities for such a bipartition of the
Tensor Network representation. This bipartition cuts through the selected links and breaks
the network into separate sub-(Tensor Networks). Crucially, every broken link can maximally
give an entropy contribution of logmn upper-bounded by its bond-dimension mn. Thus,
if we would have a network with bond-dimension m = 1, this upper-bound indicates that
S

[A,B]
TN = 0 independently on the sizes of A and B. As a consequence, every Tensor Network

state with m = 1 represents a wave function without entanglement, i.e. is a product state.
Therefore, such a network coincides with the approach used in mean-field theory. However,
increasing the bond-dimension m enables the Tensor Network to faithfully represent states
obeying the same entanglement bounds as Eq. (2.3) suggests for the network. Therefore,
either the bond-dimension m or the number of cut links should scale according to these
entanglement bounds for a Tensor Network to be able to capture the entanglement properties
of the underlying quantum system. On the other hand, a Tensor Network representation can
be improved computationally by limiting m to the minimum value required to capture the
correlations of the system. Finding this balance of computational efficiency, like in mean-field
approaches, and faithfully representing the underlying quantum entanglement, as it is the case
in the exact but exponentially large description, is in practice a highly non-trivial challenge
for Tensor Network geometries in higher dimensions.

2.2.2 Tensor Network state representations

There are numerous ways to create a tensor network to represent a certain quantum many-
body state. In particular, the complete, exponentially large state vector Ψi1,...,iN can be
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Figure 2.11: Different Tensor Network representations for one- and two-dimensional quantum
many-body wavefunctions: The MPS (a), the TTN (b) and the MERA (c) for 1D systems, and the
PEPS (d), the TTN (e) and the aTTN (f) for 2D systems. Sub-picture (c) of MERA is taken from
Ref. [74].

decomposed following different strategies. This section aims to present the most commonly
used Tensor Networks in more detail discussing the strengths and weaknesses of each and
giving an overview of typical problems the different networks are frequently deployed to solve.
While there are some approaches designed to work directly in the thermodynamical limit, the
following discussion focuses on Tensor Networks for the simulation of finite size systems.

In a nutshell, the Matrix Product States (MPS) are the established Tensor Network geom-
etry for equilibrium, and in many cases even out-of-equilibrium problems of one-dimensional
systems while MERA provides an efficient representation for critical systems in 1D [66, 74–
76]. However, the development of algorithms for Tensor Networks in two-dimensions or higher
is still in progress, as the combination of accuracy and scalability remains an open chal-
lenge for Tensor Network methods when simulating high-dimensional systems [21, 24]. The
most prominent Tensor Network representations are the Projected Entangled Pair States
(PEPS) [45, 71, 77–79] for a two-dimensional system only, and the Tree Tensor Networks
(TTN) [22, 24, 35, 37, 67, 68, 80] which, in principle, can be defined for any system dimen-
sionality. The following discussion is partly taken from the appendix of Ref. [37] which is fully
incoperated in this thesis as Chapt. 4.

Matrix Product States — The MPS [46, 48, 61, 136] are the first developed geometry
in the age of Tensor Network. In the last two decades, various algorithms for MPS have
been introduced making the MPS up to date the main working tool for one-dimensional
problems in equilibrium [61, 137], and in many cases even out-of-equilibrium [62, 63]. The
geometry of an MPS is suited for a one-dimensional system quite intuitively: As illustrated
in Fig. 2.11a, each tensor T [k] had one physical link attached to the physical site ik and two
internal links (except for the boundary tensors). With a numerical complexity of O(m3) for
prominent minimisation and time-evolution algorithms, it is the most efficient network from
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a computational point of view while it as well fulfils the area law in 1D. Another established
approach is to extend the MPS for two-dimensional systems, also known as 2D-DMRG, [72]
which can as well be optimised with the same economic scaling of O

(
m3
)
. It works extremely

well for cylindrical two-dimensional systems with limited system width reaching in practical
applications bond-dimensions over m ≈ 4000 when executed on a High-Performance cluster.
However, for D > 1-dimensional systems, the MPS by design does not fulfil the underlying
area law scaling; To compensate for this drawback, the MPS requires an exponentially large
bond-dimension for higher dimensional systems and thus eventually fails to faithfully describe
the quantum many-body state when scaling both system sizes equivalently.

Projected Entangled Pair States — Comparable to the MPS in 1D, the PEPS approx-
imates the complete state vector of a two-dimensional system by a Tensor Network repre-
sentation with one tensor for each physical site. These tensors are then connected through
a grid mimiking the physical lattice as shown in Fig. 2.11d, yielding a Tensor Network with
loops (non-local gauge redundancies). Thus, the PEPS is the most intuitive - and potentially
most powerful - representation of a two-dimensional quantum many-body wavefunction and
satisfies the area laws of entanglement by its structure [45, 121]. However, the PEPS, it suf-
fers from a high numerical complexity (typically with O(m10) for finite-sized PEPS [77, 138])
and it lacks an exact calculation of expectation values [20]. In fact, for a finite square lattice
with N = L × L sites, the contraction of the complete PEPS to perform this calculation
scales exponentially on average system length L [139]. Further, due to this computationally
more expensive optimization of the PEPS ansatz, the typical bond-dimensions achieved are
in the order of m ∼ 10 which is sufficiently large for many spin systems with local dimen-
sion d = 2. However, two-dimensional systems with high local dimension d > 10, such as
higher-order spin systems, Lattice Gauge Theories or fermionic Hubbard-like systems, raise
a non-trivial challenge for the PEPS ansatz. Furthermore, the PEPS is strictly designed for
two-dimensional problems with open boundary conditions while its application to systems
with periodic boundary conditions or even of higher dimensionality is practically unfeasible.

Multi-scale Entanglement Renormalization Ansatz — The MERA was first intro-
duced in 2007 providing an efficient representation for analysing critical systems in 1D [66].
Thus, in contrast to MPS, it can handle the entanglement entropy in critical systems going
beyond area law in 1D. Due to its advanced structure, consisting out of alternating layers
of isometries and disentanglers (see Fig. 2.11c), it can be efficiently contracted, however, re-
quires a complexity of at least O(m7) or higher (depending on the exact structure) to be
optimised [74].

The general idea of MERA can as well be extended towards two-dimensional systems [73]:
The MERA in 2D, in contrast to the PEPS, is able to calculate expectation values exactly
while satisfying area law [121]. However, it suffers from a critical high numerical complexity
O
(
m16

)
making it unfeasible in practical applications for high dimensional systems. Thus,

the application of the network in 2D problems has decreased significantly in the last years
with the increasing competition of PEPS and TTN. In principle, the MERA can be defined
for systems with higher dimensionality as well, however, as already seen by going from one to
two dimensions the numerical scaling increases unfavourably. Examples, where the MERA is
currently playing an important role, can be found in quantum gravity [75, 76, 82, 140–142],
where it is linked to the geometry of space, e.g. via Anit-de Sitter (AdS) or Conformal Field
Theory (CFT).
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Tree Tensor Network — As a good compromise, TTNs, with their hierarchical network
geometry, benefit from a reasonably low numerical complexity and allow (polynomial-scaling)
universal contraction schemes [24] to calculate expectation values exactly. Both, the exact
contraction and the optimization algorithms scale with O(m4), which in turn allows typical
bond-dimensions to exceed m ≥ 1000. Moreover, a TTN is fairly straight-forward to imple-
ment and not restricted to any dimensionality of the underlying system, thus the extension to
3D systems is theoretically straightforward. With its flexible geometry, the TTN has proven
itself to be a stable alternative with its particular strong-points ranging from applications in
gapped 1D systems with periodic boundary conditions [80, 143] over two-dimensional systems
with large local dimensions d [35, 37] up to 3D systems [144]. However, TTNs fail to capture
the area law for higher-dimensional systems and thus eventually fade with increasing system
size [145].

In Chapt. 3, the TTN and its implementation for high-dimensional systems is presented in
more details featuring a formal definition, typical structures, its optimisation, the calculation
of observables and most critically the practical hurtles when extending this Tensor Network
to higher dimensions.

Augmented Tree Tensor Network — Within the scope of this thesis, we introduce a
novel Tensor Network geometry, which augments the TTN approach in a way that the area
law is indeed encoded (see Chapt. 5). Thus this augmented Tree Tensor Network (aTTN)
can be used to efficiently simulate quantum many-body problems in any spatial dimension
with a numerical complexity of O(m4) while encoding the entropic area law for the state ψ it
represents.

2.2.3 Tensor Network operators

In the language of Tensor Networks, we typically describe operators which can be applied
to a Tensor Network state as Tensor Product Operators (TPOs). In accordance with the
Tensor Network representation of a quantum state, TPOs represent general operators T in a
decomposed Tensor Network form following their introduction in Ref. [24, 146]:

(T )
{ij}
{i′j}

=
∑

{γν}

∏

j

(t[j])
{γν′}
ij ,i′j

. (2.4)

Thereby, the j-th tensor t[j] is acting locally on the site ij and is connected by the links
{γν′} to other tensors within the TPO. Thus, the complete TPO acts on the physical sites {ij}.
Thereby, they are a Tensor Network following Def. 2.2.1, but instead of having one physical
link for each physical site ij as the Tensor Network states have, the TPOs have two physical
links ij and i′j for each local site they address. In this TPO formalism, we can describe
for instance a local observable Ti, an interaction part T{ij} = Hp of a Hamiltonian H =∑

pHp, a string observable T{ij} or more general structures like a Matrix Product Operator
(MPO) [61, 147, 148] or a Projected Entangled Pair Operator (PEPO) [149–151]. Fig. 2.12
illustrates some of the different TPOs encountered in the Tensor Network analysis of typical
quantum many-body systems. For the sake of computational efficiency, it is important to
keep the number of links and their internal bond-dimension κ reasonably small.

Hamiltonian as a TPO — A TPO, or a set of TPOs, can for instance be used to rep-
resent the Hamiltonian H ∈ H of a quantum system in a suitable way for Tensor Network
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t[j]

ij

i′j

γ1 γ2

γ4

γ3

(a)

(b) (c) (d)

(e)

Figure 2.12: Different Tensor Network Operators (TPO) for typical quantum many-body systems
in one and two dimensions. (a) Each TPO is composed out of local tensors t which are applied
to different physical links ij of a Tensor Network, i.e. to a different local Hilbert space. (b)-(e)
Different examples of operators represented by a TPO: (b) a local operator, (c) a two-body operator,
or correlator, (d) a star operator modelling a possible interaction of in a two-dimensional system, and
(e) a Matrix Product Operator (MPO) which is frequently used for modelling an Hamiltonian in MPS
analysis.

calculations. In fact, the computation of 〈H〉ψ of the complete Hamiltonian H ∈H requires
an exponentially costly computation, even though having a Tensor Network representation.
However, the complete Hamiltonian is often a product of interactions H =

∑
pHp. Thus,

every interaction Hp can be described as a Tensor Product Operator (TPO). In Sec. 3.2.3,
such a description of the Hamiltonian via a set of TPOs is illustrated in a hands-on example
showing the optimisation procedure of a two-dimensional Tree Tensor Network.

2.2.4 Accessible information in Tensor Networks

While Tensor Network can efficiently represent a quantum state by exploiting the underlying
entanglement structure, it may, for a general Tensor Network geometry, no be easy to extract
information incorporated in the network. Indeed, the ability to access the information is a
crucial problem for designing Tensor Network geometries. What use does a Tensor Network
have which perfectly determines a desired quantum many-body state but does not allow to
efficiently probe and characterise this exact state? In the end, we want to be able to extract
information about the state from the Tensor Network! To address important this point, let
us have a look at the typical quantities of interest for analysing quantum systems with Tensor
Networks.

Expectation values 〈ψ|O|ψ〉 — Calculating expectation values of an observable O is
arguably the most important way of extracting information about a quantum many-body
state from a Tensor Network representation. Surely, the first important observable in the
analysis of a quantum system would be its Hamiltonian H. As introduced in Sec. 2.2.3, H
is typically represented by Tensor Network Operators which enables to compute the energy
expectation value 〈H〉ψ in practical applications.

Besides H, we are typically interested in three types of observables: Local observables
O = O[s] acting on a single local site s and which are frequently used to identify local order
parameters, correlators O = O[s1,s2] acting on two sites and which are crucial for investigating
long-range order, and more general string observables O = O[s1,s2,...,sω ] acting ω sites of the
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system which are important for instance to detect topological properties.
Depending on the geometry such expectation values can either be computed exactly or

have to be approximated. A prominent example of the latter is the PEPS which is not
efficiently contractible, i.e. the network cannot be contracted with itself in polynomial time
as a function of its size.

State Overlap 〈ψ[1]|ψ[2]〉 — The overlap of two states |ψ[1]〉 and |ψ[2]〉, or their fidelity
|〈ψ[1]|ψ[2]〉|2, are measures of interest when comparing two physical states. In practice, this
computation is performed by contracting the two networks representing |ψ[1]〉 and |ψ[2]〉,
respectively, over their coinciding physical links. Tensor Networks that are efficiently con-
tractible can easily assess this information while for networks, such as PEPS, this contraction
can become challenging with increasing system size.

Consequently, the norm of a state 〈ψ|ψ〉 can be computed in the same manner. Addi-
tionally, for performing this computation, the Tensor Network gauge freedom can often be
exploited to further decrease the numerical costs [24, 61].

Entanglement properties — As discussed in Sec. 2.2.1, the entanglement plays a funda-
mental role in quantum systems and in the Tensor Network representation. Therein, it was
elaborated that a bipartition of the system corresponds to a bipartition of the Tensor Net-
work into two sub-networks which may be connected over several links. We can measure the
amount of entanglement captured in a Tensor Network for any bipartition by contracting one
of the corresponding two sub-networks. This contraction allows reconstructing the spectrum
of the reduced density matrix and thereby enabling to measure the Von Neumann entropy
as well as all Rényi entropies [22, 126, 152]. However, as the contractions above, depending
on the Tensor Network geometry, such a contraction of an arbitrary sub-system can become
infeasibly hard. In contrast, loop-less Tensor Networks flourish in this task (see Chapt. 3).
By taking advantage of a proper isometrisation, they can directly be rewritten in terms of the
Schmidt-decomposition making it computationally easy to extract the Von Neumann entropy
(see Sec. 3.2.2).

2.2.5 Tensor Network algorithms

Tensor Networks have a broad range of applications in Quantum Physics and beyond. In what
follows, the most prominent algorithms and problems tackled by employing Tensor Networks
are described.

Energy minimisation

Finding the ground state of an interacting quantum many-body system is often a challenging
task for numerical tools. For Tensor Networks, this can be done very efficiently when the
network is properly designed to (i) obey the area law of the system it represents, and (ii) to
provide a reasonably low numerical complexity which is mainly governed by the contractions
required to minimise the energy. Given the Hamiltonian H, we optimise the variational
parameters of the Tensor Network wavefunction ψ in order to find the ground state of the
system by minimising the energy

E = 〈ψ|H|ψ〉 . (2.5)
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Here, the common advantage of Tensor Networks is that all single tensors within the
network can be treated as independent variables and thereby the key idea is to minimize
one, or only a limited subset, of the tensors at a time. This procedure shifts the global,
exponentially large, optimisation problem to a set of local minimisations in a drastically
smaller subspace which is controlled in size by the chosen bond-dimension of the network.
Still, based on this idea, we can either perform an eigenvalue minimisation, a gradient descent
method or an imaginary time evolution. In Sec. 3.1.4, we will see a more technical illustration
of this approach for Tree Tensor Networks.

Time Evolution

Especially in one dimensional systems, Tensor Networks are frequently deployed to investigate
non-equilibrium dynamics by evolving a state in time under a unitary Hamiltonian evolution.
In particular, there are two established methods for performing such a time evolution numer-
ically. The first to be mentioned would be a class of algorithms, such as the Time-Evolving
Block Decimation (TEBD) [62] and the tDMRG [63], which are based on decomposing the
unitary evolution by means of a Suzuki-Trotter decomposition into a set of local operators to
be applied to the network. Another remarkable method is the Time-Dependent Variational
Principle (TDVP) [143, 153] which exploits mathematical concepts of differential calculus to
compute a time evolution based on the geometry of the network. While these techniques
have a broad range of applications such as performing various quenches [154–157], controlled
dynamics [158] or, using imaginary time, quantum annealing, these applications are currently
limited to either small system sizes in one-dimension or short time-scales.

Open quantum systems

Another remarkable application of Tensor Networks in quantum many-body physics is the
representation of mixed states in open systems [64, 65, 159–161]. In fact, Tensor Networks
can be deployed to investigate steady states or analyse dissipative time evolutions governed by
a Lindblad master equation. The idea behind this application is, instead of representing the
wave function of a pure state, to efficiently decompose the exponentially large density matrix
of a mixed many-body state via Tensor Networks. The underlying master equation dynamics
in then implemented by a direct integration [65, 160] or using stochastical methods [161]. This
line of research is quite recently explored and might be a promising contender among others
for simulating and validating the dissipation in novel quantum technologies such as quantum
computers.
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2.3 Symmetries in Tensor Networks

In the prior section, we got to know that by taking advantage of entanglement properties,
Tensor Networks can efficiently compress the information content of a quantum many-body
system. Even though a Tensor Network efficiently represents a quantum many-body state,
the underlying simulations still rapidly reach the computational limits of current classical ma-
chines, especially for highly entangled systems. One of the main benefits for Tensor Network
analyses which comes from present symmetries in a quantum system is that they allow re-
stricting the degrees of freedom of the system as each symmetry obeys a well-defined internal
structure. Thus, exploiting the symmetries of a quantum system is a powerful way to reduce
the required numerical resources and helps significantly to push forward the capabilities of
numerical methods for studying quantum many-body systems. Furthermore, incorporating
symmetries enables the investigation of physical properties concerning certain selected sym-
metry condition, e.g. analysing a system with a fixed global charge or with a pre-defined
number of particles. Consequently, the incorporation of symmetries in Tensor Networks has
become an essential add-on for state-of-the-art computations of quantum many-body systems.
In particular, Tensor Networks enables an efficient implementation of pointwise symmetries.
However, before going into the more technical details, let us have a look at the importance of
symmetries in general in quantum systems.

In fact, symmetries are omnipresent not only in quantum systems but furthermore in
nature, ranging from the structure of molecules where the underlying symmetry determines all
internal interactions [162–164], over the biology of butterflies which have a higher probability
of reproduction when their wings are perfectly symmetric [165, 166], up to animal responses
where both behavioural and neurophysiological studies confirm that humans and other animals
have a high sensitivity to reflection symmetries [167]. In quantum mechanics, or even more
general in theoretical physics, the key role of symmetries is well established: Every conserved
physical quantity is linked to a present, underlying symmetry in the system which is also
known as Noether’s theorem [168]. Thus, in a quantum spin system in which for instance the
total number of particles is conserved, there is a U(1) symmetry present. Tab. 2.1 present
some more examples of typical symmetries occurring in a quantummany-body system together
with the corresponding conservation laws.

Table 2.1: Examples of Symmetries and corresponding Conservation laws in Physics

Conserved quantity Symmetry group
Parity � Z2 (abelian)

Particle number � U(1) (abelian)
Spin or angular momentum � SU(2) (non-abelian)
Spin and particle number � SU(2)⊗ U(1) (non-abelian)

Flavour conservation � SU(3) (non-abelian)

When dealing with symmetries, the underlying group theory ultimately implies that the
tensors within a Tensor Network can be decomposed into a structural and degeneracy part.
The former is determined by the symmetry itself while the latter contains the remaining
degrees of freedom unconstrained by the underlying symmetry. Therefore, the presence of
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symmetries reduces the full problem into a set of decoupled, simpler sub-problems. Conse-
quently, incorporating symmetries in Tensor Networks is a very deep, multidisciplinary topic
and ranges from the basic concepts of group theory, over its application in quantum physics
up to the technical numerical implementation in a Tensor Network.

The following sections give a general overview from the basics of symmetries in quantum
systems to presenting the main mathematical concepts from representation theory which lead
to the efficient representation of a symmetrically invariant Hamiltonian H. Building on these
fundamentals, the implementation of symmetries in Tensor Networks is described in more
detail including the description of the main effects on the implementation. Most parts of this
section are based on Ref. [108] which provides a more technical thesis on the incorporation of
non-Abelian symmetries in Tensor Networks. Other comprehensive reviews on the subject of
symmetries in Tensor Network include Ref. [24] for Abelian symmetries, Ref. [169] including
the non-Abelian symmetry SU(2), and the appendix of Ref. [81] for an in-depth description
of SU(N) symmetries in the context of Tensor Network simulations.

2.3.1 Symmetries in Quantum many-body systems

A present symmetry in a quantum many-body system manifests itself when the system is
invariant under a set of transformations {Wg}. This set forms the symmetry group G where
each group element Wg, i.e. each symmetry operation, can be represented by a matrix Γ(Wg)
which commutes with the Hamiltonian H of the symmetrically-invariant quantum system:

[H,Γ(Wg)] = 0 ∀Wg ∈ G .

Given the present symmetry, the Hamiltonian can be transformed into a symmetric eigen-
basis providing an internal structure that consequently decomposes the Hamiltonian in a
beneficial block-diagonal shape to be exploited when analysing the system. Depending on
whether allWg ∈ G commute with each other, the symmetry is called Abelian or non-Abelian:

Abelian non-Abelian
[Γ(Wg),Γ(Wk)] = 0 ∀(Wg,Wk) ∈ G ∃(Wg,Wk) ∈ G : [Γ(Wg),Γ(Wk)] 6= 0

This differentiation has an impact from a theoretical point of view as well as from a
computational perspective, as we will see later on. In a nutshell: An Abelian symmetry is
easier to handle with a straight-forward internal structure while a non-Abelian symmetry can
become overwhelmingly complex with a non-trivial internal structure which on the other hand
typically constrains a higher number of degrees of freedom and thus can offer a remarkable
computational benefit when exploited.

Before moving forward with describing these typical symmetries in more detail, the fol-
lowing section will recall the crucial principles of representation theory, a crucial part for the
application of group theory in mathematics and physics, and illustrate how the presence of
symmetry transforms the Hamiltonian of a system.

From Representation theory to the structure of symmetric Hamiltonians

The idea in representation theory is to describe a group G by a homomorphic representation
Γ(G), i.e. by an element-wise one-to-one correspondence, which is suitable for linear algebra
operations. It is convenient to choose the group representation as a set of matrices, where
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each group element Wg ∈ G is represented by a corresponding matrix Γ(Wg) and the group
multiplication is defined by the matrix multiplication.

Theorem 2.3.1: (Reducibility).

Every group representation Γ(G) can either be decomposed by a transformation M
into a block-diagonal form such that

M−1Γ(Wg)M =




Γ1(Wg) 0 0
0 Γ2(Wg) 0

0 0
. . .


 ∀g ∈ G

where each set of reduced matrices Γk(G) again forms a valid representation of the
original symmetry group G, or if no such transformation exists, the representation
Γ is called an irreducible representation (irrep). Taking this further, each reducible
representation Γ can be decomposed into its irreps Γ[j]:

M̃−1ΓM̃ =
⊕

j

(
1dj ⊗ Γ[j]

)
≡




Γ[1]

. . .
Γ[1]

︸ ︷︷ ︸
d1

0 0

0

Γ[2]

. . .
Γ[2]

︸ ︷︷ ︸
d2

0

0 0
. . .




(2.6)

Consequently, when working in the irrep subspaces, each sector j describes an independent
subspace, which can again be separated into the degeneracy space Dj and a structural space
Hj . Thus, the total vector space H naturally decomposes into the direct sum ⊕ of irreducible
sub-spaces Hj . Each irreducible subspace corresponds to an irrep Γ[j] which in return defines
the dimensionmj of Hj . The label j of the various sub-spaces is often referred to as symmetry
sector, or in the framework of quantum mechanics as primary quantum number. The label
dj further indicates the degeneracy - also referred to as (outer) multiplicity - of the irrep Γ[j]

within the block-diagonalised form of Γ.
In conclusion, we can describe the complete space H in a decomposed basis |j, tj ,mj〉 =

|j, tj〉⊗ |j,mj〉 where the symmetry sector j labels the subspace Hj , tj ∈ {1, ..., dj} labels the
degeneracy space Dj , and mj labels the internal states within the subspace Hj . The labels
in the new symmetry basis are typically assigned to quantum numbers of the system: As an
example, the irrep label j corresponds to the spin j in case of spin conservation, or equally
SU(2) symmetry (with j = n/2, n ∈ N0).

Lemma 3 (Schur’s Lemma). Any matrix T , which commutes with all elements Γ[j](Wg) of
an irrep Γ[j], is proportional to the identity.

TΓ[j](Wg) = Γ[j](Wg)T ∀Wg ∈ G ⇔ T = c · 1
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Now, let us have a look at the transformation of the Hamiltonian H → H̃ = M−1HM
of a quantum system into its symmetry basis. In this basis, H maintains the permutation
relations with the symmetry operations Γ̃ = ⊕j

(
1⊗ Γ[j]

)
since

[H,Γ] = 0 ⇒ H̃Γ̃ := M−1HMM−1ΓM = M−1HΓM = M−1ΓHM = Γ̃H̃ .

In order to fulfill this relation, the Hamiltonian has to exhibit the same block-diagonal
shape, namely H̃ = ⊕j

(
H̃j ⊗ Ij

)
. Now, Ij has to commute with all elements within the

irrep Γ[j] and therefore, due to Schur’s Lemma, equals the identity Ij = 1, while H̃j can be
an arbitrary dj × dj matrix containing the remaining physical degrees of freedom which are
unconstrained by symmetry. In conclusion the system’s Hamiltonian can be decomposed into
the sub-spaces Hj and the dj-fold degeneracy spaces Dj corresponding to the H̃js.

H̃ =
⊕

j




Hj
11 Hj

12 · · · Hj
1dj

Hj
21 Hj

22 · · · Hj
2dj

...
...

. . .
...

Hj
dj1

Hj
2dj

· · · Hj
djdj




︸ ︷︷ ︸
= H̃j ∈ Dj

⊗




1
1

. . .
1




︸ ︷︷ ︸
Hj

(2.7)

While the set of occurring symmetry sectors j and their degeneracy dj is a property of the
particular representation Γ, the irreps Γ[j] and thereby the irreducible sub-spaces Hj depends
only on the symmetry group G itself. In the case of an Abelian symmetry, all irreps Γ[j] are
scalars, leaving Γ in a dense block-diagonal form, whereas in the non-abelian case these irreps,
in general, form quadratic matrices providing a further, non-trivial internal structure within
each block j.

Representing symmetries in quantum systems

Very common symmetries in quantum mechanics are cyclic symmetry groups, in particular,
U(1), SU(N) or Zn. The group elements W (g) of such symmetries can be represented by an
exponential map

W (g) = eig·J = exp

(
i
∑

k

gkJk

)
(2.8)

where J denotes the so-called generators, a set of hermitian matrices, which together
with a vector of parameters g create each group element W (g) ∈ G. The corresponding
group operation W (h) ⊗ W (f) for this unitary representation is the matrix-multiplication
W (g) = W (h)×W (f). In order for the multiplication of two group elements W (h) ∈ G and
W (f) ∈ G to result in another element of the group W (g) ∈ G, the generators shall satisfy
the commutator relations

[Jk, Jl] =
∑

n

fklnJn , (2.9)

with fkln being a structure constant defining the underlying algebra.
A special case of these groups are Lie-Groups which are used to describe continuous,

unitary symmetries, such as SU(2) in the case of spin conservation or U(1) for a conserved



38 Tensor Networks: An overview

number of total particles. In these cases the number of group elements W (g) ∈ G is infinite,
however, they can still be represented by a finite set of generators J.

The following paragraphs present in more detail some of the most important Abelian and
non-Abelian symmetry groups frequently encountered in quantum systems.

Abelian symmetries Abelian symmetries can be represented by a single scalar generator
J by using one group element parameter g (dim{g} = 1). Thus, fulfilling the generator
condition in Eq. (2.9) becomes trivial and following the chosen representation of Eq. (2.8),
each element can be created by W (g) = eiJg. The most important Abelian symmetries for
quantum systems are the discrete symmetry group Zn and the continuous rotation group
U(1):

(i) Zn (Discrete rotation). This cyclic group describes the rotation symmetry of a reg-
ular polygon with n edges. As example, Z4 denotes the symmetry of a square, Z5 of
a pentagon, Z6 a hexagon, etc.. This group has n elements W (g) ∈ Zn, one for each
rotation leaving the system invariant. Each element W (g) can be created by the group
parameters g ∈ {0, ..., n − 1} and the generator J = 2π/n following the chosen rep-
resentation of Eq. (2.8), i.e. W (g) = e−i2πg/n . It is worth to mention that a valid,
however non-unitary representation of this group would also be the function W (g) = g
under the group operation g⊗ g′ = (g+ g′) mod n. A particularly relevant case of this
group in quantum mechanics is the omnipresent Z2, or parity group. It is either present
directly as the single symmetry of a system as it is the case in the Ising model or in
more advanced models of interacting Rydberg atoms (see Sec. 5.1), or it is implicitly
present as a subgroup of higher order symmetry groups, such as U(1) or SU(2).

(ii) U(1) (Continuous rotation). This group describes the cyclic rotation symmetry of
a circle. Thus, the number of group elements is infinite with its continuous group pa-
rameters g ∈ [0, 1) and the generator J = 2π, i.e. W (g) = e−i2πg. This Lie-group is
connected to the conservation of integer quantities in physical systems, among others
to particle conservation, and therefore present in systems such as Bose-Hubbard mod-
els [170]. Further, it occurs in various versions of the Heisenberg model (e.g. the XXZ
model and the homogeneous Heisenberg model) as rotation invariance in the z-direction
(see Sec. 5.1 or Sec. 6).

Non-Abelian symmetries For non-Abelian symmetries the representation of Eq. (2.8)
and the generator condition in Eq. (2.9) becomes non-trivial. The minimal choice of genera-
tors should together with the identity span the whole space Hj on which the corresponding
symmetry operation acts (W (g) : Hj →Hj).

The most important non-Abelian symmetries for quantum systems are the special unitary
groups SU(N), in particular, the spin symmetry SU(2) and the flavour symmetry SU(3). All
SU(N) groups are Lie-Groups with the additional condition det {W (g)} = 1 which can be sat-
isfied by choosing traceless generators Jk. For their comprehensive description, it is sufficient
to define their fundamental representation, the simplest non-trivial irrep, since all other irreps
can be created iteratively from there on by combining the given symmetry sectors [81, 169].
As an example: The fundamental representation of SU(2) is the Spin-1

2 representation, while
we can obtain e.g. a spin-1 by combining two Spin-1

2 into one Spin-1 and one Spin-0 or
higher-order spin-representation by iteratively combining several spin-1

2 representations.
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(i) SU(2) (Complex 2D-rotation). This Lie-group describes the rotation symmetry
within a two-dimensional complex space, such as the angular momentum rotation sym-
metry of a quantum spin systems. It is a manifold out of two SO(3) rotation groups, or
"Sphere-symmetries", i.e. there is a surjective, two-to-one, homomorphism from SU(2)
onto SO(3). This symmetry is connected to the spin conservation and occurs for in-
stance in the homogeneous Heisenberg model (Sec. 5.1 or Sec. 6), the bilinear-quadratic
Heisenberg model [171] or in Bose-Hubbard models [170].

The defining representation can be conveniently chosen to be the Pauli matrices σ:

σx =

(
0 1
1 0

)
, σy =

(
0 -i
i 0

)
, σz =

(
1 0
0 -1

)

Obeying the commutator relation [σk, σl] =
∑

n 2iεklnσn with εkln being the Levi-Cevita
constant, the Pauli matrices fulfill the condition of Eq. (2.9) and since they span the
complete space of two-dimensional matrices together with the identity 12, they are
commonly used as generators J = σ

2 . In quantum spin systems, this representation
corresponds to the spin-1

2 algebra. Further, each irrep Γ[j] of the SU(2) symmetry can
be used to represent the 2j+ 1-dimensional space corresponding to the spin-j multiplet
algebra.

(ii) SU(3) (Complex 3D-rotation). The SU(3) group denotes the rotation symmetry
within a three-dimensional complex space, such as the flavour symmetry in particle
physics. It includes among others U(1), SU(2), SO(2) and SO(3) as subgroups. This
symmetry is famously connected to particle physics and occurs in the Standard model [8]
as well as in some spin model such as the bilinear-quadratic Heisenberg model at the
Lai-Sutherland point [171].

For this symmetry, the Gell matrices

Jx,{1,2} =




0 1 0
1 0 0
0 0 0


 , Jx,{2,3} =




0 0 0
0 0 1
0 1 0


 , Jx,{1,3} =




0 0 1
0 0 0
1 0 0


 ,

Jy,{1,2} =




0 -i 0
i 0 0
0 0 0


 , Jy,{2,3} =




0 0 0
0 0 -i
0 i 0


 , Jy,{1,3} =




0 0 -i
0 0 0
i 0 0


 ,

Jz,1 =




1 0 0
0 -1 0
0 0 0


 , Jz,2 =




1 0 0
0 1 0
0 0 -2




offer a convenient defining representation, obeying the commutator relation of Eq. (2.9)
and together with the identity 13, they span the complete space of three-dimensional
matrices. In quantum spin systems, this representation corresponds to the flavour al-
gebra. Crucially, in contrast to the SU(2) symmetry, the SU(3) symmetry exhibits an
inner multiplicity for higher dimensional irreps, i.e. high order multiplet state spaces,
making it quite challenging to implement [81, 108].

It is worth to mention that even more complex symmetries, such as SO(6) may occur
in spinor systems. However, incorporating such symmetries, in particular once with inner
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multiplicity, is a highly challenging task in practical applications and further, the number of
occurrences is typically limited in ordinary quantum many-body systems compared to the
above-presented symmetry groups. Still, when having a Tensor Network framework capable
of handling for instance SU(2) symmetries, an SO(6)-symmetric system can be simulated
more efficiently by exploiting its SU(2) subgroup compared to the straightforward approach
without respecting any symmetries.

Further, even though a non-Abelian symmetry might be present in the system to analyse, it
can as well be convenient for the sake of further simplicity in the implementation to reduce the
non-Abelian to an Abelian symmetry - or a set of multiple Abelian symmetry. As an example,
a general SU(N) symmetry can be conveniently reduced to a set of N−1 independent Abelian
U(1) symmetries.

2.3.2 Incorporating Symmetries in Tensor Networks

By taking advantage of entanglement properties, Tensor Networks can efficiently compress
the information content of a quantum many-body system. However, the present Tensor Net-
work simulations still rapidly reach the computational limits of current classical machines.
Additionally exploiting symmetries of the underlying quantum many-body system helps to
overcome this bottleneck towards a higher performance of Tensor Network algorithms and
further, it offers to target specific symmetry sectors. In particular, Tensor Networks enables
an efficient implementation of pointwise symmetries.

The following section will describe the effect of a present, homogeneous, pointwise sym-
metry on the Tensor Network states and how to implement these symmetries efficiently on
the level of every single tensor.

Pointwise symmetries

Global symmetries which act separably on the local sites of the quantum many-body state
are defined as pointwise symmetries. Thus, each global symmetry operation

Wg =

N⊗

i=1

W i
g

consists of the terms W i
g which locally represent the group element Wg ∈ G at site i. Thus,

each local symmetry operation acts only on the degrees of freedom of one physical site i.
For homogeneous pointwise symmetries, these local terms W i

g are even equivalent and do not
depend on the site i on which they act. These types of symmetries are exceedingly relevant
from the physical point of view as they describe extensive physical constraints defined by
quantum numbers such as total particle conservation, total parity, spin conservation or total
magnetisation.

Symmetric Tensor Network geometry

Let the Tensor Network |Ψ〉 represent the wavefunction of a quantum many-body system
which is invariant under the pointwise symmetry G. Thus, the state is invariant under the
action of each symmetry element Wg =

⊗N
i=1W

i
g, i.e. it fulfills

W⊗Ng |Ψ〉 = |Ψ〉 ∀g ∈ G .
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W †
γ1 Wγ2

Wγ3

⇒

Figure 2.13: Incorporation of Symmetries in a Tensor Network: A global pointwise symmetry
operation Wg =

⊗N
i=1W

i
g is acting separately on the physical links (left: each local operation W i

g

illustrated in purple). Introducing a gauge freedom WγW
†
γ = 1 on the internal links enables to

transform each tensor into a symmetry basis. The contraction of Wγ (purple) or W †γ (turquoise) with
the nearest tensor introduces a direction for the symmetry operations.

Now, the gauge invariance of the Tensor Network allows to transform every single tensor
within the network into the symmetry basis of G: Introducing a unitary representation Γ(Wg)
together with its inverse Γ†(Wg) at each internal link χ enables to map each tensor T into a
gauge-transformed version leaving the global state unaltered (see Fig. 2.13). However, in this
mapping, we introduce a clear orientation in the links depending on whether Γ(Wg) or its
inverse is applied to a certain tensor T . Thus, for symmetrically invariant Tensor Networks,
a link direction is defined for each tensor where a link is incoming when it is transformed into
the symmetry space D 3 Γ(Wg) or is outgoing when acting on its duplex space D† 3 Γ†(Wg).
For sake of compactness, we refer to the applied action on the tensor as Xg with

X(k)
g =





Γ(Wg) ⇔ Dk = “ incoming ”

Γ(W -1
g ) ⇔ Dk = “ outgoing ”

(2.10)

given that Γ†(Wg) = Γ(Wg′) ∈ G is a valid representation of another group element g′ of
the symmetry G. Consequently, each tensor T of the Tensor Network |Ψ〉 is transformed into
the symmetry basis of G, i.e. T is invariant under the symmetry operations of G:

∑

i1,...,ir

R∏

r=1

[X(r)
g ]i′r,irTi1,...,iR = Ti′1,...,i′R ∀g ∈ G .

where Xg =
⊗R

r=1X
(r)
g with X

(r)
g ∈ G represents the g-th element of the pointwise

symmetry for the tensor T . Thus, all symmetry actions X acting on each single tensor T can
be interpreted as an independent symmetry group for the vector space spanned by T .

Since the global gauge transformation Γ†(Wg)Γ(Wg) = 1 of the Tensor Network is per-
formed locally on all internal link, each of the internal links implicitly contains information
about the symmetry group. While Wg is fixed by the underlying physics of the many-body
system, the representation Γ(Wg) can be freely chosen for each internal link allowing to model
Γ(Wg) depending on the physical problem. In a simulation algorithm, this allows for instance
to dynamically adapt the symmetry sectors for each internal link individually.

Consequently, a global symmetry can be exploited point-wise addressing each tensor sep-
arately. In the following, we describe the influences of present symmetric on each tensor and
how the tensor operations presented in section 2.1 are influenced.
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Figure 2.14: The inner structure of symmetric tensors. An order-2 tensor obeys Schur’s Lemma
with its structural components being identities (a). The order-3 tensor obeys the Wigner-Eckart
theorem, coupling only certain sectors j = [j1, j2, j3] allowed by symmetry with its structural tensor
Cj given by the Clebsch-Gordan-coefficients (b). A general order-N tensor decomposes into a block-
diagonal form with each block further splitting in one degeneracy tensor and one structural tensor
(c). Illustrations taken from Ref. [108].

Symmetric Tensors

Similar to the decomposition of a quantum many-body Hamiltonian in the presence of sym-
metry, a symmetrically invariant tensor T can be block-diagonalised by the transformation
into the symmetry basis. This underlying principle for the Hamiltonian which is governed
by Schur’s Lemma can be expanded to the tensor algebra for arbitrary order-R tensors. Ul-
timately, the symmetric tensor decomposes into a set of structural tensors Rsj which are
entirely determined by symmetry and set of degeneracy tensors Csj which contains the un-
constrained degrees of freedom (see Fig. 2.14). Thus, we can reduce the physical degrees
of freedom which are not constrained by symmetry by isolating them from the symmetry
constrains. Consequently, a general order-r tensor decomposes into

T =
⊕

j=[j1,...,jr]


 ∑

sj=1,...,nj

[
Rsj ⊗ Csj

]

 , (2.11)

where nj characterises the number of structural tensors Csj arising for one specific config-
uration of coupling symmetry sectors j = [j1, j2, ..., jr]. While in general the combination of
the sectors j = [j1, j2, ..., jr] leads to nj-degenerate structural tensors, this degeneracy does
not apply in the most crucial cases which are presented later on [108, 169, 172].

Link fragmentation — In a symmetrically invariant Tensor Network, we assign a repre-
sentation Xg of the symmetry group G to each internal link χ.
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As described in Sec. 2.1, the space Hk of each link ik can be transformed into the symmetry
basis decomposing the total space Hk into a set of independent subspaces Hjk , or symmetry
sectors. Therefore, the link index ik splits according to the irrep subspace expansion into the
three symmetry labels ik → (jk, tjk ,mjk). Thus, each symmetric link index is described by a
tuple of the symmetry sectors jk, the degeneracy index tjk ∈ Djk and the index mjk ∈ Hjk

for the irrep basis vector space. As mentioned above, the dimension of the irrep vector space
ds,jk = dim{Hjk}, i.e. the number of allowed values of mjk is determined by the symmetry
sector jk while the dimension of the degeneracy space dr,jk = dim{Djk} can be adjusted by
the user. Therefore, the total link dimension is given by summing over all irreps of G

Dχ =
∑

jk

dr,jkds,jk .

In practice, we keep only a finite amount of symmetry sectors with upper-bounded de-
generacy dr,jk ≤ c for each sector jk to ensure a finite link dimension. Additionally, dr,jk = 0
implies that the possible irrep jk is not occupied and therefore there is no need in storing it
explicitly in the link description. Further, we recall that for Abelian symmetries ds,jk = 1 ∀jk
holds true. Thus, for Abelian symmetries the complete tensor decomposes simply into a
block-diagonal structure with Cj being a constant for all sectors j, while for non-Abelian
symmetries each block further exhibits an internal structure governed by the symmetry.

Order-Two Tensor, i.e. matrix — Equivalently to the Hamiltonian decomposition de-
scribed in section 2.3.1, the decomposition of an order-2 tensor Ti,k obeys Schur’s Lemma.
Thus, when written in the symmetry basis |j〉〈k| → |j, tj ,mj〉〈k, t′k,m′k|, the tensor with in-
coming link j and one outgoing link k has to preserve the symmetry sector as well as the irrep
label m (see Fig 2.14a). Consequently, the structural tensors Cj = δj,kδmjm′

k
all become an

identity:

T =
⊕

j=[j1,j1]

Rj ⊗ 1j . (2.12)

This structure is one of the key points for the drastic speed-up when incorporating symme-
tries in Tensor Networks. It becomes evident that employing symmetries reduces the number
of variational parameters while maintaining entanglement features since the overall bond-
dimension remains unchanged. Indeed, the number of free parameters within the tensor in
the symmetrically invariant basis equals

ϑ(T ) =
∑

j

d
[α]
r,jd

[β]
r,j

with d
[α]
r,j being the degeneracy of the j-th symmetry sector within the fragmented link α.

Thus, in practice, the number of free parameters ϑ(T ) ∼ Dχ << D
[α]
χ D

[β]
χ ∼ D2

χ is heavily
reduced, especially when several symmetry sectors or higher-dimensional irrep spaces are
occupied.

It is worth mentioning that the structural tensor may couple the irrep labels m differently
when considering a tensor with two unidirectional links, thus still obeying Cj = δj,kC̃j .

Order-three Tensor — An order-3 tensor with two incoming and one outgoing is con-
nected on the level of group theory to the tensor product of two irreps, say Γ[j1] ∈ G and
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Γ[j2] ∈ G. This product of two irreps Γ[j1] ⊗ Γ[j2] ∈ G is a group element of G and can be
decomposed following Eq. (2.6) into

Γ[j1] ⊗ Γ[j2] =
⊕

j

(
1dj ⊗ Γ[j]

)

where the inner direct sum runs over the number times the same irrep Γ[j] occurs within the
representation (see Fig. 2.14b). The degeneracy dj in the occurrence of Γ[j] is as well referred to
inner multiplicity. In every Abelian symmetry and in many non-Abelian symmetries relevant
for quantum mechanics, such as the SU(2), the symmetry group G is free of such inner
multiplicities, i.e. the symmetry sector j only occurs once when coupling two irreps. Taking
the SU(2) symmetry as an example, we obtain only one spin-1 and only one spin-0 when
coupling the irreps of two spin-1

2 . Further, each combination of two arbitrary spin multiplet
subspaces always results in a set of undegenerate subspaces.

In these cases where no inner multiplicity is present, the structure of an order-3 tensor is
determined by the Wigner-Eckart-theorem and follows the decomposed block-structure

Ti1,i2,i3 =
⊕

j=[j1,j2,j3]

R
[j]
tj1 ,tj2 ,tj3

⊗ C [j]
mj1 ,mj2 ,mj3

.

The structural parts C [j] are given by the Clebsch-Gordan-Coefficients of G. For different
link directions, the order-3 tensor decomposes into the same structure with different structural
parts C [j]. Thus, given a multiplicity-free symmetry, each combination of three labels j1, j2
and j3 ∈ {j1⊗j2} which is not forbidden by the symmetry uniquely corresponds to one specific
structural tensor Cj . This does not apply in the case of inner multiplicity, where the tensor
however still decomposes into the general form of a symmetrically invariant tensor given in
Eq. (2.11).

Further, the number of free parameters within a symmetrically invariant tensor T is given
by

ϑ(T ) =
∑

j1

∑

j2

∑

j3∈{j1⊕j2}

d
[α]
j1
d

[β]
j2
d

[γ]
j3

with d[α]
j being the dimension of the j-th symmetry sector of the fragmented link α. Thus,

the number of free parameters ϑ(T ) << D3
χ is considerably smaller compared to the total

number of parameters D3
χ of the original tensor.

Influence on Tensor Network algorithms

As mentioned above, exploiting the presence of symmetry is crucial for an efficient Tensor
Network algorithm. Similar to the fact that using the structure of a block-diagonal or sparse
matrix in linear algebra leads to drastic performance gains, the block-structure of a symmet-
rically invariant tensor, and further, the decomposition into a degeneracy and a structural
space for each block can be used for a crucial computational benefit.

In the following, we will describe the most important operations explaining the efficient
exploitation of symmetries in Tensor Networks. In particular, we present the factorisation of
a tensor and the contraction of two tensors within a symmetric framework.
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Tensor Factorisation — Beyond the decomposed structure of a symmetric tensor T , the
tensor factorisation further benefits from Schur’s Lemma as they are ultimately executed in a
matrix shape, i.e. as an order-2 tensor. In this shape, the factorisation of T can be executed
on its degeneracy tensors Rj only since all its structural tensors Cj = cj1j are proportional to
the identity. As an example, the QR-decomposition of T within a symmetric Tensor Network
framework is given by

QR(T ) =
⊕

j=[j1,j1]

(
QR(cjRj)︸ ︷︷ ︸

= RQj R
R
j

⊗1mj
)

=
⊕

j=[j1,j1]

RQj ⊗ 1mj

︸ ︷︷ ︸
= T Q

⊕

j=[j1,j1]

RRj ⊗ 1mj

︸ ︷︷ ︸
= T R

where we assume T to be already in an order-2 shape. Note, that the factorisation of the
reduced tensors Rj = RQj R

R
j can even be performed in parallel over the different symmetry

sectors j. Thus, considering that the tensor holds a (dr,k×dr,k)-dimensional reduced tensor and
a (ds,k × ds,k)-fold structural tensor for each coupled symmetry sector [jk, jk], the numerical
complexity of this operation drops from ζ = O(D3) for the non-symmetric framework down
to

ζQR = O
(

max
k
{d3

r,k}
)
. (2.13)

Equivalently, a valid SVD of a symmetric tensor can be performed on the reduced tensors
only. This factorisation, like the QR-decomposition, scales with the largest dimension of all
reduced tensors

ζSVD = O
(

max
k
{d3

r,k}
)
≡ O

(
max
k
{Dη}

)
. (2.14)

and can be executed in parallel as the different symmetry sectors j are independent of each
other. Compared to the bond-dimension D of the complete tensor, the complexity of this
symmetric SVD of Eq. (2.14) can be reduced with η = 3 logD(maxk{dr,k}). The exact value
η highly depends on the occupation of the symmetry sectors j and can range from η → 0 for
a flat distribution of symmetry sectors with maxk dr,k = 1 or in the worst case to η = 3 if
only one trivial symmetry sector is present such that maxk dr,k = D. For Abelian symmetries
where only trivial symmetry sectors occur, this factor typically lays around η ∼ 2 while for
some non-Abelian systems it can be realistic to reach η < 1. The latter however depends on
the order of the symmetry, i.e. the size of the defining representation: Since the dimension of
the irrep spaces grows faster with increasing symmetry label for higher-order symmetries, η
on average decreases with increasing order of the symmetry. An additional speed-up can be
achieved by considering several symmetries at once, e.g. SU(2)⊗ U(1).

Contraction — The symmetric Tensor Network framework further impacts the contraction
of two symmetrically invariant tensors T [1]

i1,...,ir
and T [2]

i′1,...,i
′
ρ
. Firstly, this process of contracting

the two tensors over coinciding links {ic} can be performed independently for each matching
symmetry sectors {jc}. Further, when contracting the matching symmetry blocks of the two
tensors their reduced and structural part can be contracted independently of each other as
well:
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T [1]
i1,...,ir

{ic}
� T [2]

i′1,...,i
′
ρ

=

[ ⊕

j=[j1,...,jr]

(
R

[1]
j ⊗ C

[1]
j

)] {ic}
�
[ ⊕

j′=[j′1,...,j
′
ρ]

(
R

[2]
j′ ⊗ C

[2]
j′

)]

=
⊕

[j,j′]\{jc}

([
R

[1]
j ⊗ C

[1]
j

] {jc}
�
[
R

[2]
j′ ⊗ C

[2]
j′

])

=
⊕

[j,j′]\{jc}

([
R

[1]
j

{jc}
� R

[2]
j′

]
⊗
[
C

[1]
j

{jc}
� C

[2]
j′

])

where the operator
{ic}
� denotes a contraction over the coinciding links {ic}. In case,

the resulting coupling of the symmetry sectors [j, j′] \ {jc} is forbidden by symmetry, the
contraction of the structural part naturally results in a zero tensor, i.e. a tensor with each
element equal to zero, as the two structural tensors are by construction orthogonal to each
other. Recalling that the complexity of the contraction for general tensors is given by ζ =
O (DkDcDk′) with

Dk =
∏

ik /∈{ic}

dim{ik} , Dc =
∏

{ic}

dim{ic} , Dk′ =
∏

ik′ /∈{ic}

dim{dk′}

its symmetric counterpart scales with

ζ sym = O
(

max
j
{D[j,mj ]

k D
[j,mj ]
c D

[j,mj ]
k′︸ ︷︷ ︸

structural tensors

, D
[j,tj ]
k D

[j,tj ]
c D

[j,tj ]
k′︸ ︷︷ ︸

reduced tensors

}
)
, (2.15)

where D
[j,m]
k =

∏

ik 6=ic

dim{mj,k} , D[j,m]
c =

∏

ic

dim{mj,c} , D
[j]
k′ =

∏

ik′ 6=ic

dim{mj,k′}

and D
[j,t]
k =

∏

ik 6=ic

dim{tj,k} , D[j,t]
c =

∏

ic

dim{tj,c} , D
[j]
k′ =

∏

ik′ 6=ic

dim{tj,k′}

Thus, the complexity of contracting two symmetric tensors scales with the most expensive
sub-contraction to be executed. In contrast to the factorisation, the size of the structural
tensors, i.e. the size of the irrep symmetry-subspace, cannot be neglected in the determina-
tion of the numerical complexity. Consequently, the actual speed-up highly depends on the
occupation of the symmetry sectors and the symmetry itself.

2.3.3 Finite symmetry sectors in Tensor Network states

Next to the significant improvement in computational performance, the incorporation of sym-
metries has a second crucial benefit: A symmetric Tensor Network enables to select a specific
symmetry sector of the underlying system for the numerical analysis. This enables us to study
systems by implicitly fixing conserved quantities in the variational problem. As an example,
a pointwise SU(2) symmetric Hamiltonian preserves the total spin j, i.e. global many-body
states always couple irrep subspaces |j, tj ,mj〉 belonging to the same symmetry sector j.
Here, as a valid physical question, we could be interested in the ground state properties of a
spin-1

2 lattice with a finite global spin j, say j = 5
2 . Analogously, we might be interested in
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j

Figure 2.15: Finite symmetry sector in a Tensor Network state. The selector link (red) introduces
the irrep Γ[j] of the desired global symmetry sector j.

describing the ground state, or even a time-evolution, for a U(1) symmetrical Hamiltonian
(corresponding to particle conservation) with a fixed number of particles in our system.

Achieving such a selection of a specific symmetry sector in numerical analysis is, in general,
not a trivial task. Even when starting in the correct sector j and applying only symmetri-
cally invariant operations, the simulation will ultimately introduce numerical errors which
inevitably result in fluctuations exploring other symmetry sectors j′ 6= j. Thus, the varia-
tional analysis has to be able to strictly enforce the symmetrically invariance in a way that
is implicitly embedded in the numerical framework. This exactly is another strong point of
incorporating symmetries in Tensor Networks. As illustrated in the following, we will be able
to select specific symmetry sectors j for the global state which is implicitly respected within
the symmetry Tensor Network framework.

Undoubtedly, the complete Tensor Network state |Ψ〉 is invariant under all action of the
symmetry group G if all tensors of |Ψ〉 are symmetrically invariant. However, this state
composed of a set of symmetrically invariant tensors would strictly belong to the global j = 0
sector of G, thus we refer to the state as zero-sector state |Ψ[0]〉. Now, a finite sector state
|Ψ[j]〉 can be realised very easily by introducing an additional selector link into the zero sector
state. This selector link shall hold only the desired global symmetry sector j with its irrep Γ[j].
Attaching this selector link to a tensor within the directed, symmetrically invariant network
|Ψ[0]〉 enables to conveniently set the global symmetry sector: In this way, the network is
strictly invariant under the symmetric transformation W⊗Ng Ψ[j](Γ[j′])−1 = Ψ[j]δj,j′ only if the
sector j is applied [24, 172].
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3
Tree Tensor Networks and their implementation for

high-dimensional systems

The fundamental part of this thesis is the development of a Tree Tensor Network algorithm
for investigating high-dimensional quantum many-body systems. Building on an existing li-
brary for Tensors invariant under Abelian symmetries, this algorithm includes the structure
of the network as well as the main programs performing ground-state search and time evo-
lution. In the last chapter which introduces different Tensor Network states and algorithms,
it was stated that Tree Tensor Networks cannot efficiently encode the area law for quantum
many-body systems in higher dimensions. Thus, the question arises whether they are actually
a reasonable method for analysing such systems, especially compared to competing Tensor
Networks, such as PEPS and MERA which can faithfully represent area law states, or even
compared to other numerical methods, such as Quantum Monte Carlo (QMC).

In fact, QMC is one of the most prominent methods deployed for solving quantum many-
body problems in higher dimensions systems [50–53]. However, there are a set of fundamental
problems in which QMC simulations suffer from the sign problem, such as quantum electrody-
namics, quantum chromodynamics at finite density, and fermionic systems. As we will see in
Chapt. 4, these systems can be attacked by a Tensor Network approach. In particular, therein
Tree Tensor Networks are successfully applied to Lattice Gauge Theories at finite density in
two and even three dimensions. Studying these systems with alternative Tensor Network
methods, such as PEPS, becomes, even in two dimensions, practically unfeasible since the
local dimension d ≥ 35 poses a non-trivial challenge; and for three dimensions, there are no
known alternative Tensor Network ansätze. Thus, Tree Tensor Networks offer unique flexibil-
ity since they can be, in theory, easily adapted to simulate systems of any dimension. This
flexibility makes Tree Tensor Networks an interesting candidate for the analysis of general
high-dimensional quantum many-body systems. Additionally, they come with a significant
computational advantage, as discussed in Sec. 2.2.2, which enables computations with higher
bond-dimensions, thus to some extend compensating the lower entanglement scaling of its
structure compared to looped Tensor Networks, such as PEPS or MERA [69]. Such increased
bond-dimension further translates into a crucial benefit when exploiting symmetries since more
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systems

symmetry sectors can be explored on a global level while the incorporation of symmetries in
general looped Tensor Networks might require an increased bond-dimensions [24, 107].

However, while a Tree Tensor Network performs extremely well for smaller system sizes
of such systems, it lacks the scalability into higher dimensions, due to its lack of efficiently
encoding the area law in its structure. This clearly denotes the main bottleneck of Tree Tensor
Networks when further numerically investigating large-scale quantum many-body systems
towards, for instance, promoting the understanding of our universe by studying non-Abelian
high-dimensional Lattice Gauge Theories. However, as we will see in Chap. 5, the Tree Tensor
Network can be augmented in a way to efficiently encode the area law by its structure offering
better scalability then an ordinary TTN. Thus, this augmented Tree Tensor Network (aTTN)
can help to overcome the current limitations of Tensor Networks in high dimensional systems
opening the pathway to novel physics beyond the reach of every other numerical method.

In this respect, this chapter is dedicated to an in-depth discussion on the basics of Tree
Tensor Networks. Starting in Sec. 3.1, the fundamental ideas of Tree Tensor Network states are
presented. After introducing the Tree Tensor Network in a formal definition, we will see that
these class of Tensor Network states naturally have a loop-less, hierarchical structure which
greatly benefits the underlying algorithms for calculating observables and finding ground
states of many-body Hamiltonians. In Sec. 3.2, this idea of Tree Tensor networks is generalised
towards the study of higher-dimensional systems. Therein, we will see that the concrete
structure of a Tree Tensor Network is crucial for simulating systems in 2D and beyond and
how a system can be mapped ideally to suit the topology of a Tree Tensor Network. This
mapping is further underlined with a practical step-by-step example for a 4× 4-system with
nearest-neighbour interactions. Further, we will see that this network itself (without the
augmentation introduced in Chap. 5) does not satisfy the area law in higher dimensions,
thus eventually fails to faithfully represent physical states for growing system sizes. The last
section of this chapter, Sec. 3.2, is dedicated to an in-depth technical description for the
numerical implementation of a Tree Tensor Network, featuring discussions on the underlying
data structure, important modules and practical note on the High-Performance-Computing
aspect of the implementation.
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3.1 Tree Tensor Network states

Definition 3.1.1: (Tree Tensor Network).

A Tree Tensor Network, abbreviated by TTN, is a Tensor Network following Def. 2.2.1
in which any two tensors are connected by exactly one path.

Definition 3.1.2: (Path).

Let {T } be a set of distinct tensors (∀i 6= j : T [i] 6= T [j]) and let {ν} be a set of links
such that each link νi connects the tensors T [i] and T [i+1] for 1 ≤ i < k. Then, a path
is defined as the ordered, alternating list (T [1], ν1, T [2], ν2, ..., νk−1, T [k]).
Further, we define:

• The length of the path as the number of links in the set dim{ν} = k − 1.

• T [1] and T [k] as the endpoints of the path.

• A cycle as a path with an additional link connecting its endpoints.

Theorem 3.1.1: (Tree Tensor Network properties).

Let Ψ be a Tensor Network, then the following statements are equivalent:

• Ψ is a Tree Tensor Network.

• Ψ contains no cycles, i.e. Ψ is acyclic (loop-free), and the addition of any internal
link results in the formation of cycles

• Ψ is connected and the removal of any internal link disconnects G.

Lemma 4. Every Tensor Network without cycles is a Tree Tensor Network.

3.1.1 Hirarchical Structure of Tree Tensor Networks

As illustrated in Fig. 3.1, each TTN can be arranged in a hierarchical structure with different
layers Λ` when defining a root link which will be the topmost-link in the network. In this
structure, the first layer Λ1 consists of two tensors connected via the root link while all
other neighbours of the two tensors from the layer Λ2. Thus, further filling all other layers
accordingly leaves us with a well defined hierarchical structure. In this structure, each tensor
in layer Λ`>1 has exactly one neighbor in layer Λ`−1 which is defined as its parent tensor, and
may have several neighbors in layer Λ`+1 which are defined as its child tensors. For ` = 1, we
define the two tensors to be each other’s parents (which might go against traditional biological
intuition however ensures that every tensor within the network has exactly one parent tensor).
Within this structure, the k-th tensor within the `-th layer Λ` can be enumerated by T [`,k].
Further, the depth of a hierarchical TTN, is defined as its number of layers L, i.e. the longest
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T [1,1] T [1,2]

T [2,1] T [2,2] T [2,3]

T [3,1] T [3,2] T [3,3] T [3,4]

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

` = 3

` = 2

` = 1

Figure 3.1: Structure of a general binary Tree Tensor Network (TTN). The green line indicates
the only possible path from Tensor T [3,2] to T [3,3], or more concretely from site i4 to site i9. In
a binary TTN, each tensor has three links while in a general TTN, the tensors may have different
numbers of links higher than three.

path between a tensor and the root link. For sake of compactness, we always choose the root
link to be an internal link which minimises the number of layers of the hierarchically-ordered
tree.

Given that the computational complexity of the contraction within a network scales with
the product of the bond-dimensions of all links attached to the tensors, it is reasonable to
minimise the number of links per tensor in an attempt to build an efficiently contractable
Tensor Network. Therefore, a particular class of interest are the binary TTNs where each
tensor can have three neighbours at most, i.e two children in the hierarchical structure. Fur-
ther, all tensors within this network are of the order-3. Thus, when one tensor does not have
two child tensors, it has a physical link attached. Based on the definitions above, we can
further categorise a binary TTN into different subclasses:

(a) (b)

Figure 3.2: Structure of a perfect TTN (a) where each of the L layers is completely filled with
tensors resulting in N = 2L sites and of a complete TTN (b) where the last layer may not be filled
entirely. The perfect TTN is a subclass of the complete TTN.

Perfect TTN — In a perfect binary TTN, each layer ` is completely filled with the maxi-
mum number of tensors (2`). Thus, each tensor within the layers Λl<L has two child tensors
while each tensor T [L,k] within the last layer ΛL has one internal link upwards connecting
it to its parent tensor and two physical links downwards addressing the local Hilbert spaces
of the quantum many-body system (see Fig. 3.2a). Consequently, this TTN is only able to
capture systems with N = 2L sites.
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Complete TTN — Analogously to the perfect TTN, each layer within a complete TTN
is completely filled, except for the last layer ΛL which is filled from the left onward, i.e. all
tensors within the last layer are as far left as possible (see Fig. 3.2b). Evidently, the perfect
TTN is a subclass of a complete TTN. In contrast to the perfect TTN, however, this TTN is
able to describe systems of arbitrary size.

Matrix Product States — One particular subclass of binary TTNs is the MPS. In the
framework of hierarchical trees, the MPS equals a binary TTN where each layer Λl>2 consists
of one tensor only.

3.1.2 Isometry in a Tree Tensor Network

Figure 3.3: TTN isometrised towards the tensor T [1,1]. All other tensors (blue) are isometries as
introduced in Def. 2.1.2 and obey the isometry condition (right). The tensor T [1,1] (green) can be an
arbitrary tensor.

One crucial property of TTNs is that they can be brought in a certain isometric form by
exploiting the gauge freedom of Tensor Networks. In this isometric form, or unitary gauge,
the TTN mainly consists of isometries following their introduction in Def. 2.1.2. As illustrated
in Fig. 3.3, only one tensor within the network does not obey the isometry condition in the
unitary gauge. Thus, this gauge is always defined with respect to a certain tensor T [l,k] of the
network. We call such a TTN isometrised towards T [l,k].

The fact that most of the tensors are isometries and thus vanish when contracted with
their complex conjugate over the proper links can be of great benefits in many numerical
scenarios. The first benefit on hands is the computation of the norm 〈ψ|ψ〉 of the TTN
state: In this computation, the entire TTN has to be contracted with its complex conjugate.
Having the TTN isometrised to any tensor T [l,k] reduces this computation to the contraction∑

i1,...,iK
(T [l,k])i1,...,iK (T [l,k])†i1,...,iK of T [l,k] with its own complex conjugate over all of its

K links. In the next section (Sec. 3.1.3), for instance, we will see that, in the same way,
the calculation of observables can be executed far more efficient when taking advantage of a
properly isometrised TTN.

Having an isometrised TTN towards a given tensor T [l,k], we can always change this
gauge towards another tensor T [l′,k′] in the network, or in other words reisometrise the TTN
towards T [l′,k′]. For such a reisometrisation, we have to define the path Γl

′,k′

l,k from the tensor
T [l,k] towards which the network is currently isometrised towards the target tensor T [l′,k′].
As first step in the procedure, the tensor T [l,k] becomes decomposed via QR-decomposition
into an isometry tensor Q and an order-2 tensor R along the direction defined by the path.
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⇒

(a) (b)

Q
R

Figure 3.4: Algorithm to reisometrise a TTN from position tensor T [1,1] towards tensor T [2,2]: (a)
The tensor T [1,1] was decomposed via QR-decomposition into an isometry Q and an order-2 tensor
R (red). Q denotes the new tensor T̃ [1,1]. (b) The tensor R is contracted with the tensor T [2,2]

resulting in a new tensor T̃ [2,2] which does not fulfil the isometry condition any more (marked in
green). Consequently, the TTN is isometrised towards T [2,2].

Subsequently, the tensor T [l,k] ← Q is replaced by the created isometry while the tensor
R is contracted with the neighbouring tensor along the path Γl

′,k′

l,k . This first step already
reisometrises the TTN towards the neighbouring tensor of T [l,k]. Consequently, performing
this procedure iteratively along the entire path Γl

′,k′

l,k , reisometrises the TTN towards the
desired tensor T [l′,k′]. As an example, Fig. 3.4 illustrates the reisometrisation from the tensor
T [1,1] towards its neighbouring tensor T [2,2].

Since we create an isometry at each step of the reisometrisation, this procedure can be
extended for establishing the unitary gauge within an arbitrary TTN by iteratively performing
a QR-decomposition through the entire network. In practice, however, an isometrisation is
typically created during the initialisation of a TTN as illustrated in Sec. 3.1.4. Once created,
the executed TTN algorithms are usually designed to manage, keep track and take advantage
of the isometrisation.

3.1.3 Calculation of Observables

In what follows, the computation of the expectation values of different observables O are
presented for the TTN. Of particular interest in many simulations of quantum many-body
systems are the calculations for (i) local observables, acting on one site s only, (ii) correlation
functions, i.e. two-body operators, and (iii) general String observables.

Local observables

Let O[s] be a local observable acting on the site is of the TTN state ψ. In order to efficiently
compute the expectation value 〈O[s]〉ψ = 〈ψ|O[s]|ψ〉 the TTN can be isometrised towards the
tensor T [L,b(s+1)/2c] which acts on the physical site is (b·c denotes the floor function). Using
this isometry in the TTN, the computation of 〈O[s]〉ψ can be executed by contracting three
tensors only with a complexity of O(d3m) +O(d2m) where d is the local physical dimension
of the system (see Fig. 3.5).

Correlators

Let O[s1,s2] be a correlator acting on the sites is and is′ of the TTN state ψ. In order to
compute the expectation value 〈O[s,s′]〉ψ = 〈ψ|O[s,s′]|ψ〉 , the TTN can be isometrised towards
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⇒

(a) (b)

Figure 3.5: Contraction scheme for the calculation of the expectation value of a local observable
(orange) acting on a single site of the TTN (a). Isometrising the network towards the tensor directly
attached to the operator enables to reduce the computation to a contraction of three tensors since
all other tensors are isometries and become an identity when contracted with their corresponding
complex conjugate (b).

⇒

(a) (b)

Figure 3.6: Contraction scheme for the calculation of the expectation value of a correlator (orange)
acting on two sites of the TTN (a). The open links indicate that the total TTN may be larger than
the illustrated subtree. The green line indicates the path combining the two tensors directly attached
to the operator. Isometrising the network towards the anchor node of this path enables to reduce
the computation to the contraction of all tensors along the path since all other tensors vanish in the
contraction due to the isometry condition (b).

the anchor of the path from the physical site s to s′. Thereby, only the tensors within this
path are to be contracted since every other tensor cancels out with its complex conjugate in
the global contraction (see Fig. 3.6). This contraction can be performed with a worst-case
complexity of O(m4κ logN) + O(m4κ log (N − 1)) + O(m3κ) where κ denotes the internal
dimension of the Tensor Product Operator (TPO) representing the correlator O[s1,s2] (for
TPO see Sec. 2.2.3) and logN equals the number of layers within the TTN.
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String observables

Let O[s1,s2,...,sΩ] be a string operator acting on the sites s1, s2, ..., sΩ of the TTN state ψ.
In order to compute the expectation value 〈O[s1,s2,...,sΩ]〉ψ = 〈ψ|O[s1,s2,...,sΩ]|ψ〉 , the TTN
can be isometrised towards the anchor of the longest path of each combination of two the
physical site s ∈ {s1, s2, ..., sΩ} to s′ ∈ {s1, s2, ..., sΩ}. In this scenario, only the tensors
within all these different paths are to be contracted since every other tensor cancels out with
its complex conjugate in the global contraction. In the most general case, the observable forms
an MPO [61, 147, 148]. In this, numerically worst case, non of the tensors can be neglected
in the contraction and the complexity of the underlying contraction becomes O(m4κ2(κ +
2)(N − 2)) + O(m2κ) where κ is the dimension of the TPO representing O[s1,s2,...,sΩ] and
N − 2 equals the total number of tensors within the TTN.

3.1.4 Ground state computation

This section describes the optimisation algorithm for a TTN to compute the ground state of an
interacting quantum many-body Hamiltonian. As introduced in Sec. 2.2.5, such a ground state
search can be done efficiently with Tensor Networks by iteratively optimising a sub-set of its
variational parameters minimising the energy E = 〈ψ|H|ψ〉. In particular, this optimisation
exploits the fact that all single tensors within the network can be treated as independent
variables. Consequently, the key idea behind the optimisation of a Tensor Network state |ψ〉
is to optimise one, or only a limited subset, of the tensors at a time, thus reformulating the
global, exponentially large, optimisation problem towards a set of local minimisations in a
drastically smaller subspace which is controlled in size by the chosen bond-dimension of the
network.

In the following, this optimisation procedure is illustrated in more detail starting from the
global optimisation and how it can be reformulated as a local minimisation problem for either
single tensors or a subset of locally connected tensors. Afterwards, the local optimisation
problem is presented and how we can solve this minimisation in practical applications before
finalising this section with a discussion on the importance of the initialisation of the TTN for
an efficient simulation.

Solving the global optimisation problem

Let H ∈H be the Hamiltonian of a quantum many-body system and Ψ a TTN to represent
a wave-function of the same Hilbert space. Then, the ground state of H is the solution to the
minimisation problem

min
Ψ
{E(Ψ)} = min

Ψ
{〈Ψ|H|Ψ〉} .

To find the ground state of H, the variational parameters of the TTN are optimised targeting
the minimisation of the energy E(Ψ) of the wave function it represents. Here, the TTN
allows performing this optimisation problem by treating each tensor within the network as
an independent set of variational parameters. Thus, the global optimization can be executed
by sweeping through the network (see Fig. 3.7), where we subsequentially perform a local
optimisation for each tensor. In order to perform such a local optimisation, the Tensor
Network can be differentiated with respect to any single arbitrary tensor T [κ] within the
network:
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⇒ ⇒

(a) (b)

(c)

Figure 3.7: Optimisation algorithm for a Tree Tensor Network to find the ground-state of a quan-
tum many-body system. (a) The current energy can be calculated by contracting the Hamiltonian
(orange) with the TTN and its complex conjugate. The minimisation of the energy is executed by it-
eratively optimising the variational parameters of each tensor. Therefore, a sweeping sequence (green)
is defined in which we optimise the local tensors. (b) To optimise a targeted tensor (red), its environ-
ment (shaded area with border in dashed lines) is contracted describing the effective Hamiltonian of
the local problem. (c) The local optimisation problem has been boiled down to the tensor (red), its
complex conjungate, and its effective Hamiltonian (orange/blue).

∂Ψ
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∂
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∏

k 6=κ
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 ≡ Ψ[κ]

env

Thus, the derivation of any function linear in T [κ] can be calculated numerically where we
call the resulting Ψ

[κ]
env the environment of the tensor T [κ]. With this definition, the energy

expectation value can be reformulated with respect to a single tensor

E = 〈Ψ|H|Ψ〉 = 〈T [κ]|Ψ[κ]
envHΨ[κ]

env

†

︸ ︷︷ ︸
H[κ]
eff

|T [κ]〉

where we further define the effective Hamiltonian H[κ]
eff for the tensor T [κ]. Consequently, the

global Lagrangian functional L(Ψ,Ψ†) = 〈Ψ|H|Ψ〉 − ε〈Ψ|Ψ〉 of the optimisation problem can
be reformulated into a local Lagrangian functional L(T [κ], T [κ]†) = 〈T [κ]|H[κ]

eff−εN|T [κ]〉 with
respect to T [κ] which is reshaped as a vector |T [κ]〉. The effective Hamiltonian H[κ]

eff hereby
includes the physical Hamiltonian H and all tensors in the network surrounding T [κ] while
N denotes a positive operator for the effective square norm constraint. Thus, we can lower
the global energy by optimising only the variational parameters within T [κ]. In practice, this
reformulation is done by contracting H with the whole environemnt Ψ

[κ]
env, i.e. the complete
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TTN Ψ and its complex conjugate except for the tensors T [κ] and T [κ]†. Fig. 3.7 illustrates
such a contraction of the network towards the local tensor T [κ] with κ = (2, 1). Once,
the Hamiltonian and the environment of T [κ] is contracted into the effective Hamiltonian,
the minimisation problem for T [κ] lives in a space restricted by the chosen maximum bond-
dimension m of the network, i.e. dim{H[κ]

eff} ≤ m3. Typically this local optimisation problem

can be solved directly by an eigenvalue decomposition H[κ]
eff = Ev†H[κ]

effv where we update

the tensor T [κ] → v0 with the eigenvector of H[κ]
eff corresponding to the lowest eigenvalue E0.

Thus, optimising the tensor T [κ] within the TTN consists of three different steps:

1. Contract the Hamiltonian H with the environment Ψ
[κ]
env to the effective Hamiltonian

H[κ]
eff = Ψ

[κ]
envHΨ

[κ]
env

2. Compute the eigenvector v0 with minimum eigenvalue for H[κ]
eff

3. Update the tensor T [κ] → v0

Moving on to solve the local optimisation problem iteratively for all tensors within the network
gives a high likelihood to converge into the global minimisation problem for the Lagrangian
functional L(Ψ,Ψ†). In this way, the complexity of the global optimisation can be successfully
reduced towards a significantly smaller space bound by the bond-dimension m of Ψ.

The exact sweeping sequence of the optimisation, in general, can be random which turns
out to be beneficial in complex systems, such as the study of Lattice Gauge systems in
higher dimensions (presented in Chapt. 4). Another successful sequence is going iteratively
from the bottom left to the top right tensor, as indicated in Fig. 3.7a (green). In this way,
the information of the system can be propagated upwards through the TTN starting from
the tensors directly attached to the Hamiltonian while still keeping a relatively short path to
complete one sweep. Iterating this sweeping procedure through the complete network leads to
the convergence for the global TTN in terms of energy and selected observables. Equivalently
this strategy can be extended to optimising not only one tensor at a time but a small subset
of tensors.

Local optimisation

As discussed above, the global minimisation problem can be solved by iteratively solving a
local eigenvalue problem for each local tensor T [κ]. For this optimisation, i.e. eigenvalue prob-
lem, we can exploit well-established algorithms from linear algebra. In particular, the Arnoldi
algorithm [173, 174] implemented in the ARPACK library [175], a collection of Fortran77
subroutines designed to solve large scale eigenvalue problems, offers an efficient numerical
solution. The Arnoldi algorithm solves the local eigenvalue problem for each tensor T [κ] by
iteratively diagonalising its corresponding effective Hamiltonian H [κ]

eff . In the practical appli-

cation, the algorithm only needs to know the action of H [κ]
eff on T [κ] and thereby provides the

lowest eigenpairs of H [κ]
eff within a predetermined accuracy ε (see Sec. 3.2.3 for a hands-on

example). The complete numerical complexity for this operation is determined by the dimen-
sion of all links of T [κ], upper-bounded by O(m4). In practical applications, it might be wise
to start with a low optimization precision ε of the Arnoldi algorithm and increasing it after
each sweep such that the solution of the local eigenvalue problems becomes more and more
accurate as the TTN comes closer to global convergence.
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Interesting strategies are further to extend this single tensor update towards a two-site
update, in which two neighbouring tensors T [κ] and T [κ′] are optimised at the same time.
This can be done analogously to the description above by contracting the two tensors and
calculating the effective Hamiltonian, now with the environment Ψ

[κ,κ′]
eff with respect to the

complete space of T [κ] and T [κ′]. However, since this would lead to a local minimisation
problem for a contracted two-tensor space, it is more expensive numerically with a complexity
of O(m5). After the optimisation of this contracted tensor, it is decomposed again into its
original form, i.e. two interconnected tensors, keeping the TTN structure alive. This strategy
may increase the numerical complexity, but it allows to adapt the bond-link dynamically
(including its dimension and for symmetric TTNs its symmetry sectors) and thereby may
provide a better or faster convergence to the global minimum.

As a good compromise, the subspace-expansion [24] can be exploited for the local single
tensor optimisations. This technique approximates a two-site update by (i) first increasing the
bond-dimension of the link connecting the two tensors, (ii) then iteratively optimising the two
local tensors separately before (iii) truncating the bond-link back to original dimension. In this
way, the local optimisation exploits the best of both worlds: It keeps the favourable algorithmic
complexity of O

(
m4
)
while effectively performing a complete two-site optimisation and thus

being able to adapt the bond-link dynamically. For more details on this technique, Ref. [24]
offers an in-depth illustration and a comparison between the three strategies.

Initialisation

i1 i2

Q

R
QR→

(a)

(b)

(c)

Figure 3.8: Construction of a Layer for the initialisation of a Tree Tensor Network. (a) Given
two sites (i1, i2) of local state spaces as input, an order-3 tensor is initialised with random elements
combining the local spaces (bottom left). Performing a QR-decomposition creates an order-3 isometry
Q which is used as the initialised tensor within a TTN layer (b). For the next TTN layer, the procedure
is repeated, now using the links from the just created tensors of the lower layer. (c) The TTN is created
layer after layer from the bottom to the top.

For the ground-state search of a Hamiltonian H, it is beneficial to start from a ran-
dom guess |ψinit〉 in order to maximise the probability of an overlap with the target state
|〈ψinit|ψtarget〉|2 > 0. Such a randomly initialised tree can be created with the following
bottom-top strategy illustrated in Fig. 3.8.
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Starting from the physical indices at the bottom of the TTN, the lowest layer Λl=L is
built up by merging two neighbouring local sites into one internal link introducing a randomly
initialized tensor. Subsequently, the next layer ΛL−1 can be constructed similarly by taking
the resulting internal links from each tensor within the just constructed layer ΛL, and again
merging two neighbouring internal links by introducing randomly initialized tensors. Following
this procedure until l = 1, the complete TTN would be initialised with an exponentially
increasing bond dimension for each layer mL−l = dl. Thus, in case we reach the user-defined
maximum bond dimension m of the network when constructing each layer from the bottom
to the top, we truncate the bond dimension mL−l = min{dl,m} accordingly.

Importantly, in the case of present symmetries, this truncation of the maximum allowed
bond-dimension has to be done by truncating the single symmetry sectors within the internal
link. Here, we can introduce further randomness in the state by truncating these occupied
coupling sectors randomly down until reaching the maximum set bond-dimension for the link
in question. Thereby, not only the tensors themselves will be randomly initialised but further
the distribution of the coupling symmetry sectors within the complete network. However,
to ensure optimal convergence during the optimisation, it is critical to occupy the correct
symmetry sectors within the internal links corresponding to the symmetry sectors of the
ground state. However, as mentioned before, the local bond-dimension can be dynamically
increased during the optimisation algorithm in order to adapt the symmetry sectors within
the TTN. Thus, before a symmetrically invariant TTN converges to the ground state, it first
converges in the occupied symmetry sectors on each link within the network.

3.1.5 Efficient handling of the Hamiltonian

H ⇒

H1

H2

H3

H4

H5

H6

H7

(a)

(b)

Figure 3.9: Quantum many-body Hamilton H =
∑
pHp in a Tensor Network framework. The

complete Hamiltonian (a) is represented as a set of Tensor Product Operators (TPOs), one for each
interaction Hp (b).

As described in Sec. 2.2.2, the complete many-body Hamiltonian H =
∑

pHp typically
consists of several separate interactions Hp which can each be represented as a Tensor Product
Operator (TPO). Fig. 3.9 illustrates an example of such a Tensor Network representation
decomposing H into a set of TPOs. In the TTN analysis, these TPOs act on different physical
links of the network while the complete Hamiltonian acts on all open links, i.e. physical links,
of the TTN.
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(a)

(b)

Figure 3.10: Link-operators of a TTN for efficient computation of effective Hamiltonians Heff .
(a) Each tensor of the TPO representing the physical interactions Hp have been contracted with the
corresponding tensor in the lowest layer of the TTN and its complex conjugate (see inlet). (b) For
each link, we store the corresponding coarse-grained operator-tensors as link-operators (purple) to
reduce the required computations during the optimisation algorithm.

In the previous Sec. 3.1.4, it was illustrated that during the optimisation procedure, we
repeatedly need to compute the effective Hamiltonian Heff for each tensor T [l,k] within the
TTN. This computation can be performed by contracting all TPOs separately through the
network as indicated in Fig. 3.10: Each tensor of all the TPOs Hp are contracted with the
tensor T [l,k] they act on and its complex conjugate (T [l,k])†. Thus, we perform a renormal-
isation procedure of the interactions for each layer in the TTN. This procedure maps the
single TPO parts onto the virtual subspace of the internal links of the TTN. In practical
applications, we store these renormalised operators at each internal link χ of the TTN as
link-operators. The explicit storing of the link-operators enables to improve the computation
for various TTN algorithms, such as time-evolution or ground state search, by reducing the
required computations during the algorithms. For further practical information, Sec. 3.2.3
illustrates a hands-on example including the initialisation of the link-operators and the un-
derlying contraction schemes to calculate the effective Hamiltonian Heff for a targeted TTN
tensor T [l,k].
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3.2 Simulating high-dimensional systems with TTNs

Once a complete TTN is working for one-dimensional systems, the application to higher di-
mensions is in theory straightforward. However, there are still non-trivial practical hurdles to
overcome in the implementation. The following section describes in more detail this applica-
tion of a complete TTN to high-dimensional systems.

3.2.1 Two-dimensional TTN structure and Hamiltonian mapping

The first and obvious difference going from analysing one-dimensional systems to higher di-
mensions is the fact that we have to consider the additional dimensions when attaching the
physical sites to the TTN structure. In other words, the question arises of how to map the
high-dimensional lattice to the generic one-dimensional TTN structure. Indeed, while for a
1D system the physical site i is applied to the i-th external link of the TTN, each physical site
at position (x1, x2, ..., xD) of a general D-dimensional system requires a well-defined mapping
to one of the physical links of the TTN. In fact, this mapping is highly critical for the repre-
sentation power and accuracy of a TTN approach. Thus, for an efficient mapping, we aim to
take advantage of the physical principle that the entanglement typically decays with distance
in quantum many-body systems. Therefore, the mapped TTN structure shall be arranged in
a way that the high entanglement bipartitions correspond to the lower branches of the TTN.
For these lower branches ν ∈ Λl with l → logN , the bond-dimension mν is sufficiently large
to capture the area law entanglement - or even the complete state - accurately, especially for
reasonably small local dimensions d. Instead, the bond-dimension in the higher layers of the
TTN (l→ 1) suffers from the required exponentially large bond-dimension.

A straightforward way to implement such a mapping is to map the two-dimensional lattice
in a zig-zag pattern towards the physical sites j ∈ {1, . . . , N} of the TTN. More concretely,
each site (x, y) of the two-dimensional lattice with x, y ∈ {1, . . . , L} becomes mapped to an
auxiliary site j = x + L · (y − 1) for the TTN simulation. In this way, the TTN performs
a renormalises each "column" in x-direction of the system at its lower layers fist, before
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Figure 3.11: Possible structures of a TTN deployed for two-dimensional systems. The TTN can
be aligned along different paths through the system, such as the Hilbert curvature (a) or a snake-like
pattern (b). The chosen path defines the mapping for each local site (x, y) → i ∈ {1, ..., N} from
the two-dimensional system to the sites i of the TTN giving rise to different structures for the two-
dimensional TTN simulation. In (c), a binary TTN structure is defined such that its tensors (green)
each merge two sites to one bond link (brown). The mapping here groups alternatingly in x- and
y-direction from layer to layer starting from the physical sites of the 8× 8 lattice.
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(2D)

(3D)

⇒

(a)

(b)

(c)

Figure 3.12: Mapping of a high-dimensional system towards a generic TTN structure. (a)+(b)
The generalised Hilbert-curvature defines the mapping for the local physical sites from the high-
dimensional system to a one-dimensional path: (a) 2D mapping (x, y)→ i ∈ {1, ..., N}; (b) 3D map-
ping (x, y, z) → i ∈ {1, ..., N}. The colour indicates the magnitude of i. (c) Mapping all interaction
parts Hp of the high-dimensional Hamiltonian gives rise to a long-range interacting, one-dimensional
system (purple-dashed box) in the generic basis of a TTN. Subfigures (a)+(b) taken from Ref. [176].

the coarse-grained "columns" become merged together in y-direction at the upper layers.
Consequently, the resulting TTN topology is not well-suited for capturing correlations in y-
directions and the numerical simulations will be biased in x-direction. Thus, this mapping is
not ideal for a general TTN approach in two dimensions.

A well-established procedure is to construct the network in a way such that each layer of
the TTN alternatingly groups together neighbouring sites in x- or y-direction respectively, as
illustrated in Fig. 3.11c. Thereby, each tensor of a layer combines two sites to one coarse-
grained virtual site, i.e. internal link, building up the hierarchical tree structure from the
bottom to the top. In the case of a L×L system, this technique effectively coarse-grains the
system in local plaquettes and enables to improve the representation power of correlations
within these plaquettes in the TTN structure, resulting in a more precise representation of a
quantum many-body state of the underlying system in general. However, this procedure by
construction is only able to deal with binary-sized dimensions with Lk = 2n.

For this problem, the generalised Hilbert-curvature introduced in Ref. [176, 177] offers
an efficient compromise: Exploiting curvature allows to construct a precise TTN structure
analysing high-dimensional systems while being able to keep the system linear dimensions Lk
of arbitrary size. As illustrated in Fig. 3.12, generalised Hilbert-curvature defines the mapping
from the high-dimensional system to one-dimensions. Accordingly, each interaction becomes
mapped, in general, to an arbitrary one-dimensional long-range interaction. Consequently, the
mapped one-dimensional system becomes analysed by the generic TTN structure. In fact, for
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isotropic systems with nearest-neighbour interactions, the TTN construction described above
allows creating a graph together with the physical interactions which is surjectively homomor-
phic to the resulting graph when mapping the system using the Hilbert curvature. In other
words, for binary sized systems, the TTN arising from the x-/y-coarse-graining procedure is
equivalent to the TTN using the Hilbert-curvature apart from a structural degeneracy.

A priori, the exact entanglement entropy within a quantum many-body state is usually
unknown before analysing the system which makes it challenging to figure out the ideal
Tensor Network structure for a given system. However, we know that the entanglement is
governed by the interactions within the systems. Moreover, there is even a connection between
the coupling strengths g of a given interaction and the amount of introduced entanglement
for the ground state: For increasing g the interaction introduces entanglement accordingly
with g → 0 keeping the sited disentangled and g → ∞ introduces completely entangles
the sites. However, in both extremes, disentangled and completely entangled, the introduced
entanglement entropy S = 0 vanishes. Thus, the entanglement entropy maximises for medium
coupling strength g. Thus, knowing the interactions of the system can help to find an efficient
high-dimensional TTN structure by optimising the TTN layout such that it minimises the
average weighted distance between any interacting sites

〈D〉 = 1/Np

Np∑

p=1

|gp|Dp

where Dp is the path distance of an interaction with corresponding interaction strength
gp and Np the total number of interactions in the system.

An example illustrating the importance of this mapping can be found by looking at a two-
dimensional isotropic model with nearest-neighbour interactions only and periodic boundary
conditions. These Hamiltonians of the shape H =

∑
pHp with |gp| ≡ ||Hp|| are frequently

used to investigate magnetisation, e.g. in the form of the Heisenberg model.

One-dimensional Systems Before going to the analysis of the mapping in two dimensions,
let us have a look at the one-dimensional case: As illustrated in Fig 3.13, each interaction
is acting on two neighbouring sites of the TTN with the number of interaction NH = L − 1
proportional to the system length L for open boundary conditions (NH = L for periodic
boundary conditions). Thus, there are L

2 interactions with distance Dp = 1, i.e. both physical
sites of the interactions are assigned to the physical links of the same tensor. Further, L

4
interactions are acting with a path distance Dp = 3 on the TTN, i.e. they are connected over
a tensor in the second layer, L8 interactions with Dp = 5, etc.. Following this patter up to the
highest layer, the average distance equals

〈D1D〉 =
1

L

(
L

2
· 1 +

L

4
· 3 +

L

8
· 5 + ...

)
=

1

L

logL∑

k=1

L

2k
(2k − 1) =

logL∑

k=1

2−k(2k − 1) (3.1)

= 3− 1

L
(2 logL+ 3) (3.2)

which converges to 〈D1D〉 → 3 for L→∞. Thus, the average path distance of a nearest-
neighbour interaction within a TTN representing a one-dimensional system is finite in the
thermodynamical limit.
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k = 1

k = 2

k = 3

k = 4

Figure 3.13: Nearest-neighbour interactions for a one-dimensional TTN analysis. The interac-
tions are ordered with respect to their distanceDp: All interactions in the k-level for k ∈ [1, ..., logL−1]
are connected through a path of length Dp = 2k − 1 through the network.

Two-dimensional Systems For the same analysis in two dimensions, the average path
distance 〈D2D〉 = 1

2(〈Dx〉 + 〈Dy〉) can be separated into the average path distance of all
interactions in x- and y-directions respectively. For the sake of simplicity, we may take a
binary-sized L× L system with L = 2n, thus, totalling L2 interactions in each direction1.

Snake strategy Applying the Snake strategy to the system, the TTN first coarse grains
in x-direction with each interaction in x-direction being connected in the lower half (compare
Fig. 3.14b). Thus, we have L coarse-grained subbranches with each one following the one-
dimensional case equivalently. Consequently, the computation of < Dx > follows the same
structure of Eq. (3.2) except for the sum running to 1

2 logN and that there are now L of these
sums for each coarse-grained "system column":

〈Dx〉 = L/N

logN/2∑

k=1

L

2k
(2k − 1)

(N=L2)
=

logL∑

k=1

2−k(2k − 1)

For each interaction in y-direction, however, the complete lower half of the TTN with
distance logN/2 always has to be gone through in the corresponding paths. In other words,
these interactions recombine only in the higher half of the TTN topology offsetting each path
distance Dp by 21

2 logN = 2 logL (once going up through the half-tree and once going down).
Thus, there are L

2L interactions with distance Dp = 2 logL + 1, L
4L with Dp = 2 logL + 3,

L
8L interactions with Dp = 2 logL+ 5, etc.:

1L2 for each direction with periodic boundary conditions and (L2 − L) for each direction in case of open
boundary conditions
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Figure 3.14: Renormalisation procedures performed by each layer of the TTN for different
underlying mappings. (a) Coarse-graining procedure of a one-dimensional system with Lx sites: Each
tensor in the layer ΛL of the TTN renormalises two neighbouring physical sites into an artificial
site. The next higher layers continue merging neighbouring artificial sites until the last two sites
are linked by the topmost link in the TTN. (b) Coarse-graining procedure of a two-dimensional
system when exploiting the Snake-like pattern (Fig. 3.11b): The tensors in the layers Λl with l =
[L, ...,L− logLx] renormalise the entire first dimension of the system in x-direction, before the layers
with l = [logLy, ..., 1] coarse-grain the system in y-direction. (c) Renormalisation procedure of a
two-dimensional system when exploiting the strategies of Fig. 3.11a,c: Each layer Λl coarse-grains the
system alternatingly along the x- (for even l) and the y-direction (odd l).

〈Dy〉 =
L

N

(
L

2
· (2 logL+ 1) +

L

4
· (2 logL+ 3) +

L

8
· (2 logL+ 5) + ...

)

=

logL∑

k=1

2−k(2 logL+ (2k − 1)) = 2 logL

logL∑

k=1

2−k

︸ ︷︷ ︸
=logL(1−1/L)

+

logL∑

k=1

2−k(2k − 1)

Indeed, for the calculation of 〈Dy〉, this can be seen as equivalently to the one-dimensional
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case with this offset in Dp and L times the interaction. These lower subbranches completely
coarse-grain the system in x-direction reducing the problem to the y-direction at the layer
l = logL.

Consequently, the average interaction distance of the complete system with the Snake
strategy equals

〈DSnake〉 =
〈Dx〉+ 〈Dy〉

2
= logL

logL∑

k=1

2−k

︸ ︷︷ ︸
=(1−1/L)

+

logL∑

k=1

2−k(2k − 1)

︸ ︷︷ ︸
=3− 1

L
(2 logL+3)

= logL+ 3− 1

L
(3 logL+ 3)

which diverges logarithmic for L → ∞. Thus, using these naive Snake patters leads to a
logarithmic divergence of the average interaction distance and thereby to a with system size
increasing incapability of the network to properly capture the entanglement properties of the
underlying system.

Hilbert curvature The fundamental idea of the Hilbert-curvature is to minimise the
increase of the spatial distance when mapping two arbitrary sites from a high-dimension to a
one-dimensional system. This is done by iteratively merging plaquettes of the system. The
average interaction distance in the TTN can be calculated by analysing the TTN illustrated
in Fig. 3.11c which alternatingly groups sites in x- and y-direction at each layer within the
TTN (compare Fig. 3.14c). Consequently, when starting coarse-graining in x-direction at the
lowest layer, there are immediately N

2 interactions acting in x-direction being connected by
a tensor in this layer, i.e. with path length Dp = 1. The next layer connects N

2 interactions
in y-direction with a path distance of Dp = 3. Moving further upwards in the network, the
l = logL − 2-th layer combines N

4 interactions again acting in x-direction with Dp = 5, and
the l = logL− 3-th layer combines N

4 interactions in y-direction with Dp = 7. Following this
pattern, the average path distance in x-direction reads

〈Dx〉 =
1

N

(
N

2
· 1 +

N

4
· 5 +

N

8
· 9 + ...

)
=

logN/2∑

k=1

2−k(4k − 3)
(N=L2)

= 5− 1

L
(4 logL+ 5)

while the average path distance in y-direction equals

〈Dy〉 =
1

N

(
N

2
· 3 +

N

4
· 7 +

N

8
· 11 + ...

)
=

logN/2∑

k=1

2−k(4k − 1)
(N=L2)

= 7− 1

L
(4 logL+ 5) .

Consequently, the average path distance 〈D2D〉 = 1
2(〈Dx〉+ 〈Dy〉)→ 6 (L→∞) for this

TTN structure converges in the thermodynamical limit making this strategy a solid approach
for capturing the entanglement properties of the underlying system via TTN.

3.2.2 Area law for Tree Tensor Networks

As discussed in Sec. 2.2.1, the von Neumann entanglement entropy for a bipartition of the
system is directly linked to the bond-links of a Tensor Network. In this context, the loop-free
nature of a TTN enables an efficient way of measuring the entropy captured in this approach
of representing a quantum many-body wave function.
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Figure 3.15: Possible TTN bipartitions with the links {ik}A (blue) and {ik}B (yellow) addressing
the physical sites within the bipartitions A and B, respectively.

In every TTN state |ψ〉, each internal link ν connecting two tensors bipartites the under-
lying lattice L into two subsystems A[ν] and B[ν] (see Fig. 3.15). This allows the TTN to be
rewritten for each ν in the form of the Schmidt decomposition

|ψ〉 =

mν∑

α=1

λ[A,B]
α |ψ[A]〉 ⊗ |ψ[B]〉 (3.3)

where mν is the bond-dimension of ν and λ
[A,B]
α are the Schmidt-values. For each of the

bipartitions, the Schmidt rank is upper-bounded by the bond dimension mν of the corre-
sponding link ν. Consequently, the bond-dimension mν as well limits the amount of bipartite
entanglement the TTN is able to capture.

If we assume the physical state ψ to fulfill the entropic area law, the entanglement entropy
S(A[ν]) of such a bipartition scales with the number of sites γν forming the boundary ∂ν of
A[ν]:

S(A[ν]) ∼ γν (3.4)

For a practical illustration regarding the TTN representation |ψ〉 of the state ψ, we consider
L to be a two-dimensional system with N = L × L sites. In this case, the required bond
dimension to encode the area law of the physical state ψ scales exponentially with L (see
Sec. 2.2.1 for more details on entanglement bounds in Tensor Networks). To be even more
accurate, the bond dimension mν of each link ν should scale with

mν ≈ ecγν (3.5)

where c is a constant factor. This exponential scaling leads to the fact, that with increasing
system size for a two-dimensional system, a TTN representation eventually fails to faithfully
represent area law states as it rapidly becomes unfeasible to deal with such an exponentially
large network especially with γν=1 ∼ L. And going beyond a 2D system to even higher
dimensions, this scaling becomes all the more critical for the TTN.

3.2.3 A practical example: 4x4-System

To give a hands-on illustration, this section will describe the optimisation of a TTN for
analysing high-dimensional systems in a step-by-step procedure for a two-dimensional isotropic
Hamiltonian on a square 4 × 4-Lattice with open boundary conditions consisting of nearest-
neighbour interactions Hp. Therefore, we assume the complete Hamiltonian to be a product
of interactions H =

∑
pHp with every interaction Hp being described as a Tensor Product

Operator (TPO) (see Sec. 2.2.3). For sake of simplicity, we will restrict ourselves in this
example to Hamiltonians H containing exclusively (i) local terms Hp = hpip (acting on the site
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Figure 3.16: Mapping of a two-dimensional 4×4 system with nearest-neighbour interactions and
open boundary conditions to a one-dimensional TTN via Hilbert curvature. (a) The Hilbert curvature
defines the mapping for the local sites (x, y) → i ∈ {1, ..., 16} from two into a one-dimensional path.
(b) All interaction parts Hp of the two-dimensional Hamiltonian including local terms (orange dots)
and nearest-neighbour interactions (orange rectangles), the latter enumerated from H1 to H24. (c)
The operators in (b) are mapped by the Hilbert curvature in (a) towards the TTN. Each interaction
Hp, in general, becomes long-range interaction indicated as orange TPOs, making up the mapped
one-dimensional model.

ip) and (ii) two-body interaction Hp = hp,1ip h
p,2
i′p

between the physical sites ip and i′p. However,
the basic idea of the TTN approach can, in general, be applied to more complex Hamiltonians
H and systems with periodic boundary conditions.

This optimisation procedure for the TTN consists of four main parts: (i) Mapping of
the high-dimensional systems towards the TTN structure, (ii) initialising the TTN, (iii) ini-
tialising the TTN link-operators, and (iv) optimising the internal TTN with the mapped
Hamiltonian.

Step 1 (Mapping) — Before starting the actual analysis, we map the system as de-
scribed above in Sec. 3.2.1. For our 4 × 4-example, Fig. 3.16 illustrates the mapping of
the two-dimensional system towards the one-dimensional TTN structure. The Hilbert cur-
vature defines the mapping for the local sites (x, y) → i in the two-dimensional system to
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their one-dimensional correspondence i ∈ {1, ..., 16} used for the TTN analysis. Given this
mapping, all interaction parts Hp of the two-dimensional Hamiltonian become transformed
accordingly into the one-dimensional basis. Crucially, all nearest-neighbour interactions in the
two-dimensional plane are mapped to general long-range interactions in the one-dimensional
representation. Thus, the Hamiltonian which in 2D consists of nearest-neighbour interactions
only becomes a one-dimensional long-range model.

Step 2 (Initialisation TTN) — Once the system is mapped and the physical sites are
assigned to the physical links of the TTN, we start constructing the tree structure. This
construction can be done layer-by-layer from the bottom beginning with the physical links
up to the top following the instructions in Sec. 3.1.4. In this example, we would construct a
perfect binary TTN while, in general, for a total number of sites which is not a power of 2,
the initialisation of the lowest layer has to be adapted towards a complete TTN since not all
physical sites will be attached to a tensor in this lowest layer. After initialising such a random
tree which is isometrised towards the tensor T [1,1], the link operators within the TTN are
initialised.

Step 3 (Initialisation Link-operators) At this stage, the coarse-grained Hamiltonian
parts H[ν]

p , i.e. link-operators, are calculated for each link ν in the network. This is done in a
bottom-top approach following the procedure presented in Sec. 3.1.5. Fig. 3.17 illustrates this
procedure for our 4×4 example contracting for each layer the corresponding Hamiltonian parts
with the proper tree tensor and its complex conjugate. Note, that after this initialisation, the
effective Hamiltonian H[1,1]

eff is already present for the tensor T [1,1] towards which the TTN is
isometrised.

Step 4 (Optimisation) After initialising all link-operators, the algorithm starts sweeping
through the network optimising each tensor. The exact sweeping order can, in general, be
chosen arbitrarily from the user. When selecting one tensor to optimise, say T [2,1] as illus-
trated in Fig. 3.18, the effective Hamiltonian has to be calculated following the description of
Sec. 3.1.4. Having all link operators initialised and the TTN in an isometric form, this can
be done easily by properly contracting the effective Hamiltonian parts (H[l,k]

eff )p with all the
tensors along the path from the tensor the TTN is current isometrised towards, to the target
tensor. While performing this contraction along the path, it might be wise to isometrise the
TTN towards the target tensor along the way by performing a QR-decomposition. Once we
isometrised the TTN towards our target tensor, the local optimisation solves the underlying
eigenvalue problem as illustrated in Sec. 3.1.4. When executed via ARPACK implementa-
tion, the optimisation algorithm only requires the knowledge of the action of the effective
Hamiltonian H[l,k]

eff on the tensor to optimise T [l,k]. Thus, we iteratively need to perform the

contraction of H[l,k]
eff with T [l,k] which can be done by contracting each parts (H[l,k]

eff )p of the
effective Hamiltonian separately. Afterwards, the eigenvalue solver returns the eigenvector
with the lowest eigenvalue, i.e. energy, which we use to replace the old tensor in the network
as a result of the local optimisation. After optimising a single tensor, we move on to the next
tensor of the global optimisation sweep and after one sweep, we perform another one until the
selected values, such as global energy, expectation values, or entanglement entropy, converge.
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⇓
(b)

⇒

(c)

Figure 3.17: Initialisation of the Hamiltonian parts of Fig. 3.16c within the isometrised TTN
as link operators. (a) Each tensor of the TPO representing the physical interactions Hp have been
contracted with the corresponding tensor in the lowest layer of the TTN and its complex conjugate (see
inlet) making up the TPO tensors of the different link operators. (b) Analogously, the link operators
of (a) are coarse-grained upwards with the next layer. (c) The last contraction is done with the tensor
T [1, 2] resulting in all the link operators (in purple box) which constitute the effective Hamiltonian
H[1,1]
eff for T [1,1].

Add-on (Towards numerical complexity and periodic boundary conditions) Hav-
ing presented a 4×4 system with open boundary conditions you may ask about the feasibility
of simulating periodic boundary conditions as well. In fact, the difference between periodic
and open boundary computations in terms of the numerical complexity of the TTN is merely
a matter of the number of Hamiltonian parts NH, that is, it impacts sub-leading terms in the
overall algorithmic complexity of m4. Indeed, for open boundary conditions NH is lower then
for periodic once by a margin scaling with system length Nperiodic

H −Nopen
H ∼ L.
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(a)

⇓

(b)

⇓
(c)

Figure 3.18: Optimisation of a tensor for the 4×4 TTN simulation. (a) The TTN is isometrised
to T [1,1] (green) and all link operators are initialised with the effective Hamiltonian H[1,1]

eff (purple)
containing all local and interacting TPOs illustrated in Fig. 3.17c. The target tensor T [2,3] (red) to
be optimised is connected to T [1,1] via the green path. (b) Having isometrised the network towards
the target tensor (now green) and contracted the link operators accordingly, the effective Hamiltonian
H[2,3]
eff (purple) arises for the optimisation consisting of different TPOs (see inlet). (c) For the optimi-

sation, the action (turquoise) of the effective Hamiltonian on the target tensor (green) is calculated
by summing the contractions of all TPOs in H[2,3]

eff with T [2,3].

The complete optimisation scales maximally with the complexity

ζT = O
(
m4d2(NTNHIT +

∑

k

NH,T [k(Γ)])

)

(plus some sub-leading terms) where d is the physical dimension, NT the number of tensors in
the TTN, NH,T the number of operators acting on the tensor T , IT the number of iterations
optimising the tensor T , Γ the path from one tensor to the next one in the sweeping optimi-
sation with T [k(Γ)] its k-th tensor. Now, going from open to periodic boundary conditions,
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we get ∆NH more Hamiltonian parts. Thus, the additional complexity would read

ζperiodic = ζopen +O
(
m4d2(NT∆NH,T IT +

∑

k

∆NH,T [k(Γ)])

)
.

While ∆NH ∼ L holds true, the additional number of Hamiltonian parts ∆NH,T affecting
each tensor T highly depends on the mapping itself. Still, for the sake of simplicity, we may
assume that ∆NH,T ∼ L then we get in all leading terms an increase in complexity ∆ζ = O(L)
which scales with system length L.

In contrast, the implementation of periodic boundary conditions is by construction un-
feasible for the finite PEPS and would result in an increasing complexity for a 2D-DMRG
approach from O(m3) to O(m5).

To summarise, while for alternative methods the implementation of periodic boundary
conditions might not be possible or at least require a change in the network structure resulting
in a major increase in the scaling with bond-dimension, the aTTN can efficiently cope with
the additional complexity of periodic boundary conditions without any fundamental changes
where only the numerical complexity of sub-leading terms is affected.
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3.3 Technical Implementation

Figure 3.19: Overview of a typical software structure of a generic Tensor Network code with
its different levels ranging from the Linear Algebra Kernel performing operations on the hardware
up to the main TN algorithm interfacing with the user. The main Tensor Network developments
performed within this thesis, build on a pre-existing symmetry tensors library and consists of the two
highest levels (green-dashed box), in particular the implementation of a TTN as Tensor Network and
a corresponding ground-state optimisation as TN algorithm. Fig. 3.20 illustrates both of the two levels
in more detail.

The general structure of the implementation is illustrated as a simplified overview in
Fig. 3.19. It shows the hierarchical structure of general Tensor Network algorithms in quantum
mechanics. The lowest level is a common linear algebra kernel, such as LAPACK or BLAS,
executing the core functionalities on the computational hardware. Using these mathematical
libraries, the tensor module extends the linear algebra to the tensor algebra described in
Sec. 2.1 including the numerical definition of a tensor type instance and its functions. As
described briefly in Sec. 2.3.2, we can include another level managing the incorporation of
symmetries in the code by, loosely speaking, defining the symmetrically invariant tensor as
a list of tensors, one for each symmetry subspace. This library includes the definition of
symmetric tensors including all operations one may perform to manipulate a symmetrically
invariant tensor (see Ref. [24, 108] for an in-depth description). For general Tensor Networks,
this symmetry layer in the structure is not required. However, it can drastically improve
the computation by taking advantage of the well-defined internal structure of symmetrically
invariant Tensor Networks on the level of the single tensors within the network. The actual
Tensor Network then utilises this library (or the tensor library itself in case of neglecting
symmetries) and the therein defined tensors as the building blocks for the complete network.
Here, the exact geometry is defined together with the important functions required, such
as calculation of observables, optimisation or time evolution. Finally, on top of everything,
the main algorithm for the Tensor Network itself is defined. Later on, the structure of the
implementation of such a Tensor Network level is exemplified in more detail for a Tree Tensor
Network (TTN). In what follows, each of the nodes for the implementation of the TTN is
described in more detail.
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3.3.1 Data Structure of a Tree Tensor Network

In general, there are two main ways to implement a Tree Tensor Network for the simulation of
quantum many-body systems. On one hand, the TTN can be implemented as a set of nodes
where each node consists of a tensor and a list of references, i.e. pointer, to its neighbouring
tensors. As an example a binary TTN can be described by the following object node written
in pseudo-code:

1 s t r u c t node
2 {
3 t enso r T;
4 s t r u c t node∗ l e f t ;
5 s t r u c t node∗ r i g h t ;
6 } ;

In this way of implementation, the topology of the TTN is implicitly stored by the refer-
ences for the links on each tensor. This concept in general allows very flexible TTN topologies
which can be beneficial when the topology shall be adapted to the underlying problem or even
on the fly in an optimisation algorithm. The benefit of adapting the network topology can be
valuable for its applications in quantum chemistry where the interactions in the system are,
in general, not homogeneous but rather determined by molecular structure [178]. Further, a
dynamically adaptable topology might turn out the key to automatically finding the most ef-
ficient topology for a given problem which is a very promising concept that is not well studied
so far and denotes an interesting direction for future research of Tensor Networks.

On the other hand, the TTN can be structured in a static hierarchical order with an array
of tensors each being assigned a fixed position within the tree as illustrated in the following
pseudo-code.

1 s t r u c t Tree
2 {
3 t enso r [ ] T;
4 address [ ] x , y ;
5 topology K;
6 } ;

Thus, in this concept, the topology of the TTN is explicitly defined in the data struc-
ture. While this static implementation may lack some flexibility in dynamically adapting the
topology, it is very well suited for efficient TTN simulations with a well, predefined topol-
ogy. Fixing the exact topology on a global level allows incorporating the knowledge of the
topology in the algorithms manipulating the TTN, such as the optimisation, calculation of
observables and computation of entropy, which potentially leads to a more efficient, well-
structured implementation and allows for efficient parallelisation techniques on these global
algorithms. Consequently, this data structure is well suited for implementing a perfect TTN,
or a complete TTN for which the topology is static and well-defined with each tensor sitting
at a predefined position within the tree.
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Figure 3.20: Software structure of a Tree Tensor Network code performing analyses such as
ground-state search or time-evolution. Build on a library for (symmetric) tensors including their
operations, a TTN geometry can be properly defined by the modules in the shaded box: The input
reader gets the data from the user which is then pre-processed for the analysis by the input processor.
The Operators module defines all required low-level data types while the TTN itself is defined by Tree
Tensor Network module. The modules are interfaced with the main program controlling the execution
of the specific Tensor Network algorithms with the aid of a Convergence Control module.

The code developed in the course of this thesis follows the latter strategy. In particular,
it implements a complete TTN that can be applied for high-dimensional systems. This im-
plementation is not restricted to represent a binary TTN but is further able to incorporate
tensors of higher order within the complete TTN.

3.3.2 Tree Tensor Network Implementation

The following section is dedicated to the implementation of a TTN software capable of
performing ground-state search. In particular, it describes the different modules shown in
Fig. 3.20 in more detail and presents some hands-on examples taken in a simplified form from
the FORTRAN90 code developed in the course of this thesis. These examples illustrate the
most important data structures and most relevant functions for implementing a TTN algo-
rithm for high-performance computations of high-dimensional quantum many-body systems.

Library for (Symmetric) Tensors

As mentioned at the beginning of Sec 3.3, The actual TTN code utilises a library in which
a tensor instance is defined together with all operations one may perform to manipulate a
tensor (see Sec. 2.1). This library may optionally feature the ability to deal with symmetries
to improve computational time and to target a desired global symmetry sector (see Sec. 2.3.2
for more details). For the description of the TTN software described in this section, we will
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Figure 3.21: MPOLayer_type instance for storing a Hamiltonian H =
∑Hp with different

interactions Hp. (a) All interactions are represented as TPO. Except for local operations, all TPOs
are enumerated (TPO_id). Further, all links are enumerated for each TPO. (b) An Operator_type
instance models all operations acting on the same site i: All local operations are accumulated into
the tensor local while for the interaction parts, the single tensors are stored with the corresponding
TPO_id and the link indices.

assume such a library as given and use it as the building block for the developed code. For
an in-depth technical description of such a library, Ref. [24] offers profound literature on
the implementation of general tensor libraries with Abelian symmetries and Ref. [81, 108,
169] further provide in-depth technicalities for incorporating non-Abelian symmetries onto an
existing, ordinary tensor library.

Operators

Building on the tensor library, this module is mainly dedicated to the description of operators,
and in particular of the Hamiltonian H =

∑
pHp of the underlying system to analyse. The

complete operator is stored as an MPOLayer_type instance, which stores and keeps track of all
single interactions Hp of the Hamiltonian and on a global level mimics an MPO. Thus, when
using this MPOLayer_type instance it can be treated like an MPO while it internally manages
the TPOs it consists of (where each TPO represents an interaction part Hp). However,
due to numerical efficiency in the global TTN algorithms, the MPOLayer_type instance is
not decomposed directly into a plain list of TPOs, but rather into a list of Operator_type
instances which for each site i of the MPO consists of all tensors acting thereon. Thus,
effectively, the MPOLayer_type instance describes a layer of operators or, more generally,
describes a list of lists of tensors.

Fig. 3.21 illustrates the way of storing an Hamiltonian as MPOLayer_type instance. In
fact, with the illustration in mind, it becomes evident that there are two-dimensions in the
data: The number of TPOs, i.e. interaction parts Hp, and the number of physical sites N of
the Hamiltonian. Thus, we order the data first in the direction of the latter dimension in the
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MPOLayer_type instance and subsequently in the former dimension within the Operator_type.
Thus, each Operator_type consists of a list of tensors modelling the overall action of the
Hamiltonian on one single site i. Here, we can exploit another numerical benefit: All operator
acting locally on a single site can be added together. As example, we can take a Hamiltonian,
such as H =

∑
i αiσ

[i]
x + βiσ

[i]
z + σ

[i]
x σ

[i+1]
x , for which we can merge the local fields Hi,local =

αiσ
[i]
x + βiσ

[i]
z into one local operator. Such a summation cannot be done locally, however,

on the latter interaction part Hi = σ
[i]
x σ

[i+1]
x of the Hamiltonian. Thus, the Operator_type

instance only needs to store one local tensor at most modelling the local single-site operators
of the Hamiltonian and a list of tensors which together with all other Operator_type instance
in an MPOLayer_type instance. The two instances might be implemented as follows.

Operator_type — An Operator_type instance can be implemented as an extension of a
general tensor list. This can be useful, in particular, since a general instance for a tensor list
can be exploited on numerous occasions within a TTN algorithm. As shown in the following
listing, the tensor list would model all tensors corresponding to a many-body interaction term
Hp while the extension (i) adds an optional tensor modelling all local single-site operators
of the Hamiltonian and (ii) includes an identification array id to keep track of the connec-
tions of each single interaction term Hp within the complete Hamiltonian, i.e. the global
MPOLayer_type instance.

1 ! This i s a gene ra l l i s t o f Tensors which can be extended f o r the
Operator_type in s t anc e :

2 type , pub l i c : : TensorList_type
3 pr i va t e
4 i n t e g e r : : numtensors = 0
5 type ( Tensor_type ) , dimension ( : ) , a l l o c a t a b l e : : t en so r
6 end type
7

8 ! This i s how an Operator_type in s t anc e could look l i k e extending the
TensorList_type in s t anc e above . In comments i t can be u s e f u l to
i l l u s t r a t e t h i s i n s t anc e as

9 ! |
10 ! −O−
11 ! |
12 type , extends ( TensorList_type ) , pub l i c : : Operator_type
13 pr i va t e
14 l o g i c a l : : c on ta in s_ loca l
15 type ( Tensor_type ) , a l l o c a t a b l e : : l o c a l
16 i n t ege r , dimension ( : , : ) , a l l o c a t a b l e : : id
17 end type

The attributes contains_local and local take care of the possible presence of a single-
site term in the Hamiltonian while id crucially stores all information about the interaction
structure within the Hamiltonian. In particular, this will become a 3×numtensors sized
array where each triplet entry id(:,k)=[TPO_id, id_left_link, id_right_link] contains
the all the required information regarding the k-th tensor in the list: As indicated in Fig. 3.21,
each TPO Hp becomes a unique identification number TPO_id assigned (such as the index p
of the interaction Hp it represents). Further, all tensors of one TPO are ordered with respect
to the physical sites they are applied to. In this order, all the internal links of the TPO
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are enumerated from left to right. Consequently each tensor within the TPO may contain
one link to the left and one to the the right indicated by id_left_link and id_right_link,
respectively. Additionally allowing these values to be, e.g. -1, in case the tensor denotes the
endpoint of a TPO, enables id to sufficiently capture all relevant information for a typical
TTN analysis.

Note that this kind of implementation only allows representing interaction terms Hp as
TPOs where each tensor has two internal links at most. Thus, the modelling of star-shaped
interaction terms as illustrated in Fig. 2.12d is not possible. Furthermore, it is worth men-
tioning that the first index is the running index in FORTRAN while in other languages such
as C++ this is not the case. Thus, for the latter scenario, it is numerically more efficient to
exchange the indices.

MPOLayer_type — Having implemented the Operator_type instance, the data structure of
an MPOLayer_type is straight-forwardly a list of these Operator_type instances as presented
in the following.

1 ! This could be an MPOlayer_type in s t ance in FORTRAN which might look
l i k e t h i s in the code commentation :

2 !
3 ! | | | |
4 ! −O−O−O− ~ −O−
5 ! | | | |
6 !
7 ! Designed to be app l i ed to the lower l i n k s o f a TreeLayer_type

in s t ance which we w i l l f o rma l l y in t roduce l a t e r on . This could be an
example o f such an app l i c a t i o n :

8 ! ___|___ _|_ _|_ | _|_
9 ! (_______) (___) (___) | (___)

10 ! | | | | | | | | | | |
11 ! −O−O−O−O−−−O−O−−−O−O−−O−−O−O−
12 ! | | | | | | | | | | |
13 type , pub l i c : : MPOLayer_type
14 i n t e g e r : : NumSites
15 type ( Operator_type ) , dimension ( : ) , a l l o c a t a b l e : : s i t e
16 end type

Tree Tensor Network

This code module describes a general TTN and contains all its relevant functions. In partic-
ular, this module includes the object definition for one layer of the TTN (TreeLayer_type),
for a general path (path_type) which can be defined in the underlying tree structure, and
ultimately the object definition modelling the TTN itself (tree_type). For the ground-state
search, important functions to be included in this module for the tree_type instance would be
in particular the isometrisation of the network towards a targeted tensor including the proper
contraction of the effective Hamiltonian Heff (see Sec. 3.1.4), and the local optimisation of a
single tensor.
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tree_type — The tree_type instance is modelling a Tree Tensor Network with a strict
layer orientated topology as illustrated in Sec. 3.1 and following Def. 3.1.1. The complete tree
consists of several layers (TreeLayer_type, see below) with each layer consisting of several
tensors. In general, each tensor can have an arbitrary order and only one link per tensor is con-
nected with the next upper tree layer. A certain tensor within the TTN structure is addressed
by two indices, one layer_index for the layer and the second index tensor_index for the
tensor within the specific layer. Thus, a general tree_type instance might be implemented
as:

1 ! This i s a tree_type in s t ance in FORTRAN which can be a gene ra l TTN
s t ru c tu r e l i k e t h i s one :

2 !
3 ! Layer _________________
4 ! _____|_____ ___|___
5 ! 1 (___________) (_______)
6 ! ___|__ ____|____ | __|__
7 ! 2 (______) (_________) | (_____)
8 ! __|__ | _|_ ___|___ | _|_ |
9 ! 3 (_____) | (___) (_______) | (___) |

10 ! | | | | | | | | | | | | | |
11 !
12 type , pub l i c : : tree_type
13 ! Tree topology a t t r i b u t e s
14 i n t e g e r : : NumSites , NumLayers
15 type ( TreeLayer_type ) , dimension ( : ) , a l l o c a t a b l e : : Layer
16

17 ! Tree i s ome t r i s a t i o n
18 l o g i c a l : : i s_ i s omet r i s ed = . f a l s e .
19 i n t ege r , dimension (2 ) : : i s o_pos i t i on
20

21 ! Link Operators
22 type (MPOLayer_type) , dimension ( : ) , a l l o c a t a b l e : : Operators
23 end type
24

25 i n t e r f a c e tree_type
26 module procedure : : t r ee_const ruct
27 end i n t e r f a c e

where the flag is_isometrised together with iso_position keeps track of the isometrisa-
tion of the TTN. Additionally, the attribute Operators can be used to store the link operators
as discussed in Sec. 3.1.5.

Crucially, the constructor tree_construct of this instance creates a TTN as described
in Sec. 3.1.4: It initialises a tree_type instance for a given number of physical sites N with
random tensors where the isometrisation of the TTN can be done on the fly.

TreeLayer_type — The TreeLayer_type instance describes a tensor layer within a
Tree_type instance. Therefore, it consists of a list of tensors including the references
(upper_address) for each of the tensors in this layer to its parent tensor (the corresponding
tensor within the next-higher layer to which it is connected). To make this address system
consistent, each layer needs to keep track of its own sites which are pointing downwards to
child tensors. This track-keeping can be done by ordering and enumerating all the downwards
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pointing sites of the layer, and then storing the first and the last site indices for each tensor
within the layer (site). Thus, with the information of upper_address from a lower layer and
site from the next-higher layer, we can reconstruct tensor are connected inter-layers.

1 ! This i s a TreeLayer_type in s t ance which might look l i k e t h i s :
2 !
3 ! ___|___ | ___|___ _|_ _|_ | _|_ |
4 ! (_______) | (_______) (___) (___) | (___) |
5 ! | | | | | | | | | | | | | | | | |
6 ! s i t e : 1 2 3 4 5 6 7 . . .
7 !
8 type , p r i va t e : : TreeLayer_type
9 ! Tree Layer a t t r i b u t e s

10 i n t e g e r : : numtensors = 0
11 type ( Tensor_type ) , dimension ( : ) , a l l o c a t a b l e : : t en so r
12 i n t e g e r : : c u t o f f
13

14 ! Topology a t t r i b u t e s
15 i n t ege r , dimension ( : , : ) , a l l o c a t a b l e : : s i t e
16 i n t ege r , dimension ( : , : ) , a l l o c a t a b l e : : upper_address
17

18 ! S ingu la r va lue s
19 type ( rea l_vector ) , dimension ( : ) , a l l o c a t a b l e : : S ingVals
20 end type

Additionally, with sv_present and SingVals, we can keep track of the singular values
sitting on each of the link directed upwards in the TTN layer. This might be interesting
since (i) the singular values are required to calculate the entropy following the description
in Sec. 2.2.1, (ii) they are beside the global energy a good predictor for convergence of the
state representation in a ground state search and (iii) can be a good stop criterion for time
evolution in which the entanglement may grow beyond the faithful representation power of a
TTN with limited bond-dimension m (which is here set as cutoff).

path_type — This auxiliary object follows Def. 3.1.2 (Path) and should, among others,
help to propagate through the TTN during the optimisation procedure. Each path has an
anchor tensor which is defined as the highest tensor within the hierarchical network structure.
This anchor is stored redundantly by its position within the network anchor_address and
its position position_anchor when traveling along the path. The path itself consists of
an 4×length array describing the steps of the path. The quartet steps(:,k) contains all
necessary information for the k-th step of the path: (i)+(ii) The address [layer_index,
tensor_index] of the k+1-th tensor as a tuple for the tree layer and the tensor position
within the layer, (iii) the index for the link of the k+1-th tensor which is connected to the k-
th tensor and accordingly (iv) the index for the same link on to the k-th tensor. Consequently,
the instance can be implemented as shown in the following listing.

1 type , pub l i c : : path_type
2 ! Path a t t r i b u t e s
3 i n t e g e r : : length , pos i t ion_anchor
4 i n t ege r , dimension (2 ) : : anchor_address
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5

6 ! S i ng l e s t ep s o f the path
7 i n t ege r , dimension ( : , : ) , a l l o c a t a b l e : : s t ep s
8 end type

tree_optimization_sweep — Having encoded the TTN as a tree_type instance, we can
implement an optimisation sweep as described in Sec. 3.1.4 simply by looping over all tensors
within the TTN structure, for each one contracting the effective Hamiltonian towards the
targeted tensor, isometrising the network accordingly and optimising this tensor.

1 ! This could be an opt im i sa t i on sweep f o r a tree_type in s t ance :
2 subrout ine tree_optimization_sweep ( tree , energy , a rno ld i_to l e rance )
3 c l a s s ( tree_type ) , i n t en t ( inout ) : : t r e e
4 double complex , i n t en t ( out ) : : energy
5

6 double p r e c i s i on , i n t en t ( in ) , op t i ona l : : a rno ld i_to l e rance
7 i n t e g e r : : l l , t t
8

9

10 do l l = 1 , t r e e%numlayers
11 do t t = 1 , t r e e%lay e r ( l l )%numtensors
12 !
13 ! I s ome t r i s e the network towards the t a r g e t t enso r at p o s i t i o n [

l l , t t ]
14 !
15 c a l l t r e e%isometr i se_towards ( [ l l , t t ] )
16

17 !
18 ! Optimise t a r g e t t enso r ( one−t enso r update )
19 !
20 c a l l t r e e%opt imise_tensor ( energy , t o l e r an c e = arno ld i_to l e rance

)
21 end i f
22 end do
23 end subrout ine

Note, that as mentioned in Sec. 3.2.3, for the sake of performance, we can implement one
function tree%isometrise_towards() for performing both, the isometrisation and the con-
traction of the link operators at once, since they both manipulate tensors along the same path .
Thus, in this way, the code will only iterate through the path from the last optimised tensor to-
wards the target tensor once instead of twice. Finally, the function tree%optimise_tensor()
performs the local optimisation as described in Sec. 3.1.4 and basically wraps the ARPACK
solver straightforwardly into the code.

In the same manner as shown here, we can further include different optimisation tech-
niques, such as the two-site optimisation, the space expansion technique, or even a gradient
descent method, and a different sweeping sequence, for instance optimising in a random sweep
order or performing a user-defined sweeping sequence.
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Input reader

The input reader module reads in pre-defined files which among others model the Hamilto-
nian to analyse by defining the interactions and coupling-strengths or set different control
parameters for the ground state search, such as the number of maximum sweep iterations
or the detailed options of the local optimisation procedure. In particular, from the given
interactions Hp of a generic Hamiltonian H =

∑
pHp, the module constructs all interactions

in the system as TPOs respecting the chosen boundary conditions. Additionally, we can read
single operators which for instance shall be measured as observables during the optimisation
procedure.

Input processor

Out of the interactions defined by the input reader module, this module defines the
MPOLayer_type structure used to model the Hamiltonian. Further, at this level, we can
take care of the exact mapping of the operators from the high-dimensional space towards the
one-dimensional tree_type instance as illustrated in Sec. 3.2. Further, this module is the
interface keeping track of the observables to be measured and, in particular, their mapping,
thus where they shall be applied in the TTN structure.

Convergence control

This module is independent of the Tensor Network structure itself and designed to track
and control the convergence for a Tensor Network simulation. Thus, this module is to be
incorporated in the main program and is an interface for managing simulation parameters and
for enhanced stopping criteria based on variables (i.e. the current energy) of the simulation.

On one hand, the module defines all the important simulation parameters for a ground-
state search, such as tolerance of the local Arnoldi solver, or potentially even parameters
for time evolution. The module further tracks the number of iterations, the energy at each
iteration as well as the desired numerical precision of the objectives of the final target state.

At the end of each iteration, the current energy has to be provided as an interface for the
main program. Based on the number of iterations and the development of the energy, the
module can adapt and return important simulation parameters, such as the suggested toler-
ance in solving the eigenvalue problem. For this particular parameter, it turns out empirically
that the estimate

tol = max(tol_min, min(tol_max, abs( (energy-energy_prev)/energy )/Ntensors ) )

, i.e. the relative energy difference after one sweep normalised by the number of tensors
Ntensors in the network and upper- (lower-)bounded by predefined values tol_max (tol_min),
provides an efficient value for the balance between fast convergence and avoiding to get trapped
in local minima.

TTN algorithm

Based on the code structure illustrated above, the algorithm for searching the ground state
of a quantum many-body system can be implemented following the description of Sec. 3.1.4
which can be implemented in the following way.
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1 ! {{{ subrout ine s ta r t_s imu la t i on ( )
2 subrout ine s ta r t_s imu la t i on ( )
3 type ( Link_type ) , dimension ( : ) , a l l o c a t a b l e : : phy s i c a l_ l i nk s
4 type (MPOLayer_type) : : Hamiltonian
5

6 type ( tree_type ) : : t r e e
7 double p r e c i s i o n : : current_energy
8 double p r e c i s i o n : : t o l
9

10 i n t e g e r : : i i
11 cha rac t e r : : converged
12

13 !
14 ! Reading the Hamiltonian from de f ined input f i l e s
15 !
16 t r e e = read_physical_system ( Hamiltonian , phys i c a l_ l i nk s )
17

18 !
19 ! I n i t i a l i s i n g the Tree Tensor Network
20 !
21 t r e e = tree_type ( Ns i tes , phys i ca l_ l inks , cu to f f , . t rue . )
22

23 !
24 ! I n i t i a l i s i n g the Link Operators
25 !
26 c a l l t r e e%create_operator s ( Hamiltonian )
27

28 !
29 ! Ca l cu l a t ing energy and obse rvab l e s ( op t i ona l )
30 !
31 current_energy = t r e e%ca lcu la te_energy ( )
32 c a l l measure_observables ( )
33

34 !########################################################
35 ! S ta r t I t e r a t i n g
36 !########################################################
37

38 do i i = 1 , c on t r o l%get_max_number_of_iterations ( )
39 !
40 ! S ta r t opt im iza t i on
41 !
42 c a l l c on t r o l%get_iterat ion_parameters ( a rno ld i_to l e rance = t o l )
43

44 c a l l t r e e%optimization_sweep ( energy = current_energy , &
45 a rno ld i_to l e rance = t o l )
46

47 converged = con t r o l%check_convergence ( current_energy )
48

49 s e l e c t case ( converged )
50 case ( ’ f ’ )
51

52 case ( ’ a ’ )
53 wr i t e (∗ ,∗ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
54 wr i t e (∗ ,∗ ) ’ Converged␣on␣ abso lu t e ␣ dev i a t i on ’
55 pr in t ∗ , i i
56 e x i t
57 case ( ’ r ’ )
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58 wr i t e (∗ ,∗ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
59 wr i t e (∗ ,∗ ) ’ Converged␣on␣ r e l a t i v e ␣ dev i a t i on ’
60 pr in t ∗ , i i
61 e x i t
62 case ( ’d ’ )
63 wr i t e (∗ ,∗ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
64 wr i t e (∗ ,∗ ) ’ Fa i l ed ␣ converg ing ’
65 e x i t
66 case d e f au l t
67 wr i t e (∗ ,∗ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
68 wr i t e (∗ ,∗ ) ’ Error ␣ in ␣ check ing ␣ convergence ’
69 stop
70 end s e l e c t
71

72 c a l l measure_observables ( )
73 end do
74 end subrout ine

The simulation is set up by reading the systems Hamiltonian together with information
about its physical sites, initialising the tree_type instance based on the physical system,
initialising the link operators within the TTN, and optionally calculating observables for the
randomly initialised network. Afterwards, the simulation starts by iterating through the
number of sweeps we want to perform. As described above, the control module takes care
of the hyperparameters for each sweep, such as the Arnoldi tolerance, and tracks the global
energy E after each sweep. Based on this tracking, the convergence is checked using the value
converged. In practice, it is feasible to track the relative value | δEE < εrel| and the absolute
convergence |δE| < εabs. Further, at each iteration, we can measure and keep track of the
observables of interest allowing us to follow how they develop with convergence. This might be
interesting, in particular, to investigate whether the global optimisation has reached a global
minimum or is stuck in a local minimum (see Appendix of the publication in Chapt. 4).

3.3.3 Towards High-Performance Computing

The final part of this chapter shall provide a general discussion on the performance of a
Tree Tensor Network code which is implemented in the way described in Sec. 3.3.2. In
particular, it should illustrate the perspectives concerning the parallelisation capabilities of a
TTN simulation performed on High-Performance Computing (HPC) systems.

There are several computations within a TTN algorithm that can be parallelised in dif-
ferent ways. On the lowest level, we can parallelise the tensor contractions, i.e. the LAPACK
routines performing the underlying matrix-multiplications. This can be done efficiently us-
ing GPUs. However, it is crucial to respect the sizes of the tensors to be contracted, since
there can be a detrimental overhead moving the data to the GPU and back for small tensors.
Having an educated heuristic, the incorporation of GPUs or even GPU clusters might be an
interesting pathway for further development which has not been exploited within the scope
of this thesis.

Secondly, the computations performed on symmetrically invariant tensor can be done to a
large extent independently for the different symmetry sectors (see Sec. 2.3). Since these tensors
can be seen numerically as block-diagonal instances, we could parallelise computations, such
as tensor decompositions or tensor contractions, similarly to the parallelisation of a matrix
decomposition or matrix multiplication, respectively, for a block-diagonal matrix. However,
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the benefit of this parallelisation highly depends on the distribution of symmetry sectors, i.e.
the number and sizes of different blocks in the tensor.

Figure 3.22: Contraction scheme for a local optimisation. During the optimisation, the action
of the effective Hamiltonian Heff on a local tensor (green) is calculated by summing the contractions
of all TPOs in Heff with T . In practice, these contractions make up for about 75% in a TTN ground
search algorithm when performed on one CPU while they can be efficiently performed in parallel.

Furthermore, as described in Sec. 3.1.4, the local optimisation of a single tensor within the
TTN can be parallelised since we need to sum the contraction of several Hamiltonian parts
with a single tensor (see Fig. 3.22). Each of these contractions can be performed independently
and since they all act on the same space, the computational time should be of the same order
for each contraction. In turns out that in the ground state search this parallelisation idea is
the most efficient one when using a limited amount of CPUs only, especially since depending
on the bond-dimension about 75% of the serial CPU time is spent performing this set of
contractions. However, it clearly has an upper limit of efficiency, namely the number of TPO
operators that have to be contracted in the local optimisation which highly depends on the
physical system itself. Nevertheless, with this optimisation, we can reach reasonable physical
results for systems up to N = 16 × 16 (containing in total 2256 degrees of freedom) when
running 3 days on standard HPC systems, such as CINECA [179]. In this case, we perform
the parallelisation with OpenMP and reach typically a ground state with a precision in the
energy density of the order ∼ 10−5, which is sufficiently accurate to obtain valuable insights
into the physics behind. However, this parallelisation technique does not scale sufficiently well
with system size N . Thus, since the number of tensors to be manipulated in the optimisation
scales with the system size N we investigate, it is quite challenging to obtain high-precision
results for higher system sizes like N = 32 × 32 or even larger (obviously depending on the
system as well).

Another possible form of parallelising a TTN ground-state search would be an MPI paral-
lelisation of the global optimisation technique which could indeed offer the desired scalability
with system size N . This parallelisation aims to perform the global optimisation algorithm
by optimising all local tensors in parallel. The success of this idea has already been shown
in Ref. [180] where it was introduced for an MPS. The main principle therein is to bring the
network into the form of the Schmidt-decomposition obtaining the singular values, or Schmidt
values, on an internal link. Now, we contract the singular values into both sides of the network
keeping the inverse of them on the link. In this way, each side of the network is gauged so
that it can perform the local optimisations independently. Applying this idea to a TTN, we
can divide the tree into different sub-branches containing a fixed number of tensors. All the
sub-branches will be optimised locally on different computational nodes in parallel via MPI.
After the optimisation, the information affecting neighbouring branches will be passed to the
corresponding nodes.

While at the final stage of this thesis, the latter option has not been implemented, this
might be a further major step forward in the development of Tensor Network codes, and
thereby the investigations of high-dimensional quantum many-body systems since it can offer
an ideal scalability of the code with system size N .
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This chapter focuses on the application of Tensor Network algorithms on models in the
field of Lattice Gauge Theory (LGT). Lattice Gauge Theories are rich formulations of quan-
tum field theories with gauge symmetries on a discretised space-time lattice. The numerous
applications of these theories range from low-energy physics, describing high-temperature
superconductivity [181–183] or spin liquids [184, 185], all the way to high-energy particle
physics, where they model the fundamental building blocks in the Standard Model [186, 187].
Indeed, since the fundamental forces in the Standard model are mediated through gauge fields,
Lattice Gauge Theories are successfully deployed to understand and unveil microscopic pro-
cesses ruling the dynamics of elementary particles. Thus, being able to capture their complex
many-body behaviour is not only a cornerstone of contemporary scientific research but fur-
ther provides us with a microscopical description of the universe. In particular in high-energy
physics, the most prominent Lattice Gauge Theories are found in the study of quantum chro-
modynamics (QCD) which incorporates non-Abelian gauge symmetries or its counterpart for
Abelian gauge symmetries quantum electrodynamics (QED) [188–191].

Solving such interacting quantum field theories, from quantum electrodynamics to the
Standard model, is a fundamental goal of modern physics. However, the complexity of de-
scribing the underlying many-body phenomena from these strongly-interacting field theories
stretches beyond the power of the most advanced analytical and numerical tool available.
This challenge makes Lattice Gauge Theories a particularly interesting problem for Tensor
Networks, not at least because one of its most competitive methods, the Monte-Carlo sim-
ulations, suffers here from the well-known sign-problem in regimes crucial for further novel
physical insights. In the last decade, Tensor Networks have already shown great potential in
addressing quantum gauge theories on one-dimensional lattices. However, in higher dimen-
sions, these Lattice Gauge systems become highly non-trivial for Tensor Network approaches
due to the Jordan-Wigner strings in the underlying fermionic system. Introducing a mapping
to a computational basis that aims to get rid of the Jordan-Wigner strings enables the simula-
tion of Lattice Gauge Theory with Tensor Networks. Still, the approach poses, in particular,
two technical challenges: (i) The Hamiltonian in these systems is not homogeneous, i.e. the
physical sites and their dimension varies depending on even and odd sites, with comparably
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high local dimension d. (ii) Additionally to the Hamiltonian terms, a penalty term has to be
implemented following the aforementioned mapping.

This thesis incorporates two manuscripts that illustrate this highly non-trivial extension of
Tensor Networks to study LGTs in higher dimensions and present the first-ever publications of
such a Tensor Network analysis in two- and three dimensions at finite density. In particular,
we exploit a Tree Tensor Network to study a Lattice Gauge Theory model with discretised
Abelian gauge field which can be linked to quantum electrodynamics (QED).

The first manuscript is presented in this chapter. Therein, we demonstrate the successful
applicability of Tensor Network methods for two-dimensional gauge theories. We describe
in more detail how to account for the presence of matter beside the quantum gauge fields
and how we are efficiently able to allow a finite charge density, a scenario that challenges
the most advanced numerical tools, including Monte Carlo with its infamous sign problem.
This first application studying a "simpler" (though still highly non-trivial), Abelian Lattice
Gauge Theory model in two dimensions significantly reduces the gap between the current
numerical capabilities and the ultimate goal of fully understanding the standard model in
three dimensions including non-Abelian gauge symmetries. The manuscript was published in
Physical Review X, 10 [37].

The second manuscript of interest in this context is presented in App. A. This work builds
on the former publication extending the Tree Tensor Network analysis to a three-dimensional
lattice gauge problem. Due to the fundamental challenge in representing high-dimensional
systems with Tensor Networks (as discussed in Sec. 2.2), this publications was the first attempt
to simulate a Lattice Gauge Theory in 3+1 dimensions via Tensor Networks. Thus, it shows
that Tensor Networks, and in particular Tree Tensor Networks, can be a fruitful direction to
solve fundamental long-standing problems. Additionally, Tensor Networks provide an ideal
cross-verification tool for near-future quantum simulations of Lattice Gauge Theories available
shortly (see Chapt. 5). At the state of submission of this thesis, this second manuscript is
accepted for publication in Nature Communications and in the process of being published. In
the meantime, it is available on arXiv [144].
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We present an unconstrained tree-tensor-network approach to the study of lattice gauge theories in two
spatial dimensions, showing how to perform numerical simulations of theories in the presence of fermionic
matter and four-body magnetic terms, at zero and finite density, with periodic and open boundary
conditions. We exploit the quantum-link representation of the gauge fields and demonstrate that a fermionic
rishon representation of the quantum links allows us to efficiently handle the fermionic matter while finite
densities are naturally enclosed in the tensor network description. We explicitly perform calculations for
quantum electrodynamics in the spin-one quantum-link representation on lattice sizes of up to 16 × 16

sites, detecting and characterizing different quantum regimes. In particular, at finite density, we detect
signatures of a phase separation as a function of the bare mass values at different filling densities. The
presented approach can be extended straightforwardly to three spatial dimensions.
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I. INTRODUCTION

Recent progress in quantum simulations is paving the
way for the possibility of studying high-energy physics
phenomena with tools developed in low-energy quantum
physics [1–13]. In the Standard Model, forces are mediated
through gauge fields; thus, gauge-invariant field theories—
e.g., quantum electrodynamics (QED) for the Abelian case
or quantum chromodynamics (QCD) for the non-Abelian
scenario—are fundamental building blocks to our under-
standing of all microscopic processes ruling the dynamics of
elementary particles [14,15]. When discretizing the gauge
theories, the dynamical gauge variables obey a lattice
formulation of the original quantum field theory, which is
referred to as a lattice gauge theory (LGT) [16,17]. LGTs
encode many-body interactions satisfying exact constraints,
encoding a lattice-discretized version of the local gauge
invariance, e.g., in QED, the Gauss law∇ · E ¼ 4πρ. Many
of the collective phenomena arising from these theories,
including the phase diagram, have yet to be fully

characterized [18], especially for higher spatial dimensions
at finite charge density.
Possibly the most successful tools to investigate LGTs

are Monte Carlo simulations based on lattice formulations
[16,19–23]. However, the Monte Carlo approach suffers
from the infamous sign problem for complex actions, e.g.,
at finite fermion density (matter-antimatter unbalance),
which naturally arises in LGTs [13,24]. Another very
promising alternative to simulate lattice gauge theories is
based on tensor network (TN) methods. They have already
shown significant capabilities in describing many con-
densed matter and chemistry problems and for studying
lattice gauge theories in one spatial dimension [12,25–31,
31–41]. So far, very few attempts have been made to
capture the phase properties (e.g., at zero temperature) of a
lattice analogue of an Abelian gauge theory in higher
spatial dimensions [4,42–50], none of them in the presence
of fermionic matter at finite density.
In this work, we fill this gap and develop a computa-

tionally tractable Hamiltonian formulation of low-energy
QED in two spatial dimensions. We show that TN states
allow for an accurate representation of its many-body
ground state, thus allowing us to identify the different
regimes and effectively test the response of the system to a
finite density of charge. The study of lattice gauge
Hamiltonians at finite chemical potential is, in general,
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out of reach for Monte Carlo-based techniques [13,24]:
Here, we show that by using an unconstrained tree tensor
network (TTN) [51] and the quantum-link formalism of
lattice gauge theories [2,52–55], we can face this highly
nontrivial setup. The techniques developed in this paper not
only provide the basic ingredients for an efficient calcu-
lation of the phase diagram of simple lattice gauge models,
but they can also be extended to more complex theories and
higher dimensions.
We demonstrate the effectiveness of the presented

approach by focusing on the low-energy properties, both
at zero and finite charge density, of a two-dimensional
lattice quantum-link theory with Uð1Þ gauge symmetry.
Specifically, we investigate a model involving (spinless,
flavorless) Kogut-Susskind matter fermions [16,21] and
Uð1Þ electromagnetic gauge fields, truncated to a spin-S
compact representation. Hereafter, we set S ¼ 1, the
smallest representation where all Hamiltonian terms are
nontrivial. The calculations for higher spin representations
are numerically demanding but straightforward. We inves-
tigate the (zero-temperature) phase diagram in the zero
global charge scenario without and with finite magnetic
coupling. We observe that both magnetic and electric
Hamiltonian terms, separately, hinder the creation of a
charge-crystal configuration, which emerges at large neg-
ative bare masses. However, when electric and magnetic
terms are mutually frustrated, the charge crystal is restored.
Moreover, we study the ground state in the presence of a
finite charge density, which we can directly control in the
TN ansatz state. Small charge densities impact the zero-
charge phases as follows: In the vacuum regime, charges
aggregate at the system (open) boundaries, suggesting the
existence of a spatial phase separation between the bulk and
the boundaries; this scenario is reminiscent of the classical
electrodynamics properties of a perfect conductor, where
∇ · E ¼ 0 in the bulk and the excess of charge is redis-
tributed on the outer surface of the conductor. On the
contrary, the charge-crystal regime, which is full of matter
or antimatter, is characterized by a homogeneous delocal-
ization of the charge hole, resulting in a quasiflat charge
distribution in the bulk and therefore reminiscent of a
plasma phase [56].
Finally, we stress that the quantum-link formulation

provides the ideal tools to establish a connection between
LGTs and atomic lattice experiments [57,58]. In this
framework, the dynamical gauge fields are usually
represented by spin degrees of freedom, which have a
natural mapping to typical condensed-matter models, like
Hubbard Hamiltonians or locally constrained Ising-like
Hamiltonians. These models can be engineered with cold
atoms in optical lattices [7,11], or within the very
promising experimental setups involving Rydberg atom
chains [59,60], and they can be straightforwardly numeri-
cally simulated with the presented techniques to verify
and benchmark the experimental results and to carefully

and quantitatively compare the limits, the precision, and
the efficiencies of the classical and quantum simulations.
The paper is structured as follows: In Sec. II, we present

the 2D lattice gauge Hamiltonian and its quantum-link
formulation in terms of the gauge-field spin-1 compact
representation. We also give some technical details of the
tensor network numerical simulations. In Sec. III, we focus
on the ground-state properties in the zero-charge sector: We
explore the phase space of the model by varying the mass
and the electric coupling; we then analyze the effect of a
finite magnetic coupling. Section IV is devoted to studying
the equilibrium properties at finite charge density. We
exploit TTN techniques to investigate how the charges
redistribute all over the lattice, depending on the
Hamiltonian couplings. Finally, we draw our conclusions
in Sec. V and give additional supplementary technical
details in the Appendixes.

II. MODEL AND METHODS

We consider a field theory on a 2D square lattice with
Uð1Þ local gauge symmetry. The sites of a finite L × L
square lattice host the matter field, while the quantum
gauge field lives on the lattice links, with open boun-
dary conditions. Following the Kogut-Susskind (stag-
gered) formulation [16,21], the discretization of the
matter field is performed by introducing a staggered
fermionic field, whose positive energy solutions lie on
the even sites and whose negative ones lie on the odd
sites. The matter field is thus described by spinless,
flavorless Dirac fermions, whose operator algebra sat-
isfies the usual canonical anticommutation relations
fψ̂x; ψ̂

†
x0g ¼ δx;x0 . In particular, in the even sublattice,

particles represent fermions with electric charge þq
(“positrons”), while in the odd sublattice, holes re-
present antifermions with electric charge −q (“elec-
trons”). Here, a lattice site x labels a 2D coordinate
x≡ ði; jÞ, and the parity px ≡ ð−1Þx ¼ ð−1Þiþj of a site,
distinguishing the two sublattices, is well defined on the
square lattice (see Fig. 1).
The gauge field is defined on the lattice links,

and its algebra is constructed by the electric-field operator
Êx;μ ¼ Ê†

x;μ and its associated parallel transporter

Ûx;μ, which is unitary, Ux;μU
†
x;μ ¼ 1, and satisfies

½Êx;μ; Ûy;ν� ¼ δx;yδμ;νÛx;μ. Here, μ (ν) represents the pos-
itive unit lattice vector in one of the two orthogonal
directions, namely, μx ≡ ð1; 0Þ and μy ≡ ð0; 1Þ; thus, ðx; μÞ
uniquely defines a link. For comfort of notation, we also
allow (technically redundant) negative unit lattice vectors
−μx and −μy, with the convention Êxþμ;−μ ¼ −Êx;μ, and in
turn Ûxþμ;−μ ¼ Û†

x;μ. With such definitions, apart from a
rescaling due to the lattice spacing regularization [16,21],
the two-dimensional lattice QED Hamiltonian, including a
magnetic plaquette term, reads
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Ĥ ¼ −t
X
x;μ

ðψ̂†
xÛx;μψ̂xþμ þ H:c:Þ

þm
X
x

ð−1Þxψ̂†
xψ̂x þ

g2e
2

X
x;μ

Ê2
x;μ

−
g2m
2

X
x

ðÛx;μx Ûxþμx;μy Û
†
xþμy;μx Û

†
x;μy þ H:c:Þ; ð1Þ

where μ in fμx; μyg are the unit vectors of the square
lattice. The first term in Eq. (1) provides the minimal
coupling between gauge and matter fields associated with
the coupling strength t. It describes a process of particle-
antiparticle pair creation or annihilation, where the paral-
lel transporter operator guarantees that the local gauge
symmetries are not violated. The second term in the
Hamiltonian represents the energy associated with the
fermionic bare mass, and it appears as a staggered
chemical potential according to the Kogut-Susskind pre-
scription. For numerical purposes, it has been redefined
by adding an overall constant mL2=2, thus replacing
ð−1Þxψ̂†

xψ̂x → δx;eψ̂
†
xψ̂x þ δx;oψ̂xψ̂

†
x (see Appendix C).

Thus, a filled local state in the even sublattice costs
positive energy m and carries charge q; otherwise, when
an odd site is empty, the energy cost is still m, but it
corresponds to having an antiparticle (a hole) with charge
−q. The last two terms contribute to the gauge-field
dynamics: The electric part, with coupling ge, is com-
pletely local. The magnetic part, with coupling gm instead,
is constructed by considering the smallest Wilson loop—
the product of the parallel transporter Ûx;μ in a closed loop
—the size of a plaquette. Its name is related to the fact that
it generates the magnetic contribution to the energy
density in the continuum limit.

The LGT Hamiltonian Ĥ commutes with the local Gauss
law generators (in units of q)

Ĝx ¼ ψ̂†
xψ̂x −

1 − px

2
−
X
μ

Êx;μ; ð2Þ

where the unit lattice vector μ in the sum runs in
f�μx;�μyg, while px ¼ ð−1Þx is, again, the lattice site
parity. In addition, the model exhibits a Uð1Þ global
symmetry—namely, the conservation of the total charge
Q̂ ¼ P

x½ψ̂†
xψ̂x − ð1 − px=2Þ� ¼ −ðL2=2Þ þ N̂, equivalent

(apart from a constant) to the number conservation N̂ ¼P
x ψ̂

†
xψ̂x of Kogut-Susskind matter fermions. As a con-

sequence of the convention, using Êx;−μ ¼ −Êx−μ;μ, the
sum of all four terms of the gauge field around the lattice
site x corresponds to the outgoing electric flux, i.e.,P

μ Êx;μ ¼ Ex;μx þ Ex;μy − Ex−μx;μx − Ex−μy;μy . The gauge-
invariant Hilbert space is thus given by all states jΦi
satisfying ĜxjΦi ¼ 0 at every site x. As each electric-field
degree of freedom is shared by two Gauss generators Gx,
the generators themselves overlap, and projecting onto the
gauge-invariant subspace becomes a nonlocal operation.
Only for 1D lattice QED, or the lattice Schwinger model
[19], it is possible to integrate out the gauge variables and
work with the matter field only (albeit with long-range
interactions) [61]. However, in two dimensions, a given
(integer occupation) realization of the matter fermions does
not fix a unique gauge-field configuration, thus requiring
explicit treatment of the gauge fields as quantum variables.
A numerically relevant complication, related to the stan-
dard Wilson formulation of lattice gauge theories, arises
from the gauge-field algebra, ½Ê; Û� ¼ Û, with Ê ¼ Ê† and
ÛÛ† ¼ Û†Û ¼ 1, whose representations are always infin-
ite dimensional. Simply put, if a representation contains the
gauge-field state jαi, such that Êjαi ¼ αjαi with α ∈ R,
then the states jα� 1i ¼ Û�1jαi belong to the representa-
tion as well. By induction, the representation must contain
all the states jαþ Ni, which are mutually orthogonal as
distinct eigenstates of Ê; thus, the representation space
dimension is at least countably infinite.
In order to make the Hamiltonian numerically tractable

via tensor network methods, we need to truncate the local
gauge-field space to a finite dimension. For bosonic
models, this truncation is typically done by introducing
an energy cutoff and eliminating states with single-body
energy density beyond it, while checking a posteriori the
introduced approximation. Similarly, forUð1Þ lattice gauge
theories, we truncate the electric field according to the
quantum-link model formulation. Specifically, the gauge
fields are substituted by spin operators, namely, Êx;μ ¼
ðŜzx;μ þ αÞ and Ûx;μ ¼ Ŝþx;μ=s, such that Ê is still Hermitian
and the commutation relation ½Êx;μ; Ûy;ν� ¼ δx;yδμ;νÛx;μ is
preserved [2]; however, Û is no longer unitary for any finite

FIG. 1. Sketch of the 2D lattice gauge theory in the spin-1
representation. The cartoon of the square lattice shows a specific
gauge-invariant configuration of the matter and gauge fields with
zero total charge (three particles and three antiparticles). Stag-
gered fermions represent matter and antimatter fields on a lattice
bipartition: On the even (odd) bipartition, a full red (blue) site
represents a particle (antiparticle). The gauge-field points in the
positive direction of the color gradient.
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spin-s representation jŜj2 ¼ sðsþ 1Þ1. The original alge-
bra is then restored in the large spin limit s → ∞, for any
background field α ∈ R. Similar truncation strategies,
based on group representations, can be applied to non-
Abelian gauge theories as well [35,62]. In the following, we
make use of the spin-1 representation (s ¼ 1), under zero
background field α ¼ 0, which captures reasonably well
the low-energy physics of the theory, especially in the
parameter regions wherein the ground state is characterized
by small fluctuations above the bare vacuum. Here, s ¼ 1 is
the smallest spin representation exhibiting a nontrivial
electric energy contribution. In fact, for s ¼ 1=2, we have
that Ê2

x;μ ∝ ðσzx;μÞ2 ¼ 1 is simply a constant in the
Hamiltonian; thus, g2e plays no role. In 1D, evidence
suggest that truncated gauge representations converge
rapidly to the continuum theory, e.g., in the Schwinger
model [37,63,64], reinforcing the quantitative validity of
the results obtained in the simplified model. Deviations
between the truncated and the full-fledged lattice theory are
expected to arise when g2m is the dominant coupling, as we
show for a 2 × 2 example in Appendix I.
Let us mention that, in the formulation of the lattice

QED implemented on our numerical algorithms, Eq. (1),
we consider the respective couplings of the various
Hamiltonian terms, namely, t, m, g2e, and g2m, as indepen-
dent, dimensionless parameters. In this way we have a
practical advantage in our numerical interface which allows
us to treat the Hamiltonian terms on equal footage, and, in
what follows, we set the energy scale as t ¼ 1. However,
we stress that in the original Hamiltonian formulation of
lattice QED [16,21], these couplings are mutually related as
t ¼ ð1=aÞ, m ¼ m0, g2e ¼ ðg2=aÞ, g2m ¼ ð8=g2aÞ, where g
is the coupling constant of QED,m0 is the matter-field bare
mass, and a is the lattice spacing of the lattice discretiza-
tion. In this sense, physical realizations of lattice QED only
depend on two actual parameters: m0 ¼ m0a > 0 and
g2 > 0. Nevertheless, in this work, we aim to highlight
that our numerical simulations are not limited to these
physical scenarios, and we keep our effective couplings
independent and not bound to positive values. We leave a
more detailed convergence analysis along the physical
regimes to future work, along the lines of similar studies
already presented for 1D systems [13].

A. Spin-1 compact representation of Uð1Þ
In the spin-1 representation, the electric-field operator

allows three orthogonal states for the electric flux (in units
of the charge q), graphically represented in Fig. 1. For a
horizontal link ðx; μxÞ, we write the eigenbasis of Ex;μx as

Êx;μx j→i¼þj→i; Êx;μx j∅i¼ 0; Êx;μx j←i¼−j←i;

on which the parallel transporter acts as Ûx;μx j→i ¼ 0,
Ûx;μx j∅i ¼ j→i and Ûx;μx j←i ¼ j∅i, and analogously

Êxþμx;−μx j→i ¼ −j→i. A similar set of states can be
defined in the vertical links ðx; μyÞ, such that
Êx;μy j↑i¼j↑i, Êx;μy j∅i ¼ 0, and Êx;μy j↓i ¼ −j↓i.
In this work, we introduce an algebraic technique,

similar to the rishon representations common in quan-
tum-link models [2,52–55], which has the advantage of
automatically accounting for the Gauss law, while carefully
reproducing the anticommutation relations of the matter
fermions without resorting to Jordan-Wigner string terms
(see next section). This strategy relies on splitting the
gauge-field space on each link ðx; μÞ into a pair of three
hardcore fermionic modes, defined later. We say that each
mode in this pair “belongs” to either of the sites sharing the
link, in this case, x and xþ μ.
Thus, we write Ûx;μ ¼ η̂x;μη̂

†
xþμ;−μ, where the three

hardcore fermionic operators η̂ satisfy η̂3x;μ ¼ 0 (while
η̂2x;μ ≠ 0) and anticommute at different positions

fη̂x;μ; η̂ð†Þy;νg ¼ 0, for x ≠ y or μ ≠ ν. Moreover, these new
modes obey anticommutation relations with the matter field

as well, i.e., fη̂ð†Þx;μ; ψ̂
ð†Þ
y g ¼ 0. To explicitly build this three

hardcore fermionic mode η̂x;μ, we use two subspecies of

Dirac fermions âx;μ and b̂x;μ, such that

η̂†x;μ ¼ n̂ax;μb̂
†
x;μþð1− n̂bx;μÞâ†x;μ; ðη̂†x;μÞ2 ¼ b̂†x;μâ

†
x;μ; ð3Þ

where n̂ax;μ ¼ â†x;μâx;μ and n̂bx;μ ¼ b̂†x;μb̂x;μ are the occupa-
tion number operators for each subspecies. This construc-
tion provides the local algebra

½η̂x;μ; η̂†x;μ� ¼ 1 − n̂ax;μ − n̂bx;μ ð4Þ

and only grants access to the three-dimensional subspaces
for each three hardcore fermion mode, spanned by the
following three states:

j0ix;μ; j1ix;μ ¼ â†x;μj0ix;μ; j2ix;μ ¼ b̂†x;μâ
†
x;μj0ix;μ; ð5Þ

where j0ix;μ is the Dirac vacuum of both subspecies, i.e.,

ax;μj0ix;μ ¼ bx;μj0ix;μ ¼ 0. The state b̂†x;μj0ix;μ is discon-
nected from the other three and thus projected away. Such
a “half-link” local subspace is joined with a similar
construction â†xþμ;−μ and b̂†xþμ;−μ on the other half of the
link; thus, the pair defines the link space, and Êx;μ will be
diagonal in the occupation basis. While, in principle, a full
link space is 3 × 3 ¼ 9 dimensional, we can now exploit
the following symmetry:

L̂x;μ ¼ n̂ax;μ þ n̂bx;μ þ n̂axþμ;−μ þ n̂bxþμ;−μ; ð6Þ

which counts the total number of fermions in each link and
is a conserved quantity since ½L̂x;μ; Êx;μ� ¼ ½L̂x;μ; Ûx;μ� ¼ 0.
By working in the subspace with two fermions per link,
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L̂x;μ ¼ 2, we reduce the link space to dimension three, and
we can restore the desired algebra. First, we write the
occupation basis (see also Fig. 2) as

j →i ¼ −j0; 2i ¼ â†xþμ;−μb̂
†
xþμ;−μj0ix;μj0ixþμ;−μ;

j∅i ¼ j1; 1i ¼ â†x;μâ
†
xþμ;−μj0ix;μj0ixþμ;−μ;

j←i ¼ j2; 0i ¼ b̂†x;μâ
†
x;μj0ix;μj0ixþμ;−μ; ð7Þ

so that Ûx;μ acts correctly, i.e., where the minus sign in the
first equation ensures Ûx;μj∅i ¼ j→i and Û†

x;μj→i ¼ j∅i.
Then, we express the electric-field operator as the unbal-
ance of fermions between the two halves of a link, precisely

Êx;μ ¼
1

2
ðn̂axþμ;−μ þ n̂bxþμ;−μ − n̂ax;μ − n̂bx;μÞ; ð8Þ

implementing the correct action of Ex;μ. It is worth
mentioning that this formulation can be extended to higher
spin-j representations, where each link becomes a pair of
(2jþ 1) hardcore fermions.

B. Local gauge-invariant dressed sites

One of the common issues while working with a lattice
gauge theory, even in the compact representation of the
electric field, is to properly identify the gauge-invariant
Hilbert space. Because of the overlapping of the Gauss law
generators Ĝx, the identification of the correct local basis is
highly nontrivial, especially for dimensions higher than
one [26].

Using the three-hardcore-fermion pairs language gives
us a shortcut to this issue. In fact, we are able to recast the
Gauss law generators as nonoverlapping operators, at the
price of enforcing the link constraint ðL̂x;μ − 2ÞjΦi ¼ 0.
Using this constraint, we can rewrite the electric-
field operator in Eq. (8), taking only the fermionic
operators into account, which act on the half-link con-
nected to x, i.e.,

Êx;μ ¼ 1 − n̂ax;μ − n̂bx;μ ¼ ½η̂x;μ; η̂†x;μ�; ð9Þ

which is valid in the link-symmetry invariant space
ðL̂x;μ − 2ÞjΦi ¼ 0. As a consequence, in the Hilbert space
with two Dirac fermions per link, the Gauss law gen-
erators become strictly local, i.e., containing quantum
variables belonging solely to site x; they read

Ĝx ¼ ψ̂†
xψ̂x −

1 − px

2
−
X
μ

ð1 − n̂ax;μ − n̂bx;μÞ: ð10Þ

Within this picture, it is easy to identify a local gauge-
invariant basis for the dressed site

������
k4

k1 ϕ k3
k2

E
x

¼ð−1Þδk1 ;2þδk2 ;2

× jϕixjk1ix;−μx jk2ix;−μy jk3ix;μx jk4ix;μy ; ð11Þ

where jϕix ¼ ðψ̂†
xÞϕj0i for ϕ ∈ f0; 1g describes the matter

content, while kj ∈ f0; 1; 2g selects a state, from those in
Eq. (5), for each respective half-link. The factor
ð−1Þδk1 ;2þδk2 ;2 accommodates the sign in Eq. (7). In this
language, the Gauss law, cast as Eq. (10), simplifies to

ϕþ
X4
j¼1

kj ¼ 4þ 1 − px

2
; ð12Þ

which fixes the total number of fermions in each dressed
site, specifically four in the even sites and five in the odd
sites. Equation (12) actually reduces the Hilbert space
dimension of each dressed site from 162 to 35, and we use
these 35 states as a computational basis for tensor network
algorithms.
A fundamental feature of this language is that, since the

total number of fermions at each dressed site is conserved,
their parity is conserved as well; thus, the gauge-invariant
model will not exhibit any Jordan-Wigner strings (outside
the dressed sites) in the computational basis. An operative
way to show this property is to consider that the
Hamiltonian term ψ̂†

xÛx;μψ̂xþμ decomposes as the product
of ψ̂†

xη̂x;μ and η̂
†
xþμ;−μψ̂xþμ: Each of these two factors is local

(acts on a single dressed site) and commutes with the

Spin-1 
quantum link
formulation

= 0, 2

= 1, 1

= 2, 0

k4

k3

k2

k1 =

k4
k1 k3

k2

Local gauge-invariant dressed site
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2

1 q

EVEN SITES ODD SITES

FIG. 2. Mapping of the gauge-field states in the spin-1
representation to the fermionic Fock states. Each half-link is
constructed by employing two species of Dirac fermions. The
link symmetry formally reduces the total number of states to only
the three allowed states with two fermions. We therefore
construct the local gauge-invariant dressed site by gluing each
single matter site together with its neighboring half-links. In
the four examples, notice how the quantum number ϕ ¼ 1
represents the presence (absence) of a charge (anticharge) in the
even (odd) sites.

TWO-DIMENSIONAL QUANTUM-LINK LATTICE QUANTUM … PHYS. REV. X 10, 041040 (2020)

041040-5



algebra of other dressed sites. The same applies to the
magnetic plaquette term. In conclusion, by working on
the dressed-site computational basis, we can employ
standard (spin-model-like) tensor network techniques,
without the requirement of keeping track of fermionic
parity at each site [65–71]. Notice that this construction can
also be exploited to perform quantum computations of two-
dimensional LGTs.

C. Tensor network for 2D lattice gauge simulations

In order to numerically simulate the quantum system,
we use a two-dimensional TTN state to represent the
many-body wave function [51,72,73]. We work in the
computational 35-dimensional local basis for each
dressed site, defined in the previous section, which
automatically encodes the Gauss law. Operators appear-
ing in the Hamiltonian (1) can be cast in this basis, either
as local operators or by acting on a pair or plaquette of
neighboring dressed sites (see Appendix C for the
explicit construction). The extra link symmetry L̂x;μ ¼
2 must be enforced at every pair of neighboring sites. We
do so by introducing an energy penalty for all states
violating the link constraints. This penalty term is
included in the optimization by a driven penalty
method—similar to an augmented Lagrangian method—
which is described in more detail in Appendix E. Under
all other aspects, the TTN algorithm employed here for
finding the many-body ground state follows the prescrip-
tions of Ref. [74].
In the numerical simulations, we fix the energy scale by

setting the coupling strength t ¼ −1. Furthermore, we work
within a sector with a fixed total charge Q̂, by using
standard techniques for global symmetry conservation in
TNs [74–76]. We thus characterize the ground-state proper-
ties as a function of the mass m, the electric coupling ge,
and the magnetic coupling gm.
In order to exploit the best performances of our TTN

algorithm, we run simulations on square lattices L × L,
with the linear length L being a binary power; in particular,
we consider L ¼ 4, 8, and 16, and vary the TN auxiliary
dimension (or bond dimension) up to χ ∼ 300. Depending
on L and the physical parameters, we obtain a convergence
precision between about 10−2 and 10−5, sufficient to
characterize the ground-state properties.

III. ZERO CHARGE DENSITY SECTOR

In this section, we focus on the zero charge density sector
ρ≡ hQ̂i=L2 ¼ 0, where there is a balance between matter
and antimatter, and we analyze the ground state of
Hamiltonian (1) within this subspace. Unless otherwise
stated, we consider periodic boundary conditions. We
characterize the ground state of the Hamiltonian by looking
at the energy density hĤi=L2 and the particle density
hn̂i ¼ ð1=L2ÞPxhn̂xi, where n̂x ¼ ðδx;eψ̂†

xψ̂x þ δx;oψ̂xψ̂
†
xÞ

counts how many charges are in the system, both positive
and negative, i.e., fermions in even sites plus holes in odd
sites. We start our analysis by first focusing on the case in
which the magnetic coupling has been set to zero, gm ¼ 0.
Before detailing the numerical results, some analytically
solvable limit cases should be considered. For large
positive values of the bare mass m ≫ t, the fluctuations
above the bare vacuum are highly suppressed; the system
exhibits a unique behavior since there is no competition
between the matter term and the electric-field term in the
Hamiltonian. Indeed, to construct particle-antiparticle
pairs, the matter energy and the electric-field energy both
contribute to an overall increase of the ground-state energy.
In order to explore more interesting phenomena, we allow
the mass coupling to reach negative values. By doing so, we
can identify two different regions, depending on the
competition between the electric coupling g2e=2 and the
values of the mass m < 0:

(i) For g2e=2 ≫ 2jmj, we still have a vacuumlike behav-
ior, where we expect a unique nondegenerate ground
state with small particle-density fluctuations. This
regime exists, no matter the value of the mass, as
long as the energy cost to turn on a nonvanishing
electric field on a single link overcomes the gain in
creating the associated particle-antiparticle pairs.
Indeed, for any value of the mass and g2e=2 → ∞,
or for g2e=2 ≠ 0 and m → ∞, the presence of a finite
electric field, or finite particle density, is strictly
forbidden, and the ground state flows toward the only
admissible configuration, namely, the bare vacuum.

(ii) For − 2m ≫ g2e=2 > 0, the system is characterized
by slightly deformed particle-antiparticle dimers;
this regime of course only exists for negative values
of the mass and represents the region wherein the
energy gain for creating a particle-antiparticle cou-
ple largely overcomes the associated electric-field
energy cost. Here, the ground state remains highly
degenerate as long as the kinetic energy coupling jtj
is much smaller than all the other energy scales (with
the degeneracy being lifted only at the fourth order
in t). In particular, for g2e=2 ≠ 0 and m → −∞, the
ground state reduces to a completely filled state. In
order to minimize the electric-field energy, particles
and antiparticles are arranged in L2=2 pairs (where
we are assuming L even), sharing a single electric
flux in between. All of these configurations are
energetically equivalent, and their degeneracy cor-
responds to the number of ways in which a finite
quadratic lattice (with open or periodic boundary
conditions) can be fully covered with given numbers
of “horizontal” and “vertical” dimers. This number
scales exponentially with the system size as
expðL2C=πÞ for L → ∞, with C ≃ 0.915966, the
Catalan’s constant [77]. For the sake of clarity,
we stress that such dimers are not entangled
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clusters of matter and gauge fields; they are roughly
product states.

Let us mention that the case ge ¼ 0 with m → ∞
(m → −∞) is more pathological since any gauge-field
configuration compatible with the vacuum (dimerized)

state is admissible, provided the Gauss law is fulfilled.
In practice, we may draw a generic closed loop with
finite electric flux on top of the vacuum state without
modifying its energy; similar gauge loops may be realized
on top of the dimerized state, provided it is compatible
with the occupied links, without changing its energy. All
of these configurations are gauge invariant by construc-
tion and increase the degeneracy of the ground-state
energy sector.
Our numerical results confirm and extend this picture, as

can easily be seen in the phase diagram displayed in Fig. 3,
obtained from TTN simulations in an 8 × 8 system. The
matter density is roughly zero in the vacuum regime;
otherwise, it takes on a finite value whenever the system
exhibits “dimerization”, i.e., in the charge-crystal regime.
We check that the numerical data, both the ground-
state energy density and the particle density, show an
asymptotic tendency toward the perturbative estimates.
Interestingly, the particle density experiences an abrupt
change mainly in a narrowed region around m ≃ −g2e=4,
where the local slope becomes steeper as the electric
coupling (and the mass) approaches zero (see left panel
in Fig. 4), as roughly predicted by perturbation theory and
supported by the exact results in the 2 × 2 case (see
Appendixes H and I).
The two regimes exhibit opposite long-range ordering,

identified by the order parameter Ôx ¼ ð−1Þxð2ψ†
xψx − 1Þ,

and are mutually frustrated in the proximity of the
transition. As a confirmation of this property, we can track,
for instance, the full density-density correlation function

FIG. 3. Color density plot for m < 0 obtained from the
evaluation of the density of matter in the TTN ground state
for an 8 × 8 lattice system with periodic boundary conditions.
The insets are schematic representations of the ground state deep
in the two regimes: the bare vacuum for g2e=2 ≫ 2jmj and a
typical dimer configuration for g2e=2 ≪ −2m. The dashed line is
located at the classical (t ¼ 0) transition g2e=2 ¼ −2m.
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FIG. 4. Left panel: profiles of the matter density as a function of the electric-field coupling for different values of negative mass
obtained by vertically cutting the color plot in Fig. 3. From bottom (pink circles) to top (purple circles), the mass takes the values
m ∈ f−0.01;−0.5;−1;−1.5;−2;−2.5;−3;−3.5;−4g. Right panel: correlation length, in the ground state for m ¼ −2 and varying the
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Cx;x0 ¼ hÔxÔx0 i (as compared to its connected component
C0x;x0 ¼ Cx;x0 − hÔxihÔx0 i). We expect both regimes to
exhibit an extensive (linear with L) full correlation length,
while a sudden drop in such a quantity identifies frustration
and helps us locate the transition with high precision. Such
behavior is shown in the right panel of Fig. 4, where we
quantify the full correlation length via the estimator
ξ2est ¼

P
v D

2ðvÞC̄ðvÞ=Pv C̄ðvÞ, which uses the spatially
averaged correlation function C̄ðvÞ ¼ L−2P

x Cx;xþv and
the Euclidean metric D2ðvÞ ¼ v2x þ v2y. Such an estimator
effectively calculates the two-dimensional variance of C̄ðvÞ
meant as a distribution (further discussed in Appendix F).
By testing sizes up to 16 × 16, we observe that the actual
transition point is slightly below the classical (i.e., t ¼ 0)
position g2e=2 ¼ −2m. Such an outcome confirms our
predictions that particle-antiparticle fluctuations, induced
by a finite value of the hopping amplitude t, naturally
discourage the charge-crystal order.
This effect emerges already at the second order in the

perturbation theory treatment (see Appendix H), where
the crossing point of the two different ground-state ener-
gies, Ev (vacuum) and Ed (dimer), slightly shifts toward the
dimerized configuration.
A relevant physical question is whether the system

undergoes an actual quantum phase transition across the
two regions. Exactly at t ¼ 0, when m crosses the critical
value −g2e=4, the ground state exhibits an exact level
crossing, passing from the bare vacuum to the charge-
crystal energy sector. In this limit case, the system
experiences a trivial first-order phase transition since the
gauge-field energy term and the matter-field mass term
commute between each other. However, if we tune the mass
at the classical critical value m ¼ −g2e=4, a small hopping
amplitude t ≠ 0 is already sufficient to remove such a
degeneracy: Namely, the bare-vacuum energy and the
charge-crystal energy get modified in a different way so
that a gap opens between the two sectors. At the critical
value of the mass, creation or annihilation of particle-
antiparticle pairs has no energetic cost, and the ground-state
energy sector is characterized by all possible states with any
number of dimers; however, creating a pair in the vicinity of
the bare vacuum is more favorable than annihilating a pair
on top of a fully dimerized state; this is at least true for any
finite L (see Appendix H for details).
A crucial insight comes from the features of the overlap

between the exact ground state jGSi and the unique bare
vacuum jΩi (see Appendix I for exact results in the 2 × 2
case). Indeed, for the t ¼ 0 trivial case, it experiences a
discontinuous transition when passing from the vacuum
sector to the full dimerized sector, suddenly jumping from
one to zero. Interestingly, for fixed system size L, we may
evaluate such an overlap in the approximate ground state
jGSðkÞi at a given order k in perturbation theory. The
resulting perturbative expansion of the square of the

overlap jhΩjGSðkÞij2 changes continuously in the vacuum
regime, while it remains identically vanishing, i.e.,
jhΩjGSðkÞij2 ¼ 0, when correcting the fully dimerized state
up to k < L2=2. We thus expect the exact overlap to be
continuous at the transition point and identically vanish in
the thermodynamic limit L → ∞. As a consequence, for
any finite t, no first-order phase transition occurs, and we
may have a second-order phase transition. Let us stress
that, although the perturbative expansion of the fully
dimerized state does not produce any change in the
overlap with the bare vacuum for k < L2=2, local observ-
ables do experience perturbative modifications, simply
because the state by itself gets modified. In particular, as
a consequence of the Hellmann-Feynman theorem, the
particle density as a function of the mass coupling m
coincides with the derivative of the ground-state energy
density, hGSðmÞjn̂jGSðmÞi ¼ ∂mEGSðmÞ=L2. A second-
order phase transition will thus imply continuous profiles of
the particle density, with a discontinuous or diverging
derivative at the transition point. In fact, we have numerical
evidence that the matter density changes continuously
when going from one phase to the other (see Fig. 4);
however, it remains very hard to infer its derivative at the
transition point.

A. Finite magnetic-coupling effects

We now analyze the case of nonvanishing magnetic
coupling gm, especially focusing on how it impacts the
many-body quantum features at zero temperature.
In Fig. 5, we show the field-plot representations of the

ground-state typical configurations for an 8 × 8 system in
the presence of magnetic couplings. For the sake of
visibility, we only plot a 4 × 4 subsystem out of the
complete 8 × 8 lattice simulated with periodic boundary
conditions. Both massm and electric coupling ge have been
chosen so that the system is deep within the two different
regimes (left panels represent the vacuum regime; right
panels represent the charge-crystal regime). As the mag-
netic coupling gm increases to commensurate values (bot-
tom panels), we see negligible changes affecting the
vacuum configuration. By contrast, in the charge-crystal
regime, the nonvanishing magnetic coupling introduces a
nontrivial reorganization of the electric fields.
Such an effect can be well understood in terms of

perturbation theory: (i) In the vacuum region, the ground
state is not degenerate, and the first nontrivial corrections
are given by coupling such a state with all the states with a
single flux loop over a single plaquette (whose energy is
therefore 2g2e). In this regime, the flux loop state has high
electric-field energy; thus, it will only slightly impact the
global features of the state. The first-order correction to the
ground-state energy will be quadratic in the magnetic
coupling, i.e., proportional to g4m=g2e (see Fig. 6, left panel).
Let us stress that, even though the state may experience an

FELSER, SILVI, COLLURA, and MONTANGERO PHYS. REV. X 10, 041040 (2020)

041040-8



electric-field reconfiguration due to the “field-loop” super-
positions, the fact that in this regime the electric field is
almost zero causes no visible effect on its expectation
value; this is pretty clear from the left column of Fig. 5:

When passing from a small (g2m=2 ¼ 0.2) to a slightly
bigger value (g2m=2 ¼ 2) of the magnetic coupling, the
changes in the expectation value of the gauge field
are negligible. (ii) In the charge-crystal configuration,
the effect of the magnetic interaction is nontrivial.
Indeed, the ground-state energy sector in this regime is
highly degenerate, and the magnetic field contributes to lift
such a degeneracy (at much lower order than t). The
magnetic coupling introduces first-order transitions
between different gauge-field configurations; therefore,
its first contribution to the ground-state energy is scales
like order g2m=g2e. Actually, a sufficiently large value of the
magnetic coupling gm helps the TTN wave function to
restore the square lattice symmetry by introducing a gap
between the actual ground state and all the energetically
unfavorable configurations. This property is noticeable in
Fig. 5 (bottom-right panel), where for g2m=2 ¼ 2, the gauge-
field distribution becomes uniform (on average) in the bulk.
In this scenario, the charge crystal does not encourage the
formation of dimers but instead a global entangled state of
gauge fields.
The previous considerations are supported by the behav-

ior of the ground-state energy and of the particle density, as
a function of gm. In Fig. 6, we plot the numerical results
obtained via TTN simulations in an 8 × 8 system. We fix
the value of the mass to m ¼ −2 and explore the behavior
for g2e=2 ¼ 2 and 6, which are slightly below or above the
classical transition point g2e=2 ¼ −2m. We vary the mag-
netic coupling in a rather big interval g2m=2 ∈ ½0; 8�. In the
first case, i.e., when the system is initially in the charge-
crystal configuration, we expect linear corrections to the
ground-state energy as a function of g2m; this is pretty clear
from Fig. 6, where, however, some deviations are visible
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FIG. 5. Numerical results obtained via TTN simulations. The
field plots reproduce the matter and gauge configurations for a
4 × 4 subsystem embedded in an 8 × 8 lattice with periodic
boundary conditions. Red (blue) circles represent particles
(antiparticles): Their diameter indicates the average density, from
0 (empty sites) to 1 (completely filled). The arrows in between
represent the electric field: Larger arrows indicate greater electric
flux.
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because of the vicinity of the phase boundary. In the
second case, i.e., starting from a quasivacuum, a quadratic
deviation of the ground state is clearly visible (see Fig. 6).
Interestingly, in the parameter region we are exploring,

the magnetic coupling enhances the production of particles,
thus increasing the average matter density, even though the
magnetic term does not directly couple to matter. Such an
emergent behavior is physically relevant since it also arises
when performing phase diagram simulations along a physi-
cal line of theQEDproblem. Specifically, setting gegm¼8t2,
we realize the physical scenario of QED. Figure 11 in
AppendixA shows a growing charge density at smallerQED
couplings g, even when the (negative) bare mass is small.
In practice, the magnetic coupling creates resonating

configurations of the gauge fields in the crystal charge
regime, thus decreasing the electromagnetic energy density
of the state itself, which in turn favors the crystal charge
configuration in the proximity of the phase boundary.
Hence, small gm values effectively enlarge the charge-
crystal regime. However, in the spin-1 representation of the
gauge field, the dimerized configuration is not stable under
an arbitrary large value of the magnetic coupling, and we
expect hn̂xi ¼ 0 when gm ≫ ge. This case can be easily
understood at the classical level (t ¼ 0), comparing the
effect of a Wilson loop operator in the zero-matter
(vacuum) sector and in the full-matter sector: In the former
case, each single plaquette resonates between three differ-
ent diagonal gauge-field configurations fj↺i; j∅i; j↻ig; in
the last case, only two configurations are resonating, e.g.,
fj↑↓i; j⇆ig, since constructing a clockwise (anticlock-
wise) electric loop↻ (↺) on top of the first (second) state is
forbidden by the spin-1 finite representation. This leads to a
contribution of the magnetic coupling to the energy, which
is proportional to −

ffiffiffi
2

p
g2m for a plaquette in the vacuum,

while it is only −g2m for a dimerized plaquette. In practice,
such a difference remains at the many-body level as well,
and, therefore, although for −2m ≫ g2e=2 the dimerized
configuration represents the lower energy state at gm ¼ 0, it
will become energetically unfavorable for sufficiently
strong magnetic couplings.
We have further analytical confirmation of such behavior

from the exact diagonalization of 2 × 2 systems (see
Appendix I for details): For a single plaquette system, the
first visible effect of a nonvanishing magnetic coupling is to
mix up the two dimerized states into two different super-
positions with different energies. The transition between the
vacuum state toward the lower energetic charge-crystal state
is therefore sharpened, and its position is shifted as well in
g2e=4þm ≃ ðg2e þ g2m=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4e þ g4m=2

p
Þ=4. Interestingly,

depending on the values of ge, this shifting is not monoto-
nous in gm, producing an initial increase in the particle
density followed by a definitive decrease toward zero
(cf. Fig. 19) and thus confirming the previous heuristic
argument based on perturbation theory. Again, this shifting
is a strictly finite-spin representation effect, and it disappears

as the spin gets larger, as shown by analyzing the behavior
for the single plaquette in the spin-2 compact representation
of the gauge field (see Appendix I).

IV. FINITE CHARGE DENSITY SECTOR

One of themost intriguing phenomenawe observed in our
numerical simulations relies on the possibility to create a
charge imbalance in the system. This scenario is challenging
for Monte Carlo techniques as it produces the sign problem
[13,24]. Instead, our gauge-invariant tensor network
approach is very well suited to overcome such difficulty:
The fact that the global Uð1Þ symmetry has been explicitly
embedded in the tensor network ansatz [74] allows us to
work exactly within each sector with fixed total charge. In
the following, we only consider gm ¼ 0. Moreover, in this
setup, because of the finite net electric flux coming out of the
entire system, we have to work with open boundary
conditions. In this geometry, the dressed sites at the
boundary are now characterized by one outgoing half-link
(two in the corners), which can support the electric field to
allow the existence of a nonvanishing total outgoing flux.
When a finite density of charge ρ≡hQ̂i=L2∈f−1=2;1=2g

is injected into the system, we expect a different behavior,
depending on which part of the phase diagram the ground
state belongs in. Indeed, when the ground state is very close
to the bare vacuum, any charge created on top of it is
forced to reach the boundaries so as to minimize the total
energy; this is easily understood already with the classical
(t ¼ 0) Hamiltonian, and there are no fluctuations of the
gauge fields. In this case, a classical configuration with a
single charge located at distance l from the boundary costs
at least lg2=2 more than the optimal configuration where
the same charge is located at the surface (see Fig. 7). In this
regime, the diagonal energy term gets modified as
Ev=L2 ¼ ðg2e=4þmÞρ, as long as hQ̂i ≤ 2ðL − 1Þ, i.e.,
whenever the total excess of charge is lower than the
number of allowed free sites at the boundaries. When the
total charge increases, deeper sites start to be filled; e.g., for
2ðL − 1Þ < hQ̂i ≤ 4ðL − 2Þ, one starts filling the next-
neighboring sites to the surface (e.g., Fig. 8). Overall, this
argument supports the existence of a phase separation
between a boundary region attached to the surface, or strip,
where charges aggregate and a bulk region expelling
charges and electric fields. In the picture where the gauge
field is not truncated (S → ∞), both regions will scale as a
surface. In practice, defining ρl ≡ 2lðL − lÞ=L2 as the
maximum amount of charge density the system can
store within a strip of extension l from the surface, we
have a sharp discontinuity in local charge densities, at the
smallestl� such that ρ ≤ ρl� , between a finite-charge region
(for j < l�) and a zero-charge region (for j > l�). In
particular, in the thermodynamic limit, we obtain
l�=L ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2jρjp Þ=2. In other words, the width l�

of the surface strip where all charges are localized varies
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smoothly in ½0; L=2� as jρj varies in ½0; 1=2�. Quantitatively,
both the depth of the surface strip (l�) and the diameter of the
bulk region (L=2 − l�) scale linearly withL; thus, the phase

separation argument applies when approaching the thermo-
dynamic limit, as long as the gauge field is unconstrained
and the lattice spacing stays finite. In practice, as long as the
average charge density is finite, we always have an extensive
region in the bulk of the system whose linear dimension
scales as L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2jρjp

=2, which exhibits no charges.
However, we stress that when introducing a fixed truncation
of the gauge field (to any spin S), the amount of total charge
that can be injected in the system is limited to a linear scaling
in L since, due to the Gauss law, the total electric flux at the
boundarymust match the total charge. Therefore, in order to
approach the thermodynamical limit at finite charge density,
one needs to increase the truncation or introduce static
background fields.
We expect this picture to be slightly modified at finite

hopping coupling jtj but to remain valid as long as the
system belongs to the vacuum regime. In practice, a finite
tunneling amplitude introduces a small homogeneous
particle density, thus slightly increasing l� and also
building up a finite charge penetration length scaling
linearly with jtj such that the phase separation is
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FIG. 7. Field plots in the finite charge density sectors. The top row refers to the vacuum regime and the bottom row to the charge-
crystal regime. On the left of the figure, the four panels represent a sketch of the classical configurations (i.e., t ¼ 0) for a 4 × 4 system
with open boundary conditions in theQ ¼ 1 charge sector. Gauge fields can now exit the system at the energy cost of a half-link each the
system at the cost of the half-link. The panels on the right of the figure are the field plots obtained by numerical TTN simulations in 8 × 8

systems for the two different regimes, namely, g2e=2 ¼ 2 andm ¼ 4 (top) orm ¼ −2 (bottom), and charge sectorQ ¼ −8. In the vacuum
regime, the excess of charge prefers to be localized at the boundaries since such configurations are more energetically favorable. In the
dimerized regime, the holes may occupy any position since the system can reconfigure the pairs of dimers so as to always use the same
amount of energy. However, because of the very high degeneracy of the low-energy sector, the TTN simulations may get stuck in a
slightly asymmetric configuration.
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smoothened out with an exponentially small density-charge
tail penetrating into the bulk. The overall scenario is con-
firmed by the field plots in Figs. 7 and 8, where it is pretty
clear thatwhen the couplings are tuned in order for the system
to be deep in the vacuum regime, the excess charges stick to
the boundary so as to minimize the length of the attached
electric strings. In principle, all possible configurations with
all charges at the boundaries are energetically equivalent.
However, the TTNmany-body wave function spontaneously
breaks such symmetry and picks up a single, specific

configuration, as is usually the case with DMRG-like
algorithms. We stress that such phase separation, where both
bulk and boundary regions scale extensively, is likely an
artifact of the lattice discretization, where the amount of local
charge density is bound.
When the state belongs to the charge-crystal regime, a

finite positive (negative) charge density is mainly generated
by creating holes in the odd (even) sublattice; namely,
negative (positive) charges are removed from the fully
dimerized state. In order to minimize the energy, the holes
can now be fully delocalized: A hole in the bulk, or at the
boundary, generates a reconfiguration of the charge-crystal
state in such away that it always requires the same amount of
energy and guarantees the expected total outgoing electric
flux. In this regime, the zero-order energy term getsmodified
as Ed=L2 ¼ ðg2e=4þmÞð1 − ρÞ. The entire system is now
characterized by a unique spatial phase where we expect a
uniform average charge density and finite electric field in the
bulk. Let us mention that, for any finite value of the hopping
amplitude, we still expect a similar behavior, where the
transition toward the phase-separated phasewill be driven by
the competition between the mass and the electric coupling.
In order to highlight the different features of the low-

energy state at finite chemical potential, we analyze the
behavior of the surface charge density,

σl ≡ 1

dimDl

X
x∈Dl

hψ̂†
xψ̂xi; ð13Þ

where Dl is a square that counts dimDl ¼ 4ðLþ 1 − 2lÞ
lattice sites as sketched in Fig. 9. Here, l ∈ f1; 2;…; L=2g
represents the distance of the domain Dl from the external
surface: Namely, as l grows, we select domains deeper into
the bulk.
In Fig. 9, we plot the surface charge density σl as a

function of l for different points in the coupling-parameter
space. As long as the Hamiltonian is tuned into the vacuum
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regime, the surface charge suddenly drops when getting
into the bulk of the system. As expected, for finite value of
the couplings, when approaching the critical region, the
bulk charge density is enhanced; finally, once the system
reaches the charge-crystal regime, σl acquires a loosely
uniform shape.
Finally, we carefully check the ground-state energy

density and the particle density, which are plotted in
Fig. 10 as a function of the mass for two different values
of the electric coupling. Notice how, for sufficiently large
positive (negative) values of the mass, the data get closer to
the perturbative predictions. The intermediate region, at
m ∼ g2e=4, is characterized by stronger quantum fluctua-
tions and thus exhibit a smooth transition between uniform
and nonuniform charge distribution in space.
As a concluding remark, we stress that, while in this

section we consider the boundary conditions to be com-
pletely free, setting a specific set of boundary conditions for
the problem of electrodynamics is not conceptually or
numerically difficult. Typical boundary conditions are
realized by means of a boundary Hamiltonian Hb to be
added to the bulk Hamiltonian H from Eq. (1) (see
Appendix G for details).

V. CONCLUSIONS

In this work, we demonstrated a novel, efficient, tensor
network approach to the study of two-dimensional lattice
gauge theories. By exploiting the quantum-link formulation
of LGT, the fermionic rishon representation of quantum
links, and unconstrained tree tensor networks, we inves-
tigated the equilibrium properties of a two-dimensional
lattice QED within its first compact spin representation. We
present results for lattice size up to 16 × 16, whose Hilbert
space dimension is approximately equivalent to that of a
system composed of spins-1=2 on a square lattice with
edges of about 80 lattice sites. Whenever possible, we
confirmed our results with perturbative analysis and small-
scale exact simulations.
In particular, we identified different regimes at zero

chemical potential, a vacuum state and a charge-density
one, that reproduce what has been found in the one-
dimensional case, and we investigated the effects of a
magnetic term uniquely present in two dimensions. Finally,
we explored the finite density scenario and individuated
two distinct behaviors corresponding to the vacuum and
charge-density configurations: In the former case, the
excess charges accumulate on the boundaries. This con-
figuration minimizes the electric energy density, and is
analogous to how charges distribute in classical conductors.
In the latter, the excess charge is distributed uniformly in
the bulk and boundaries.
In conclusion, we have shown that unconstrained tree

tensor networks are a powerful tool to obtain a non-
perturbative description of a lattice gauge theory in two
dimensions. We stress that these simulations have been

obtained on standard clusters without exploiting heavy
parallelization and with simulations lasting only a few days.
Despite the fact that the presented results are not yet able to
allow physical predictions in the continuous limit for the
system we study, we foresee that upgrading the current
software to exploit the full power of high performance
computing—without major changes in the algorithms—
larger system sizes, an additional dimension, the continuum
and large-S limit, and more complex Abelian and non-
Abelian lattice gauge theories will be in the range of the
approach presented here, as already shown for the one-
dimensional case [31,61]. Our proposed architecture is
perfectly tailored to accommodate advanced strategies of
diagnostics, including elaborate string order parameters
capable of detecting deconfined phases and topological
order [78–80].
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APPENDIX A: PHYSICAL QED SCENARIO

Complementing the discussions in Sec. III A, we
present two physical lines of phase diagram simulations
of the QED problem with gegm ¼ 8t2. Figure 11 shows a
growing charge density at smaller QED couplings g, even
when the (negative) bare mass is small.
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FIG. 11. Numerical results for the ground-state energy
density hĤi=L2 and the particle density hn̂i of the original QED
Hamiltonian formulation as a function of the electric coupling ge
for 8 × 8 systems. The lattice spacing is set to a¼ 1=t¼ 1, and the
magnetic coupling is tuned with respect to g2m¼8=ðg2ea2Þ. The
mass coupling has been set to m0¼f−0.3;−3.0g, respectively.
The data have been obtained by extrapolating from TTN simu-
lations with different auxiliary dimensions.
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APPENDIX B: CHARGE SCREENING

Here, we briefly address the problem of detecting
confinement. A natural way of exhibiting confinement in
our lattice scenario is to show that electric-field lines do not
extend over infinite lengths in the full-fledged theory
(where gegm ¼ 2

ffiffiffi
2

p
t), even when we enforce the presence

of charges at specific locations. In this sense, the ground
QED solution adjusts the mobile charges (and anticharges)
to screen the pinned ones. We can insert such pinned
charges by tuning a local chemical potential term
m̃xð−1Þxψ̂†

xψ̂x, which shifts the mass at site x to strongly
negative values (m̃x þm ≪ −1), thus favoring the presence
of a full charge at x in the ground state.
Adding a single pinned charge has the effect of creating a

local excitation in the vacuumlike regime. Figure 12(a)
shows a scenario with global zero charge, and a single
pinned charge, under periodic boundaries. While the
crystal-charge regime is mostly unaffected, in the vacuum-
like regime, opposite-sign charges are attracted around the
pinned one, so as to form an almost perfect meson, carrying
an electric-charge quadrupole. Field lines propagating from
this configuration are very short ranged, thus supporting
confinement.
It is important to mention that confinement can be further

corroborated by string-breaking analysis, where an initial
(high-energy) configuration with a long field-line string
breaks down to multiple localized mesons. Configurations
with long (extensive) field lines can be engineered either by
field linking a bulk charge to a point in the boundary, in the
sector Qtot ¼ 1, or by setting two pinned charges far apart

in theQtot ¼ 0 sector. When the field lines (strings) scale in
length with the system size, we expect them to be broken by
the appearance of screening charges around the pinned
ones, in the thermodynamical limit. By contrast, for finite-
length strings, it is possible to set the bare mass sufficiently
large so that they will remain unbroken, as shown in
Figs. 12(b) and 12(c).

APPENDIX C: CONSTRUCTING THE
COMPUTATIONAL HAMILTONIAN

In this section, we sketch the steps needed to obtain the
operator matrices, and their elements, which appear in the
computational formulation of the quantum-link QED
model. In particular, we stress how to construct build-
ing-block operators AðαÞ

j , each acting on a single dressed
site j, which are genuinely local, in the sense that they
commute, by construction, with every other building-block

operator at another site: ½AðαÞ
j ; Aðα0Þ

j0≠j� ¼ 0. The electric-field
term and the bare mass term are diagonal in the occupation
basis of fermions and rishons, as in Eq. (11), and thus
trivially obtained. The nondiagonal terms are decomposed
as follows:
Matter-field coupling terms.—Matter-field terms decom-

pose naturally as ψ†
xUx;xþμxψxþμx ¼ Að1Þ†

x Að3Þ
xþμx (and its

Hermitian conjugate) for horizontal “hopping” terms,

and ψ†
xUx;xþμyψxþμy ¼ Að2Þ†

x Að4Þ
xþμy for vertical hopping.

The decomposition into building blocks is based upon

ψ†
xUx;xþμxψxþμx ¼ ψ†

xηx;μxη
†
xþμx;−μxψxþμx

¼ ðη†x;μxψxÞ†ðη†xþμx;−μxψxþμxÞ
¼ Að1Þ†

x Að3Þ
xþμx ; ðC1Þ

where ηx;μ are the three hardcore fermionic operators

defined in Eq. (3). Both Að1Þ
x and Að3Þ

x are built on an even
number of fermionic operators; therefore, they commute
with any operator that does not act on site x and are thus
genuinely local. The vertical hopping term is similarly
decomposed into building-block operators.
Magnetic terms.—The magnetic (or plaquette) term

decomposes into building-block operators, acting on the
four dressed sites at the corners of a plaquette. Specifically,
we have

Ux;xþμxUxþμx;xþμxþμyU
†
xþμy;xþμxþμyU

†
x;xþμy

¼ ηx;μxη
†
xþμx;−μxηxþμx;μyη

†
xþμxþμy;−μy

× ðηxþμy;μxη
†
xþμxþμy;−μxÞ†ðηx;μyη†xþμy;−μyÞ†

¼ −ðη†x;μyηx;μxÞðη†xþμx;−μxηxþμx;μyÞ
× ðη†xþμxþμy;−μyηxþμxþμy;−μxÞðη†xþμy;μxηxþμy;−μyÞ
≡ −Að5Þ

x Að6Þ
xþμxA

ð7Þ
xþμxþμyA

ð8Þ
xþμy ; ðC2Þ
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FIG. 12. Occupation for pinned charges in an 8 × 8 system of
the original QED Hamiltonian with ge ¼ 1 and a ¼ 1=t ¼ 1.
(a) Particle density for one charge pinned in the zero-charge
sector Qtot ¼ 0 with respect to the bare mass m for periodic
boundaries. The system transitions from the completely filled
charge-crystal phase to the pinned charge screening. (b) Field plot
for a system with total charge Qtot ¼ 1 with open boundaries
(green line). (c) Field plot for two pinned charges in the Qtot ¼ 0
symmetry sector. All of the field plots are 4 × 4 subsystems
embedded in an 8 × 8 simulation. For panels (b) and (c), the mass
term is set to m ¼ 4.
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to be added, in the Hamiltonian, to its Hermitian conjugate.
All operators in this decomposition are local and ready to
use for TTN algorithms.

APPENDIX D: TENSOR NETWORKS

In what follows, we describe the background and main
principles of tensor networks and, in particular, the TTN
ansatz considered in this work. For a more in-depth
description of TNs, we refer to more technical reviews
and textbooks [32,74,81,82].
TNs are used to efficiently represent (pure) quantum

many-body wave functions jψi, which live in the tensor
productH ¼ H1 ⊗ H2 ⊗ � � �HN of N local Hilbert spaces
Hk, each assumed to be of finite dimension d. Expressing
such a state in the real-space product basis means decom-
posing the wave function as

jψi ¼
Xd

i1;…iL¼1

ci1;…;iL ji1i1 ⊗ ji2i2 ⊗ … ⊗ jiLiL; ðD1Þ

where fjiikgi is the canonical basis of site k, spanning Hk.
Describing such a general state by all possible combina-
tions of local states requires dN coefficients ci1;…;iN . Thus,
we have exponential growth with the system size N in the
exact representation of the wave function. For physical
states, which satisfy certain entanglement bounds under
real-space bipartitions (area laws) [83,84], tensor networks
offer a more efficient representation. This representation is
given by decomposing the complete rank-N tensor into a
set of local tensors with smaller rank, connected with
auxiliary indices. We control the dimension of the auxiliary
indices with the bond dimension χ and thereby the amount
of captured information. Thus, tuning this parameter χ, TNs
interpolate between a product state, where quantum corre-
lations are neglected, and the exact, but inefficient repre-
sentation. The most prominent TN representations are the
matrix product states (MPS) for 1D systems [82,84,85] and
their higher-dimension variant, the projected entangled pair
states (PEPS) [83,86,87], while TTN [51,72,88,89] (as well
as multi-scale entanglement renormalization Ansatz
[90,91]) can, in principle, be defined in any lattice
dimension.
Algorithms for MPS have been developed for over

20 years and have established the MPS ansatz as the
primary workhorse for equilibrium problems in 1D [82,92]
and, in many cases, even out of equilibrium [93,94]. By
contrast, the development of TN algorithms, which are both
quantitatively accurate and polynomially scalable, for two-
dimensional lattices is still ongoing. Currently, we are still
facing the open question of which tensor network geometry
is generally best suited for 2D simulations. The PEPS
approximates the complete rank-N tensor by a decom-
position with one tensor for each physical site. These
tensors are then connected through a grid analogous to the

lattice, resulting in a TN with “loops” (nonlocal gauge
redundancies). On the other hand, TTNs represent the wave
function with a network geometry without loops, thus
allowing (polynomially scaling) universal contraction
schemes [74].
By its structure, the PEPS is the intuitive (and potentially

more powerful) representation of a two-dimensional quan-
tum many-body wave function satisfying the area laws of
entanglement. However, in general, it lacks an exact
calculation of expectation values. In fact, for a finite square
lattice with N ¼ L × L sites, the contraction of the com-
plete PEPS to perform this calculation scales exponentially
on an average system length L [95]. Additionally, the
optimization of the PEPS ansatz has a higher numerical
complexity Oðχ10Þ with the bond dimension, so the typical
bond dimensions achieved are on the order of χ ∼ 10,
which is sufficiently large for many spin systems with local
dimension d ¼ 2. For the 2D LGT simulations presented in
this work, however, we have to deal with a local dimension
of d ¼ 35, which raises a nontrivial challenge for the PEPS
ansatz. Furthermore, this local dimension increases for 3D
systems or a higher representation for the discretization of
the electric field.
The TTN, on the other hand, offers a more favorable

computational scaling with bond dimension: Both exact
full contraction and optimization algorithms scale with
Oðχ4Þ, which in turn allows typical bond dimensions to
even exceed χ ≥ 1000. Moreover, a TTN is fairly straight-
forward to implement and not restricted to any dimension-
ality of the underlying system; thus, the extension to 3D
systems is straightforward. On the other hand, TTNs have
been shown to poorly embed the area laws in two or higher
dimensions [96]. Eventually, when increasing the system
size, N ¼ L × L, the TTN may fail to accurately describe
the quantum wave function. Thus, even though the TTN is
a powerful tool to tackle systems in one, two, and three
dimensions, further development and improvement is
needed for reaching a scalable algorithm for higher system
sizes. However, since this is a variational ansatz with
increasing precision for increasing bond dimension, we
can always give an estimate of the total error of our
simulation results.
Our TTN algorithm implemented for finding the many-

body ground state in this LGT analysis follows the
prescriptions of Ref. [74]. In the numerical implementation,
we exploit the Uð1Þ symmetry corresponding to the
conservation of total charge Q using common techniques
for global symmetry conservation in TNs [76]. We con-
struct the tree starting from the physical indices at the
bottom by iteratively merging two local sites into one by a
randomly initialized tensor coarse-grained site. In case we
reach the maximum bond dimension for the coarse-grained
space, we truncate the coupling symmetry sectors randomly
in order to keep the bond dimension. Thereby, we randomly
initialize not only the tensors themselves but the
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distribution of the coupling symmetry sectors within the
tensors as well. In order to ensure convergence during the
optimization, we dynamically increase the bond dimension
locally, allowing us to adapt the symmetry sectors within
the tree. In particular, we exploit the single tensor opti-
mization with subspace expansion presented in Ref. [74],
which approximates a two-site update by expanding the
connecting link and iteratively optimizing the two local
tensors separately. Thereby, we maintain the beneficial
numerical complexity of Oðχ4Þ instead of a heavier scaling
of Oðχ6Þ for the complete two-site optimization. For the
single tensor optimization, we exploit the Arnoldi algorithm
implemented in the ARPACK library. In this algorithm, the
local eigenvalue problem is solved by iteratively diagonal-
izing the effective Hamiltonian Heff for the single tensor. It
delivers the lowest eigenpairs of Heff up to a predefined
precision ϵ by requiring only knowledge of the action of the
operatorHeff. In the global optimization, we sweep through
theTTN from the bottom to the top, performing the subspace
expansion from each tensor towards its “parent” tensor [the
one located directly above in the geometry of Fig. 13(d)].
After one complete sweep, we start over, iterating until
global convergence (in terms of energy and selected observ-
ables) is achieved. As we come closer to convergence with
each sweep, we also drive the optimization precision ϵ of the
Arnoldi algorithm, such that we become more and more
accurate in solving the local eigenvalue problems.
The computations with TTN presented in this work were

run on different HPC clusters (the BwUniCluster and
CINECA), where a single simulation of, e.g., an 8 × 8
system can last up to three weeks until final convergence,
depending on the system parameters. Here, we point out
that we can still improve the efficiency of the code and can
have the potential to heavily parallelize our TTN to
decrease the computational effort.

APPENDIX E: TENSOR NETWORK
SIMULATIONS FOR LATTICE

GAUGE THEORIES

In this section, we describe the TN approach for LGT in
greater technical detail. As mentioned in Sec. II C, we
already fulfill the Gauss law by choosing the local gauge-
invariant states (Sec. II B) as the logical basis in the TN
simulations. In particular, we use an unconstrained TTN to
represent the many-body wave function [51]. We adapt the
TTN structure for the 2D system as shown in Refs. [72,73].
Following the description in Ref. [74], we additionally
exploit the Abelian Uð1Þ symmetry, which corresponds to
the total charge Q̂ for the TTN representation. In this way,
we keep the total charge Q̂ fixed for each simulation by
choosing the proper global symmetry sector.
As discussed in Sec. II A, the chosen local basis does not

naturally respect the extra link symmetry arising from the
division of the Hilbert space for each link into two half-
links. Thus, in additional to the LGT Hamiltonian Ĥ
Eq. (1), we include a term to penalize the states violating
the link constraint during the simulation. In conclusion, we
simulate the Hamiltonian

Ĥsim ¼ Ĥ þ ν
X
x;μ

ð1 − δ2;L̂x;μ
Þ; ðE1Þ

with μ ∈ fμx; μyg, where the penalty term vanishes when
the link symmetry is respected and increases the energy for
a state breaking the symmetry. Let us mention that this
additional term translates to a nearest-neighbor interaction
term in the TN simulations.
In theory, the penalty factor ν should be chosen as large

as possible, as the link symmetry is strictly enforced for
ν → ∞. But choosing a too-large ν leads to the optimiza-
tion focusing on this penalty term only and fails to optimize
for the physical quantities. Depending on the physical
simulation parameter, t, m, ge, and gm, the penalty factor ν
has to be chosen in a balanced way, such that we are able to
optimize for the physical quantities as much as for the link
constraint. In fact, when choosing ν too low, we end up
with a result where the state does not strictly obey the link
symmetry. If ν is too large, artifacts can appear in the
proposed ground state, as the penalty term can introduce
local minima and thus freeze the state in the optimization.
These artifacts can either be a matter-antimatter pair for the
vacuum regime or, as shown on the left in Fig. 14, a matter-
antimatter hole for the charge-crystal regime. As the total
charge Q̂ is strictly conserved by the chosen symmetry
sector during the simulation, there are only two ways to get
rid of such an artifact. The optimizer has to either locally
violate the link symmetry or change the state at the
neighboring sites together with the artifact—both of which
would increase the energy in the simulation, given a large
value for ν.

(a) (b)

(c) (d)

FIG. 13. Tensor network representations for a quantum many-
body wave function: the matrix product states (MPS) (a) and the
tree tensor network (TTN) (c) on the left hand side are for 1D
systems, while the projected entangled pair states (PEPS) (b) and
the TTN (d) on the right hand side represent 2D systems.
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In order to improve this approach, we exploit two
different methods. First, we start with a random state,
which, in general, violates the link symmetry. One
example for this random initialization is reported on
the right side of Fig. 14. Second, we drive the penalty
term by increasing ν after every optimization sweep. In
particular, we start by linearly increasing ν, until we
observe an increment in the energy, which signals that
the penalty term becomes significant for the optimiza-
tion. Consequently, we switch to a quadratic tuning of ν
such that, in the following few iterations, we increase ν
more slowly than in the linear regime. Finally, we also
set a maximum value for ν, at which we stay for the rest
of the optimization. The three different regimes of
driving the penalty parameter ν are depicted in
Fig. 15, showing the energy difference δe to a higher
bond dimension, together with ν with respect to the
iterations for an exemplifying simulation.
With this driving, we optimize the random initial state in

the first phase without focusing too strictly on obeying the
link symmetry. This method flattens the local minima
arising from including the penalty in the Hamiltonian
and thereby helps converge to the global minimum.
When choosing the linear tuning correctly, most physical
observables are qualitatively already captured at the end of
the first driving phase without strictly obeying the link
symmetry. Thus, the second phase enforces the link
symmetry, while the last phase—with a constant ν—
optimizes the state for the final quantitative ground state.
Although introducing the driven penalty drastically

decreases the number of simulations that are stuck in
artificial configurations, this cannot be completely avoided.
Therefore, we simulate several samples with different
random initial states. From these samples, we perform a

postselection and check whether the obtained wave
functions are indeed physically correct ground states.
We also observe the typical convergence for TN with
increasing bond dimension when we discard the results
with artifacts. From the different samples and the con-
vergence in bond dimension, we can estimate the relative
error in the energy, which, depending on the physical
parameters, typically lies in the range of about 10−2–10−4

for an 8 × 8 system.

APPENDIX F: INTEGRAL ESTIMATORS FOR
THE CORRELATION LENGTH

Here, we briefly discuss a strategy to estimate corre-
lation lengths based on integrals of the correlation
functions. The obvious advantage is that this strategy
employs all of the data within the correlation function
itself while requiring no data regression. Therefore, it can
be easily automatized and needs no careful initialization
of the fit parameters for data regression; at the same time,
it is a reliable, only slightly biased, estimator for corre-
lation lengths [97].
While in the main text we applied an analogous estimator

to the full correlation function, in this section, we perform
an estimator analysis on the connected component
C0x;x0 ¼ hÔxÔx0 i − hÔxihÔx0 i of the correlation function,
which we spatially average to C̄0

v ¼ L−2 P
x C

0
x;xþv. In the

absence of strong quantum correlations, lattice systems at
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FIG. 15. Penalty parameter ν (red) and energy (yellow)
with respect to the number of iterations for a typical LGT
simulation. The energy is plotted here as a deviation δe from
the ground-state energy obtained with highest bond dimension
available. We start with linearly increasing ν. When the energy
increases, we change to a quadratic driving regime with
zero gradient at the transition point. Finally, we reach a
predefined maximum value for ν.
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FIG. 14. Field plots from a TTN numerical simulation of 8 × 8
systems. The left panel depicts a configuration corresponding to a
local minimum in the total energy in which a simulation got stuck
because of a poor choice of the penalty parameter ν. The right
panel shows the field plot for a typical randomly initialized state.
Note that in this case, the link symmetry is not respected. The
gray diamonds in the background of each site signal the violation
of this constraint. The darkness of the gray color corresponds to
the contribution of the penalty term in Eq. (E1) for the site
positioned at x≡ ði; jÞ.
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low temperatures typically exhibit C̄0ðvÞ ≃ α0 expð−jvj=ξÞ
exponentially decaying in the relative coordinate modulus

jvj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
, where ξ is the actual correlation length

and α0 is a (not interesting) prefactor. Here, we construct an
integral estimator ξest for (connected) correlation lengths
and show that, on the exponentially decaying class, it
returns ξ to an acceptable precision.
In deriving these expressions, we assume that the system

is much larger than the correlation length L ≫ ξ to avoid
observing finite-size or boundary effects (we effectively
approximate the lattice to Z2). For a 2D square lattice, we
consider the following estimator:

ξ2est ¼
P

vx;vy∈Zjvj2C̄0ðvÞ
6
P

vx;vy∈ZC̄
0ðvÞ ; ðF1Þ

which, apart from the 1=6 prefactor, is the (Euclidean)
variance of PðvÞ ¼ C̄0ðvÞ½Pv0C̄

0ðv0Þ�−1, the correlation
function normalized to a probability distribution over Z2

[assuming C̄0ðvÞ is symmetric, C̄0ðvÞ ¼ C̄0ð−vÞ].
In the limit of correlation lengths that are large compared

to the lattice spacing, ξ ≫ 1, the discrete sums in Eq. (F2)
converge to Riemann integrals,

ξ2est ¼
R
R2 jvj2C̄0ðvÞd2v
6
R
R2 C̄0ðvÞd2v ; ðF2Þ

yielding an unbiased estimator ξ2est ¼ ξ2 for the family
of correlation functions C̄0ðvÞ ≃ α0 expðjvj=ξÞ. For corre-
lation lengths comparable in magnitude to the lattice
spacing, the finite sum in Eq. (F2) can produce a bias

BðξÞ ¼ ξ2 − ξ2est ≥ 0 in the estimator. Unfortunately, BðξÞ
is not an analytic function and thus cannot be removed
altogether. However, we numerically verified that BðξÞ is
upper bounded by 1=17, for any ξ ∈ R, which makes
Eq. (F2) a satisfactory estimator for the purposes of
identifying phases and transitions.

APPENDIX G: BOUNDARY HAMILTONIAN
AND TYPICAL BOUNDARY CONDITIONS

In this section, we discuss strategies to realize a
specific set of (open) boundary conditions for problems
of equilibrium electrodynamics. These strategies present
an extension to the simulations realized in this work,
which assume the boundary conditions to be either free
(for finite charge density) or periodic (for zero charge
density).
Von Neumann boundary conditions.—In this simple

scenario, the outgoing electric flux at each boundary site
is fixed and defined by the user. To realize this
boundary condition, start the TTN algorithm from a
product state that has the desired configuration of
electric fluxes at the open boundary, and then simply
carry out the optimization algorithm (without a boun-
dary Hamiltonian, i.e., Hb ¼ 0). The algorithm has no
means of changing the electric fluxes at the boundaries
and will converge to the bulk ground state, given that
specific boundary flux configuration.
Dirichelet boundary conditions.—To model the scenario

where the boundaries are a perfect conductor, we actually
assume the boundaries to be superconductive and expel
magnetic fields by displaying huge magnetic couplings at
the boundary. This model requires the usage of a magnetic
boundary Hamiltonian

Hb ¼ Jb

�XL−1
j¼1

ðÛ†
ð1;jÞ;−μx Ûð1;jÞ;μy Ûð1;jþ1Þ;−μx þ Û†

ðj;LÞ;μy Ûðj;LÞ;μx Ûðjþ1;LÞ;μy þ Û†
ðL;jþ1Þ;μx Û

†
ðL;jÞ;μy ÛðL;jÞ;μx

þ Û†
ðjþ1;1Þ;−μy Û

†
ðj;1Þ;μx Ûðj;1Þ;−μyÞ þU†

ð1;LÞ;−μx Ûð1;LÞ;μy þ U†
ðL;LÞ;μy ÛðL;LÞ;μx þ UðL;1Þ;μxÛ

†
ðL;1Þ;−μy

þ U†
ð1;1Þ;−μy Ûð1;1Þ;−μx þ H:c:

�
; ðG1Þ

which contains both edge terms (top rows) and corner terms
(bottom rows). To address the problem of electrodynamics,
the ground-state algorithm is carried out while setting
Jb ≫ maxfjtj; jmj; g2e; g2mg, ensuring that the magnetic
fields will approach a constant value (equal to zero) at
the boundary, once converged.

APPENDIX H: PERTURBATION THEORY

Here, we describe the corrections to the ground state
in both regimes outlined in Sec. III. Let us start by

considering particle fluctuations due to the presence of a
small tunneling jtj. The system has periodic boundary
conditions.
Perturbation around the vacuum state.—Form≫ jtj, the

vacuum state (with zero energy) is corrected by strictly
local particle-antiparticle fluctuations. The first nontrivial
contribution comes from a local dimer excitation as
depicted in Fig. 16, whose average energy is 2mþg2e=2.
The truncated Hamiltonian reads (apart from the sign of the
tunneling coupling, which, however, does not affect the
results)
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Hv ¼

2
6666664

0 t � � � t

t 2mþ g2e=2

..

. . .
.

t 2mþ g2e=2

3
7777775
; ðH1Þ

which is a ð1þ 2L2Þ × ð1þ 2L2Þmatrix. The correction to
the vacuum energy is therefore

Ev ¼
2
4g2e
4
þm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g2e
4
þm

�
2

þ 2L2t2

s 3
5: ðH2Þ

Perturbation around the dimer state.—Small-order tun-
neling perturbations on top of the fully dimerized states are
not sufficient to remove their degeneracy. The ground-state
energy sector remains degenerate up to the fourth order in
perturbation theory. Here, we focus on the smallest order
energy corrections for one specific dimerized configuration
and consider the possible excitations as depicted in Fig. 16.
We now have two different excitation sectors, depending on
where we remove a particle-antiparticle pair: When the pair
is annihilated on top of a dimer, the energy cost is
2mþ g2e=2; otherwise, when we remove a pair in between
two dimers, it costs 2m − g2e=2. The number of possible
configurations of the first type coincides with the number of
dimers, i.e.,L2=2; in the other case, we have 3L2=2 different
possibilities. The full truncated Hamiltonian is still a
ð1þ 2L2Þ × ð1þ 2L2Þmatrix,which now reads [apart from
the overall extensive constant EN ≡ ð2mþ g2e=2ÞL2=2]

Hd ¼

2
6666666666666666664

0 t � � � t t � � � t

t −2m − g2e=2

..

. . .
.

t −2m − g2e=2

t −2mþ g2e=2

..

. . .
.

t −2mþ g2e=2

3
7777777777777777775

; ðH3Þ

where, also in this case, the sign of t does not affect the
results. The correction to the vacuum energy can be
evaluated as well by solving detðHd − εÞ ¼ 0; indeed,
because of the structure of the matrix, and thanks to the
properties of the determinant, we find

Ed ¼
L2

2

�
g2e
2
þ 2m

�
þ ε−; ðH4Þ

where ε− is the negative solution of

ε

�
g4e
4
− ð2mþ εÞ2

�
þ 2L2t2

�
g2e
4
þ 2mþ ε

�
¼ 0: ðH5Þ

Now, it is clear that, when m is approaching the value
−g2e=4, the biggest corrections, at the lower order in t,
solely come from the sector that is quasidegenerate with the

̂H = 2m + g2e /2̂H = 0

t

Perturbation around the bare vacuum

̂H = EN = (L
2/2)(2m + g2e /2)

t

t

̂H = EN − 2m − g2e /2

̂ = EN − 2m + g2e /2

̂ = 2H m + g2e /2Ĥ = 0

t

Perturbation around the bare vacuum

Ĥ = EN = (L
2/2)(2m + g2e /2)

t

t

Ĥ = EN − 2m − g2e /2

Ĥ = EN − 2m + g2e /2

FIG. 16. Example of excited states coupled to the vacuum (top)
or to the fully dimerized state (bottom) at the lowest order in
perturbation theory in the tunneling coupling t, as described in
Appendix H.
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classical dimerized configuration. The finite-size scaling
depends on whether the mass is approaching from above
(i.e., from the vacuum) or form below (i.e., from the
dimerized configuration): In the first case, 2L2 states
contribute to the energy corrections; in the second case,
if ge > 0, only L2=2 states get involved. Here, an energy
gap, jEv − Edj ∼ Lt=

ffiffiffi
2

p
, opens. Notice that, in the patho-

logical situation where ge ¼ 0 as well, there is no gap
opening at the second order in t, and therefore a sharper
transition is expected.
Let us mention that the correction to the ground-

state energy coincides, as it should, with the second-
order degenerate perturbation theory. In practice, if Q̂ is
the projector into the classical charge-crystal sector
and P̂ ¼ 1 − Q̂ the projector into the complementary
sector, then we may split the eigenvectors into two
contributions: jEki ¼ jϕki þ jφki, where jϕki≡ Q̂jEki
and jφki≡P̂jEki. The eigenvalue equation ðĤ0−tV̂ÞjEki¼
EkjEki therefore splits into two coupled equations:

−tP̂ V̂ jϕki ¼ ðEk − Ĥ0 þ tP̂ V̂ P̂Þjφki; ðH6Þ

−tQ̂ V̂ jφki ¼ ðEk − ENÞjϕki; ðH7Þ

where we used the fact that, in our case, Q̂ V̂ Q̂ ¼ 0.
Corrections within the degenerate subsector are thus given
by recursively solving the following equation:

ðEk−ENÞjϕki¼ Q̂V̂ P̂
t2

Ek− Ĥ0þ tP̂ V̂ P̂
P̂ V̂ jϕki: ðH8Þ

At the second order in the tunneling, the dimerized
subsector degeneracy is not lifted, and the energy changes
according to Eq. (H5). Let us stress that, deep in the

charge-crystal regime, these are the dominant corrections.
However, close to the classical transition, the creation or
annihilation of a particle-antiparticle is energetically favor-
able, and nontrivial corrections to the degeneracy of the
ground-state energy sector are induced by fourth-order
tunneling transitions: Two different classical dimerized
states are coupled whenever they share at least one
“resonating” plaquette, which consists in two neighboring
horizontal or vertical dimers (see the 4m mass sector in
Fig. 17). This effect partially removes the ground-state
degeneracy, making a specific superposition of different
dimer states energetically favorable. Incidentally, let us
mention that, in the thermodynamic limit, there exist
classical dimer configurations, e.g., the state where dimers
are all vertically (horizontally) aligned with all local electric
fluxes pointing in the same direction, which are not
resonating with any other fully dimerized state at any
order in perturbation theory.

APPENDIX I: EXACT RESULTS OF
THE 2 × 2 SYSTEM

In the zero charge density sector, the single plaquette
system, i.e., 2 × 2, admits only 13 gauge-invariant diagonal
configurations in the spin-1 compact representation of the
electric field. The full Hamiltonian can be easily constructed
by considering each mass sector f0; 2m; 4mg independ-
ently, and it acquires the following block structure,

H2×2 ¼

2
6664
D0 T02 ∅

T20 D2 T24

∅ T42 D4

3
7775; ðI1Þ

where Dj ¼ D†
j , T20 ¼ T†

02, T42 ¼ T†
24, and all matrix

entries are real. To construct each block, we use the
gauge-invariant eigenstates of the electric field Êx;μ and
particle number n̂x, as listed in Fig. 17.
The diagonal blocks read

D0 ¼

0
B@

0 −g2m=2 −g2m=2
−g2m=2 2g2e 0

−g2m=2 0 2g2e

1
CA; ðI2Þ

D2 ¼ I4 ⊗
�
2mþ g2e=2 −g2m=2
−g2m=2 2mþ 3g2e=2

�
; ðI3Þ

D4 ¼
�
4mþ g2e −g2m=2
−g2m=2 4mþ g2e

�
; ðI4Þ

where I4 is a 4 × 4 identity matrix. The out-diagonal blocks
are responsible for creation or annihilation of particle-
antiparticle pairs and are given by

0 :

2m :

4m :

1 2 3

1 2 3

5 6 7

4

8

1 2

FIG. 17. Graphic representation of the basis vectors, in each
mass sector, used to build up the 2 × 2 LGT Hamiltonian in the
S ¼ 1 representation, as outlined in Appendix I.
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T02 ¼

0
B@

−t 0 −t 0 t 0 −t 0

0 0 0 0 0 t 0 −t
0 −t 0 −t 0 0 0 0

1
CA; ðI5Þ

T42 ¼
�

0 −t 0 −t −t 0 −t 0

−t 0 −t 0 0 −t 0 −t

�
: ðI6Þ

The exact diagonalization of the Hamiltonian Ĥ2×2
allows us to explore the behavior of the ground state in
the vicinity of the transition m ≃ g2e=4. As expected from
the enhancement of quantum fluctuations, the gauge-
invariant hopping term gets picked at the transition
(Fig. 18, top panel). The overlap of the ground state with
the bare vacuum as a function of m for different values
of the electric coupling is analyzed as well (central panel
in Fig. 18). Exact curves are compared with first-order
perturbative results.

In order to more carefully explore the transition region, we
look at the fidelity susceptibility of the ground state [98–101],
χFðmÞ ≡ h∂mGSðmÞj∂mGSðmÞi − jhGSðmÞj∂mGSðmÞij2,
which gives the leading contribution to the ground-state
fidelity jhGSðmÞjGSðmþδÞij¼1−δ2χFðmÞ=2þoðδ2Þ, since
the linear contribution in δ vanishes due to the normalization
condition hGSðmÞjGSðmÞi ¼ 1. This quantity is the perfect
indicator of a change in the geometrical properties of the
ground state when varying the couplings. Moreover, from
perturbation theory, it can be easily shown that χFðmÞ≤
½hGSðmÞjðPxn̂xÞ2jGSðmÞi−hGSðmÞjPxn̂xjGSðmÞi2�=Δ2,
where Δ is the energy gap between the ground state and the
lower excitations. In practice, the fidelity susceptibility of the
ground state is bounded from above by the number of particle
fluctuations (which is an extensive quantity) divided by
the gap. Whenever χFðmÞ shows a superextensive behavior,
the ground state of the system should be gapless. From the
numerical data, we have confirmation that χFðmÞ is enhanced
in the vicinity of the transition between the two regions, as
depicted in the bottom panel of Fig. 18.
In Fig. 19, we reproduce the behavior of the matter

density as a function of the magnetic coupling, for different
values of the electric-field couplings. As explained in the
main text and confirmed by these exact results in the 2 × 2
plaquette, the local density gets enhanced by applying a
small magnetic coupling; however, when g2m ≃ g2e, the
particle density starts decreasing and eventually vanishes
for g2m ≫ g2e. Let us stress that this phenomenon is strictly
due to the finite compact representation of the gauge field.
Indeed, when gauge-field fluctuations are very strong,

we may expect deviations in the observables due to the

FIG. 19. Behavior of the particle density vs the magnetic
coupling in the 2 × 2 system for m ¼ −2 and different electric
couplings g2e=2. The shaded gray area represents the region
explored in Fig. 6. Solid lines are the S ¼ 1 results; dashed lines
are the S ¼ 2 results.

FIG. 18. Top panel: expectation value of the tunneling Ham-
iltonian as a function of the distance from the classical transition
for a 2 × 2 system. Center panel: module square of the overlap
between the exact 2 × 2 ground state and the vacuum state when
varying the coupling across the classical transition point. Dashed
lines are the perturbative predictions. Bottom panel: fidelity
susceptibility of the ground state as defined in the main text.
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finite spin representation of the electric field; in order to have
an estimate of the finite-S representation accuracy, we further
analyze the 2 × 2 plaquette system in the S ¼ 2 compact
representation, namely, when the electric field (in units of
flux) can have the values f−2;−1; 0; 1; 2g. The full
Hamiltonian still preserves the block structure in Eq. (I1),
where now each mass sector acquires further gauge-invariant
states, for a total of five states in the zero-mass sector; 16 states
in the 2m-mass sector; four states in the 4m-mass sector.
As a matter of fact, when S ¼ 2, the phenomenon of

density suppression depicted in Fig. 19 occurs for much
larger values of the magnetic couplings, thus disappearing
in the limit S → ∞.
In Fig. 20, we compare the matter density for the two

compact representations S ¼ 1, 2 and different values of the
couplings. As expected, for g2e ≫ g2m, the two representa-
tions are equivalent; moreover, if −m ≫ 1 (i.e., very
negative) the diagonal configurations are more energetically
favorable, and even for small electric coupling and a finite
value of g2m, the truncation of the gauge-field representation
does not affect the results too much (S ¼ 1 and S ¼ 2 are
almost identical indeed); of course, form ≥ 0, this is not the
case, and we need g2e ≫ g2m. Notice that, in the actual QED,
this condition is satisfied as long as the electric coupling is
sufficiently large since g2e ∼ g−2m ∼ g2.
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5
augmented Tree Tensor Network

This chapter describes a novel Tensor Network geometry, the augmented Tree Tensor
Network (aTTN), which was developed in the scope of this thesis to efficiently study high-
dimensional quantum many-body systems. In particular, the developed Tensor Network was
introduced as a way to numerical benchmarks of near-future quantum simulators and quan-
tum computers, showing the fact that Tensor Networks might have a relevant impact not
only within the vast-growing Tensor-Network-community but further on experimental groups
working on the implementation of quantum simulation and quantum computing protocols. In
fact, very recent experiments have proven the possibility to realize quantum many-body states
on a variety of platforms such as superconducting qubits, ultracold atoms, trapped ions and
Rydberg-atom lattices with high dimensions at unprecedented sizes [26, 29, 31, 192]. These
experimental setups pave the way for future quantum technologies, however, require a robust
numerical apparatus able to provide proper validation and benchmarking.

As discussed in the previous Chapt. 2, Tensor Networks have been developed over the last
three decades to simulate such quantum many-body systems on classical computers. The Ma-
trix Product State (MPS) [46, 48, 61–63, 136, 137] has been established as the main workhorse
for one-dimensional systems, not only against other Tensor Network approaches, but against
other variational ansätze as well (see Chapt. 6). However, the development of Tensor Network
algorithms for studying quantum many-body behaviour in two- or even higher-dimensional
systems is still ongoing, since combining accuracy and scalability in simulating these systems
remains a difficult challenge for Tensor Network methods [21, 24]. Different Tensor Network
geometries have been brought forward and studied extensively to tackle this challenge with
the most prominent being the Projected Entangled Pair States (PEPS) [45, 71, 77–79] for
two-dimensional systems only, and the Tree Tensor Networks (TTN) [22, 35, 37, 67, 68, 80],
as well as MERA [66, 73–75], which, in principle, can be defined for any system dimensionality.
However, all of these Tensor Network geometries have fundamental limitations in represent-
ing the underlying entanglement properties of a high-dimensional quantum state and are yet
to overcome the challenge to efficiently combine accuracy and scalability (see Sec. 2.2 and
Chapt. 3).
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At this point, the augmented Tree Tensor Network (aTTN) provides a novel tool that
can capture complex entanglement properties of high-dimensional systems, while keeping a
favourable computational complexity compared to the competing Tensor Network geometries,
such as PEPS and MERA. The aTTN combines the advantages of MERA and TTN, making
it possible to simulate systems in and out of criticality at unprecedented system sizes, up to
N = 64× 64.

In the following, we firstly provide the manuscript Efficient Tensor Network ansatz for
high-dimensional quantum many-body problems published in the journal Physical Review Let-
ters, 126 [23]. Therein, we propose the new Tensor Network ansatz in the context of paving
the way to numerical benchmarks of near-future quantum simulators and quantum computers.
We further show that our ansatz outperforms most of the competing techniques, which are
currently limited to smaller system sizes. As an experimental case of study, we investigate
a two-dimensional Rydberg-atom lattice, one of the most promising platforms for quantum
simulation and computation, and compute its ground-state phase diagram, predicting unex-
plored phases of matter and quantum phase transitions as they would be observed in real
experiments.

Afterwards, the aTTN is described in more technical detail, providing a comprehensive
overview of our novel Tensor Network method. In particular, this addendum explains how the
structure of the aTTN compensates the lack in faithfully capturing the area law of the TTN
in high-dimensional systems while maintaining its main advantages: (i) the low scaling with
the bond dimension m compared to both MERA and PEPS, and (ii) the ability to contract
the network exactly. Further, the section provides a detailed description of the optimisation
technique of the aTTN used for the ground-state search of quantum many-body systems
and additionally address the procedure on how to efficiently compute observables. Finally,
it compares the aTTN in more detail with the TTN in an extensive study on the critical
two-dimensional Heisenberg model that (i) demonstrates the higher precision of the aTTN
in describing two-body correlations 〈σγi,jσ

γ
i′,j′〉, (ii) provides an analysis on the engineering of

the disentangler positions including their effects on the numerical results, and (iii) illustrates
the more favourable CPU time of the aTTN.

5.1 Efficient Tensor Network ansatz for high-dimensional quan-
tum many-body problems
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(Received 26 November 2020; accepted 25 February 2021; published 29 April 2021)

We introduce a novel tensor network structure augmenting the well-established tree tensor network
representation of a quantum many-body wave function. The new structure satisfies the area law in high
dimensions remaining efficiently manipulatable and scalable. We benchmark this novel approach against
paradigmatic two-dimensional spin models demonstrating unprecedented precision and system sizes.
Finally, we compute the ground state phase diagram of two-dimensional lattice Rydberg atoms in optical
tweezers observing nontrivial phases and quantum phase transitions, providing realistic benchmarks for
current and future two-dimensional quantum simulations.
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Recent experiments investigated one- and two-dimen-
sional lattice quantum many-body systems at unprec-
edented sizes, calling for a continuous search of
numerical techniques to provide accurate benchmarking
and verification of future quantum simulations [1–9]. In
particular, Rydberg atoms in optical tweezers are one of the
most promising platforms for the study of quantum phase
transitions, quantum simulation and computation [10–19].
In the last decades, Monte Carlo and Tensor Networks (TN)
algorithms have been employed widely to study quantum
many-body systems, and they are routinely used to bench-
mark quantum simulation results [20–30]. However,
Monte Carlo methods are limited by the sign problem
[31], while combining accuracy and scalability in simulat-
ing high-dimensional systems still represent an open
challenge for TN methods [32,33]. Here, we introduce a
novel TN variational Ansatz, able to encode the area law of
quantum many-body states in any spatial dimension by
keeping a low algorithmic complexity with respect to
standard algorithms (see Fig. 1), thus opening a pathway
towards the application of TN to high-dimensional systems.
Hereafter, we benchmark this approach against spin models
up to sizes of N ¼ 64 × 64, in and out of criticality. Finally,
we simulate 2D Rydberg-atom lattices at sizes of up to
∼1000, demonstrating the ability of providing the missing
benchmarks for very recent quantum simulation experi-
ments [34–37]: nontrivial phase transitions are character-
ized, in agreement with those experimentally observed
in Ref. [34].
In the last three decades, TN have been developed and

applied to classically simulate quantum many-body sys-
tems, representing the exponentially large wave function
with a set of local tensors connected via auxiliary indices
with a bond-dimension m. The bond dimension m allows

us to control the amount of information in the TN,
interpolating between mean field (m ¼ 1) and the exact
but inefficient representation. While for one-dimensional
(1D) systems the matrix product states (MPS) are the
established TN geometry for equilibrium and out-of-
equilibrium problems with open boundary conditions,
the development of TN algorithms for 2D or 3D systems

(a) (b)

(d)(c)

FIG. 1. (a) An aTTN for a 8 × 8 2D system: The disentanglers
inDðuÞ are applied to the TTN state jψTTNi across the boundaries∂ν of each link ν, in order to fulfill the area law depicted (b) for a
sublattice A (shaded region) and its boundary ∂A (purple dots).
(c),(d) Relative error of the Ising model ground state energy
computed with the aTTNs and the TTNs. While for L ¼ 8 the
precision achieved with the two methods is the same, a clear
improvement emerges for L ¼ 64.
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is still ongoing [38–43]. The most successful TN repre-
sentations are the projected entangled pair states (PEPS)
[44–47] and the tree tensor networks (TTN) [48–51], as
well as the multiscale entanglement renormalization
Ansatz (MERA) [52–54]. The PEPS flourishes for (infin-
ite) 2D systems with open boundary condition and small
physical dimension d and MERA provides an efficient
representation in critical systems. The TTN offers a very
flexible geometry which has proven to be a valid alter-
native with its particular strong points ranging from
applications in gapped 1D systems with periodic boun-
dary conditions [28,50], 2D systems with large local
dimension d [24,51] to 3D systems [55].
TNs shall satisfy entanglement bounds under real-space

bipartitions, known as area laws, of the physical states they
represent [39,45,56]. The PEPS is the potentially most
powerful TN Ansatz and by construction satisfies the area
laws of entanglement [56]. However, it suffers from a high
algorithmical complexity [typically Oðm10Þ for finite-sized
PEPS [46,57,58] ] and lacks an exact calculation of expect-
ation values. Indeed, the exact contraction a finite square
lattice of the complete PEPS scales exponentially with the
system linear dimension L and sophisticated numerical
methods shall be introduced to mitigate this unfavorable
scaling [58–63]. On the contrary, the MERA in two
dimensions is able to calculate expectation values exactly
while satisfying area law but suffers from an even higher
algorithmical complexity [at least Oðm16Þ] [56]. Another
well-established approach is to extend the MPS for 2D
systems [64]: this approach has a very low algorithmic
complexity [Oðm3Þ], however, it is limited by an expo-
nential scaling of the required bond dimension m ∼ eLk

with the system minimal linear size Lk ≡min fLx; Lyg. As
a compromise, TTNs are equally scalable in both system
dimensions while still benefiting from a low numerical
complexity, Oðm4Þ but may fail to satisfy the area law for
large systems sizes in higher dimensions [32,65].
Hereafter, we introduce a novel Ansatz which augments

the TTN and show that is able to encode the area law
keeping constant the algorithmic complexity to [Oðm4Þ] in
any physical dimension. As numerically demonstrated
hereafter, the augmented tree tensor network (aTTN) allows
us to efficiently tackle open challenges in two- and three-
dimensional systems at sizes inaccessible before.
Augmented tree tensor network.—The aTTN Ansatz

jψ aTTNi ¼ D†ðuÞjψTTNi is based on a TTN wave function
(a binary tree) jψTTNi ∈⊗N

i Hi, with Hi ¼ Cd, with an
additional sparse layer DðuÞ ¼ Q

k uk of two-site unitary
operators fukg acting on (some of) the physical links of the
TTN (see Fig. 1). The additional layer DðuÞ contains ND
independent nonoverlapping (i.e., acting on different cou-
ples of sites of the lattice L) and thus commuting disen-
tanglers fukg. In this way, DðuÞ describes a unitary
mapping of the Hamiltonian H to an auxiliary
Hamiltonian Haux ¼ DðuÞHD†ðuÞ. Each local

transformation uk aims to decouple—or disentangle in
the spirit of the MERA language [54]—entangled degrees
of freedom in the quantum many-body state, that are then
trivially included in the TTN layer. As described in the
following, DðuÞ modifies the TTN in such a way that the
aTTN satisfies the area law while keeping the complexity
for the optimisation at Oðm4Þ. Thus, the aTTN overcomes
the drawback of the TTN while maintaining its main
advantages: (i) the low scaling with the bond dimension
m compared to both MERA and PEPS, and (ii) the ability to
contract the network exactly. We stress that the aTTN can
be applied straighforwardly to a general D-dimensional
system. Finally, we notice that the aTTN is effectively a
particular subclass of a MERA, where the structure scale
invariance is traded for efficiency, as the scale invariance is
not necessary to ensure the area law at the tensor structure
level. Figure 1(a) reports an illustrative example of an
aTTN for a two-dimensional 8 × 8 system with the DðuÞ
layer composed by 6 disentanglers uk (green). Notice that
not every physical site j is addressed by a disentangler, a
key property for preserving numerical efficiency. Indeed,
the disentangler positioning is critical in order to (i) keep an
optimal numerical complexity for the optimization and
(ii) efficiently encode an area law in the TN.
Area law in aTTN.— Hereafter, we specialize the

discussion for the case of a two-dimensional square lattice
L with N ¼ L × L sites, and L ¼ 2n. Moreover, we
consider a binary TTN, where the tree tensors coarse grain
neighboring sites for each layer Λl alternatingly along the x
(for even l) and the y direction (odd l) with l going from
l ¼ 1 addressing the topmost layer to l ¼ logL for the
lowest layer [Fig. 1(a)]. Each link ν of the tree bipartites the
whole system L into two subsystems A½ν� and B½ν�,
separated by the boundary ∂ν with length γν. The area
law implies that the entanglement entropy of the bipartition
SðA½ν�Þ (or B½ν�, respectively) scales with γν. Thus, in order
to faithfully represent the area law, the bond dimension mν

of each link ν should scale with mν ≈ ecγν , where c is a
constant factor. This scaling argument implies that for two
dimensions the TTN Ansatz requires an exponentially large
bond dimension m within the topmost layers, for which
γν ∼ L. In conclusion, with increasing L a TTN represen-
tation eventually fails to capture area law states’ properties
as it becomes exponentially inefficient. This necessary
exponential scaling of the bond dimension can be prevented
by inserting the tensors layer DðuÞ that augments the TTN
with ND ¼ P

νKν disentanglers, where Kν is the number
of disentanglers along the boundary ∂ν for each link ν.
More precisely, each disentangler uk is positioned such that
it acts on one physical site in the subsystems A½ν� and the
other in subsystems B½ν�. Thus, each disentangler can
maximally assess information in a d2-dimensional space
belonging to two local Hilbert spaces, reducing the entan-
glement for the TTN up to the order of d2. As a result, all
the Kν disentanglers support the TTN link ν by
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disentangling information on the order of mν;aux ≈ ðd2ÞKν .
Therefore, when applying DðuÞ, the information assessed
by the aTTN for the bipartition defined by each link ν scales
with mν;eff ≈mν;auxmν ¼ d2Kνþξν , where we introduced the
parameter ξν ≡ logd mν describing the contribution of the
TTN bond dimension mν. If we now impose Kν ∼ γν, we
obtain the exponential scaling required to encode the area
law for the two-dimensional aTTN state. Notice that the
number of disentanglers Γl ¼

P
ν∈Λl

Kν for each layer shall
be directly proportional to

P
ν∈Λl

γν ∼ L. However, placing
exactly L disentanglers for each layer of the tree may lead
to an unfavorable, L-dependent scaling of Oðm4dLÞ for the
computational complexity. Thus, a careful balance between
the position of the disentanglers and their density has to be
found. This balance can be found as when no couple of
disentanglers is directly connected by a Hamiltonian
interaction term, the algorithmic scaling remains of the
order Oðm4d2Þ. Moreover, the area law is still satisfied,
removing the disentanglers crossing the boundaries of the
bipartitions ∂ν corresponding to the lower layers of the tree
(l → logL). On the contrary, one shall keep the maximal
allowed number of disentanglers (i.e., not connected by
Hamiltonian terms) to support the boundaries correspond-
ing to the higher branches (l → 1). Indeed, for ν ∈ Λl with
l → logL, the TTN bond-dimensionmν is sufficiently large
to capture the area law entanglement—or even the complete
state—accurately, especially for reasonably small local
dimensions d. Instead, the contribution ξν of the TTN is
negligibly small for ν ∈ Λl with l → 1 compared to the
required exponentially large bond dimension, calling for
the support of the disentanglers.
In conclusion, different disentangler configurationsDðuÞ

exist, matching the aforementioned criteria, computational
efficiency and the area law. In our numerical simulations,
the final resulting precision was not significantly affected
by the particularly chosen configuration (for details see
Supplemental Material [66]).
Ising model.—We first benchmark the aTTN Ansatz

against the ordinary TTN via a ground state search on
the ferromagnetic 2D Ising model with periodic
boundary conditions (BC). We consider a L × L lattice
with L ¼ f8; 16; 32; 64g and the Ising Hamiltonian
H ¼ P

L
i;j¼1 σ

x
i;jσ

x
iþ1;j þ σxi;jσ

x
i;jþ1 þ

P
L
i;j¼1 σ

z
i;j, where σγi;j

(with γ ∈ fx; y; zg) denote the are Pauli matrices acting on
the site ði; jÞ. For small system sizes (L ¼ 8 and L ¼ 16)
both the TTN and the aTTN reach the chosen machine
precision of 1E-8 with high bond dimension. However, as
expected, for larger sizes we find a significant improvement
in the precision of the aTTN simulations. Indeed, the
different performances become evident for L ¼ 32 and
L ¼ 64, as the aTTN and the TTN converge with increasing
bond dimension to different values for the energy Fig. 1
reports the relative error ϵm ¼ jðhHim − EexÞ=Eexj for
increasing bond dimension m with respect to the energy
Eex obtained by extrapolating the results of the aTTN for

L ¼ 8 and L ¼ 64 (For the L ¼ 16, 32 results see Fig. 3 in
the Supplemental Material [66]).
Heisenberg model.—We now analyze the more challeng-

ing critical antiferromagnetic two dimensional Heisenberg
model H ¼ P

L
i;j¼1

P
γ∈fx;y;zg σ

γ
i;jσ

γ
iþ1;j þ σγi;jσ

γ
i;jþ1, with

periodic BC. In Fig. 2 we compare the estimated energy

FIG. 2. Relative error ϵ of the 2D Heisenberg ground-state
energy as a function of the system linear size L for the TTN,
aTTN, NNS [68], NAQS [69], EPS [70], PEPS [58], 2D-DMRG
[64] (circles, squares and triangles indicate open BC, periodic BC
and cylindrical BC, respectively) each compared with the best
available estimates obtained by MC with the same BC (for pbc
[22], for obc [58] obtained via ALPS library [75–77]).

FIG. 3. Up: Phase diagram as a function of the detuning Δ and
the nearest-neighbors interaction energy Vnn. The disordered
phase is characterized by a substantially uniform distribution of
the excitations, while in the phases Z2 and Z4 the excitations are
distributed as shown in the upper (Z4) and lower (Z2) insets.
Down: Renormalized structure factor S0ðkÞ ¼ SðkÞ=Sð0Þ for
Vnn ¼ 46 MHz and (a) Δ ¼ 28 MHz (Z2 phase) and
(b) Δ ¼ 12 MHz (Z4 phase). Other parameters: Ω ¼ 4 MHz.
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density obtained by extrapolating the results from the TTN
and the aTTN at m → ∞ with previous results from different
variational Ansätze obtained by means of ordinary cluster
resources [67]. In particular, we plot the relative error obtained
by the different tensor network Ansätze and the best known
results, obtained via quantum Monte Carlo simulations [22].
Differently from the Ising model, we find the aTTN to be
more accurate than the TTN even at lower system sizes, such
as L ¼ 8, 16. Interestingly, the aTTN for L ¼ 16 obtains an
even more precise ground state energy density compared to
most of the alternative variational Ansätze at lower finite
system size of L ¼ 10, such as neural network states (NNS),
neural autoregressive quantum state, entangled plaquette
states (EPS), or PEPS [58,68–70]. We mention that, while
the PEPS is very efficient with its ability to work directly in
the thermodynamic limit in describing infinite systems as
iPEPS [71,72], the PEPS analysis for finite sizes are, for now,
limited to N ¼ 20 × 20 systems. It turns out that for this
model a very competitive variational approach is the 2D-
DMRG, which outperforms the alternative methods for finite
sizes with open or cylindrical BC up to the system size
L ¼ 12, but struggles with periodic BC and with increasing
both system sizes L≳ 12 [64]. Finally, we extended our
analysis toL ¼ 32: In this case no public result is available for
periodic BC and thus we estimated the error by extrapolating
the value of the finite size scaling of Monte Carlo simulations
[22]. In recent works, heavy parallelization over large high
performance computing systems have been exploited to study
the Heisenberg model with open BC combining the PEPS
structure with MC techniques, reaching a precision of ∼10−4
at 32 × 32 [73,74].
We point out that the here performed aTTN simulations

(as well as the TTN simulations) exploit a Uð1Þ symmetry.
However, for this model, we could further drastically
improve the performance of the aTTN by incorporating
the present SU(2) symmetry in the simulation framework
[32,78,79].
Interacting Rydberg atoms.—We now present new

physical results, on a long-range interacting system
by studying the zero-temperature phase diagram of
an interacting Rydberg atoms two-dimensional
lattice [4], described by the Hamiltonian
Hryd ¼

P
r½ðΩ=2Þσxr − Δnr þ 1

2

P
s Vðjr − sjÞnrns�, where

the Rabi frequency Ω couples the ground jgir and the
excited Ryderg state jrir and nr ¼ jrihrjr. Δ is the
detuning and Vðjr − sjÞ ¼ c6=jr − sj6 is the interaction
strength between two excited atoms placed at sites r and
s. We keep the interaction terms up to the fourth-nearest
neighbor and set the Rabi frequency Ω ¼ 4MHz, while
the interaction parameters refer to 87Rb atoms excited to
the state j70S1=2i, for which c6 ¼ 863 GHz μm6.
The interactions limit the maximum excitation density

according to the Rydberg blockade radius r�—the
minimum distance at which two atoms can be simulta-
neously excited—defined by the relation Vðr�Þ ¼ Ω. The

competition between the interactions strength and Δ
generates nontrivial phases characterized by regular spatial
excitation-density distributions. Figure 3(a) shows the
phase diagram of the system as a function of the
detuning and the nearest-neighbor interaction energy Vnn,
obtained via aTTN simulations with L ¼ 4, 8, 16, 32 with
open BC.
For low values of the detuning Δ, the system exhibits a

disordered phase characterized by the absence of excita-
tions while, increasing Δ, excitations are energetically
favored and the interactions determine their spatial arrange-
ment. In the limit of Vnn → 0, or a → ∞, the atoms are
noninteracting and the expectation value hnri → 1 for
Δ ≪ Ω. At larger values of Vnn, corresponding to
r�=

ffiffiffi
2

p
< a < r�, nearest neighbor atoms cannot be simul-

taneously excited, giving rise to the Z2 phase [4,80] with a
two-degenerate ground state with the excitations distributed
in a chess board like configuration, as shown in Fig. 3(a).
Nevertheless, the Z2 disappears at low values of Vnn and
large detuning, as all the atoms are excited (light orange,
right-bottom region of the phase diagram). The spatial
distribution of the excitations in the orderded phase is well
captured by the peaks of the static structure factor
SðkÞ ¼ ð1=N2ÞPr;s e

−ik·ðr−sÞhnrnsi. In particular, the
phase Z2 exhibits a peak in ðπ; πÞ, as shown in Fig. 3(b).
The transition from the disordered to the Z2 phase is a
second-order one, as it emerges by computing the second
derivative of the energy with respect to Δ (see
Supplemental Material [66]). In order to determine the
critical line separating the two phases we define the non-

local order parameter Oð2Þ
r ¼ ðnrx;ry − nrxþ1;ry − nrx;ryþ1 þ

nrxþ1;ryþ1Þ=4 and perform a finite-size scaling analysis of

hOð2Þ†
r Oð2Þ

r i vs Δ, where hOð2Þ†
r Oð2Þ

r i is estimated by Sðπ; πÞ
[81,82] (see Supplemental Material [66]). By further
reducing a, the blockade radius prevents diagonal-adjacent
atoms to be excited. As a consequence, each one of the Z2

ground states breaks into two different states, giving rise to
the four-degenerate phase Z4: In each one of the ground
states of this phase, each excited atom is surrounded by
atoms in their ground states [see upper inset in Fig. 3(a)].
We observe a second-order phase transition in Vnn for Δ ≃
10 MHz from the Z2 to the Z4 phase at Vc

nn ¼ 32�
2.5 MHz (or equivalently a ¼ r�=

ffiffiffi
2

p
). The static structure

factor exhibits four additional peaks in the points such as
ð0; πÞ as shown in Fig. 3(c). As in the Z2 case, a second-
order phase transition occurs between the disordered
phase to the Z4 by changing Δ at a fixed Vnn. We
determine the critical line by introducing the order para-

meter Oð4Þ
r ¼ ðnrx;ry þ inrxþ1;ry − inrx;ryþ1 − nrxþ1;ryþ1Þ=4,

defined such that the value of hOð4Þ†
r Oð4Þ

r i equals Sð0; πÞ in
the Z4 phase. Remarkably, we find that another second-
order phase transition occurs by further increasingΔ, leading
the system from the Z4 to the Z2 phase. We expect that at
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larger values of Vnn new phases would emerge and accord-
ingly, new phase transitions would occur by changing Δ.
Conclusions.—We have augmented the well-established

TTN geometry with a new Ansatz which reproduces area
law for high dimensional quantum many-body systems.
The efficiency of aTTNs allowed us to reach large sizes
(32 × 32) in the study of critical system, going beyond the
current possibilities of standard PEPS and DMRG, and
therefore set new benchmarks for future numerical simu-
lations [83]. As a first application of aTTNs, we have
characterized the phase diagram of two-dimensional
Rydberg atoms in optical tweezers, with atoms number
of the order of current and near future experiments [2].
Further applications include the study of systems which
cannot be studied via Monte Carlo simulations due to the
sign problem [31,84], such as Abelian and non-Abelian
lattice gauge theories at finite densities [24,55,85–88].
Such an application enables the study of the continuum
limit at higher dimensions, paving the way to unveil novel
insights into our understanding of the fundamental
constituents of our universe [89,90]. Finally, the aTTN
Ansatz can support known TN algorithms [28,91–96] to
investigate nonequilibrium dynamics in open and closed
high-dimensional systems, including annealing, quenches,
or controlled dynamics.
In conclusion, the aTTN Ansatz introduced here provides

a novel powerful tool for simulating quantum systems in
two or higher dimensions, which, beyond many interesting
physical applications will provide benchmark near-future
quantum simulations and computations on different plat-
forms, as we have demonstrated for Rydberg atoms in
optical tweezers.
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5.2 Technical description of an aTTN

In this section, we describe the aTTN in more technical detail, providing a comprehensive
overview of our novel Tensor Network method. We begin by explaining the structure of the
aTTN in more detail and how it compensates the drawbacks of the TTN while maintaining
its main advantages: (i) the low scaling with the bond dimension m compared to both MERA
and PEPS, and (ii) the ability to contract the network exactly. Further, we provide a detailed
description on the optimisation technique of the aTTN used for the ground-state search of
quantum many-body systems and additionally address the procedure on how to efficiently
compute observables. Finally, we compare the aTTN in more detail with the TTN in an ex-
tensive study on the critical two-dimensional Heisenberg model, demonstrating among others
the higher precision of the aTTN in describing two-body correlations 〈σγi,jσ

γ
i′,j′〉, an analysis on

the engineering of the disentangler positions including their effects on the numerical results,
and the more favourable CPU time of the aTTN.

Since the following builds on the presented publication and aims to provide a deeper
understanding, this chapter has to be understood in this context only and includes selected
parts and material of the original publication without explicit citation.

5.2.1 aTTN geometry

The augmented Tree Tensor Network (aTTN) represents a wave-function |Ψ〉 ∈H on a lattice
L with the Hilbert space H . In general, the lattice L can be an D-dimensional lattice
containing N =

∏D
i=1 Li sites, where each site j ∈ L is described by a local Hilbert space Hj

with finite dimension dj , so that its complete Hilbert space is spanned by H = ⊗jHj .
The geometry of the aTTN is based on a TTN wave-function with an additional layer of

disentanglers D(u) attached to the outgoing links on the bottom of the TTN. Thus the aTTN
representation of a pure state |ψ〉 ∈ ⊗Ni Hi on the lattice L is given by

|ψaTTN〉 = D†(u)|ψTTN〉 (5.1)

with |ψTTN〉 describing the wave-function parametrised by the internal TTN. Therein, the
appended layer D(u) contains ND disentanglers {uk}, which all act independently of each
other on different sites of the lattice L . Each of the disentanglers uk is a unitary when fusing
its first two and its last two indices respectively, thus obeying the isometry condition

∑

k3,k4

(uk)
k1,k2

k3,k4
(u†k)

k3,k4

k′1,k
′
2

= δk1,k′1
δk2,k′2

. (5.2)

Hence, one disentangler uk performs a unitary transformation on two physical sites (i
[k]
1 , i

[k]
2 )

towards the attached TTN. This local transformation aims to decouple - or disentangle -
relevant degrees of freedom in the quantum many-body state which consequently disappear
for the TTN. Thus, the complete layer D(u) maps a pure state ψ of the lattice L to another
pure state ψaux within the same Hilbert space H by applying all of its disentanglers uk:

D(u) : H →H (5.3)

D(u)|ψ〉 = u1u2...uK |ψ〉 = |ψaux〉 (5.4)

Note, that the different disentanglers uk commute with each other, as they all act on
different spaces Hk1⊗Hk2 . In this manner, D(u) can be as well seen as a unitary mapping for a
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|ψTTN〉

D(u)
H

(a) Dimetric view (b) Side view (c) Top view

Figure 5.1: Example of an aTTN for a 2D system with N = 8× 8 sites in different views (a)-(c).
The aTTN contains an internal TTN ψTTN (illustrated with tensors in blue and links in gray) with
a layer of disentanglers D(u) (green) attached to the outgoing links of the TTN. For illustration, we
indicated a Hamiltonian H (orange) acting on the physical sites of the aTTN. (c) The disentangler
layer D(u) supports the most critical links of the internal TTN with a number of disentanglers Kν

connecting the bipartitions introduced by the link ν. To encode the area law, Kν scales with the
boundary length γν .

given physical Hamiltonian H ∈H to an auxiliary Hamiltonian Haux = D(u)HD†(u) towards
the TTN within the aTTN. This preconditioning of the Hamiltonian H for the internal TTN
can be performed in a way, such that it introduces an area law for higher-dimensional systems
of the complete network while keeping the complexity for the optimisation at O

(
m4
)
. Thus

the aTTN avoids the weakness of a TTN - being the lack of an area law - and still maintains
its main advantages, namely (i) the reasonably low scaling with bond dimension m compared
to both MERA and PEPS, and (ii) the ability to contract the network exactly, which in
general is not guaranteed for a PEPS (see also Tab. 5.1 for comparison). Let us point out as
well, that the aTTN is not restricted to a certain dimensionality of the underlying system,
but can be applied for a general D-dimensional system.

Table 5.1: Comparison of the most prominent Tensor Networks discussed in the main text: Nu-
merical complexity as a function of the bond-dimension m, obeying the entanglement area law, the
typical bond-dimension to be used in current high performance simulations and the calculation of
expectation values, i.e. the exact contractability.

Tensor Network Complexity Area law in 2D Typical Bond dimensions Exact contractable
MPS / DMRG O

{
m3

}
No (Only in 1D) > 10.000 Yes (O

{
m3

}
)

TTN O
{
m4

}
No (Only in 1D) ≈ 1.000− 2.000 Yes (O

{
m4

}
)

PEPS O
{
m10

}
Yes ∼ 10 No (O

{
mL

}
)

MERA O
{
m8

}
(1D),

O
{
m16

}
(2D)

Yes ∼ 10 Yes (O
{
m8

}
)

aTTN O
{
m4

}
Yes* ≈ 500 Yes (O

{
m4

}
)

In Fig. 5.1 we give an illustrative example of an aTTN for a two-dimensional 8× 8 system
with its disentangler layer D(u) consisting of 6 different disentanglers uk (green). As shown
therein, not every physical site j is addressed by a disentangler, which - as we will explain
later on - is key for a better numerical complexity. Thus the positioning of the disentanglers
uk for a general aTTN is critical in order to (i) keep an optimal numerical complexity for the
optimisation and (ii) efficiently encode an area law in the Tensor Network.
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Resuming, the total number of parameters for an aTTN state scales with O(Nm3 +NDd
4)

where m is the bond dimension of the TTN within, and ND is the number of disentanglers
uk in the disentangler layer D(u).

5.2.2 Area Law in aTTN

For the description of the area-law captured by the aTTN, we illustrate the case of a two-
dimensional square lattice L withN = L×L sites, where furthermore L = 2n. The fundamen-
tal idea anyhow holds true for an D-dimensional lattice structure with arbitrary dimensions
Li. Furthermore, we here assume a binary TTN, which is arranged so that the tensors within
the tree alternatingly in x- and y-direction coarse-grain neighboring sites going from layer
to layer, as it is the case for the internal TTN in Fig. 5.1 (the internal TTN is illustrated
by its tensors in blue and its links in gray). The topmost link of such a tree bipartites the
whole system L into the two equally (L × L/2)-sized subsystems A and B. Going from
the topmost link downwards in the TTN, each link within a layer further divides a smaller
lx × ly-dimensional sublattice.

γν[1] γν[2] γν[3] γν[4] ...
Open BC L L 5

4L or 3
4L

cylindrical BC L 3
2L

3
2L or L

toroidal BC 2L −→ 2L
·3/4−→ 3

2L
·2/3−→ 3

2L
·3/4−→

Table 5.2: Size of boundaries of different bipartitions in a 2D system L for different boundary
conditions of L

When we now consider an area-law state ψ, the bipartition entanglement scales with the
boundary ∂ν of the divided subsystem, as stated in Eq. (3.4). In Tab. 5.2 this area is presented
depending on the boundary conditions of L . Therein, we introduced the notation γν[k] for
the boundary of a subsystem A[ν] emerging from the partitions introduced by a link ν within
the k-th layer of the TTN (with subsystem size N/2k). As mentioned above in Eq. 3.5, the
TTN itself would require an in γν exponentially large bond dimension mν in order to capture
the area-law entanglement for the state ψ. In order to prevent this scaling, we now place Kν

disentanglers on the bottom of the TTN connecting the subsystems A[ν] and B[ν] given by
the bipartition introduced by the link ν. More precise, we position the disentanglers uk such
that one of its physical sites i[k]

1 or i[k]
2 belongs to the subsystem A[ν], while the other one

corresponds to B[ν]. Each one of the disentanglers can maximally asses information in a d2-
dimensional space belonging to two local Hilbert spaces. Thus it can reduce the entanglement
for the TTN up to the order of d2. Consequently, all the Kν disentanglers together can
support the TTN link ν by disentangling information in the order of

mν,aux ≈ (d2)Kν (5.5)

When we now scale the number of disentanglers Kν according to the boundary γl of the
bipartition introduced by the link ν, the information captured within the complete aTTN for
the cut through the network introduced by ν scales with

mν,eff ≈ mauxmν = d2Kν+ξν (5.6)
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Thus, the proper positioning of the disentanglers results in an exponential scaling of
the effective bond dimension where we defined the parameter ξnu ≡ logdmν reflecting the
contribution of the TTN bond dimension mν . In order to encode the area law for the two-
dimensional aTTN state according to Eq. (3.5), the number of disentanglers Kν connecting
the different bipartitions introduced by the links ν has to be directly proportional to the
boundaries γν and thereby for ν = 1 to the length L of the system.

In practice we know, that ξν in Eq. (5.6) is sufficiently large for the lower branches of the
tree in order to capture the area law entanglement - or even the complete state - accurately,
especially for reasonably small local dimensions d. Thus we waive disentanglers within the
smaller plaquettes of the TTN. Following the same idea, we focus on supporting the links
higher up in the TTN with disentanglers Kν ∼ γν , as the contribution of ξν compared to the
required exponentially large bond dimension becomes negligibly small. Equivalently, while
going to lower layers, the contribution of ξν weights increasingly stronger and thus we do not
need to strictly enforce Kν ∼ γν in order to capture area law within the complete network.

5.2.3 Connection to other Tensor Networks

In the prior sections, we described the connection of the aTTN to the well-established TTN
geomety in detail. In what follows, we will elaborate on the similarity of the aTTN to the
MERA and the connections to a PEPS.

MERA — The aTTN can be seen as a particular subclass of a MERA, where we sacrifice
the disentanglers at higher renormalisation levels, and thereby the scale-invariance, for a
higher numerical efficiency. In particular, the scale-invariance is not strictly necessary to
ensure the area law. Indeed, in the aTTN we shift the problem of encoding the area law to
a non-trivial positioning problem of the disentanglers at the bottom of the aTTN which we
can solve with several approaches as discussed later on. Thus, the aTTN does not necessarily
have the predefined, straight-forward scale-invariance structure of the aTTN but, with a clever
positioning of the disentanglers, it is indeed able to encode area law with a leading complexity
of O

(
m4
)
instead of O

(
m16

)
in case of the MERA.

PEPS— It has already been shown that the MERA can directly be mapped to a PEPS [193].
Following this procedure, and keeping in mind that the aTTN is a subclass of the MERA,
we in principle can map the aTTN to a PEPS with in general unisotropic bond dimensions.
In fact, the bond-dimensions of the resulting PEPS would highly depend on the positioning
of the disentanglers and the internal TTN bond-dimensions indicating that this interplay be-
tween disentanglers at the bottom and the internal TTN is the crucial key to the success of
the aTTN. We mention, however, that performing this mapping numerically might be not
beneficial from a computational point of view.

5.3 Optimisation of the aTTN

For the optimisation of the aTTN, we assume the complete Hamiltonian to be a product of
interactions H =

∑
pHp. Thus every interaction Hp can be described as a Tensor Product

Operator (TPO). For sake of simplicity, we will restrict ourselves to HamiltoniansH containing
exclusively (i) local terms Hp = hpip (acting on the site ip) and (ii) two-body interaction
Hp = hp,1ip h

p,2
i′p

between the physical sites ip and i′p. Note, that the basic idea of the aTTN
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approach can, in general, be applied to more complex Hamiltonians H, but depending on the
Tensor Network representation of H the computational complexity in secondary terms may
increase. Furthermore the numerical implementation becomes more challenging as well when
going beyond two-site interactions.

Given the Hamiltonian H we optimise the variational parameters of the aTTN wavefunc-
tion ψ in order to find the ground state of the system by minimising the energy

E = 〈ψ|H|ψ〉 . (5.7)

This optimisation procedure for the aTTN consists of three different parts: (i) The opti-

misation of the disentanglers uk, (ii) the mapping of the Hamiltonian H D(u)−→ Haux, and (iii)
the optimisation of the internal TTN with the auxiliary Hamiltonian Haux.

Below we will describe each part of the optimisation in more detail, followed by some
general remarks towards the practical application of the optimisation.

Disentangler Layer D(u)

We optimise the layer D(u) of an aTTN by optimising all of the disentanglers forming D(u)
one-by-one individually. In Fig. 5.2 we illustrate the procedure for one disentangler uk to
optimise. The fundamental idea hereby origins from the general MERA optimisation [74]
with some minor adaptions for the aTTN geometry. Thus for the disentangler uk the energy
E = 〈Ψ|H|Ψ〉 to minimise depends bilinearly on uk and u†k,

E(uk) = tr

{∑

p

ukMpu
†
kNp

}

︸ ︷︷ ︸
≡ Ek(uk)

+ck , (5.8)

where Mp and Np are two sets of matrices corresponding to different contractions of the
environment of uk and u†k with the Hamiltonian part Hp. Note that p only runs over the
Hamiltonian parts Hp which act on one or both sites of the disentangler to optimise. All the
other Hamiltonian partsHp′ contribute to the overall energy independently of the disentangler
uk and thus are all included in the constant ck for the Energy E(uk). Consequently, for the
optimisation of uk, we minimise the first part Ek(uk) of Eq. (5.8) only and neglect the constant
contributions in ck. The sum over the different Hamiltonian parts p thereby is illustrated in
Fig. 5.2 in terms of the Tensor Network representation. We point out, that in Eq. (5.8), the
disentangler uk and its complex conjugate u†k are reshaped as unitary matrices by fusing their
legs respectively.

In order to contract the complete network towards the matricesMp and Np, we can exploit
the isometry of the internal TTN. As introduced for the MERA structure [74], the positions
of the disentangler uk and the interaction part Hp for the contraction determine a causal
cone of tensors. We hereby define the anchor of a causal cone as the topmost tensor (with
respect to the hierarchical TTN structure), which is still included in the causal cone. Thus,
isometrising the internal TTN towards the anchor node of the causal cone for uk and Hp
results in all tensors outside of the causal cone vanishing to identities due to their enforced
isometry. Consequently, the complete contraction of the network can be reduced to the tensors
within the causal cone only.

Anyhow, after contracting, the environment resulting in the matrices Mp and Np, there is
no generic algorithm that solves the bilinear problem of Eq. (5.8) while additionally fulfilling
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E = + + + · · ·

⇓

E = + + + · · ·

⇓

Γk(u
†
k) =

Figure 5.2: Optimisation procedure for one disentangler uk (green) of the aTTN. [top] Energy
expectation value E(uk) of the aTTN. Each Hamiltonian part Hp (orange) is contracted with the
complete aTTN and adding up to E(uk). For the optimisation of uk only the parts Hp attached to uk
have to be considered. [middle] Contraction for E(uk) when isometrising the internal TTN towards the
anchor node of the causal cone [74]. All tensors outside annihilate to identities. [bottom] Environment
Γk for uk including all the relevant contributions Hp. By construction E = tr {ukΓk}+ ck holds true.
By decomposing Γk = UσV †, we optimise the disentangler uk with uk ≡ −V U†.

the isometry constraint in Eq. (5.2). Thus, we solve this optimisation problem iteratively by
linearising the function for the Energy Ek(uk) with respect to the disentangler uk following
the idea in Ref. [74]. Thereby, uk and u†k are temporarily considered as independent tensors
within one iteration step. This allows to optimise the Energy Ek(uk) with respect to uk while
keeping its complex conjugate u†k constant. For this linearised problem, the energy functional
now reads

Ek(uk) = tr
{
ukΓk(u

†
k)
}
, (5.9)

with Γk(u
†
k) =

∑

p

Mpu
†
kNp (5.10)

where Γk is a matrix obtained by the contraction of the complete environment around
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the disentangler uk, as it is illustrated in Fig. 5.2. Thus, each iteration step, we optimise
Ek(uk) with respect to uk, while including u†k in the environment Γk. Thus, assuming Γk to
be independent of uk, the energy Ek(uk) is minimised by setting uk = −V U † where U and V
are obtained via singular value decomposition of Γk = UσV †. Thus by construction u′k obeys
the isometry constraint of Eq. (5.2) as both U and V are unitary matrices. The minimised
energy for this iteration step becomes

Ẽk,min = tr {ukΓk} = tr
{
−V U †UσV †

}
= −

∑

i

σi (5.11)

Note, that the total energy is E(uk) = Ek,min + ck, as we neglected the constant ck for
the minimisation.

Concluding one iteration step, the complete procedure will be repeated with the new dis-
entangler u′k, until the singular values σi of the SVD convergence which equals a convergence
in the minimisation of the Energy to Emin.

Summarising the optimisation of the disentangler uk:

(i) Contract the environment matrices Mp and Np for all Hamiltonian parts Hp addressed
by the disentangler uk

(ii) Compute the environment Γk of the uk for one iteration

(iii) Decompose Γk = UσV † via SVD

(iv) Update the disentangler uk → u′k = −V U †

(v) Restart from (ii) until all σi converge.

Once the disentangler uk is optimised we move on the next disentangler, until all the
disentanglers within the layer D(u) have been optimised. Due to the disentanglers being po-
sitioned in a way, that they don’t share interaction parts Hp of the physical Hamiltonian H,
the optimisation of each disentangler uk is completely independent of all the other disentan-
glers uk′ . Thus it is sufficient to optimise each disentangler just once to obtain the optimised
disentangler layer D(u) - and furthermore, all optimisations for each disentangler can be fully
parallalised.

The complete optimisation of one disentangler can be done with the complexity O(m4d2 +
m3d4 + d6), where the contractions for part (i) of the summary above scale with O(m4d2 +
m3d4), for (ii) with O(d6), and the decomposition in (iii) as well with O(d6). Note that the
most expensive part (i) can be done once for the complete optimisation of one disentangler
uk and is not required to be recomputed during the iterative procedure.

Hamiltonian Mapping

After each optimisation of the disentangler layer D(u), the physical Hamiltonian H mapped
by the newly optimised disentangler layer D(u) for the subsequent TTN optimisation. For
the aTTN, we consider the systems Hamiltonian H ∈ H to be a product of interactions
H =

∑
pHp. As mentioned above, the aTTN introduces a layer of disentanglers D(u) which
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Figure 5.3: (a) Trivial mapping of an operator that is not attached to a disentangler. (b) Mapping
of several Hamiltonian parts Hp acting exclusively on the subspace addressed by the disentangler uk.
After contracting each operator Hp individually, the resulting tensors act on the same space and
can be summed up. The obtained tensor is decomposed concluding the mapping. (c) Mapping of
an operator with one site addressed by the disentangler uk and one site free of disentanglers. After
contracting the operator with uk and u†k, the contracted tensor is decomposed resulting in the mapped
TPO. (d) Mapping of an operator with both site addressed by different disentangler uk and u′k. After
contracting both tensors, the contracted tensors are decomposed resulting in the mapped TPO.

maps H to an auxiliary Hamiltonian Haux ≡ D(u)HD†(u) as preconditioning for the TTN.
The energy expectation value

〈ψaTTN|H|ψaTTN〉 = 〈ψTTN| D(u)HD†(u)︸ ︷︷ ︸
≡Haux

|ψTTN〉 (5.12)

equals the expectation value of the mapped Hamiltonian for the internal TTN wave-

function. This transformation of the complete HamiltonianH D(u)−→ Haux is done by contracting
each interaction part Hp separately with D(u).

In what follows, we illustrate this mapping for a general operator T , which we describe as
a Tensor Product Operator (TPO)

(T )
{ij}
{i′j}

=
∑

{γν}

∏

j

(t[j])
{γν′}
ij ,i′j

(5.13)

following the definition in Ref. [24]. Thereby, the j-th tensor t[j] is acting locally on the
site ij and is connected by the links {γν′} to other tensors within the TPO. Thus, the complete
TPO acts on the physical sites {ij}. In this TPO formalism, we can describe for instance a
local observable Ti, an interaction part Hp of the Hamiltonian H, a string observable T{ij} or
more general structures like an MPO.

Consequently, the mapping T D(u)−→ Taux is done by contracting the TPO T with the proper
disentanglers of layer D(u). This mapping can transform the operator T according to four
different cases depicted in Fig. 5.3.

a) Trivial mapping — Let there be no disentangler uk in D(u) applied to neither one
of the physical sites {ij} of the operator T (@uk : ik ∈ {ij} ∨ ik′ ∈ {ij}). Therefore, T is
unaffected by the disentangler layer D(u) and the mapping effectively becomes an identity
resutling in Taux = T .
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b) Mapping to two-site TPO — Let the disentangler uk be applied to all the sites {ij}
on which the operator T is acting (∀j : ij ∈ {k1, k2}). In this case, T ≡ Ti is either a local
operator acting on the single site i1 ∈ {k1, k2} only or a two-site operator T ≡ Tk1,k2 acting
on the exact same sites {k1, k2} addressed by the disentangler uk.

For the first step of the mapping, we contract the TPO with uk and u†k to

(Tcontr)k1,k2

k′1,k
′
2

=
∑

i1,i2,i′1,i
′
2

(uk)
k1,k2
i1,i2

(T )
{ij}
{i′j}

(u†k)
i′1,i

′
2

k′1,k
′
2
. (5.14)

Afterwards, we decompose the resulting tensor Tcontr via singular value decomposition
obtaining two tensors - one for each site addressed by uk - forming the mapped TPO Taux.
Note, that if the original TPO was a two-site operator with an internal bond dimension κ,
this mapping may lead to a different bond dimension for κ′ 6= κ within the mapped operator
Taux. Anyhow, this new bond dimension is restricted by κ′ ≤ d2.

Let us mention as well, that in case of mapping the Hamiltonian H, we can have several
interaction parts Hp which are all exclusively acting within the subspace Hk1⊗Hk1 addressed
by the disentangler uk. In Fig. 5.3 we illustrate such an example with one two-site interaction
and two local Hamiltonian parts, all to be contracted with the same disentangler uk. Here
it is worth to point out, that after the contraction of Eq. (5.14) all the interaction parts
(Hp)contr can be added up, as now all of them act as one tensor on the same subspace. The
summed tensor will subsequently be decomposed resulting in the mapped two-site TPO for
the auxiliary Hamiltonian Haux.

c) Mapping with one disentangler — Let there be only one disentangler uk addressing
at least one but not all of the sites {ij} ((∃ik : ik ∈ ij) ∧ (∃im ∈ ij : im 6∈ {ik})). For the
mapping we here proceed in a similar way as in the prior scenario.

First, we contract the operator T over the connected links with the diesentangler uk and
its c.c u†k:

(Tcontr)k1,k2,{im}
k1,k2,{i′m}

=
∑

i1,i2,i′1,i
′
2

(uk)
k1,k2
i1,i2

(T )
{ij}
{i′j}

(u†k)
i′1,i

′
2

k′1,k
′
2
. (5.15)

After the contraction, we decompose the tensor Tcontr in order to keep a TPO structure
where each tensor within corresponds to one physical site. Thereby, we obtain the mapped
TPO which now contains either the same number of tensors (when uk is contracted with two
tensors of the TPO) or one additional tensor (uk addresses only one tensor of T ). Note, that
here again the bond dimension for κ′ 6= κ within the TPO might increase but still is restricted
by κ′ ≤ d2 for Hp being a two-site TPO or to κ′ ≤ κd2 for some cases with larger TPO sizes
respectively.

d) Mapping with two or more disentanglers — Let there be K disentanglers {uk}
be applied for the sites {ij}. In this most general case, the operator T becomes mapped
highly non-trivial. Here, the contraction with the disentangler layer is done by contracting
the operator T with all the K disentanglers attached:

(Tcontr){im}{im} =
∑

uk1uk2 ...ukKT
{ij}
{i′j}

u†k1
...u†k2

u†k1
. (5.16)

For the sake of compactness, we dropped the indices for the disentanglers. Furthermore,
we introduced the set of indices {im} containing all the indices ik of all K disentanglers {uk}
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and additionally all the physical legs ij of the original operator T over which we did not
contract. Note as well that the order of application of the disentanglers uk is not important,
as all uk act on different subspaces of the complete Hilbert space H and thus commute with
each other.

Here again the resulting operator Tcontr is decomposed back into a TPO structure with its
tensors acting on one single site of the TTN. For a general TPO which may even contain loops
in its structure, like e.g. a PEPO [149–151], this decomposition is a highly non-trivial task.
Furthermore, for loopless TPOs, this mapping might again result in an increased internal
bond dimension within the TPO.

Considering the Hamiltonian Haux is used to optimse the TTN, an arbitrary loopless
interaction Hp which becomes mapped to a general MPO might in the worst case still increase
the complexity of the overall optimisation to a with system size exponential scaling O(m4dL).
But if we restrict ourselves to all Hamiltonian parts Hp = hp,1hp,2 being nearest-neighbor
interactions only, the additional cost is restricted to a worst-case prefactor of d4. In order to
go even further and prevent this prefactor, we can constraint the aTTN in its construction
to prevent an interaction part Hp being addressed by two - or more - disentanglers. Thus,
for nearest-neighbor interactions, we strictly forbid to attach two disentanglers uk and u′k
onto neighboring sites, as can be seen in Fig. 5.1. This not only decreases the second-order
scaling of the complete algorithm but additionally simplifies the numerical implementation
and introduces a higher potential of parallelisation, as now all the disentanglers can be treated
completely independent within the optimisation.

Tree Tensor Network

The optimisation of the TTN follows the prescriptions of Chapt. 3. Each pair of connected
tensors within the TTN is optimised via the subspace-expansion technique which approxi-
mates a two-site update [24]. This technique allows to keep the favourable scaling of O

(
m4
)

compared to the higher numerical complexity of O
(
m6
)
in case of the direct two-site optimisa-

tion (see Sec. 3.1.4). The local optimisations of each single tensor optimisation are performed
via Arnoldi algorithm as discussed in Sec. 3.1.4 which solves the local eigenvalue problem by
iteratively diagonalising the corresponding effective Hamiltonian Heff , returning the lowest
eigenvalues of Heff within a predetermined accuracy ε.

We optimise the global TTN state by performing these local optimisations including the
space-expansion technique step-by-step from the bottom of the TTN to its top. The space
expansion, in particular, is always performed for the local target tensor together with its
parent tensor as space expansion partner.

General remarks

In practice, we start the complete optimisation of the aTTN with a randomly initialised TTN.
We first iterate a few times threw the TTN with the physical Hamiltonian H disregarding
the disentangler layer D(u). In this part, we use a relatively large space expansion and a
low precision for solving the local eigenvalue problems for each tensor. Thereby, we aim to
efficiently (i) adapt the randomly initialised symmetry sectors within the TTN for a quali-
tative description of the ground state and (ii) use this qualitative TTN wavefunction for an
advanced the initialisation of the aTTN. Consequently, we start with the aTTN consisting
of the resulting TTN with a set of identities {uk} ≡ {1} attached at the sites we aim to
disentangle forming the initial disentangler layer D(u). We subsequently optimise the aTTN
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by optimising the disentaglers once, mapping H to Haux and performing n steps of optimising
the TTN, where we usually choose n ∈ {1, 2, 3}.

Furthermore, in the results obtained for this paper, we improved the TTN optimisation
by parallelising the contractions over different Hamiltonian parts Hp within the optimisation
procedure. Additionally, we want to mention, that the computational time for optimisation
of the disentanglers and the mapping of the Hamiltonian was negligible compared to the
TTN optimisation in our practical applications. As of last we point out, that in the aTTN
approach there is still more room for improvement by parallelisation, as the TTN optimisation
can be further parallelised in a similar way as shown for parallel-DMRG [180] as well as the
optimisation of the disentanglers.

5.4 Computation of observables

5.4.1 Local observables

Let O[s] be a local observable acting on the site s of the aTTN state ψ. In order to compute
the expectation value 〈O[s]〉ψ = 〈ψ|O[s]|ψ〉 we distinguish the two different cases:

(i) A disentangler uk is placed at site s - thus connecting it with the site s̃, or

(ii) there is no disentangler attached to the physical site s.

In the latter case, the one-site operator O[s] is simply passed to the TTN and calculated by the
standard computation of a local observable in TTN, as O[s] is unaffected by the disentangler
layer D(u) and the isometry property D(u)D†(u) = 1 holds true. Using the proper isometry
in the TTN, this calculation can be done by contracting three tensors only [24].

In case (i) however, the local operator becomes mapped to a two-site operator by the
disentangler layer D(u), as it is contracted with uk and u†k to

(O[s]
aux)k1,k2

k′1,k
′
2

=
∑

s,s′,s̃

(uk)
k1,k2

s,s̃ (O[s])ss′(u
†
k)
s′,s̃
k′1,k

′
2
. (5.17)

Consequently, in this case, the computation of 〈O[s]〉ψ effectively becomes a calculation of
the expectation value of the correlator 〈(O[s]

aux)k1,k2

k′1,k
′
2
〉ψ for the TTN. The worst case complexity

of the underlying contraction in the TTN is O(m4κ logN) +O(m4κ logN − 1) +O(m3κ).

5.4.2 Correlators

Let O[s1,s2] be a correlator acting on the sites s and s′ of the aTTN state ψ. In order to
compute the expectation value 〈O[s,s′]〉ψ = 〈ψ|O[s,s′]|ψ〉 we distinguish the following four
different cases for the mapping D(u) - some of which are similar or even identical to the
mapping described in section 5.3:

Trivial mapping Let there be no disentangler uk in the layer D(u) attached to neither one
of the physical sites s1 or s2 of the correlator. Therefore, the correlator O[s] can - as described
for the local observable - simply passed threw to the TTN and calculated by the standard
computation of a correlator in TTN, as here again O[s1,s2] is unaffected by the disentangler
layer D(u) and the mapping effectively becomes an identity. This subsequent contraction of
the TTN can be done with the worst-case complexity of O(m4 logN) + O(m4 logN − 1) +
O(m3).
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Mapping to two-site TPO Let the disentangler uk connect both sites s1 and s2 on which
the the correlator O[s1,s2] acts. In this case, the correlator becomes mapped to another two-site
operator by the disentangler layer D(u), as it is contracted with uk and u†k to

(O[s1,s2]
aux )k1,k2

k′1,k
′
2

=
∑

s1,s2,s′1,s
′
2

(uk)
k1,k2
s1,s2 (O[s1,s2])s1,s2

s′1,s
′
2
(u†k)

s′1,s
′
2

k′1,k
′
2
. (5.18)

Therefore, the computation of 〈O[s1,s2]〉ψ becomes a calculation of the expectation value of
the correlator 〈O[s1,s2]

aux 〉ψ for the TTN. The worst-case complexity of the underlying contraction
in the TTN is O(m4κ logN) + O(m4κ logN − 1) + O(m3κ) where κ describes the internal
bond dimension of the TPO after the mapping.

Mapping to a three-site TPO Let there be only one disentangler uk addressing at either
site s1 or s2, and connecting it with the site s3 /∈ {s1, s2}. Here the layer D(u) maps the
correlator to a three-site operator, as it is contracted to

(O[s1,s2]
aux )k1,k2,s

k′1,k
′
2,s

=
∑

sc,s̃,s′c

(uk)
k1,k2

sc,s̃
(O[sc,s])sc,ss′c,s

′(u
†
k)
s′c,s̃
k′1,k

′
2
. (5.19)

Note that we here changed the notation of O[s1,s2] to O[sc,s] without loss of generality
where sc indicates the link of the correlator attached to the disentangler uk and thus is to be
contracted over while s indicates the remaining link for the resulting three-site operator. After
the mapping the computation equals a calculation of the expectation value 〈O[s1,s2]

aux 〉ψ for the
TTN - describing a string observable which in this case scales with a worst-case complexity
of O(m4κ logN) +O(m4κ logN − 1) +O(m3κ).

Mapping to a four-site TPO Let the disentanglers uk1 and uk2 be placed at the sites s1

or s2, and connecting them with the sites s3 /∈ {s1, s2} and s4 /∈ {s1, s2} respectively. In this
most complex case, the correlator becomes mapped to a four-site operator, the contraction
reads

(O[s1,s2]
aux )k1,k2,k3,k4k′1,k

′
2,k

′
3,k

′
4

=
∑

s1,s2,k′,k′′

(uk1)k1,k2k′,s1
(uk2)k3,k4k′′,s2

(O[s1,s2])s1,s2s′1,s
′
2
(u†k2)

k′′,s′2
k′3,k

′
4
(u†k1)

k′,s′1
k′1,k

′
2
.

After this mapping the computation again equals a calculation of the expectation value
of a string observable for the TTN, which in this case exhibits a worst-case complexity of
O(m4κ2 logN) +O(m4κ2 logN − 1) +O(m3κ).
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5.5 Numerical studies

In order to benchmark the aTTN algorithm, we analyze the antiferromagnetic two dimensional
Heisenberg model

H =
L∑

i,j=1

∑

γ∈{x,y,z}

σγi,jσ
γ
i+1,j + σγi,jσ

γ
i,j+1,

with σγi,j (γ ∈ {x, y, z}) the Pauli matrices acting on the site (i, j). We consider a L × L
lattice with system sizes L = {8, 16, 32} and set the boundary terms with σxi,N+1 = σxi,1
and σxN+1,j = σx1,j as periodic boundary conditions. The ground state of this Heisenberg
Hamiltonian is characterised by power-law decaying correlations and has been established by
several numerical approaches as as challenging benchmark.

5.5.1 Energy density calculation

Figure 5.4: Relative error δE of the 2D Heisenberg ground-state energy compared with the best
available estimates obtained via Quantum Monte Carlo [52] as a function of (a) the bond dimension
m at L = 8, (b) the bond dimension m at L = 16, (c) the CPU time t[s] at L = 8 and (d) CPU time
t[s] at L = 16. The TTN results in red, aTTN in blue.

In Fig. 5.4 we compare the energy density obtained by the TTN with the ones obtained
via aTTN with increasing bond-dimension m. Evidently, the aTTN is more accurate than
the TTN when compared at same bond-dimension. However, due to a constant prefactor c in
the numerical complexity, the CPU time t ≈ O

(
cm4

)
for the aTTN is higher at same bond-

dimension. Therefore, we compute the relative error obtained by the different ansätze and the
best known results, obtained via Quantum Monte Carlo [52]. As expected, when keeping the
bond dimension equal for both approaches, the aTTN obtains a higher precision for the energy
density compared to the TTN but requires more CPU time for the complete optimisation.
However, when we look at constant CPU times, the aTTN eventually still outperforms the
TTN in terms of accuracy in the energy density for sufficiently large bond dimensionm. Thus,
it is evidently the more efficient Tensor Network for these two-dimensional simulations. In
Fig. 5.4 c and d we compare the CPU time of each calculation against the accuracy as a figure
of merit for the efficiency of the ansatz, i.e. which of the Tensor Networks provide a lower
relative error at constant CPU time. We see, that for low CPU time (consequently, low bond
dimensions) it is more efficient to scale up the bond-dimension of the TTN, while eventually
the aTTN becomes the more efficient ansatz when increasing the simulation time, i.e. the
bond-dimension. We mention that this prefactor c depends on the number of Hamiltonian
parts Hp addressed by the disentanglers of the aTTN.
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When we extrapolate with the bond dimension, we further confirm that the aTTN is more
accurate compared to the TTN for both system sizes with a deviation of ε8 = 2.22 · 10−5 and
ε16 = 7.11 · 10−4 in the energy density for both sizes L = 8 and L = 16 (with respect to
Monte Carlo). The TTN, in contrast, performs reasonably well in the 8×8 case but struggles
in precision when going to L = 16. Interestingly, the aTTN for L = 16 obtains an even
more precise ground state energy density compared to alternative variational ansätze at lower
finite system size of L = 10, such as Neural Network states [97] (ε10 ≈ 7.5 · 10−4), Entangled
Pair States [194] (ε10 = 2.5 · 10−3) or PEPS [138] (ε10 = 1.5 · 10−3). It turns out that for
this model a very competitive variational approach is the 2D-DMRG [72], which outperforms
the alternative methods for finite size with open or cylindrical boundary conditions up to
the system size L = 10 (ε10 ≈ 2 · 10−5), but struggles with periodic boundary conditions
and with increasing system sizes L & 12. We further mention that, PEPS is very efficient
with its ability to work directly in the thermodynamic limit in describing infinite systems as
iPEPS [195, 196]. We as well point out that further more complex Neural Network states,
such as the Neural Autoregressive Quantum States [197], obtain comparable results for L = 10
with ε10 ≈ 3.5× 10−5.

Furthermore, we extended our analysis to reach the system size of N = 32× 32 for which,
to the best of our knowledge, no public result of alternative methods is yet available as a
comparison. In consistency with the finite size scaling analysis of Ref. [52], we obtain an
energy density ε32 = −0.669(1) as extrapolated value m → ∞. We mention that there
exist techniques combining Tensor Networks with Variational Monte Carlo, shown with the
PEPS++ [198, 199] providing a high potential with strong results at system sizes up to
N = 32 × 32. However due to the underlying PEPS geometry in this case, the approach
still suffers from an unappealing numerical scaling of O

(
m10

)
and requires an tremendous

computational effort for obtaining these results.

5.5.2 Correlations

Next to the energy density, we compared the correlations captured within both approaches,
the TTN and the aTTN. In particular, we computed the two-body correlations 〈σzi,jσzi′,j′〉. In
Fig. 5.5 we show the correlations for the 8× 8 size (a) and 16× 16 size (b) for different bond
dimensions. It is evident that the computed correlations of the ansätze are growing and getting
more accurate with an increasing number of variational parameters, i.e. with increasing
bond dimension m. Indeed, when comparing both approaches at equal bond dimension, the
obtained correlations of the aTTN simulations are clearly more accurate, demonstrating the
higher precision of the aTTN in describing two-body correlations. Interestingly, for lower
distances r(i, j) < 5 in the L = 16 case, some of the correlations computed via TTN are more
precise then the aTTN correlations at equal bond-dimension, while the TTN correlations
clearly decrease faster for higher distances r(i, j) < 5. At the most far distant meassurement
at r(8, 8) = 8

√
2, we observe that the TTN correlations for mTTN = 120 even end up at

the same precision as the aTTN correlations for lower bond dimension maTTN = 80 and for
mTTN = 80 clearly below the aTTN correlations for maTTN = 40.

We point out that the here performed aTTN simulations (as well as the TTN simulations)
exploit a U(1) symmetry. However, for this model, we could further drastically improve the
performance of the aTTN by incorporating the present SU(2) symmetry in the simulation
framework [24, 169, 200]. In particular, this would (i) drastically improve the connected
correlations since we enforce 〈σ̂αj 〉 = 0, as well as 〈σ̂αi σ̂αj 〉c to be equivalent independent
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Figure 5.5: Connected correlation function in the TTN (in shades of red for different bond
dimensions) and the aTTN (in shades of blue) representation of the ground state of the L = 8 (a)
and L = 16 (b) Heisenberg Hamiltonian plotted against the distance r(i, j) ≡ [i2 + j2]1/2, where
i ≤ j ∈ {0, L/2} × {0, L/2}.

on α ∈ {x, y, z}, and (ii) reduce the effective bond dimension and thereby the computational
time since for non-abelian symmetry we may only work within the symmetry multiplet spaces.
Both advantages are expected to lead to dramatically increase the accuracy in the estimated
energy.

5.5.3 Disentangler engineering

Additionally, we performed an analysis on the positioning of the disentanglers in the aTTN
based on the Heisenberg model. In particular, we perform the simulation with three different
geometries (see Fig. 5.6) investigating the influence of the aTTN geometry on the overall
precision for L = 8, 16:

(a) In this strategy, we start placing as many disentanglers as possible to reinforce the top-
most link (its bipartition indicated with red-dotted lines in Fig. 5.6a), then place as
many disentangler as possible to reinforce the second highest links (indicated in blue),
and so on. Following this strategy for the 8 × 8 system, we position all ND = K1 = 8
disentanglers supporting the highest TTN layer with no place left for disentanglers
supporting the second layer.

(b) Starting from strategy (a), we now sacrifice disentanglers reinforce the top-most link
in order to place some disentanglers for the second highest tree layer (its bipartition
indicated with blue-dotted lines in Fig. 5.6b). In this way we are able to increase the
density of disentanglers applied. For the 8×8 system, we position K1 = 6 disentanglers
supporting the highest TTN layer and K2 = 4 disentanglers for the second highest TTN
layer, totalling ND = 10 disentanglers.

(c) In the last strategy, we change the structure of the internal TTN: Now, instead of
coarse-graining alternatingly in x− and y−direction, now we coarse-grain the complete
y-direction first, before we go on to coarse-grain in x-direction when initialising the



140 augmented Tree Tensor Network

(a) (b) (c)

Figure 5.6: (top) Relative error ε of the 2D Heisenberg ground-state energy for different geo-
metrical configurations (exemplified for L = 8 at the bottom) of the aTTN compared with the best
available estimates obtained via Quantum Monte Carlo [52] as a function of the bond dimension m at
L = 8. (bottom) The green shapes represent the disentanglers, dashed lines indicate the bipartitions
introduced by the top-most (red) and the second highest (blue) links within the tree.

tree from the bottom to the top. Thus, as indicated by the dashed lines in Fig. 5.6c,
the topmost links bipartite the system in x-direction. In this way, we can place the
maximum amount of disentanglers to reinforce the two top-most links, namely ND = 16
with K1 = K2 = 8. Thereby, in the L = 8 case, the lowest 3 layers will coarse-grain each
column of the system with each of the lowest branches grouping the 8 sites in y-direction
together while for L = 16, each column of 16 sites will be joined in the lowest 4 layers.

In Fig. 5.6 we present the deviation in the energy density for the different geometries with
respect to Quantum Monte Carlo [52]. In the 8× 8 analysis, we see that all of the geometries
give very similar results along the complete range of m. Surprisingly, reshaping the entire tree
structure, i.e. geometry (c), offers the best results out of the three configurations, while the
initial strategy (a) which was used in the previous analysis comes out worst. When moving
to the L = 16 case, however, geometry (c) clearly fails to keep up with the other two and
strategy (a) comes out ahead. Indeed this can be traced back to the same problem of 2D-
DMRG for L & 12: Keeping L reasonably small (e.g. L = 8), the lower branches of the
internal TTN are able to efficiently capture the necessary information to faithfully represent
the ground state. However, moving to higher system sizes, the internal TTN struggles to
keep up efficiently joining the 16 "column" sites together. Therefore, comparable to the 2D-
DMRG, the strategy (c) should offer the best results for an aTTN simulation for limited
second dimension Ly and might be a good compromise for non-squared systems (Lx > Ly)
with periodic boundary conditions. On the other hand, we find that the most efficient strategy
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for general L×L systems indeed is strategy (a). However, we point out that finding the best
possible geometry is a highly non-trivial engineering task and depends on many factors, such
as the system size, the interactions within the system and the boundary conditions. The
optimisation of the Tensor Network structure towards the particular problem might be an
interesting problem to solve in future work.
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6
Comparing Quantum State Representations

This Chapter aims to compare the Tensor Network representation of quantum many-body
states to a class of alternative variational ansätze for representing a quantum state, namely the
class of Neural Network states. The underlying Artificial Neural Networks by design mimic
the neural networks of the human brain and are famously applied in the context of data
science and artificial intelligence [201–203]. They are arguably the most prominent numerical
technique for performing Machine Learning tasks and have been deployed in a broad range of
applications in research as well as industry.

In physics, Machine Learning has already shown to be very useful for a broad range
of applications in condensed matter, quantum chemistry, material science and statistical
physics [204–207]. In the most recent years, further connections between Quantum Infor-
mation and Machine Learning have been shown and continue to be uncovered giving among
others raise to technologies such as Quantum Machine Learning [208–211]. This interplay be-
tween Machine Learning and Quantum Information has brought to light the aforementioned
application of artificial Neural Networks to describe the behaviour of complex quantum many-
body systems as an alternative to Tensor Network.

Indeed, Neural-Network- and Tensor-Network-based algorithms are tightly bound to a
number of fundamental issues in statistical mechanics [212]. Their descriptive power and
numerical efficiency strongly affect the ability to explore the quantum properties of many-
body quantum systems. In fact, in many cases, Neural Networks can even be mapped to
a Tensor Network showing the close connection between the two numerical methods [213].
In particular, recent progress in the application of Neural Network techniques in quantum
physics established a functional representation to characterise a quantum many-body wave
function. This quantum state representation was introduced in the form of a Restricted
Boltzmann Machine with the intention of representing highly correlated quantum states whose
entanglement content scales with the system volume [97, 214–216]. Therefore, with this
approach of Neural Networks becoming a more and more prominent technique to analyse
complex quantum systems, the comparing of this ansatz with the well-established Tensor
Networks naturally arises as one of the most interesting numerical questions to be investigated.
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In the following manuscript, we compare the Tensor-Network-based algorithms against
Neural-Network-based algorithms in two exemplary benchmarks, the one-dimensional ferro-
magnetic Ising model and the two-dimensional antiferromagnetic Heisenberg model. This
manuscript was published in SciPost Physics Core, 4 [98]. Therein, we present a new map-
ping for the Neural-Network-based, unrestricted Boltzmann Machine (uRBM), both in 1D and
2D, to constrained Tensor Network representations, namely the constrained MPS (coMPS)
and constrained PEPS (coPEPS) respectively. We unveil fundamental aspects of this impor-
tant connection illustrating that the actual descriptive power of the Neural Network ansatz as
constrained Tensor Networks with exponentially large bond dimension should be taken with
a grain of salt as it fails to fulfil the aforementioned volume-law.

Therefore, this chapter gives new insights on the connection between Neural Networks
and Tensor Networks, as well as illustrating current limitations of the representation power of
Neural Network states. However, this encouraging field of research poses the open, highly non-
trivial question on how to properly estimates the information encoded into a Neural Network
and in this context on how to fairly compare different numerical approaches for quantum state
representations to be addressed by future systematic research. Further, with the introduced
mapping, we open a pathway to go beyond Variational Montecarlo optimisation techniques
enabling the development of new methods, based on intuitions of Tensor Network techniques
such as DMRG, TEBD and TDVP, for the optimisation of Neural Network states.



SciPost Phys. Core 4, 001 (2021)

On the descriptive power of Neural Networks as constrained
Tensor Networks with exponentially large bond dimension

Mario Collura1,2,3, Luca Dell’Anna2,4, Timo Felser1,2,5 and Simone Montangero2,4,5

1 Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany.
2 Dipartimento di Fisica e Astronomia, “G. Galilei”,

Università di Padova, I-35131 Padova, Italy.
3 SISSA – International School for Advanced Studies, I-34136 Trieste, Italy.

4 Padua Quantum Technologies Research Center, Università di Padova, I-35131 Padova, Italy.
5 INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy.

Abstract

In many cases, neural networks can be mapped into tensor networks with an exponen-
tially large bond dimension. Here, we compare different sub-classes of neural network
states, with their mapped tensor network counterpart for studying the ground state of
short-range Hamiltonians. We show that when mapping a neural network, the resulting
tensor network is highly constrained and thus the neural network states do in general
not deliver the naive expected drastic improvement against the state-of-the-art tensor
network methods. We explicitly show this result in two paradigmatic examples, the 1D
ferromagnetic Ising model and the 2D antiferromagnetic Heisenberg model, addressing
the lack of a detailed comparison of the expressiveness of these increasingly popular,
variational ansätze.

Copyright M. Collura et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 18-05-2020
Accepted 29-01-2021
Published 02-02-2021

Check for
updates

doi:10.21468/SciPostPhysCore.4.1.001

Contents

1 Introduction 1

2 Constrained Matrix Product States 3

3 Numerical results 6
3.1 The Ising quantum chain 6
3.2 The 2D Heisenberg model 10

4 Discussions 12

5 Acknowledgments 13

A 1D numerical simulations 13

B 2D Numerical simulations 14

References 15

1



SciPost Phys. Core 4, 001 (2021)

1 Introduction

Artificial Neural Networks (NN) have increasingly taken hold in various research fields and
technology [1–3]. Their power in recognizing special patterns behind a huge amount of raw
data allowed a revolutionary change in our approach towards deep learning [4, 5]. Taking
inspiration from biological neural networks, NNs can be a good framework to process big
sets of data. As a matter of fact, NNs can be seen as special functional mappings of many
variables (physical and hidden), which can be trained by specific algorithms and applied to a
very broad spectrum of applications in different fields, one of which is statistical physics [2,6–
9]. A powerful example is the Restricted Boltzmann Machine (RBM) which has been largely
employed to mimic the behaviour of complex quantum systems [10–17]. Essentially, RBM is
a type of artificial neural network which, in interacting quantum systems, can be understood
as a particular variational ansatz for the many-body wave function.

Another very successful class of wave-function variational ansatz that has been widely
exploited are Tensor Network (TN) states [18–34]. They are based on the replacement of
the non-local rank-N tensor representing the N -body wave function, with O(N) local tensors
with smaller rank, connected via auxiliary indexes. Such ansatz interpolates between the
mean-field approach, where quantum correlations are completely neglected, and the exact
(but inefficient) representation of the state. The interpolation is governed by the dimension
χ of the auxiliary indexes connecting local tensors. In one dimension, a very successful tensor
network representation is the so-called Matrix Product States (MPS) [18,19,25,33].

When applied to the study of many-body quantum systems, these two very powerful ap-
proaches reduce the exponentially large Hilbert space dimension by optimally tuning a number
of parameters which scales polynomially with N . In particular, the number of free parameters
scales as O(N M) for a fully connected RBM (where M is the number of hidden variables),
while is O(Nχ2) for an MPS. Recently, a strong connection between NN and TN has been
pointed out [40–46]: among others, it has been shown that the fully connected RBM can be
explicitly rewritten as a MPS with an exponentially large auxiliary dimension, i.e. χ = 2M (see
Fig. 1). Considering the fact that the bipartite entanglement entropy in an MPS is proportional
to logχ, suggests that RBMs may provide a way to represent highly correlated quantum states
whose entanglement content scales with the system volume [47], thus going much beyond the
MPS descriptive power that is limited to area-law states [48,49].

Here, present a systematic comparison between constraint TN representations of NNs and
the unconstrained counterparts aiming to investigating the actual descriptive power of the NN
ansatz as constrained Tensor Networks with exponentially large bond dimension. With this
comparison we further aim to address the lack of a detailed comparison of the expressive-
ness of these various ansatz considering the increasing popularity of such variational states
and encourage further work in this direction. In the following section, we unveil fundamental
aspects of this important connection between TN and NN states and along the way we intro-
duce a new mapping between NN and TN, valid also in two-dimensions. This mapping can
be exploited to introduce more efficient strategies to optimize NN states. Finally, we present
two paradigmatic examples, the study of one-dimensional and two-dimensional ground states
of many-body quantum Hamiltonians and show that a TN with moderate bond dimensions
can match – if not overcome – the prediction of the correspondent NN, that were expected
to deliver results equivalent to those obtained via TN with an in practice unreachable bond
dimension. In particular, we compare the prediction of NN and TN, and show that the latter
are able to deliver higher precision in local quantities and in correlation functions with respect
to the equivalent NN. We further clarify why these results have to be expected.

In one dimension, these results are based on the fact that beyond the naive expectations,
the detailed aspects in the relationship between RBM and MPS shall be considered. In partic-
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Figure 1: The RBM for α = 1 (M = N) (left) can be mapped to an exponentially
large coMPS (right). The pink-shaded region represents the 2N ×2N local matrix Σ

σ j

j
which is constructed as a tensor product of N matrices (yellow circles) with bond
dimension χ = 2 (see main text for details). Arrows indicate periodic boundary
conditions.

ular, (i) different topologies of the NN may result in MPSs with very different auxiliary dimen-
sions; (ii) the emerging “constrained” MPS (coMPS) is highly constrained due to the mapping
itself. In practice, even though the formal mapping reveals an exponentially large auxiliary
dimension of the related coMPS, the number of independent entries of the tensors scales poly-
nomially with the size of the artificial neural network. This makes the coMPS representation
of the RBM inefficient.

The first point above raises a very delicate question regarding the efficiency of the NN tout
court. Physical many-body states are usually eigenstates of short-range interacting Hamiltoni-
ans, which naturally introduce the notion of distance between lattice sites, suggesting that a
valuable approach should encode this information ab initio. Therefore, a useful modification
of the RBM is obtained by introducing proper intra-layer connections in the wave function
ansatz; the resulting unRestricted Boltzmann Machine (uRBM) has been recently employed
in order to describe the ground state of the ferromagnetic Ising quantum chain [50]. A sim-
ple structure with one layer of hidden variables (see Fig. 2) explicitly encodes the underlying
Hamiltonian geometry and makes it possible to obtain an increased accuracy with respect to
the corresponding RBM (i.e. with α = 1), with a much smaller number of free parameters.
The surprising effect of this result will become evident in the following, when the RBM and
the uRBM will be compared at the level of the mapping to the corresponding coMPS.

2 Constrained Matrix Product States

Here we introduce the “constrained” Matrix Product State, highlighting the differences be-
tween RBM and uRBM. In the following, periodic boundary conditions are assumed, and re-
sults are valid for N > 2.

RBM: An RBM is defined as follows: given a set σ = {σ1,σ2, . . . ,σN} of N physical binary
variables (e.g. the eigenvaluesσ j = ±1 of a spin-1/2), one introduces an extra set of “unphysi-
cal” hidden variables h = {h1, h2, . . . , hM} (with density α≡ M/N) such that the unnormalised
many-body wave function of the RBM type is obtained from a full Boltzmann distribution by

3
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tracing out the hidden set,

Ψα(σ) =
∑

h

exp [−ψα(σ, h)] , (1)

where ψα is the RBM’s functional

ψα(σ, h) =
N∑

j=1

a jσ j +
M∑

j=1

b jh j +
M ,N∑
i, j=1

Γi jhiσ j , (2)

and α = M/N is assumed to be a positive integer for convenience. Parameters a j and b j
are local biases (in the spin-1/2 picture, they represent local magnetic fields) applied to the
variables, whilst Γi j are couplings between the physical and the hidden variables (see Fig. 1).

As stated in the introduction, in the previous prescription there is no direct connections
within the same set of variables while the two sets are fully connected, thus there is no notion
of a distance. Nonetheless, correlations between physical variables may be mediated by their
fictitious interactions with the hidden variables. A priori the RBM variational ansatz is well
suited to work in any dimension. As a matter of fact, it is a promising tool to describe many-
body quantum states [35–39]; recently convolutional NNs have been employed to improve the
level of accuracy of the shallow RBMs in order to deal with frustrated 2D lattice models [51].

RBM wave functions can be rewritten as a coMPS with periodic boundary conditions. The
absence of intra-layer couplings allows to easily take the sum over the hidden variables in
Eq. (1), thus obtaining [40]

Ψα(σ) = e−
∑N

j=1 a jσ j

M∏
i=1

2 cosh(bi +
N∑

j=1

Γi jσ j) = Tr




N∏
j=1

Σ
σ j

j


 (3)

in terms of 2M × 2M real diagonal matrices (see Fig. 1) of the form

Σσj = e−a jσ
M⊗

i=1

�
e−bi/N−Γi jσ 0

0 ebi/N+Γi jσ

�
. (4)

Notice that, if the RBM wave function describes a translational invariant quantum state, we
should have Ψα(σ) = Ψα(σ′), where σ and σ′ differ for an arbitrary cyclic permutation of
local spin variables: thus, all local tensors Σ

σ j

j can be set to be equal and independent of the
lattice site j, reducing the number of free parameters to 2M + 1. Let us mention that when
the local biases are set to zero, the wave function becomes spin-flip invariant as well.

1D - uRBM: Let us now turn our attention to the unrestricted Boltzmann machine for 1D
systems. When explicitly encoding the geometry of the underlying model into the artificial
neural network, we can describe the many-body quantum state via the following uRBM un-
normalised wave function

Φ`(σ) =
∑

h

exp [−φ`(σ, h)] , (5)

where now the hidden variables are labeled according to h = {hγj } with j ∈ [1, N], and
γ ∈ [1,`] denoting the different layers. The uRBM’s functional is now given by

φ`(σ, h) =
N∑

j=1

�
K0

j σ jσ j+1 +
∑̀
γ=1

Kγj hγj h
γ
j+1

+ J1
j σ jh

1
j +

∑̀
γ=2

Jγj hγ−1
j hγj

�
. (6)
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Figure 2: The uRBM with one layer of hidden variables in one (two) dimension
is mapped to the corresponding coMPS (coPEPS). In the 2D case we only draw the
local building block of the full tensor network. Here in general crossing lines are
independent, except when a dot fixes them to be equals. The 1/2 in one of the dot
means that the B matrices have to be evaluated at σ/2 (see main text for details).
Arrows indicate periodic boundary conditions.

Interestingly, the state described by the uRBM wave function enforces the spin-flip invariance
of the Ising Hamiltonian, namely Φ`(−σ) = Φ`(σ); moreover, it is also invariant under the
transformation Jγj → −Jγj , for arbitrary γ. Although we cannot analytically sum over the
hidden variables as before, it is still possible to trace-out the hidden variables recasting Eq. (5)
in a simple coMPS form. Exploiting the transfer matrix approach for evaluating the partial
partition function, we obtain (e.g. for `= 1)

Φ1(σ) = Tr




N∏
j=1

(A
σ j

j ⊗ B
σ j

j )


 , (7)

where

Aσj =

�
cosh(K0

j ) − sinh(K0
j )σ

cosh(K0
j )σ − sinh(K0

j )

�
, (8)

Bσj =

�
e−K1

j −J1
j σ eK1

j −J1
j σ

eK1
j +J1

j σ e−K1
j +J1

j σ

�
. (9)

Also, in this case, translational invariance of the many-body state can be exploited reducing the
number of free parameters by a factor N . Interestingly, the spin-flip symmetry of the state is
reflected in the coMPS representation as the local invariance A−σj = σ̂zAσj σ̂

z , B−σj = σ̂x Bσj σ̂
x .

Finally, the mapping can be extended to an arbitrary number of additional hidden layers which
results in a coMPS with auxiliary dimension χ` = 2`+1.

2D - uRBM: The geometry encoded in the uRBM may affect the tensor network represen-
tation of the many body wave function which, in the 2D cases, can be written as a coPEPS

5
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(constrained Projected Entangled Pair State). For the sake of simplicity, we focus only on the
translational invariant case where the 2D uRBM wave function reads

Φ2D
` (σ) =

∑
h

exp
�−φ2D

` (σ, h)
�

, (10)

with

φ2D
` (σ, h) =

N∑
i, j=1

�
K0 (σi, jσi, j+1 +σi, jσi+1, j)

+
∑̀
γ=1

Kγ (hγi, jh
γ
i, j+1 + hγi, jh

γ
i+1, j)

+ J1σi, jh
1
i, j +

∑̀
γ=2

Jγ hγ−1
i, j hγi, j

�
. (11)

Summing over the hidden variables, the wave function can be rewritten as a translational
invariant coPEPS built from the local tensors (see Fig. 2)

Aσαβγδ = (Aσ)αβ(A
σ)γδ,

Bσα′β ′γ′δ′ = δα′γ′(B
σ/2)α′β ′(B

σ/2)γ′δ′ , (12)

with matrices Aσ and Bσ given by Eqs. (8) and (9), where we discarded the label j due
to the translational invariance. The local building block for the coPEPS is obtained by index
fusion, paring each couple of indices to a single index which spans a four-dimensional auxiliary
space, i.e. α= (α,α′), getting Cσαβγδ = Aσ

αβγδ
Bσ
α′β ′γ′δ′ . Again, in this case, the extension to an

arbitrary number of hidden layers is straightforward, and the coPEPS auxiliary dimension is
the same as in the 1D case, namely χ` = 2`+1.

The coMPS (coPEPS) mapping of the uRBM variational ansatz can be proficiently used
together with Monte Carlo techniques in order to avoid the full sampling over the set of hidden
variables. Indeed, those representations are a practical way to explicitly trace out the full set
of the hidden variables.

3 Numerical results

In what follows we investigate how the different ansätze are able to describe the ground state
of critical Hamiltonians (both in 1D and 2D), where bipartite entanglement entropy scales
logarithmically with the system size, and the correlation functions decay algebraically.

3.1 The Ising quantum chain

We start our analysis with the ferromagnetic Ising quantum chain, whose Hamiltonian, for N
lattice sites and periodic boundary conditions, is given by

HI = −
N∑

j=1

σ̂z
j σ̂

z
j+1 −λ

N∑
j=1

σ̂x
j , (13)

where σ̂γj (for γ ∈ {x , y, z}) are Pauli matrices acting on the site j, and σ̂γN+1 = σ̂
γ
1. The trans-

verse field λ drives the ground state from a ferromagnetic region (λ < 1) to a paramagnetic
region (λ > 1) across a quantum critical point.

6



SciPost Phys. Core 4, 001 (2021)

RBM(α=1)

uRBM(ℓ=1)

MPS(χ=4)

0.4 0.6 0.8 1.0 1.2 1.4 1.6

10-9

10-7

10-5

10-3

λ

δ
E

N = 80

1 2 3 4

10-9

10-7

10-5

10-3

α = ℓ

δ
E

λ = 1

Figure 3: Relative error in the ground-state energy estimate for different many-body
wave function representations. (left panel) We compare the uRBM with ` = 1 with
respect to the canonical MPS with the same bond dimension (χ = 2`+1 = 4) as a
function of the transverse field λ. (right panel) Scaling analysis of the energy error
at the critical point, as a function of the hidden variable density α = ` (for RBM
and uRBM) and analogous bond dimension χ = 2`+1 (for the MPS). RBM (uRBM)
representation reaches (overtakes) the accuracy of the MPS with χ = 4 only for
α = 2 (` = 2); however, they remain above the estimate obtained with a canonical
MPS with the same auxiliary dimension of the uRBM, i.e. χ = 2`+1 = 8.

Exploiting the coMPS mapping of the uRBM, we are able to optimize the many-body wave
function very efficiently. We consider a chain with periodic boundary conditions and mainly
focus on the one layer case (`= 1), thus reducing the number of variational parameters to 3.
Due to the coMPS representation of the variational wave function in Eq. (7) we are able to
evaluate the Hamiltonian expectation value exactly. Thus, we improve the accuracy and the
computational time compared to what has been recently found for the ground state energy
with an uRBM in Ref. [50] via Monte Carlo methods. For sake of clarity, we point out that this
approach drastically improves the evaluation of expectation values only and does not affect
the time required for the optimisation of the uRBM wave-function.

In the left panel of Fig. 3 we report the relative error of the best estimate of the ground-
state energy with respect to the exact value, namely δE = |(〈HI〉 − Eex)/Eex |, for a system of
size N = 80 and varying the transverse field λ ∈ [0.5, 1.5]. We compare the results of the
uRBM with `= 1 against the data obtained with a traditional MPS-based algorithm [52] with
the same auxiliary dimension χ = 2`+1 = 4. At the critical point, we also report the result
obtained in Ref. [13] with the RBM variational ansatz and the same number of hidden variables
(i.e. α= 1). We confirm that appropriate physical insights about the model under investigation
not only reduce the computational effort of the algorithm (from 2N+1 parameters in the RBM
to 3 parameters in the uRBM), but results in higher precision. However, we notice that results
based on the canonical MPS representation are order of magnitudes more accurate than those
based on the corresponding uRBM representation.

Of course, it must be said that the canonical MPS representation contains more variational
parameters than the uRBM with the same bond dimension; we would expect all represen-
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Figure 4: (left panels) Finite size scaling analysis of the relative error in the ground-
state energy of the critical Ising chain for different many-body wave function ansatz
(uRBM and MPS); the grey dashed lines correspond to the accuracy goal 10−5. (right
panel) Scaling of the largest system size N ∗ which can be described with an energy
accuracy ≤ 10−5 for the two different ansätze. The black dashed lines are power-law
fits as reported in the main text.

tations becoming better by increasing the number of variational parameters. Therefore, we
investigate this aspect at the critical point (the more computational demanding case), where
we perform a scaling analysis of the accuracy in the energy estimation for the different wave
function representations. It turns out that, for equal hidden variable density α= `, the uRBM
overtakes the RBM; however, the canonical MPS with the same bond dimension χ = 2`+1 of
the uRBM remains highly more accurate than any NN representation (see Fig. 3 right panel).
For example, for α = ` = 2, we obtain δERBM ' 0.8 · 10−4, δEuRBM ' 0.16 · 10−4, whilst the
MPS with χ = 2`+1 = 8 gives δEM PS ' 0.15 · 10−5.

Once established that the uRBM with the Ising-like geometry gives better estimates of the
ground-state Ising energy with respect to the RBM variational wave function, we may now
concentrate on a more systematic Finite Size Scaling (FSS) comparison between uRBM and
MPS. Indeed, in order to infer about a possible definition of the descriptive power of a given
many-body wave-function ansatz, we decided to proceed in the following way: (i) We fixed the
level of accuracy to be 10−5 so as to have a good interpolation of the uRBM data; (ii) we extract
the largest system size N ∗ whose ground-state energy can be estimated within that accuracy
goal; (iii) we analyse the behaviour of N ∗ as a function the (effective) bond dimension χ,
which indeed gives the algorithmic complexity of the energy minimisation procedure for both
ansätze. Once again, we concentrate the FSS analysis to the more computational demanding
critical chain (i.e. λ= 1). We perform numerical simulations with sizes N ∈ [10, 200] for the
uRBM with ` ∈ {1, 2,3}, and N ∈ [10, 400] for the MPS with χ ∈ {4, 8, 16}.
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Figure 5: (left) Two-point connected correlation function in log-log scale at the
critical point for different variational ansatz and smaller description, i.e. α = ` = 1
and χ = 2`+1 = 4. Black full line are the exact analytical results. (right) Relative
error from the exact data when larger NN representations are considered; here we
compare RBM/uRBM with α = ` = 2 with the canonical MPS with χ = 2`+1 = 8.
All the data for RBM has been obtained by using the optimised wave functions in
Ref. [13].

In the left panels of Fig. 4 we report the data (symbols) together with the best power-law
fits δE = a + bN c (full lines). From the best-fit parameters and their errors we obtain the
estimate of N ∗, where the effective bond-dimension of the uRBM is χ = 2`+1. A different
scaling of the descriptive power of the two ansätze is reasonably clear from the right panel
of Fig. 4: The black dashed lines indeed show a fair agreement with N ∗ ∼ χ4.2 for the MPS
variational wave-function, while only N ∗ ∼ χ1.9 for the uRBM one.

Let us stress once more that, the performances of the uRBM to characterise the low-energy
properties of the Ising chain are strictly related to the fact that such variational ansatz some-
how encode the Ising geometry. In principle, we do not expect the same degree of accuracy
when analysing different 1D critical models; this is what happen, for example, when trying to
characterise the ground-state energy of the XXZ spin-1/2 chain in the gapless phase, where
the performances of both the uRBM and the MPS are one/two orders of magnitude worst.

Even though the different variational ansätze may give reasonable estimates of the ground-
state energy, it is worth investigating the large-distance behaviour of correlation functions. In-
deed, at the critical point, we expect a power-law decay of the two-point connected correlation
function 〈σz

1σ
z
j+1〉c = 〈σz

1σ
z
j+1〉 − 〈σz

1〉〈σz
j+1〉, as far as j� N . However, the MPS structure of

the variational ansatz introduces an unavoidable fictitious correlation length. Moreover, the
fact that the uRBM energy estimate is better than the RBM estimate (see Ref. [13, 50] for a
comparison), implies that the uRBM may give a better estimate at the level of the correlation
functions as well. With this respect, in the left panel of Fig. 5, we compare the connected
two-point function 〈σz

1σ
z
j+1〉c evaluated in the optimised uRBM with ` = 1 against the same

two-point function evaluated in the unconstrained MPS with auxiliary dimension χ = 4. In
order to have the same number of hidden variables in both NN representations, we show the
RBM correlations with α= 1, which have been obtained by sampling the optimised wave func-
tion in Ref. [13] over 106 configurations. We focus our analysis to the critical point, where a
larger deviation from the exact data is expected. From the figure it is clear that, the canonical

9



SciPost Phys. Core 4, 001 (2021)

MPS is largely better than the neural-network representation.
In a way, the RBM suffers from a sort of over-estimation of the long-range correlations due

to the presence of unphysical long-range couplings between hidden and physical variables; on
the contrary, the over-constrained structure of the coMPS representation of the uRBM reflects
into a stronger exponential decay of the two-point correlations. However, there is the possibil-
ity for those functions obtained by optimised NNs to be improved by the inclusion of further
layers in the ansatz, which can increase the degree of correlations.

Indeed, when the number of hidden variables is increased to α = ` = 2 in such a way to
reach the same energy accuracy of the MPS with χ = 4 (see Fig. 3, right panel), the corre-
sponding NN description of the correlation function improves as well and reaches that of the
MPS with χ = 4. However, it still remains less accurate with respect to the MPS representa-
tion with an auxiliary dimension χ = 2`+1 = 8 (see right panel in Fig. 5). In particular, for
distances j ® 20 lattice sites, the RBM relative error remains ® 5%, the uRBM gets an error
® 0.6% whilst finally the MPS reaches a better accuracy with an error ® 0.16%.

From this point of view a structured neural network states, namely a uRBM, seem better
tailored than an RBM, at least, to deal with short-range one-dimensional systems. Once again,
we may stress that when simulating with a uRBM, the coMPS representation should be used to
calculate energy and further expectation values for higher accuracy and lower computational
time.

3.2 The 2D Heisenberg model

We now extend our analysis to two-dimensional systems as well, by considering the 2D Heisen-
berg antiferromagnetic model, whose Hamiltonian is

HH =
N∑

i, j=1

∑
γ

�
σ̂
γ
i, jσ̂

γ
i, j+1 + σ̂

γ
i, jσ̂

γ
i+1, j

�
, (14)

where γ runs over {x , y, z}. We assume here periodic boundary conditions. The ground state
of Heisenberg Hamiltonian is characterised by power-law decaying correlations, thus being a
perfect two-dimensional benchmark.

As already stressed, an RBM is characterised by an exponentially large bond dimension
and seems to work pretty well in the presence of long-range interactions and correlations [47].
Here, in order to avoid the expensive optimisation procedure for a PEPS wave function, we only
consider the state-of-the-art RBM variational results in Ref. [13] and compare its descriptive
power against a Tree Tensor Network (TTN) [34, 54–57] representation for the 2D Heisen-
berg ground-state. A TTN is a loop-free Tensor Network which can be efficiently contracted
and it is characterised by a finite bond dimension χ which enforces the maximum amount of
entanglement for any bipartition of the 2D state to be finite.

In our TTN simulations, we consider both 8 × 8 and 10 × 10 sizes; the former is more
suitable for a TTN algorithm since it can fully exploit the binary-tree structure. We compare the
estimated energy density with the best known results obtained via Quantum Monte Carlo [53]
and show the relative deviation in Fig. 6 for both system sizes. In both cases (for L = 8 and
L = 10) the errors of the Quantum Monte Carlo results are below 10−5 and therefore negligible
compared to both, the TTN as well as the RBM.

The 10× 10 case presents a geometry which is much less easy to adapt for TTN compu-
tations; nevertheless we are able to reach the same accuracy of an RBM with α = 1 by only
keeping χ = 340 states (see Fig. 6), which should be compared with the RBM equivalent bond
dimension χRBM ∼ 2αN2

= 2100. Let us point out that in the 8× 8 case, when a better-suited
TTN geometry can be used, we are able to reach one order of magnitude better precision.
With a relatively small bond dimension χ = 700 we already almost meet the RBM results with
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Figure 6: Relative error of the 2D Heisenberg ground-state energy compared with
the best available estimates obtained by the finite-size Quantum Monte Carlo analysis
in Ref. [53]. Symbols are TTN results for two different system sizes as function of
the maximum bond dimension. Dashed lines represent RBM accuracy from Ref. [13]
for the 10× 10 system and different hidden variable densities α ∈ [1, 32].

α = 16 (whose bond-dimension scale as χRBM ∼ 216·64). Let us stress that, this huge differ-
ence in the bond dimension scaling, suggests that such parameter is not a sensible measure of
complexity for a Neural Network.

At this point, we may wonder how well different representations reproduce two-point cor-
relation functions. Due to the SU(2) symmetry of the Heisenberg Hamiltonian, we expect all
correlations 〈σ̂γi σ̂γj 〉c being independent of γ when evaluated in the exact ground state. In

the TTN framework, we enforced U(1) symmetry along the ẑ axis which provides 〈σ̂x ,y
j 〉 = 0

thus the connected correlations are more accurate in the x̂- ŷ plane; we therefore compute
correlations along the x̂ axis. In the RBM case, we considered correlations in the ẑ axis, since
by construction they are more accurate and easier to measure here; again in this case, the
RBM correlations have been obtained by sapling over 106 configurations the optimised wave
function in Ref. [13]. With this prescription we are sure to compare the best estimates in both
representations.

In Fig. 7 we show the TTN correlations for the 10×10 size and different bond dimensions,
and compare them to the RBM with α= 1 and 2. It is clear that correlations are growing and
getting better with an increasing number of variational parameters. However, the insight from
this comparison is twofold: (i) the exponentially large bond-dimension of the RBM is not a
guarantee for this representation to be able to encode power-law correlations in critical 2D
short-range interacting models and thus to overtake a Tensor Network representation based
on finite bond-dimension; (ii) when both TTN and RBM get the same accuracy in the energy
(i.e. α = 1 and χ = 340 for the 10 × 10 size), TTN is more accurate for characterising
the correlation functions. However, regarding the latter, we mention that this finding and
especially the magnitude of the difference in characterising the correlation functions may as
well be dependent on the model of investigation. Thus, the generalisation of this statement
has to be investigated in future work.
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Figure 7: Connected correlation function in the TTN representation of the ground
state of the 10×10 Heisenberg Hamiltonian for different bond dimensions (symbols)
vs the distance r(i, j) ≡ [i2 + j2]1/2, where i ≤ j ∈ {0,5} × {0, 5}. The dashed grey
lines represent correlations obtained by sampling the RBM optimised wave function
in Ref. [13].

Let us further point out that in this particular benchmark we may as well exploit the SU(2)
symmetry in the TTN simulations thus allowing us to: (1) dramatically increase the accuracy
in the estimated energy; (2) reduce the effective bond dimension and thereby the computa-
tional time since for non-abelian symmetry we may only work within the symmetry multiplet
spaces; (3) drastically improve the connected correlations since we enforce 〈σ̂γj 〉 = 0, as well

as 〈σ̂γi σ̂γj 〉c to be equivalent independent on γ. While (3) can be achieved as well for the RBM
when encoding symmetries, (2) does not apply for RBMs. Thus, for RBMs, as for the TTN,
we would expect to gain a higher precision in the final results when exploiting the SU(2)
symmetry as a result of (3). However, we would not expect such a dramatic increase of the
computational time as in the case of the TTN, which in return enables the TTN to achieve
higher bond dimensions and thereby to further increase the accuracy additionally to point (3).

4 Discussions

We investigated the efficiency of Neural Network quantum states with respect to Tensor Net-
work quantum states when used to describe the ground-state of critical short-range interacting
Hamiltonians both in one and two dimensions.

We pointed out and exploited the “constrained” Tensor Network State (coMPS/coPEPS in
1D/2D) representation of the neural-network wave function. As a matter of fact, RBM and
uRBM have very different representations. Even though the coMPS associated to the RBM has
an auxiliary dimension which scales exponentially with the number of hidden variables, it still
struggles to properly describe the ground-state correlation functions of critical Hamiltonians.

Indeed, in the 1D Ising case, a much smaller coMPS dimension associated to a much more
constrained uRBM wave function gives a more accurate description if compared to the RBM
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parametrisation. However, it turns out that, for equal auxiliary dimension, standard MPS
algorithms give a more acurate description of the many-body ground state. In addition, since
the performances of bothe, the uRBM (in the coMPS representation) and the MPS algorithm,
scale with the (effective) auxiliary dimension χ, an accurate FSS analysis suggests a possible
definition of the descriptive power of a variational wave-function: namely, the largest system
size which can be faithfully (i.e. within an accuracy goal) described by a given ansatz. As
a matter of fact, the descriptive power of the un-constrained MPS outperforms the uRBM
descriptive power, when both are used to approximate the ground-state of a critical Ising chain.

In this sense, the exponentially large auxiliary dimension of the coMPS associated to a
generic RBM seems not enough to provide a good characterisation of the long-range correla-
tions in the critical Ising quantum chain. In order to obtain more accurate estimates, system-
dependent deep neural network states, namely a uRBM with ` � 1, have to be properly
optimised. Our explicit coMPS representation of the uRMB variational ansatz can be even-
tually combined with Monte Carlo techniques thus overcoming the limitation, pointed out in
Ref. [50], of sampling over the hidden-variable configurations; thus making the Monte Carlo
approach also effective for Hamiltonians where the sign-problem occurs. Moreover, an opti-
mised uRBM can be used to optimally initialise convolutional NN algorithms, so as to speed
up the computations.

In 2D we compared the RBM representation against the TTN representation when both
are used to approximate the ground-state many-body wave function of the two-dimensional
Heisenberg Hamiltonian. As expected, both methods are well suited to describe the 2D many-
body quantum system. However, when reaching the same level of accuracy in the energy
estimate, a TTN is more precise in characterising long-range correlations, even though they
are employing a strictly finite bond dimension far below the mapped counterpart of the RBM
representation. This, from the one side, leaves no doubt that the exponentially large auxiliary
dimension of the RBM does not ensure an adequate descriptive power; from the other side, it
leaves us with the open question on how to properly estimate the information which is encoded
in a NN, so as to define a proper measure of complexity for a neural network quantum state.
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A 1D numerical simulations

The numerical simulations for the ground-state optimisation in the Ising quantum chain have
been performed by means of different approaches. In particular, the optimisation of the canon-
ical MPS has been done by using the well established DMRG algorithm [25]. In our algorithm,
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we fixed the auxiliary dimension χ to remain constant. A preliminary “infinite” size procedure
enlarges the system up to the desired linear dimension N = 80. Thereafter, the usual “sweeps”
procedure locally optimises the MPS wave function. The algorithm is stopped when the energy
difference between two consecutive sweeps is less that the machine precision.

In the uRBM approach, we exploited the coMPS representation of the ansatz for the wave-
function so as to get very accurate results. If Mσ is the local tensor depending on 2`+ 1 real
variational parameters ~K , we introduced the local operator-dependent transfer-matrix

TÔ =
∑
σ,σ′
〈σ′|Ô|σ〉 (M∗)σ′ ⊗Mσ, (15)

which implicitly depends on the variational parameters ~K , and globally minimised the energy
density of the Ising quantum chain

ε[~K] = −
Tr[Tσ̂z Tσ̂z TN−2

Î
] +λTr[Tσ̂x TN−1

Î
]

Tr[TN
Î
]

. (16)

In the simplest case of ` = 1 we used the Mathematica builtin routine NMinimize which
turns out to be stable and it efficiently converges to the global minimum. However, for larger
parameter spaces, namely ` = 2 and 3, the Mathematica routine does not give the expected
improvement in the energy minimisation, and it gets stacked on some local minimum. We
thus improved the global minimisation by randomly reducing the dimension of the parameter
space wherein NMinimize has to look for a global minimum. In practice, we proceed in the
following way:

1. We randomly initialise a real vector ~K which contains the 2`+1 variational parameters.

2. We randomly construct a (2`+1)×(2`+1) orthogonal matrix R and define the variational
parameter vector in the new basis ~K ′ = RT ~K .

3. We pick up three components of the vector ~K ′ and promote them as variational vari-
ables, thus defining the 3-variable dependent vector ~K ′(x , y, z) where {x , y, z} is a three
dimensional subset of variational parameters. We thus transform back the vector to the
original basis so as to have ~K(x , y, z) = R~K ′(x , y, z). We minimise ε[~K(x , y, z)] with
respect to {x , y, z} by using NMinimize, thus finding the best parameters {x∗, y∗, z∗}.
If the new optimised energy density is lower than the actual best estimate, we upgrade
the solution ~K = ~K(x∗, y∗, z∗).

4. We repeat point 3 for all possible different way of taking three components of the vector
~K ′, i.e.

�2`+1
3

�
. Thereafter, we go back to point 2 and repeat the procedure.

5. We stop the recipe when the difference in the two best energy estimates is less than 10−9.

B 2D Numerical simulations

The simulations for the ground-state computation of the isotropic 2D Heisenberg model have
been done using a binary Tree Tensor Networks (TTN). In this approach each tensor within the
Network combines two sites to one coarse-grained virtual site (or bond link), resulting in the
hierarchical tree structure. The optimisation of the TTN, as well as the calculation of the ob-
servables for the optimised ground-state, were obtained following the description for loopless
Networks in Ref. [34]. For all simulation the U(1) symmetry has been exploited. Furthermore,
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Figure 8: Binary TTN structure for the 8× 8 simulations. The tensors (green) each
merges two sites of the lower layer to one bond link (brown). The mapping here
groups alternatingly in x- and y-direction from layer to layer starting from the phys-
ical sites of the 8× 8 lattice.

for each simulation the Network was randomly initialised within the zero-magnetisation sym-
metry sector and within the given bond dimension χ.

For the 10× 10 simulations, the physical sites j ∈ {1, . . . , 100} of the TTN were assigned
in a zig-zag pattern to the two-dimensional lattice, such that the lattice site (x , y) (with
x , y ∈ {1, . . . , 10}) is mapped to the TTN site j = x + 10 · (y − 1). Thereby, the system is
coarse-grains in x-direction first at the lower layers of the tree, and afterwards at the upper
layers in y-direction. Thus the simulation is biased towards the x-direction as the topology
of the TTN is not well suited to capture correlations in y-directions. This makes the 10× 10
system size in general not ideal for a TTN approach.

In the case of the 8× 8 system size, the TTN was arranged, such that the grouping within
the network is done in an alternating form from layer to layer, as depicted in Fig. 8. Thus the
Tensors in the TTN is coarse graining the system in local plaquettes and thereby better capture
the correlations within these plaquettes. This mapping leads to a more precise description,
which can be observed in the energy being an order of magnitude more accurate (see Fig. 6).
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7
Conclusion and Outlook

This thesis focused on the efficient simulation of quantum many-body systems in higher
dimensions. In particular, a Tree Tensor Network (TTN) has been developed capable of
solving equilibrium problems and applied to various systems benchmarking its correctness
and further unveiling novel physical insights unexplored before.

In this context, Chapt. 2 provided an overview of selected topics around Tensor Network
states and algorithms building the foundation of the presented development. It mathemati-
cally introduced the fundamental building blocks of a Tensor Network, namely the tensors,
together with their basic operations, before formally introducing the concept of Tensor Net-
work states itself. In particular, this chapter highlighted that the developments of Tensor
Network geometries for two- or even higher dimensional systems is still ongoing with the
TTN and PEPS being the most prominent candidates. The main challenge thereby lays in
the combination of accuracy and scalability required for efficiently simulating quantum many-
body systems with Tensor Networks in higher dimensions. To overcome this limitation, Tensor
Network states shall by construction satisfy the same entanglement bounds under real-space
bi-partitions as the physical states they represent and at the same time, their algorithmic
complexity shall be as low as possible. In Sec. 2.2, it was illustrated that finding this balance
in higher dimensions between sufficiently satisfying the entanglement bounds and keeping the
numerical complexity feasibly low poses an infeasible challenge to the current state-of-the-art
Tensor Networks.

With this paradigm in mind, Chapt. 3 formally and technically discussed the TTN geom-
etry and its implementation for high-dimensional quantum systems. In this regard, Sec. 3.2
elaborated on how the structure of a TTN is key for a successful analysis of systems in two
spatial dimensions and beyond. At this point, the thesis introduced a technically non-trivial
mapping enabling an efficient representation of quantum states in higher dimensions via TTN
and further provided a hands-on illustration in a step-by-step example for a ground-state
search of a (4× 4)-system.

In Chapt. 4, this TTN has been applied to study a Lattice Gauge Theory (LGT) approx-
imating the low-energy behaviour of quantum electrodynamics in two dimensions. Therein,
we demonstrated the successful application of TTNs on LGTs at finite density, which belongs
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to the set of fundamental problems in which Quantum Monte Carlo (QMC) simulations suffer
from the sign problem. Thus, this chapter has shown the potential of TTNs to accurately
describe systems in High-Energy physics which in their full extend are used to promote the
understanding of fundamental elements of the universe. Further, this application illustrated
that TTNs are, in general, a highly promising candidate for the analysis of high-dimensional
quantum many-body systems. However, as Sec. 3.2.2 highlighted, the TTN does not capture
the Area-Law by its structure for two, or even higher, dimensions, even with the aforemen-
tioned mapping, and thus it eventually fails to faithfully represent a complex high-dimensional
quantum many-body state.

At this point, we introduced a novel Tensor Network which augments the TTN with a
layer of disentanglers, in a way that it is indeed able to encode the area law by construction.
Thus, this augmented Tree Tensor Network (aTTN) offers better scalability and thereby
overcomes the fundamental limitations of TTNs for high-dimensional systems. In particular,
in Chapt. 5, we illustrated that this novel technique outperforms competing methods and
reaches unprecedented system sizes in two-dimensions making it the ideal candidate to, among
other applications, benchmark and validate state-of-the-art quantum technologies, such as
quantum simulators or quantum computers.

Finally, Chapt. 6 presented a publication in which we compared different variational
methods used as state representation. In particular, we analysed one-dimensional and two-
dimensional critical systems with different Tensor Network approaches and Neural Network
(NN) approaches and on top introduced a novel mapping that illustrates the mathematical
connection between the networks.

In a scientific perspective, the developments achieved in the course of this thesis repre-
sent an encouraging step for efficiently simulating the quantum many-body systems in high-
dimensions. The results presented with the introduction of the aTTN, in particular, show that
Tensor Networks are indeed able to efficiently capture the underlying entanglement properties
of the quantum states in two dimensional systems. This key step provides the basis for future
Tensor Network analysis to investigate quantum many-body phenomena inaccessible before.
Since the thesis touches on several important areas, the following outlook is categorised into
different sections.

Augmented Tree Tensor Network

We introduced the aTTN as a novel Tensor Network geometry to successfully tackle the
quantum many-body problem in higher dimensions. In particular, we augmented the well-
established Tree Tensor Network to reproduce area law for the underlying system. We illus-
trated the technical insights into the aTTN required for its implementation, including the
structure of the network, its optimisation and the calculation of observables. We further
proved that this augmented TTN outperforms the ordinary TTN with increasing system size
for two-dimensional systems, showing its power to represent the ground-state of critical quan-
tum many-body systems in unprecedented sizes up to 32 × 32. Due to the efficient scaling
for the aTTN of O

(
m4
)
, we can reach a higher bond dimension m compared to alternative

methods for 2D, such as PEPS and MERA, and thereby thanks to the augmented layer of
properly engineered disentanglers, reach higher precision and larger system sizes.

In fact, the most crucial point of this technique is to find the best network structure
for a given Hamiltonian, i.e. the right number of disentanglers and their exact position
within the system. In Chapt. 5, the thesis presented a solid, general and scalable procedure
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of positioning the disentanglers which is applicable for arbitrary systems in two and three
dimensions. However, even though this procedure is a generic strategy that, as proven within
the thesis, leads to great improvements compared to previous approaches, it might not be the
best one for every individual system. This is particularly the case for applications where one
could exploit further physical information from the system, such as interaction positions and
coupling strengths. Therefore, a promising line of future developments is to flexibly adapt
the network structure, and in particular the positioning of the disentanglers, based on the
interactions of the system to analyse. As an example, this might turn out to be beneficial
for analysing phenomena in quantum chemistry where the interactions are governed by the
molecular structure [178].

Additionally, this novel Tensor Network can be adapted in future work to explore aspects
of quantum many-body systems beyond ground state properties, such as time evolution and
finite temperature behaviour, which presents a highly promising potential of the aTTN yet
to be unveiled. In particular, real and imaginary time evolution can be implemented either
along the line of Ref. [217] following the time-evolution procedure for MERA or of Ref. [143]
for the TTN. Further, the aTTN may be extended to an aTTN Density Operator (aTTN-
DO) following the concept of Ref. [159] towards simulating finite temperature states and
dynamics in high-dimensional open quantum systems. These implementations are technically
and numerically challenging but almost straightforward generalizations of the original ideas
presented in the previously mentioned references.

Comparing Quantum State representations

Chapt. 6 presented a comparison between Tensor Networks and Neural Network states as
representations of a quantum many-body wave function. In many cases, it has already been
shown that Neural Network states can be mapped into a Tensor Network with exponential
bond-dimension [213]. On the other hand, we illustrated a mathematical connection between
the networks and introduced a novel mapping. We further pointed out that comparing quan-
tum state representations in higher dimensions, in general, is a non-trivial task for which
sound measures have to be found in the future in order to provide a fair comparison. In par-
ticular, many difficulties arise when naively comparing neural network states to exponential
large Tensor networks since the actual descriptive power of those methods may not always be
straightforwardly measurable.

Since both are variational methods, one may argue that they can easily be compared by
the obtained energy with a fixed number of variational parameters. However, the number of
variational parameters in both approaches does not reflect the actual number of free degrees
of freedom [218]. This is a well-known problem already discussed in quantum physics when
comparing the two methods: The number of variational parameters may even be far from
being a valid indicator of the actual degrees of freedom or an indicator of the accuracy in
such a comparison. As an example, the MPS gives an exact representation of the ground-
state of the AKLT model with bond dimension m = 2. However, a fully connected Restricted
Boltzmann Machine (RBM), i.e. a Neural Network-based approach, would require O(N2)
hidden units to find this exact representation [219]. The Laughlin wave-function, on the other
hand, can be efficiently represented by an RBM using N(N − 1)/2 hidden units [219, 220]
while an MPS would requires a quasi-exponentiallylarge bond-dimension of χ ∼ eacL(cL)−1/2
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to simulate the system at fixed accuracy [221]. Thus, comparing the number of variational
(or trainable) parameters may not lead to a proper comparison of their descriptive power in
general.

This issue presents an important point for future work which is not fully addressed yet.
In this comparison, the open question is how to properly estimate the information which
is encoded in a Neural Network, or to define a proper measure of complexity for a Neural
Network quantum state. However, the underlying lack of a profound measure to compare
variational methods as state representations extends to all methods including Tensor Networks
and QMC. In fact, by scaling up the computational resources the results can be improved for
all of the variational approaches, thus putting a high focus on the actual implementation and
the used computational resources. Consequently, it is, in general, not trivial to tell from a
pure information-theory-based point-of-view which approach is the best-suited for a certain
problem when going beyond Tensor Networks.

Lattice Gauge Theory

A further highly encouraging future direction of research unveiled by our work is to be found in
the analysis of Lattice Gauge Theories. As demonstrated in Chapt. 4, Tensor Network can be
successfully applied to the study of two-dimensional Lattice Gauge Theories. In particular,
the developed concept takes advantage of the quantum link formulation of Lattice Gauge
Theories and the fermionic rishon representation of the quantum links. Thereby, the TTN
algorithm is, among others, capable to find equilibrium properties of a lattice QED system
within its first compact spin representation S = 1 for system sizes up to 16×16. By exploring
systems at finite density, the TTN has proven itself to be a powerful tool to obtain a non-
perturbative description of a Lattice Gauge Theory in regimes where QMC suffers from the
sign-problem. This capability of successfully simulating Lattice Gauge Systems of the TTN
in higher dimensions is further demonstrated in App. A which presents an LGT analysis for
three-dimensional systems.

The potential future development of Tensor Networks for this application is very encour-
aging for theoretical and experimental physics. On the one hand, exploiting the full potential
of High-Performance Computing, and the aTTN approach, could enable to extend the pre-
sented analyses towards (i) the simulation of larger system sizes allowing physical predictions
in the spatial continuous limit, (ii) the analysis of higher-order link representations S → ∞
to investigate the continuum field or large-S limit, and (iii) more complex Abelian and non-
Abelian Lattice Gauge Theories, such as quantum chromodynamics or, as a particular case,
the Standard model. Some of those studies have already been performed for one-dimensional
systems [222, 223] while crucially, these advanced studies for high-dimensional systems could
even turn out to be useful for promoting our theoretical understanding of the universe.

On the other hand, quantum link model formulations are frequently studied in experi-
mental physics with the intention to simulate LGTs on quantum hardware [224]. Such ex-
perimental quantum simulations have recently been realised for one-dimensional LGTs by the
means of trapped ions, ultracold atoms, or Rydberg atoms in optical lattices [225–229]. As
mentioned above for the aTTN, the development of these quantum simulators seeks stable
benchmarking tools, such as the developed Tensor Network approach of this thesis, in order
to faithfully verify the experimentally realised simulators.
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Hybrid quantum technologies

As mentioned before, Tensor Networks offer a powerful tool to cross-validate quantum tech-
nologies since they can simulate the underlying quantum system on a classical computer.
The connection between Tensor Networks and quantum technologies, in particular quantum
computers, is even more profound than offering a benchmarking possibility. Tensor Networks
can as well be interpreted as a particular class of quantum circuits [100], thus opening the
pathway to more connected hybrid approaches between Tensor Network-based quantum cir-
cuits and quantum computation. Such a classical-quantum hybrid approach has already been
proposed as a tool for solving supervised learning problems in Machine Learning where a
Tensor Network on classical computers is used for the training process while the classification
is realised by a quantum system [100]. Using an MPS as Tensor Network and single photons
as a quantum device for the prediction, this approach has already been implemented experi-
mentally proving the feasibility of such hybrid systems [230]. However, while these references
provide encouraging results and illustrate a very interesting field of research, their approach
by design restricts the information content of the MPS, and thereby its accuracy, which sets a
clear limitation for the practical application to general problems in Machine Learning. Using
more advanced Tensor Network methods, such as the aTTN, and further investigating the
fundamental connections between Tensor Networks and quantum circuits can overcome this
limitation in future applications and potentially lead to efficient hybrid quantum technologies.

Such hybrid approaches can further be brought in the more general context of solving
classical optimisation problems. As an example, App. B presents an application of Tensor
Networks within the optimisation procedure of the dose distribution for an IMRT cancer treat-
ment. Foreseeing new applications of quantum-inspired techniques to the solution of classical
optimization problems, this study may open the pathway to the application of quantum tech-
nologies to cancer treatment. As an example, this can be realised through the application
of hybrid quantum-classical optimization algorithms [101], once such a quantum computer
hardware can be scaled up correspondingly. Thus, this might be another promising direc-
tion in which the developed TTN approach might play a role to further enhance the current
capabilities of fighting cancer in the future.

Technical advancement

Last but not least, the presented Tensor Network implementation itself still has a high poten-
tial to be heavily improved by exploiting the full capabilities of High-Performance Program-
ming and Computing. So far, the TTN and aTTN code is only parallelised via OpenMP for
the local optimisation procedure, which is not scalable with system size for HPC. However,
there are possibilities to improve this underlying scalability with further implementations
aiming to exploit the full potential of HPC systems. As discussed in Sec. 3.3.3, the parallel
DMRG algorithm proposed in Ref. [180] can be adapted towards the TTN structure and
implemented accordingly. Following this path, the code could be parallelised using MPI and
OpenMP to run efficiently on several nodes. This implementation would enable to scale the
parallelisation with system size and drastically reduces the CPU time for large system sizes.

Another technical step to improve the TTN simulations is the implementation of GPUs
since, at the current stage, the development is limited to CPUs. Ref. [231] shows that such
implementation at the low level of tensor contractions can provide a speedup by a factor of up
to two orders of magnitude. Thus, implementing and testing both improvements, the advanced
parallelisation and the usage of GPUs, helps to overcome the current technical limitations and
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enables to efficiently investigate high-dimensional quantum many-body systems. Thereby, we
will be able to set new standards in the numerical simulation of these systems and reveal new
insights in the affected areas, including Quantum Information, Condensed Matter Physics,
High Energy Physics, Quantum Computing, and Machine Learning.



A
Applications for three-dimensional Lattice Gauge

Systems

As referred to in Chapt. 4, the following manuscript appends the application of Tensor Net-
work algorithms on models in the field of Lattice Gauge Theory (LGT). In particular, this
work extends the publication presented in Chapt. 4 analysing three-dimensional lattice gauge
problems with a Tree Tensor Network. Due to the fundamental challenge in representing
high-dimensional systems with Tensor Networks (as discussed in Sec. 2.2), this publications
was the first attempt to simulate a Lattice Gauge Theory in (3+1) dimensions via Tensor
Networks. Thus, it shows that Tensor Networks, and in particular Tree Tensor Networks,
can be a fruitful direction to solve fundamental long-standing problems. Additionally, Tensor
Networks provide an ideal cross-verification tool for near-future quantum simulations of lattice
gauge theories available shortly (see Chapt. 5). At the state of submission of this thesis, this
second manuscript is accepted for publication in Nature Communications and in the process
of being published. In the meantime, it is available on arXiv [144].
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Gauge theories are of paramount importance in our understanding of fundamental constituents
of matter and their interactions. However, the complete characterization of their phase diagrams
and the full understanding of non-perturbative effects are still debated, especially at finite charge
density, mostly due to the sign-problem affecting Monte Carlo numerical simulations. Here, we
report the Tensor Network simulation of a three dimensional lattice gauge theory in the Hamiltonian
formulation including dynamical matter: Using this sign-problem-free method, we simulate the
ground states of a compact Quantum Electrodynamics at zero and finite charge densities, and
address fundamental questions such as collective phases, confinement, and charge screening.

Ranging from high-energy particle physics (Stan-
dard Model) [1–3] to low-temperature condensed matter
physics (spin liquids, quantum Hall, high-Tc supercon-
ductivity) [4, 5], gauge theories constitute the baseline in
our microscopical description of the universe and are a
cornerstone of contemporary scientific research. Yet, cap-
turing their many-body body behavior beyond perturba-
tive regimes, a mandatory step before experimentally val-
idating these theories, often eludes us [6]. One for all, the
quark confinement mechanism in Quantum Chromody-
namics (QCD), a founding pillar of the Standard Model
which have been studied for almost a century, is still at
the center of current research efforts [7–12]. Indeed, a
powerful numerical workhorse such as Monte-Carlo sim-
ulations [13–15], capable of addressing discretized lattice
formulations of gauge theories [11, 16], struggles in highly
interesting regimes, where matter fermions and excess of
charge are concerned, due to the infamous sign problem
[17]. In recent years, a complementary numerical ap-
proach, Tensor Networks (TN) methods, have found in-
creasing applications for studying low-dimensional Lat-
tice Gauge Theories (LGT) in the Hamiltonian formu-
lation [18, 19]. As tailored many-body quantum state
ansätze, TNs are an efficient approximate entanglement-
based representation of physical states, capable of effi-
ciently describe equilibrium properties and real-time dy-
namics of systems described by complex actions, where
Monte Carlo simulations fail to efficiently converge [20].
TN methods have proven remarkable success in simulat-
ing LGTs in (1+1) dimensions [21–28], and very recently
they have shown potential in (2+1) dimensions [29–33].
To date, due to the lack of efficient numerical algorithms
to describe high-dimensional systems via TNs, no results
are available regarding the realistic scenario of LGTs in
three spatial dimensions.

Here, we bridge this gap by numerically simulating
the Hamiltonian formulation of (3+1) Quantum Elec-

trodynamics (QED) at zero temperature, via TN ansatz
states. We show that, by using the quantum link formal-
ism (QLM) of LGTs [34, 35] and an unconstrained Tree
Tensor Network (TTN), we can access multiple equlib-
rium regimes of the model, including finite charge den-
sities. Precisely, we analyze the ground state properties
of quantum-link QED in (3+1)D for intermediate system
sizes, up to 512 lattice sites. The matter is discretized as
a staggered spinless fermion field on a cubic lattice [16],
while the electromagnetic gauge fields are represented on
lattice links, and truncated to a compact representation
of spin-s. Here we present results from a non-trivial rep-
resentation for lattice gauge fields (the spin-1 case), with
possible generalizations to higher spin requiring only a
polynomial overhead in s. Our picture can be similarly
adapted to embed non-Abelian gauge symmetries, such
as they appear in QCD [28]. Finally, we stress that the
truncation of the gauge field is a common step in quan-
tum simulations and computations [36–42], making the
presented numerical approach a landmark benchmarking
and cross-verification tool for current and future experi-
ments.

Hereafter, by variationally approximating the lattice
QED ground state with a TTN, we address a variety of
regimes and questions inaccessible before. In the scenario
with zero excess charge density, we observe that the tran-
sition between the vacuum phase and the charge-crystal
phase is compatible with a second-order quantum phase
transition [32]. In the limit of zero magnetic coupling,
this transition occurs at negative bare masses m0, but as
the coupling is activated, the critical point is shifted to
larger, and even positive, m0 values. To investigate field-
screening properties, we also consider the case where two
parallel charged plates are placed at a distance (a capac-
itor). By studying the polarization of the vacuum in the
inner volume, we observe an equilibrium string-breaking
effect akin to the Schwinger mechanism. Furthermore,
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is
shown a gauge-invariant configuration of matter and

gauge fields with one particle and one antiparticle in the
sector of zero total charge.

we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L×L×L three-dimensional simple cubic lattice
[16]:

Ĥ = −t
∑

x,µ

(
ψ̂†x Ûx,µ ψ̂x+µ + H.c.

)
(1a)

+m
∑

x

(−1)xψ̂†xψ̂x +
g2e
2

∑

x,µ

Ê2
x,µ (1b)

− g2m
2

∑

x

(
�µx,µy + �µx,µz + �µy,µz + H.c.

)
(1c)

with x ≡ (i, j, k) for 0 ≤ i, j, k ≤ L − 1
labelling the sites of the lattice and �µα,µβ =

Ûx,µαÛx+µα,µβ Û
†
x+µβ ,µα

Û†x,µβ . Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field {ψ̂x, ψ̂†x′} = δx,x′ on lattice sites. Their bare mass
mx = (−1)xm is staggered, as tracked by the site parity
(−1)x = (−1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while

holes on odd sites represent anti-particles with negative
charge −q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

∑
x

(
ψ̂†xψ̂x − 1−(−1)x

2

)
= N̂ − L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ≡ (1, 0, 0),
µy ≡ (0, 1, 0), µz ≡ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx′,µ′ ] = δx,x′δµ,µ′Ûx,µ. (2)

For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,−µ = −Êx,µ and
Ûx+µ,−µ = Û†x,µ.

The Hamiltonian of Eq. (1) consists of four terms: the
parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x − y, x − z, y − z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2e = g2/a, g2m = 8/(g2a), where a is the lattice
spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t,m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

√
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx = ψ̂†xψ̂x −
1− (−1)x

2
−
∑

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |Φ〉 sat-
isfying Ĝx |Φ〉 = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ≡ Ŝzx,µ and Ûx,µ ≡ Ŝ+

x,µ/s for a spin-s representa-
tion. This substitution keeps the electric field operator
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Figure 2: Ground state charge occupation and electric field on links for m = −3.0 (a) and m = 3.0 (c) and g2m = 0.
(b) Particle density as a function of m, for different system size L and g2m = 0. Ground state charge occupation and
electric field on links for m = −3.0 (d) and m = 3.0 (f) in the presence of magnetic interactions with g2m = 8/g2e = 4.

(e) Particle density as a function of m, for different system size L and g2m = 8/g2e = 4.

hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
∑
x ψ
†
xψx = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t → 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ρ =
1
L3

∑
x 〈GS| n̂x |GS〉 where n̂x = 1+(−1)x

2 − (−1)xψ†xψx
is the matter occupation operator and the many-body
ground state |GS〉 has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter 〈n̂x〉 and gauge sites 〈Êx,µ〉 for
m = −3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2m = 8t2/g2e = 4 (physical line). The phase at large
negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ∼ g2m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ≈ +0.22 for the case g2e/2 = t = 1),
ultimately making the transition physically relevant.
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Figure 3: (a) Ground state configuration of the quantum capacitor for m = 3.0. (b) Mean charge density on the
sites along the transverse direction for different values of m. (c) Mean value of the electric field on the transverse

links for different values of m. (d) Ground state configuration of the quantum capacitor for m = −3.0. (e)
Illustration of the creation of a particle-antiparticle pair along the transverse direction, starting from the initial

electric field string generated by the boundary charges. (f) Particle density as a function of m, with a comparison to
the case with no boundary charges.

III. QUANTUM CAPACITOR

To investigate field-screening and equilibrium string-
breaking properties, we analyze the scenario where two
charged plates (an electric capacitor) are placed at the
opposite faces of a volume, with open boundary condi-
tions (OBC). In our simulations, we achieve this regime
by setting large local chemical potentials on the two
boundaries. We expect that for small positive masses m,
the vacuum inside the plates will spontaneously polarize
to an effective dielectric, by creating particle and antipar-
ticle pairs to screen the electric field from the plates, into
an energetically-favorable configuration.

We observe this phenomenon by monitoring the charge
density function along the direction µx orthogonal to the
plates qc(d) = 2

L2

∑L
j,k=1 〈GS| (−1)xψ̂†(d,j,k)ψ̂(d,j,k) |GS〉

as well as the electric field amplitude along µx,
Ecx,x+µx(d) = 2

L2

∑L
j,k=1 〈GS| Ê(d,j,k),(d+1,j,k) |GS〉, as

presented in Fig. 3.
A transition from a vacuum regime to a string-breaking

dielectric regime is observed, when driving m from neg-
ative to positive. However, here the critical point occurs
at positive masses (mc > 0) even at zero magnetic cou-

pling g2m = 0, analogously to the (1+1)D case [22]. In
conclusion, the charged capacitor can make the phase
transition physical even when g can not be tuned.

The observed behaviour can be interpreted as an equi-
librium counterpart to the Schwinger mechanism, a real-
time dynamical phenomenon in which the spontaneous
creation of electron-positron pairs out of the vacuum is
stimulated by a strong external electric field [43]. This
could either be potentially verified in experiments or
quantum simulations, by means of adiabatic quenches,
ramping up the capacitor voltage.

IV. CONFINEMENT PROPERTIES

The (3+1)-dimensional pure compact lattice QED pre-
dicts a confining phase at large coupling g [11, 44–47].
This phase, where the magnetic coupling is negligible, is
characterized by the presence of a linear potential be-
tween static test charges, and is expected to survive at
the continuum limit. By decreasing g, the system under-
goes a phase transition to the Coulomb phase where the
magnetic terms are not negligible and the static charges
interact through the 1/r Coulomb potential at distance r
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[48]. When the gauge field is coupled to dynamical mat-
ter (t 6= 0 and finite m), new possible scenarios emerge,
such as the string-breaking mechanism. Nevertheless, the
transition between confined and deconfined phases is still
expected to occur [49].

We can investigate this specific scenario with our TN
method: we consider a 16 × 4 × 4 lattice and pin two
opposite charges via large local chemical potentials at
distance r along direction µx. The energy E(r) =
V (r)−V (∞)+2ε1+E0 of this ground state comprises: the
work V (r)− V (∞) needed to bring two charges from in-
finity to distance r, plus twice the excitation energy ε1 of
an isolated pinned charge, on top of the dressed-vacuum
energy E0. Therefore we can estimate the interaction
potential as V (r) = E(r) − E0 + ξ where the additive
constant ξ does not scale with the volume (while E(r)
and E0 separately do).

The presence of dynamical matter heavily impacts the
strong-coupling picture (g2m ∼ 0), as it can be extrapo-
lated in the semiclassical limit (t ∼ 0). Here, a particle-
antiparticle pair at distance r with, a field-string between
them, has an energy

E(r)− E0 = 2m+
g2

2
r. (4)

that scales linearly with r. On the contrary, two mesons
(neighboring particle-antiparticle pairs) have a flat en-
ergy profile

Epairs − E0 = 4m+ g2. (5)

Thus, for any mass m, there is critical distance r0 above
which the string is broken, and formation of two mesons
is energetically favorable.

We observe this transition at finite t, as shown in Fig.
4 (bottom panel, g2 = 4). The crossover from the short-
range to long-range behavior is still relatively sharp, and
the distance rc at which it occurs strongly depends on the
bare mass m. This is in contrast to the weak-coupling
regime (top panel, g2 = 1/4), where the potential profile
V (r) is smoothly increasing with r, and its slope at short
distances disagrees with the string tension ansatz rg2/2+
const.. Thus our simulations highlight visibly different
features between confined and deconfined regimes, even
with dynamical matter.

V. FINITE DENSITY

One of the most important features of our numerical
approach is the possibility to tackle finite charge-density
regimes. In fact, by exploiting the global U(1) fermion-
number symmetry, implemented in our TTN algorithms,
we can inject any desired charge imbalance into the sys-
tem, while working under OBC. Fig. 5 shows the results
for charge density ρ = Q/L3 = 1/4. In the vacuum phase
(m� g2e/2 ≈ t), we obtain configurations as displayed in
panel (a), where the charges are expelled from the bulk,
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Figure 4: Interaction potential V (r) between two
charges of opposite sign as a function of their distance r
in the (upper panel) weak coupling regime g � 1 and

(lower panel) strong coupling regime g � 1.

and stick to the boundaries to minimize the electric field
energy of the outcoming fields. To quantify this effect,
which can also be interpreted as a field-screening phe-
nomenon, we introduce the surface charge density

σ(l) =
1

A(l)

∑

x∈A(l)

〈
ψ†xψx

〉
(6)

where A(l) contains only sites sitting at lattice dis-
tance l from the closest boundary. The deeper we are
in the vacuum phase, the faster the surface charge de-
cays to zero away from the boundary (l = 1). By con-
trast, close to the transition, the spontaneous creation of
charge-anticharge pairs determines a finite charge den-
sity of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.

VI. OUTLOOK

We have shown that TN methods can simulate LGT
in three spatial dimensions, in the presence of matter
and charge imbalance, ultimately exploring those regimes
where other known numerical strategies struggle. We
have investigated collective phenomena of lattice QED
which stand at the forefront of the current research ef-
forts, including quantum phase diagrams, confinement is-
sues, and the string breaking mechanism at equilibrium.
We envision the possibility of including more sophisti-
cated diagnostic tools, such as the ’t Hooft operators [50]
which nicely fit TNs designs, to provide more quantita-
tively precise answers to the aforementioned open prob-
lems.
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Figure 5: (a) Ground state configuration for m = 4.0 at
finite charge density ρ = Q/L = 1/4. The system is in

the global symmetry sector with Q = 16 positive
charges on the lattice with linear size L = 4. (b) Surface
charge density σl on a cube whose faces are at distance
l from the boundaries of the lattice with linear size
L = 8. The system is in the global symmetry sector

with Q = 128 positive charges (finite density ρ = 1/4).

From a theoretical standpoint, our work corroborates
the long-term perspective to employ TN methods to ef-
ficiently tackle non-perturbative phenomena of LGTs, in
high dimensions and in regimes that are out of reach
for other numerical techniques. As ansatz states with a
refinement parameter chosen by the user, the bond di-
mension, TTNs are automatically equipped with a self-
validation tool: convergence of each quantity with the
bond dimension can be verified in polynomial time.

From an experimental point of view, quantum link
model formulations are the most studied pathway to-
wards the simulation of LGTs on quantum hardware [41].
The recent developments in low-temperature physics and
control techniques, for trapped ions, ultracold atoms and
Rydberg atoms in optical lattices, have led to the the first

experimental quantum simulations of one-dimensional
LGTs [36–40]. In this framework, numerical methods ca-
pable of accessing intermediate sizes, such as TNs, play
a fundamental role as a cross-verification toolbox.
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Appendix A: Fermionic compact representation of
local gauge-invariant site

TN simulations of LGT, both Abelian and non-
Abelian, are enabled by appropriate finite-dimensional
representations of matter and gauge degrees of freedom
[51–59], a necessary approach also towards quantum sim-
ulation of LGT models [60–63], and potentially useful
for MonteCarlo as well [64]. This requirement applies
to LGT descending from high-energy quantum field the-
ories [65–68], as well as condensed matter models with
emergent gauge fields [69, 70].

In this section we present the construction of the QED
gauge-invariant configurations for the local sites that we
exploit as computational basis in our TN algorithm.

The use of the spin-1 representation implies that the
gauge degrees of freedom on each link of the lattice are
represented by three orthogonal eigenstates of the electric
field operator:

Êx,µ |1〉 = |1〉 , Êx,µ |0〉 = 0, Êx,µ |−1〉 = − |−1〉 .(A1)

The parallel transporter, that in the spin language cor-
responds to the raising operator, acts on these states as

Ûx,µ |1〉 = 0, Ûx,µ |0〉 = |1〉 , Ûx,µ |−1〉 = − |0〉 . (A2)

In the following, in order to obtain a representation of
the gauge degrees of freedom that will be useful for con-
structing our TN ansatz, we employ the local mapping
presented in Ref. [32] (see also [71, 72]), generalizing it to
the case with three spatial dimensions. This technique is
related to the standard rishon formulation of QLM [73–
75] and allows us to encode the Gauss’s law taking into
account the anticommutation relations of the fermionic
particles on the lattice.

Let us consider a generic link of the lattice (x, µ) be-
tween the two sites x and x + µ: the starting point is
the splitting of the gauge field of this link into a pair of
rishon modes, so that each mode belongs to either one
of the two sites. For the s = 1 case, we can set each ris-
hon mode (or half-link) to be a 3-hardcore fermionic field
η̂x,µ. Such lattice quantum fields satisfy η̂2x,µ 6= 0 and
η̂3x,µ = 0. They mutually anticommute at different spatial

positions, i.e.
{
η̂x,µ, η̂

(†)
x′,µ′

}
= 0 for x 6= x′ or µ 6= µ′, and

also anticommute with the staggered matter fermionic
fields

{
η̂x,µ, ψ̂

(†)
x′

}
= 0 [76, 77]. Then, we express the

comparator on the link as Ûx,µ = η̂x,µη̂
†
x+µ,−µ. To ex-

plicitly build these 3-hardcore fermions for each half-link,
we consider two species of standard Dirac fermions âx,µ
and b̂x,µ and we use the following relation:

η̂†x,µ = n̂ax,µb
†
x,µ + (1− n̂bx,µ)a†x,µ (A3)

where n̂ax,µ and n̂bx,µ are the occupation number operators
for each species, i.e., n̂ax,µ = â†x,µâx,µ and the same for
n̂bx,µ. For each 3-hardcore mode, these operators act on
a three-dimensional local Hilbert space with basis |0〉x,µ,
|1〉x,µ = a†x,µ |0〉x,µ, |2〉x,µ = b†x,µa

†
x,µ |0〉x,µ. In fact,

due to the definition in Eq. (A3), the algebra of the
operators η̂x,µ never accesses the fourth state obtained
as b†x,µ |0〉x,µ. By using the same representation on the
other half-link through the Dirac operators â†x+µ,−µ and
b̂†x+µ,−µ, we would obtain for the complete link a local
space of dimension 9. However, the operator that counts
the total number of fermions on the complete link as

L̂x,µ = n̂ax,µ + n̂bx,µ + n̂ax+µ,−µ + n̂bx+µ,−µ, (A4)

defines a symmetry of the Hamiltonian since it commutes
with the operators Êx,µ and Ûx,µ. Thus, we can select
the sector with L̂x,µ = 2 (two rishons on each full link),
reducing the link space to dimension 3 with the basis

|→〉 = −|0, 2〉 = â†x+µ,−µb̂
†
x+µ,−µ|0〉x,µ|0〉x+µ,−µ,

|ø〉 = |1, 1〉 = â†x,µâ
†
x+µ,−µ|0〉x,µ|0〉x+µ,−µ, (A5)

|←〉 = |2, 0〉 = b̂†x,µâ
†
x,µ|0〉x,µ|0〉x+µ,−µ,

where the minus sign in the first element allows the op-
erator Ûx,µ to act correctly following the properties of
Eq. (A2). By using this representation, the electric field
finally corresponds to the imbalance of Dirac fermions
between the two halves of the link, so that:

Êx,µ =
1

2

(
n̂ax+µ,−µ + n̂bx+µ,−µ − n̂ax,µ − n̂bx,µ

)
. (A6)

This construction in terms of 3-hardcore fermions allows
us to define, for each lattice site, a local basis that directly
incorporates the Gauss’s law, by constraining in this way
the dynamics to the physical states only. This is a crucial
point for both numerical and quantum simulations since
non-physical states determine an exponential increase in
the complexity of the problem.

From the definition of the link basis states of Eq. (A5),
it follows that, within the sector with the link-symmetry
constraint L̂x,µ = 2, the electric field operator is uniquely
identified by taking only the half-link fermionic configu-
ration, namely:

Êx,µ = 1− n̂ax,µ − n̂bx,µ. (A7)

In this way, the generators of the Gauss’s law of Eq. (3)
are transformed into completely local operators acting on
the site x only:
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Figure 6: (a) Representation of the gauge field in terms
of two species of Dirac modes in the sector with a total
number of fermions equal to two. b) Generic state of
the local site composed by the the matter degrees of
freedom and six half-links along the three spatial

directions. On each half-link the coefficients
kj ∈ {0, 1, 2} define the fermionic modes. (c) Examples
of gauge-invariant configurations for even and odd sites.

Due to the use of staggered-fermions, the
presence/absence of a fermion in an even/odd site
represents the presence of a charge/anti-charge.

Ĝx = ψ̂†xψ̂x −
1− (−1)x

2
−
∑

µ

(
1− n̂ax,µ − n̂bx,µ

)
.(A8)

Taking into account this property, it is possible to con-
struct the gauge-invariant basis for the local site x, that
is composed by the lattice site and the six half-links along
the directions ±µx, ±µy, ±µz (see Fig. 6):

∣∣∣∣∣∣

k5
k1 φ k4

k2

〉k6

k3

= (−1)
δk1,2+δk2,2+δk3,2 |φ〉x (A9)

× |k1〉x,−µx |k2〉x,−µy |k3〉x,−µz
× |k4〉x,µx |k5〉x,µy |k6〉x,µz

where |φ〉x = (ψ̂†x)φ |0〉 with φ = 0, 1 describes the pres-
ence or the absence of the matter/antimatter particles.
The indices kj run over {0,1,2} selecting a configura-
tion of the 3-hardcore modes for each respective half-link.
The presence of the factor (−1)

δk1,2+δk2,2+δk3,2 allows us
to satisfy the anticommutation relations of the fermionic
representation recovering the correct signs of Eq. (A5).
The occupation numbers φ and kj are not independent
due to the constraint imposed by the Gauss’s law

Ĝx

∣∣∣∣∣∣

k5
k1 φ k4

k2

〉k6

k3

= 0. (A10)

This equation, in the new language of matter fermions
and rishons, reads

φ+

6∑

j=1

kj = 6 +
1− (−1)x

2
. (A11)

where the factor 6 is indeed the coordination number
of the cubic lattice. Thus, the gauge invariant configu-
rations of the local basis are obtained by applying this
constraint, effectively reducing the ‘dressed-site’ (matter
and 6 rishon modes) dimension from 2 · 36 = 1458 to
merely 267. We encode these states as building blocks of
our computational representation for the TN algorithms.
In Fig. 6 we show some examples of gauge-invariant con-
figurations for even and odd sites.

The construction of the gauge-invariant local sites is
particularly advantageous for our numerical purposes: in
fact, it is now possible to express all the terms in the
Hamiltonian of Eq. (1) of the main text as product
of completely local operators that commute on different
sites. Let us consider the kinetic term of the Hamiltonian
and apply the representation of the gauge field in terms
of the 3-hardcore fermionic modes:

ψ̂†xÛx,µψ̂x+µ = ψ̂†xη̂x,µη̂
†
x+µ,−µψ̂x+µ

=
(
η̂†x,µψ̂x

)† (
η̂†x+µ,−µψ̂x+µ

)

= M (α)†
x Mα′

x+µ (A12)

where the indices α and α′ select the right operators de-
pending on the different directions in which the hopping
process takes place. The operatorsMα

x,µ are genuinely lo-
cal (i.e. they commute with operators acting elsewhere)
as they are always quadratic in the fermionic operators
(ψ and/or η). The same argument applies to the mag-
netic (plaquette) terms in the Hamiltonian

�µx,µy = Ux,x+µxUx+µx,µyU
†
x+µy,µxU

†
x,µy =

= ηx,µxη
†
x+µx,−µxηx+µx,µyη

†
x+µx+µy,−µy

×
(
ηx+µy,µxη

†
x+µx+µy,−µx

)† (
ηx,µyη

†
x+µy,−µy

)†

= −
(
η†x,µyηx,µx

)(
η†x+µx,−µxηx+µx,µy

)

×
(
η†x+µx+µy,−µyηx+µx+µy,−µx

)(
η†x+µy,µxηx+µy,−µy

)

≡ −C(α)
x C

(α′)
x+µxC

(α′′)
x+µx+µyC

(α′′′)
x+µy , (A13)

where the indices α, α′, α′′, α′′′ depend on the plane of
the plaquette (in this case x − y) and the links involved
into the loop. The operators Cαx are genuinely local and
act on the four sites at the corners of the plaquette. The
decomposition is the same for the other plaquettes in the
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planes x − z and y − z. The present construction en-
sures that they can be treated as spin (or bosonic) oper-
ators [71, 72], so we can exploit standard TN algorithms,
without the need of explicitly implementing the fermionic
parity at each site [78–80].

The mass term and the electric field energy in the
Hamiltonian of Eq. (1) of the main text are diagonal
in the gauge-invariant basis with the rishon representa-
tion and so it is trivial to express them as local opera-
tors. These operators include the local chemical poten-
tial terms, which we use to pin charges in order to study
confinement properties [81, 82]. In conclusion, all the op-
erators we employ in the TTN algorithms (see Appendix
B) are genuinely local. In order to get an idea on the nu-
merical complexity, we emphasize that the dimension of
these matrices acting on the local gauge-invariant basis
is 267× 267.

Appendix B: Tensor Networks

In this section we present the main concepts of Tensor
Networks (TNs) with a particular focus on the Tree Ten-
sor Network (TTN) ansatz that we exploit in this work
[83]. For a detailed and exhaustive description of the
subject, please see the technical reviews and textbooks
[19, 84, 85].

Let us consider a generic quantum system composed
by N lattice sites, each of which described by a local
Hilbert space Hk of finite dimension d and equipped with
a local basis {|i〉k}1≤i≤d. The whole Hilbert space of the
system will be generated by the tensor product of the
local Hilbert spaces, that is, H = H1⊗H2⊗· · ·HN , with
a resulting dimension equal to dN . Thus, a generic pure
quantum state of the system |ψ〉 can be expressed as a
linear combination of the basis elements of H, i.e.,

|ψ〉 =
d∑

i1,...,iN=1

ci1,...,iN |i1〉1 ⊗ |i2〉2 ⊗ ...⊗ |iN 〉N .(B1)

In principle, the coefficients ci1,...,iN are dN complex
numbers. As a consequence, this exact representation of
the quantum state is completely inefficient from a compu-
tational point of view, since it scales exponentially with
the system size N . In other words, the amount of in-
formation that we would need to store in memory for
a computational representation of the generic quantum
state of the system is exponentially large in the number
of degrees of freedom.

However, if we are concerned with local Hamiltonians,
which means that a lattice site interacts only with a fi-
nite set of neighboring sites and not with all sites of the
lattice, it is possibile to exploit rigorous results on the
scaling of entanglement under a bipartition (area law)
[86, 87] in order to obtain an efficient representation of
the states in the low-energy sectors of such Hamiltoni-
ans, e.g. ground-states and first excited states. Tensor

Networks provide a natural language for this representa-
tion [88, 89] by decomposing the complete rank-N tensor
ci1,...,iN in Eq. (B1) into a network of smaller-rank lo-
cal tensors interconnected with auxiliary indices (bond
indices). If we control the dimension of the bond in-
dices with a parameter χ, called the bond dimension,
the number of coefficients in the TN is of the order
O(poly(N)poly(χ)), allowing an efficient representation
of the information encoded in the quantum state. Fur-
thermore, the bond dimension χ is a quantitative esti-
mate of the amount of quantum correlations and entan-
glement present in the TN. In fact, by varying χ, TNs
interpolate between a product state (χ = 1) and the ex-
act, inefficient, representation of the considered quantum
state (χ ≈ dN ).

Matrix product states (MPS) for 1D systems [90–92],
Projected Entangled Pair State (PEPS) for 2D and 3D
systems [89, 93, 94], Multiscale Entanglement Renormal-
ization Ansatz (MERA) [95, 96] and Tree Tensor Net-
works (TTN), that can be defined in any dimension,
[83, 97, 98] are all important examples of efficient rep-
resentations based on TNs.

MPS algorithms, such as the Density Matrix Renor-
malization Group (DMRG) [99], represent the state-of-
the-art technique for the numerical simulation of many-
body systems in 1D. MPS satisfy area-law and are ex-
tremely powerful since they allow to compute scalar prod-
ucts between two wave functions and local observables
in an exact and efficient way. This property does not
hold true for higher-dimensional generalizations, such as
PEPS, and the development of TN algorithms, for accu-
rate and efficiently scalable computations, is at the center
of current research efforts.

In particular, one of the main problems is related to
the choice of the TN geometry for simulating higher-
dimensional systems. PEPS intuitively reproduce the
structure of the lattice with one tensor for each physi-
cal site and the bond indices directly follow the lattice
grid. The resulting TN follows the area-law of entangle-
ment but it contains “loops”, making the contractions for
computing expectation values exponentially hard [100].
Furthermore, the computational cost for performing the
variational optimization of PEPS, as for instance in the
ground state searching, scales as O(χ10) as a function of
the bond dimension. This severely limits the possibility
of reaching high values of χ, especially for large system
sizes (typical values are χ ≈ 10 for spin systems). For our
purpose of simulating LGT in three-spatial dimensions
this represents a crucial problem since the local dimen-
sion of our model is extremely high, i.e., d = 267, and so,
it becomes necessary to be able to handle high values of
χ in order to reach the numerical convergence.

Alternative ansazts for simulating quantum many-
body systems are the TTNs, that decompose the wave
function into a network of tensors without loops, allowing
efficient contraction algorithms with a polynomial scal-
ing as a function of the system size. In Fig. 7, we show
the typical TTN ansazts for 1D and 2D systems and our
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(a) (b)

(c)

Figure 7: TTN representations for (a) 1D lattice and (b) 2D square lattice. Green circles indicate the sites of the
lattice connected to the physical indices of the tree, whereas the yellow circles are the tensors making up the TTN.
In (c) we shown our generalization to the 3D cubic lattice that we use for the numerical simulations of the LGT.

The different colours of the bond indices are just for a better visualization of the tree structure.

generalization to 3D lattice. TTNs offer more tractable
computational costs since the complete contraction and
the variational optimization algorithms scale as O(χ4),
making it easier to reach high values of the bond dimen-
sion (up to χ ≈ 1000). The price to pay for using the
loopless structure is related to the area law that TTNs
may not explicitly reproduce in dimensions higher than
one [101]. Nevertheless, we use the TTN ansatz in a vari-
ational optimization, so we can improve the precision by
using increasing values of χ, providing in this way a care-
ful control over the convergence of our numerical results.

The TTN algorithm for the ground state computation
of our LTG model follows the technical implementation
described in [85] and it takes into account the conserva-
tion of the total charge through the definition of global
U(1) symmetry sectors encoded in the TTN. In this way

we can easily access finite charge-density regimes, with
any imbalance between charges and anticharges.

Our TTN for the 3D lattice is composed entirely of
tensors with three links (this structure is usually called
binary tree). The construction of the TTN starts from
merging the physical indices at the bottom, that repre-
sent two neighboring lattice sites along the x-direction,
into one tensor. Then, these tensors are connected along
the y-direction through new tensors in an upper layer.
The tensors in this layer are then connected along the
z-direction through a new layer of tensors. Thus, this
procedure is iteratively repeated by properly setting the
connections along the three spatial directions in the up-
per layers of the tree. At the beginning of the simula-
tion, we randomly initialize all the tensors in the net-
work and the distribution of the global symmetry sec-
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Figure 8: (a) Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient ν (red) and
behavior of the energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported
as the difference with the lowest final energy that we reach. (b) Driven optimization of the penalty coefficient ν

(red) and global error δL (green) with respect to the link symmetry during the optimization steps. (c) Scaling of the
energy density as a function of the inverse of the bond dimension 1/χ. The bond dimension χ is in the range

[100, 450].

tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(χ4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 × 8 × 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L × L × L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ν
∑

x,µ

(
1− δ2,L̂x,µ

)
(C1)

where ν > 0 is the penalty coefficient and δ2,L̂x,µ are
the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ν → ∞. At numerical
level, this limit translates into choosing ν much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ν � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ν too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ν in three
steps: (i) starting from a very small value of ν and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ν during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-
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Figure 9: (a) Particle density as a function of m, for t = 0, g2m = 0 and L = 4. (b) Universal scaling function λ(x)
close to the transition point mc ≈ −0.39 for g2m = 0 with critical exponents β ≈ 0.16 and ν ≈ 1.22. The inset shows
the same universal behavior close to the transition point mc ≈ 0.22 in the presence of magnetic interactions with
g2m = 8/g2e = 4 and the same critical exponents β ≈ 0.16 and ν ≈ 1.22. (c) Contour plot of the square root of the

residual sum of squares in the (ν, β) plane for the best-fitting values of the critical exponents.

tion procedure of the TTN become significantly sensitive
to the penalty terms. (ii) Thus, we impose a quadratic
growth of ν so that, in the immediately following sweeps,
the penalty is increased at a slower rate with respect
to the linear regime. (iii) After reaching the maximum
desidered value of ν, that is an input parameter of the
simulation, we keep it fixed, performing the last sweeps
in order to ensure the convergence of the energy. This
driven optimization strategy is summarized in Fig. 8(a)
where we show the three different stages of the penalty
coefficient ν and typical behavior of the energy difference
δe, computed with respect to the lowest final energy that
we reach, as a function of the iterations.

We can also quantify the global error with respect to
the link symmetry during the driven optimization sweeps,
by defining:

δL =
∑

x,µ

|〈GS| (Lx,µ − 2) |GS〉| (C2)

i.e., the sum of the deviations from the exact link con-
straint Lx,µ = 2, computed over all the links of the lattice
on the ground state. The typical behavior of this quan-
tity is shown in Fig. 8(b): at the end of the optimization
procedure, the global error results of the order of 10−6.
We also check the convergence of our TTN algorithms as
a function of the bond dimension χ, by using χ = 450
at most to ensure stability of our findings. Depending
from the different system sizes and regimes of physical
parameters, we estimate the relative error of the energy
in the range

[
10−2, 10−4

]
. A typical scaling of the energy

density as a function of the inverse of the bond dimension
1/χ is shown in Fig. 8(c).

Appendix D: Critical points: scaling analysis

In this section we show the finite-size scaling analysis
for detecting the phase transition separating the charge-

crystal phase and the vacuum phase and the related lo-
cation of the critical points.

At t = 0 and neglecting the magnetic interactions, i.e.,
for g2m = 0, the Hamiltonian of Eq. (1) results diago-
nal in the local basis described in Appendix A and it is
trivial to prove that the system undergoes a first-order
phase transition between the bare vacuum, with energy
Ev = −mL3

2 and the charge-crystal phase, with energy

Ech = (m +
g2e
2 )L

3

2 . The ground-state exhibits a level-

crossing at the critical value m(0)
c = − g

2
e

4 = − 1
2 that is

obtained at Ev = Ech. This behaviour is clearly seen
in Fig. 9(a), showing a discontinuous transition between
the two configurations.

In order to understand the behavior of the system for
finite t = 1 and g2m = 0, we observe that the density, plot-
ted in Fig. 2(a) of the main text, changes continuously
as a function of the mass parameter and we might have a
second-order phase transition. Finite-size scaling theory
[102] implies that the behavior of the system close to a
critical point, i.e. for m ≈ mc, can be described in terms
of a universal function λ(x) such that for our observable:

ρL
β
ν = λ

(
L

1
ν (m−mc)

)
(D1)

where β and ν are critical exponents. In particular this
relation implies that for m ≈ mc, the value of ρL

β
ν is in-

dependent of the size of the system. We use this property
to get an estimate of the values of mc, β, ν. In particu-
lar, we consider a grid of values for these parameter and
for each set of values we fit our points ρL

β
ν with an high-

degree polynomial f
(
L

1
ν (m−mc)

)
. We compute the

residual sum of squares (RSS) and we select the set of
values which minimize this quantity, producing the best
data collapse. We get for the critical point mc ≈ −0.39
and for the critical exponents β ≈ 0.16 and ν ≈ 1.22. In
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Fig. 9(b) we show the collapse of our numerical results
onto the same universal function λ(x) and in Fig. 9(c)
a contour plot of the square root of the residual sum of
squares in the (ν, β) plane for the best-fitting values.

By extending the previous considerations and the
finite-size scaling analysis to the case with magnetic inter-
actions with g2m = 8/g2e = 4, we check again the presence
of a critical point and the values of critical exponents
through the formula of Eq. (D1). We obtain a univer-
sal scaling function for mc ≈ 0.22 and the same critical
exponents β ≈ 0.16, ν ≈ 1.22, as reported in the inset
of Fig. 9(b). Thus, while the transition and its univer-

sality remain unchanged in the presence of the magnetic
coupling, the critical point is shifted toward positive val-
ues of the mass parameter, signaling that the magnetic
interactions determine a visible enhancement of the pro-
duction of charges and anticharges out of the vacuum.

Although a more precise determination of the numer-
ical values of the critical exponents would require addi-
tional extensive analysis that results beyond the scope of
this paper, our findings strongly indicate the presence of
a phase transition at finite m for the three-dimensional
lattice model of QED (compare with other previously in-
vestigated transitions in lattice QED, e.g. Ref. [103]).
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B
Solving classical optimisation problems with Tensor

Networks

After the study of Quantummany-body systems via Tensor Networks, this appendix illustrates
the analysis of classical systems in form of a manuscript which at the stage of submission of
this thesis is peer-reviewed and available on arXiv [99].

In particular, therein we show how to solve classical optimisation problems with Tensor
Networks with the following example of optimising therapy plans in cancer treatment. In this
problem, we aim to optimise the radioactive dose distribution inserted in a patient in order
to kill the cancer tissue to be treated while sparing surrounding healthy organs. With the
aid of this exemplifying problem, we show how to solve classical optimisation problems with
Tensor Networks in three steps: (i) Mapping the classical problem to a ground-state search
of a many-body Ising-like spin-glass Hamiltonian, (ii) finding the ground-state via a quantum
Tensor Network optimisation, and (iii) mapping the obtained ground-state wavefunction back
giving us the solution of the classical problem.

With this particular Tensor Networks application of optimizing radiotherapy plans for
cancer treatment, we further aim to build solid foundations for future applications of quantum
science and technologies to solve life-changing problems in medicine. Optimizing the precise
radiotherapy plans is one of the most complex computational tasks in cancer treatment: A
radiation beam with hundreds of optimization variables is targeting a tumour inside a human
being while healthy organs have to be avoided. We believe that the availability of large-scale
quantum technology will strongly impact this area in the future, enhancing our resources
in the fight against cancer, both in terms of sparing crucial time and increasing treatment
effectiveness. Consequently, more people can be treated in less time and on the other hand,
this will allow developing highly personalized treatments, increasing the probability to save
human lives.

This work may pave the way for quantum technologies in the medical area of cancer
treatment. We present and discuss the very first successful application of Tensor Networks to
optimise such a cancer treatment plan. In particular, we use a Tree Tensor Network to solve
the beam fluence optimization problem in Intensity Modulated Radiation Therapy (IMRT).
We define a robust and clear strategy to map the classical IMRT problem to quantum-like
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hardware and show some successful results of the application of TTN to scenarios of increasing
complexity. Our TN approach can not only be used as a benchmark for the development of
quantum algorithms for radiotherapy but further as a tool for partially overcoming the lack
of scalable quantum hardware. Along the way, we provide a novel opportunity to develop
strategies to map sophisticated classical problems to quantum hardware and thereby sets new
standards for the development of hybrid classical-quantum optimization strategies.

Consequently, the following work not only gives an insight about how to solve classical
optimisation problems with Tensor Networks but shows three further strong-points to build
on in future research: (i) It will impact the quantum computing community, as it introduces
a novel and innovative method to develop and test strategies for solving complex classical
optimization problems on future quantum computers; (ii) it creates a direct connection be-
tween quantum computing and radiotherapy, laying the foundation for future application of
quantum technologies to medicine; (iii) it creates a connection between the quantum science
and technologies, such as TNs, to relevant problems of high impact beyond the quantum
community, such as fighting cancer.
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We present a novel application of Tensor Network methods in cancer treatment as a potential
tool to solve the dose optimization problem in radiotherapy. In particular, the Intensity-Modulated
Radiation Therapy (IMRT) technique – that allows treating irregular and inhomogeneous tumors
while reducing the radiation toxicity on healthy organs – is based on the optimization of the radiation
beamlets intensities. The optimization aims to maximize the delivery of the therapy dose to cancer
while avoiding the organs at risk to prevent their damage by the radiation. Here, we map the dose
optimization problem into the search of the ground state of an Ising-like Hamiltonian, describing a
system of long-range interacting qubits. Finally, we apply a Tree Tensor Network algorithm to find
the ground-state of the Hamiltonian. In particular, we present an anatomical scenario exemplifying
a prostate cancer treatment. A similar approach can be applied to future hybrid classical-quantum
algorithms, paving the way for the use of quantum technologies in future medical treatments.

I. INTRODUCTION

Radiotherapy is one of the techniques used to treat solid
tumors by means of a ionizing radiation. The radiation
dose released into the cancer tissue damages the DNA of
the tumor cells leading to their death or slowing down
the growth of the tumor [1, 2]. Radiotherapy is often
used in combination with other therapies like surgery,
chemotherapy or immunotherapy to improve their global
efficacy [3–6].

One of the hardest challenges encountered while treat-
ing patients with ionizing radiations is to deliver an opti-
mal dose to the targeted tumor while keeping the radia-
tion as low as possible in the surrounding healthy tissues.
One of the most frequently used techniques nowadays is
the Intensity-Modulated Radiation Therapy (IMRT) [7–
10]. In IMRT, the applied radiation is modulated to reach
an optimal dose distribution inside the patient. This op-
timal modulation is obtained by solving a highly non-
trivial numerical optimization problem with a high num-
ber of optimization parameters and numerous constraints
on the final radiation dose distribution. Over the past
years, several numerical techniques have been developed
to address this challenge [8, 11–14]. In 2015, Nazareth
and Spaans proposed to solve the IMRT beam fluence
optimization problem using the D-Wave annealer [15],
and more recently El Naqa et al. proposed an approach
exploiting the simulated quantum tunnelling effect [16].

Despite these remarkable novel approaches paved the
way for future applications of quantum computation in
medicine, their application is still limited. On the one
hand, this is due to the lack of scalable quantum hard-
ware. On the other hand, it is not straightforward to ex-
tend what is done on classical computers to quantum ones
due to the lack of a robust and clear strategy to map the
classical IMRT problem to quantum hardware. To try

overcome these limitations as well as to further investi-
gate the applicability of quantum-inspired techniques to
the solution of classical optimization problems and foster
future applications of quantum technologies to medicine,
here we apply Tensor Networks (TNs) to an IMRT dose
optimization problem.

TNs are one of the most successful algorithms for simu-
lating quantum many-body systems on classical comput-
ers. Indeed, whenever possible, they efficiently represent
quantum many-body wavefunctions in a compact form on
classical computers [17–21]. Il the last few decades, TNs
have proven their effectiveness in the research and anal-
ysis of quantum many-body systems, especially for low-
dimensional ground-state [22–29]. In addition to that,
thanks to the properties they share with quantum hard-
ware, TNs may play the role of test benches for the de-
velopment of quantum algorithms [30–32].

Hereafter, we show how to solve an IMRT optimization
problem with TNs. We first introduce how the classical
cost function is mapped into an Ising-like Hamiltonian,
where the optimization variables are represented as a set
of long-range interacting spins. Finally, we solve the clas-
sical optimization problem by finding the ground-state
for this Hamiltonian using TNs. We present the appli-
cation of TNs to two different toy models and to a more
realistic anatomical scenario simulating a prostate can-
cer treatment. We show that TNs results are compatible
with other classical techniques, Quadratic Programming
(QP) and Simulated Annealing (SA). Our results pave
the way to the application of TNs methods to more com-
plex and realistic clinical scenarios, contributing to build-
ing solid foundations for future applications of quantum
computation to medicine. In the midterm, we foresee the
development and application of classical TN methods to
the solution of the IMRT problem.

The manuscript is structured as follows: In Section II
we provide a brief introduction to the dose optimization
problem in IMRT together with its basic mathematical



2

min
x1,...,xNB<latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit><latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit><latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit><latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit>

F (~x)
<latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit><latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit><latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit><latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit>Beamlet

beam

IMRT

(a) (b)

!"

!"
!"

...

!"!"

!"#

=

(c) (d)

tumor

OAR

OAR
!"

!"
!"

(e)

Beam angles 
selection

Dose matrices  
calculation

Plan 
optimization

FIG. 1: Typical radiation therapy treatment procedure for the IMRT. The tumor (red) lies close to vital organs at
risk (OARs, green) (a). In IMRT treatments the tumor is irradiated from different angles (θ1, . . . , θN ) using photon
beams (b). Each beam is subdivided into a grid of smaller pencil beams called beamlets in order to modulate the
local beam fluence (c). A weight xj ≥ 0 is associated to the j-th beamlet in order to quantify its contribution to the
whole beam (d). The xjs becomes the optimization variables of a cost function F (x1, . . . , xNB

) which expresses the
distance between the desired dose and the delivered dose and the final aim of the RT planning procedure is to find

the configuration ~x of the beamlets with minimizes the cost function (e).

description. In Section III the mapping procedure of the
classical cost function to the Ising-type Hamiltonian is
described in more detail. Furthermore, this section in-
cludes a brief introduction to TNs as well. Finally, we
present and discuss the main results obtained from this
study in Section IV.

II. RADIOTHERAPY OPTIMIZATION
PROBLEM

In radiotherapy, cancer cells are treated by releasing
a certain amount of radioactive dose inside the tumor.
Modern radiotherapy offers various techniques for treat-
ing tumors [33–37] and the choice of one of them de-
pends on factors like the site of the disease, type of cancer
and overall patient’s conditions [38–40]. One of the most
impacting techniques in terms of improvement of treat-
ments quality is the IMRT which became clinical avail-
able in its first implementations in the early 2000s [8, 41].

The goal of IMRT is to create a personalized dose dis-
tribution for each patient’s anatomy that ensures the ap-
propriate dose for the tumor while saving the Organs At
Risk (OARs) as much as possible. The choice of IMRT
treatment is nowadays mandatory in very challenging
cases where a high dose is required for very irregular tu-
mor shapes surrounded by critical OARs. In order to
effectively treat this kind of diseases, the IMRT benefits
from a non-uniform intensity distribution of the radiation
beams. In particular, the radiation beams are modulated
by dividing the fluence of each treatment beam into a cer-
tain number of smaller pencil-beams called beamlets that

can be delivered through the movement of the Multileaf
Collimator (MLC).

However, finding the ideal intensity of every single
beamlet for a desired treatment which optimises the re-
lation between fields arrangement and dose distribution
inside the patient is a highly complex problem. This op-
timisation problem is typically solved as an inverse prob-
lem which is encoded into a cost function to be minimized
in order to find the optimal beamlet configuration.

In the past years, different approaches have been pro-
posed, among them, the analytic transform method [42],
algebraic solutions [13], gradient descent [11], genetic al-
gorithms [14] and simulated annealing [12]. Although
these powerful methods have been used in everyday clin-
ical practice with increasing success, finding patient-
specific plans is still an open problem since it should
account for many factors, increasing the complexity of
the problem. Therefore, new mathematical and physi-
cal solutions need to be developed in order both to spare
precious computational time and to improve the quality
of the treatments delivered, with the aim of enhancing
our capability to save human lives in the fight againts
cancer.

In what follows, we present the main elements of radio-
therapy, explaining the general planning procedure for an
IMRT treatment, focusing on the underlying numerical
optimization problem.

Fig. 1 illustrates a typical treatment procedure. The
targeted tumor (red), located between two OARs (green),
is irradiated by several photon beams from different an-
gles θk (see Fig. 1b). The underlying geometry is defined
in the dosimetric plans created by the medical physicist.
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The desired dose to the target and the OARs are de-
fined in the treatment plan, following the goal of to spare
healthy organs while the proper dose is delivered to the
target.

To achieve this treatment goal, the IMRT optimization
process begins with the splitting of each beam fluence
into a grid of beamlets as shown in Fig. 1c. Only beam-
lets that traverse the target can be optimized, and the
intensity of each j-th beamlet can be modulated indepen-
dently with a weight xj . (Fig. 1d). The volume of the
patient considered for the optimization can be divided in
3D finite-size elements called voxels. The contribution of
each beamlet to each voxel depends on their intensity as
well as on the geometry and physical properties of each
beam and patient’s characteristics.

All these information are gathered in the influence ma-
trix A which maps every beamlet to each voxel. The
influence matrix is usually provided by the Treatment
Planning System (TPS) used in the clinical environment,
and a complete description of its computation goes far
beyond the aim of this work.

The sum of all beamlets produces the total dose within
a given voxel i and contributes to the definition of a global
dose distribution D(x). Thus, the total dose delivered to
the voxel i can be expressed as:

Di(x) ≡ Di(x1, . . . , xNB
) =

NB∑

j=1

aijxj , (1)

where NB is the total number of beamlets and aij de-
scribes the so-called influence matrix, A, giving the un-
modulated contribution of the j-th beamlet to the i-th
voxel.

The IMRT planning procedure is then solved through
an iterative inverse planning process: the intensity of the
applied photon beams are optimized towards the pre-
scribed dose distribution D(P ) inside the patient. The
dose criteria are typically defined using Dose- Volume
Histograms (DVH). In particular, we minimize the dis-
tance between the delivered dose D(x) and the desired
dose in the patient D(P ) in the discretized volume with
the beamlet weights x being the optimization variables
(see in Fig. 1e). We will describe the process through
the following quadratic cost function:

F (x) =
R∑

r=0

Vr∑

i=1

γi

[
Di(x)−D(P )

i

]2
(2)

where r is an index running over all the volumes (the
targeted tumor and the OARs), and γi a weight assigned
to the ith voxel in order to prioritize certain volumes
during the treatment. Vr gives the total number of voxels
belonging to the object r.

III. SOLVING CLASSICAL PROBLEMS WITH
TENSOR NETWORKS

A. Mapping the problem to a classical Hamiltonian

In the following, we describe how to rewrite the opti-
mization problem in Eq. (2) into a ground-state search
of a quantum many-body Hamiltonian. In particular, we
here propose a procedure based on the binary-decimal
conversion to map the cost function F (x) into an Ising-
type Hamiltonian, HIMRT . The procedure is summa-
rized in Fig. 2.

We first discretize the weights xj for each beamlet by
a set of NQ bits. NQ is called the bit-depth. Thus, we
represent

xj ≈
1

(B/2)

NQ∑

n=1

2n−1b(j)n (3)

with the bits b
(j)
n = {0, 1}, and introducing a normaliza-

tion constant B to set the range of the beamlets weights

such that xj ∈
[
0; 2NQ−1

(B/2)

]
. With increasing number of

bits NQ we can increase the resolution of the discretiza-

tion. Then, we map the binary values b
(j)
n into spin vari-

ables s
(j)
n = {−1; +1} = 2b

(j)
n − 1 for each site j. Con-

sequently, we construct a NB × NQ-dimensional many-
body Hamiltonian with the first dimension running over
the different beamlets and the second representing the
discretized space for each beamlet. Inserting the spin
variables together with Eq. (3) into the cost function of
Eq. (2), we obtain this Ising-type Hamiltonian with the
following general expression:

HIMRT = HSP +H(a)
INT +H(b)

INT (4)

where the first term describes the single particle terms
with

HSP =
∑

j,n

[∑

i

γi
B

(
aij
∑

k

aik − 2D
(P )
i aij

)
2n−1

]
s(j)n ,

(5)
the second term captures spins interacting in the same
beamlet

H(a)
INT =

∑

j

∑

m 6=n

[∑

i

γi
a2ij
B2

2n−12m−1
]
s(j)n s(j)m , (6)

and the last term represents the interactions between dif-
ferent beamlets

H(b)
INT =

∑

j 6=k

∑

n,m

[∑

i

γi
aijaik
B2

2n−12m−1
]
s(j)n s(k)m . (7)

We point out, that this Hamiltonian describes a two-
dimensional fully-connected lattice of long-range inter-
acting spins with NB sites on one direction and NQ on
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<latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="bzB0uW1fzy1MgMhO8gWsRy3sg4E=">AAAB5HicbVC7TsNAEFyHVzABQk1zIkKiimwaKJFoKINEHlKwovVlE045n627NVIU5QdoqegQf0XBv2CbFJAw1WhmVzs7caaV4yD49Gpb2zu7e/V9/6DhHx4dNxs9l+ZWUlemOrWDGB1pZajLijUNMkuYxJr68ey29PvPZJ1KzQPPM4oSnBo1URK5kDqjZitoBxXEJglXpAUrjJpfj+NU5gkZlhqdG4ZBxtECLSupaek/5o4ylDOc0rCgBhNy0aKKuRTnuUNORUZWKC0qkX5vLDBxbp7ExWSC/OTWvVL8zxvmPLmOFspkOZOR5SFWmqpDTlpV/E9irCwxY5mchDJCokVmskqglIWYF4X4RR3h+vObpHfZDoN2eB9AHU7hDC4ghCu4gTvoQBckjOEFXj3nvXnvP7XVvFV/J/AH3sc3ljCOsg==</latexit><latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit><latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit><latexit sha1_base64="YaDwZw4Jxu36K0bYk7z+fx0ih5w=">AAAB+XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYNlBE0lEEiDymxovVlk5xyPlt3a6TIykfQQkWHaPkaCv4F27iAhKlGM7va2QliJS257qeztr6xubVd2anu7u0fHNaOjjs2SozAtohUZHoBWFRSY5skKezFBiEMFHaD2W3udx/RWBnpB5rH6Icw0XIsBVAmdQfTUUS2OqzV3YZbgK8SryR1VqI1rH0NRpFIQtQkFFjb99yY/BQMSaFwUR0kFmMQM5hgP6MaQrR+WsRd8PPEAkU8RsOl4oWIvzdSCK2dh0E2GQJN7bKXi/95/YTG134qdZwQapEfIqmwOGSFkVkPyEfSIBHkyZFLzQUYIEIjOQiRiUlWTN6Ht/z9KulcNjy34d279eZN2UyFnbIzdsE8dsWa7I61WJsJNmNP7Jm9OKnz6rw57z+ja065c8L+wPn4BqKVk8k=</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit>
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<latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="bzB0uW1fzy1MgMhO8gWsRy3sg4E=">AAAB5HicbVC7TsNAEFyHVzABQk1zIkKiimwaKJFoKINEHlKwovVlE045n627NVIU5QdoqegQf0XBv2CbFJAw1WhmVzs7caaV4yD49Gpb2zu7e/V9/6DhHx4dNxs9l+ZWUlemOrWDGB1pZajLijUNMkuYxJr68ey29PvPZJ1KzQPPM4oSnBo1URK5kDqjZitoBxXEJglXpAUrjJpfj+NU5gkZlhqdG4ZBxtECLSupaek/5o4ylDOc0rCgBhNy0aKKuRTnuUNORUZWKC0qkX5vLDBxbp7ExWSC/OTWvVL8zxvmPLmOFspkOZOR5SFWmqpDTlpV/E9irCwxY5mchDJCokVmskqglIWYF4X4RR3h+vObpHfZDoN2eB9AHU7hDC4ghCu4gTvoQBckjOEFXj3nvXnvP7XVvFV/J/AH3sc3ljCOsg==</latexit> <latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit> <latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit> <latexit sha1_base64="YaDwZw4Jxu36K0bYk7z+fx0ih5w=">AAAB+XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYNlBE0lEEiDymxovVlk5xyPlt3a6TIykfQQkWHaPkaCv4F27iAhKlGM7va2QliJS257qeztr6xubVd2anu7u0fHNaOjjs2SozAtohUZHoBWFRSY5skKezFBiEMFHaD2W3udx/RWBnpB5rH6Icw0XIsBVAmdQfTUUS2OqzV3YZbgK8SryR1VqI1rH0NRpFIQtQkFFjb99yY/BQMSaFwUR0kFmMQM5hgP6MaQrR+WsRd8PPEAkU8RsOl4oWIvzdSCK2dh0E2GQJN7bKXi/95/YTG134qdZwQapEfIqmwOGSFkVkPyEfSIBHkyZFLzQUYIEIjOQiRiUlWTN6Ht/z9KulcNjy34d279eZN2UyFnbIzdsE8dsWa7I61WJsJNmNP7Jm9OKnz6rw57z+ja065c8L+wPn4BqKVk8k=</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit>

NB
<latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit><latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit><latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit><latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit>

=

min
x1,...,xNB<latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit><latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit><latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit><latexit sha1_base64="x3b3jlW8HSWUEraK78wZwZNwV+U=">AAACEnicbVC7SgNBFJ31GeMrainIYBAsQtgVQcsQGyuJYB6QDcvs5CYZMju7zNyVhCWdn+BX2GplJ7b+gIX/4m5MoYmnOpxzL/ee40dSGLTtT2tpeWV1bT23kd/c2t7ZLeztN0wYaw51HspQt3xmQAoFdRQooRVpYIEvoekPrzK/eQ/aiFDd4TiCTsD6SvQEZ5hKXuHIDYTykpHnlNxBN0RToiMvufGqkwl13bxXKNplewq6SJwZKZIZal7hy+2GPA5AIZfMmLZjR9hJmEbBJUzybmwgYnzI+tBOqWIBmE4yzTGhJ7FhGNIINBWSTkX4vZGwwJhx4KeTAcOBmfcy8T+vHWPvspMIFcUIimeHUEiYHjJci7QgoF2hAZFlnwMVinKmGSJoQRnnqRinjWV9OPPpF0njrOzYZef2vFipzprJkUNyTE6JQy5IhVyTGqkTTh7IE3kmL9aj9Wq9We8/o0vWbOeA/IH18Q2aB5zx</latexit>

F (~x)
<latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit><latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit><latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit><latexit sha1_base64="wmA3+C/5dOA5mbQ11BBgX3rQuEs=">AAAB/HicbVDLSsNAFJ3UV62vqks3g0Wom5KIoMuiIC4r2Ae2oUymt3XoZBJmbool1K9wqyt34tZ/ceG/mMQstPWsDufcyz33eKEUBm370yosLa+srhXXSxubW9s75d29lgkizaHJAxnojscMSKGgiQIldEINzPcktL3xZeq3J6CNCNQtTkNwfTZSYig4w0S6u6r2JsDjh9lxv1yxa3YGukicnFRIjka//NUbBDzyQSGXzJiuY4foxkyj4BJmpV5kIGR8zEbQTahiPhg3zhLP6FFkGAY0BE2FpJkIvzdi5hsz9b1k0md4b+a9VPzP60Y4PHdjocIIQfH0EAoJ2SHDtUiqADoQGhBZmhyoUJQzzRBBC8o4T8Qo6aaU9OHMf79IWic1x645N6eV+kXeTJEckENSJQ45I3VyTRqkSThR5Ik8kxfr0Xq13qz3n9GCle/skz+wPr4Bz9qVBA==</latexit>
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..
.

<latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="bzB0uW1fzy1MgMhO8gWsRy3sg4E=">AAAB5HicbVC7TsNAEFyHVzABQk1zIkKiimwaKJFoKINEHlKwovVlE045n627NVIU5QdoqegQf0XBv2CbFJAw1WhmVzs7caaV4yD49Gpb2zu7e/V9/6DhHx4dNxs9l+ZWUlemOrWDGB1pZajLijUNMkuYxJr68ey29PvPZJ1KzQPPM4oSnBo1URK5kDqjZitoBxXEJglXpAUrjJpfj+NU5gkZlhqdG4ZBxtECLSupaek/5o4ylDOc0rCgBhNy0aKKuRTnuUNORUZWKC0qkX5vLDBxbp7ExWSC/OTWvVL8zxvmPLmOFspkOZOR5SFWmqpDTlpV/E9irCwxY5mchDJCokVmskqglIWYF4X4RR3h+vObpHfZDoN2eB9AHU7hDC4ghCu4gTvoQBckjOEFXj3nvXnvP7XVvFV/J/AH3sc3ljCOsg==</latexit><latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit><latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit><latexit sha1_base64="YaDwZw4Jxu36K0bYk7z+fx0ih5w=">AAAB+XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYNlBE0lEEiDymxovVlk5xyPlt3a6TIykfQQkWHaPkaCv4F27iAhKlGM7va2QliJS257qeztr6xubVd2anu7u0fHNaOjjs2SozAtohUZHoBWFRSY5skKezFBiEMFHaD2W3udx/RWBnpB5rH6Icw0XIsBVAmdQfTUUS2OqzV3YZbgK8SryR1VqI1rH0NRpFIQtQkFFjb99yY/BQMSaFwUR0kFmMQM5hgP6MaQrR+WsRd8PPEAkU8RsOl4oWIvzdSCK2dh0E2GQJN7bKXi/95/YTG134qdZwQapEfIqmwOGSFkVkPyEfSIBHkyZFLzQUYIEIjOQiRiUlWTN6Ht/z9KulcNjy34d279eZN2UyFnbIzdsE8dsWa7I61WJsJNmNP7Jm9OKnz6rw57z+ja065c8L+wPn4BqKVk8k=</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit>
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<latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="bzB0uW1fzy1MgMhO8gWsRy3sg4E=">AAAB5HicbVC7TsNAEFyHVzABQk1zIkKiimwaKJFoKINEHlKwovVlE045n627NVIU5QdoqegQf0XBv2CbFJAw1WhmVzs7caaV4yD49Gpb2zu7e/V9/6DhHx4dNxs9l+ZWUlemOrWDGB1pZajLijUNMkuYxJr68ey29PvPZJ1KzQPPM4oSnBo1URK5kDqjZitoBxXEJglXpAUrjJpfj+NU5gkZlhqdG4ZBxtECLSupaek/5o4ylDOc0rCgBhNy0aKKuRTnuUNORUZWKC0qkX5vLDBxbp7ExWSC/OTWvVL8zxvmPLmOFspkOZOR5SFWmqpDTlpV/E9irCwxY5mchDJCokVmskqglIWYF4X4RR3h+vObpHfZDoN2eB9AHU7hDC4ghCu4gTvoQBckjOEFXj3nvXnvP7XVvFV/J/AH3sc3ljCOsg==</latexit> <latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit> <latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit> <latexit sha1_base64="YaDwZw4Jxu36K0bYk7z+fx0ih5w=">AAAB+XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYNlBE0lEEiDymxovVlk5xyPlt3a6TIykfQQkWHaPkaCv4F27iAhKlGM7va2QliJS257qeztr6xubVd2anu7u0fHNaOjjs2SozAtohUZHoBWFRSY5skKezFBiEMFHaD2W3udx/RWBnpB5rH6Icw0XIsBVAmdQfTUUS2OqzV3YZbgK8SryR1VqI1rH0NRpFIQtQkFFjb99yY/BQMSaFwUR0kFmMQM5hgP6MaQrR+WsRd8PPEAkU8RsOl4oWIvzdSCK2dh0E2GQJN7bKXi/95/YTG134qdZwQapEfIqmwOGSFkVkPyEfSIBHkyZFLzQUYIEIjOQiRiUlWTN6Ht/z9KulcNjy34d279eZN2UyFnbIzdsE8dsWa7I61WJsJNmNP7Jm9OKnz6rw57z+ja065c8L+wPn4BqKVk8k=</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> <latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit>

(
<latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit><latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit><latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit><latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit>

. . .<latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="bzB0uW1fzy1MgMhO8gWsRy3sg4E=">AAAB5HicbVC7TsNAEFyHVzABQk1zIkKiimwaKJFoKINEHlKwovVlE045n627NVIU5QdoqegQf0XBv2CbFJAw1WhmVzs7caaV4yD49Gpb2zu7e/V9/6DhHx4dNxs9l+ZWUlemOrWDGB1pZajLijUNMkuYxJr68ey29PvPZJ1KzQPPM4oSnBo1URK5kDqjZitoBxXEJglXpAUrjJpfj+NU5gkZlhqdG4ZBxtECLSupaek/5o4ylDOc0rCgBhNy0aKKuRTnuUNORUZWKC0qkX5vLDBxbp7ExWSC/OTWvVL8zxvmPLmOFspkOZOR5SFWmqpDTlpV/E9irCwxY5mchDJCokVmskqglIWYF4X4RR3h+vObpHfZDoN2eB9AHU7hDC4ghCu4gTvoQBckjOEFXj3nvXnvP7XVvFV/J/AH3sc3ljCOsg==</latexit><latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit><latexit sha1_base64="1Tp98+p0ZnudRl61Dxzzi0SpafQ=">AAAB7nicbZC7TsNAEEXH4RVCgEBLsyJCoopsGiiRaCiDRB5SYkXjzSRZZf3Q7hgpsvIRtFDRIf6Ign/BNikg4VZX9+5qZk6QaGXZdT+dytb2zu5edb92UD88Om6c1Ls2To2kjox1bPoBWtIqog4r1tRPDGEYaOoF87ui7z2RsSqOHnmRkB/iNFITJZHzqDecjWO2tVGj6bbcUmLTeCvThJXao8bXcBzLNKSIpUZrB56bsJ+hYSU1LWvD1FKCco5TGuQ2wpCsn5XrLsVFapFjkZARSosypN8/MgytXYRB/jJEntn1rgj/6wYpT278TEVJyhTJYhArTeUgK43KOZAYK0PMWGxOQkVCokFmMkqglHmY5mAKHt769Zume9Xy3Jb34EIVzuAcLsGDa7iFe2hDByTM4Rle4NXJnDfn/YdcxVkhPIU/cj6+AUW2kmk=</latexit><latexit sha1_base64="YaDwZw4Jxu36K0bYk7z+fx0ih5w=">AAAB+XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYNlBE0lEEiDymxovVlk5xyPlt3a6TIykfQQkWHaPkaCv4F27iAhKlGM7va2QliJS257qeztr6xubVd2anu7u0fHNaOjjs2SozAtohUZHoBWFRSY5skKezFBiEMFHaD2W3udx/RWBnpB5rH6Icw0XIsBVAmdQfTUUS2OqzV3YZbgK8SryR1VqI1rH0NRpFIQtQkFFjb99yY/BQMSaFwUR0kFmMQM5hgP6MaQrR+WsRd8PPEAkU8RsOl4oWIvzdSCK2dh0E2GQJN7bKXi/95/YTG134qdZwQapEfIqmwOGSFkVkPyEfSIBHkyZFLzQUYIEIjOQiRiUlWTN6Ht/z9KulcNjy34d279eZN2UyFnbIzdsE8dsWa7I61WJsJNmNP7Jm9OKnz6rw57z+ja065c8L+wPn4BqKVk8k=</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit><latexit sha1_base64="YCOjGOqZGqoXLWtJ+p7bkDYvnLM=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8piaL1ZZOccj5bd2ukyMpH0EJFh2j5Ggr+Bdu4gISpRjO72tnxIyUtue6nU1pb39jcKm9Xdnb39g+qh0dtG8ZGYEuEKjRdHywqqbFFkhR2I4MQ+Ao7/uw28zuPaKwM9QPNIxwEMNFyLAVQKnX601FItjKs1ty6m4OvEq8gNVagOax+9UehiAPUJBRY2/PciAYJGJJC4aLSjy1GIGYwwV5KNQRoB0ked8HPYgsU8ggNl4rnIv7eSCCwdh746WQANLXLXib+5/ViGl8PEqmjmFCL7BBJhfkhK4xMe0A+kgaJIEuOXGouwAARGslBiFSM02KyPrzl71dJ+6LuuXXv/rLWuCmaKbMTdsrOmceuWIPdsSZrMcFm7Ik9sxcncV6dN+f9Z7TkFDvH7A+cj2+j1ZPN</latexit> (
<latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit> <latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit> <latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit> <latexit sha1_base64="TxLGDGpAYLGXSDoWTpQqudJ3eoQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWQjJCgjaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLqtVyrDas1u2DnYMnEKUoMCrWH1azAKRexjQEJxY/qOHZGbcE1SKJxXBrHBiIspn2A/pQH30bhJHnXOTmLDKWQRaiYVy0X8vZFw35iZ76WTPqd7s+hl4n9eP6bxhZvIIIoJA5EdIqkwP2SElmkHyEZSIxHPkiOTARNccyLUknEhUjFOS8n6cBa/Xyad04ZjN5ybs1rzsmimDEdwDHVw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yWrGLnEP7A+vgGcz+RWQ==</latexit>

NQ
<latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="bzB0uW1fzy1MgMhO8gWsRy3sg4E=">AAAB5HicbVC7TsNAEFyHVzABQk1zIkKiimwaKJFoKINEHlKwovVlE045n627NVIU5QdoqegQf0XBv2CbFJAw1WhmVzs7caaV4yD49Gpb2zu7e/V9/6DhHx4dNxs9l+ZWUlemOrWDGB1pZajLijUNMkuYxJr68ey29PvPZJ1KzQPPM4oSnBo1URK5kDqjZitoBxXEJglXpAUrjJpfj+NU5gkZlhqdG4ZBxtECLSupaek/5o4ylDOc0rCgBhNy0aKKuRTnuUNORUZWKC0qkX5vLDBxbp7ExWSC/OTWvVL8zxvmPLmOFspkOZOR5SFWmqpDTlpV/E9irCwxY5mchDJCokVmskqglIWYF4X4RR3h+vObpHfZDoN2eB9AHU7hDC4ghCu4gTvoQBckjOEFXj3nvXnvP7XVvFV/J/AH3sc3ljCOsg==</latexit><latexit sha1_base64="pvJGq0aGvSh9JGJAnrQiKOuX3xI=">AAAB6nicbZA7TwJBFIXv+kRERVubicTEiuzaaGliY2UgyiOBDbk7XHDC7CMzdzWE8BNstbIz/icL/4u7K4WCpzo5Zyb33i9ItLLsup/O2vrG5tZ2aae8W9nbP6geVto2To2klox1bLoBWtIqohYr1tRNDGEYaOoEk+u87zySsSqO7nmakB/iOFIjJZGz6O520BxUa27dLSRWjbcwNVioMah+9YexTEOKWGq0tue5CfszNKykpnm5n1pKUE5wTL3MRhiS9WfFqnNxmlrkWCRkhNKiCOn3jxmG1k7DIHsZIj/Y5S4P/+t6KY8u/ZmKkpQpkvkgVpqKQVYalTEgMVSGmDHfnISKhESDzGSUQCmzMM2glDMe3vL1q6Z9Xvfcutd0oQTHcAJn4MEFXMENNKAFEsbwDC/w6jw5b877D7k1Z4HwCP7I+fgGVhyQuw==</latexit><latexit sha1_base64="pvJGq0aGvSh9JGJAnrQiKOuX3xI=">AAAB6nicbZA7TwJBFIXv+kRERVubicTEiuzaaGliY2UgyiOBDbk7XHDC7CMzdzWE8BNstbIz/icL/4u7K4WCpzo5Zyb33i9ItLLsup/O2vrG5tZ2aae8W9nbP6geVto2To2klox1bLoBWtIqohYr1tRNDGEYaOoEk+u87zySsSqO7nmakB/iOFIjJZGz6O520BxUa27dLSRWjbcwNVioMah+9YexTEOKWGq0tue5CfszNKykpnm5n1pKUE5wTL3MRhiS9WfFqnNxmlrkWCRkhNKiCOn3jxmG1k7DIHsZIj/Y5S4P/+t6KY8u/ZmKkpQpkvkgVpqKQVYalTEgMVSGmDHfnISKhESDzGSUQCmzMM2glDMe3vL1q6Z9Xvfcutd0oQTHcAJn4MEFXMENNKAFEsbwDC/w6jw5b877D7k1Z4HwCP7I+fgGVhyQuw==</latexit><latexit sha1_base64="eLp2Iw89jSv9a72GoWQB4qrKsDA=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJpoIygoUKJIA8psaL1ZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe55YFDJANskSWEv0gi+p7DrTa8yv/uA2sgwuKNZhK4Pk0COpQBKpdubYWtYrdl1OwdfJk5BaqxAc1j9GoxCEfsYkFBgTN+xI3IT0CSFwnllEBuMQExhgv2UBuCjcZM86pyfxAYo5BFqLhXPRfy9kYBvzMz30kkf6N4sepn4n9ePaXzhJjKIYsJAZIdIKswPGaFl2gHykdRIBFly5DLgAjQQoZYchEjFOC2lkvbhLH6/TDpndceuOy271rgsmimzI3bMTpnDzlmDXbMmazPBJuyJPbMX69F6td6s95/RklXsHLI/sD6+AaENkhc=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit><latexit sha1_base64="zjSuQ3uCavLUtwGJUicyJp6dOgU=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChgolgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60lpZXVtfWSxvlza3tnd3K3n7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlV5nceUBsZBnc0jdD1+TiQIyk4pdLtzaA5qFTtmp2DLRKnIFUo0BhUvvrDUMQ+BiQUN6bn2BG5CdckhcJZuR8bjLiY8DH2UhpwH42b5FFn7Dg2nEIWoWZSsVzE3xsJ942Z+l466XO6N/NeJv7n9WIaXbiJDKKYMBDZIZIK80NGaJl2gGwoNRLxLDkyGTDBNSdCLRkXIhXjtJRy2ocz//0iaZ/WHLvmNM+q9cuimRIcwhGcgAPnUIdraEALBIzhCZ7hxXq0Xq036/1ndMkqdg7gD6yPb6JNkhs=</latexit>

NB
<latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit><latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit><latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit><latexit sha1_base64="T9VzlpV1L3QiSQ5jRvVOPxHK3+0=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIREpRRaKhQkEiIlFjR+bJJTjk/dLdGRFZ+gRYqOkTL71DwL9jGBSRMNZrZ1c6OFylpyLY/rdLK6tr6RnmzsrW9s7tX3T/omDDWAtsiVKHuetygkgG2SZLCbqSR+57Ce296lfn3D6iNDIM7mkXo+nwcyJEUnDLpZtCsDKo1u27nYMvEKUgNCrQG1a/+MBSxjwEJxY3pOXZEbsI1SaFwXunHBiMupnyMvZQG3EfjJnnWOTuJDaeQRaiZVCwX8fdGwn1jZr6XTvqcJmbRy8T/vF5Mo0s3kUEUEwYiO0RSYX7ICC3TEpANpUYiniVHJgMmuOZEqCXjQqRinLaS9eEsfr9MOmd1x647t+e1RrNopgxHcAyn4MAFNOAaWtAGARN4gmd4sR6tV+vNev8ZLVnFziH8gfXxDcBkkiA=</latexit>
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FIG. 2: Solving the classical IMRT optimization problem as a quantum Hamiltonian with TNs. The beamlet weights,
xj , are represented as a set of long-range pairwise interacting spins (a). The initial problem of minimizing a cost
function is thus mapped into a ground-state search problem for the Ising-like Hamiltonian (b) which can be efficiently
solved using the Tree Tensor Network algorithm (c). After the minimization the final spin configuration we read out

the results by reconstructing the optimal values for the beamlet weights (d, e).

the other. At this point, we can solve the initial problem
of minimizing Eq. (2) by finding the ground-state for the
classical Ising-type Hamiltonian in Eq. (4).

The ground state of the system is given by the classi-
cal spin-configuration which provides the lowest energy
E0, that is the configuration that minimizes Eq. (2).
The case E0 = 0 corresponds to the optimal beamlet
setup which results in exactly the desired dose distribu-
tion within the patient.Anyhow, in practice, the exact
desired dose distribution is not always achievable for the
optimization. Thus, we can find the solution of the initial
optimization problem by going through all possible spin-
configurations of the Ising-type Hamiltonian. Anyhow,
this classical search rapidly becomes unfeasible, as the
number of spin-configurations grows exponentially with
increasing system size. And since the number of beam-
lets required in a radiotherapy treatment can easily get
in the order of a few thousand, the number of spins re-
quired to represent them is practically too high to solve
the problem efficiently in the classical regime. For this
reason, in the following section we introduce an approach
based on TNs to address this complex optimization task.

B. Description of TTN for solving quantum
many-body systems

Considering the classical Hamiltonian HIMRT , we fur-
ther allow each spin to be a quantum variable by rep-

resenting s
(j)
n with the Pauli matrix σz. In this way,

the quantum Ising-type Hamitonian HIMRT is a diago-
nal matrix with its entries corresponding to the energies
of all possible spin combinations of the classical Hamil-

tonian. Here, TNs are a vital tool for finding ground
states and their physical properties despite the exponen-
tially growing Hilbert space [17, 19, 43]. In the following,
we introduce the idea of TNs to address this challenging
task of investigating complex quantum many-body sys-
tems. For a more in depth introduction on TNs we refer
to sophisticated literature [17–19, 21]

TNs are used to efficiently represent quantum many-
body wavefunctions |ψ〉, which live in the tensor product
H = H1⊗H2⊗· · ·HN of N local Hilbert spaces Hk, each
assumed to be of finite dimension d. Expressing such a
state in real-space product basis means decomposing the
wavefunction as

|ψ〉 =
d∑

i1,...iL=1

ci1,...,iL |i1〉1 ⊗ |i2〉2 ⊗ ...⊗ |iL〉L , (8)

where {|i〉k}i is the canonical basis of site k, spanning
Hk. The exact description of such a general state by all
possible combinations of local states requires dN coeffi-
cients ci1,...,iN . Thus, the number of coefficients increases
exponentially with the system size N in the exact repre-
sentation of the wave-function.

TNs offer a more efficient representation by decompos-
ing the complete rank-N tensor (containing all dN coeffi-
cients) into a set of local tensors with smaller rank, con-
nected with auxiliary indices. We control the dimension
of the auxiliary indices with the bond-dimension χ and
thereby the amount of captured information. Thus, tun-
ing this parameter χ, TNs interpolate between a product
state, where quantum correlations are neglected, and the
exact, but inefficient representation.

The decomposition of the complete rank-N tensor can
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be executed in several ways giving rise to different Ten-
sor Network geometries. The most prominent TN repre-
sentations are the Matrix Product States (MPS) for 1D
systems [17, 44, 45], which addresses all sites with one
corresponding tensor and their two-dimensional variant,
the Projected Entangled Pair States (PEPS) [21, 46, 47].
Tree Tensor Networks (TTN) [26, 48–50] with their hi-
erarchical structure can in principle be defined in any
lattice dimension. As an illustration of the representa-
tion power, the MPS, for instance, reduces the number
of parameters to the upper bound of Ndχ2 controlled by
the chosen bond-dimension χ, leading to a linear depen-
dence on the system size N rather than an exponential
one.

In our analysis, we use the latter, a TTN. The TTN
offers better connectivity between long-range interactions
(with a logarithmic distance threw the network), while
for the simpler MPS the distance by connecting tensors
within the network is linear. In contrast to the PEPS,
the TTN can be optimized with a lower computational
complexity as well (O

(
χ4
)

for the TTN vs. O
(
χ10
)

for
the PEPS)

Due to the bond-dimension χ > 1, we perform a quan-
tum ground state search within the subspace limited by
χ. Thus, in contrast to the classical optimization rou-
tines, we explore within one optimization step several
classical solutions as they are superposed in the quan-
tum representation of the TTN. This allows us further
to tunnel through higher, but reasonably thin, potentials
within the optimization landscape.

After converging to the quantum ground state, we in
general still obtain a superposition of classical solutions.
As we know, that all solutions to the problem are classi-
cal, in theory, when the TTN algorithm is fully converged
to the ground state, each of the superposed classical so-
lutions separately has the same ground state energy E0.
Due to this possible degeneracy, we can select one clas-
sical solution from the TTN in the following way: We
truncate the bond-dimension down to χ = 1, leaving us
with a separable, mean-field solution

|Ψχ=1〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψL〉 ,

in which the only superposition can be local (such as

a local site being |ψn〉 = 1/
√

2(| ↑〉 + | ↓〉)). From here
on, we measure the quantum observable 〈σzn〉 for each
site n, resulting in 〈σzn〉 = −1 for a spin down, 〈σzn〉 = 1
for a spin up and in between those in case of a local
superposition. In the case of the latter, we project the
spin to the classical one with the highest probability by
using the sign. The resulting spin configuration is further
mapped back to the binary encoded solution for each
voxel as described in the previous section.

In the case of the IMRT optimization problem, we are
dealing with a non-trivial quantum Spin-Glass Hamilto-
nian type with over 32000 long-range interactions. Thus,
the optimization is a highly non-trivial task and for the
TTN-algorithm can be quite sensitive to the initialization

procedure. Therefore, for each run, we randomly initial-
ize several samples of the TTN from which we start the
optimization. In the end, we can verify the best simula-
tion by comparing the resulting energies.

IV. ANALYSIS

In this section, we compare the cancer treatment opti-
mization performed with the TTN approach against QP
and SA. In particular, we show the applications for two
different toy models to validate our approach followed by
a more realistic anatomical scenario simulating a prostate
IMRT treatment.

A. Methods

We first compare the TTN algorithm with the ana-
lytical solution for a 3D box toy-model scenario. For
the second, the two-sphere model and the more realis-
tic IMRT phantom, we lack a general analytical solution.
Therefore, we evaluate the results of our TTN approach
by comparing it with two different optimization meth-
ods, QP and SA. In particular, QP refers to a set of
methods and algorithms used to solve quadratic opti-
mization problems subject to linear constraints and it
was exploited to address the initial optimization prob-
lem in Eq. (2). On the other hand, the problem in the
Ising-type formulation in Eq. (4) is addressed using both
TTN and SA. QP and SA are used to validate the results
obtained with the TTN approach. For further details on
the QP and SA, we refer to App. A.

We point out, that both SA and TNs algorithms con-
tain elements of randomness: samples of independent and
randomly initialized simulations are always collected and
the best solution considered. This also allows us to cal-
culate the standard deviation of the samples and have
a quantitative idea of the general behaviour of the algo-
rithms.

B. Toy Models

Bipartite box. In this section we describe a simplified
analytical model used to validate the correctness of the
mapping discussed in Sec. III A and further our TN ap-
proach.

The model consists of a 3D box subdivided into two dif-
ferent regions for which we assign specific dose prescrip-
tions as shown in Fig. 3. The red number on the front of
the box corresponds to the desired beamlet weights for
each bipartition. We radiate the cube with two beams
from two opposite directions (i.e. θ1 = 0◦, here rep-
resented as two rectangles, with a variable number of
beamlets NB for each beam, two in this example. The ra-
diation beam is modelled as an ideal beam which releases
the same amount of dose to each voxel. Moreover, we



6

! = 0°

! = 180°

0.0

1.0

"#

0.5

FIG. 3: Optimization on the 3D box toy model.
The box is radiated from two opposite angles θ = 0◦

and θ = 180◦. The red numbers on the box are the
desired beamlet weights; the number on the upper and

lower rectangules are the beamlet weights obtained with
TTN. Their sum for each partition equals the desired

values.

neglect scattering effects limiting the interactions among
different beamlets to those acting geometrically on the
same voxels only. The dose prescriptions and the num-
ber of voxels are chosen in a way to ensure the exact
ground state with energy E0 = 0. Therefore, for in-
stance, we choose dose values which are compatible with
the number of discretization levels 2NQ used in Eq. (3).

We point out, that these conditions are not fulfilled in
general cases. Anyhow, we introduce them to obtain an
exactly solvable model for the sake of validation. Later
on, we present a more realistic anatomical scenario of
cancer treatment. The model is then described by the
influence matrices Ar for each region r, the priorities γi
and the dose prescriptions D

(P )
i for each voxel. These

are the same information which can be extracted from a
real therapy planning system, as we will see also in the
following.

The number of bits used to represent each beamlet is
set to NQ = 4. The target dose prescriptions for the

two partitions are D
(P )
left = 6.0 and D

(P )
right = 15.0, which

are arbitrary number chosen according to the number
of discretization levels for the xj , 16 in this case. The
influence matrix, mapping the beamlets intensities to the
voxels, is defined to have a uniform dose release into the
box. Thereby, as we simplified physical effects of the
beam, we end up with the influence matrix consisting of
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FIG. 4: Optimization on the sphere Toy Model.
Schematic representation of the model with the the red
sphere as target and the orange sphere as OAR;(b) best
final beamlet configuration for the three algorithms; (c,

top) Cumulative DVHs obtained with the three
algorithms: quadprog (pink), SA (green) and TTN
(blue). On the left panel the orange sphere (dashed

line); on the right panel the red sphere (solid line). (c,
bottom) Difference in the relative volume coverage

between TTN and quadprog (pink line), and TTN and
SA (green line).

either zero and otherwise constant entries mapping the
beamlet intensities to the voxels.

The values contained inside the upper and lower and
rectangles correspond to the beamlet weights obtained
with the TTN algorithm. Wo observe that their sum
equals the desired values for each bipartition, showing a
perfect agreement between the analytical and numerical
solution. This proves the well functioning of the algo-
rithm as well as the correctness of the mapping proce-
dure.

We point out, that, in general, there can be more than
one configuration satisfying the constraints: indeed, de-
pending on the system parameters, the ground state of
the Ising-Hamiltonian can be degenerate. Anyhow, for
the treatment, we are satisfied obtaining anyone of the
degenerate ground states.
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Sphere. In this paragraph, we illustrate the applica-
tion of the TTN algorithm to a more realistic clinical
scenario. In this case, instead of assuming an ideal beam
we model the photon beam using the Matlab-based soft-
ware CERR [51]. This software generates radiotherapy
plans and can be used to obtain the influence matrixes
aij . It allows working with physical effects introduced by
the beams such as scattering and further allows for higher
freedom in choosing the geometry, the number of beams
and other typical model parameters. Thereby, the un-
derlying medical images are in the standardised DICOM
format.

In Fig. 4a we illustrate the model analysed in this para-
graph. The model described consists of a cubic box di-
mensions (50.0 × 50.0 × 100.0) cm3 filled with water in
which two spherical regions, shown in red and in orange
respectively, of diameter d = 3 cm placed, one considered
as the targeted tumor and the other one as an organ at
risk. We irradiate the box using four beams at 0◦, 120◦,
180◦and 240◦ and a total amount of NB = 64 beamlets
(16 beamlets/beam). The influence matrices (Ared and
Aorange) are obtained using the CERR’s dose calculation
algorithm QIB [52] with the default settings; the dimen-
sions of the beamlets are set (1.0× 1.0) cm2.

The optimization goals are set to D
(P )
red = 50.0 Gy for

the red sphere and D
(P )
orange = 0.0 Gy for the orange one,

considering the first as the targeted tumor and the sec-
ond as an OAR. Each sphere is weighted equally in the
cost function with γ = 1.0. During the optimization pro-
cedure, the influence matrixes are always normalized to
keep the final beamlets intensities in the interval [0, 1].

In the mapping to the discrete problem, the bit-depth
was fixed to NQ = 4 bits, resulting in a fully-connected
lattice of 256 sites for the underlying Hamiltonian. The
total number of non-zero interaction terms was nint =
32640. Thus, the underlying quantum many-body sys-
tem is a challenging long-range spin-glass Ising model to
be solved with the TTN algorithm.

In practice, it is unfeasible to obtain E0 = 0 and
thereby to reach exactly the prescribed dose distribu-
tion. Thus, in this example, the optimization balances
the different goals for each organ according to their pri-
orities γ. For this reason, to evaluate the quality of the
results returned by the TTN algorithm, the same op-
timization task was attacked using the Matlab build-in
function quadprog, which exploits QP to optimize the
cost function, and SA. We recall that the optimization
with quadprog was directly performed on the function
in Eq. (2), while SA and the TTN were applied to the
discretized problem in Eq. (4).

A standard method used for plans quality evaluation is
the cumulative DVH histogram, which shows a 2D pro-
jection of the 3D dose distribution inside a given volume.
It represents the fractional volume receiving at least a
given value of dose. Given a generic volume, r, we can
easily build the dose vector Dr(x) as described in Eq. (1)
by applying its influence matrix, Ar, to the beamlets vec-
tor x. The resulting vector contains the total dose de-

livered to each one of the voxels in the volume r. By

subdividing the dose interval [0, D
(max)
i ] into nb (dose)

bins, for each of them we can count how many voxels
receive a dose greater or equal than the corresponding
dose value. In other words, the number of entries in the
k-th bin indicates the number of voxels receiving at least
the corresponding dose. The obtained distribution re-
sults in a cumulative DVH with the fractional volume
represented on the y-axis and the dose values on the x-
axis. We point out, that in this representation of the
dose distribution we lose the spatial information of the
problem.

On the top panels of Figure 4c, we show the DVHs ob-
tained with the three methods. It is clearly visible, that
the three methods show a very good qualitative agree-
ment in the resulting DVHs for each organ. This agree-
ment is further quantitatively confirmed by the energy
E0 - or cost - after the minimization: Within the sta-
tistical uncertainty, all three methods result in a final
energy E0 = 0.0181(8). By looking at the bottom panels
of Figure 4c we see that the difference between TTN and
the other two methods in the relative volume coverage
is globally very close to zero, with only a few peaks at
about 2-5 %

In Figure 4b, we present the final beamlets configura-
tion for each of the three methods. Despite their global
consistence, we observe that local differences arise. First,
this is due to the fact the final configurations have slightly
different energies, despite are all consistent. However, in
general, there may exist more than one configuration sat-
isfying the constraints and minimizing the energy E0 for
the underlying system and this effect is further amplified
when comparing the optimization on the discrete space
(SA and TTN) to that on the continuous one (quadrog).
This happens because the energy landscape may be al-
tered by the dicretization procedure. Thus, in this case,
we have that the ground state of the underlying Hamilto-
nian is either degenerate or its energy gap is reasonably
small. In fact, the underlying quantum spin-glass Hamil-
tonian has a highly non-trivial spectrum with many local
optima and depending on the system parameters degen-
erate ground-states.

C. Prostate cancer treatment with TG119 IMRT
phantom

We now show the results obtained on a standard IMRT
phantom provided by the American Association of Physi-
cists in Medicine Task Group 119 for use in institutional
IMRT commissioning [53, 54]. This dataset contains sev-
eral segmented structures and we chose the following with
the aim of simulating a prostate cancer cases: prostate
as the targeted tumor, bladder and rectum as the OARs.

The geometry we used is characterized by two beams
(33 and 31 beamlets) placed at 90◦, 270◦ as shown in
Fig. 5a, resulting in a total amount of NB = 64 beam-
lets. The dimensions of each beamlet were (0.9× 0.9)
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FIG. 5: Optimization on the TG119 IMRT
phantom.(a) Schematic representation of the model
with the the prostate as target (red) and the bladder
(brown) and the rectum (blue) as OARs;(b) Best final

beamlets configuration for the three algorithms; (c, top)
Cumulative DVHs obtained with the three algorithms:
quadprog (pink), SA (green) and TTN (blue). On the

left panel the two OARs: bladder (dotted line) and
rectum (dashed line). On the right panel the prostate

(solid line). (c, bottom) Difference in the relative
volume coverage for the rectum (dashed line) and the
prostate (solid line) between TTN and quadprog (pink

line), and TTN and SA (green line).

cm2. The dose prescriptions were set to D
(P )
prostate = 50

Gy and D
(P )
bladder = D

(P )
rectum = 0.0 Gy and the priority

assigned to the different structures was γ = 1.0 for all of
them. The dose calculation algorithm used was CERR’s
QIB algorithm in the default settings. The fraction of
non-zero elements in the influence matrixes was 0.55 for
the Aprostate, 0.28 for Abladder and 0.45 for Arectum. For
the discrete problem, the system obtained is again char-
acterized by 256 fully-connected long-range interacting
spins and a total amount of nint = 32640 interaction
terms.

The top panels of Fig. 5c shows the comparison be-
tween the DVHs for the three optimization methods. The
bottom panels show that the difference between TTN and
the other two methods in the volume coverage for the rec-

tum and the prostate is within the 4%, proving a very
good quantitative agreement between them. The results
for the bladder are not shown since the differences were
negligible. This agreement is additionally confirmed by
the obtained energy E0 - or cost - after the minimization:
within the statistical uncertainty, the three methods re-
sult in a final energy E0 = 0.043(1). This result further
confirms what found from the study on the toy models.

V. CONCLUSIONS

In this manuscript, we presented a new approach based
on TNs to optimize the dose distribution for an IMRT
cancer treatment. We showed a feasibility study on three
different cancer treatment scenarios. First, we provided
a proof-of-principle Tensor Network analysis by success-
fully investigating an analytically solvable toy-model of a
radiated box. Then, we compared the TNs with the clas-
sical approaches of QP and SA in the case of a spherical
cancer and a spherical organ at risk. Finally, we illus-
trated the successful application of the TNs approach to
a more realistic anatomical scenario simulating a prostate
cancer.

The main goal of our work was to show the applicabil-
ity of TNs to the IMRT optimization problem, fostering
new applications of quantum-inspired techniques to the
solution of classical optimization problems. Along the
road, we defined a clear strategy to map the classical
problem to simulated quantum-like hardware.

Our results indicate that the TN approach can achieve
results compatible with other optimization techniques
such as QP and SA. We stress that for this feasibility
study we (i) used a reduced number of beamlets to re-
duce the complexity in the models, (ii) kept the cost
function convex for sake of simplicity and (iii) used the
TNs code ”out-of-the-box” originally engineered for typi-
cal quantum systems with significantly fewer interactions
but higher entanglement. Further software developments
will allow to address these three points, increasing the TN
approach efficiency. In particular, extending this study to
non-convex and non-differentiable functions and by fur-
ther specializing and parallelizing the TNs code for this
particular field of application, further significant steps
forward can be made towards real-world scenarios and
their use in every-day medical care.

Finally, we point out that TNs are particular exam-
ples of quantum circuits, thus, this study opens the way
to the application of quantum computation to cancer
treatment, for example through the application of hybrid
quantum-classical optimization algorithms [55]. Once
quantum computer hardware will be scaled up, one could
replace the TNs simulation with actual quantum com-
putation, possibly further enhancing our capabilities of
fighting cancer via IMRT.
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Appendix A: Classical optimization

1. Quadratic programming

Quadratic programming (QP) refers to a set of
widespread methods for solving (non-linear) quadratic
optimization problems subject to linear constraints. A
general QP problem can be formulated as follows:

min
x

qTx +
1

2
xTQx s. t.





Ax = a,

Bx ≤ b

x ≥ 0

(A1)

where f(x) is the target function, q its gradient and Q
its Hessian matrix. The equation Ax = a contains all
the equality constraints, while Bx ≤ b all the inequality
constraints.

In the QP formulation, the initial IMRT optimization
problem in Eq. (2) can be written as follows:

min
x

2
∑

r

(
xT ÃTr Ãrx−D(P )

r Ãrx
)
, 0 ≤ x ≤ 1 (A2)

where r is an index running over the different volumes
or organs (the targeted tumor and the OARs), Ãr is the
influence matrix for the r-th volume whose entries are
weighted by the pre-assigned priorities γi(r) to each voxel,

i, and D
(P )
r a vector containing the dose prescriptions for

the voxels in the r-th volume.
Matlab’s Optimization Toolbox

TM

provides the func-
tion quadprog which exploits different solvers to attack a
wide class QP problems. In this work, this methods is
used to solve the initial quadratic problem and produce
results to be compared to those obtained with TTN.

2. Simulated annealing

Simulated annealing (SA) is a widespread combi-
natorial optimization method based on randomization
techniques [56], in particular based on the Metropolis-
Hastings algorithm. By varying a control parameter T,
called temperature, it is possible to explore the landscape
of a target free-energy function in order to find its global
minima. SA is typically applied to large-scale non-convex

optimization problems where the number of local minima
in the energy landscape is very high. The algorithm al-
ways requires a starting point which in practice is either
a random one or the best one known for a specific prob-
lem. From the initial starting point, a rule to generate
new configurations is given: Configurations with an en-
ergy lower than the previous configuration are always ac-
cepted (with probability one). On the other hand, a move
towards configurations with a higher energy is accepted
with a certain probability which significantly reduces the
risk of getting stuck into a local minimum. In this case,
the acceptance probability decreases dynamically with
the temperature T, which itself decreases during the op-
timization from a given value Tmax to Tmin according to
a pre-defined annealing schedule.

In this work, SA is applied to find the ground state of
the classical Ising spin-glass problem representing the ini-
tial IMRT optimization problem. We always start the SA
from a random configuration for the spins in the lattice.
New configurations are generated by flipping a randomly
chosen spin in the prior configuration. Due to the in-
trinsic stochastic nature of SA, we perform a statistical
sampling of Nruns independent and randomly-initialized
optimization runs for the same problem. For both, the
sphere and the prostate cancer case, Nruns is set to 100.

The code used in this study to perform SA is based on
the Python library in [57].

Appendix B: Ground-state search via TTN

1. Trend of the solutions

The TTN algorithm explores a corner of the full many-
body Hilbert space H which becomes wider as the bond
dimension χ increases. In this work, the bond dimension
was fixed to χ = 5 throughout the whole study. Since
we are dealing a classical problem we know that the final
solution is not entangled. However, the introduction of
a bond dimension X > 1 increases the probability for
the algorithm to converge to the global minimum, as it
thereby explores a greater solution space.

In Sec. IV we’ve shown the best results obtained with
the TTN both for the prostate and the sphere over sam-
ples of Nruns = 100 runs. We recall that the tensors
entries are randomly initialized at the beginning of each
new optimization run.

In order to see which is the general behaviour of the
algorithm throughout the whole sampling, we compare
in Fig. 6a and 6b the results over all Nruns = 100 runs.
We observe that they are globally very closely distributed
around the best solution and this proves the precision of
the TTN algorithm. However, making precise clinical
considerations about the consistency between the differ-
ent solutions goes far beyond the purpose of this feasibil-
ity study since many different factors should be consid-
ered depending on the specific case.
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(a)
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FIG. 6: Trend of the 100 solutions obtained with
the TTN algorithm. (a) Sphere toy-model. (b)

Prostate cancer case. The intensity of the blue lines is
proportional to the number of superimposed solutions,
according to the colorbar. The innermost panels show
the comparison between the 100 solutions and the best

one.

2. Reduction of interaction coefficients.

The model we have considered so far is a fully-
connected lattice system of N interacting spins, with the
number of interactions terms given by N × (N − 1)/2.
The density of the interaction scheme has an impact on
the computational time required to the TTN to converge.
Thereby, it is interesting to investigate the behaviour of
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FIG. 7: Reduction of the number of interaction
coefficients. (a) Sphere toy-model. (b) Prostate

cancer.

the accuracy of the solution when neglecting some of the
coefficients. In particular, we fix a threshold, λmin such
that (|Jij | < λmin) = 0, with Jij the pairwise interaction
term between the i-th and the j-th spin in the lattice, to
cut away the interaction terms with lowest coefficients.

In the following, we considered four different cuts,
keeping respectively the 10%, 40%, 70% and 100% of the
coefficients. The result for the sphere cancer is shown
in Fig. 7a. For each of the four cases, samples of
Nruns = 100 runs were collected. Each histogram shows
the average position of each bin (we set Nbin = 100 bins)
with the associated standard deviation both on the rel-
ative dose and the factional volume axes. For the red
sphere, (the most-right lines) 70%- and 100%- results are
very well superimposed, while the 40%-line lays within
the standard deviation of the former ones. Bigger differ-
ences arise between these three and the 10% line. No sig-
nificative differences can be found for the orange sphere
(most-left lines) between the 100%, 70% and 40% lines.
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FIG. 8: Scaling of the computational time. The
figures shows the average computational time to

perform one sweep when different fractions of non-zero
coefficients are considered. Each point is shown with
the associated standard deviation. Each sample was

made up of about 700 sweeps. Each time point is
normalized by the average time to perform one sweep

when the 100% of coefficients is considered. The orange
line is the results of a linear fit.

Even in this case, the main differences arise between the
10% line and the others.

Interestingly, these results confirm that accurate solu-
tions can be obtained even considering only 40% of the
coefficients. The study on the prostate cancer case (see
Fig. 7b) further confirms this insight. However,in this
case, the 10% line is closer to the others than in the pre-
vious case.

This result becomes even more interesting if we con-

sider the scaling of the computational time when reduc-
ing the number of interaction coefficients. Fig. 8 shows
the result for the prostate cancer case. We observe that
the scaling is linear. In conclusion, using this proce-
dure we should be able to obtain very accurate solutions
spending only the 40% of the initial computational time.

Consequently, one question arises naturally: How to
find the optimal balance between speeding up the simu-
lations by cutting terms versus keeping an adequate infor-
mation to accurately describe the system? We therefore
propose the following heuristic procedure:

• Build the fully-connected interaction matrix of the
initial problem, J0

ij and compute its eigenvalues s0.

• Choose a cut in order to keep the η% of the coeffi-
cients and compute the new eigenvalues sred of the
reduced interaction matrix, Jredij ;

• Check the statistical difference between the two
samples of eigenvalues s0 and sred (before and
after the cut). This can be performed using of
an hypothesis testing procedure, where the null-
hypothesis H0 is that the two sets of eigenvalues
are sampled from the same population, hence no
statistical differences arise between them. Within
this framework, the p-value of the test can be used
to predict the accuracy of the optimization. In par-
ticular, the smaller the p-value is, the more the two
sets of eigenvalues are likely to come from different
populations and thus the accuracy of the optimiza-
tion on the reduced model to be poor. We point
out, that the choice of the statistical test in this
procedure is not unique. Our trials exploited the
Wilcoxon non-parametric test for dependent sam-
ples.
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