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Abstract

The synthesis problem asks whether there exists an implementation for a given formal
specification and derives such an implementation if it exists. This approach enables
engineers to think on a more abstract level about what a system should achieve in-
stead of how it should accomplish its goal. The synthesis problem is often represented
by a game between system players and environment players. Petri games define the
synthesis problem for asynchronous distributed systems with causal memory. So far,
decidability results for Petri games are mainly obtained for local winning conditions,
which is limiting as global properties like mutual exclusion cannot be expressed.

In this thesis, we make two contributions. First, we present decidability and un-
decidability results for Petri games with global winning conditions. The global safety
winning condition of bad markings defines markings that the players have to avoid.
We prove that the existence of a winning strategy for the system players in Petri games
with a bounded number of system players, at most one environment player, and bad
markings is decidable. The global liveness winning condition of good markings defines
markings that the players have to reach. We prove that the existence of a winning strat-
egy for the system players in Petri games with at least two system players, at least three
environment players, and good markings is undecidable.

Second, we present semi-decision procedures to find winning strategies for the sys-
tem players in Petri games with global winning conditions and without restrictions
on the distribution of players. The distributed nature of Petri games is employed by
proposing encodings with true concurrency. We implement the semi-decision proce-
dures in a corresponding tool.
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Zusammenfassung

Das Syntheseproblem stellt die Frage, ob eine Implementierung für eine Spezifika-
tion existiert, und generiert eine solche Implementierung, falls sie existiert. Diese
Vorgehensweise erlaubt es Programmierenden sich mehr darauf zu konzentrieren, was
ein System erreichen soll, und weniger darauf, wie die Spezifikation erfüllt werden
soll. Das Syntheseproblem wird oft als Spiel zwischen einem System- und einem
Umgebungsspieler dargestellt. Petri-Spiele definieren das Syntheseproblem für asyn-
chrone verteilte Systeme mit kausalem Speicher. Bisher wurden Resultate bezüglich
der Entscheidbarkeit von Petri-Spiele meist für lokale Gewinnbedingungen gefunden.

In dieser Arbeit präsentieren wir zuerst Resultate bezüglich der Entscheidbarkeit
und Unentscheidbarkeit von Petri-Spielen mit globalen Gewinnbedingungen. Wir be-
weisen, dass die Existenz einer gewinnenden Strategie für die Systemspieler in Petri-
Spielen mit einer beschränkten Anzahl an Systemspielern, höchstens einem Umge-
bungsspieler und schlechten Markierungen entscheidbar ist. Wir beweisen ebenfalls,
dass die Existenz einer gewinnenden Strategie für die Systemspieler in Petri-Spielen
mit mindestens zwei Systemspielern, mindestens drei Umgebungsspielern und guten
Markierungen unentscheidbar ist.

Danach präsentieren wir Semi-Entscheidungsprozeduren, um gewinnende Strate-
gien für die Systemspieler in Petri-Spielen mit globalen Gewinnbedingungen und ohne
Restriktionen für die Verteilung von Spielern zu finden. Wir benutzen die verteilte
Natur von Petri-Spielen, indem wir Enkodierungen einführen, die Nebenläufigkeit aus-
nutzen. Die Semi-Entscheidungsprozeduren sind in einem entsprechenden Tool imple-
mentiert.
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3.3.6 Decidability Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Formal Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Decision Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 Enabledness of Transitions from Decision Markings . . . . . . . . 57
3.4.3 Decision Markings corresponding to Mcuts . . . . . . . . . . . . . 57
3.4.4 Backward Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.5 States in the Büchi Game . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.6 Finite Winning and Losing Behavior in the Büchi Game . . . . . . 60
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Chapter 1
Introduction

How to construct correctly functioning computer systems is a fundamental challenge
in computer science. Every day, we interact with computer systems and rely on their
correct behavior. We greatly benefit from these systems because they automate the
solution of complex problems for us. Think of the enormous technical achievements
accomplished by the internet browser on your mobile phone. It allows you to read
the newspaper, watch movies, and buy tickets for public transport, to mention just
three examples of its endless possibilities of use. Meanwhile, a malfunctioning internet
browser can have all sorts of terrible effects for its users, including monetary harm and
leaking personal as well as shared data. In the worst case, users can be surveilled
continually due to an incorrectly functioning internet browser on their mobile phone.

Constructing correctly functioning computer systems is a challenging task. One rea-
son for this is that computer systems can engage in complex interactions with humans
and other systems. Often, a lot of work goes into developing and testing these systems,
and we rely on their correct behavior. However, correctness is rarely proven. Because
human errors do happen and are not consistently recognized in time, one should not
be surprised by the unintended behavior of a deployed system. Users of such a sys-
tem can only hope that the unintended behavior is recognized and disclosed by people
with positive intentions and fixed by the engineers of the system. If all goes well, the
engineers can deploy the fix before people with harmful intentions can exploit the un-
intended behavior and cause harm to the users.

Numerous domains of computer science help engineers to construct correct systems,
e.g., formal methods, programming languages, security, software engineering, and test-
ing, to name just a few. In the following, we dive into the subject of formal methods.
Here, mathematically precise models of the system are investigated with the goal of
verifying the correctness of a system. The advantage of a verified system consists in the
fact that we cannot only assume (or hope) but, in fact, know that it behaves correctly,
i.e., in an intended way. A verified system can be deployed without fear of unintended
behavior in the system, which could harm its users.
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1. Introduction

1.1. The Synthesis Problem

In this thesis, we primarily focus on the synthesis approach as one of the major tech-
niques from formal methods to construct correct systems. The synthesis problem probes
whether there exists an implementation satisfying a given specification and derives
such an implementation satisfying the given specification if it exists [Chu57; Chu64]. A
synthesized system is correct-by-construction, i.e., it always satisfies the specification.
The synthesis approach frees engineers from the burden of manually coding systems.
While writing the specification, the engineers can focus on what the system should
achieve instead of how the system should accomplish its goal.

In the main part of this thesis, we present new decidability and undecidability results
for the synthesis problem of asynchronous distributed systems from global specifications.
These results allow us to obtain asynchronous distributed systems, which are provably
correct. Asynchronous distributed systems cover most realistic systems.

As a general intuition, a distributed system consists of several components which can
work together to accomplish a goal. For example, several concurrent robots that work
on the same product constitute a distributed system.

A distributed system is an asynchronous system if each component progresses accord-
ing to its individual clock. This contrasts with synchronous distributed systems, where
either all components follow a predefined rate to progress or global synchronization
between all components occurs constantly. Again, the several concurrent robots con-
stitute a suitable example for an asynchronous distributed system because they do not
necessarily have to move at the same rate.

With the help of global specifications (in contrast to local specifications as the current
state-of-the-art), we can express powerful requirements such as mutual exclusion for
asynchronous distributed systems. The requirement of mutual exclusion enforces that,
at most, one process has access to a specific resource. For example, this allows for the
several concurrent robots to share some tool while ensuring that at most one of them is
using it at every point in time.

We use the term monolithic system to differentiate a system consisting of only one
component from a distributed system. This distinction is helpful because the early
developments regarding the synthesis approach focus on monolithic systems, whereas
our contributions focus on distributed systems.

In the remainder of this chapter, we will illustrate how to use formal logics to specify
the correct behavior of a system by an example from model checking. For simplicity, we
use model checking instead of synthesis. Model checking is another central technique
in formal methods. Afterward, we will survey significant developments in the field of
synthesis both for monolithic and distributed systems. This will lead to in-depth de-
scriptions of what asynchronous distributed systems are and why they are crucial to
represent realistic systems. In the process, we will dissect the underlying concepts
of asynchrony and distribution in asynchronous distributed systems. Furthermore,
we will focus on the memory model of the synthesized systems because the memory
model is paramount to obtain realistic systems and to solve the synthesis problem. We
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1.2. Specifications

will also emphasize our main contribution, which consists of enabling the utilization
of global specifications for the synthesis of asynchronous distributed systems. Our
main contribution pushes the sate-of-the-art from local specifications to more expres-
sive global specifications, including mutual exclusion.

1.2. Specifications

In the following, we illustrate how to use formal logics [HR04] to specify correct behav-
ior. To focus on using specifications, we introduce model checking as a conceptually
more straightforward approach than synthesis that also requires a specification as in-
put. As mentioned before, model checking is another fundamental technique in formal
methods to verify the correctness of a system. Same as the synthesis approach, model
checking is based on formal logics to specify the correct behavior of the system.

The model checking problem probes whether a model of the system satisfies the spec-
ification given in a formal logic [CE81; QS82]. If the model does not satisfy the spec-
ification, then a counterexample is provided. A counterexample describes some pos-
sible behavior of the system that is not included in the specification. Techniques such
as bounded model checking [Cop+01; Bie+03; HBS06; BELM12] as well as advances in
Boolean satisfiability (SAT) solving [JS97; SS99; IP01; CIP09; HJS19; VW21] and satis-
fiability modulo theories (SMT) solving [BMS05; MB08; Bar+11; Dut14; Web+19] made
model checking viable in practice.

Tool implementations of model checking problems for several representations of
models against several formal logics exist (cf. [BMMR01; McM03; CKL04; Bra11; PR11;
CKP15; FGHO20a]). These tool implementations are called model checkers. As part of
the development process, model checkers are used in industry to provide engineers
with counterexamples that point them to problematic aspects of the system. Thus,
model checkers help engineers to verify the final system. Model checking and model
checkers constitute one crucial technique to produce correct systems.

To illustrate the use of specifications, we elaborate on the considered class of systems.
This thesis assumes that a system always is a reactive system [HP84], i.e., it continually
receives inputs from the environment and does not terminate. For distributed sys-
tems, this implies that some components can terminate, but not all of them. Consider-
ing reactive systems makes both the model checking and synthesis problem especially
hard because infinite behavior needs to be handled. Data transforming systems [Gre69;
MW80; Sol13] are different from reactive systems and inevitably terminate.

Specifying an Automated Teller Machine

An Automated Teller Machine (ATM) is a reactive system that may look simple from the
outside although handling considerable sums of money. Large portions of our everyday
life rely on the availability of banknotes, especially in countries like Germany where
banknotes are still very important and some shops accept no other way of payment
than banknotes. An incorrectly functioning ATM could disrupt our daily errands. We

3



1. Introduction

use systems such as an ATM almost every day, relying on their correct behavior even
though their correct design can be challenging [HP84; SN07; Kup12].

An informal specification of an ATM could look like this: The ATM should deliver
only a certain amount of money to a customer after they authenticated themselves and
requested to withdraw this amount of money. In all other cases, the ATM should not
give any money to customers regardless of which buttons are pressed on the ATM.
After serving a customer, the ATM waits for the next customer to arrive and to repeat
this process. Meanwhile, an ATM should allow being refilled by authorized personnel
of the operating bank, and this task should not be too difficult for the personnel.

Specifying a system by exhaustively analyzing its behavior is vital to obtain a specifi-
cation for both model checking and synthesis. The example of an ATM illustrates that
enumerating the intended behavior does not constitute an overly abstract view to the
engineers of the system. Most design processes of a system include a step where the
intended behavior of the system is discussed in detail. As observed in some theoretical
undergraduate courses on computer science, the textual specification of an ATM from
above can be expressed in a corresponding formal logic like linear-time temporal logic
(LTL) [Pnu77]. Still, the task of specifying a system is nontrivial and should not be
underestimated [Roz16].

Together with a model of an implementation of an ATM and by utilizing a corre-
sponding model checker, it becomes possible to verify that the model satisfies the spec-
ification given in LTL or a counterexample representing behavior violating the specifi-
cation is produced. The first case constitutes proof that the ATM behaves in an intended
way, i.e., it is impossible to trick the ATM into paying out money without authentication
while each righteous customer can withdraw an intended amount of money. In the sec-
ond case, the counterexample can be used to find issues with the implementation that
prevent the specification from being satisfied.

1.3. Synthesis of Monolithic Systems

A grand vision in formal methods is to relieve engineers from the task of manually
coding systems (as is necessary when using model checking). This can be achieved by
automatically deriving implementations from specifications. This so-called synthesis
approach can automate the creation of correct systems and constitutes another crucial
technique in the quest for correct systems. Instead of manually coding a system, engi-
neers only write a specification outlining the intended behavior of the system. During
this process, engineers can think on a more abstract level about what the system should
achieve instead of how the system should accomplish its goal. We will focus on the
synthesis approach for the remainder of this thesis.

For an example, think again about an automated teller machine (ATM). A specifica-
tion of an ATM’s desired behavior will always be necessary to define correctness both
for model checking and for synthesis. Using the synthesis approach, the engineers
of the ATM need to develop an all-encompassing specification and obtain an imple-
mentation of the ATM automatically instead of coding the implementation manually

4



1.3. Synthesis of Monolithic Systems

and then verifying its correctness. A not all-encompassing specification would result
in some unspecified behavior for the synthesis approach. In this case, the synthesized
system would do as little as possible or show arbitrary behavior for the cases of unspec-
ified behavior. Most likely, the engineers of the systems do not intend this behavior. It
could be a fascinating research direction to study the automatic generalization of not
all-encompassing specifications for synthesis. We want to stress that model checking
and synthesis are orthogonal approaches to obtain correct systems. On the one hand,
synthesis eliminates the manual coding step necessary for model checking. On the
other hand, model checking allows verifying only the most critical parts of the system.

The first formulation of the vision of synthesis dates back to Alonzo Church more
than 60 years ago [Chu57; Chu64]. Formally, the synthesis problem probes whether
there exists an implementation satisfying a given specification and derives such an im-
plementation if it exists [Chu57; Chu64] (for some excellent introductions, see [Tho09;
Fin16; BCJ18]). The derived implementation satisfies the specification by construction
and can be directly deployed. When no implementation exists, a corresponding coun-
terexample for every possible implementation can be derived. This facilitates analyz-
ing which part(s) of the specification prevented the derivation of an implementation.
A milestone on the road towards the successful synthesis of monolithic systems was an
automatically derived implementation of the AMBA AHB bus protocol, an open indus-
trial standard for the on-chip communication and management of functional blocks in
system-on-a-chip (SoC) designs [Blo+07; Job07; Blo+12; GCH13].

The following introduction to the history of synthesis follows [Fin16]. The first for-
mulation of the synthesis problem more than 60 years ago [Chu57; Chu64] predates the
invention of temporal logics like LTL [Pnu77] by about 20 years. At that time, the spec-
ification for the synthesis problem was a regular set given as a formula of the monadic
second-order logic of one successor (S1S), and the goal was to synthesize a monolithic sys-
tem consisting of one component. Remember that we use the term monolithic system
to identify a system consisting of one component, which is in contrast to a distributed
system consisting of more than one component. In Büchi’s Theorem [Büc60], the con-
nection between S1S and automata over infinite words is established. This constitutes
the first step of the first solutions to the synthesis problem for S1S. There are two dif-
ferent solutions, which were developed in parallel. In their respective first step, they
transform the given S1S formula into an equivalent automaton over infinite words.

One solution, called automata-based synthesis, is due to Rabin [Rab72] and based on
automata over infinite trees [Rab69]. The synthesis problem is reduced to an empti-
ness check for automata over infinite trees. Here, the automaton over infinite words
is extended with a distinction between system transitions, representing outputs of the
system, and environment transitions, representing inputs to the system. This distinc-
tion between system and environment transitions results in branching, which leads
to automata over infinite trees. The original nonelementary runtime [Rab69] of the
emptiness check for automata over infinite trees has been optimized via exponential
runtime [Rab72; HR72] to polynomial runtime [EJ88; PR89a]. Next, we consider an
alternative solution to the synthesis problem from S1S.
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1.3.1. Game-based Synthesis

We focus on the other solution, which is called game-based synthesis, because its under-
lying concepts carry over to our approach for the synthesis of asynchronous distributed
systems. Remember that we synthesize monolithic systems consisting of one compo-
nent in game-based synthesis described in this subsection, same as for automata-based
synthesis. Game-based synthesis is due to Büchi and Landweber [BL69].

For game-based synthesis, the synthesis problem is encoded by a game between the
environment player and the system player. The environment player represents the in-
puts to the system, whereas the system player represents the outputs of the system.
The input of the environment for the system is not limited apart from the alphabet of
inputs. It can also be restricted to follow a transition system [ALW89]. In each round
of the two-player game, the environment player first chooses a valuation of the inputs.
Afterward, the system player chooses a valuation of the outputs as the response. Both
the system player and the environment player have complete observation of the valu-
ations of previous rounds of the game and can make decisions based on this. Playing
the two-player game round-by-round produces a sequence of valuations. The system
player wins if this sequence satisfies the given S1S formula. Otherwise, the environ-
ment player wins. Whether the synthesis problem has a solution can thus be decided
by checking the existence of a winning strategy for the system player against all possi-
ble behaviors of the environment player.

In the first step of both game-based synthesis and automata-based synthesis, Büchi’s
theorem gives automata over infinite words with Büchi acceptance condition. The
Büchi acceptance condition requires that at least one state from a specific set of states is
visited infinitely often. In the following, we abbreviate automaton over infinite words
with Büchi acceptance condition by Büchi automaton. This also applies to other win-
ning conditions that we will encounter. The automata obtained Büchi’s theorem can
be nondeterministic automata. Nondeterministic automata can have multiple initial
states and edges with the same label that do not necessarily lead to the same successor
state. Therefore, the nondeterministic Büchi automata obtained by Büchi’s theorem
may need to be determinized before creating two-player games from them.

Unfortunately, deterministic Büchi automata are strictly less expressive than nonde-
terministic Büchi automata. This contrasts with automata over finite words. There,
each nondeterministic automaton can be translated into an equivalent deterministic
one. Thus, the determinization of nondeterministic Büchi automata results in deter-
ministic automata with a more expressive acceptance condition. Possible winning con-
ditions are Muller [McN66], Rabin [Saf88], and parity [Mos84].

The Muller acceptance condition requires that the set of infinitely often visited states
is an element of a given set of sets of states. The Rabin acceptance condition requires
that, for at least one pair from a given set of pairs of sets of states, states from the first
element of the pair do not occur infinitely often while at least one state from the second
element of the pair occurs infinitely often. For the parity acceptance condition, every
state is labeled by a number, which is also called color, and it is required that the largest
number occurring infinitely often is even. Notice that it leads to equivalent expressive-
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ness when changing largest to smallest, even to odd, or both for the definition of the
parity acceptance condition. The Muller, Rabin, and parity acceptance conditions carry
over as winning condition to the resulting game to solve the posed synthesis problem
in game-based synthesis [BL69]. Therefore, both the size of the required strategies and
the complexity of determining the winning player are of great interest.

The following results have been obtained regarding the size of the required strate-
gies either for the winning system player or for the winning environment player: In
Muller games, the memory necessary and sufficient for the winning player is bounded
by the factorial of the number of states in the game. This follows from using so-called
index appearance records [GH82; Les95]. In Rabin games, a memoryless strategy suffices
for the system player [Eme85], whereas the environment player may need exponential
memory [Les95]. In parity games, the winning player has a memoryless strategy [EJ91].

The following results have been obtained regarding the complexity of determining
the winning player: For Muller games, the complexity depends on the representation
of the winning condition. For an explicit representation of the winning condition as
a set of sets of states, the winner can be determined in polynomial time [Hor08]. The
Emerson-Lei representation [EL87] is a succinct alternative representation of the set of
sets of states by a Boolean formula with variables representing the states in the game.
For the Emerson-Lei representation, the problem of determining the winning player is
PSPACE-complete [HD05]. For Rabin games, determining the winning player is NP-
complete [EJ88]. For parity games, determining the winning player is known to be in
NP ∩ co-NP [EJS93] and, more precisely, in UP ∩ co-UP [Jur98]. Recently, a solving
algorithm in quasipolynomial time was found [Cal+17].

1.3.2. Synthesis from Temporal Logics

The temporal logic linear-time temporal logic (LTL) [Pnu77] is often more intuitive than
S1S and leads to lower complexity for synthesis. In LTL, there is no explicit mechanism
for quantifications as in S1S. Instead, both references to points in time and quantifi-
cation over time happen implicitly by modal operators. Automata over infinite words
with Büchi acceptance condition can represent LTL formulas [VW94]. There are several
optimizations to the original construction [GPVW95; SB00; GO01]. After this transla-
tion, the same techniques from game-based synthesis for S1S apply to synthesis from
LTL specifications. The synthesis of finite-state machines from specifications in LTL is
2-EXPTIME-complete [PR89a], measured in the size of the LTL specification.

There is a history of synthesis tools for LTL [JGWB07; Ehl11; Boh+12], and state-
of-the-art tools synthesize systems of considerable size [FFT17; MC18; LMS20]. A
yearly competition fosters the development and comparison of synthesis tools for
LTL [Jac+17b; Jac+15; Jac+16; JB16; Jac+17a; Jac+19]. Quantitative synthesis allows
for optimizing the behavior of correct systems further by using quantitative objec-
tives [BCHJ09]. For example, it becomes possible to specify that all requests are
answered as quickly as possible by grants.

LTL assumes implicit universal quantification over all possible paths in the system.
By contrast, branching-time temporal logics introduce path quantifiers leading to ex-
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plicit existential and universal quantification over all paths that are possible in the
system. This makes it possible to specify that certain futures are feasible or not. For
example, this allows us to specify that a specific alternative is always possible, even for
a path where it is never taken.

The temporal logic computation tree logic (CTL) [CE81] introduces existential and
universal quantification over paths directly followed by a modal operator. The expres-
siveness of LTL and CTL is incomparable. CTL˚ is a generalization of CTL [EH85] and
subsumes the expressiveness of both LTL and CTL. Synthesis from a specification given
in CTL is EXPTIME-complete [VW86]. The lower bound follows from the satisfiability
problem of CTL [FL79]. Synthesis from a specification given in CTL˚ is 2-EXPTIME-
complete [Eme90].

1.3.3. Summary

We summarize the primary takeaway from the history of synthesis of monolithic sys-
tems for the remainder of this thesis. The synthesis problem is often represented as
a two-player game with complete observation between the system player and the envi-
ronment player. The game is played on an underlying game arena. We have seen that
the game arena can directly originate from the specification, but we will see later that
the game arena can also be part of the specification. In the game arena, each move by
the system player corresponds to a part of the possible implementation of the system,
and each move by the environment player corresponds to a possible environment input
to the system. The system player and the environment player encode that the system
continuously interacts with the environment as in a reactive system.

The game is turn-taking between the environment player and the system player. If
we want to encode that one of the players can make consecutive moves, then they must
be subsumed as one move by the respective player. We will see later that the assump-
tion of players making moves in a turn-taking fashion must and can be relaxed. All
moves represent the possible functions of the system in its environment. It might be
the case that, in a particular state of the game, not all moves by the current player
are possible due to the structure of the game arena. Both players can choose their
next move depending on the previous moves of the system player and the environment
player. Strategies for the players determine their next move, given the current position
of the game and the history of previous moves.

The specification defines the winning condition of the game. The winning condi-
tion of the game is interpreted from the point of view of the system player. It can be
represented directly as states in the game that should never be reached, that should
be reached, or that should be reached repeatedly. The winning condition can also be
represented by a finite automaton that is run in parallel to the two-player game to de-
termine the winner of the game. The goal of the system player is to satisfy the winning
condition of the game, whereas the goal of the environment player is to violate the
winning condition. A strategy for the system player satisfying the winning condition
is a correct-by-construction implementation because the strategy embodies the correct
reaction of the system to all behaviors of the environment.
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1.4. Synthesis of Distributed Systems

More complex interactions between the system and environment than are possible in
monolithic systems can be realized by distributed systems [TS07]. In distributed sys-
tems, there are several concurrent components of a larger system. These components
can repeatedly interact with other components and the environment. This contrasts
with monolithic systems, where the system consists of one component. In this thesis,
we consider reactive systems, i.e., not all components of the distributed system termi-
nate and these non-terminating components interact continually with the environment.

Although we extended the model of the system from monolithic to distributed sys-
tems, the game-based approach for the synthesis of monolithic systems proves to be
sustaining for the synthesis of distributed systems. The synthesis of a distributed sys-
tem can be encoded by multiple system players playing against multiple environment
players. Each system player is a separate component of a larger system, e.g., one of
many autonomous transportation robots in a large factory. Each environment player is
an independent source of uncontrollable behavior for the system consisting of multiple
separate components. Each player has individual memory.

Each player can perform local actions as well as joint actions with some other play-
ers. Joint actions between players are called synchronizations and enable the exchange
of information between these players. Each system player acts on its individual in-
formation and requires a local strategy which, in combination with the strategies of
the other system players, satisfies the winning condition against the decisions of the
team of environment players. The environment players can cooperate to prevent the
satisfaction of the objective by the system players.

Multiple environment players are necessary to ensure the independence of different
parts of the environment. This enables the environment to hide certain decisions from
the system while sharing certain other decisions with some parts of the system. An
environment player can, for example, be a worker in the factory requesting the delivery
of material by a robot or noise in the sensor readings of a robot.

1.4.1. Synchronous vs. Asynchronous Systems

Early formulations of the synthesis problem for distributed systems focused on the
synchronous setting [PR89a]. In the synchronous setting, all components progress at
the same specific rate, i.e., all system players and all environment players make their
next move simultaneously. This results in an undecidable problem [PR90; KV01; FS05]
because the synthesis of distributed systems in the synchronous setting can encode the
halting problem for Turing machines [Tur37].

In the construction of the proof, two system players act on incomplete information
about the other system player. The construction of the proof ensures that the only
possibility for them to win the game is to simulate the Turing machine at each of the two
system players. The incomplete information can be used to shift one system player one
simulation step of the Turing machine ahead of the other system player. This possibility
for a shift can be used to ensure that both system players simulate the Turing machine
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correctly. Then, the synthesis of distributed systems in the synchronous setting can be
used to decide the halting problem for Turing machines. This makes the synthesis of
distributed systems in the synchronous setting undecidable. We will come back to this
proof technique and use it for our undecidability results.

An architecture defines which components of a distributed system can communi-
cate with each other. The synthesis of distributed systems in the synchronous set-
ting remains decidable for some specific architectures. For these architectures, both
an automata-based solution [KV01] and a game-based solution [MW03] are possible, as
for the synthesis of monolithic systems. Architectures with a decidable synthesis prob-
lem are one-way ring architectures [KV01] specifically, and generally, all architectures
where processes can be ordered according to their informedness, i.e., all architectures
without so-called information forks [FS05]. An information fork occurs when two pro-
cesses receive information from the environment according to the architecture such
that they cannot completely deduce the information that the other process received.
For architectures without information forks, the complexity of the synthesis of dis-
tributed systems is nonelementary in the number of processes.

To circumvent this high complexity, compositional synthesis methods have been pro-
posed. In compositional synthesis, processes are synthesized individually, and their
implementations are composed afterward. This approach often requires processes to
make assumptions on the behavior of other processes. Assume-guarantee synthesis al-
lows processes to make assumptions on the behavior of other processes while guaran-
teeing that all these assumptions are fulfilled [CH07]. There are multiple algorithms
to find these assumptions [AMT15; MMSZ20; FP21]. Using dominant strategies, we do
not explicitly need to search for assumptions between processes [DF11; DF14; BRS17;
FP20]. Instead, we use a weaker winning condition, i.e., we search for dominant strate-
gies instead of winning strategies. This technique leads to implicit assumptions be-
tween the processes. Because these assumptions are weaker than explicit ones, compo-
sitional synthesis with dominant strategies is not necessarily always possible.

For the synthesis of monolithic systems, the synchronous setting is well-suited to
represent hardware circuits. Still, this setting reaches its limitations in the case of dis-
tributed systems, as observed by the undecidability result mentioned above and the
high complexity for the decidable classes. Therefore, we consider the asynchronous set-
ting for the synthesis of distributed systems [PR89b; SF06], which is even more desir-
able from the developer’s point of view. Here, each component, i.e., each system player
and each environment player, can proceed at its individual rate instead of at a fixed
rate for all players. The asynchronous setting allows for maximal freedom in model-
ing distributed systems because components can proceed at their individual rates and
wait for their synchronization partners when needed. For example, a worker in the
factory can perform several steps of their task locally before communicating with other
workers, while a robot moves through the factory to obtain some required material.
The trajectory of the robot is controlled locally. Of course, relative levels of abstraction
are essential in this example: One could also focus more sharply on how the robots
navigate the factory while modeling the workers only rudimentarily.
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1.4.2. Memory Models

The memory model presupposed in the synthesis of distributed systems is another cru-
cial factor to be considered in order to obtain a realistic and decidable class of sys-
tems [KPS11]. In monolithic systems, we assume complete information between the
system player and the environment player because this is a realistic assumption, and
there are not many other options due to only having two players. Maintaining complete
information for distributed systems is incompatible with the possibility of having mul-
tiple system players and multiple environment players. This is the case because each
player would be informed about the behavior of all other players. Then, the parallel
composition of all system players would give one system player, and the parallel com-
position of all environment players would give one environment player, which would
bring us back to the two-player games as representation for the synthesis of monolithic
systems. Therefore, we need an incomplete information model [KV00].

One possibility of an incomplete information model is local information, where play-
ers do not learn anything about the past, present, and future behavior of other players.
Such a framework could still allow synchronization between the players but would for-
bid the strategies for the players to make different decisions based on their past and
synchronizations with other players. Such a strategy for the system players, which
bases decisions only on local information, is called a positional strategy. However, this
framework is unrealistic, leading to cumbersome representations of real-world prob-
lems because players can never base their decisions on whether or not some behavior
of other players has actually occurred, and was or was not observed by them.

Causal memory has evolved as the natural model for information flow in asyn-
chronous distributed systems. Here, all participating components of a synchronization
exchange their complete history [GLZ04a; GLZ04b; MTY05]. Components remain
uninformed about the parallel progress of other components unless communication
in the form of synchronization takes place. In case of a synchronization, the compo-
nents learn the entire past of all participating components, including their previous
synchronizations with other components. Notice that components remain uninformed
about the future decisions of other components when communication occurs. Before
deploying a synthesized system, the exchange of unused or unneeded information be-
tween players could be pruned to optimize the information exchange. As we wish to
equip the players with maximal options, we opt for causal memory in the asynchronous
distributed systems, which we consider in the remaining parts of this thesis.

1.5. Petri Games

Our work utilizes Petri games [FO17] for the synthesis of asynchronous distributed sys-
tems with causal memory. Petri games are based on Petri nets [NPW81; Rei85; Old91]
and are a suitable technique for the synthesis of realistic distributed systems. Petri nets
define the flow of tokens from and to places via transitions. In a Petri game, the set
of places of an underlying Petri net is distributed into the set of system places and the
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set of environment places. The underlying Petri nets of Petri games can have loops,
i.e., a marking as the representation of the current places of all tokens can be reachable
infinitely often. This is necessary to encode reactive systems and makes the synthesis
problem for Petri games especially difficult.

Using Petri nets as the underlying game arena of Petri games naturally encodes asyn-
chronous systems because the flow of tokens occurs asynchronously in Petri nets. In
Petri games, system players are represented by tokens in system places, whereas envi-
ronment players are represented by tokens in environment places. Having two or more
tokens on system places naturally encodes distributed systems because every system
player represents one component of the system that should be synthesized.

All participating players of a joint transition exchange their causal past, which is
represented by the unfolding [Eng91; MMS96; EH08] of the underlying Petri net. A
Petri game is played as follows: Based on the causal past, the local strategy of each
system player can deactivate outgoing transitions of that system player. Next, each
environment player chooses one of its remaining outgoing transitions. Then, one of
the remaining (i.e., by all participating players allowed) transitions occurs and the par-
ticipating players are moved. Afterward, the moved players make their decisions as
before, and this process repeats itself. Notice that, due to concurrency between inde-
pendent players, all orders of transitions are possible. Notice further that transitions
do not either belong to the system or the environment. Instead, all participating sys-
tem players and all participating environment players have to agree on a move for it
to happen. This approach also replaces the assumption of two-player games that the
system and the environment player make moves in a turn-taking manner.

For safety winning conditions, the strategies for the local system players have to
avoid deadlocks to prevent them from satisfying the safety winning condition by only
moving very little or not at all. The local safety winning condition of bad places defines
places the players have to avoid from the point of view of the system players. Therefore,
the system players win the Petri game when there exist local strategies for the system
players such that the bad places are always avoided. Otherwise, the environment play-
ers win the Petri game. For bad places, the synthesis problem for Petri games with a
bounded number of system players and one environment player is decidable in single
exponential time [FO17].

The global safety winning condition of bad markings defines markings (i.e., simulta-
neous positions of all players) that the players have to avoid from the point of view of
the system players. Here, the system players win the Petri game when there exist local
strategies for the system players such that the bad markings are always avoided. Oth-
erwise, the environment players win the Petri game. For bad markings, the synthesis
problem for Petri games with one system player and a bounded number of environ-
ment players is decidable in single exponential time [FG17]. Local winning conditions
cannot express global properties like mutual exclusion, where only one player at a time
is allowed access to a resource. The natural question arises whether the synthesis prob-
lem for further classes of Petri games with global winning conditions is also decidable.
We will answer this question in the remainder of this thesis.
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1.6. Contributions

In this thesis, we make two contributions to the synthesis of asynchronous distributed
systems with causal memory represented by Petri games. In the first part of this thesis,
we broaden the landscape of Petri games with a decidable or an undecidable synthesis
problem by providing one decidability result and two undecidability results for Petri
games. In the second part of this thesis, we present bounded synthesis for Petri games
to find winning strategies for the system players in all Petri games with a bounded
number of players.

1.6.1. Part I: Decidability and Undecidability

In the first part of this thesis, we prove that it is decidable whether a winning strategy
exists in Petri games with a bounded number of system players, at most one environ-
ment player, and bad markings as global winning condition. This result is obtained by
a reduction to two-player games with complete observation. The two-player game has
a Büchi winning condition, i.e., at least one state from a specific set of states has to be
reached infinitely often for the system player to win. The general idea of the proof is
inspired by the decidability result for bad places as local winning conditions [FO17].
We extend the reduction from the local winning condition of bad places to the global
winning condition of bad markings, introducing some significant extensions.

In the beginning, we explain in detail what the reduction for bad places and the
reduction for bad markings have in common: First, we outline how so-called decision
tuples represent the multiple system players and the one environment player in the
Petri game to obtain states in the two-player game. Second, we show how transitions
with an environment place in their precondition can be fired as late as possible and
how system players fix their next decision explicitly as soon as they participate in a
transition. This proves that the infinite causal memory of the players in the Petri game
can be represented by the finite number of states in the two-player game.

Afterward, we present two significant additions to extend the reduction from bad
places as local winning condition to bad markings as global winning condition. First,
we outline how the case where system players can play infinitely without firing a tran-
sition with an environment place in its precondition can be handled directly in the
two-player game. Second, we present how to finitely store the history of each system
player until its last synchronization with the environment player. We show that a se-
quential run in the two-player game suffices to check if a bad marking is reached for all
possible interleavings between the concurrent moves of all players in the Petri game.

In the following chapter, we prove that it is undecidable whether a winning strategy
exists in most Petri games with one of the following two winning conditions: The global
winning condition of good markings defines markings that the players have to reach
during every run allowed by the strategy for the system players to win. The global
winning condition of good and bad markings defines good markings that the players
have to reach during every run allowed by the strategy and bad markings that must be
avoided until a good marking is reached for the system players to win.
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First, we prove that it is undecidable whether a winning strategy exists in Petri games
with at least two system players, one environment player, and good and bad markings
as global winning condition. In the beginning, we outline how the independence of the
three players and good markings can be used to simulate an undecidable synchronous
setting in the asynchronous setting of Petri games. Therefore, we show how good mark-
ings can be used to disregard interleavings between the two independent system play-
ers that deviate too much from the synchronous setting. The main idea is that a good
marking is reached as soon as players deviate from the synchronous setting. Afterward,
the incomplete information of the two system players (due to their independence) can
be used to force each system player simulate a Turing machine. Minor deviations from
the synchronous setting can be used to ensure that both system players correctly sim-
ulate the Turing machine. Notice that, in the proof, we encode the undecidable Post
correspondence problem (PCP) [Pos46] instead of the halting problem for a Turing ma-
chine for a more straightforward construction.

Second, we prove that it is undecidable whether a winning strategy exists in Petri
games with at least one environment player, two players where each of the two players
changes between being a system player and an environment player, and good markings
as global winning condition. We show that the bad markings to detect wrong solutions
to the PCP from the previous undecidability proof can be encoded by each system
player repeatedly becoming an environment player. For each bad marking, there ex-
ists a transition only from the corresponding environment players that leads to a place
where no good marking can be reached anymore. When no such bad marking is reach-
able, then the environment players can decide to become system players again for the
next decision on how to simulate the Turing machine.

1.6.2. Part II: Bounded Synthesis

Bounded synthesis finds winning strategies in Petri games with a bounded number of
players and the global winning condition of bad markings [Fin15]. A restriction to one
environment player or one system player as for the decidability results is not necessary.
Therefore, bounded synthesis is applicable to Petri games with multiple system players
and multiple environment players. Bounded synthesis is based on bounding the size of
the possibly infinite unfolding and can thereby also find winning strategies of mini-
mal size. For a bounded unfolding, the existence of a winning strategy is encoded by a
quantified Boolean formula (QBF). For QBFs, propositional formulas are extended with
existential and universal quantification over Boolean variables. The QBFs for bounded
synthesis start with an existential quantifier over corresponding variables to fix a strat-
egy for the system players. Afterward, a universal quantifier over corresponding vari-
ables and the main part of the QBF follow to check whether all admitted runs of the
strategy are winning.

In the second part of this thesis, we present two algorithms for finding bounded
unfoldings depending on whether the graph of reachable markings of the Petri game
has loops or not. For the case of loops in the graph of reachable markings, the algorithm
is based on finite prefixes of the infinite unfolding [Esp94; KKV03; EH08; Bon+14] and
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a bound on the number of copies per place. For the case of no loops in the graph
of reachable markings, the algorithm efficiently calculates the finite unfolding. WE
improve the previously existing encoding for the global safety winning condition of bad
markings and introduce a similar encoding for the global liveness winning condition
of good markings.

In both of these sequential encodings, all interleavings between moves of the players
are enumerated and tested. This implies that, for two independent moves t1 and t2,
both sequences t1t2 and t2t1 are checked. Enumerating and testing all interleavings
between moves of the players is necessary when using global safety winning conditions
like bad markings or global liveness winning conditions like good markings because
they can identify specific sequences of moves by the players as bad or good. We present
a second new encoding: In the so-called true concurrent encoding, independent moves
of the players occur at the same time if possible. This has the drawback that only local
safety winning conditions like bad places can be decided, but the performance of the
true concurrent encoding is better than the performance of the sequential encoding.
Both encodings for the local winning condition of bad places are implemented and
evaluated in our tool AdamSYNT [Ada20].

1.7. Related Work

In this section, we first outline other flavors of synthesis to obtain a complete picture
of the synthesis approach. Second, we highlight the subtle differences between Petri
games and control games played on asynchronous automata. There is a close relation-
ship between both game models. We will see that the difference is not only due to the
fact that Petri games are played on Petri nets, whereas control games are played on
asynchronous automata, but in the precise way strategies can restrict the possibilities
of the system players.

1.7.1. Synthesis

First, we introduce different approaches for the synthesis of distributed systems. These
approaches increase the applicability and extend the expressive power of the synthesis
of distributed systems. Then, we outline the extension of synthesis to real-time systems
and reactive programs (instead of models of such programs). These approaches repre-
sent different possibilities to extend the expressiveness of synthesis by including new
and unique systems. Furthermore, we survey template-based synthesis and give more
details on the general applicability of bounded synthesis. These approaches tackle the
scalability and applicability of synthesis to make it more usable in practice.

Synthesis of Distributed Systems

There are multiple ways to extend the synthesis of distributed systems to solve prob-
lems of interest. These approaches deal with scalability and applicability and extend
the expressive power of the considered systems.
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In many cases, the synthesis of distributed systems does not scale to real-world sys-
tems. This problem can be tackled by restricting the systems which should be synthe-
sized. During the design of distributed protocols, synthesis can be used to automate the
creation of parts of the implementation for the engineers. Here, synthesis completes an
incomplete implementation of the protocol in such a way that the specification is ful-
filled [AT17]. Alternatively, one can enforce and utilize symmetry between components
of the distributed system: Often, the components of a distributed system are not each
of unique form but instead follow the same blueprint because this makes them easier to
build and maintain. Such distributed systems are called symmetric systems. In this case,
i.e., when all components of a distributed system are symmetric, the synthesis problem
can be solved more efficiently [EF17]. One can also synthesize the components of the
distributed systems from local specifications such that their fair composition satisfies
the specification [GS13].

To extend the expressive power, features of the considered distributed systems are
added. In large-scale distributed systems, hardware failures of individual components
cannot be avoided. To cope with this fact, the synthesis of distributed systems can be
extended to include failure resilience [BBJ16]. Here, systems are generated that can en-
sure their correctness despite some components failing. In the asynchronous setting,
the synthesis problem for certain specifications can be reduced to the synthesis problem
in the synchronous setting [KPP12; BNS18]. This allows the synthesis of more systems
by increased expressivity and scalability. Furthermore, a parametrized number of pro-
cesses can be considered in the asynchronous setting [BBLS20]. Here, cutoffs can be
identified such that it is enough to examine a bounded number of process architectures
to solve the synthesis problem.

Synthesis of Real-time Systems

A possible extension of the model of the system is to allow interactions between the
system and the environment in real-time. Real-time systems are modeled primarily by
timed automata [AD94; Alu99]. In timed automata, clocks are used to represent the
passage of time. The generalization of timed automata for the synthesis of real-time
systems are timed games [MPS95; AMPS98; Cas+05]. In timed games, actions of timed
automata are distinguished as either controllable or uncontrollable. The strategy for a
timed game does not only define which controllable actions are allowed but also at ex-
actly which points in time. The goal of the strategy remains to satisfy the winning con-
dition of the timed game. Timed games can be solved by the tool Uppaal Tiga [Beh+07],
which interleaves forward state space exploration with backward propagation of win-
ning sets of states. The tool Uppaal Tiga is used to synthesize real-time systems in
practice [JRLD07; LCMT18].

The synthesis problem for real-time systems is undecidable when the state space
is only partially observable [BDMP03]. When the number of clocks and the preci-
sion of the guards is limited in advance, i.e., when the so-called assumption of fixed
granularity holds, then the synthesis problem for real-time systems is 2-EXPTIME-
complete [DM02; BDMP03]. As enumerating granularities does not yield an effective
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synthesis algorithm, a counter-example guided abstraction refinement (CEGAR) algorithm
for timed games can be used in order to obtain an effective synthesis algorithm [DF12].
The CEGAR algorithm successively refines a set of observation predicates until a suf-
ficiently precise abstraction is obtained. Alternatively, when the assumption of fixed
granularity does not hold, the synthesis of real-time systems from templates has been
proposed [FP12]. Here, the possible solutions are restricted to instances of a given
timed automaton with a parametric control structure.

Synthesis of Programs

The synthesis algorithms considered so far produce finite-state automata, Petri nets,
or other unstructured representations as output. Meanwhile, manual coding is always
performed in some programming language. Synthesis of reactive programs overcomes
the mismatch between programming languages and the output of the synthesis algo-
rithms considered so far [Mad11; BCJK15; GKF18]. The synthesis problem for reactive
programs can be solved by automata-theoretic transformations without requiring op-
timizations of the structural quality of the implementation. Instead, the output imple-
mentations can be directly deployed.

Syntax-guided synthesis (SyGuS) generalizes the problem of synthesizing a program
for a specific programming language to the problem of synthesizing a program under
some syntactic guidance captured by logics and grammars [Alu+15]. This is achieved
by having the legal syntax of a solution as an additional parameter for the synthe-
sis problem. Solutions to the syntax-guided synthesis problem are mainly based on
counter-example guided inductive synthesis (CEGIS) [Sol+06], which can be implemented
by enumerative learning [Udu+13; FB18], encoded to SAT and SMT [SRBE05; Sol+06;
JGST10; GJTV11; KMPS12], and realized by stochastic search [SSA13].

There is a broad range of tools for SyGuS [RT17; PSM17; Rey+19] and a yearly com-
petition to foster the development and comparison of such tools [AFSS17; Alu+19;
PMNS19]. Syntax-guided synthesis has been successfully applied in practice [PSM16;
Car+17; Si+18; FPMG19; RBLT20]. Furthermore, multiple extensions to the underly-
ing formalism of SyGuS have been proposed to increase its expressivity [HD18; Hu+19;
HCDR20; Mor+20].

The temporal logic Temporal Stream Logic (TSL) presents another possibility to syn-
thesize realistic programs by separating data and control [FKPS19b]. TSL has been
used successfully to synthesize a music player app for the mobile operating system An-
droid, a controller for an autonomous vehicle in The Open Race Car Simulator (TORCS),
a real-world kitchen timer application, and a space shooter arcade game realized on
a field-programmable gate array (FPGA) [FKPS19b; FKPS19a; GHKF19]. The separa-
tion of data and control trades theoretical decidability for practical scalability. Data is
represented by predicates and functions, which are not part of the synthesis problem.
Instead, a system has to satisfy the TSL specification for all possible interpretations of
the functions and predicates in order to be a solution to the synthesis problem. This im-
plicit quantification makes it possible to independently implement the data processing
part, e.g., by deductive synthesis [MW80] or manual coding.
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Bounded Synthesis

Bounded synthesis was not explicitly developed for Petri games [Fin15] but is a general
framework that was applied to Petri games. Bounded synthesis probes the existence of
an implementation represented by a finite-state machine having at most as many states
as a given number [SF07; FS13]. This results in a finite state space, making the bounded
synthesis problem decidable irrespective of the system model. Furthermore, bounded
synthesis can be used to find small implementations by incrementally increasing the
bound starting from a small number.

The algorithm for bounded synthesis can be implemented by an automata-theoretic
construction [SF07; FS13] or via a reduction to a decidable SMT problem [SF07; FS13;
KB17], a decidable SAT problem [FFRT17], a decidable QBF problem [FFRT17], or a
decidable DQBF problem [FFRT17]. Dependency quantified Boolean formulas (DQBF)
are an extension of QBFs, which allow for non-linear dependencies between quantified
variables. For each existentially or universally quantified variable in a DQBF, we can
specify precisely on which variables of previous quantifiers it depends. This contrasts
with QBFs, where an existentially or universally quantified variable depends on all
variables of previous quantifiers.

It was shown that the algorithm for bounded synthesis is NP-hard [PF12]. There
are multiple extensions for bounded synthesis, both for the model of the system
and the used algorithm. The model of the system can be extended to real-time sys-
tems [PF12], asynchronous distributed systems with causal memory [Fin15], reactive
programs [GKF18], and systems with a bounded number of registers [KMB18; KK19].
The algorithmic extensions include an additional search for bounded unrealizable
specifications [FT14a], bounding the cycles in the implementation [FK16; FK17], and a
more efficient search for an implementation via refinement [FJ12; JS20].

Bounded synthesis can be extended to either bound both the behavior of the system
and the environment or to bound only the behavior of the environment. This can be
achieved by introducing a bound on the size of the state space of a transition system
that describes the possible behaviors of the environment [KLVY11]. Alternatively, a
bound can be associated with the sequences of values of input signals produced by
the environment [DFT19]. These sequences must be ultimately periodic and need to be
representable by a lasso of bounded size. A lasso consists of a sequence at the beginning
followed by another sequence that is repeated infinitely often. Both sequences together
have to be smaller than the bound on the size. The two mentioned approaches allow
for a more precise analysis of the synthesis problem from LTL specifications.

Specification Logics

There are more logics than S1S, LTL, CTL, and CTL˚ to specify reactive systems. Here,
we mention some notable extensions. An LTL formula that requires that every request
is answered by a grant is satisfied by a system where the distance between every re-
quest and the following grant grows with the number of pairs of request and grant
in the past. To overcome this unbounded distance between requests and grants, the
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temporal logic parametric temporal logic (PLTL) has been introduced [AETP01]. It al-
lows for explicit bounds for eventually operators. As an alternative to PLTL, the logic
prompt-LTL extends LTL with the prompt-eventually operator [KPV09]. The satisfiabil-
ity of a prompt-LTL formula requires that there is a bound on the waiting time of all
prompt-eventually operators. Both the synthesis of distributed systems from prompt-
LTL [JTZ18] and assume-guarantee synthesis for prompt-LTL [FMMV20] have been
considered in the literature.

There are some temporal logics that extend the quantification of CTL and CTL˚ fur-
ther: Alternating-time temporal logics like ATL, ATL˚, and game logic (GL) offer selective
quantification over paths that are possible outcomes of games [AHK02]. This allows
encoding the synthesis problem for LTL, among others, as a model checking problem
for ATL˚ [AHK02; Pin07]. Strategy Logic (SL) subsumes ATL, ATL˚, and GL and allows
expressing the existence of Nash equilibria and secure equilibria [CHP10]. Coordination
logic again subsumes ATL, ATL˚, GL, and SL and allows quantification over strategies
under incomplete information [FS10].

1.7.2. Control Games

A formal connection [BFH19a; BFH19b; Beu19] exists between Petri games and control
games [GGMW13] based on asynchronous automata [Zie87]: Petri games can be trans-
lated into control games, and vice versa, at the expense of an exponential blow-up in
each direction. Both game types admit strategies based on causal information, but the
formalisms for the possibilities of system players and environment players differ.

In control games, an action is either controllable or uncontrollable. Hence, it can
be restricted by either all or by none of the involved players. From a given state of a
process, controllable as well as uncontrollable behavior is possible. By contrast, Petri
games utilize a partitioning into system and environment places. While this offers more
precise information about which player can control a shared transition, a given place
can no longer give rise to both system and environment behavior.

It is challenging to encode the controllability of transitions in Petri games into con-
trol games while preserving the causal information of players, and vice versa. For the
translations from Petri games to control games and from control games to Petri games,
the concept of commitment sets has been introduced: The local players do not allow
behavior directly but move to a state or a place that explicitly encodes their decision
of what to allow. Using this explicit representation, the controllability aspects of one
game model can be expressed in the respective other game model: For the translation
from Petri games to control games, commitment sets make it possible to have actions
in control games, that can be controlled by only a subset of local players, in order to
encode transitions from Petri games. For the translation from control games to Petri
games, commitment sets make it possible to have places in Petri games, that comprise
both environment and system behavior, in order to encode controllable and uncontrol-
lable actions from control games.

The translations between Petri games and control games preserve the structure of
winning strategies in a weak bisimilar way. In addition to the upper bounds established
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by the exponential translations, matching lower bounds are provided. The translations
show that contrasting formalisms can be overcome, whereas the lower bounds highlight
an intrinsic difficultly to achieve this. The translations between Petri games and control
games enable the transfer of decidability results in acyclic communication architec-
tures [GGMW13], which were obtained initially for control games, to Petri games. Vice
versa, the translations between Petri games and control games also enable the transfer
of decidability results in single-process systems [FG17], which were obtained initially
for Petri games, to control games.

Decidability for control games has also been obtained for restrictions on the depen-
dencies of actions in series-parallel systems [GLZ04b]. Furthermore, decidability has
been obtained for restrictions on the synchronization behavior. These restrictions en-
force that players either only learn the length of the history of other players [MT02]
or players can never (directly or indirectly) communicate after they have not done so
for a certain amount of steps [MT02]. Additional decidability results exist for con-
trol games with acyclic communication architectures [MW14] and for decomposable
games, where it only needs to be checked whether strategies without useless repeti-
tions are winning [Gim17].

Control games can be divided into action-based and process-based [MWZ09]. In
action-based control games (cf. [GLZ04b; MW14]), each process declares which actions
it allows to execute, and an action can be executed when all involved processes allow
it. In process-based control games (cf. [MT02; MTY05; GGMW13; Gim17]), whether
an action is allowed or not depends on the inspection of all involved processes. This
gives more power to the strategy for the processes because it can look at all involved
processes when deciding whether to allow or to disallow an action. Process-based
control games can be converted into action-based control games, but not the other way
around [MWZ09].

1.8. Publications

This thesis is based on the following peer-reviewed publications:

[FGHO17] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “Symbolic vs. bounded synthesis for Petri games”.
In: Proceedings of SYNT@CAV. EPTCS. Vol. 260. 2017, pp. 23–43. doi:
10.4204/EPTCS.260.5

[HT18] Jesko Hecking-Harbusch and Leander Tentrup. “Solving QBF by abstrac-
tion”. In: Proceedings of GandALF. EPTCS. Vol. 277. 2018, pp. 88–102. doi:
10.4204/EPTCS.277.7

[BFH19a] Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch. “Trans-
lating asynchronous games for distributed synthesis”. In: Proceedings
of CONCUR. LIPIcs. Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019, 26:1–26:16. doi: 10.4230/LIPIcs.CONCUR.2019.26
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against Flow-LTL”. in: Proceedings of CAV. Lecture Notes in Computer
Science. Vol. 12225. Springer, 2020, pp. 64–76. doi: 10.1007/978-3-030-
53291-8 5

[FGHO20b] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
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Rüdiger Olderog. “Global winning conditions in synthesis of distributed
systems with causal memory”. In: Proceedings of CSL. LIPIcs. Vol. 216.
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Furthermore, this thesis contains material published in the following reports:
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lating asynchronous games for distributed synthesis (Full Version)”. In:
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In this thesis, we present work in collaboration with many people. In the remainder
of this section, we list details in authorship for the papers in which the results of this
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1. Introduction

thesis are also published. Minor differences in text between the published papers and
this thesis are supposed to achieve better typesetting for this thesis.

Chapter 2 presents the background of this thesis and introduces Petri nets and Petri
games. The invention of Petri nets and Petri games is not the work of the author of this
thesis. The presentation of the definitions of Petri nets and Petri games has been used in
the papers connecting Petri games and control games [BFH19a; BFH19b], which were
co-authored by the author of this thesis.

The decidability and undecidability proofs from Chapter 3 and Chapter 4 have been
published in [FGHO22]. Formal details of the proofs are from the corresponding full
version [FGHO21]. Both chapters constitute the work of the author of this thesis, who
is the lead author of both papers. The decidability and undecidability proofs have not
and will not appear in other theses by the authors of these papers.

Chapter 5 presents an introduction to bounded synthesis for Petri games with
bad markings as global winning condition, out of which parts have been published
in [FGHO17]. The author of this thesis is a co-author of said paper. The invention of
bounded synthesis for Petri games is not the work of the author of this thesis. For this
chapter, the work of the author of this thesis includes two algorithms to obtain bounded
unfoldings, corrections and optimizations of bounded synthesis for Petri games with
bad markings, the implementation thereof as part of the tool AdamSYNT [Ada20],
and the definition as well as the implementation of bounded synthesis for Petri games
with good markings as global winning condition. The accompanying web interface for
AdamSYNT has been published in [GHY21]. The author of this thesis is a co-author
of said paper. How to use the certificates of the used QBF solver QuAbS to model
a synthesis problem as a Petri game is one of the topics of publication [HT18]. This
section constitutes the work of the author of this thesis, who wrote the corresponding
section in said paper as a co-author. None of the mentioned works of the author of this
thesis have or will appear in other theses by the authors of these papers.

The true concurrent encoding for bounded synthesis from Chapter 6 has been pub-
lished in [HM19b]. The content is the work of the author of this thesis, who is the lead
author of the paper. The content constitutes a significant improvement and extension
of preliminary work, which has been published in the Bachelor’s thesis [Met17] of the
co-author of the paper. The improved and extended content from this paper has not
and will not appear in other theses by the authors of this paper.

Steps towards liveness winning condition per player mentioned as future work in
Chapter 7 have been published in [FGHO19; FGHO20a; FGHO20b]. The author of this
work is one of the co-authors developing these ideas.

1.9. Structure of this Thesis

In Chapter 2, the main part of this thesis starts with an in-depth introduction to Petri
nets and their extension to Petri games. We also focus on multisets to represent the
bounded number of players in Petri games and give examples of how the unfolding of a
Petri net represents the causal memory of players in a Petri game. Chapter 2 is followed
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by Part I and Part II: Part I focuses on decidability and undecidability results for Petri
games, whereas Part II focuses on bounded synthesis for Petri games. In Chapter 7,
conclusions are drawn, and open problems are discussed.

1.9.1. Part I: Decidability and Undecidability

In Chapter 3, we prove that it is decidable whether a winning strategy exists in Petri
games with a bounded number of system players, at most one environment player,
and bad markings as global winning condition. This result is obtained by a reduction
to two-player games with complete observation as in the case of bad places as local
winning condition [FO17].

In the first section of Chapter 3, we give a motivating example to showcase the ex-
pressivity of the systems that can be synthesized by the new decidability result. In the
next section, we introduce Büchi games as our formalism of two-player games with
complete observation. In the subsequent section, we give an overview of the reduction.
Therefore, we explain the similarities between the reduction for bad places and the
reduction for bad markings in detail.

Afterward, we describe the parts of the Büchi games encoding the Petri games of our
decidability result in individual subsections. We present the states in the Büchi game,
describe which states are initial as well as which are accepting, and differentiate which
states belong to Player 0 as well as which belong to Player 1. We also describe the edges
in the Büchi game. In the following two subsections, we introduce backward moves in
the Büchi game and how the NES-case is encoded directly in the Büchi game. As the
last subsection of this section, we state the decidability result formally and present an
intuition on how strategies between the Petri games from our decidability result and
the encoding Büchi game can be translated in both directions.

In the next section, we formalize all the steps of the preceding section and present
proofs for the correctness of the construction. To conclude the chapter, we discuss how
the backward moves from the new decidability result for bad markings as global win-
ning condition solve corner cases concerning the determinism requirement of strategies
for the system players in the reduction for bad places as local winning condition.

In Chapter 4, we prove two undecidability results: First, we prove that it is undecid-
able whether a winning strategy exists in Petri games with at least two system players,
one environment player, and good markings and bad markings as global winning con-
dition. Second, we prove that it is undecidable whether a winning strategy exists in
Petri games with at least one environment player, two players where each of the two
players can change between being a system player and an environment player, and
good markings as global winning condition.

In the first section of Chapter 4, we recall the root cause for undecidability in the
synchronous setting of Pnueli and Rosner. In the remainder of the chapter, good mark-
ings as global winning condition are used to simulate this undecidable synchronous
setting in the asynchronous setting of Petri games. In the next section, we give an in-
tuition on how this simulation leads to undecidability and a general overview of the
first undecidability result. This includes an introduction to the Post correspondence
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problem (PCP), how strategies for a Petri game can represent solutions to the PCP, and
how good markings can be used to focus on linear firing sequences to check solutions
to the PCP for correctness.

In the subsequent section, we formalize this and present the proofs of both the first
and the second undecidability result. The second undecidability result is obtained by a
reduction from the first undecidability result. Here, bad markings from the first unde-
cidability result are encoded by all players repeatedly becoming environment players
without restricting the possible solutions to the PCP, output by the system players. To
conclude the chapter, we discuss how these two undecidability results transfer to con-
trol games. Furthermore, we emphasize the difference between good markings used in
this thesis and final markings used more commonly in control games.

1.9.2. Part II: Bounded Synthesis

Bounded synthesis allows us to find winning strategies in Petri games where the lim-
itation to one environment player or one system player cannot be met [Fin15]. This
includes the case of Petri games with multiple system players and with multiple en-
vironment players. In a nutshell, bounded synthesis increases a bound on the size of
the unfolding and encodes the existence of a winning strategy for the system players
in the bounded unfolding as a QBF until a winning strategy for the system players is
found. Bounded synthesis produces winning strategies of minimal size but cannot dis-
prove that a winning strategy for the system players exists. We extend previous work
on bounded synthesis in the following ways.

In Chapter 5, we present the sequential encoding for bounded synthesis for Petri
games via the following steps: In the first section, we outline a motivating example of
two robots with independent sources of error. This exemplifies the necessity of solving
Petri games with multiple system players and multiple environment players. In the
subsequent section, we introduce bounded unfoldings and bounded strategies as the
formal foundations for bounded synthesis for Petri games. Afterward, we introduce
formal algorithms to obtain bounded unfoldings depending on whether the graph of
reachable markings of the Petri game contains loops or not. For the case without loops,
we deploy McMilian’s unfolding algorithm [McM95]. For the case with loops, we utilize
the explicit bound to obtain finite prefixes of the unfolding, which is inspired by using
these prefixes in model checking [KKV03]. In the next section, we recall the sequential
encoding for bounded synthesis for Petri games with bad markings as global winning
condition [Fin15] and present some optimizations. Next, we formalize the sequential
encoding for bounded synthesis for Petri games with good markings as global winning
condition and explain how the concurrency between players is represented by all se-
quential firing sequences. To conclude the chapter, we present how bounded strategies
are obtained from the output of the QBF solver for satisfiable formulas and how coun-
terexamples from the QBF solver for unsatisfiable formulas can guide the development
of a Petri game.

In Chapter 6, we showcase, for bad places as local winning condition, how the se-
quential encoding can be optimized to the true concurrent encoding for bounded syn-
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thesis for Petri games by the following steps: In the first section, we present a moti-
vating example of a production line in a factory. This exemplifies when the sequential
encoding represents too many and too difficult problems We also highlight how this can
be circumvented by the true concurrent encoding. In the following two sections, we in-
troduce true concurrency in Petri games by recalling strategies for the system players,
defining strategies for the environment players, and introducing the true concurrent
flow semantics for Petri games. In a nutshell, the true concurrent flow semantics de-
fines when and how concurrent transitions can be fired in one step. Afterward, we
present the QBF encoding of true concurrency in Petri games via the true concurrent
flow semantics. To conclude the chapter, we present how both the sequential encoding
and the true concurrent encoding are implemented in our tool AdamSYNT [Ada20],
which also includes a web interface [GHY21]. Furthermore, our experimental evalua-
tion shows that the true concurrent encoding outperforms the sequential encoding on
an extensive set of benchmarks.
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Chapter 2
Foundations

In this chapter, we introduce the theoretical foundations and fix the notations for the
remainder of this thesis. We introduce Petri nets [NPW81; Rei85; Old91] and Petri
games [FO17; FG17] with illustrative examples. Petri games are played on an underly-
ing Petri net as the game arena. Our presentation of the definitions follows [BFH19a].
We start with a short introduction to multisets as they are used in the definition of Petri
nets and in the definition of Petri games to allow for several tokens in places.

Multisets can be thought of as an extension of sets allowing for repetitions of objects.
Each object in a set is either in the set or not, whereas each object in a multiset can
additionally occur repeatedly. In both sets and multisets, the order of the objects in the
set or multiset does not matter.

Definition 1 (Multisets)
A multiset M over a set S is a function M : S→ N.

We write s ∈M for the membership of object s in a multiset M if M(s) > 0. A set is a
{0,1}-valued multiset, and vice versa. We use notations such as {a : 1,b : 2, c : 3} to repre-
sent multisets. For example, the notation {a : 1,b : 2, c : 3} encodes a multiset containing
element a once, element b twice, element c thrice, and no other elements. Often, we
abbreviate expressions such as a : 1 by a in these notations for elements occurring once
in the multiset. The ordering of the elements in these notations is arbitrary.

We introduce some notations for multisets that might, in parts, look similar to nota-
tions for sets: The empty multiset ∅ is defined as ∅(s) = 0 for all s ∈ S. For two multi-
sets M and N over S, the multiset inclusion M ⊆N is defined as ∀s ∈ S : M(s) ≤N (s), the
multiset addition M +N is defined as (M +N )(s) = M(s) +N (s) for all s ∈ S, the multiset
difference M −N is defined as (M −N )(s) = max(0,M(s) −N (s)) for all s ∈ S, the multi-
set intersection M ∩N is defined as (M ∩N )(s) = min(M(s),N (s)) for all s ∈ S, and the
multiset union M ∪N is defined as (M ∪N )(s) = max(M(s),N (s)) for all s ∈ S.

27



2. Foundations

p1

p3p2 p4

p6p5 p7

p8

t1 t2

t3 t4 t5

t6 t7

t8 t9

Figure 2.1.: An exemplary Petri net is depicted. It has eight places pi with i ∈ {1, . . . ,8}
and nine transitions tj with j ∈ {1, . . . ,9}. The initial marking puts one token in place p1.
The weights of all arcs are one. Therefore, they are omitted. When transition t1 fires,
one token is removed from the single place p1 in t1’s precondition, and one token each
is added to the places p2 and p3 in t1’s postcondition. For every reachable marking,
each place can contain at most one token. The three markings {p2,p6}, {p4,p6} and {p8}
are both reachable and final. In total, this Petri net has ten reachable markings.

2.1. Petri Nets

We begin with the definition of Petri nets because they constitute the underlying game
arena of Petri games.

Definition 2 (Petri nets [NPW81; Rei85; Old91])
A Petri net or simply netN = (P ,T ,F , In) consists of

• the disjoint sets of places P and of transitions T ,

• the flow relation F as a multiset over (P ×T )∪ (T ×P ),

• and the initial marking In as a multiset over P .

Generally speaking, Petri nets define the removal and addition of tokens from and
to places according to transitions, starting from the distribution of tokens given by the
initial marking. In Figure 2.1, we illustrate Petri nets and the formalisms introduced in
the following with an example. Places are depicted as circles and transitions as boxes.
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The flow relation defines the arcs and their weight w from places to transitions for
pairs from P ×T and from transitions to places for pairs from T ×P . For a place p ∈ P
and a transition t ∈ T , there is an arc from p to t annotated with weight w if w = F (p, t)
and F (p, t) > 0, and there is an arc from t to p annotated with weight w if w = F (t,p)
and F (t,p) > 0. When depicting Petri nets, weights equal to one can be omitted, as can
be seen in Figure 2.1. Arcs are depicted by arrows. Arcs in both directions between a
place and a transition having the same weight are depicted by double-headed arrows.
When these arcs have different weights, then they are depicted by two arrows.

States of Petri nets are represented by multisets over P , called markings. A mark-
ing M is represented by putting M(p) tokens in every place p ∈ P . Tokens are depicted
as dots inside of places. The initial marking of a Petri net is In.

For a place p, the precondition is the set pre(p) = {t ∈ T | F (t,p) > 0} and the postcon-
dition is the set post(p) = {t ∈ T | F (p, t) > 0}. For a transition t, the precondition is the
multiset pre(t) over P defined as pre(t)(p) = F (p, t) for all p ∈ P and the postcondition is
the multiset post(t) over P defined as post(t)(p) = F (t,p) for all p ∈ P .

If it is unclear to which Petri net N a precondition or a postcondition is referring,
then we annotate the precondition or the postcondition with N , i.e., we write preN (x)
and postN (), for x being a place or a transition. By convention, superscripted names of
Petri nets are also used for the components of the net, e.g., N U = (PU ,T U ,F U , InU ).
Here, we write preU (x) and postU (x) as abbreviation for preN

U
(x) and postN

U
(x).

A transition t is enabled at a marking M if pre(t) ⊆ M (denoted by M[t⟩), i.e., every
place in M contains at least as many tokens as required by the precondition of t. If no
transition is enabled from a marking M, then we call it final. An enabled transition t
can fire from a marking M resulting in the successor marking M ′ = (M −pre(t)) + post(t)
(denoted by M[t⟩M ′), i.e., tokens for the precondition of t are removed from M and
tokens for the postcondition of t are afterward added to obtain M ′. For markings M
and M ′, we write M[t0, . . . , tn−1⟩M ′ if there exist markings M0, . . . ,Mn such that M0 = M,
Mn = M ′, and Mi[ti⟩Mi+1 for all 0 ≤ i < n. The set of reachable markings of a Petri netN
is defined as R(N ) = {M | ∃n ∈ N, t0, . . . , tn−1 ∈ T : In[t0, . . . , tn−1⟩M}.

We call elements x in P ∪ T nodes. We say that a Petri net N is finite if the set of
nodes of N is finite. For some k ∈ N, a Petri net N is k-bounded if M(p) ≤ k holds
for all reachable markings M ∈ R(N ) and all places p ∈ P . A Petri net is bounded if
it is k-bounded for some given k; otherwise it is unbounded. A Petri net is safe if it is
1-bounded. For a finite k-bounded Petri net, we restrict the flow relation from multisets
over the natural numbers N to multisets over {0, . . . , k} by removing transitions that can
never be enabled. A Petri net N ′ is a subnet of a Petri net N (denoted by N ′ ⊑ N ) if
P ′ ⊆ P , T ′ ⊆ T , In′ = In, and F ′ = F ↾ (P ′ × T ′) ∪ (T ′ × P ′), i.e., the flow relation is
restricted to the remaining places and transitions. We enforce In′ = In to maintain all
players when later defining strategies for Petri games.

For nodes x and y, we write x ⋖ y if x ∈ pre(y), i.e., if there is an arc from x to y.
With ≤, we denote the reflexive, transitive closure of ⋖. The causal past of node x is
past(x) = {y | y ≤ x}. Nodes x and y are causally related if x ≤ y or y ≤ x. They are in
conflict (denoted by x♯y) if there exists a place p ∈ P \ {x,y} and two distinct transitions
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p1

p3 p′3p2 p4

p6p5 p7 p′6p′5 p′7

p8 p′8

t1 t2

t3 t4 t5 t′3 t′4 t′5

t6 t7

p′1 p′′1

t8 t9

. . . . . . . . . . . .

Figure 2.2.: The unfolding of the example Petri net from Figure 2.1 is depicted. Place p3
in the original net is split into two places p3 and p′3 depending on whether transition t1
or transition t2 fired. This ensures that places p3 and p′3 in the unfolding have ex-
actly one ingoing transition. Both places p3 and p′3 have distinct transitions and places
to follow the behavior in the original net. Place p8 in the original net is split into
two places p8 and p′8 depending on whether transition t6 or transition t7 fired. From
places p′1 and p′′1 , a copy of the depicted net follows recursively with unique names us-
ing the prime symbol ′ for places and transitions. This fulfills the requirements posed
by the definition of an occurrence net. The corresponding homomorphism removes the
prime symbols of places and transitions. The unfolding is of infinite length and of in-
finite width. When the process of copying the net is stopped at one place or at several
places, then a branching process is obtained.

t1, t2 ∈ post(p) such that t1 ≤ x and t2 ≤ y, i.e., nodes x and y can be reached exiting
place p by two different transitions. Node x is in self-conflict if x♯x. We call x and y
concurrent if they are neither causally related nor in conflict.

2.1.1. Occurrence Nets, Branching Processes, and Unfoldings

To represent the occurrences of transitions with both their causal dependency and
conflicts (nondeterministic choices), we give the formal definition of occurrence nets,
branching processes, and unfolding for Petri nets. An illustration of these concepts,
which are introduced formally in the following, can be found in Figure 2.2.
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Definition 3 (Occurrence nets)
An occurrence net is a Petri netN , where

• the precondition and postcondition of all transitions are sets of places instead of
multisets over places,

• the initial marking is a set of places and contains exactly the places without ingo-
ing transitions, i.e., ∀p ∈ P : p ∈ In⇔ |pre(p)| = 0,

• all other places have exactly one ingoing transition, i.e., ∀p ∈ P \ In : |pre(p)| = 1,

• ≤ is well-founded, i.e., starting from any given node, no infinite path following the
inverse flow relation exists, and

• no transition is in self-conflict.

Note that an occurrence net is a safe net, i.e., places contain at most one token for all
reachable markings in the net. If nodes x , y of an occurrence net are in conflict, then
they are mutually exclusive, i.e., there is a nondeterministic choice between x and y.

Definition 4 (Homomorphisms)
A homomorphism fromN 1 toN 2 is a function λ : P 1 ∪T 1→P 2 ∪T 2 that

• respects node types, i.e., λ(P 1) ⊆ P 2 ∧λ(T 1) ⊆ T 2, and

• is structure-preserving on transitions, i.e,
∀t ∈ T 1 : λ(pre1(t)) = pre2(λ(t))∧λ(post1(t)) = post2(λ(t)).

If λ additionally agrees on the initial markings, i.e., λ(In1) = In2, then λ is called an
initial homomorphism.

A branching process [Eng91; MMS96; EH08] describes parts of possible behaviors of
a Petri net. We use the individual token semantics [GR83].

Definition 5 (Branching processes [Eng91; MMS96; EH08])
An (initial) branching process of a Petri netN is a pair ι = (N ι,λι) where

• N ι is an occurrence net and

• λι : P ι∪T ι→P ∪T is an initial homomorphism fromN ι toN that is injective on
transitions with the same precondition, i.e.,
∀t, t′ ∈ T ι : (preι(t) = preι(t′)∧λι(t) = λι(t′))⇒ t = t′.

Intuitively, whenever a node can be reached on two distinct paths in a Petri net, then
it is split up in the branching process of the Petri net. The initial homomorphism λι can
be thought of as a label of the copies into nodes of the Petri net. The injectivity condi-
tion avoids additional unnecessary splits: Each transition must either be labeled differ-
ently or occur from different preconditions.
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Definition 6 (Unfoldings)
The unfolding ιU = (N U ,λU ) of a Petri net N is a maximal branching process: When-
ever there is a set of pairwise concurrent places C such that λU (C) = preN (t) for some
transition t ∈ T , then there exists t′ ∈ N U with λU (t′) = t and preU (t′) = C.

The unfolding represents every possible behavior of a Petri net N . Finite Petri nets
may have infinite unfoldings due to loops in the graph of reachable markings.

Let ι1 = (N 1,λ1) and ι2 = (N 2,λ2) be two branching processes of the same Petri net. A
homomorphism from ι1 to ι2 is a homomorphism h fromN 1 toN 2 such that λ1 = λ2◦h.
Notice that the homomorphism h does not necessarily need to exist for two arbitrary
branching processes of N . The homomorphism h is called initial if h(In1) = In2 holds.
The homomorphism h is called an isomorphism if it is a bijection. Two branching pro-
cesses ι1 and ι2 are isomorphic if there exists an initial isomorphism from ι1 to ι2. A
branching process ι1 approximates a branching process ι2 if there exists an initial injec-
tive homomorphism from ι1 to ι2. A branching process ι1 is a subprocess of a branching
process ι2 if ι1 approximates ι2 with the identity on P 1 ∪ T 1 as the homomorphism.
Thus, N 1 ⊑ N 2 and λ1 = λ2 ↾ (P 1 ∪ T 1). The Petri net N 1 is a subnet of the Petri
net N 2, and the homomorphism λ1 is the restriction of the homomorphism λ2 to the
remaining places P 1 and the remaining transition T 1. If ι1 approximates ι2, then ι1 is
isomorphic to a subprocess of ι2. In the literature [Eng91], it is shown that the unfold-
ing ιU = (N U ,λU ) of a net is unique up to isomorphism and that every initial branching
process ι ofN approximates ιU . Thus, ι is a subprocess of ιU up to isomorphism.

2.2. Petri Games

In this section, we introduce Petri games, strategies for Petri games, and when these
strategies are winning for the different winning conditions.

Definition 7 (Petri games [FO17; FG17])
A Petri game or simply game is a tuple G = (PS ,PE ,T ,F , In,W ). The places of the un-
derlying Petri netN = (P ,T ,F , In) are partitioned into system places PS and environment
places PE . The winning condition is given by the symbolW as the set of bad places PB ⊆ P ,
the set of bad markingsMB ⊆R(N ), the set of good markingsMG ⊆R(N ), or the pair of
disjoint sets of good and bad markings (MG,MB) ∈ P (R(N ))×P (R(N )).

We call tokens on system places system players and tokens on environment places en-
vironment players. The Petri game is played by firing transitions in the underlying Petri
net. We say that players synchronize when a joint transition fires. Intuitively, a strategy
controls the behavior of system players by deciding which transitions to allow. En-
vironment players are uncontrollable and transitions only dependent on environment
players cannot be restricted by a strategy. We illustrate Petri games and the formalisms
introduced in the following with an example in Figure 2.3. This figure has been pub-
lished in [HM19b]. We depict Petri games as Petri nets and color system places gray
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env

env1 env2robot1 robot2

ignored1repaired1 ignored2repaired2

1 robot check 2 robots check

⊥

1 robot 2 robots

ignore1repair1 ignore2repair2

wrong ignore1 wrong ignore2

wrong repair wrong ignore3

Figure 2.3.: An exemplary Petri game is depicted. It specifies a production line where
two robots can repair a product. The product either requires repair by only one or
by both robots. The system places robot1 and robot2 represent the robots. They are
spawned after the environment player in environment place env decides by firing ei-
ther transition 1 robot or transition 2 robots whether one or both robots need to re-
pair the product. The decision is stored in the environment places 1 robot check and
2 robots check. Each robot can either repair or ignore the product. Afterward, the bad
place ⊥ can be reached when too few robots repaired the product or both robots re-
paired the product, although repair by only one robot is necessary. The corresponding
unfolding and winning strategy are presented in Figure 2.4.

and environment places white. Transitions and tokens are depicted in Petri games as
they are depicted in Petri nets.

We define strategies for the system players.

Definition 8 (Strategies)
A strategy for a Petri game G is a branching process σ = (N σ ,λσ ) satisfying justified
refusal: If there is a set of pairwise concurrent places C inN σ and a transition t ∈ T with
λσ [C] = preN (t), then there either is a transition t′ ∈ T σ with λσ (t′) = t and C = preσ (t′)
or there is a system place p ∈ C ∩ (λσ )−1[PS ] with t < λσ [postσ (p)]. Furthermore, the
strategy σ has to be deterministic: For every reachable marking M of σ and system
place p ∈M, there is at most one transition from postσ (p) enabled in M.
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As a branching process describes subsets of the behavior of a Petri net, a strategy is a
restriction of possible transitions in the Petri game. Justified refusal enforces that only
system places can prohibit transitions based on their causal past. From every situation
in the game, a transition possible in the underlying net is either in the strategy or there
is a system place that never allows it. Transitions involving only environment places are
always possible. As a branching process encodes the causal memory of places, system
players in the strategy base their decisions on their causal memory.

The requirement of justified refusal for the strategy σ can be formalized by ∀t ∈ T U :
t < T σ ∧ preσ (t) ⊆ P σ ⇒ (∃p ∈ preσ (t)∩ P σ

S : ∀t′ ∈ postU (p) : λU (t) = λU (t′)⇒ t′ < T σ ),
i.e., every transition from the unfolding which can be enabled in the strategy is either
in the strategy or a system place forbids the transition and all its outgoing transitions
which are based on the same transition in the original Petri game.

The requirement of deterministic decisions for the strategy σ can be formalized by
the following formula ∀M ∈ R(N σ ) : ∀p ∈M ∩P σ

S : ∃≤1t ∈ postσ (p) : preσ (t) ⊆M. Notice
that postσ (p) can contain more than one transition as long as at most one of them is
enabled at the same reachable marking. This makes it possible that the environment
player decides between different branches of the Petri game, and the system player,
later on, reacts to every decision.

2.2.1. Winningness of Strategies

We define winningness for the strategies for the system players in a Petri game.
For safety winning conditions, we need the requirement of deadlock-avoidance: A

strategy is deadlock-avoiding if, for every final, reachable marking M in the strategy,
λσ [M] is final as well, i.e., the strategy is only allowed to terminate if the underlying
Petri net does so. The requirement of deadlock-avoidance can be formalized by the
following formula ∀M ∈ R(N σ ) : ∃tU ∈ T U : preU (tU ) ⊆M⇒∃tσ ∈ T σ : preσ (tσ ) ⊆M.

Now, we can define winningness for the local winning condition of bad places.

Definition 9 (Winning for bad places)
A strategy σ is winning for bad placesW = PB ⊆ P if it is deadlock-avoiding and no reach-
able marking in σ contains a place corresponding to a bad place, i.e., ∀M ∈ R(N σ ) :
(∃tU ∈ T U : preU (tU ) ⊆M⇒∃tσ ∈ T σ : preσ (tσ ) ⊆M)∧ (∀pbad ∈ PB : pbad < λ

σ [M]).

Similarly, we define winningness for the global winning condition of bad markings.

Definition 10 (Winning for bad markings)
A strategy σ is winning for bad markingsW =MB ⊆R(N ) if it is deadlock-avoiding and
no reachable marking in σ corresponds to a bad marking, i.e., ∀M ∈ R(N σ ) :
(∃tU ∈ T U : preU (tU ) ⊆M⇒∃tσ ∈ T σ : preσ (tσ ) ⊆M)∧ (∀Mbad ∈MB : Mbad , λ

σ [M]).

For liveness winning conditions, we need so-called covering firing sequences, which
are based on so-called maximal plays: A play π = (N π,λπ) is a subprocess of a strategy
σ = (N σ ,λσ ) such that ∀p ∈ Pπ : |post(p)| ≤ 1. A play is maximal when, for each set of
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env

env1 env2’

robot1

env2

robot2 robot2’robot1’

env1’

ignored1repaired1 ignored2repaired2 ignored1’

repaired1’

ignored2’repaired2’

1 robot check 2 robots check

⊥ ⊥′ ⊥′′ ⊥′′′

1 robot 2 robots

ignore1

repair1

ignore2repair2 ignore1’

repair1’

ignore2’repair2’

wrong ignore1
wrong ignore2

wrong repair wrong ignore3

Figure 2.4.: The unfolding and the winning strategy for the exemplary Petri game in
Figure 2.3 are depicted. The unfolding includes the grayed-out parts, whereas the win-
ning strategy does not include the grayed-out parts. Copies of places and transitions
due to splits are primed. The winning strategy realizes the following behavior: When
the product requires repair by only one robot (cf. left-hand side of the figure), the first
robot repairs the product while the second robot ignores the product. When the prod-
uct requires repair by two robots (cf. right-hand side of the figure), both robots repair
it. The strategy fulfills justified refusal because it only removes outgoing transitions of
system places. By doing this, transitions with the environment player participating be-
come unreachable and are removed. The strategy is deterministic because every system
place has at most one outgoing transition. The strategy is deadlock-avoiding because
no other enabled transitions exist. Because the strategy further avoids the bad places⊥,
it is winning.

pairwise concurrent places C in N π such that C = preσ (t) for some transition t ∈ T σ ,
a place p ∈ C and a transition t′ ∈ T π exist such that t′ ∈ postπ(p). A covering firing
sequence of a play π is a sequence of subsequent markings and fired transitions such
that each place and transition of π occurs.

Now, we can define winningness for the global winning condition of good markings.

Definition 11 (Winning for good markings)
A strategy σ is winning for good markingsW =MG ⊆R(N ) if, for all complete firing se-
quences t0t1t2 . . . of all maximal plays π of σ with M0 = Inπ and M0[t0⟩M1[t1⟩M2[t2⟩ . . .,
there exists i ≥ 0 such that λπ[Mi] ∈MG.

In a similar manner, we define winningness for the global winning condition of good
and bad markings.
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Definition 12 (Winning for good and bad markings)
A strategy σ is winning for good and bad markingsW = (MG,MB) ∈ P (R(N ))×P (R(N ))
if, for all complete firing sequences t0t1t2 . . . of all maximal plays π of σ with M0 = Inπ

and M0[t0⟩M1[t1⟩M2[t2⟩ . . ., there exists i ≥ 0 such that

λπ[Mi] ∈MG ∧∀0 ≤ j < i : λπ[Mj ] <MB.

Note that terminating in a final marking as another possible winning condition is
different from reaching a good marking because players are not required to terminate
in a good marking. The corresponding unfolding and winning strategy for the Petri
game with bad places from Figure 2.3 are given in Figure 2.4. The winning strategy has
been published in [HM19b].

Example 2.2.1. The example Petri net from Figure 2.1 can be turned into a Petri game
by defining place p3 as the only system place, by defining all other places as environ-
ment places, and by defining the places p6 and p8 as bad places. A winning strategy is
obtained from the unfolding depicted in Figure 2.2 by only choosing transition t with
λ(t) = t3 at all system places p that satisfy t1 ∈ λ(pre(p)) and only choosing transition t
with λ(t) = t5 at all system places p that satisfy t2 ∈ λ(pre(p)). Thereby, transition t1 is
immediately answered by transition t3, and transition t2 is immediately answered by
transition t5. Not chosen transitions from system places and all thereby unreachable
places and transitions are removed. The bad places are avoided because the system
player in system place p3 never chooses transition t4 and, for the two pairs of places
from the preconditions of transitions t6 and t7, at least one place of each pair does not
contain a token for every reachable marking. △

We define the restrictions on the number of system players and environment players
used in the decidability results for Petri games. A Petri game has a bounded number of
players if and only if it is played on a bounded Petri net, i.e., the number of tokens in
every place of every reachable marking of the Petri net is not larger than a bound k.
This translates to a bounded number of system (environment) players if the number of
tokens in all system (environment) places is less or equal to a bound k for all reachable
markings in the underlying Petri net. Notice that players can spawn and terminate
during the play of a Petri game. Therefore, the same token can represent a new player
for each iteration of a loop in a Petri game. The number of players existing at the same
time in the Petri game is still bounded in this case. A Petri game has exactly (at most) a
certain fixed number of system (environment) players, e.g., one, if the sum of tokens in all
system (environment) places is exactly (at most) this number, e.g., one, for all reachable
markings of the underlying Petri net.

The existence of a winning strategy for the system players in Petri games with a
bounded number of system players, one environment player, and bad places as lo-
cal winning condition is EXPTIME-complete [FO17]. The existence of a winning
strategy for the system players in Petri games with a bounded number of environ-
ment players, one system player, and bad markings as global winning condition is
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EXPTIME-complete [FG17]. In Chapter 3, we show that the existence of a winning
strategy for the system players in Petri games with a bounded number of system play-
ers, at most one environment player, and bad markings as global winning condition
is decidable [FGHO22; FGHO21]. Due to the formal connection [BFH19a; BFH19b;
Beu19] between Petri games and control games [GGMW13] based on asynchronous au-
tomata [Zie87] (cf. Section 1.7), it is possible to transfer decidability results in acyclic
communication architectures [GGMW13], which were originally obtained for control
games, to Petri games.

2.3. Different Formalisms

We distinguish Petri games from formalisms concerned with the synthesis of Petri nets
or with games played on Petri nets. In Section 1.7, we present related work con-
cerning synthesis in general and control games [GGMW13] based on asynchronous au-
tomata [Zie87] specifically.

For a given behavioral description of a concurrent system, the Petri net synthesis prob-
lem transforms it into a structural description [ER90; DR96; BBD15]. The given be-
havioral description can be transition systems, formal languages, or execution traces.
The obtained structural description can be Petri nets in all their flavors, including Petri
nets with priorities and inhibitor arcs. The difference with Petri games is that only Petri
games define the synthesis problem between system players and environment players
on a given Petri net, i.e., there is no notion of system players and environment players
in the Petri net synthesis problem.

Synthesis and control can be defined based on Petri nets [RSVB03; BDLV05; ABP21].
There are extensions enabling us to include time with continuous variables, as in
hybrid automata [JLS16; JLS18], and to synthesize updates in software-defined net-
works [Did+21]. These approaches solve supervisory control problems or two-player
games on the state space created by Petri nets. Thus, they are different from Petri games
because Petri games can have multiple system players and multiple environment play-
ers with their individual causal memory.

For the synthesis of distributed systems, synchronous processes with shared-variable
communication have been a focus of research [PR89a]. Here, distributed games repre-
sent a general game model [MW03]. As mentioned in Chapter 1, this setting is unde-
cidable in general [PR90] but decidable for rings [KV01] specifically and generally for
all architectures where processes can be ordered according to their informedness, i.e.,
for architectures without so-called information forks [FS05]. These decidability results
have non-elementary complexity. Alternating-time temporal logics can also be inter-
preted over concurrent game structures [AHK02]. These approaches use a separate,
static specification of the relative informedness of processes in an architecture. This is
in contrast to Petri games, where the informedness of players is linked to causality.

Unfoldings have been utilized in order to connect Petri nets with event struc-
tures [NPW81; BF88; Eng91; Old91; MMS96] and to obtain algorithms for reachability.
These algorithms construct a finite canonical prefix of the generally infinite unfold-
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ing [Esp94; KKV03; EH08; Bon+14]. In Petri games, the unfolding is used to define
strategies, their plays, and to represent the causal memory of players. The canonical
prefixes are also of interest to define the bounded unfolding for bounded synthesis
of Petri games. This will be discussed in Chapter 5. Partial order reduction and true
concurrency have been studied thoroughly to speed up the model checking of finite
distributed systems [Hel99; Hel02; FG05; MP09].

High-level Petri nets can represent some Petri nets in a more concise way [GL81;
Jen92]. Here, components of the same form that occur multiple times, e.g., distributed
robots in a factory, can be represented by one expression in the high-level Petri net
instead of specifying each component separately. This approach has been extended to
the setting of Petri games in the form of high-level Petri games [GO19]. To find winning
strategies for the system players in high-level Petri games, the reduction with respect
to bad places as local winning condition, a bounded number of system players, and one
environment player [FO17] has been extended to solve high-level Petri games with the
same local winning condition and the same restriction on the number of system players
and environment players [GOW20].
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Decidability
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Chapter 3
Decidability of Bad Markings

In this part of the thesis, we contribute three results concerning the (un)decidability
of the synthesis of asynchronous distributed reactive systems with causal memory us-
ing Petri games. The general decidability or undecidability of this problem is a long-
standing open problem [Mus15; FO17]. Our results are concerned with going from lo-
cal winning conditions [MT01] to global winning conditions [CMT99]. Local winning
conditions are limited as they cannot express global properties like mutual exclusion.
In the first part of this chapter, we prove that it is decidable whether a winning strategy
for the system players exists in Petri games with a bounded number of system players,
at most one environment player, and bad markings as global winning condition.

In the second part of this chapter, we investigate whether global winning conditions
beyond bad markings are decidable. We report on two undecidability results to further
underline the significance of our decidability result: First, we prove that it is undecid-
able whether a winning strategy exists for the system players in Petri games with at
least two system players, one environment player, and good and bad markings as win-
ning condition. Notice that it is not required to terminate in a good marking. Good
markings can be used to simulate the undecidable synchronous setting of Pnueli and
Rosner [PR90] in the asynchronous setting of Petri games. This is realized by iden-
tifying executions as good if players deviate too much from the synchronous setting.
Second, we prove that it is undecidable whether a winning strategy exists for the sys-
tem players in Petri games with good markings and at least three players, out of which
one is an environment player and each of the other two can change between being a
system and an environment player. Here, bad markings from the first undecidability
result are encoded by repeatedly changing all players to environment players.

In this chapter, we prove that it is decidable whether a winning strategy for the sys-
tem players exists in Petri games with a bounded number of system players, at most one
environment player, and bad markings as global winning condition. This is achieved by
a reduction to a two-player game with complete observation and a Büchi winning con-
dition. In the two-player game, it is encoded that transitions with the environment
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player fire as late as possible, i.e., transitions without the environment player fire be-
fore transitions with it. This order of transitions encodes causal memory [FO17]. For
every sequential play of the two-player game, we need to check that no bad marking is
reached for the different orders of fired concurrent transitions. Here, the causal history
of system players can grow infinitely large. We show that the finite causal history of
each system player until its last transition with the environment player suffices to find
bad markings and that it can be stored finitely.

The general decidability or undecidability of the synthesis problem for asynchronous
distributed reactive systems with causal memory is a long-standing question [Mus15;
FO17]. With these results, we obtain a clear picture regarding decidability and unde-
cidability for global winning conditions.

From our decidability result and previous work [FG17], we obtain for bad markings
as global winning condition that the question of whether the system players have a
winning strategy is decidable for Petri games where the number of system players or
the number of environment players is at most one and the number of players of the
converse type can be bounded by some arbitrary number. For bad markings as global
winning condition, this leaves the case of Petri games with two or more system players
and two or more environment players open.

From our undecidability results, we obtain for good markings as global winning con-
dition that the question of whether the system players have a winning strategy is un-
decidable for Petri games with two or more system players and three or more envi-
ronment players. For good markings as global winning condition, this only leaves the
corner case of Petri games with at most one system player and at most two environment
players open.

Thus, for the synthesis of asynchronous distributed reactive systems with causal
memory, global safety winning conditions are decidable for a large class of such sys-
tems, whereas global liveness winning conditions are undecidable for almost all classes
of such systems. In the future, one could combine the decidability results for bad mark-
ings as global safety winning condition with local liveness specifications per player as
in Flow-LTL [FGHO19; FGHO20a].

The key contributions of this chapter are the following:

• We prove that deciding the existence of a winning strategy for the system play-
ers in Petri games with a bounded number of system players, one environment
player, and bad markings as global winning condition is decidable.

• We highlight that backward moves, which represent one key ingredient of the
reduction of the decidability result from above, solve an intricate problem in the
case of bad places as local winning conditions concerning the requirement of de-
terministic strategies for the system players.

• We encode Petri games with at most one environment player in Petri games with
one environment player. Thereby, we prove that the previous decidability result
can be extended to Petri games with a bounded number of system players, at most
one environment player, and bad markings as global winning condition.
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Figure 3.1.: Two power plants observe whether sunny, cloudy, or rainy weather is fore-
cast. Depending on the actual weather, renewable sources produce up to three units of
energy. The power plants produce one or two units of energy each and have to main-
tain the total energy production between four and five units of energy because all final
markings with different energy production are bad markings.

This chapter is structured as follows: In Section 3.1, we motivate the expressive power
of Petri games with bad markings as global winning condition. In Section 3.2, we define
Büchi games formally. In Section 3.3, we explain the ideas behind the reduction from
Petri games with a bounded number of system players, one environment player, and
bad markings as global winning condition to Büchi games. In Section 3.4, we make the
reduction from the previous section formal and prove its correctness. In Section 3.5, we
highlight that backward moves from the aforementioned reduction solve an intricate
problem in the reduction for Petri games with a bounded number of system players,
one environment player, and bad places as local winning condition. In Section 3.6, we
encode Petri games with at most one environment player as Petri games with exactly
one environment player to extend our decidability result to Petri games with a bounded
number of system players and at most one environment player, and bad markings as
global winning condition.

3.1. Motivating Example

With the example in Figure 3.1, we introduce the intuition behind causal memory and
behind bad markings as global winning condition for Petri games. There, we search for
a strategy for two power plants, which should react to the energy production of renew-
able sources based on the weather forecast. For example, after transition sunny fires
to indicate a sunny forecast, there are two system players in place p (each represent-
ing one power plant) and one environment player in place s. Causal memory implies
that both system players know what the weather forecast predicts. They do not know
whether the actual energy production is high (indicated by transition sh firing) or low
(indicated by transition sl firing) producing three or two units of energy in place w.
Nevertheless, each power plant has to decide whether to produce two or one unit of
energy in place k by transition ph or transition pl firing.

The two power plants should produce together with the renewable sources either
four or five units of energy. Therefore, any final marking resulting in a different energy

43



3. Decidability of Bad Markings

production is a bad marking, i.e., the set of bad markings is

{M : P → N | (M(k) +M(w) < 4∨M(k) +M(w) > 5) ∧

∃x ∈ {s′ , c′ , r ′} : (M(x) = 1∧∀y ∈ P \ {k,w,x} : M(y) = 0)},

where the second line ensures that the marking is final. As discussed in Section 2.2,
strategies for the system players are required to be deadlock-avoiding for safety winning
conditions. This implies for this Petri game that all system players always choose one
of their successors. The reasons for this are that there is no infinite behavior in the
example and that the system players do not have to react directly to a decision by the
environment player, i.e., transitions with an environment place in their precondition
do not have a system place in their precondition.

A winning strategy for the system players produces one unit of energy at both power
plants for a sunny forecast, two units of energy at one power plant and one unit of
energy at the other power plant for a cloudy forecast, and two units of energy at both
power plants for a rainy forecast. The specification is expressible with the local winning
condition of bad places by having transitions from each bad marking leading to a bad
place. This is only possible because the example has no infinite behavior. For Petri
games with infinite behavior and one environment player, the global winning condition
of bad markings can specify losing behavior between players without requiring their
synchronization which is impossible for local winning conditions.

3.2. Büchi Games

We introduce Büchi games on a finite game arena as representation of reactive synthesis
as a game [KV05]. A Büchi game has two players: Player 0 represents the system and
Player 1 represents the environment. Both players act on complete information about
the game arena and the play so far. To win, Player 0 has to ensure that an accepting
state is visited infinitely often. A winning strategy for Player 0 corresponds to a correct-
by-construction implementation of the encoded reactive synthesis question. Deciding
the existence of such a winning strategy can be performed in polynomial time in the
number of edges in the graph [CH12]. Formally, a Büchi game G = (V ,V0,V1, I ,E,F)
consists of the finite set of states V partitioned into the disjoint sets of states V0 of
Player 0 and of states V1 of Player 1, the initial state I ∈ V , the edge relation E ⊆ V ×V ,
and the set of accepting states F ⊆ V . We assume that all states in a Büchi game have
at least one outgoing edge. A play is a possibly infinite sequence of states which is
constructed by letting Player 0 choose the next state from the successors in E whenever
the game is in a state from V0 and by letting Player 1 choose otherwise. An initial play
is a play that starts from the initial state. A play is winning for Player 0 if it visits at
least one accepting state infinitely often. Otherwise, the play is winning for Player 1.
A strategy for Player 0 is a function f : V ˚ ·V0→ V that maps plays ending in states of
Player 0 to one possible successor according to E. A play conforms to a strategy f if all
successors of states in V0 are chosen in accordance with f . A strategy f is winning for
Player 0 if all initial plays that conform to f are winning for Player 0.
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3.3. Decidability in Petri Games with Bad Markings

We present a reduction from Petri games with a bounded number of system players, one
environment player, and bad markings to Büchi games. In the following, we give an
intuition for the main concepts of the reduction, before presenting the structure of the
Büchi game in the remainder of this section. More details can be found in Section 3.4
and a running example can be found in Figure 3.2.

Petri games use unfoldings, which can be of infinite size, to encode the causal mem-
ory of players. By contrast, Büchi games have two players with complete informa-
tion and a finite number of states. To overcome these differences when encoding Petri
games, states in the corresponding Büchi games consist of a representation of the cur-
rent marking and some additional information. Edges in the Büchi game mostly cor-
respond to a transition firing in the Petri game. We say that a transition fires in the
Büchi game when it fires in the encoded Petri game. Concurrency between transitions
in the Petri game is encoded by having most possible interleavings in the Büchi game.
Some interleavings are left out to encode causal memory of the players in Petri games:
Causal memory is simulated in Büchi games by transitions with an environment place
in their precondition firing as late as possible at mcuts [FO17]. An mcut is a situation
in the Petri game where all system players have progressed maximally, i.e., the envi-
ronment player can choose between all remaining possible transitions. Mcuts can only
be defined for Petri games with at most one environment player. States corresponding
to mcuts are the only states where Player 1 in the Büchi game makes decisions.

We make two additions: First, we add backward moves to detect bad markings and
nondeterministic decisions. Intuitively, backward moves allow us to rewind transi-
tions with only system players participating. They are realized by each system player
remembering its history until its last synchronization with the environment player. In
every state of the Büchi game, it is checked whether the backward moves of all system
players allow us to rewind the game in such a way that a bad marking is reached or a
nondeterministic decision is found.

Second, we add the NES-case to handle system players playing infinitely without syn-
chronizing with the environment player directly in the Büchi game. The abbreviation
NES stands for no more environment synchronization and is necessary when some sys-
tem players play infinitely but without synchronization with the environment player.
In [FO17], this case is called the type-2 case because the situation where each system
player either terminates or synchronizes with the environment player infinitely often
is implicitly called the type-1 case. In [FO17], the situation equivalent to the NES-case
in this chapter can be handled as a preprocessing step, because the local winning con-
dition of bad places is considered. This is impossible for the global winning condition
of bad markings, considered in this chapter. Throughout this chapter, the NES-case
can be ignored by adding the restriction that each system player either terminates or
synchronizes infinitely often with the environment player.

For the NES-case, every system player has a three-valued flag. As long as the system
player will terminate or will synchronize with the environment player in the future,
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the flag should be set to negative NES-status. When system players can play infinitely
without synchronizing with the environment player, they should set their flags to pos-
itive NES-status. When completing the NES-case, participating system players obtain
ended NES-status, which excludes them from the remaining Büchi game. A positive
NES-status triggers the NES-case. Here, the system players with positive NES-status
have to prove that they can play infinitely without synchronizing with the environment
player. Therefore, the usual order of all transitions without the environment player be-
ing possible until reaching an mcut is interrupted. Instead, only system players with
positive NES-status are considered until their proof of playing infinitely without the
environment player is successful. If the system players with positive NES-status make
a mistake in their proof, then Player 0 immediately loses the Büchi game. A successful
proof of playing infinitely without the environment player ends the NES-case, and the
participating system players obtain ended NES-status.

3.3.1. States and Initial State in the Büchi Game

Decision tuples represent players of the Petri game in states in the Büchi game. A
decision tuple for a player consists of an identifier, a position, a NES-status, a decision,
and a representation of the last mcut. The identifier uniquely determines the player. The
position gives the current place of the player. Negative NES-status is identified by false,
positive NES-status by true, and ended NES-status by end. System players with negative
NES-status claim that they will terminate or fire a transition with an environment place
in its precondition and are not part of the NES-case. In the NES-case, system players
go from positive NES-status to ended NES-status, as described previously.

The decision is either ⊤ or the set of allowed transitions by the player. For system
players, ⊤ indicates that a decision for a set of allowed transitions is missing and has to
be chosen. The representation of the last mcut encodes the last known position of the
environment player. There can be at most as many different such positions as there are
system players. Thus, a number suffices to identify the last known mcut. Let maxS be
the maximal number of system players in the Petri game which are visible at the same
time. The set of system decision tuples is DS = {(id,p,b,T ,K) | id,K ∈ {1, . . . ,maxS } ∧ p ∈
PS ∧ b ∈ {false, true,end} ∧ (T = ⊤∨ T ⊆ post(p))}, the set of environment decision tuples is
DE = {(0,p, false,post(p),0) | p ∈ PE}, and the set of all decision tuples is D =DS ∪DE .

Example 3.3.1. In Figure 3.2, a branch of the Büchi game for the Petri game in Fig-
ure 3.1 is shown. States with decision tuples with positive NES-status are omitted
because no infinite behavior occurs. The initial state v0 has one decision tuple for the
environment player in place forecast and empty information for the NES-case and the
backward moves. After Player 1 plays the edge for transition sunny firing, state v1
with three decision tuples is reached. The decision tuples for the two system players in
place p have ⊤ as decision. There are 16 combinations of decisions by the two system
players, out of which four are shown. The first system player always allows transi-
tion pl and the second system player allows no transition in state v2, only one of the
two transitions pl and ph in states v6 and v8, or both transitions in state v7. △
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({(0, forecast, false, {sunny,cloudy,rainy},0)},∅, []7)
v0 . . .

. . .

({(0, s, false, {sh, sl},0),
(1,p, false,⊤,1),

(2,p, false,⊤,1)},∅, []7)

v1
. . .

. . .

. . .
({(0, s, false, {sh, sl},0),

(1,p, false, {pl},1),
(2,p, false,∅,1)},∅, []7)

v2

({(0, s, false, {sh, sl},0), (1, k, false,∅,1),
(2,p, false,∅,1)},∅, [({(1,p, false, {pl},1)},

{(1, k, false,∅,1)})], []6)

v3

({(0, s′ , false,∅,0), (1, k, false,∅,1),
(2,p, false,∅,1), (3,w, false,∅,2),

(4,w, false,∅,2), (5,w, false,∅,2)},∅,
[({(1,p, false, {pl},1)}, {(1, k, false,∅,1)})], []6)

v5

({(0, s′ , false,∅,0), (1, k, false,∅,1), (2,p, false,∅,1), (3,w, false,∅,2),
(4,w, false,∅,2)},∅, [({(1,p, false, {pl},1)}, {(1, k, false,∅,1)})], []6)

v4

({(0, s, false, {sh, sl},0),
(1,p, false, {pl},1),

(2,p, false, {pl},1)},∅, []7)

v6

({(0, s, false, {sh, sl},0),
(1,p, false, {pl},1),

(2,p, false, {ph,pl},1)},∅, []7)

v7

({(0, s, false, {sh, sl},0),
(1,p, false, {pl},1),

(2,p, false, {ph},1)},∅, []7)

v8

({(0, s, false, {sh, sl},0),
(1, k, false,∅,1),

(2,p, false, {pl},1)},∅,
[({(1,p, false, {pl},1)},
{(1, k, false,∅,1)})], []6)

v9

({(0, s, false, {sh, sl},0),
(1,p, false, {pl},1),
(2, k, false,∅,1)},∅,

[({(2,p, false, {pl},1)},
{(2, k, false,∅,1)})], []6)

v10

({(0, s, false, {sh, sl},0),
(1, k, false,∅,1),

(2,p, false, {ph},1)},∅,
[({(1,p, false, {pl},1)},
{(1, k, false,∅,1)})], []6)

v11

({(0, s, false, {sh, sl},0),
(1,p, false, {pl},1),

(2, k, false,∅,1), (3, k, false,∅,1)},∅,
[({(2,p, false, {ph},1)},

{(2, k, false,∅,1), (3, k, false,∅,1)})], []6)

v12

({(0, s, false, {sh, sl},0), (1, k, false,∅,1), (2, k, false,∅,1)},
∅, [({(1,p, false, {pl},1)}, {(1, k, false,∅,1)})],

[({(2,p, false, {pl},1)}, {(2, k, false,∅,1)})], []5)

v13

({(0, s, false, {sh, sl},0), (1, k, false,∅,1), (2, k, false,∅,1),
(3, k, false,∅,1)},∅, [({(1,p, false, {pl},1)}, {(1, k, false,∅,1)})],
[({(2,p, false, {ph},1)}, {(2, k, false,∅,1), (3, k, false,∅,1)})], []5)

v14

({(0, s′ , false,∅,0),
(1, k, false,∅,1),
(2, k, false,∅,1),
(3,w, false,∅,2),
(4,w, false,∅,2),
(5,w, false,∅,2)},
∅,⟨BM as in v13⟩)

v15

({(0, s′ , false,∅,0),
(1, k, false,∅,1),
(2, k, false,∅,1),
(3,w, false,∅,2),
(4,w, false,∅,2)},
∅,⟨BM as in v13⟩)

v16

({((0, s′ , false,∅,0), (1, k, false,∅,1),
(2, k, false,∅,1), (3, k, false,∅,1),

(4,w, false,∅,2), (5,w, false,∅,2)},
∅,⟨BM as in v14⟩)

v17

({(0, s′ , false,∅,0), (1, k, false,∅,1),
(2, k, false,∅,1), (3, k, false,∅,1),
(4,w, false,∅,2), (5,w, false,∅,2),

(6,w, false,∅,2)},
∅,⟨BM as in v14⟩)

v18

FN

FB

Figure 3.2.: A part of the Büchi game for the Petri game in Figure 3.1 is given. States
of Player 0 are gray, states of Player 1 white. Most states are labeled for identification.
Double squares are accepting states. Changes from previous states are blue for decision
tuples and green for backward moves.

Almost all states in the Büchi game contain decision tuples and additional informa-
tion for the NES-case and for backward moves. The states in the Büchi game are defined
as V = VBN ∪D × (PS → {0, . . . , k}) × (B˚)maxS with VBN = {FB,FN }. Finite winning and
losing behavior in the Petri game is represented in the Büchi game by the two unique
states FB and FN in VBN . A decision marking is a set of decision tuples corresponding to
a reachable marking in the Petri game such that each identifier occurs at most once. D
is the set of all such decision markings. The next element stores the underlying multi-
set over system places of the decision marking from the start of the NES-case restricted
to system players with positive NES-status. In the NES-case, repeating this multiset
proves that the system players with positive NES-status can play infinitely without fir-
ing a transition with an environment place in its precondition. This element is the
empty multiset if not in the NES-case, i.e., no system player has positive NES-status.
More details can be found in Section 3.3.5. B : P (DS ) × P (DS ) is the set of backward
moves to detect states corresponding to a bad marking or a nondeterministic decision.
The remaining elements are maxS sequences of backward moves. Each identifier in a
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e1
s1 q1

e2
s2 q2

e3 s3
q3

t1 t2

t3 t4

C1

C2

C3

Figure 3.3.: A Petri game is depicted which is equal to its unfolding. The mcuts of the
unfolding of this Petri game are C1 = {e1, s1,q2}, C2 = {e2, s3,q2}, and C3 = {e3, s3,q3}.

decision tuple maps to the position of a sequence of backward moves. More details can
be found in Section 3.3.4.

The initial state in the Büchi game has as many decision tuples with unique identifier,
NES-status false, ⊤ as decision, and last mcut 1 as there are tokens in system places
in In of the Petri game. Additionally, it has one decision tuple with identifier 0, NES-
status false, the postcondition of pE as decision, and last mcut 0 for the one environment
place pE with one token in In. The other parts are the empty multiset or the empty
sequence of backward moves.

3.3.2. States of Player 0, States of Player 1, and Accepting States

Causal memory in Petri games is encoded in Büchi games by letting Player 0 fix the de-
cisions of allowed transitions for system players as early as possible and having Player 1
fire transitions with an environment place in their precondition as late as possible at
mcuts. Formally, cuts are markings in unfoldings, and an mcut is a cut where all en-
abled transitions have an environment place in their precondition, i.e., all system play-
ers progressed maximally on their own. With Figure 3.3, we illustrate mcuts. The
initial cut {e1, s1,q1} is not an mcut as the enabled transition t2 has only the system
place q1 in its precondition. After t2 fires, the cut C1 = {e1, s1,q2} is an mcut as the only
enabled transition t1 has environment place e1 in its precondition. Analog arguments
lead to {e2, s2,q2} not being an mcut and C2 = {e2, s3,q2} being an mcut. The final cut
C3 = {e3, s3,q3} is an mcut as there are no enabled transitions.

A decision marking D in the states in the Büchi game corresponds to an mcut when
no ⊤ and no positive NES-status are part of D and every transition with only system
places in its precondition is not enabled or not allowed by a participating system player
in D, i.e., D corresponds to an mcut if and only if (∀D ∈ D : dec(D) , ⊤∧ t2(D) , true)∧
(∀t ∈ T : pre(t) ⊈M (Dpre(t))∨pre(t)∩PE , ∅). A state in the Büchi game can correspond
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to an mcut although the cut in the unfolding of the Petri game is not an mcut as the
decisions of the system players in the Büchi game can disallow transitions. States of
Player 1 are FB, FN , and states corresponding to an mcut. States of Player 0 are all other
states. Accepting states are FB and states corresponding to an mcut.

Example 3.3.2. The Petri game from Figure 3.1 has {forecast}, {{e,k : i} | e ∈ {s, c, r} ∧ 2 ≤
i ≤ 4}, and {{s′ ,w : ws′ , k : i}, {c′ ,w : wc′ , k : i}, {r ′ ,w : wr ′ , k : i} | 2 ≤ ws′ ≤ 3 ∧ 1 ≤ wc′ ≤
2∧ 0 ≤ wr ′ ≤ 1∧ 2 ≤ i ≤ 4} as mcuts, i.e., the initial cut, cuts where the power plants
produced energy while the energy production by renewable sources was not selected,
and all final, reachable cuts. In the Büchi game in Figure 3.2, the eight states v0, v3, and
v13 to v18 of Player 1 have decision markings that correspond to an mcut. For states v0,
v13, and v14, all enabled transitions have an environment place in their precondition.
For states v15 to v18, each decision marking corresponds to a final cut. The decision
marking of state v3 corresponds to an mcut as the second system player in p decided to
not allow any of its outgoing transitions. △

3.3.3. Edges in the Büchi Game

Edges in the Büchi game mostly connect states V = (D,MT 2,BM1, . . . ,BMmaxS
) and

V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS
) where D is a decision marking, MT 2 is a marking, and

BM1, . . . ,BMmaxS
are as many sequences of backward moves as the maximum number

maxS of system players in the Petri game. There are five sets of edges TOP, SYS, NES,
MCUT, and STOP. In the following description of the five sets of edges, not mentioned
elements of the connected states stay the same. The formal definitions can be found in
Section 3.4.8. How backward moves identify states corresponding to a bad marking or
a nondeterministic decision and how some edges collect and remove them is outlined
in Section 3.3.4. Edges for the NES-case are explained in Section 3.3.5.

(1) Edges from TOP occur from states where at least one decision tuple in D has
⊤ as decision. To obtain D′, Player 0 replaces each ⊤ in the decision tuples of
system players with a set of allowed transitions and can change the NES-status of
decision tuples for system players from false to true. The underlying marking of
decision tuples with positive NES-status true is stored in M ′T 2 when a NES-status
changes.

(2) Edges from SYS occur from states where all decision tuples in D have negative
NES-status and at least one transition with only system places in its precondition
is enabled and allowed by the decision tuples in D. To get D′, Player 0 simulates
one such transition t firing by removing decision tuples Dpre for the precondi-
tion of t and adding decision tuples Dpost for the postcondition of t. For Dpost,
the last mcut of all participating players is the maximum of their previous values
and Player 0 picks the decisions and can change the NES-status as in (1). Mark-
ing M ′T 2 is obtained as in (1). Backward move (Dpre,Dpost) is added to BMid of all
participating players with identifier id to get BM′id.
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(3) Edges from NES are the NES-case and occur from states where a decision tuple
in D has positive NES-status. To obtain D′, Player 0 fires a transition as in (2)
but only from decision tuples with positive NES-status resulting in new decision
tuples with positive NES-status. This includes the storage of backward moves.
The NES-case is successful if the marking MT 2 is reached again and all players
in it moved. Then, decision tuples with NES-status true are set to NES-status
end and M ′T 2 becomes the empty marking. Otherwise, the marking MT 2 is not
changed. Decision tuples with ended NES-status never move.

(4) Edges from MCUT occur from states where all enabled and allowed transitions
have an environment place in their precondition. To get D′, Player 1 fires one such
transition. Decision tuples for the precondition of the transition are removed,
decision tuples for the postcondition are added. Added decision tuples for system
players have negative NES-status, ⊤ as decision, an empty sequence of backward
moves, and the highest last mcut. As backward moves store the past of system
players until their last mcut, backward moves for system players that are part of
the transition are removed. When backward moves become never applicable by
firing the transition, they are removed from the successor state.

(5) Edges from STOP occur from states with no transition enabled or corresponding
to losing behavior. They replace other outgoing edges for losing behavior. States
corresponding to termination lead to the winning state FB. States corresponding
to a deadlock but not termination lead to the losing state FN . If backward moves
detect a bad marking or a nondeterministic decision, the state leads to FN . In the
NES-case, a synchronization of decision tuples with positive and negative NES-
status or a deadlock or vanishing of decision tuples with positive NES-status leads
to FN . Decision tuples with positive NES-status can vanish when transitions with
empty postcondition fire. Without this case, a state without decision tuples with
positive NES-status but with a marking to repeat in the NES-case can exist.

Example 3.3.3. In Figure 3.2, outgoing edges of state v1 are in TOP. Outgoing edges
of states v2, v6, and v8 to v12 are in SYS. Outgoing edges of states v0, v3, v13, and v14
are in MCUT. Other edges are in STOP. No edges in NES exist in the depicted part.
Outgoing edges of states v4 and v5 represent the deadlock of the second system player
in p disallowing both outgoing transitions while only they are enabled. The outgoing
edge of state v7 encodes a nondeterministic decision of the second system player, which
allows two enabled transitions. Such a decision is only useful if another player ensures
that at most one of the transitions becomes enabled. Outgoing edges of states v15 to v17
represent termination. The outgoing edge of state v18 represents a bad marking for six
produced units of energy. △

If, as in our construction, (I) Player 0 immediately resolves ⊤ to the decisions of sys-
tem players, (II) Player 0 decides which transitions with only system places in their
precondition fire following the decisions of system players, and (III) Player 1 decides
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e1 s1
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Figure 3.4.: A Petri game is depicted to illustrate backward moves and the NES-case. In
this Petri game, all reachable markings containing both s2 and s7 are bad markings.

as late as possible at mcuts which transitions with an environment place in their pre-
condition fire following the decisions of system players, then the corresponding Büchi
games encode causal memory [FO17]. Allowed transitions with only system places in
their precondition fire in an order determined by Player 0 until an mcut is reached.
There, Player 1 decides for the environment player which allowed transition to fire.
Afterward, this process repeats itself.

3.3.4. Backward Moves in the Büchi Game

In the Büchi game, Player 0 can avoid markings by picking the firing order for transi-
tions with only system places in their precondition. In Figure 3.4, the two system play-
ers in s2 and s3 are reached after t1 fires. One can fire t3, the other t4. This results in the
firing sequences t1t3t4 and t1t4t3. If s2 and s7 are in a bad marking, then Player 0 can de-
cide for edges corresponding to the first firing sequence and the bad marking is missed.
Notice that this cannot occur with bad places as local winning condition. We introduce
backward moves to avoid such problems. A backward move is a pair of decision mark-
ings. It stores the change to the decision tuples by edges from SYS and NES. For every
such edge from V = (D,MT 2,BM1, . . . ,BMmaxS

) to V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS
), we

obtain Dpre and Dpost with D′ = (D \Dpre)∪Dpost and add backward move (Dpre,Dpost) to
the end of BMid of all participating players with identifier id.

For every state V ′ in the Büchi game, it is checked with backward moves if V ′ is losing
due to a bad marking or a nondeterministic decision. The decision marking D′ and
all decision markings that are reachable via backward moves are checked. Therefore,
it is checked whether backward moves (Dpre,Dpost) are applicable to D′, i.e., whether
Dpost ⊆ D′ and (Dpre,Dpost) is the last backward move of all participating players. In this
case, the backward move is removed from the end of the sequences of backward moves
of all participating players and D = (D′ \ Dpost) ∪ Dpre results from the application of
the backward move. The underlying marking of D is checked to not be a bad marking
and D is checked to have only deterministic decisions. This is repeated recursively
from D for all applicable backward moves until no backward move is applicable. If
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3. Decidability of Bad Markings

a decision marking corresponding to a bad marking or a nondeterministic decision is
detected, the current state V ′ only has an edge to FN .

The identifier of players in decision tuples is used to map the decision tuple to the
corresponding sequence of backward moves, i.e., for each system player in the Petri
game, the Büchi game collects a sequence of backward moves. Edges from MCUT
empty the sequence of backward moves of decision tuples when their system place
is in the precondition of the fired transition. This removal can make backward moves
not applicable because some participating players do not have the backward move as
their last one anymore.

The sequence of backward moves can grow infinitely long when system players play
infinitely without the environment player and without the NES-case. This would re-
sult in a Büchi game with infinitely many states. To avoid this, the Büchi game becomes
losing for Player 0 when it plays in a way that corresponds to a strategy with a variant
of useless repetitions [Gim17] for the system players in the Petri game. Our variant of
useless repetitions identifies the repetition of a loop consisting only of transitions with-
out the environment player in their precondition such that the last mcut of the system
players does not change, i.e., the system players repeat a loop in which they do not ex-
change any new information about the environment player. Thus, winning strategies
have to avoid playing a useless repetition more than once between the successor of an
mcut and the next mcut. This can be achieved either by continuing to the next mcut
or by setting some players to positive NES-status and completing the NES-case, i.e.,
playing infinitely without the environment player.

Example 3.3.4. In Figure 3.2, we include the collection of backward moves. State v13
represents each power plant producing one unit of energy after a sunny weather fore-
cast. It is reached from state v6 either via state v9 or v10 depending on which power
plant produces energy first. State v13 has a backward move for each power plant:
({(1,p, false, {pl},1)}, {(1, k, false,∅,1)}) and ({(2,p, false, {pl},1)}, {(2, k, false,∅,1)}). Because
the three markings {s,k : 2} (underlying marking of v13), {s,p,k} (applying one back-
ward move), and {s,p : 2} (applying both backward moves) are no bad markings and
all decisions are deterministic, state v13 continues with edges for the transitions of the
environment place s instead of having an edge to FN . △

3.3.5. Encoding the NES-Case Directly in the Büchi Game

We handle the NES-case where system players play infinitely without firing a transition
with an environment place in its precondition directly in the Büchi game as players in
the NES-case might be in a bad marking. This is in contrast to the reduction for bad
places [FO17].

In the Büchi game, Player 0 has to reach an accepting state infinitely often in order
to win the game. Only FB and states corresponding to an mcut are accepting states.
Transitions with only system places in their precondition are fired between successors
of mcuts and the following mcut. Thus, if the system players can fire transitions with
only system places in their precondition infinitely often, eventually a useless repeti-
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tion is reached which is losing. To overcome this, we give Player 0 the possibility to
change the NES-status for decision tuples of system players from negative to positive.
The underlying marking of this change is stored and afterward only transitions from
decision tuples with positive NES-status can be fired. Firing these transitions main-
tains the positive NES-status for new decision tuples. Instead of firing infinitely many
transitions, the NES-case is ended if the stored marking is reached again and all play-
ers in the marking have moved. In this case, the NES-status of all decision tuples with
positive NES-status is changed to ended NES-status and the Büchi game continues with
the remaining decision tuples with negative NES-status. The requirement to move is
necessary as otherwise too many players could get ended NES-status. Decision tuples
with ended NES-status are maintained as backward moves can be applicable to them,
i.e., backward moves store the NES-status and allow us to reverse it in search for a bad
marking. We can thus ensure that continuing with the case where all decision tuples
have negative NES-status avoids bad markings that span the NES-case.

Player 0 has to disclose decision tuples with positive NES-status if system players fire
infinitely many transitions with only system places in their precondition. Otherwise,
they lose the game as no accepting state is reached infinitely often. It is losing if sys-
tem players with positive and negative NES-status synchronize, if players with positive
NES-status deadlock, if one such player is not moved and the marking from the start of
the NES-case is repeated, if all such players vanish, or if another marking is repeated.
Notice that at most one NES-case is necessary per branch in the strategy tree of the
Büchi game. For a safety winning condition, possible NES-cases after the first success-
ful one can simply terminate. One disclosure is necessary when the environment player
can terminate. Otherwise, the system is responsible when the environment player ter-
minates and players with possible positive NES-status deadlock.

Example 3.3.5. A Petri game with necessary NES-case in the encoding Büchi game is
shown in Figure 3.4. After Player 0 allows transition t2 and Player 1 fires it, a state
is reached where the decision tuples for s4 and s5 can be set to positive NES-status by
Player 0. After transitions t5, t6, and t7 fire, the marking {s4, s5} is repeated and the
NES-case is successful, proving that t5, t6, and t7 can fire infinitely often. No more
transitions can be fired and the winning state FB is the sole successor state because
the environment player terminated. Player 0 can also set the decision tuples for {s8, s9},
{s4, s9}, or {s5, s8} to positive NES-status and show a repetition of the respective marking.
To win, Player 0 avoids deadlocks and sets one of the four pairs {s4, s5}, {s8, s9}, {s4, s9},
or {s5, s8} to positive NES-status. Otherwise, they play infinitely without reaching an
accepting state. △

3.3.6. Decidability Result

We analyze the traits of the constructed Büchi game. Full proofs are in Section 3.4.9.

Lemma 1 (From Büchi game strategies to Petri game strategies). If Player 0 has a win-
ning strategy in the Büchi game, then there exists a winning strategy for the system players
in the Petri game.
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Proof Sketch. From the tree Tf representing the winning strategy f for Player 0 in the
Büchi game, we inductively build a winning strategy σ for the system players in the
Petri game. Each cut in σ is associated with a node in Tf , transitions are added follow-
ing the edges in Tf , and the associated cut is updated if needed. This strategy σ for the
system players in the Petri game is winning as it visits equivalent cuts to the reachable
states in f .

Lemma 2 (From Petri game strategies to Büchi game strategies). If the system players
have a winning strategy in the Petri game, then there exists a winning strategy for Player 0
in the Büchi game.

Proof Sketch. We skip unnecessary NES-cases and useless repetitions in the winning
strategy σ for the system players in the Petri game because the Büchi game requires
minimal strategies. We replace ⊤ based on the postcondition of system places, disclose
necessary NES-cases, fire enabled transitions with only system places in their precon-
dition in an arbitrary but fixed order between states after an mcut and the next mcut,
and add all options at mcuts. This strategy for Player 0 in the Büchi game is winning
as it visits equivalent states to the reachable cuts in σ .

Theorem 3 (Game solving). For Petri games with a bounded number of system players, one
environment player, and bad markings, the question of whether the system players have a
winning strategy is decidable in 2-EXPTIME.

Proof Sketch. The complexity is based on the double exponential number of states in
the Büchi game and polynomial solving of Büchi games. There are exponentially many
states in the size of the Petri game to represent decision tuples and each of these states
has to store sequences of backward moves of at most exponential length in the size of
the Petri game.

Remark 3.3.1. In the presented construction, Player 0 in the Büchi game decides both the
decisions of the system players in the Petri game and the order in which concurrent transi-
tions with only system places in their precondition are fired between states after an mcut and
states corresponding to the next mcut. We call the fact that Player 0 determines the order
of these concurrent transitions the system scheduling. The natural question arises what
happens if Player 1 determines this order while Player 0 still decides the decisions of the
system player and whether we can thereby leave out backward moves from our construction.
We call this idea the environment scheduling. The environment scheduling without back-
ward moves has been pursued in some preliminary work [Spr15] on bad markings as global
winning condition.

We give a counterexample to the environment scheduling without backward moves being a
suitable replacement of the system scheduling and backward moves. This somewhat surpris-
ing result is caused by allowing Player 0 to make different decisions for the system players in
the Petri game depending on which scheduling of concurrent transitions is chosen by Player 1
without the possibility to roll fired transitions back via backward moves. We consider the ex-
tract of the Petri game in Figure 3.5. It consists of two system players and has the three
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Figure 3.5.: A simple extract of a Petri game is depicted. It consists of two system play-
ers that can each make a decision between two transitions after firing one transition.
All markings of the whole Petri game containing one of the following three pairs of
places {s1,p3}, {s3,p1}, and {s4,p4} are bad markings.

bad markings {s1,p3}, {s3,p1}, and {s4,p4} in this extract. The third bad marking {s4,p4}
requires that the two system players not both allow transition t3 and transition r3, which
would lead to this bad marking. When the two system players not both allow transition t3
and transition r3, the two system players cannot always avoid the one of the other two bad
markings. When allowing transition r2, firing transitions r1 and r2 before the system player
in place s1 moves leads to the bad marking {s1,p3}. Analogously, when allowing transition t2,
firing transitions t1 and t2 before the system player in place p1 moves leads to the bad mark-
ing {s3,p1}. Therefore, the system players cannot win a Petri game where the extract of the
Petri game in Figure 3.5 is reachable.

In Figure 3.6, we give a visualization of the, by Player 0 chosen, decisions of the system
players in answer to the scheduling decisions by Player 1 for the environment scheduling. The
vertices of the tree symbolize the decisions of the system players from Figure 3.5. Initially,
the one system player in place s1 allows transition t1 and the other system player in place p1
allows transition r1. After the environment scheduling decided between firing transition t1 or
transition r1 as the only two enabled and allowed transitions, the moved system player makes
its next decision. As soon as one of the players moves, it becomes acceptable for this player to
allow either transition t3 or transition r3. When the system player from places starting with s
is moved first, then it decides for transition t3 (cf. upper branch of Figure 3.6). When it is
moved later on, then it decides for transition t2 (cf. lower branch of Figure 3.6). An analog
statement holds for the system player from places starting with r and transitions r3 and t2.

One can clearly see that a bad marking is never reached in Figure 3.6, which shows that
the environment scheduling without backward moves determines the wrong winner for the
extract of a Petri game shown in Figure 3.5. Only when using backward moves irrespective
of whether the system scheduling or the environment scheduling is used, we can determine
that no winning strategy can exist for the extract of a Petri game shown in Figure 3.5.
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Figure 3.6.: A tree is depicted that has the decisions of the system players from Fig-
ure 3.5 as vertices in answer to the fired transitions chosen by the environment schedul-
ing. The fired transitions are symbolized by the edges of the tree.

3.4. Formal Details

We give the formal reduction from Petri games with a bounded number of system play-
ers, one environment player, and bad markings to Büchi games. Let maxS be the maxi-
mal number of system players visible at the same time in the Petri game.

3.4.1. Decision Tuples

A decision tuple for a player consists of an identifier, a position, a NES-status, a decision,
and a representation of the last mcut. It has type {1, . . . ,maxS} × PS × {false, true,end} ×
(P (T )∪ {⊤}) × {1, . . . ,maxS } for system places and type {0} × PE × {false} × P (T ) × {0} for
environment places.

Definition 13 (Decision tuples)
The set DS of system decision tuples is defined as DS = {(id,p,b,T ,K) | id ∈ {1, . . . ,maxS } ∧
p ∈ PS ∧ b ∈ {false, true,end} ∧ (T ⊆ post(p)∨ T = ⊤)∧K ∈ {1, . . . ,maxS}}. The set DE of
environment decision tuples is defined as DE = {(0,p, false,post(p),0) | p ∈ PE}. The set DS

of decision tuples is defined as D =DS ∪DE .

We define the following functions to retrieve the respective elements of a decision
tuple D: For D = (id,p,b,T ,K), id obtains the first element representing the identifier,
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i.e., id(D) = id, pl obtains the second element representing the place, i.e., pl(D) = p, t2
the third element representing the NES-status, i.e., t2(D) = b, dec the fourth element
representing the decision, i.e., dec(D) = T , and lmc the fifth element representing the
last mcut, i.e., lmc(D) = K .

3.4.2. Enabledness of Transitions from Decision Markings

We use decision markings as subset of the set of decision tuples as representation of
the marking of the Petri game. Thus, we are only interested in decision markings
that correspond to a reachable marking in the Petri game and where each identifier
of players occurs at most once. We define the underlying marking M (D) of a deci-
sion marking D as M (D)(p) = |{D ∈ D | pl(D) = p}| for all places p ∈ P . We stipulate
that each decision marking D corresponds to a (k-bounded) Petri game G, i.e., M (D)
is a reachable marking in the Petri game (∃M ∈ R(N ) : M (D) = M). Therefore, each
place occurs at most k times in M (D) (∀p ∈ P : M (D)(p) ≤ k). Formally, D is of type
(({1, . . . ,maxS } × PS × {false, true,end} × (P (T ) ∪ {⊤}) × {1, . . . ,maxS }) → {0, . . . , k}) ∪ (({0} ×
PE × {false} ×P (T )× {0})→ {0,1}).

Definition 14 (Decision markings)
The set D of decision markings corresponding to reachable markings in G and with unique
identifiers of players is defined as

D = {D ⊆ D | ∃M ∈ R(N ) :M (D) = M ∧∀i ∈ {1, . . . ,maxS} : |{D ∈ D | id(D) = i}| ≤ 1}.

We define the enabledness of a transition t from a decision marking D. We first re-
move decision tuples from D that are not in the precondition of t, have ⊤ as their
decision, disallow t, or have ended NES-status. Formally, we introduce the decision
marking Dpre(t) to retain only decision tuples that represent a place in the precondition
of t and that allow t as

Dpre(t) = {(id,p,b,T ,K) ∈ D | (id,p,b,T ,K) ∈ D∧ t ∈ T ∧ p ∈ pre(t)∧ b , end}.

Now, we can check the enabledness of a transition t from a decision marking D by
pre(t) ⊆ M (Dpre(t)). We also define the decision marking Dt2 to retain only decision
tuples with positive NES-status as

Dt2(id,p,b,T ,K) = {(id,p,b,T ,K) ∈ D | (id,p,b,T ,K) ∈ D∧ b = true}.

For the enabledness of a transition in the NES-case, we introduce the decision mark-
ing Dpre(t)∧t2 to retain only decision tuples with positive NES-status that represent a
place in the precondition of t and that allow t as Dpre(t)∧t2 = Dpre(t) ∩Dt2.

3.4.3. Decision Markings corresponding to Mcuts

We call a decision marking D corresponding to an mcut when no⊤ exists in D, every tran-
sition with only system places in its precondition is either not enabled or not allowed
by a participating system player in D, and no positive NES-status exists in D.
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Definition 15 (Decision markings corresponding to an mcut)
A decision marking D corresponds to an mcut if and only if
(∀D ∈ D : dec(D) ,⊤∧ t2(D) , true)∧∀t ∈ T : pre(t) ⊈M (Dpre(t))∨ pre(t)∩PE , ∅.

This definition can be expressed in a simpler way than in the original paper on Petri
games [FO17] because the NES-case is handled directly in the Büchi game.

3.4.4. Backward Moves

We define backward moves B as pairs of decision markings. Backward moves can be
based on transitions firing including at the start and at the end of the NES-case.

Definition 16 (Backward moves for transitions firing)
The set BT of backward moves for transitions firing is defined as

BT = {(D,D′) ∈ P (DS )×P (DS ) | (∃t ∈ T :M (D) = pre(t)∧M (D′) = post(t)) ∧

(∀D ∈ D : t ∈ dec(D))∧ (∀D ∈ D∪D′ : dec(D) ,⊤) ∧

(((∀D ∈ D : t2(D) = false)∧ (∀D ∈ D′ : t2(D) = false∨ t2(D) = true)) ∨

((∀D ∈ D : t2(D) = true)∧ ((∀D ∈ D′ : t2(D) = true)∨ (∀D ∈ D′ : t2(D) = end))))}.

Each backward move has to be based on a transition t. Each decision tuple of a back-
ward move does not have ⊤ as its decision. The decision tuples before the transition
have to allow the transition. All decision tuples on the left side of a backward move
can have NES-status false and all decision tuples on the right side have NES-status false
or true. Alternatively, all decision tuples on the left side of a backward move can have
NES-status true and all decision tuples on the right side have NES-status true or end.

Definition 17 (Backward moves for the start and the end of the NES-case)
The set BT 2 of backward moves for the start and the end of the NES-case is defined as

BT 2 = {(D,D′) ∈ P (DS )×P (DS ) |

((∀D ∈ D : t2(D) = false)∧ (∀D ∈ D′ : t2(D) = true) ∧

(∀id ∈ {1, . . . ,maxS },p ∈ PS ,d ⊆ post(t),K ∈ {1, . . . ,maxS} :

(id,p,d, false,K) ∈ D⇔ (id,p,d, true,K) ∈ D′)) ∨

((∀D ∈ D : t2(D) = true)∧ (∀D ∈ D′ : t2(D) = end) ∧

(∀id ∈ {1, . . . ,maxS},p ∈ PS ,d ⊆ post(t),K ∈ {1, . . . ,maxS} :

D((id,p,d, true,K)) = D′((id,p,d,end,K))))}.
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Backward moves for the start and the end of the NES-case reverse the change of
all decision tuples in a decision marking from negative to positive or from positive
to ended NES-status without changing the identifier, the positions, decisions of the
decision tuples, or the last mcut. This case becomes necessary because not all players
of the NES-case are in the precondition of the transition starting the NES-case or the
postcondition of the transitions ending the NES-case.

Definition 18 (Backward moves)
The set B of backward moves is defined as B = BT ∪BT 2.

The set of backward moves is defined as the union of the set of backward moves
for transitions firing and the set of backward moves for the start and the end of the
NES-case.

3.4.5. States in the Büchi Game

Definition 19 (States in the Büchi game)
The states V in the Büchi game are defined as

V = VBN ∪D × (PS → {0, . . . , k})× (B˚)maxS × {1, . . . ,maxS}

with VBN = {FB,FN } (B and N stand for Büchi and non-Büchi).

The sequences of backward moves B˚ are of finite size because we do not allow use-
less repetition. We will later see that they are limited to be of at most single exponential
length in terms of the size of the Petri game.

The two unique states FB and FN in VBN are used to represent finite winning and
losing behavior in the Petri game with a successor edge in the Büchi game. All other
states have the following form: The first element is the decision marking storing the
current players. The second element is the marking which Player 0 claims to repeat in
the NES-case. It is the empty marking when the Büchi game is not in the NES-case. The
next maxS elements represent the sequence of backward moves of each system player
which are used to check for bad markings and for nondeterministic decisions.

We define the following functions to access the elements of a state V ∈ V \ VBN in
a Büchi game with V = (D,MT 2,BM1, . . . ,BMmaxS

): The function DS obtains the first
element representing the decision tuple, i.e., DS(V ) = D. The function T 2M obtains
the second element representing the marking that Player 0 claims will repeat itself in
the NES-case, i.e., T 2M(V ) = MT 2. The function BRGi obtains the next maxS elements
representing the sequences of backward moves, i.e., BRGi(V ) = BMi for i ∈ {1, . . . ,maxS }.

Definition 20 (States of Player 0 and states of Player 1)
The states V1 of Player 1 are defined as all states in V where the decision marking cor-
responds to an mcut:

V1 = {V |DS(V ) corresponds to an mcut}
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The states V0 of Player 0 are defined as all other states:

V0 = V \V1

Definition 21 (Initial state in the Büchi game)
The initial state I in the Büchi game is defined as

I = (DS
In ∪ {(0,pE , false,post(pE),0) | pE ∈ In∩PE},∅, []maxS )

with DS
In ⊆ P (DS ) such that

(M (DS
In) = In \ PE)∧ (∀D ∈ DS

In : t2(D) = false∧ dec =⊤∧ lmc(D) = 1) ∧

(∀i ∈ {1, . . . ,maxS} : |DS
In ∩ {D ∈ DS | id(D) = i}| ≤ 1)

and the system players in DS
In are ordered arbitrarily but fixed (e.g., lexicographically)

according to their places and identifiers with the lowest possible sum are used.

The initial state in the Büchi game contains decision tuples for all places of the initial
marking, an empty marking to repeat, and maxS many empty sequences of backward
moves. The constraints on the the selection of unique identifiers of the players are only
used to obtain a single initial state in the Büchi game.

Definition 22 (Accepting states in the Büchi game)
The accepting states F in the Büchi game are defined as FB and all states corresponding
to an mcut:

F = {FB} ∪ {V ∈ V |DS(V ) corresponds to an mcut}

3.4.6. Finite Winning and Losing Behavior in the Büchi Game

We define finite winning and losing behavior in the Büchi game. Finite losing behav-
ior includes bad markings and nondeterministic decisions. These two cases require to
check the via backward moves reachable decision markings. Therefore, we define a
Petri net that has the via backward moves reachable decision markings as reachable
markings.

Definition 23 (Via backward moves reachable decision markings)
Given a set of sequences of backward moves BM1, . . . ,BMn and a decision marking DIn,
the k-bounded Petri net NBM1,...,BMn

[DIn] = (P ,T ,F , In) to calculate the via backward
moves reachable decision markings starting from DIn is defined as follows.

• We initialize NBM1,...,BMn
[DIn] with P = DIn, T = ∅, F = ∅, and In = DIn and define

the current marking M = DIn.
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• We apply the following step recursively: We check for the backward moves (D,D′)
from the end of the sequences of backward moves BM1, . . . ,BMn whether D′ is
contained in the current marking M and whether all participating players in D′
with identifier id have backward move (D,D′) at the end of BMid. If this is the case,
then we add each decision tuple of D to P , t(D′ ,D) to T , and {(D ′ , t(D′ ,D)) | D ′ ∈ D′}
and {(t(D′ ,D),D) | D ∈ D} to F , we remove (D,D′) from the end of BMid for all
participating players in D′ with identifier id, and we update the current marking
M by setting it to (M −D′) +D. We continue with the next backward move.

Notice that we reverse the backward moves to apply standard forward algorithms to
calculate the set of reachable markings. Notice further that when more than one back-
ward move is applicable from the current marking, then the second backward move
is also applicable from the current marking obtained after adding the first backward
move to the Petri net, because the backward moves are disjoint. The algorithm termi-
nates as the sequences of backward moves are finite and each iteration of the algorithm
makes the sequences smaller.

Definition 24 (Finite winning and losing behavior (non-NES-case))
Terminated states TERM, deadlocked states DL, states NDET corresponding to nondeter-
ministic decisions, and states BAD corresponding to a bad marking are defined as follows:

V ′ ={V ∈ V | ∀D ∈DS(V ) : dec(D) ,⊤}

TERM ={V ∈ V ′ | ∀t ∈ T : pre(t) ⊈M (DS(V ))}

DL ={V ∈ V ′ | ∀t ∈ T : pre(t) ⊈M (DS(V )pre(t))}

NDET ={V ∈ V ′ | ∃D ∈ R(NBRG1(V ),...,BRGmaxS
(V )[DS(V )]),D ∈ D : pl(D) ∈ PS ∧

((∃t1, t2 ∈ post(pl(D)) : t1 , t2 ∧ pre(t1) ⊆M (Dpre(t1)) ∧

pre(t2) ⊆M (Dpre(t2)))∨ (∃t ∈ post(pl(D)) : pre(t) ⊂M (Dpre(t))))}

BAD ={V ∈ V ′ | ∃D ∈ R(NBRG1(V ),...,BRGmaxS
(V )[DS(V )]) :M (D) ∈MB}

Only states where all ⊤ have been resolved are included. A state is terminated when
no transition is enabled. A state is deadlocked when all transitions are not enabled or
not allowed by enough decision tuples. A terminated state is also deadlocked. Termi-
nated states correspond to winning behavior whereas deadlocked states that are not
terminated correspond to losing behavior.

A state corresponds to a nondeterministic decision if there is a via backward moves
reachable decision marking from the state such that either two different transitions are
enabled having the same system place in their precondition or if a single transition with
a system place in its precondition is enabled with more than enough players allowing
the transition. In the second case, two different instances of the transition are enabled.
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A state corresponds to a bad marking if there is a via backward moves reachable de-
cision marking from the state such that the underlying marking is in the set of bad
markings.

Definition 25 (Finite losing behavior (NES-case))
Deadlocked states DLt2 in the NES-case, states SYNCt2 corresponding to synchronization
between decision tuples with positive and negative NES-status, and states corresponding to
vanished decision tuples with positive NES-status are defined as follows:

V ′ ={V ∈ V | ∀D ∈DS(V ) : dec(D) ,⊤}

DLt2 ={V ∈ V ′ | (∃D ∈DS(V ) : t2(D) = true)∧∀t ∈ T :

pre(t) ⊈M (DS(V )pre(t)∧t2)}

SYNCt2 ={V ∈ V ′ | ∃D ∈ R(NBRG1(V ),...,BRGmaxS
(V )[DS(V )]),D ∈ D :

t2(D) = true∧∃t ∈ post(pl(D)) :

pre(t) ⊈M (Dpre(t)∧t2)∧ pre(t) ⊆M (Dpre(t))}

VANt2 ={V ∈ V ′ | T 2M(V ) , ∅∧∀D ∈DS(V ) : t2(D) , true}

Only states where all ⊤ have been resolved are included. A state is deadlocked in the
NES-case when at least one decision tuple has positive NES-status and all transitions
are not enabled or not allowed from the decision marking with positive NES-status.
Notice that this includes all in the NES-case terminated states. We do not need to dif-
ferentiate between terminated and deadlocked in the NES-case because both cases are
losing behavior.

A state corresponds to synchronization between decision tuples with negative and posi-
tive NES-status if there exists a via backward moves reachable decision marking from
the state such that at least one decision tuple has positive NES-status and it exists a
transition from the postcondition of that place that is not enabled or not allowed by
only decision tuples with positive NES-status but is enabled and allowed when not re-
garding the distinction between decision tuples with negative and positive NES-status.

A state corresponds to vanished decision tuples with positive NES-status when a
nonempty marking to repeat exists but no more decision tuples with positive NES-
status exist. This can occur when at least one transition with an empty postcondition
exists that removes all decision tuples with positive NES-status.

The definitions of states corresponding to nondeterministic decisions or to bad mark-
ings also apply to decision markings with positive NES-status.

3.4.7. Useless Repetitions in the Büchi Game

We define useless repetitions in the Büchi game. Therefore, we search for the repeti-
tion of loops in the graph of via backward moves reachable decision markings which
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did not increase the information of any participating player. Such a useless repetition
represents losing behavior to prevent the collection of sequences of backward moves of
infinite length.

Definition 26 (Useless repetition in the Büchi game)
For j ∈ {1,2,3,4}, we define BMj

1, . . . ,BMj
maxS

to be the corresponding backward moves
to a decision marking Dj ∈ R(NBRG1(V ),...,BRGmaxS

(V )[DS(V )]) from the construction of
NBRG1(V ),...,BRGmaxS

(V )[DS(V )]. States UR corresponding to a useless repetition in the
Büchi game are defined as follows:

UR = {V ∈ V ′ | ∃D1,D2,D3,D4 ∈ R(NBRG1(V ),...,BRGmaxS
(V )[DS(V )]) :

D1 = D2 = D3 = D4 ∧∀i ∈ {1, . . . ,maxS} : BM1
i ⊂ BM2

i ⊆ BM3
i ⊂ BM4

i ∧

BM2
i −BM1

i = BM4
i −BM3

i }

A useless repetition in the Büchi game occurs when the same loop happened twice
without increasing the knowledge of the participating players. The first loops occurs
from D1 to D2 and the second one from D3 to D4 where D2 and D3 can be the same posi-
tion in R(NBRG1(V ),...,BRGmaxS

(V )[DS(V )]). In the definition, the knowledge of the players
does not increase because the decision markings have to be the same which includes
the last mcut.

3.4.8. Edges in the Büchi Game

Winning behavior without a successor state (TERM) leads to the unique accepting state
FB with a self-loop. Losing behavior leads to the unique non-accepting state FN with a
self-loop.

Definition 27 (Edges STOP for finite winning and losing behavior)
Edges STOPB for finite winning behavior without a successor state are defined as

STOPB = {(V ,FB) ∈ V × {FB} | V ∈ TERM \ (BAD∪UR∪DLt2 ∪VANt2)}.

Edges STOPN for finite losing behavior are defined as

STOPN = {(V ,FN ) ∈ V × {FN } | V ∈ (DL \TERM)∪NDET∪BAD∪UR ∪

DLt2 ∪ SYNCt2 ∪VANt2}.

Edges STOP for finite winning and losing behavior are defined as STOP = STOPB ∪
STOPN .

Again, B and N stand for Büchi and non-Büchi.
We introduce notation to calculate the successors of a decision marking:
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Definition 28 (NES-status change and ⊤ removal)
Given a decision marking D without decision tuples with positive NES-status, the func-
tion sucdec(D) identifies the set of all possible decision markings corresponding to D
where the NES-status can change and ⊤ is replaced by a set of allowed transitions for
system places. It is defined as

sucdec(D) = {D′ ∈D | D′ = {(id,p,b′ ,T ′ ,K) ∈ D | (id,p,b,T ,K) ∈ D ∧

(T ,⊤⇒ T ′ = T )∧ (T =⊤⇒ T ′ ⊆ post(p))∧ (p ∈ PE ⇒ b′ = b) ∧

((∃id′′ ,K ′′ ∈ {1, . . . ,maxS},p′′ ∈ PS ,T ′′ ⊆ post(p) :

(id′′ ,p′′ ,end,T ′′ ,K ′′) ∈ D)⇒ b′ = b) ∧

((∀id′′ ,K ′′ ∈ {1, . . . ,maxS},p′′ ∈ PS ,T ′′ ⊆ post(p) :

(id′′ ,p′′ ,end,T ′′ ,K ′′) < D)⇒ b′ ∈ {false, true})} ∧

∀id ∈ {1, . . . ,maxS} : |D∩ {D ∈ DS | id(D) = id}| = |D′ ∩ {D ∈ DS | id(D) = id}|}.

We calculate all D′ such that, for each element (id,p,b,T ,K) in D, there is exactly
one element (id,p,b′ ,T ′ ,K) in D. This is ensured by the last requirement because each
identifier occurs at most once in D. For T ′, ⊤ is replaced by a set of allowed transitions
and remains the same otherwise. For p being an environment place, the NES-status
always remains false. For p being a system place, the NES-status can change from false
to true unless there is a decision tuple in D with NES-status end. In this case, the NES-
status remains the same.

All edges in the Büchi game go from a state of the form V = (D,MT 2,BM1, . . . ,BMmaxS
)

to a state V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS
) in the following. We prevent states in (DL \

TERM)∪NDET ∪ BAD∪UR∪DLt2 ∪ SYNCt2 ∪VANt2 to have further outgoing edges
because they correspond to losing behavior.

Definition 29 (Edges TOP)
Edges TOP to let Player 0 make decisions and change NES-status are defined as

TOP = {(V ,V ′) ∈ V0 ×V | V = (D,MT 2,BM1, . . . ,BMmaxS
)∧∃D′ ∈ sucdec(D) :

V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS
)∧ (∀D ∈ D : t2(D) , true)∧MT 2 = ∅ ∧

(∃D ∈ D : dec(D) =⊤)∧M ′T 2 =M (D′t2)∧ (∀id ∈ {1, . . . ,maxS} : BM′id = BMid)}.

In V , no decision tuple with positive NES-status exists in D, the marking MT 2 to re-
peat in the NES-case is empty, and a decision tuple in D has ⊤ as decision. To obtain D′
from D, ⊤ is removed and system decision tuples can be designated as having positive
NES-status by choosing D′ from sucdec(D). The underlying marking of D′ restricted to
decision tuples with positive NES-status is stored in M ′T 2. It is the empty set when no
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decision tuple in D′ has positive NES-status. All sequences of backward moves stay the
same.

A transit relation Υ (t) ⊆ (((pre(t) ∪ {▷}) × (post(t) ∪ {◁})) → N) [FGHO19] (lifted to
bounded Petri nets) relates places in the precondition with places in the postcondition
of a transition. It also indicates that a new token is created with ▷ and that a token is
removed with ◁. In the following, we assume an arbitrary but fixed transit relation that
preserves the type of players in the Petri game and represents the movement of players
including their creation and removal. This is needed to maintain the correct identifier
for players. In particular, the transit relation returns, for a decision marking D, a player
with identifier id at place p, and a transition t to fire, the unique next place p′ for the
player, written as pΥ (D, id, t)p′. We assume the existence of a function nextID that,
given a decision marking D and a transition t fired from D, returns a unique identifier
for each new player p′ with ▷Υ (t)p′.

Definition 30 (Making decisions for successor decision markings)
For a decision marking D and a from there enabled and allowed transition t with only
system places in its precondition, the function sucS(D, t) identifies the set of all possible
decision markings corresponding to the postcondition of t where no ⊤ exists. It is
defined as

sucS(D, t) = {D′ ∈D | D′ = {(id,p′ , false,T ′ ,K ′) ∈ DS | (id,p, false,T ,K) ∈ D ∧

pΥ (D, id, t)p′ ∧ T ′ ⊆ post(p′)∧K ′ = max({lmc(D) |D ∈ Dpre(t)})} ∪

{(id′ ,p′ , false,T ′ ,K ′) ∈ DS |▷Υ (t)p′ ∧ T ′ ⊆ post(p′) ∧

K ′ = max({lmc(D) |D ∈ Dpre(t)})∧ id′ = nextID(D, t,▷Υ (t)p′)} ∧M (D′) = post(t) ∧

∀id ∈ {1, . . . ,maxS} : |D′ ∩ {D ∈ DS | id(D) = id}| ≤ 1}.

The NES-status is fixed to false as sucdec is used afterward to give the possibility of
changing the NES-status from negative to positive.

Definition 31 (Edges SYS)
Edges SYS to let Player 0 fire a transition with no environment places in its precondition
and afterward make decisions and change NES-status are defined as

SYS = {(V ,V ′) ∈ (V0 \NDET∪BAD∪UR)×V | V = (D,MT 2,BM1, . . . ,BMmaxS
) ∧

∃t ∈ T ,pc ∈ sucS(D, t),D′ ∈ sucdec((D \Dpre(t))∪ pc) :

V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS
)∧ (∀D ∈ D : t2(D) , true)∧MT 2 = ∅ ∧

D does not correspond to an mcut∧ pre(t)∩PE = ∅∧ pre(t) ⊆M (Dpre(t)) ∧

D′′ = D′ \ {(id,p, false,T ,K), (id,p, true,T ,K) | (id,p,b,T ,K) ∈ pc} ∧

M ′T 2 =M (D′t2)∧∀id ∈ {1, . . . ,maxS} :
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((∃p ∈ PS ,b ∈ {false, true,end},T ⊆ post(p),K ∈ {1, . . . ,maxS } :

(id,p,b,T ,K) ∈ pc∪ (D′′ \D))⇒ ((D \Dpre(t) , D′′⇒ BM′id = BMid ∪

[(Dpre(t),pc), (D \ (Dpre(t) ∪ (D∩D′′)),D′′ \D)]) ∧

(D \Dpre(t) = D′′⇒ BM′id = BMid ∪ [(Dpre(t),pc)]))) ∧

((∀p ∈ PS ,b ∈ {false, true,end},T ⊆ post(p),K ∈ {1, . . . ,maxS } :

(id,p,b,T ,K) < pc∪ (D′′ \D))⇒ BM′id = BMid)}.

In V , no decision tuple with positive NES-status exists in D, the marking MT 2 to
repeat in the NES-case is empty, and D does not correspond to an mcut. To obtain D′
from D, a transition t with no environment places in its preconditions, that is enabled
and allowed from D, is chosen. To simulate transition t firing, the decision tuples pc
for the postcondition of t are obtained by first choosing decisions via sucS . Afterward,
decision tuples in D\Dpre(t) and pc can change their NES-status from negative to positive
via sucdec to obtain D′. A corresponding backward move (Dpre(t),pc) is added to BMid of
all participating players with identifier id to obtain BM′id. If decision tuples in D have
changed their NES-status, a further backward move for this change is added. Here,
we use D′′ to remove pc because the NES-status of decision tuples in pc might have
changed. All other backward moves are retained. As in TOP, the underlying marking
of D′ restricted to decision tuples with positive NES-status is stored in M ′T 2.

We define the function sucmcut that returns, for a decision marking D and a transi-
tion t, the decision marking with NES-status false and decision ⊤ corresponding to the
system players participating in the transition.

Definition 32 (Successor decision markings from an mcut)
For a decision marking D and a from there enabled and allowed transition t with an
environment place in its precondition, the function sucmcut(D, t) returns the decision
marking corresponding to the system players of the postcondition of t where false is
the NES-status and ⊤ is the decision. It is defined as

sucmcut(D, t) = {(id,p′ , false,⊤,K ′) ∈ DS | (id,p, false,T ,K) ∈ D∧ p ∈ PS ∧

pΥ (D, id, t)p′ ∧K ′ = max({lmc(D) |D ∈ D \Dpre(t)}) + 1} ∪

{(id′ ,p′ , false,⊤,K ′) ∈ DS |▷Υ (t)p′ ∧K ′ = max({lmc(D) |D ∈ Dpre(t)}) + 1 ∧

id′ = nextID(D, t,▷Υ (t)p′)}.

The transit relation is followed and a new highest number for the last mcut is given
to all participating players of the transition. To stay in the range {1, . . . ,maxS} for the
last mcut, we need to reduce higher values when all decision tuples with a specific
value are removed when a transition with an environment player in its precondition
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fires. Therefore, we assume a function reducemcut(D) that only alters the last mcut in
the decision marking D such that the order between decision tuples and their last mcut
is maintained but the minimal number of last mcut numbers is used. For example,
when D contains decision tuples with last mcut 1, 3, 6, and 7, because all decision
tuples with last mcut 2, 4, 5, and 8 participate in the transition with an environment
place in its precondition, then all decision tuples with last mcut 1 maintain their last
mcut 1, all with last mcut 3 get last mcut 2, all with last mcut 6 get last mcut 3, and all
with last mcut 7 get last mcut 4.

Definition 33 (Edges MCUT)
Edges MCUT to let Player 1 fire a transition with an environment place in its precon-
dition from an mcut are defined as

MCUT = {(V ,V ′) ∈ (V1 \NDET∪BAD)×V | ∃t ∈ T :

V = (D,MT 2,BM1, . . . ,BMmaxS
)∧V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS

) ∧

(∀D ∈ D : t2(D) , true)∧D corresponds to an mcut∧M ′T 2 = MT 2 = ∅ ∧

pre(t) ⊆M (Dpre(t))∧D′′ = reduce(D \Dpre(t))∧D′ = D′′ ∪ sucmcut(D′′ , t) ∪

{(0,p, false,post(p),0) | p ∈ post(t)∩PE} ∧∀id ∈ {1, . . . ,maxS} :

BM′id =


BMid if ∃p ∈ PS ,b ∈ {false, true,end},T ⊆ post(p),

K ∈ {1, . . . ,maxS } : (id,p,b,T ,K) ∈ D′ \D′′
[] otherwise

}.

In V , no decision tuple with positive NES-status exists in D, D corresponds to an
mcut, and the marking MT 2 to repeat in the NES-case remains the empty set. To ob-
tain D′, a transition t that is enabled and allowed from D is chosen. This transition
has an environment place p in its precondition because D corresponds to an mcut. The
last mcut of decision tuples is reduced accounting for the possible free numbers by the
removal of decision tuples due to t firing to obtain D′′. To simulate transition t firing,
decision tuples corresponding to the postcondition of t are added to D′′ to obtain D′. All
added decision tuples have negative NES-status and ⊤ as decision for decision tuples
corresponding to system players (ensured by sucmcut) and post(p) as decision for deci-
sion tuples corresponding to the environment player. Backward moves for identifiers
in D′ \D′′ become empty.

We define three kinds of edges for the NES-case: all three fire a transition only from
decision tuples with positive NES-status and the last two re-reach an already reached
marking of the NES-case. For the first re-reaching, the marking is the marking to repeat
and, for the second re-reaching, the marking is not. The first case finishes the NES-case,
whereas the second case makes Player 0 lose the Büchi game immediately.

For the NES-case, we introduce the function suct2 that works exactly like the function
sucS but it requires and produces decision tuples with positive NES-status.

67



3. Decidability of Bad Markings

Definition 34 (Edges NESfire)
Edges NESfire let Player 0 fire a transition with no environment place in its precondition
only from decision tuples with positive NES-status. They let Player 0 make decisions
while maintaining positive NES-status and reach a new marking in the NES-case. Edges
NESfire are defined as

NESfire = {(V ,V ′) ∈ (V0 \NDET∪BAD∪ SYNCt2 ∪VANt2)×V0 |

V = (D,MT 2,BM1, . . . ,BMmaxS
)∧∃t ∈ T ,pc ∈ suct2(D, t) :

V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS
)∧ (∃D ∈ D : t2(D) = true) ∧

pre(t)∩PE = ∅∧ pre(t) ⊆M (Dpre(t)∧t2)∧M ′T 2 = MT 2 ∧

D′ = (D \Dpre(t)∧t2)∪ pc∧ (∀DM ∈ R(NBM1,...,BMmaxS
[Dt2]) :M (D′t2) ,M (DM

t2 )) ∧

∀id ∈ {1, . . . ,maxS } : (((∃p ∈ PS ,T ⊆ post(p),K ∈ {1, . . . ,maxS } :

(id,p, false,T ,K) ∈ pc)⇒ BM′id = BMid ∪ [(Dpre(t)∧t2,pc)]) ∧

((∀p ∈ PS ,T ⊆ post(p),K ∈ {1, . . . ,maxS} :

(id,p, false,T ,K) < pc)⇒ BM′id = BMid))}.

In V , a decision tuple with positive NES-status exists in D and a transition t is chosen
such that the firing of this transition has to reach a decision marking with a new under-
lying marking for the NES-case. The transition t cannot have an environment place in
its precondition and is enabled and allowed from D restricted to decision tuples with
positive NES-status. To simulate t firing, decision tuples Dpre(t)∧t2 corresponding to the
precondition of t are removed from D and then decision tuples corresponding to the
postcondition of t are added. All added decision tuples have positive NES-status and a
made decision via suct2. It is ensured via the reachability of decision markings DM

t2 and
their underlying marking M (DM

t2 ) from the backward moves that the marking in the
NES-case is not repeated. The corresponding backward move (Dpre(t)∧t2,pc) is added to
the backward move of all participating players. The remaining elements of the pair of
states stay the same.

Next, we define edges to finish the NES-case successfully.

Definition 35 (Edges NESfinish)
Edges NESfinish let Player 0 fire a transition with no environment place in its precondi-
tion only from decision tuples with positive NES-status. They re-reach the marking in
which the NES-case started and thereby end the NES-case. Edges NESfinish are defined
as

NESfinish = {(V ,V ′) ∈ (V0 \NDET∪BAD∪UR∪ SYNCt2 ∪VANt2)×V |

V = (D,MT 2,BM1, . . . ,BMmaxS
) ∧
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∃t ∈ T ,pc ∈ suct2(D, t) : V ′ = (D′ ,M ′T 2,BM′1, . . . ,BM′maxS
) ∧

(∃D ∈ D : t2(D) = true)∧ pre(t)∩PE = ∅∧ pre(t) ⊆M (Dpre(t)∧t2) ∧

D′′ = (D \Dpre(t)∧t2)∪ pc∧M (D′′t2) = MT 2 ∧M ′T 2 = ∅ ∧

(∀p ∈MT 2 : ∃DM ∈ R(NBM1,...,BMmaxS
[Dt2]) : p <M (DM

t2 )) ∧

D′ = {(id,p,end,T ,K) ∈ DS | (id,p, true,T ,K) ∈ D′} ∪

{(id,p, false,T ,K) ∈ DS | (id,p, false,T ,K) ∈ D′} ∧

D′BM = {(id,p,end,T ,K) ∈ DS | (id,p, true,T ,K) ∈ pc} ∧

∀id ∈ {1, . . . ,maxS} : ((∃p ∈ PS ,T ⊆ post(p),K ∈ {1, . . . ,maxS } :

(id,p, true,T ,K) ∈ ((D′ \D′′)∪D′BM))⇒ (((D′′ \ pc) , (D′ \D′BM)⇒

BM′id = BMid ∪ {(Dpre(t)∧t2,D′BM), (D′′ \ (D′ ∪ pc),D′ \ (D′ ∪D′BM))}) ∧

((D′′ \ pc) = (D′ \D′BM)⇒ BM′id = BMid ∪ {(Dpre(t)∧t2,D′BM)}))) ∧

(∀p ∈ PS ,T ⊆ post(p),K ∈ {1, . . . ,maxS } :

(id,p, true,T ,K) < ((D′ \D′′)∪D′BM)⇒ BM′id = BMid)}.

In V , a decision tuple with positive NES-status exists in D and a transition t is chosen
such that the firing of this transition reaches a decision marking with the same un-
derlying marking MT 2 as when the NES-case started. The transition t cannot have an
environment place in its precondition and is enabled and allowed from D restricted to
decision tuples with positive NES-status. Simulating t firing would reach the decision
marking D′′ by removing Dpre(t)∧t2 from D and adding pc. The underlying marking of
D′′ restricted to decision sets with positive NES-status has to be reached for the second
time, i.e., it has to be MT 2. Every player p in MT 2 has to be at least once not included
in an underlying marking of a decision marking DM

t2 reachable by the backward moves,
i.e., every player has to move at least once before completing the NES-case. To obtain
D′, all decision tuples with positive NES-status in D′′ are set to ended NES-status. The
marking M ′T 2 is set to the empty set.

By D′BM, we identify pc with ended NES-status for decision tuples with positive NES-
status. When the change from D′′ to D′ changed decision tuples not corresponding to
the postcondition of t, i.e., not in pc and D′BM, then the backward moves (Dpre(t)∧t2,D′BM)
and (D′′ \ (D′ ∪ pc),D′ \ (D′′ ∪D′BM)) are added to BMid to obtain BM′id for participating
players of the transition with identifier id. Otherwise, the second backward move re-
lates the empty decision marking with the empty decision marking and therefore only
the backward move (Dpre(t)∧t2,D′BM) is added to BMid to obtain BM′id. The other se-
quences of backward moves stay the same. No new NES-cases are necessary as one
successful disclosure for this branch suffices.
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At last, we define edges to finish the NES-case unsuccessfully.

Definition 36 (Edges NESbad)
Edges NESbad corresponding to a bad finish of the NES-case because the wrong marking
is repeated or not all players moved are defined as

NESbad = {(V ,FN ) ∈ (V0 \NDET∪BAD∪ SYNCt2 ∪VANt2)× {FN } |

V = (D,MT 2,BM1, . . . ,BMmaxS
)∧∃t ∈ T ,pc ∈ suct2(D, t) :

(∃D ∈ D : t2(D) = true)∧ pre(t)∩PE = ∅∧ pre(t) ⊆M (Dpre(t)∧t2) ∧

D′′ = (D \Dpre(t)∧t2)∪ pc∧ (∃DM ∈ R(NBM1,...,BMmaxS
[Dt2]) :M (D′′t2) =M (DM

t2 )) ∧

(M (D′′t2) ,MT 2 ∨∃p ∈MT 2 : ∀DM ∈ R(NBM1,...,BMmaxS
[Dt2]) : p ∈M (DM

t2 ))}.

In V , a transition t with only system places in its precondition has to exist that is en-
abled and allowed from the decision tuples with positive NES-status in D. The firing of
the marking would reach the decision marking D′′ by removing Dpre(t)∧t2 correspond-
ing to the decision tuples for the precondition of t and adding pc corresponding to the
decision tuples for the postcondition of t. The underlying marking of the decision tu-
ples with positive NES-status in D′′ is reached for the second time, i.e., it is equal to the
underlying marking of DM

t2 reachable via the backward moves from Dt2 (D restricted
to decision tuples with positive NES-status). The negative behavior occurs because the
underlying marking is not equal to MT 2 or some place p in MT 2 is part of the entire
loop, i.e., part of all DM

t2 . This makes NESfinish and NESbad mutual exclusive when a
marking is repeated in the NES-case.

Definition 37 (Edges NES)
The edges NES for the NES-case in the Büchi game are defined as NESfire ∪NESfinish ∪
NESbad.

We obtain:

Definition 38 (Edges in the Büchi game)
The edges E in the Büchi game are defined as E = TOP∪ SYS∪MCUT∪NES∪ STOP.

3.4.9. Correctness

We prove assumptions correct that are used in the translation from bounded Petri
games with one environment player and bad markings to Büchi games.

Lemma 4 (Sufficiently many identifiers). There is always a free identifier when the number
of system players increases from a transition firing.

70



3.4. Formal Details

Proof. There are at most maxS system players in the Petri game. When the number of
system players can increase by x, then there are at most maxS − x system players in the
Petri game. As there are maxS unique identifiers for system players, there are x free
identifiers.

Lemma 5 (Sufficiently many last mcuts). There is always a free last mcut when a transition
with an environment place and a system place in its precondition fires.

Proof. System players remember their last mcut and there are at most maxS of them
in the Petri game. Therefore, at most maxS last mcuts can exist. Whenever a system
player participates in a transition with the environment player, its last mcut becomes
free, other last mcuts are reordered to keep their order, and a new last mcut can be
added.

We prove that winning strategies for the Büchi game can be translated to winning
strategies for the system players in the encoded Petri game. First, we define the trans-
lation. Second, we define an equivalence relation between decision markings in the
strategy for Player 0 in the Büchi game and cuts in the strategy for the system players
in the Petri game. Third, we use this relation to prove the translation correct.

Definition 39 (Translation from Büchi game strategies to Petri game strategies)
In the following, we translate winning strategies for Player 0 in the Büchi game into
winning strategies for the system players in the Petri game. By f , we identify the win-
ning strategy for Player 0 in the Büchi game G = (V ,V0,V1, I ,E,F) which simulates the
Petri game G = (PS ,PE ,T ,F , In,MB). From the initial state I , the strategy f generates a
tree Tf which is possibly infinite. In Tf , the nodes are labeled with states from V and
the root is labeled with I . A node N labeled with a V0-state V has a unique successor
node labeled with the state f (w) with w being the sequence of labels from the root to N .
A node N labeled with a V1-state V has for each successor state (V ,V ′) ∈ E a successor
node in Tf labeled with V ′.

We traverse the nodes of Tf in a breadth-first order and inductively construct a strat-
egy σ = (N σ ,λσ ) for G. We associate to each node labeled with a state V a cut C in the
strategy σ under construction such that λ[C] = M (DS(V )) holds, i.e., the cut and the
decision marking of the state represent the same marking. To I , we associate a cut C0
labeled with the initial marking ofN , i.e., λ[C0] = In. Then, λ[C0] =M (DS(I)) holds.

Suppose now the breadth-first traversal has reached a node in Tf labeled with a V0-
state V to which the cut C is associated. Then, there is a unique successor node in Tf
labeled with V ′. If the edge from V to V ′ resolves ⊤, nothing is added to the strategy,
and C is associated with V ′ as well. If the edge from V to V ′ corresponds to a transition t
with λ(Cpre) = pre(t) for Cpre ⊆ C and V has less or equally many decision tuples with
positive NES-status than V ′ (i.e.,

∑
D∈D∧t2(D)=true DS(V )(D) ≤

∑
D∈D∧t2(D)=true DS(V ′)(D)),

then we extend the strategy with a new transition t′ and new places NP such that
λ[NP] = post(t), λ(t′) = t, pre(t′) = Cpre, and post(t′) = NP. We associate to V ′ the cut
C′ = NP + (C − Cpre) containing the new places NP and the places in C that did not
participate in t.
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If the edge from V to V ′ corresponds to a transition t with λ(Cpre) = pre(t) for
Cpre ⊆ C and V has a lower number of decision tuple with ended NES-status than
V ′ because the marking to repeat in the NES-case is reached for the second time,
i.e.,

∑
D∈D∧t2(D)=end DS(V )(D) <

∑
D∈D∧t2(D)=end DS(V ′)(D), then a unique predecessor

state V1st exists such that M (DS(V )) − pre(t) + post(t) = M (DS(V1st)). The state V1st

represents the first occurrence of the markingM (DS(V1st)) that is reached for a second
time when firing t from V . By construction, only transitions from decision tuples with
positive NES-status fired between V1st and V . By C1st, we identify the cut associated
with V1st. We extend the strategy with a new transition t′ and new places NP such that
λ[NP] = post(t), λ(t′) = t, pre(t′) = Cpre, and post(t′) = NP. From C′ = NP + (C − Cpre)
containing the new places NP and the places in C that did not participate in t, we re-
peat the strategy from C1st to C′ infinitely often with new places and new transitions.
The breadth-first search needs to continue with the situation before the NES-case.
Therefore, we associate to V ′ the cut C1st.

Suppose now the breadth-first traversal has reached a node in Tf labeled with a V1-
state V to which the cut C is associated. Then, for each successor node in Tf labeled
with V ′, a corresponding environment transition t exists with λ(Cpre) = pre(t) for Cpre ⊆
C and we extend the strategy with a new transition t′ and new places NP such that
λ[NP] = post(t), λ(t′) = t, pre(t′) = Cpre, and post(t′) = NP. We associate to V ′ the cut
C′ = NP + (C − Cpre) containing the new places NP and the places in C that did not
participate in t.

To prove that the constructed strategy from Definition 39 for the system players in
the Petri game is winning, we prove that the considered decision markings of every
winning strategy for Player 0 in the Büchi game are equivalent to the reachable cuts in
the corresponding strategy for the system players in the Petri game. Notice that we no
longer assume winningness of strategies. Notice further that all non-winning strategies
in the Büchi game are by construction minimal in the sense that the strategy reaches a
self-loop in FN for losing behavior (a deadlock without termination, a bad marking,
firing a transition from a nondeterministic decision, or a losing behavior in the NES-
case). A decision marking is considered if it is directly reachable or indirectly reachable
via backward moves in a state in the Büchi game. By definition, reaching FB or FN does
not consider a decision marking. The equivalence relation between a decision marking
and a cut checks that a place p with decision d is in the decision marking if and only if
a place p′ in the cut exists such that p′ represents p in the original Petri game, post(p′)
represents d, and the causal past of both p and p′ is equivalent.

Definition 40 (Equivalence relation between decision markings and cuts)
The equivalence relation ≡ between decision markings and cuts is defined as

D ≡ C ⇐⇒ ((∀(p,b,T ) ∈ D : ∃=1c ∈ C : p = λ(c)∧ T = λ(post(c)) ∧

pastT ((p,b,T )) = pastT (c))∧ (∀c ∈ C : ∃=1(p,b,T ) ∈ D :

p = λ(c)∧ T = λ(post(c))∧ pastT ((p,b,T )) = pastT (c)))
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where the term pastT (c) is the causal past represented by a sequence of transitions
and the term pastT ((p,b,T )) is the causal past represented by a sequence of transition
subtracted by the used backward moves.

The cuts and the decision markings can come from the strategies for the Petri game
and the corresponding Büchi game. The function pastT (c) returns the sequence of
transitions that leads from the initial marking In in N σ to C following the order of
the breadth-first search in Definition 39. We apply λ to each transition to obtain the
original transitions. The function pastT ((p,b,T )) returns the sequence of transitions
minus the used backward moves that match the edges that lead to the state V from
which (p,b,T ) was reached via backward moves. The equivalence of sequences is up
to reordering of transitions with disjoint preconditions which can be necessary for
pastT ((p,b,T )) as the order of pastT (c) is fixed by the breadth-first search.

Lemma 1 (From Büchi game strategies to Petri game strategies). If Player 0 has a win-
ning strategy in the Büchi game, then there exists a winning strategy for the system players
in the Petri game.

Proof. We translate a winning strategy for Player 0 in the Büchi game into a winning
strategy for the system players in the Petri game as defined in Definition 39. To prove
that the constructed strategy is winning, we prove that the considered decision mark-
ings of every winning strategy for Player 0 in the Büchi game are equivalent as defined
in Definition 40 to the reachable cuts in the corresponding strategy for the system play-
ers in the Petri game. Then, losing behavior in the strategy for Player 0 in the Büchi
game occurs if and only if losing behavior in the strategy for the system players in the
Petri game occurs. The translation in Definition 39 also applies to non-winning strate-
gies for Player 0 in the Büchi game. Reaching a state corresponding to a deadlock but
no termination, a bad marking, a nondeterministic decision, or losing behavior in the
NES-case leads to a deadlock in the Petri game. We consider both directions for a win-
ning strategy f for Player 0 in the Büchi game and the corresponding strategy σ for the
system players in the Petri game:

• We show that if a decision marking D is considered in a by f reachable state of
the Büchi game, then a reachable cut C exists in σ such that D ≡ C holds. If D
is not considered via backward moves, then the word w exists to reach the state
of D. The word w− is defined as w without symbols ⊤. Firing transitions in the
order of w− in the strategy leads to a cut C. By the strategy translation from
Definition 39, w− is applicable to σ and, by the construction of the Büchi game,
the precondition and postcondition of the used transitions are the same in both
strategies. Therefore, D ≡ C holds. If D is reached via backward moves, then the
word w to reach the state of D and the word wback of applied backward moves
exist. We define the subtraction of wback from w− from the end of both words.
Firing transitions in the order of w−−wback in the strategy leads to a cut C. By the
strategy translation from Definition 39, the backward moves can be subtracted
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from the word, w−−wback is applicable to σ , and, by the construction of the Büchi
game, the precondition and postcondition of the used transitions are the same in
both strategies. Therefore, D ≡ C holds.

• We show that if a reachable cut C exists in σ , then a decision marking is consid-
ered in a by f reachable state of the Büchi game. The cut C is reached via the
sequence of transitions T . We only retain transitions with an environment place
in their precondition in T . The choices of system players are already represented
by σ . We start from the initial marking of σ and obtain a sequence of transitions w
that is applicable to f and reaches C by recursively applying the following steps:
If a NES-case starts from the current cut (i.e., a minimal set of system players
in the cut can play infinitely together without synchronizing with the environ-
ment player) and the underlying marking of the cut is the first marking to repeat
in this NES-case, then we add the transitions until the repetition of the marking
occurs to w and update the current cut accordingly. By the strategy translation
from Definition 39, at most on NES-case can occur. Otherwise, we try to fire a
transition with only system places in its precondition. If this is not possible, we
try to fire a transition with an environment places in its precondition. We pick
the environment transition corresponding to the first element of T and afterward
remove it from T . In both cases, the current cut becomes the cut reached after
firing the transition.

When none of these cases apply and there is a transition left in T , we need to add
transitions with only system places in their precondition which are rolled back
by backward moves to reach an equivalent decision marking to the cut C. In this
case, we fire a maximal sequence of transitions with only system places in their
precondition such that only transitions with an environment place in the pre-
condition are enabled. The enabled transitions include the remaining transition
in T . These fired transitions and all following transitions with only system places
in their precondition are collected to be used as backward moves. We apply the
recursive steps from before again. The first iteration removes the last transition
from T and afterward a finite number of transitions with only system places in
their precondition are added. Notice that at most one transition can be left in T
because for all but the last transition we fire it as late as possible at an mcut. This
procedure obtains w′. We add steps to w′ to make explicit decisions removing ⊤
according to the postcondition of the respective players and indicate the begin-
ning of the NES-case by changing the corresponding decision sets from negative
to positive NES-status to obtain w. By the construction of the Büchi game, w is
applicable to the Büchi game. Either w directly leads to a decision marking D
such that D ≡ C holds or some of the collected backward moves and of the back-
ward moves in the NES-case are applied to the state in the Büchi game leading to
a decision marking D′ such that D′ ≡ C holds.

It remains to show that it suffices to only apply backward moves from one state, i.e.,
at most one transition can be left in T . By way of contradiction, assume that there are
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two states when backward moves are applied. Either the first earlier application is also
possible at the second later application because the corresponding system players have
not moved or performing the first backward moves makes it impossible to continue to
the second backward move because the environment player is part of a transition in
between and the used backward move is negated.

It also remains to show that the constructed strategy for the Petri game is, in fact,
a strategy, i.e., satisfies justified refusal and is deterministic and deadlock-avoiding.
The strategy is deterministic and deadlock-avoiding because all reachable markings are
tested to exactly fulfill these requirements by construction. The usage of backward
moves ensures that all reachable markings are checked. Justified refusal is fulfilled be-
cause system players can only disallow transitions from the postcondition in the origi-
nal Petri game. Meanwhile, transitions with only an environment place in their precon-
dition are always added. Therefore, every possible transition not in the Petri game has
at least one system place in its precondition that universally forbids this transition in
the original Petri game. Because every reachable marking in the strategy is checked to
have only deterministic decisions, we know that it is impossible to overlook transitions
that could violate justified refusal when building the strategy from the Büchi game.
Remember that the Büchi game fires transitions with the environment player as late as
possible at mcuts, restricting the order in which transitions are added.

As we showed that a strategy for Player 0 in a Büchi game and the corresponding
strategy for the system players in a Petri game visit equivalent decision markings and
cuts, we can conclude that for a winning strategy for Player 0 in a Büchi game no losing
situation in the strategy for the system players in the Petri game can occur. Therefore,
the strategy for the system players in the Petri game is winning.

Before we can prove the reverse direction, we have to show that it suffices to only
consider minimal winning strategies for the system players in Petri games when trans-
lating them into strategies for Player 0 in the Büchi game. This is necessary because
for not minimal but winning strategies for the system players in Petri games, the back-
ward moves in the corresponding Büchi game might falsely classify the corresponding
strategy for Player 0 in the Büchi game as losing. We prove that this cannot occur for
minimal winning strategies and that all winning strategies can be made minimal while
maintaining their winningness.

We define minimal strategies for the system players in Petri games based on useless repeti-
tions [Gim17] which are defined for control games [GGMW13] played on asynchronous
automata [Zie87]. Control games and Petri games can be translated into the converse
formalism at an exponential blow-up [BFH19a]. More information on control games
can be found in Section 1.7.2.

Before defining our useless repetitions formally, we recall the prefix [KKV03] of a
Petri net or a Petri game and define the suffix of a prefix.

Definition 41 (Prefix [KKV03])
A branching process ιpre = (N ι

pre,λ
ι
pre) is a prefix of a branching process ι = (N ι,λι),

denoted ιpre ⊑pre ι, if N ι
pre is a subnet of N ι (i.e., P ι

pre ⊆ P ι, T ι
pre ⊆ T ι, Inι

pre = Inι, and
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F ι
pre = F ι ↾ P ι

pre × T ι
pre ∪ T ι

pre × P ι
pre) such that if t ∈ T ι

pre and (p, t) ∈ F ι or (t,p) ∈ F ι, then
p ∈ P ι

pre, if p ∈ P ι
pre and (t,p) ∈ F ι, then t ∈ T ι

pre, and λι
pre is the restriction of λι to

P ι
pre ∪T ι

pre.

Definition 42 (Suffix)
A branching process ιsuf = (N ι

suf ,λ
ι
suf ) is a suffix of a branching process ι = (N ι,λι) if

there exists a subset M of a reachable marking in N ι, N ι
suf =N ι[M] without unreach-

able places, transitions, and flows, and λι
suf is the restriction of λι to P ι

suf ∪T
ι

suf .

We require that λσ , λι
pre, and λι

suf are restricted corresponding to the Petri net they
belong to.

The future inN of a node x inN is defined as the set fut(x) = {y ∈ P ∪T | x ≤ y}.

Definition 43 (Useless repetition)
A finite prefix ιpre = (N ι

pre,λ
ι
pre) is a useless repetition of a winning strategy σ = (N σ ,λσ )

if and only if there exists a suffix ιsuf = (N ι
suf ,λ

ι
suf ) of the prefix ιpre such that

(1) the suffix contains only system places and the definition of the prefix has either
removed all or no outgoing transitions of the places in the suffix (i.e., ∀p ∈ P ι

suf :
∀t ∈ T : (p, t) ∈ F ⇒ ((p, t) ∈ F ι

pre ∨ postιpre(p) = ∅)),

(2) the initial marking and the final marking of the suffix represent the same mark-
ing in the original Petri game (i.e., ∃=1M ∈ R(N ι

suf ) : (∀t ∈ T ι
suf : preιsuf (t) ⊈ M)∧

λι
suf [Inι

suf ] = λι
suf [M]),

(3) the decisions of the system players in the initial marking of the suffix differ from
the decisions of the system players in the final marking of the suffix (i.e., ∃=1M ∈
R(N ι

suf ) : (∀t ∈ T ι
suf : preιsuf (t) ⊈ M)∧ ∃pιsuf ∈ Inι

suf ,p ∈ M : λ(pιsuf ) = λ(p)∧ ∃tιsuf ∈
postσ (pιsuf ) : preιsuf (tιsuf ) ⊆ Inι

suf ∧∀t ∈ postσ (p) : λ(tιsuf ) = λ(t)⇒ preσ (t) ⊈M), and

(4) the suffix only contains synchronizations between the players when the synchro-
nization also occurred before the suffix but after the last synchronization with
the environment player (i.e., ∀t ∈ T ι

suf : preιsuf (t) > 1⇒∀ : p1,p2 ∈ Inι
suf ∩ pastιpre(t) :

∃tιpre ∈ T ι
pre : futN

ι
pre(tιpre)∩P

ιpre

E = ∅⇒ tιpre ∈ pastιpre(p1)∧ tιpre ∈ pastιpre(p2)).

We utilize useless repetitions to simplify the behavior of system players in the NES-
case and between successors of mcuts and the next mcut (cf. Condition (1)). Therefore,
our application of useless repetitions is independent of the environment. Condition (2)
carries over from [Gim17] to our usage. We add Condition (3) to handle infinite strate-
gies in the case of Petri games. It ensures that the suffix is not infinitely often repeated
immediately after the suffix. This would lead to infinitely many applications of useless
repetitions at one position. We prevent this by ensuring that the transition after the
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suffix is not the same as at the beginning of the suffix. We add Condition (4) to require
that a useless repetition only contains exchange of causal past via synchronization be-
tween the system players if this exchange already occurred before the useless repetition
but after the respective last successor of an mcut of the system players. Notice that a
suffix of a useless repetition has a unique final marking and the removal of outgoing
transitions can only happen at the unique final marking of the suffix.

Our usage of useless repetitions is far more restricted than for the original defini-
tion [Gim17]. There it is used to decide the existence of a winning strategy in decom-
posable games by bounding the size of strategies without useless repetitions. The orig-
inal definition of useless repetitions further requires that the future is the same when
skipping and not skipping the suffix. For our approach, this is fulfilled by construction.

Definition 44 (Minimal strategies in Petri games)
A minimal strategies for the system players in Petri games has no useless repetitions.

We skip useless repetitions in winning strategies by shortcuts.

Definition 45 (Shortcut)
A strategy ιshort = (N ι

short,λ
ι
short) is a shortcut via useless repetition ιpre = (N ι

pre,λ
ι
pre) with

suffix ιsuf = (N ι
suf ,λ

ι
suf ) of a strategy ι = (N ι,λι) if and only if P ι

short = P ι \ (P ι
suf \ Inι

suf ),

T ι
short = T ι \ T ι

suf , F ι
short satisfies F ι

suf ∩F
ι

short = ∅∧∃=1M ∈ R(N ι
suf ) : (∀t ∈ T ι

pre : preιpre(t) ⊈
M)∧∀p ∈M : ∀(p, t) ∈ F ι : (p, t) < F ι

short∧∃
=1pιsuf ∈ Inι

suf : λ(pιsuf ) = λ(p)∧ (pιsuf , t) ∈ F
ι

short,
Inι

short = Inι, and λι
short is the restriction of λι to P ι

short ∪T
ι

short.

A shortcut is obtained by removing the suffix of a useless repetition from a given
strategy. We identify the reachable final marking of the suffix by M. The behavior fol-
lowing this marking in the original strategy is pulled forwarded to the initial marking
of the suffix. All places, transitions, and flows of the suffix between its initial marking
and the marking M are removed.

In [Gim17], removing useless repetitions by shortcuts is applied only to finite strate-
gies because the winning condition is termination in final states whereas we also apply
it to infinite strategies. This is no problem because it is only applied to the finite parts
between successors of mcuts and the next mcut and to system players in the NES-case.
Therefore, we might require infinitely many shortcuts but each of them is well-defined.
We prove that every winning strategy can be reduced to a minimal winning strategy by
removing all useless repetitions.

Lemma 6 (Minimal winning strategies). Removing a useless repetition via a shortcut from
a winning strategy in a Petri game results again in a winning strategy in the Petri game.

Proof. The construction of the shortcut only removes transitions with only system
places in their precondition, that are not synchronizing with other players and have
exchanged their history before the removed part, and then continues with the existing
future. Therefore, the strategy is still deterministic and satisfies justified refusal. Fewer
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markings (no new markings) are reached and therefore the shortcut also avoids bad
markings.

Removing all useless repetitions and updating the winning strategy accordingly in
each step gives a minimal winning strategy.

Before we can prove the reverse direction, we also have to show that unnecessary
NES-cases in strategies for the system players in Petri games can be removed. The Büchi
game allows at most one NES-case per branch by preventing the change from negative
to positive NES-status for decision tuples from the point onwards that a decision tuple
with ended NES-status exists in the decision marking. We use the following definition
to identify unnecessary NES-cases in strategies for the system players in Petri games.

Definition 46 (System place for the NES-case)
Given a strategy σ for the system players in a Petri game and a cut C in the Petri game,
the function nesσ (C) calculates all minimal sets of system places from C that satisfy the
NES-case in the Büchi game and is defined as

nesσ (C) = {Ct2 ⊆ C | (∀p ∈ Ct2 : (∀pE ∈ P σ
E : pE ≰ p⇒∀q ∈ futσ (p) :

pE ≰ q)∧ futσ (p) is infinite)∧ (∃t1, . . . , tn ∈ T σ : ∃C1, . . . ,Cn ⊆ P σ :

Ct2[t1⟩C1[t2⟩ . . . [tn⟩Cn ∧M (Ct2) =M (Cn)∧∀i ∈ 1, . . . ,n− 1 :

M (Ct2) ,M (Ci))∧ (∀C′t2 ⊆ Ct2 : Ct2 \C′t2 < nesσ (C)) ∧

(∀p ∈ Ct2 : ∃i ∈ {1, . . . ,n} : p < Ci)}.

We use n to search for repetitions of markings in the underlying Petri net. Therefore,
n can be upper bounded by the exponential size of the reachability graph of the un-
derlying Petri net. The cut Ct2 corresponding to the NES-case cannot synchronize with
the environment player and has to have an infinite future. Further, there has to be a se-
quence of transitions such that the marking of Ct2 is repeated after firing the sequence
but not during firing it. Additionally, Ct2 has to be minimal in the sense that no places
can be removed from Ct2 while Ct2 remains a cut corresponding to the NES-case. At
last, each place has to be left at least once between C and Ct2 at a position i.

We remove unnecessary NES-cases in strategies for the system players in Petri games
as follows:

Lemma 7 (One NES-case per branch). For each winning strategy σ for the system play-
ers in a bounded Petri game with one environment player and bad markings, there exists a
winning strategy σ ′ for the system players with, for each reachable cut, at most one minimal
set of system players playing infinitely together without synchronizing with the environment
player. The winning strategy σ ′ has at most one NES-case per branch in the reachability
graph.

Proof. We initialize σ ′ with the initial marking of σ . We fire enabled transitions from
the initial marking in σ in breadth-first search manner to obtain all reachable cuts. For
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each reached cut C (including the initial marking), we calculate nesσ (C). We copy fired
transitions t and their flow and postcondition to σ ′ unless either the precondition of t
is not part of σ ′ or nesσ (C) contains at least one set, the precondition of t is a subset or
equal to one set in nesσ (C), and one of the two following conditions holds:

1. The fired transition t is not added if there exists a disjoint NES-case in the past of
cut C.

2. The fired transition t is not added if there exists no disjoint NES-case in the past
of cut C but an outgoing transition from another set in nesσ (C) is already added
to strategy σ ′.

This construction allows for each reachable cut at most one minimal set of system
players playing infinitely together without synchronizing with the environment player
from the point onward that the terminated system players have the same position of
the environment player in their causal past, i.e., at the latest after the first repetition
of a marking for this set of system players playing infinitely together without synchro-
nizing with the environment player. The winningness of σ translates to σ ′ because the
termination of the system players is deadlock-avoiding as another set of system play-
ers plays infinitely. Furthermore, fewer markings are reached which is winning for the
winning condition of bad markings.

In the following, we assume that minimal strategies for the system players in a Petri
game have at most one NES-case per branch in the reachability graph. We can now
prove the reverse direction from strategies for the players in Petri games to strategies
for Player 0 in the corresponding Büchi game. We define the translation from strategies
for the players in Petri games to strategies for Player 0 in the corresponding Büchi game
and prove it correct.

Definition 47 (Translation from Petri game strategies to Büchi game strategies)
In the following, we translate minimal winning strategies for the system players in the
Petri game into winning strategies for Player 0 in the Büchi game. Given a winning
strategy σ = (N σ ,λσ ) of G and a prefix w ∈ V ˚ ·V0 of a play of G simulating G, we
compute the choice f (w) of a strategy f for G. Let w− result from w by deleting all
states containing⊤. Starting with the initial marking Inσ ofN σ and firing the sequence
of transitions corresponding to w− in σ , we arrive at a cut C of σ , which by definition
of V0 does not correspond to an mcut. We assume a function cut(id,p,C) that returns
for an identifier id ∈ {1, . . . ,maxS} and a place p in the Petri game the corresponding
place pcut in C of σ .

There are three cases: the first one resolves ⊤, the second one fires a transition with
only system places in its precondition not in the NES-case, and the third one does so in
the NES-case. For the three cases, we apply the definitions of TOP, SYS, and NES for
a given fired transition and a by nesσ (C) given (possibly empty) set of multisets over
system places for the NES-case. Due to Lemma 7, nesσ (C) contains at most one set and
if it contains a set no NES-case occurred in the past of the current cut C.
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Case 1 (TOP). If last(w) ∈ V0 contains ⊤ in the decision marking, we make decisions
and start the NES-case if nesσ (C) is not empty. The state last(w) does not contain
any decision tuples with positive NES-status in the decision marking. Formally, we
are at a state last(w) = (D,MT 2,BM1, . . . ,BMmaxS

) with corresponding cut C. We build
the successor state (D′ ,M ′T 2,BM′1, . . . ,BM′maxS

) that our strategy picks. We pick the
unique Ct2 ∈ nesσ (C) if nesσ (C) is not empty. Otherwise, Ct2 = ∅. We define D′ =
{(id,p,b,λ(postσ (pcut)),K) ∈ D | (id,p,b,T ,K) ∈ D ∧ cut(p, id,C) = pcut ∧ pcut ∈ C \ Ct2} ∪
{(id,p, true,λ(postσ (pcut)),K) ∈ D | (id,p, false,T ,K) ∈ D∧ cut(p, id,C) = pcut ∧ pcut ∈ Ct2}.
If Ct2 is not the empty set, then M ′T 2 = M (D′t2) and the remaining elements stay the
same. If Ct2 is the empty set, then all elements except for D′ stay the same.

Case 2 (SYS). If last ∈ V0 contains no ⊤ and no decision tuple in the decision marking
has positive NES-status, an enabled transition fires to the cut C′ and the NES-case is
started if nesσ (C) is not empty. As C is not an mcut, some transition with only sys-
tem places in its precondition is enabled in C. We choose one of the enabled tran-
sitions and call it t. Let t lead to a successor cut C′. Formally, we are at a state
last(w) = (D,MT 2,BM1, . . . ,BMmaxS

) with corresponding cut C. We build the succes-
sor state (D′ ,M ′T 2,BM′1, . . . ,BM′maxS

) that our strategy picks. We pick the unique Ct2 ∈
nesσ (C′) if nesσ (C′) is not empty. Otherwise, Ct2 = ∅. We define D′ = {(id,p,b′ ,T ,K) ∈ D |
(id,p,b,T ,K) ∈ D∧(p < pre(t)∨t < T )∧cut(p′ , id) = pcut∧(pcut ∈ (C\Ct2)⇒ b′ = b)∧(pcut ∈
Ct2⇒ b′ = true)}∪{(id,p′ ,b′ ,λ(postσ (pcut)),K ′) ∈ D | (id,p,b,T ,K) ∈ D∧pΥ (D, id, t)p′∧p ∈
pre(t) ∧ t ∈ T ∧ cut(p′ , id) = pcut ∧ (pcut ∈ (C \ Ct2) ⇒ b′ = false) ∧ (pcut ∈ Ct2 ⇒ b′ =
true)∧K ′ = max({lmc(D) |D ∈ Dpre(t)})}∪{(id′ ,p′ ,b′ ,λ(postσ (pcut)),K ′) ∈ D |▷Υ (t)p′∧id′ =
nextID(D, t,▷Υ (t)p′)∧ cut(p′ , id) = pcut∧ (pcut ∈ (C \Ct2)⇒ b′ = false)∧ (pcut ∈ Ct2⇒ b′ =
true)∧K ′ = max({lmc(D) | D ∈ Dpre(t)}. The backward moves of all participating play-
ers are updated accordingly, i.e., we add (Dpre(t),D′post(t)) and potentially the backward
move for all changes of NES-status of decision tuples that did not participate in t. If Ct2
is not the empty set, then M ′T 2 = M (D′t2) and the remaining elements stay the same.
If Ct2 is the empty set, then all remaining elements stay the same.

Case 3 (NES). If last ∈ V0 contains a decision tuple with positive NES-status in the
decision marking, an enabled transition fires and we finish the NES-case if the indi-
cated marking to repeat in the NES-case is reached. The state last(w) does not contain
any ⊤ in the decision marking. As at least one decision tuple in the decision marking
from last corresponding to cut C has positive NES-status, some transition with only
system places in its precondition is enabled in C and has a future of infinite length
and without synchronization with the environment player. We choose one of the these
transitions and call it t. Let t lead to a successor cut C′. Formally, we are at a state
last(w) = (D,MT 2,BM1, . . . ,BMmaxS

) with corresponding cut C. We build the successor
state (D′ ,M ′T 2,BM′1, . . . ,BM′maxS

) that our strategy picks. Two cases can occur: either
MT 2 is reached for the second time or not.

• If MT 2 is not reached for the second time, then we define D′ = (D \Dpre(t)∧t2) ∪
{(id,p′ , true,λ(postσ (pcut)),K ′) ∈ D | (id,p,b,T ,K) ∈ D∧pΥ (D, id, t)p′∧p ∈ pre(t)∧t ∈
T ∧ cut(p′ , id) = pcut ∧K ′ = max({lmc(D) |D ∈ Dpre(t)})} ∪
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{(id′ ,p′ , true,λ(postσ (pcut)),K ′) ∈ D | ▷Υ (t)p′ ∧ K ′ = max({lmc(D) | D ∈ Dpre(t)}) ∧
cut(p′ , id) = pcut∧ id′ = nextID(D, t,▷Υ (t)p′)}, i.e., transition t fires, decision tuples
for places in the postcondition of t retain positive NES-status, and these decision
tuples make their decision according to the structure of the strategy. In this case,
we update the backward moves, i.e., we add (Dpre(t),D′post(t)) to BMid to obtain
BM′id for participating player with identifier id. The remaining elements stay the
same.

• If MT 2 is reached for the second time, we perform the same step as for not reach-
ing MT 2 for the second time and update all decision tuples with positive NES-
status to ended NES-status, i.e., for D′′ obtained from the previous step, D′ =
{(id,p,b′ ,T ,K) ∈ D | (id,p,b,T ,K) ∈ D′′ ∧ (b = false⇒ b′ = false)∧ (b = true⇒ b′ =
end)}. We set M ′T 2 to the empty set and update the backward moves as in the
definition of NESfinish. The remaining elements stay the same.

Lemma 2 (From Petri game strategies to Büchi game strategies). If the system players
have a winning strategy in the Petri game, then there exists a winning strategy for Player 0
in the Büchi game.

Proof. By making strategies for the system players in the Petri game minimal, this proof
is analogous to the proof of Lemma 1. We translate a minimal winning strategy for
the system players in the Petri game into a winning strategy for Player 0 in the Büchi
game as defined in Definition 47. To prove that the constructed strategy is winning, we
prove that the reachable cuts of every minimal winning strategy for the system players
in the Petri game are equivalent as defined in Definition 40 to the considered decision
markings in the corresponding strategy for Player 0 in the Büchi game. Then, losing
behavior in the strategy for the system players in the Petri game occurs if and only if
losing behavior in the strategy for Player 0 in the Büchi game occurs. We consider both
directions for a minimal winning strategy σ for the system players in the Petri game
and the corresponding strategy f for Player 0 in the Büchi game:

• We show that if a reachable cut C exists in σ , then a decision marking is consid-
ered in a by f reachable state of the Büchi game. The cut C is reached via the
sequence of transitions T . We only retain transitions with an environment place
in their precondition in T . The choices of system players are already represented
by σ . We start from the initial marking of σ and obtain a sequence of transitions w
that is applicable to f and reaches C by recursively applying the following steps:
If a NES-case starts from the current cut (i.e., a minimal set of system players in
the cut can play infinitely together without synchronizing with the environment
player) and the underlying marking of the cut is the first marking to repeat in this
NES-case, then we add the transitions until the repetition of the marking occurs
to w and update the current cut accordingly. By Lemma 7, at most on NES-case
can occur. Otherwise, we try to fire a transition with only system places in its pre-
condition. If this is not possible, we try to fire a transition with an environment
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3. Decidability of Bad Markings

places in its precondition. We pick the environment transition corresponding to
the first element of T and afterward remove it from T . In both cases, the current
cut becomes the cut reached after firing the transition.

When none of these cases apply and there is a transition left in T , we need to add
transitions with only system places in their precondition which are rolled back
by backward moves to reach an equivalent decision marking to the cut C. In this
case, we fire a maximal sequence of transitions with only system places in their
precondition such that only transitions with an environment place in the pre-
condition are enabled. The enabled transitions include the remaining transition
in T . These fired transitions and all following transitions with only system places
in their precondition are collected to be used as backward moves. We apply the
recursive steps from before again. The first iteration removes the last transition
from T and afterward a finite number of transitions with only system places in
their precondition are added. Notice that at most one transition can be left in T
because for all but the last transition we fire it as late as possible at an mcut. This
procedure obtains w′. We add steps to w′ to make explicit decisions removing ⊤
according to the postcondition of the respective players and indicate the begin-
ning of the NES-case by changing the corresponding decision sets from negative
to positive NES-status to obtain w. By the construction of the Büchi game, w is
applicable to the Büchi game. Either w directly leads to a decision marking D
such that D ≡ C holds or some of the collected backward moves and of the back-
ward moves in the NES-case are applied to the state in the Büchi game leading to
a decision marking D′ such that D′ ≡ C holds.

• We show that if a decision marking D is considered in a by f reachable state of
the Büchi game, then a reachable cut C exists in σ such that D ≡ C holds. If D
is not considered via backward moves, then the word w exists to reach the state
of D. The word w− is defined as w without symbols ⊤. Firing transitions in the
order of w− in the strategy leads to a cut C. By the strategy translation from
Definition 47, w− is applicable to σ and, by the construction of the Büchi game,
the precondition and postcondition of the used transitions are the same in both
strategies. Therefore, D ≡ C holds. If D is reached via backward moves, then the
word w to reach the state of D and the word wback of applied backward moves
exist. We define the subtraction of wback from w− from the end of both words.
Firing transitions in the order of w−−wback in the strategy leads to a cut C. By the
strategy translation from Definition 47, the backward moves can be subtracted
from the word, w−−wback is applicable to σ , and, by the construction of the Büchi
game, the precondition and postcondition of the used transitions are the same in
both strategies. Therefore, D ≡ C holds.

The same argument as in the proof of Lemma 1 applies to show that it suffices to
only apply backward moves from one state, i.e., at most one transition can be left in T .
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The constructed strategy for the Büchi game is a strategy as it chooses one successor
for every state of Player 0. Also, by construction, all successors are added to states of
Player 1.

As we showed that a strategy for the system players in a Petri game and the cor-
responding strategy for Player 0 in a Büchi game visit equivalent cuts and decision
markings, we can conclude that for a minimal winning strategy for the system players
in the Petri game an accepting state in the strategy for Player 0 in a Büchi game is vis-
ited infinitely often. This is because FB is visited infinitely often for finite plays and
for infinite plays at most one NES-case occurs needing only finitely many states and a
state representing an mcut is visited infinitely often as the environment player is part
of fired transitions infinitely often. Therefore, the strategy for the system players in the
Petri game is winning.

Theorem 3 (Game solving). For Petri games with a bounded number of system players, one
environment player, and bad markings, the question of whether the system players have a
winning strategy is decidable in 2-EXPTIME. If a winning strategy for the system players
exists, it can be constructed in double exponential time.

Proof. We establish the complexity by estimating the size of the set V of states in the
Büchi game. We recall from Definition 19 that the states V in the Büchi game are de-
fined as V = VBN ∪D × (PS → {0, . . . , k})× (B˚)maxS × {1, . . . ,maxS }. The underlying Petri
net is k-bounded by some k ≥ 1. We use binary encodings to identify places. This re-
sults in log2 occurring in the size estimate. Here, we assume that log2 returns numbers
greater or equal to one, i.e., log2(x) = max(1, logusual

2 (x)) where logusual
2 (x) is the usual

logarithm with base two. We represent a decision tuple (id,p,b,T ,K) by ⌈log2(|maxS |)⌉
Boolean variables to identify the identifier id, ⌈log2(|P |)⌉ Boolean variables to identify
the place p, two Boolean variables for the three-valued flag b, a Boolean variable indi-
cating the presence of ⊤, and, for each transition t ∈ T , a Boolean variable indicating
the presence of t in the decision T , and ⌈log2(|maxS |)⌉ Boolean variables to identify the
last mcut K . There are at most maxS + 1 players. The additional player is the environ-
ment player. The maximal number of system players maxS includes the possibility of
k players in one place. This gives us (maxS + 1) · (⌈log2(|P |)⌉+ 3 + |T |+ 2 ˚ ⌈log2(|maxS |)⌉)
Boolean variables. Considering all valuations of these variables, the size of the setD of
decision markings can be bounded by A = 2(maxS+1) · (⌈log2(|P |)⌉+3+|T |+2˚⌈log2(|maxS |)⌉).

The marking to repeat in the NES-case can be represented with maxS ·⌈log2(|PS |)⌉
Boolean variables. Thus, the size of the set of markings to repeat in the NES-case can
be bounded by B = 2maxS ·⌈log2(|PS |)⌉.

Backward moves are pairs of decision markings. We need 2·maxS · (⌈log2(|PS |)⌉+ 3 +
|T |) Boolean variables to represent a backward move. The number of backward moves
for each of the maxS sequences can be bound by the triangular number of the maxi-
mum number of system players maxS · (maxS + 1)/2 times the number of markings 2|P |.
The maximal length of a loop can be bounded by the number of markings 2|P | and in
each loop at least one system player learns about at least one new last mcut. After
(maxS · (maxS + 1)/2) · |T | loops, all system players have to be maximally informed and
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s1 s2 e1 s3

s4 s5 e2 s6

s7 s8 e3 s9 s10

t1 t2 t3

t4 t5 t6

Figure 3.7.: As {s1, s5, e2, s9} and {s2, s4, e2, s10} are bad markings, no deadlock-avoiding
strategy for the system players can avoid the bad markings.

further loops lead to a useless repetition, i.e., the collection of backward moves can be
stopped. Therefore, the number of backward moves in the sets of backward moves can
be bounded by C = 2(maxS · (maxS+1)/2) ·2|P | ·2 ·maxS · (⌈log2(|PS |)⌉+3+|T |).

The size of the set V of states in the Büchi game can be bounded by A ·B ·C. This
equals a double exponential number of states in the size of the Petri game dominated
by the factor C. As Büchi games can be solved in polynomial time [CH12], the total
time required to construct and solve the Büchi game is double exponential in the size
of the Petri game.

Büchi games are memoryless determined. The winning strategy can therefore be
represented by a finite graph Gf whose size is bounded by the size of the Büchi game.
We construct a finite deadlock-avoiding winning strategy for the system players in the
Petri game following the construction from Definition 39, using Gf instead of the infi-
nite strategy tree Tf . In the NES-case, we represent the strategy for the system players
finitely. When the marking to repeat in the NES-case is reached for the second time,
we do not add an infinite unrolling of the strategy for the system players in the NES-
case. Instead, we change the flow between transitions and places where the infinite
unrolling would be added to the first occurrence of the place in the NES-case. We re-
move all thereby unreachable places and represent the NES-case with a finite strategy.
When Gf reaches a state for the second time, i.e., a loop occurs with the environment
player, we change the flow from transitions to places, where the strategy would con-
tinue as above, such that they reach the cut corresponding to the first occurrence of
the state in the Büchi game. We remove all thereby unreachable places and represent a
loop with the environment player with a finite strategy.
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3.4.10. Necessity of Backward Moves

We illustrate the necessity of backward moves in our reduction with an exemplary Petri
game. For this exemplary Petri game in Figure 3.7, the Büchi game encoding it is won
by Player 1 because the Petri game does not have a winning strategy for the system
players. To show that the bad markings cannot be avoided by a strategy for the system
players while being deadlock-avoiding, the use of backward moves is essential: Both
transitions t1 and t2 fire before transition t3 fires in the Büchi game encoding the Petri
game in Figure 3.7 because t1 and t2 have only system places in their precondition.
Only after t3 fires, Player 0 can decide between transitions t5 and t6. To reach one
of the bad markings {s1, s5, e2, s9} and {s2, s4, e2, s10}, it is required that only one of the
transitions t1 and t2 fired when deciding between t5 and t6. Backward moves allow
from either reachable marking {s4, s5, e2, s9} or {s4, s5, e2, s10} to apply the backward move
for t1 or t2 to prove that the bad markings cannot be avoided.

3.5. Requiring Deterministic Decisions for Strategies

We elaborate on the requirement of deterministic decisions for strategies for the system
players in Petri games. The reduction in the case of bad places as local winning condi-
tions from the original paper on Petri games [FO17] is not quite correct for a very small
class of Petri games1. We explain this problem in detail and give two solutions: First,
we slightly restrict the class of Petri games that can be solved by the original paper.
Second, we show that backward moves from the reduction for bad markings as global
winning condition presented in this chapter can be used to extend the original paper
to exactly decide the existence of winning (and therefore deterministic) strategies.

In Figure 3.8, a Petri game is depicted that has no winning strategy but for which the
reduction in the original paper falsely gives a strategy. The Petri game can be consid-
ered with an empty set of bad places and with an empty set of bad markings. In both
cases, there does not exist a winning strategy for the system players in the Petri game.
The two markings {s2, s4, e5} (reachable by transitions t1, t3, and then t5 firing) and
{s1, s4, e4} (reachable by transition t2 firing) are reachable. Thus, Player 0 has to allow
for the system player in place s4 both transitions t6 and t7 in order to avoid deadlocks.

This decision is nondeterministic for the marking {s2, s4, e4} (reachable by transi-
tions t1, t3, and t4 firing). When following the reduction in the original paper, tran-
sition t6 always fires before transition t5 and the marking {s2, s4, e4} is not reached. This
results in the strategy in Figure 3.9 which violates justified refusal at system place s4.
The definition of justified refusal implies that either both transitions t7 and t′7 are al-
lowed or both are disallowed. Allowing both leads to a nondeterministic decision and
not allowing both leads to a deadlock. Therefore, no winning strategy for the system
players can exist.

1We thank Paul Gölz for alluding us to this problem.
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e1

e2

e3

e4 e5

s1

s4
s2

s3

t1

t2t3

t4 t5

t6 t7

Figure 3.8.: A Petri game without bad places is depicted. The three markings {s2, s4, e5}
(by t1, t3, and then t4 firing), {s1, s4, e4} (by t2 firing), and {s2, s4, e4} (by t1, t3, and then t5
firing) are reachable. This implies that no deterministic and deadlock-avoiding strategy
for the system player in place s4 can exist.

Structural Restriction

As a first possible solution, we maintain the original definition of deterministic deci-
sions for system players on page 188 of [FO17], but restrict the class of games for which
Section 6 on pages 191 ff. is applicable. We add to the very last part on page 192 that G
has to fulfill the following condition: ∀p ∈ PE : ¬(p♯p)∨∀t ∈ pre(p) : M ∈ R(M) : pre(t) ⊆
M ⇒ pre(t) = M. It has to hold that every environment place is not in self-conflict,
i.e., the environment place is not reachable from any other place by exiting the other
place with two different arcs, or all ingoing transitions of the environment place are
only enabled from a reachable marking when the marking is equal to the precondition
of the transition. Note that the conditions are evaluated on the original Petri game and
not on the unfolding or on strategies. In the proof of Lemma 6.6 on page 196, the ar-
gument for requirement (S3) now holds because skipped environment transitions due
to preference of system transitions have to be represented explicitly and therefore can
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e1

e2

e3

e4 e5 e′4

s1

s4
s2

s3s′4 s′′4 s′3 s′′′4 s′′3

t1

t2t3

t4 t5

t6 t7
t′7

Figure 3.9.: The unfolding and a strategy for the Petri game in Figure 3.8 are depicted.
The unfolding includes the grayed-out parts, whereas the strategy does not include
them. Copies of places and transitions due to splits from the unfolding are primed.
The strategy violates justified refusal because it disallows t7 while allowing t′7.

be forbidden. In this thesis, requirement (S3) for strategies for the system players is
included in the requirement of justified refusal for strategies for the system players.

Extended Reduction

As a second possible solution, we explain how backward moves from the reduction intro-
duced in this chapter solve the problem concerning deterministic decisions described
before. The reduction from this chapter solves the synthesis problem for Petri games
with a bounded number of system players and one environment player for the global
winning condition of bad markings. This global winning condition is an extension com-
pared with the local winning condition of bad places from the original paper on Petri
games [FO17]. Using backward moves as described in Section 3.3.4 for the Petri game
in Figure 3.8, a backward move for transition t6 is applicable from the state encoding
the marking {s3, s4, e4}, resulting in the previous state corresponding to the marking
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{s2, s4, e4}. In this state, the made decisions of the players make the nondeterministic
decision of system player s4 visible. The system player s4 allows both its outgoing tran-
sitions t6 and t7. Therefore, reaching the original state encoding the marking {s3, s4, e4}
is losing for Player 0, and correctly no winning strategy for Player 0 exists in the Büchi
encoding the Petri game.

Backward moves can be added to the original reduction for bad places as winning
condition in order to find nondeterministic decisions of the system players. They are
not necessary in the NES-case that is handled before generating the Büchi game. The
higher complexity due to the length of the stored sequences of backward moves trans-
fers to the extended reduction for bad places as local winning condition and for always
preventing nondeterministic decisions. We conjecture that the construction can be op-
timized in such a way that its complexity is in EXPSPACE (instead of 2-EXPTIME) by
guessing and checking the necessary sequence of backward moves instead of collecting
all backward moves. It is an intriguing open problem whether this construction is re-
ally possible and whether it is optimal in terms of complexity. It is also a fascinating
question whether there is a necessary gap in terms of complexity between bad places
as local winning condition and bad markings as global winning condition or whether
the somewhat global requirement of deterministic decisions prevents such a gap. We
conjecture that the guessing and checking of backward moves is, in fact, necessary and
optimal in terms of complexity for both the local winning condition of bad places and
the global winning condition of bad markings.

3.6. From At Most One to Exactly One Environment Player

We show that every Petri game with at most one environment player can be extended
into a Petri game with exactly one environment player such that both Petri games have
equivalent strategies. The strategies are equivalent in the sense that the set of strate-
gies obtained by removing the additions of our construction from the strategies for the
extended Petri game is equal to the set of strategies of the original Petri game. The ex-
tension widens the decidability result for Petri games with a bounded number of system
players, one environment player, and bad markings as global winning condition from
the previous section to Petri games with a bounded number of system players, at most
one environment player, and bad markings as global winning condition.

The construction works as follows: Given a Petri game G with at most one environ-
ment player in every reachable marking, we add a unique place envidle to the set of
environment places PE of G. When the initial marking In of G does not place a token
into an environment place, then we extend In in such a way that it puts one token into
the unique environment place envidle. Otherwise, the unique environment place envidle
remains empty initially. For every transition t of G that does not require a token in
an environment place by its precondition but puts a token into an environment place
according to its postcondition, we extend the precondition of t in such a way that it
also requires one token in the unique environment place envidle. The postcondition of t
remains unchanged. Analogously, for every transition t of G that does not put a token
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in an environment place according to its postcondition but requires a token in an en-
vironment place by its precondition, we extend the postcondition of t in such a way
that it also puts one token in the unique environment place envidle. In this case, the
precondition of t remains unchanged. When the winning condition is concerned with
markings (i.e., it is a set of bad markings, a set of good markings, or a pair of good
and bad markings), then we extend every marking that does not require a token in an
environment place in such a way that it requires a token in the unique environment
place envidle.

By these steps, we obtain a Petri game with exactly one environment player in all
reachable markings. When initially there was no environment player before, then it
will now be in the unique environment place envidle. Every transition, spawning the
one environment player before, now moves the token out of the unique environment
place envidle. Every transition, terminating the one environment player before, now
moves the token into the unique environment place envidle. Maintaining one environ-
ment player leads to a larger causal past being accumulated and being shared upon
synchronization with system players. The accumulation is no problem because the
strategy for the system players has to work against all behaviors of the environment
player, even against those that behave as if it accumulated the larger causal past. Shar-
ing the larger causal past with some system players is no problem, either, because there
has to be at least one system player that also shares it when ensuring the sequentiality
between terminating and spawning the environment player. Otherwise, there could be
more than one environment player.

3.7. Summary

We proved that the existence of a winning strategy for the system players is decidable
for Petri games with a bounded number of system players, at most one environment
player, and bad markings as global winning condition. Before, such a result was only
known for the local winning condition of bad places [FO17]. Global winning condi-
tions are a significant improvement over local winning conditions because they allow
expressing global properties like mutual exclusion. The decidability result for bad
markings is based on a reduction to Büchi games as in the decidability result for bad
places. In both cases, system players explicitly fix their decisions of which of their
outgoing transitions to allow as early as possible while decisions by the environment
player occur as late possible at mcuts. The Büchi winning condition requires that at
least one state corresponding to an mcut is reached infinitely often. We make two ma-
jor extensions to encode bad markings as global winning condition. These extensions
also avoid an intricate problem of the original decidability result for bad places as local
winning condition.

The first extension deals with the case of some system players playing infinitely with-
out synchronizing with the environment player. This so-called NES-case is handled di-
rectly in the Büchi game (instead of in a preprocessing step as in the decidability result
for bad places). Handling it directly in the Büchi game is necessary to check markings
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that include players, that play infinitely without the environment player, and players,
that synchronize infinitely often with the environment player. The NES-case is handled
directly in the Büchi game by allowing (and requiring) the system players to announce
that they want to play infinitely without synchronizing with the environment player.
The can prove their announcement by repeating a marking, after which the usual order
of the Büchi game of repeating mcuts resumes. The system players are required to an-
nounce the NES-case because otherwise they cannot reach a Büchi state corresponding
to an mcut infinitely often, which is losing for Player 0 in the Büchi game encoding the
system players in the Petri game.

The second extension checks for each sequential play in the Büchi game that no bad
markings and no nondeterministic decisions occur for all possible markings due to the
reordering of concurrent transitions in the encoded play of the Petri game. This is
achieved by backward moves which store the local past of each system player until its
last synchronization with the environment player. We prove that this history can be
stored finitely and suffices to check all reachable markings both to not be a bad mark-
ing and to not encode a nondeterministic decision. Such nondeterministic decisions
that are only visible at markings reachable when reordering concurrent transitions are
the intricate problem of the decidability result for bad places. This can be solved by
extending the reduction in the case of bad places with backward moves.
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Chapter 4
Undecidability of Good
Markings

In this chapter, we investigate global winning conditions beyond bad markings. We re-
port two undecidability results to motivate our focus on the global winning condition
of bad markings in the previous chapter and to show that undecidability is quickly
reached after the global winning condition of bad markings. We first recall the un-
decidability of synthesis of distributed systems in the synchronous setting and then
explain on an intuitive level how these ideas can be transferred to the asynchronous
setting of Petri games. Here, incomplete information between two system players al-
lows us to force them to simulate the halting problem of a Turing machine. For the
asynchronous setting of Petri games, we show how good markings can define firing se-
quences that deviate too much from the synchronous setting as winning. Thereby, only
equivalent cases to the synchronous setting remain. For the formal reduction, we use
the Post correspondence problem instead of the halting problem of Turing machines
only for simpler notation. By the formal reduction, we obtain our first undecidability
result: We prove that it is undecidable whether a winning strategy exists for the system
players in Petri games with at least two system players, at least one environment player,
and good and bad markings as global winning condition.

Afterward, we prove that bad markings from this undecidability result can be rep-
resented by having all players repeatedly become environment players. Bad markings
and the increase in the number of environment players is used to detect errors by one
or both system players in the solution to the PCP. Thereby, we obtain our second unde-
cidability result: We prove that it is undecidable whether a winning strategy exists for
the system players in Petri games with at least three players, out of which one player
is always an environment player and two players can change between being a system
and environment player and good markings as global winning condition. In the end, a
transfer of our undecidability proofs to control games based on asynchronous automata
is outlined. Because of the close relationship between Petri games and control games
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discussed in Section 1.7.2, the key ideas from our undecidability proofs can be applied
to control games and we achieve similar undecidability results for control games.

The key contributions of this chapter are the following:

• We prove that it is undecidable whether a winning strategy exists for the system
players in Petri games with at least two system players, at least one environment
player, and good and bad markings as global winning condition.

• We prove that it is undecidable whether a winning strategy exists for the system
players in Petri games with at least three players, out of which one player is always
an environment player and two players can change between being a system and
environment player and good markings as global winning condition.

• We outline how these undecidability proofs can be transferred to control games
based on asynchronous automata. Theses results show that one quickly hits un-
decidability when using good markings as winning condition.

This chapter is structured as follows: In Section 4.1, we present the undecidability
proof for the synthesis of distributed systems in the synchronous setting that is the
main inspiration for our undecidability proofs. In Section 4.2, we outline an in-depth
overview of our undecidability proofs and show how the synchronous setting can be
simulated in the asynchronous setting of Petri games. In Section 4.3, we give our un-
decidability proofs in their full formality. In Section 4.4, we outline how our undecid-
ability proofs can be transferred to control games based on asynchronous automata.

4.1. Undecidability in the Synchronous Setting

Synthesis of distributed systems in the synchronous setting of Pnueli and Rosner is
undecidable [PR90; Sch14]. In the proof, the specification forces two synchronous sys-
tem players P0 and P1 with incomplete information on the environment Env (cf. Fig-
ure 4.1) to simulate a Turing machine by outputting sequences of tape configurations
and to eventually reach a halting tape configuration. The environment can change
the distance between the simulation at the two system players and can check the syn-
chronously output tape configurations for correctness. Notice that the two system play-
ers cannot delay their output as they could in the asynchronous setting. Each system
player has no information about the distance to the simulation of the other one. Thus,
simulating the Turing machine at both players is the only possible winning strategy and
synthesis of synchronous distributed systems can decide whether this strategy reaches
a halting tape configuration. The specification of the two players can be encoded in the
temporal logic LTL [Sch14].

In the next section, we show how good markings can restrict the asynchronous set-
ting of Petri games to an equivalent a synchronous setting as in the setting of Pnueli and
Rosner. Then, we encode the Post correspondence problem (PCP) into Petri games with
good markings to prove their undecidability. We use the PCP instead of simulating a
Turing machine in order to obtain simpler notation.
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Env

P0 P1

s0 s1

o0 o1

Figure 4.1.: The architecture of the undecidability proof for synthesis of synchronous
distributed systems is depicted. There is one environment player Env and two system
players P0 and P1. System player P0 can base its output o0 only on input s0 from the
environment player whereas system player P1 can base its output o1 only on input s1
from the environment player. This implies that both system players have incomplete
information about the other system player.

4.2. Undecidability of Petri Games with Good Markings

We prove that it is undecidable whether a winning strategy exists for the system players
in Petri games with at least two system and one environment player and good and bad
markings. For this winning condition, no bad marking should be reached until a good
marking is reached, which can be expressed in LTL. Notice that good markings do not
require players to terminate in a good marking but only to reach one. Notice also that,
after a good marking has been reached, it is allowed to reach a bad marking. We show
how good markings can enforce the undecidable synchronous setting [PR90; Sch14]
from the previous section in Petri games. Afterward, we prove that it is undecidable
whether a winning strategy exists for the system players in Petri games with only good
markings and at least three players, out of which one is an environment player and each
of the other two changes between system and environment player. Bad markings from
the previous result are encoded by system players repeatedly changing to environment
players and back. All formal details can be found in Section 4.3.

4.2.1. Petri Game for the Post Correspondence Problem

The undecidability proof uses the Post correspondence problem [Pos46]. The Post cor-
respondence problem (PCP) is to determine, for a finite alphabet Σ and two finite lists
r0, r1, . . . , rn and v0,v1, . . . , vn of non-empty words over Σ, if there exists a non-empty
sequence i1, i2, . . . , il ∈ {0,1, . . . ,n} such that ri1ri2 . . . ril = vi1vi2 . . .vil . This problem is un-
decidable (at least for five or more pairs of words) which is proven by a reduction from
the halting problem of Turing machines [Nea15].
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To simulate the PCP in a Petri game, we use one environment player and two sys-
tem players. The three players are independent as they cannot communicate with
each other. Each system player outputs a solution to the PCP. By firing a transition,
a player outputs the label of the transition. The output of the first system player is
i1ri1τi2ri2τ . . . ilrilτ#1 and the output of the second one is j1vj1τj2vj2τ . . . jmvjmτ#2 for
i1, . . . , il , j1, . . . , jm ∈ {0,1, . . .n}. Both system players output indices followed by the word
from the index position of the respective list and τ , and end symbol #1 or #2 at the
end of the sequence. Words ri for i ∈ {i1, . . . , il} and vj for j ∈ {j1, . . . , jm} are output
letter-by-letter. A correct solution to the PCP fulfills the following conditions l > 0,
m > 0, l = m, i1 = j1, i2 = j2, . . . , il = jm, and ri1ri2 . . . ril = vj1vj2 . . .vjm .

We ensure that strategies for the two system players can only win by outputting the
same sequence of indices at both players. This permits to decide for these strategies if
a good marking is reached where both system players have output a correct solution.
Depending on a choice by the environment player, we either check the equality of the
output sequences of indices or of the letter-by-letter output sequences of words. Due
to the independence of the three players, this decision stays hidden from the system
players. Therefore, the strategy for the system players has to behave as if both the se-
quences of indices and the sequences of words are tested. With good markings, we
restrict the asynchronous setting of Petri games to turn-taking firing sequences on the
output indices or letters. Thus, we consider equivalent firing sequences to the syn-
chronous setting and can check the conditions for a correct solution to the PCP after
both system players have output the end symbol. With bad markings, we identify when
output indices or output letters do not match. System players can only output the end
symbol after outputting at least one index and one word in order to ensure that solu-
tions are non-empty.

4.2.2. Linear Firing Sequences via Good Markings

We use MOD-3 counters to restrict the asynchronous setting of Petri games to firing se-
quences equivalent to the synchronous setting of Pnueli and Rosner [PR90; Sch14]. For
each system player, we introduce two MOD-3 counters to count the number of output
indices and of output letters modulo three. Whenever a player outputs an index, the
respective index counter is increased by one, and accordingly for output letters and the
letter counter. If a counter would reach value three, it is reset to zero. We define good
markings based on the two MOD-3 index counters and the two MOD-3 letter counters.
In a linear firing sequence for indices (letters), the two system players output the indices
(letters) alternately with the first system player preceding the second one at each turn.
With good markings, we ensure that the environment player first decides that either
the output indices or letters are checked for equality. Afterward, a good marking is
reached when a firing sequence is not a linear firing sequence for indices or letters,
based on the decision by the environment player.

In Figure 4.2, we visualize the reachability graph for the two system players when
only considering either the values of their MOD-3 counters for indices or letters. Mark-
ings are differentiated in the reachability graph depending on if a good marking is
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(0 ∥ 0)

(0 ∥ 1)

(1 ∥ 0)

(2 ∥ 0)

(1 ∥ 1)

(1 ∥ 2)
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(0 ∥ 1)

(2 ∥ 2)

(2 ∥ 0)

(0 ∥ 2)

(1 ∥ 2)
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Figure 4.2.: The reachability graph for the two system players is depicted when only
considering either the values of their MOD-3 index counters or of their MOD-3 letter
counters and differentiating markings depending on if a good marking is reached be-
fore. Good markings are colored green. All behavior after a good marking (including
reaching a bad marking) is winning by definition. To compare output indices or letters,
only the specific firing sequence in white has to be considered.

reached before, e.g., position (0 ∥ 1) does not lead to position (1 ∥ 1) as the path to
(1 ∥ 1) does not include a good marking. With linear firing sequences, we only consider
firing sequences where the first system player outputs the first index or letter before the
second system player as the opposite cases are good markings. For firing sequences not
reaching a good marking, equality of output indices or letters is checked at positions
(0 ∥ 0), (1 ∥ 1), and (2 ∥ 2). Thereby, equality of output indices or letters at the same po-
sition can be checked without storing all outputs and it is ensured that solutions have
the same length.

Notice that linear firing sequences for indices do not restrict the order in which the
two system players output letters between two indices, and vice versa. Also, we at least
need MOD-3 counters because MOD-2 counters do not work. For a MOD-2 counter, the
good marking (2 ∥ 0) would be replaced by (0 ∥ 0), implying that all firing sequences
contain a good marking. A MOD-3 counter avoids this situation and prevents that
one player overtakes the other. Thus, indices or letters at different positions are not
compared for a MOD-3 counter, i.e., output indices or letters at position (0 ∥ 3) (not
modulo three) can be different.

4.2.3. Preventing Untruthful Termination

The good markings to only consider linear firing sequences introduce new possibilities
for the system players to be winning. These possibilities arise when the system players
can enforce all firing sequences to reach a good marking. They occur when a system
player terminates without the end symbol (#1 or #2) and are called untruthful termi-
nation. Untruthful termination is prevented by letting the environment player decide
which system player it believes to not terminate with the end symbol or that every-
thing is okay. This decision happens together with the initial choice of the environment
player between checking equality of indices or letters. Due to the independence of the
players, each system player has to behave as if the environment player is anticipating
it to untruthfully terminate and has to output the end symbol to avoid this. Therefore,
no untruthful termination can occur.
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4.2.4. Undecidability Results

A winning strategy exists in the Petri game if and only if there exists a solution to the
instance of the PCP. The only strategy with a chance to be winning for the two sys-
tem players is to output the same solution to the PCP and we can translate solutions
between both cases. Therefore, we can encode the PCP in Petri games with good mark-
ings and bad markings which shows that the synthesis problem for such Petri games is
undecidable. This gives us:

Theorem 8 (One environment player and good and bad markings). For Petri games with
at least two system players, one environment player, and good and bad markings as global
winning condition, it is undecidable whether the system players have a winning strategy.

Bad markings can be encoded by system players repeatedly changing to environment
players and back. Players commit to transitions and then system players become envi-
ronment players. Environment players either follow the committed transition and fire
a transition returning to the respective system and environment players or fire a tran-
sition with all other environment players after which no good markings are reachable
to encode a bad marking. This gives us:

Theorem 9 (Three environment players and good markings). For Petri games with good
markings as global winning condition and at least three players, out of which one is an
environment player and two change between being a system player and an environment
player, it is undecidable whether the system players have a winning strategy.

4.3. Formal Details

In this section, we give the formal reduction from the Post correspondence problem
to Petri games with good and bad markings and from Petri games with good and bad
markings to Petri games with good markings. First, we present the first reduction by
formally defining the two system players, the environment player, the good markings,
and the bad markings. Note that we define a Petri game based on a safe Petri net which
allows us to use sets of places instead of multisets over places for simpler notation.
Second, we prove the first reduction correct. Third, we present the second reduction
by formally defining the translation of Petri games with both good and bad markings
to Petri games with good markings. Fourth, we prove the second reduction correct.

Throughout the section, we use unique variables for parts of our reduction. The
number of indices is n and i is used to iterate over the possible indices. To differentiate
between the two system player, we use k ∈ {1,2}. The word of an index is identified
with wi for both system players, with ri specifically for the first system player and
with vi specifically for the second system player. We use j to iterate over words letter-
by-letter. Labels of transitions and letters are identified by l. We use x to either identify
an index counter or its value for both system players, y specifically for an index counter
or its value for the first system player, and z specifically for an index counter or its value
for the second system player. The same applies to the letter counter with a, b, and c.
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4.3.1. First Reduction

We present the reduction from the Post correspondence problem to Petri games with
good and bad markings.

The Two System Players

The two system players without their MOD-3 counters are presented on the left side of
Figure 4.3. We display transitions with their label which is equal to the transition when
the label is unique. This means, for example, that τ or the letters to represent words wi

are only labels because they occur more than once, whereas #k is both the transition and
its label because it occurs only once in each system player. Let k ∈ {1,2} differentiate
between the first system player and the second system player and w identify the words
of the players (i.e., w = r if k = 1 and w = v if k = 2). For each of the two system players,
the system place pkstart with the token initially has a choice between the indices 0, . . . ,n.
Afterward, the corresponding word w0, . . . ,wn is output letter-by-letter, finished by a
transition labeled by τ . This is illustrated on the right side of Figure 4.3. In all cases,
the system place pkchoice is reached which presents the choices with the same label to the
system player as from system place pkstart with the additional option to terminate with
transition #k .

The player has 4 + n +
∑

i∈{0,...,n} |wi | places. There are two places (pkstart and pkchoice)
to decide between the indices, only the latter including the option #k , the termination
place pkterm, and n + 1 places pk0, . . . ,p

k
n for the chosen index from 0, . . . ,n. After each

index, the sequence of letters wi is followed by a transition labeled by τ returning to
the decision place including the option #k . Notice that the decisions for indices are
labeled with numbers 0, . . . ,n and transitions for outputting words are labeled with
letters from Σ. The remaining transitions are either #k or labeled by τ .

Next, we add the index counter cokindex = {0k
index,1

k
index,2

k
index} and letter counter

cokletter = {0k
letter,1

k
letter,2

k
letter}. Places have the form IDk ×cokindex×cokletter where IDk are the

places from Figure 4.3. Transitions labeled with numbers increase the MOD-3 counter
for indices by one and transitions labeled with letters increase the MOD-3 counter for
letters by one. The termination transition #k and transitions labeled by τ leave the
counters unchanged and initially the counters are set to zero.

For k ∈ {1,2}, the Petri games for each of the two system players has the form GkS =
(P k

S ,∅,T
k ,F k , Ink , (∅,∅)) with P k

S , T k , F k , and Ink defined as follows. For words wi of
length at least one, we introduce the notation wi[j] for 0 ≤ j ≤ |wi | − 1 to obtain the
letters of the word. A place pki:j:l with 0 ≤ i ≤ n and 0 ≤ j ≤ |wi | − 1 is reached after

the j-th letter l ∈ Σ of word wi has been output. We define the IDs of places as IDk =
{pkstart,p

k
choice,p

k
term,p

k
0, . . . ,p

k
n} ∪ {pki:j:wi [j]

| 0 ≤ i ≤ n∧ 0 ≤ j ≤ |wi | − 1} and the set of system

places as P k
S = {(pkstart,0

k
index,0

k
letter)} ∪ {(id

k ,xk , ak) | idk ∈ IDk \ {pkstart} ∧ xk ∈ cokindex ∧ ak ∈
cokletter}. The initial marking Ink is {(pkstart,0

k
index,0

k
letter)}.

We introduce the set of labels L for transitions as L = {#k , τ} ∪ {0, . . . ,n} ∪Σ and the
notation p [l⟩k p′ to define a unique transition with label l ∈L from place p to place p′
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pkstart

...

pk0 pkn

pkchoice

...

pkterm

0 n

0 n

...w0 ... wn

τ τ

#k

pki

pki:0:wi [0]

...

pki:|wi |−1:wi [|wi |−1]

pkchoice

wi[0]

τ

wi[1]

wi[|wi | − 1]

Figure 4.3.: Let k = 1 identify the first system player with w = r and k = 2 the second
one with w = v. On the left, each of the two system players is shown without MOD-3
counters. It is abbreviated how words w0, . . . ,wn are output letter-by-letter. On the
right, this abbreviation between places pki for i ∈ {0, . . . ,n} and pkchoice is made explicit.

as transition tkp[l⟩p′ ∈ T
k with the corresponding arcs (p, tkp[l⟩p′ ), (t

k
p[l⟩p′ ,p

′) ∈ F k . In the

following, we use this notation to define the transitions T k and the flow F k step-by-
step. The outgoing transitions of the initial place and their flow are defined as

{(pkstart,0
k
index,0

k
letter)[i⟩

k(pki ,1
k
index,0

k
letter) | 0 ≤ i ≤ n}.

The outgoing transitions of the choice place and their flow are defined for outputting
an index as

{(pkchoice,x
k
index, a

k
letter)[i⟩

k(pki , ((x+ 1) mod 3)kindex, a
k
letter) | 0 ≤ i ≤ n∧ 0 ≤ x,a ≤ 2}

and for terminating with the special symbol as

{(pkchoice,x
k
index, a

k
letter)[#k⟩k(pkterm,x

k
index, a

k
letter) | 0 ≤ x,a ≤ 2}.

The letter-by-letter output of words is outlined on the right in Figure 4.3. We define
the letter-by-letter output of words in the following.
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ech

(index,second)(index,okay)(index,first) (letter,first) (letter,okay) (letter,second)

ti∧1 ti∧ok ti∧2 tl∧1 tl∧ok tl∧2

Figure 4.4.: The possible decisions of the one environment player are depicted. It de-
cides at the same time which output to check and whether or not it anticipates untruth-
ful termination by one of the two system players.

The transitions for the beginning of words are defined as

{(pki ,x
k
index, a

k
letter)[wi[0]⟩k(pki:0:wi [0],x

k
index, ((a+ 1) mod 3)kletter) |

0 ≤ i ≤ n∧ |wi | > 0∧ 0 ≤ x,a ≤ 2}.

The transitions for the remainder of words are defined as

{(pki:j−1:wi [j−1],x
k
index, a

k
letter)[wi[j]⟩k(pki:j:wi [j]

,xkindex, ((a+ 1) mod 3)kletter) |

0 ≤ i ≤ n∧ |wi | > 0∧ 0 ≤ x,a ≤ 2∧ 1 ≤ j ≤ |wi | − 1}.

We add transitions labeled by τ to return to place pkchoice after words have been output
completely by

{(pki:|wi |−1:wi [|wi |−1]),x
k
index, a

k
letter)[τ⟩

k(pkchoice,x
k
index, a

k
letter) |

0 ≤ i ≤ n∧ |wi | > 0∧ 0 ≤ j,m ≤ 2}.

The One Environment Player

The environment player is depicted in Figure 4.4 and makes two decisions in one step:
It decides whether it wishes to check the output indices (ti∧˚) or letters (tl∧˚). Fur-
thermore, the environment player decides whether it suspects the first (t˚∧1) or second
(t˚∧2) system player to terminate untruthfully or whether the termination of the sys-
tem players is fine (t˚∧okay). The result is stored in six pairs of the form {index, letter} ×
{first,okay,second}. As all places and transition are unique in Figure 4.4, this formally
defines the Petri game GE for the environment player.

Good Markings and Bad Markings

The good and bad markings cover the two system players and the environment player.
They are implicitly ordered as the first system player, second system player, and then
the environment player. We use the notation ˚ to indicate that all places of the player
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at the respective position are part of the good or bad markings. This notation can be
applied to one element of the pair representing the decision by the environment player
meaning that only the result of the other decision is important. We ensure that the
environment player makes its decision first and therefore can ignore the place ech for ˚.

We start by defining good markings which indicate that both system players termi-
nated with solutions of the same length (modulo three) as

Mfinish
G = {{(p1

term,x
1
index, a

1
letter), (p

2
term,x

2
index, a

2
letter), (˚,okay)} | 0 ≤ x,a ≤ 2}.

We start by defining good markings which indicate that both system players termi-
nated with solutions of the same length (modulo three) as

Mfinish
G = {{(p1

term,x
1
index, a

1
letter), (p

2
term,x

2
index, a

2
letter), (˚,okay)} | 0 ≤ x,a ≤ 2}.

Next, we define good markings to focus on linear firing sequences for indices as

Mindex
G = {{(p1

i1
, y1

index,b
1
letter), (p

2, z2
index, c

2
letter), (index,˚)},

{(p1, y1
index,b

1
letter), (p

2
i2
, z2

index, c
2
letter), (index,˚)} |

p1 ∈ ID1 \ {p1
term} ∧ p2 ∈ ID2 \ {p2

term} ∧ 0 ≤ i1, i2 ≤ n ∧

(y ∥ z) ∈ {(0 ∥ 1), (2 ∥ 0), (1 ∥ 2)} ∧ 0 ≤ b,c ≤ 2}

and for letters as

Mletter
G = {{(p1

i1:j1:wi1 [j1], y
1
index,b

1
letter), (p

2, z2
index, c

2
letter), (letter,˚)},

{(p1, y1
index,b

1
letter), (p

2
i2:j2:wi2 [j2], z

2
index, c

2
letter), (letter,˚)} |

p1 ∈ ID1 \ {p1
term} ∧ p2 ∈ ID2 \ {p2

term} ∧

0 ≤ i1, i2 ≤ n∧ 0 ≤ j1 ≤ |wi1 | − 1∧ 0 ≤ j2 ≤ |wi2 | − 1 ∧

0 ≤ y,z ≤ 2∧ (b ∥ c) ∈ {(0 ∥ 1), (2 ∥ 0), (1 ∥ 2)}}.

The pairs of numbers for the respective MOD-3 counters are motivated in Figure 4.2.
The index counter only increases at places pkik whereas the letter counter only increases

at places pkik :jk :wik
[jk]. Therefore, the place of one system player is fixed.

We introduce good markings for situations where the environment player claimed
that one system player does not terminate but this system player terminated as

Mterm
G = {{(p1

term, y
1,b1),˚, (˚,first)} | y1 ∈ co1

index ∧ b
1 ∈ co1

letter} ∪

{{˚, (p2
term, z

2, c2), (˚,second)} | z2 ∈ co2
index ∧ c

2 ∈ co2
letter}.
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4.3. Formal Details

We define further good markings to only consider firing sequences starting with the
environment player’s decisions. As the system players never learn about the decision
of the environment, this only simplifies our proof later. We define the good marking

Menvfirst
G = {{(p1

i ,1
1
index,0

1
letter),˚, ech)} | 0 ≤ i ≤ n} ∪

{{˚, (p2
i ,1

2
index,0

2
letter), ech)} | 0 ≤ i ≤ n}.

We define bad markings for different output indices or letters at the same counter
positions depending on the choice of the environment player as

Mindex
B = {{(p1

i1
,x1

index,b
1), (p2

i2
,x2

index, c
2), (index,˚)} |

0 ≤ i1, i2 ≤ n∧ i1 , i2 ∧ 0 ≤ x ≤ 2∧ b1 ∈ co1
letter ∧ c

2 ∈ co2
letter}

and

Mletter
B = {{(p1

i1:j1:wi1 [j1], y
1, a1

letter), (p
2
i2:j2:wi2 [j2], z

2, a2
letter), (letter,˚)} |

0 ≤ i1, i2 ≤ n∧ 0 ≤ j1 ≤ |wi1 | − 1∧ 0 ≤ j2 ≤ |wi2 | − 1 ∧

wi1[j1] , wi2[j2]∧ y1 ∈ co1
index ∧ z

2 ∈ co2
index ∧ 0 ≤ a ≤ 2}.

When one system player terminated, the other system player can make at most one le-
gal step and afterward should terminate as well. Therefore, we define markings where
one system player terminated and the other one makes more than one additional step
as bad with

Mtermindex
B = {{(p1

term, y
1
index,b

1), (p2
i , z

2
index, c

2), (index,˚)},

{(p1
i , y

1
index,b

1), (p2
term, z

2
index, c

2), (index,˚)} |

0 ≤ i ≤ n∧ (y ∥ z) ∈ {(0 ∥ 1), (2 ∥ 0), (1 ∥ 2)} ∧ c1 ∈ co1
letter ∧ z

2 ∈ co2
letter}

and

Mtermletter
B = {{(p1

term, y
1,b1

letter), (p
2
i:j:vi [j]

, z2, c2
letter), (letter,˚)} |

0 ≤ i ≤ n∧ 0 ≤ j ≤ |vi | − 1∧ (b ∥ c) ∈ {(0 ∥ 1), (2 ∥ 0), (1 ∥ 2)} ∧

y1 ∈ co1
index ∧ z

2 ∈ co2
index} ∪

{{(p1
i:j:ri [j]

, y1,b1
letter), (p

2
term, z

2, c2
letter), (letter,˚)} |

0 ≤ i ≤ n∧ 0 ≤ j ≤ |ri | − 1∧ (b ∥ c) ∈ {(0 ∥ 1), (2 ∥ 0), (1 ∥ 2)} ∧

y1 ∈ co1
index ∧ z

2 ∈ co2
index}.
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4. Undecidability of Good Markings

Both system players terminating with different counter values for index or letter
counter is also bad behavior but from there no good marking is reachable anymore
and we do not need to define it as bad marking.

The constructed Petri game has the form G = G1||G2||GE where || defines the parallel
composition as the disjoint union over system and environment places, transitions,
flows and initial markings with the good markings MG = Mfinish

G ∪Mindex
G ∪Mletter

G ∪
Mterm

G ∪Menvfirst
G and the bad markingsMB =Mindex

B ∪Mletter
B ∪Mtermindex

B ∪Mtermletter
B .

4.3.2. Correctness of the First Reduction

It is an easy check to see that our usage of ˚ results in disjoint good and bad mark-
ings. Our reduction further only requires two system players and a single environment
player.

Lemma 10 (Linear firing sequence). Bad markings for different output indices or letters
are reached without a good marking being reached before if and only if the letters are output
at the same position.

Proof. For a strategy with different output indices or letters at position q and q + 3, a
good marking is reached at one of the positions (q ∥ q + 1), (q + 2 ∥ q), or (q + 1 ∥ q + 2)
as indicated in Figure 4.2. Therefore, positions q and q + 3 are never compared and no
bad marking can be reached for inequality without reaching a bad marking before.

Lemma 11 (Same number of output indices/letters). For the constructed Petri game G,
strategies outputting a different number of indices or letters at the two system players are not
winning.

Proof. Assume the strategy has output q indices at the first player and q + 1 indices
at the second player (letters analogous). From the structure of the system players, we
know that both strategies have to terminate after outputting the letters of the output
indices. After both players have terminated, no good marking fromMfinish

G is reached
because the index counters differ. No good marking was reached before for the linear
firing sequence.

Assume the strategy outputs q indices at the first player and q+2 indices at the second
player (letters analogous). A corresponding bad marking fromMtermindex

B is reached.

This proves the absence of untruthful termination.

Lemma 12 (Finite winning strategies). For the constructed Petri game G, all infinite strate-
gies are not winning.

Proof. The only possibility for an infinite strategy is to not fire #1 or #2 at one or at
both system players. If both system players do not fire #1 and #2, then the same or two
different infinite solutions to the PCP are given which is not winning because, for the
linear firing sequence on the indices or the letters, no good marking can be reached. If
one process does not fire #1 or #2, then different solutions to the PCP are given which
is not winning by Lemma 11.
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4.3. Formal Details

Lemma 13 (Same output of winning strategies). For the constructed Petri game G, strate-
gies outputting a different index or letter at the two system players at the same position are
not winning.

Proof. Assume that the strategy differs at position q on the indices i1 and i2. The case
for letters works in an analog manner. For the turn-taking run of the system play-
ers after the decision of the environment player for index and okay, the bad mark-
ing {(p1

i1
,x1

index,b
1), (p2

i2
,x2

index, c
2), (index,okay)} for the same value x of the MOD-3 index

counter and arbitrary MOD-3 letter counters b1 and c2 is reached.

Lemma 14 (Strategy translation). For every instance of the PCP, there exists a solution
to the instance if and only if there exists a winning strategy in the Petri game from our
construction.

Proof. “⇒”: Let i1, i2, . . . , il be the solution to the PCP. We build the corresponding strat-
egy in the Petri game where both system players activate the transitions labeled by
i1,wi1 , τ, i2,wi2 , τ, . . . , il ,wil , τ,#k , where all words are output letter-by-letter, and the en-
vironment player remains unrestricted. Initially, all three players have transitions en-
abled. When the transition of the environment player is not the first transition of the
considered firing sequence, good markings from Mfirst

G are reached immediately and
we do not need to consider these cases further. When the environment player suspects
one system player to not terminate, good markings fromMterm

G are reached eventually
because the strategy terminates both system players and bad markings fromMtermindex

B

andMtermletter
B are avoided. We therefore can neglect the second decision of the environ-

ment player and only need to consider the two cases further where the environment
player either wants to check output indices or output letters. For both cases, firing
sequences which are not turn-taking on the considered outputs reach good markings
from Mindex

G or Mletter
G . For turn-taking firing sequences, bad markings from Mindex

B

orMletter
B are avoided as the same indices and letters are output by the assumption that

we translate a solution to the PCP. In the end, a good marking fromMfinish
G is reached

as the strategy is finite and of the same length at both system players.
“⇐”: Winning strategies have to be finite at both system players and have to end

with a transition to the final place due to Lemma 11 and Lemma 12. We claim that
the allowed sequence of indices is the same at both system players and constitutes a
solution to the instance of the PCP. If the sequence of indices is not the same, then
the environment player could have tested for different indices and if the sequence of
indices is no solution to the instance of the PCP, then the environment player could
have tested for different letters. Therefore, each possible winning strategy constitutes
a solution to the Post correspondence problem.

From these lemmas, it follows that the only possibility for a winning strategy is to
output the same finite solution to the instance of the PCP at both system players. There-
fore, the realizability problem for Petri games with good and bad markings is undecid-
able as it would be able to decide the existence of such a strategy.
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4. Undecidability of Good Markings

Theorem 8 (One environment player and good and bad markings). For Petri games with
at least two system players, one environment player, and good and bad markings as global
winning condition, it is undecidable whether the system players have a winning strategy.

Proof. Follows from Lemma 10, Lemma 12, Lemma 11, Lemma 13, and Lemma 14.

4.3.3. Second Reduction

We present the reduction from Petri games with good and bad markings to Petri games
with only good markings. Environment places are added such that all players become
environment players after each transition in the original Petri game. Transitions are
added to reverse the change before the next transition in the original Petri game. For
each bad marking, a transition is added from the additional environment places cor-
responding to the bad marking leading to a new sink place which is not part of any
good marking. The environment players can fire the transition to the sink place when
a bad marking is reached in the original Petri game. If no such transition is enabled,
then the environment players have to return to system places and the next decision of
the system players follows. Notice that this construction does not introduce additional
synchronization between the players but enables firing orders between the players such
that all players are environment players and a transition to the sink place is enabled if
a bad marking would be reached in the original Petri game.

As proven in the first reduction, Petri games with good and bad markings and at least
two system and one environment player are undecidable. Therefore, Petri games with
good markings and at least three players, out of which one is always an environment
player and two can change between being a system and environment player are unde-
cidable. Without changing the type of players, this corresponds to Petri games with
good markings and at least two system and three environment players where two pairs
of system and environment player change between being active and inactive.

In the following, we use the symbols π and τ to introduce and reference new and
unique places and transitions. Given a Petri game with good and bad markings GA =
(PA

S ,PA
E ,T A,F A, InA, (MA

G,M
A
B )), we define the Petri game with good markings GB =

(PB
S ,P

B
E ,T

B,F B, InB,MB
G) as

PB
S = PA

S ∪ {π
′
p | p ∈ InA ∩PS },

PB
E = PA

E ∪ {π
′
p | p ∈ InA ∩PE} ∪ {πp | p ∈ PA

S ∪P
A
E } ∪ {πsink},

T B = T A ∪ {τt | t ∈ T A} ∪ {τM |M ∈MA
B } ∪ {τIn},

F B = {(p, t) | (p, t) ∈ F A} ∪ {(t,πp) | (t,p) ∈ F A} ∪

{(πp, τt) | (p, t) ∈ F A} ∪ {(τt ,p) | (t,p) ∈ F A} ∪

{(πp, τM ) |M ∈MA
B ∧ p ∈M} ∪ {(τM ,πsink) |M ∈MA

B } ∪

{(π′p, τIn) | p ∈ InA} ∪ {(τIn,p) | p ∈ InA}, InB = {π′p | p ∈ InA}, andMB
G =MA

G.
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4.4. Transfer of Undecidability Results to Control Games

Each original place p is preceded by an environment place πp. They are connected
by the transition πt. For the original successor places p′ of p, the places πp′ are reached
from p by transition t. To encode bad markings, we add a sink place πsink which is
not part of any good marking. For each bad marking M, the sink place is reachable
from the places πp for the places p ∈ M. The Petri game starts from places π′p for
places p from the initial marking. The original initial marking is reached after firing
transition τIn. Notice that this transition can fire at most once and is necessary in case
the initial marking is a bad marking.

4.3.4. Correctness of the Second Reduction

Theorem 9 (Three environment players and good markings). For Petri games with good
markings as global winning condition and at least three players, out of which one is an
environment player and two change between being a system player and an environment
player, it is undecidable whether the system players have a winning strategy.

Proof. Each winning strategy for GA can be translated into a winning strategy for GB,
and vice versa.

Each winning strategy for GA reaches no bad markings by the definition of being win-
ning. Therefore, it can be translated into a winning strategy for GB by adding places πp

and transitions τt as in the construction above. Reaching no bad markings implies that
the sink place is never reached. Thus, the constructed strategy for GB is a winning
strategy because the maximal firing sequences of all maximal plays are the same when
removing places πp and transitions τt and because places πp are not contained in good
markings.

Each winning strategy for GB never reaches the sink place because it is not contained
in any good marking and otherwise the strategy would not be winning. Therefore, it can
be translated into a winning strategy for GA by removing places πp and transitions τt to
reverse the construction above. Never reaching the sink place implies that no bad mark-
ing is reached. Thus, the constructed strategy for GA is a winning strategy because the
maximal firing sequences of all maximal plays are the same when removing places πp

and transitions τt and because places πp are not contained in good markings.

4.4. Transfer of Undecidability Results to Control Games

Our results transfer to control games based on asynchronous automata, in case the
winning condition is defined based on good markings in an equivalent way to our def-
inition. As outlined in our section about related work (cf. Section 1.7), control games
define actions (as the equivalent to transitions in Petri games) to be either controllable
(as the equivalent to the system) or uncontrollable (as the equivalent to the environ-
ment) instead of defining locations of processes (as the equivalent to places of players
in Petri games) to belong either to the system or to the environment. Therefore, en-
vironment players correspond to processes with only uncontrollable actions, whereas
system players correspond to processes with only controllable actions.
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4. Undecidability of Good Markings

The repeated change between system player and environment player to represent bad
markings from the first undecidability result in the second one is not needed in control
games. Instead, we can augment the locations of the process for the next decision in
the form of controllable actions with additional uncontrollable actions in order to have
uncontrollable actions from all processes encode when a bad marking for the current
decision is reached. To identify this technique in the following, we say that such a pro-
cess has almost only controllable actions. With these small changes, the same proofs as
presented for Petri games apply to control games with good markings. Therefore, for
control games with good markings and at least two processes with almost only control-
lable actions and at least one process with only uncontrollable actions, the question of
whether there exists a winning strategy is undecidable.

Notice that good markings are different from final markings in control games. Final
markings require that the players reach a final marking and terminate in it, whereas
good markings only need to be reached. This implies that the winning condition of
good markings does not require when or if players terminate after the players have
reached a good marking. The core idea of our proofs is not applicable to final markings
because the independence of the three players or processes and final markings cannot
be used to restrict the asynchronous nature of control games or Petri games to a syn-
chronous setting. For final markings, all schedulings between the three players would
be tested because they only terminate after outputting their solutions to the PCP. In this
case, unbounded memory would be needed to compare the output solutions. The in-
dependence of the three players or processes prevents them from ever knowing the po-
sition of other players or processes, which is the only option to terminate together in a
final marking. Therefore, the transfer of our undecidability results to control games do
not contradict the decidability results for control games with final markings [Gim17].

4.5. Summary

We showed that, after the global winning condition of bad markings, one quickly
reaches undecidable cases for Petri games with global winning conditions. In particu-
lar, we proved that it is undecidable whether a winning strategy exists for the system
players in Petri games with at least two system players, at least one environment player,
and good and bad markings as global winning condition. We also proved that it is un-
decidable whether a winning strategy exists for the system players in Petri games with
at least three players, out of which one player is always an environment player and two
players can change between being a system and environment player and good markings
as global winning condition. We also outlined how these undecidability proofs apply
to control games based on asynchronous automata.

The underlying idea of the undecidability proofs is to simulate the synchronous set-
ting of synthesis of distributed systems in Petri games which are asynchronous by def-
inition. In the synchronous setting, two system players can be forced to simulate a
Turing machine and an environment player checks that this is done truthfully by both
system players. This is possible for the environment player because the system play-
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4.5. Summary

ers have no information about the position of simulation of the other system players.
Therefore, the only possibility for the system players to win is to truthfully simulate
the Turing machine, and deciding the existence of a winning strategy for the system
players in synthesis of distributed systems in the synchronous setting could decide the
undecidable halting problem for Turing machines.

We showed that good markings in Petri games can identify firing sequences as win-
ning that deviate too much from the synchronous setting. Therefore, only equivalent
cases to the synchronous setting remain and the same argument as before applies to
obtain undecidability. Bad markings or the increased number of environment players
are used to detect wrong simulations of the Turing machine. In our proof, we used the
Post correspondence problem (PCP) only for a simpler proof than when using Turing
machines.
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Bounded Synthesis
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Chapter 5
Bounded Synthesis
for Bad Markings and
for Good Markings

In this part of the thesis, we present bounded synthesis for Petri games. Bounded syn-
thesis can alleviate the troubles of engineers when manually implementing distributed
systems, which is an error-prone task due to the asynchronous interplay of compo-
nents and the environment. Bounded synthesis is a semi-decision procedure to find
winning strategies for the system players in Petri games. If a winning strategy for the
system players exists, then bounded synthesis eventually returns such a winning strat-
egy. Bounded synthesis cannot prove that no winning strategy for the system players
in a Petri game exists. Meanwhile, it is applicable to Petri games with a bounded num-
ber of players and an arbitrary distribution between system and environment players.
In particular, bounded synthesis can find winning strategies for the system players in
Petri games with several system players and several environment players. Therefore,
it allows to find winning strategies for the system players in Petri games where the re-
striction on the number of system players or on the number of environment players for
the decidability results (cf. [FG17] and Chapter 3) cannot be met.

In a nutshell, bounded synthesis consists of two steps: First, a finite representation,
which is called the bounded unfolding, of the possibly infinite unfolding of the Petri
game is generated. Second, the existence of a winning strategy for the system players
in the bounded unfolding is encoded as a quantified Boolean formula (QBF) and then
solved by a corresponding QBF solver. These two steps are repeated with bounded
unfoldings of increasing size until a winning strategy is found.

To generate bounded unfoldings, we utilize the graph of reachable markings of a Petri
game. This graph has all reachable markings of the Petri game as vertices and edges
between these markings corresponding to all possible firings of transitions. The case
where bounded synthesis cannot find winning strategies for the system players can only
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occur in Petri games with loops in the graph of reachable markings. The reason for this
is that Petri games without loops in the graph of reachable markings only encode finite
behavior. We will utilize this fact by having two distinctive algorithms for generating
bounded unfoldings.

Bounded synthesis expands the cases where we can find winning strategies for the
system players by decidability results: For bad markings, the existence of a winning
strategy for the system players in Petri games with a bounded number of players is
decidable if the number of system players can be bounded to one [FG17] or the number
of environment players can be bounded to one (cf. Chapter 3).

Our presentation of bounded synthesis in this part of the thesis is based on safe Petri
games, i.e., every place of the considered Petri games can contain at most one token
in every reachable marking. This allows for a simpler notation and for the usage of
QBF solvers. By using an SMT solver instead of a QBF solver, these results could be
extended to k-bounded Petri games, i.e., to Petri games where every place can contain
at most k tokens in every reachable marking.

In this chapter, we introduce the sequential QBF encoding of bounded synthesis for
bad markings as winning condition and for good markings as winning condition. In
Chapter 6, we show that we can optimize the sequential QBF encoding to the true
concurrent QBF encoding when bad places as (less expressive) local winning condition
are sufficient instead of bad markings as global winning condition. There, we also
evaluate our implementation of the sequential QBF encoding and the true concurrent
QBF encoding on a large set of benchmarks.

As mentioned before, bounded synthesis encodes the existence of a winning strategy
for a bounded unfolding as QBF. A bounded unfolding is a finite representation of the
(possibly infinite) unfolding where each place is repeated at most as often as a given
bound. If the QBF solver returns satisfiable (SAT) as result for the given QBF encoding
the existence of a winning strategy for the system players, then we obtain a winning
strategy for the system players in the Petri game from the by the QBF solver returned
valuation of the existential variables in the QBF. If the QBF solver returns unsatisfi-
able (UNSAT) as result for the given QBF encoding the existence of a winning strategy
for the system players, then the bound for the bounded unfolding is increased and
bounded synthesis recursively continues with the extended bounded unfolding.

The key contributions of this chapter are the following:

• We present efficient algorithms to obtain bounded unfoldings of Petri games. For
this, we differentiate between Petri games with and without loops in their graphs
of reachable markings. We make use of this differentiation because the bounded
unfolding is equal to the unfolding in the case without loops. These algorithms
constitute the first step of bounded synthesis for Petri games.

• We encode the existence of a winning strategy for the system players in a bounded
unfolding of a Petri game with the global winning condition of bad markings as
QBF. This QBF encodes the possible decisions of the system players as existential
variables and the possible positions of the tokens as universal variables. This
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allows for an efficient solving of the second and last step of bounded synthesis
for Petri games. For a satisfiable QBF, the solver also returns an evaluation of the
existential variables that directly encodes a winning strategy.

• We encode the existence of a winning strategy for the system players in a bounded
unfolding of a Petri game with the global winning condition of good markings as
QBF. This QBF can be solved as efficiently as in the previous case. As before,
implementations are obtained from the output of the QBF solver.

This chapter is structured as follows: In Section 5.1, we present a motivating example
for bounded synthesis of Petri games in the form of a Petri game with more than one
system player and more than one environment player. We outline why all players in
this example are necessary. In Section 5.2, we define bounded unfoldings and bounded
winning strategies to lay down the theoretical foundations for bounded synthesis of
Petri games. In Section 5.3, we present two algorithms to obtain bounded unfoldings
both for Petri games with and without loops in the graph of reachable markings of their
underlying Petri nets. In Section 5.4 and Section 5.5, we present the QBF encoding for
bounded synthesis of Petri games with bad markings and with good markings as win-
ning condition. In Section 5.6, we outline how to obtain winning bounded strategies
from the output of the QBF solver for satisfiable instances of the QBF encoding.

5.1. Motivating Example

We motivate bounded synthesis with the example from Figure 5.1. We start with a
short high-level overview of the example. In the remainder of this section, we present
the example and its winning strategy more formally. We conclude this section with a
discussion why all players in the motivating example are necessary.

The Petri game from Figure 5.1 has up to six system players and up to two environ-
ment players. In broad terms, this Petri game models two concurrent robots working
on one product where each robot can fail uncontrollably. The first robot is depicted on
the left-hand side of Figure 5.1 whereas the second robot is depicted on the right-hand
side of Figure 5.1. In case of a failure of one robot and in case of failures of both robots,
exactly one robot has to repair the product. The possible failures occur from the two
environment places. The two robots can communicate with each other via two one-way
communication channels. The two communication channels are depicted in the lower
center of Figure 5.1. Two system players are necessary to model the two robots. Two
environment players are necessary to let each robot fail uncontrollably without sharing
the causal past of the other robot. The remaining four system players are used for the
two one-way communication channels and to store whether each robot failed or not.

5.1.1. Description of the Two Robots

In the following, we give a more detailed description of the two robots. The first robot
is identified by x and depicted on the left-hand side of Figure 5.1. The second robot
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x0

x1

xw

x2
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xr xc
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wx fx
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yr yc
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wy fy

ry cy

x→ y y→ x

x← y y← x

Sx Rx SyRy

Figure 5.1.: A Petri game to synthesize the local controllers of two robots is depicted.
Each robot can fail uncontrollably which requires repair by exactly one of the two robots.
The robots can communicate with each other via one-way communication. The bad
markings of the Petri game are defined such that the following three cases are avoided
by the system players. First, it is defined as bad behavior when no repair of the product
occurs despite a failure of one robot or failures of both robots damaging the product.
Second, it is defined as bad behavior when the product is undamaged due to none of
the two robots failing but a futile repair of the undamaged product occurs. Third, it is
defined as bad behavior when the product is damaged due to a failure of one or both
robots and both robots repair the damaged product.

is identified by y and depicted on the right-hand side of Figure 5.1. Both robots have
the same structure and are concurrent except for the possible communication before
making the decision to repair or to not repair the product. From the places x0 and y0
with a token each initially, the two robots start to work with the transitions sx and sy ,
respectively. These transitions lead to the environment places x1 and y1, respectively,
which are used to realize uncontrollable behavior. From places x1 and y1, either the
work is completed (w) or the robot fails (f ). Transitions wx and wy encode the work
being completed whereas transition fx and fy encode the respective robot failing. The
robots continue in places x2 and y2, respectively. Places xw, xf , yw, and yf are used to
store the decisions of the environment players regarding which robot(s) failed.

From places x2 and y2, the robots can either communicate with each other or decide
to repair or to not repair the product. The communication between the two robots
works via two one-way communication channels, from x to y and from y to x The
communication is depicted in the lower center of Figure 5.1. Each communication
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channel consists of two steps: At the start, a robot can initiate sending its causal past
to the other robot via transition Sx or Sy . Afterward, a robot can receive the causal
past of the other robot via transition Rx or Ry . The places x → y, x ← y, y → x, and
y← x transfer the causal past and ensure that each robot can send its causal past to the
other robot only once. Without a restriction on the number of sent messages, the robots
could send infinitely many messages to each other to satisfy the global safety winning
condition. The decision to repair the product (r) or to continue without repairing the
product (c) happens via transitions rx, cx, ry , and cy . The made decisions by the two
robots are stored in places xr , xc, yr , and yc.

We define bad markings to realize the intended behavior. Here, the position of the
tokens for both one-way channels is arbitrary. Bad behavior occurs if one or both
robots failed (observed by xf or yf ) but no repair occurred (observed by xc and yc), i.e.,

Mmissingrepair
B = {{xf , y,xc, yc, c1, c2} | y ∈ {yw, yf }∧c1 ∈ {x→ y,y← x}∧c2 ∈ {y→ x,y← x}}∪

{{x,yf ,xc, yc, c1, c2} | x ∈ {xw,xf } ∧ c1 ∈ {x → y,y ← x} ∧ c2 ∈ {y → x,y ← x}}. Further-
more, it is defined as bad behavior when the product is not damaged due to no robot
failing (observed by xw and yw) but a repair occurred (observed by xr or yr ), i.e.,

Mfutilerepair
B = {{xw, yw,xr , y, c1, c2} | y ∈ {yr , yc}∧ c1 ∈ {x→ y,y← x}∧ c2 ∈ {y→ x,y← x}}∪

{{xw, yw,x,yr , c1, c2} | x ∈ {xr ,xc} ∧ c1 ∈ {x → y,y ← x} ∧ c2 ∈ {y → x,y ← x}}. Last
but not least, it is defined as bad behavior when both robots repair the product
(observed by xr and yr ) and the product is damaged (observed by xf or yf ), i.e.,

Mbothrepair
B = {{xf , y,xr , yr , c1, c2} | y ∈ {yw, yf } ∧ c1 ∈ {x→ y,y← x} ∧ c2 ∈ {y→ x,y← x}} ∪

{{x,yf ,xr , yr , c1, c2} | x ∈ {xw,xf }∧ c1 ∈ {x→ y,y← x}∧ c2 ∈ {y→ x,y← x}}. The set of bad

markings is the union of the three sets, i.e.,MB =Mmissingrepair
B ∪Mfutilerepair

B ∪Mbothrepair
B .

The position of the tokens for both one-way channels needs to be included in the bad
markings because a bad marking is only reached when a reachable marking exactly
matches a bad marking, i.e., being a subset does not suffice. If already a subset of
a reachable marking should represent bad behavior, then all reachable markings that
contain the subset can be defined as bad markings.

5.1.2. Winning Strategies for the Two Robots

A winning strategy for the system players allows transitions sx and sy in the beginning
and then imposes an order in which the one-way communication channels exchange
information, e.g., by first only allowing transition Sx and afterward only allowing tran-
sition Ry for the system player in place x2 and by first only allowing transition Rx and
afterward only allowing Sy for the other system place in place y2. After completed
communication, the winning strategy for the system players lets the responsible robot
repair the product if only one robot failed. This is achieved by the responsible robot
only allowing transition rx or ry and the not responsible robot only allowing transi-
tion cx or cy . If both robots failed, then robot x repairs the product by only allowing
transition rx and robot y continues without repairing the product by only allowing
transition cy . Swapping the behavior of robot x and robot y in this case does also work.
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If no robot failed, then both robots do not repair the product and continue instead by
only allowing transition cx and transition cy , respectively.

Another winning strategy for the system players imposes an order between the two
robots. Here, only robot x sends information whether it failed to robot y. Robot y is
then informed about whether each robot failed and decides to repair or to not repair
the product. Robot x never repairs the product and trusts robot y to repair the product
when needed. Swapping the roles of robots x and y in this strategy does also work.

5.1.3. Discussion

We discuss why the number of system players and of environment players cannot be
reduced to one for the Petri game in Figure 5.1 and the used winning condition. Such a
reduction would allow us to use decidability results instead of bounded synthesis.

As there are two distributed robots, we need at least two system players to obtain
two distributed controllers. There are only two options to reduce the number of envi-
ronment players. First, the one and only environment player could with one transition
decide for both robots whether they fail. In this case, both robots would be informed
about whether they failed and whether the other robot failed. Then, without communi-
cation, the winning strategy for the system players could choose one robot that always
repairs the product if needed. This could not be implemented in the real world because
the two robots lack information about the other robot due to missing communication.

Second, one environment player could decide whether a robot fails for one robot af-
ter the other. In this case, the first robot could trust the second robot to always repair
if necessary without any communication between the two robots. The reason for this
is that the second robot is informed about the decision of the environment player for
the first robot when the environment player decides whether the second robot fails.
This could not be implemented in the real world because the second robot would lack
information about the first robot to make the appropriate decision due to missing com-
munication. Notice in both cases that a player cannot forget its causal past and always
shares its entire causal past upon synchronization with another player, i.e., it cannot
hide parts of its causal past.

The specification for the two robots is expressible with the local winning condition
of bad places by having transitions from each bad marking leading to a bad place. This
is only possible as the example has no infinite behavior. For Petri games with infinite
behavior, the winning condition of bad markings allows us to specify losing behavior
between players without requiring their synchronization which is impossible for the
winning condition of bad places. We discuss how the motivating example can be ex-
tended to repeat itself in a loop. We need to add transitions from all combinations of
behaviors of the two robots and the two one-way communication channels to the initial
marking. The interested reader can check that 64 transitions would be needed. For sim-
plicity reasons, we omitted these transitions. Each of the 64 transitions would inform
all players about the behavior of the other players in the previous round. This infor-
mation is not helpful in the then started round and our discussion about the necessary
number of environment players and of system players from above still applies.
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5.2. Bounded Unfoldings and Bounded Strategies

We recall the definitions of bounded unfoldings and bounded strategies [Fin15]. We
include a homomorphism in the definition of a b-bounded strategy. In Petri games with
bad markings or good markings as winning condition, a finite strategy suffices to win
the game because the same decision can be repeated from some point onward to fulfill
the winning condition. Bounded synthesis directly searches for bounded strategies
which are by definition of finite size.

Definition 48 (Finite generator)
A strategy σ = (N σ ,λσ ) is finitely generated if there exists a finite Petri netN f such that
(N σ ,λσ ) is an unfolding of N f . We say that σ is finitely generated by N f and that N f

is the finite generator of σ .

Notice that the homomorphism λσ is defined as σ being an unfolding ofN f . Notice
further that finitely generated strategies are of infinite size when the finite generator
contains loops in the graph of reachable markings.

We search for the finite generator N f by considering b-bounded unfoldings of the
underlying Petri net of the Petri game, for which we are using bounded synthesis to
find a winning strategy for the system players. In a b-bounded unfolding, b : P → N
assigns a natural number to each place of the Petri net. This number limits the number
of copies of the places in the b-bounded unfolding.

Definition 49 (b-bounded unfolding)
A b-bounded unfolding of a Petri net N is a pair (N b,λb) consisting of a finite Petri
netN b and a homomorphism λb fromN b to the Petri netN if the following conditions
hold:

• There exists a homomorphism λ from N U of the unfolding ιU = (N U ,λU ) of N
toN b such that λU (x) = λb(λ(x)) for all nodes x ofN U .

• |(λb)−1(p)| ≤ b(p) holds for every p ∈ P , where (λb)−1(p) returns the set of places
representing different causal pasts in the b-bounded unfolding of a place p of the
Petri netN .

The three homomorphisms have the following types: λb : N b → N , λ : N U → N b,
and λU :N U →N . The first requirement ensures that a b-bounded unfolding is an in-
termediate representation between the Petri net representing no causal history and the
unfolding explicitly representing all causal history. The second requirement ensures
that each place p ofN occurs at most b(p) times inN b.

We restrict the flow of a b-bounded unfolding to obtain b-bounded strategies.

Definition 50 (b-bounded strategy)
A b-bounded strategy for a Petri game G is a pair (N f ,λf ) consisting of a finite Petri
netN f and a homomorphism λf fromN f to the underlying Petri netN of G such that
the following conditions holds:
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Figure 5.2.: A Petri game modeling the synthesis problem for a distributed alarm sys-
tem is depicted. There are two parts of the distributed alarm system at the locations A
and B modeled by two system players and one burglar modeled by one environment
player. The burglar can intrude one of the two locations and both parts of the dis-
tributed alarm system should only in case of a burglary sound an alarm indicating the
location of the burglary. The set of bad markings is defined in such a way that false
alarms and false reports are avoided. A false alarm happens when an alarm is sounded
before the burglary takes place. A false report happens when an alarm indicates a dif-
ferent location than the location where the burglary takes place.

• There is a b-bounded unfolding (N b,λb) of the underlying Petri net N of G with
P f ⊆ P b, T f ⊆ T b, Inf = Inb, F f ⊆ F b, and λf = λb ↾ (P f ∪T f ).

• There is a strategy σ that is finitely generated byN f .

We say that Gb admits the b-bounded strategy Gf . The bounded strategy Gf is winning
if σ is winning. We sometimes omit b in the b-bounded unfolding and the b-bounded
strategy to aid readability.

Example 5.2.1. We present an example for the concepts of bounded unfoldings and
of bounded strategies. Consider the exemplary Petri game in Figure 5.2 which is a
simple example of a distributed alarm system from [FO17] presented as in [FGHO17].
It only has one environment player and therefore does not necessarily require bounded
synthesis to find a winning strategy but allows for a more concise presentation of the
concepts of bounded unfoldings and of bounded strategies.
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In the Petri game for the distributed alarm system, a burglar (modeled by the envi-
ronment player residing in place Env) decides to intrude one of two secured locations A
(shown on the left-hand side of Figure 5.2) and B (shown on the right-hand side of Fig-
ure 5.2). The goal of the Petri game is to find a winning strategy for the system players
initially residing in places SA and SB, modeling the distributed alarm system. A token
in place XY (for X,Y ∈ {A,B}) represents that in location X an alarm is sounded indi-
cating that the strategy of the alarm system presumes an intrusion at location Y. If the
burglar intrudes location A by entering place LA, the strategy for the system players
should steer the token in SA to place AA and the token in SB to place BA to correctly
indicate the intrusion. Analog behavior is needed for the burglar intruding location B.

A false alarm occurs when an intrusion is indicated by an alarm system at one lo-
cation before the burglar actually intruded any location. A false report occurs when
the alarm system at one location indicates an intrusion at a location where no intrusion
occurred. Formally, the set of bad markings MB is defined as the union of the set of
bad markings for a false alarm

MfalseAlarm
B = {{Env,A,B} | A ∈ {AA,AB} ∧B ∈ {SB,pB,BA,BB}} ∪

{{Env,A,B} | A ∈ {SA,pA,AA,AB} ∧B ∈ {BA,BB}}

and of the set of bad markings for a false report

MfalseReport
B = {{E,AB,B} | E ∈ {LA,EA} ∧B ∈ {SB,SBB,pB,BA,BB}} ∪

{{E,A,BB} | E ∈ {LA,EA} ∧A ∈ {SA,SAA,pA,AA,AB}} ∪

{{E,AA,B} | E ∈ {LB,EB} ∧B ∈ {SB,SBB,pB,BA,BB}} ∪

{{E,A,BB} | E ∈ {LB,EB} ∧A ∈ {SA,SAA,pA,AA,AB}}.

In all bad markings from the set of bad markings for a false alarm MfalseAlarm
B , the

environment player has not left place Env. Meanwhile, the alarm system at location A

has sounded an alarm in the first part ofMfalseAlarm
B and the alarm system at location B

has done so in the second part ofMfalseAlarm
B .

For the set of bad markings for a false report MfalseReport
B , the environment player

has intruded location A, i.e., is either in place LA or in place EA, in the first two parts
ofMfalseReport

B and has intruded location B, i.e., is either in place LB or in place EB, in

the remaining two parts ofMfalseReport
B . Meanwhile, the alarm system at location A has

sounded a wrong alarm in the first and third part ofMfalseReport
B and the alarm system

at location B has sounded a wrong alarm in the second and fourth part ofMfalseReport
B ,

while, in all four parts, the position of the alarm system at the other location is arbitrary.
Notice that we define the set of bad markings such that bad behavior is recognized

as early as possible. This illustrates the expressive possibilities of bad markings. For
example, every false alarm becomes a false report when the environment player makes
a decision opposite to the already sounded alarm of one of the two alarm systems.
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Figure 5.3.: A bounded unfolding for the Petri game from Figure 5.2 is depicted.

Depending on the interpretation of places LA and LB, one could add additional bad
markings. Our interpretation is that the burglar has already intruded location A or lo-
cation B when reaching place LA or place LB. Only when reaching place EA or place EB,
the respective alarm system has picked up on the intrusion. Therefore, it is not bad be-
havior when an alarm system sounds the correct alarm while the environment player
is still in place LA or in place LB, i.e., pairs of places from LA × {AA,BA} and pairs of
places from LB× {AB,BB} are not contained in any bad marking.

An alternative interpretation would be that the environment player reaching place LA
or place LB only declares its intention to burgle the respective location but no actual
intrusion takes place. The actual intrusion only occurs when reaching place EA or
place EB and is immediately detected by the respective alarm system. With this in-
terpretation, markings containing pairs of places from LA× {AA,BA} or pairs of places
from LB × {AB,BB} should be contained in the set of bad markings for false reports,
because an alarm is sounded while no intrusion occurred. We will later see why both
interpretations result in the same winning bounded strategy.

If a token resides in one of the system places SA, SB, SAA, SBB, pA, or pB, then the
strategy of the player has to resolve nondeterminism between the outgoing transitions.
For this, the strategy for the system players in SA and SB needs to collect sufficient in-
formation about the moves of the other system player and the burglar. For example, the
player in place SB does not know whether the alarm system in SA has fired transition tA
unless it gets informed by the communication transition infoB.
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Figure 5.4.: The unfolding for the Petri game from Figure 5.2 is depicted. In the lower
part of the figure, the names of transitions based on transitions aa, ab, ba, and bb and
the names of places based on places AA, AB, BA, and BB are omitted to aid readability.
Places pA, pA′, pA′′, and pA′′′ representing place pA in the original Petri game have one
outgoing transition to a place representing transition aa to place AA and one outgoing
transition to a place representing transition ab to place AB. Analogously, places pB,
pB′, pB′′, and pB′′′ representing place pB in the original Petri game have one outgoing
transition to a place representing transition ba to place BA and one outgoing transition
to a place representing transition bb to place BB.

Figure 5.3 presents a bounded unfolding for the Petri game from Figure 5.2. The
(general) unfolding for the Petri game from Figure 5.2 is depicted in Figure 5.4. The
bounded unfolding only copies the places pA and pB once each in the form of places pA′

and pB′. These places have unique outgoing transition aa′, ab′, ba′, and bb′. In the
(general) unfolding, there are four places each representing the places pA and pB in
the original Petri game. These eight places have unique outgoing transitions leading
to unique places. To find a winning bounded strategy for a bounded unfolding, it is
essential that transitions infoB and infoA do not share any places in their postcondition.
The depicted bounded unfolding in Figure 5.3 is one minimal (in terms of number of
places and transitions in the bounded unfolding) way to achieve this. Different minimal
bounded unfoldings can change the postcondition of transitions frA and faA to include
place pA′ instead of place pA and the postcondition of transitions frB and faB to include
place pB′ instead of place pB.
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Figure 5.5.: A winning bounded strategy for the bounded unfolding from Figure 5.3
is depicted. The winning bounded strategy is obtained by leaving out the grayed-out
parts from the bounded unfolding.

Figure 5.5 depicts a bounded winning strategy for the bounded unfolding shown in
Figure 5.3 for the Petri game from Figure 5.2. The bounded strategy avoids bad places
because no false alarm can occur, as the alarm is always triggered after the burglar
intruded, and because no false report can occur, as both system tokens exchange in-
formation and utilize it to indicate the correct location of intrusion. The strategy is
deterministic because only one of the two respective outgoing transitions of SA and SB
is enabled, depending on the location of intrusion, and all other system places have
only one outgoing transition. The strategy is deadlock-avoiding because after indicat-
ing the alarm, the system terminates as no transitions are enabled. The unfolding of
the game only allows justified refusal by the system. Therefore, the displayed strategy
is winning.

The two interpretations whether transitions iA and iB model the intention of the bur-
glar or the actual intrusion result in the same winning strategy, because disabling tran-
sitions tA and tB can never be winning regardless whether the additional bad mark-
ings are included or not. Disabling tA or tB prevents the environment from reaching
place EA or place EB which makes it impossible to reach bad markings for a false re-
port. The requirement of deadlock-avoidance then forces the system players to allow
transitions faA or faB, because transitions infoB or infoA can only fire after tA or tB fired.
After faA and faB, the system players have to sound an alarm which results in a false
alarm, because the environment player has not necessarily left place Env. △
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5.3. Generating Bounded Unfoldings

In this section, we describe how we can generate bounded unfoldings to use them for
bounded synthesis of Petri games. We differentiate between Petri games with and with-
out loops in the graph of reachable markings of their underlying Petri nets. Remember
that markings correspond to sets of places (instead of multisets over places), because
we only consider safe Petri nets in this part of the thesis, i.e., Petri nets where each place
can contain at most one token for all reachable markings. For Petri games without loops
in the graph of reachable markings of their underlying Petri nets, we generate the finite
(general) unfolding. By contrast, for Petri games with loops in the graph of reachable
markings of their underlying Petri nets, we generate a finite b-bounded unfolding.

Definition 51 (Graph of reachable markings)
The graph of reachable markings G = (V ,E) of a Petri netN is defined as follows:

• V =R(N )

• E = {(M,M ′) |M ∈ R(N )∧∃t ∈ T : M[t⟩M ′}

The vertices of the graph of reachable markings of a Petri net are all reachable markings
of the Petri net. The edges correspond to transitions being fired between markings. The
graph of reachable markings can be calculated recursively: One starts with the initial
marking as the first vertex. In a vertex, all enabled transitions are considered: The
marking reached by an enabled transition firing is added to the set of vertices (if not
already present) and an edge from the current vertex to the reached marking is added
(if not already present). This process is repeated recursively for newly added vertices
until no more elements are added.

5.3.1. Petri Games without Loops

For Petri games without loops in the graph of reachable markings of their underlying
Petri nets, we use McMillian’s unfolding algorithm [McM95]. We follow a more recent
presentation [ERV02]. We define the possible extensions of a branching process as pairs
of transitions and markings. With G, we identify the Petri game for which we build the
unfolding or a b-bounded unfolding depending on whether the underlying Petri netN
of G has loops in its graph of reachable markings. With ι, we identify the branching
process ofN that will become the unfolding ofN when the used algorithm terminates.

Definition 52 (Possible extensions [ERV02])
The possible extensions of a branching process ι = (N ι,λι) are the pairs (t,M) where t is
a transition ofN and M is a subset of or equal to a reachable marking inN ι such that:

• λι(M) = preN (t) and

• T ι contains no transition t0 with λι(t0) = t and preι(t0) = M.

PE(ι) denotes the set of all possible extensions of ι.
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Algorithm 1: McMillian’s unfolding algorithm [McM95; ERV02]
input : Petri netN = (P ,T ,F , In) without loops in its graph of reachable

markings
output: unfolding ιU = (N U ,λU )

1 create empty Petri netN U = (PU ,T U ,F U , InU );
2 create empty homomorphism λU ;
3 for each p ∈ In, add unique p to PU and extend λU to λU [λU (p) = p];
4 set InU = In;
5 pe = PE(ιU );
6 while pe , ∅ do
7 pick (t,M) from pe;
8 add unique t′ for t to T U and extend λU to λU [λU (t′) = t];
9 for each p ∈ postN (t), add unique p′ to PU and extend λU to λU [λU (p′) = p];

10 add flows from M to t′ and from t′ to the newly created places to F U ;
11 pe = PE(ιU );

McMillian’s unfolding algorithm is given in Algorithm 1. It recursively adds possible
extensions from the initial marking until no more possible extensions exist. For a ho-
momorphism λ from Petri net N ′ to Petri net N and nodes x′ ∈ P ′ ∪T ′ and x ∈ P ∪ T ,
we use the notation λ[λ(x′) = x] to extend λ in such a way that it fulfills λ(x′) = x and
behaves as before for all nodes different from x′. Notice that the algorithm will termi-
nate and produce a finite unfolding because we only apply it to Petri games without
loops in the graph of reachable markings of their underlying Petri nets.

Algorithm 1 does not use the bound b for the following two reasons: First, the ex-
perience with our implementation shows that McMillian’s algorithm is very quick for
Petri games without loops in the graph of reachable markings of their underlying Petri
nets and that solving the QBF encoding for the existence of a strategy for the system
players also quickly terminates.

Second, from a finite unfolding, we can also determine the corresponding simulation
length to decide the existence of a winning strategy for the system players more quickly
than using the worst-case simulation length. The corresponding simulation length is
the length of the longest sequence of fireable transitions plus two. As the encoding enu-
merates sequences of markings, we need to add one to get from sequences of fireable
transition to sequences of markings. We need to add another one to find termination at
the latest at the second to last marking.

Because of these two reasons, we decided to not use the bound b for Petri games with-
out loops in the graph of reachable markings of their underlying Petri nets and thereby
obtain a decision procedure (instead of a semi-decision procedure) for this class of Petri
games at the cost of the possibility of a longer runtime. The source of the possibility for
longer runtime is that not necessarily every branch of the (general) unfolding is needed
but this cannot be known in advance of solving the Petri game.
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5.3.2. Petri Games with Loops

For Petri games with loops in the graph of reachable markings of their underlying Petri
nets, we utilize the bound b to obtain a b-bounded unfolding and additional system
places. These additional system places are equipped with a corresponding flow relation
to connect them to the b-bounded unfolding. The additional system places later allow
the strategy for the system players to decide how to use the bounded causal memory,
i.e., which causal pasts are grouped together upon reaching the bound b for a place.

We extend McMillian’s unfolding algorithm [McM95; ERV02] to produce b-bounded
unfoldings ιU = (N U ,λU ) and additional system places PU

S with a corresponding flow
relation F U

S : (PU
S ×T

U )∪(T U ×PU
S ) for Petri games with loops in the graph of reachable

markings of their underlying Petri nets. The bound b is used to produce at most b(p)
occurrences in the b-bounded unfolding of every place p in the Petri net. Each copy can
represent a unique causal past in the b-bounded unfolding. Because there can be more
unique causal pasts for a place p than the bound b(p), we add additional system places
with a corresponding flow relation and system players in them such that the strategy for
the system players can decide which causal pasts should be grouped together. Causal
pasts that are grouped together result in the same reaction by the strategy for the sys-
tem players. Notice that there is a system player in each additional system. Thus, we
do not explicitly include these system players in an initial marking. Instead, we later
on use the set of additional system places PU

S as initial marking for these places.
Using additional system places allows us to encode more possible strategies for the

system players in the second step of bounded synthesis for Petri games. The reason for
this is that the strategy for the system players can decide how to group causal pasts to-
gether instead of the unfolding algorithm fixing this. The decisions for the system play-
ers in the additional system places are included when obtaining a winning b-bounded
strategy for a b-bounded unfolding, i.e., parts of the strategy are removed when the
system players decide against firing the corresponding transition. The additional sys-
tem places with a corresponding flow relation are not included in a winning b-bounded
strategy because they are only used to make the b-bounded unfolding more expressive
in terms of possible strategies for the system players.

For the unfolding algorithm, we assume that b allows each place at least once,
i.e., ∀p ∈ P : b(p) ≥ 1. Furthermore, we introduce some notation to identify whether
bound b is reached for a place. Each place p can occur at most b(p) times and we
enumerate the places by (p)1, (p)2, . . . , (p)b(p). The number of occurrences of place p is
defined as |(p)| and can be used to compare against b(p).

The set of all possible extensions is defined as before. The difference between Al-
gorithm 1 and Algorithm 2 is how transitions and places are added to the unfolding.
Here, the bound b comes into play and we distinguish two cases. First, when the bound
is not reached for any place in the postcondition of t, then we add the same element
as in McMillian’s unfolding algorithm using explicit place names (p)|(p)|+1 to identify
reaching the bound (cf. Line 9 to Line 12).

Second, when the bound is reached for some place in the postcondition of t, then
places from the postcondition of t are distributed into places where new copies can
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5. Bounded Synthesis for Bad Markings and for Good Markings

Algorithm 2: unfolding algorithm to obtain b-bounded unfoldings
input : Petri netN = (P ,T ,F , In) with loops in its graph of reachable

markings and a bound b : P → N
output: b-bounded unfolding ιU = (N U ,λU ) with additional system places PU

S
and corresponding flow relation F U

S
1 create empty Petri netN U = (PU ,T U ,F U , InU );
2 create empty homomorphism λU ;
3 create empty set of system places PU

S and empty flow relation F U
S ;

4 for each p ∈ In, add place (p)1 to PU and extend λU to λU [λU (p′) = p];
5 set InU = {(p)1 | p ∈ In};
6 pe = PE(ιU );
7 while pe , ∅ do
8 pick (t,M) from pe;
9 if ∀p ∈ postG(t) : |(p)| < b(p) then

10 add unique t′ for t to T U and extend λU to λU [λU (t′) = t];
11 for each p ∈ postG(t), add unique (p)|(p)|+1 to PU and extend λU to

λU [λU ((p)|(p)|+1) = p];
12 add flows from M to t′ and from t′ to the newly created places to F U ;
13 else
14 uniquePost,missingPost = ∅;
15 for p ∈ postG(t) do
16 if |(p)| < b(p) then
17 add unique (p)|(p)|+1 to both PU and uniquePost, and extend λU to

λU [λU ((p)|(p)|+1) = p];
18 else
19 add p to missingPost;

20 for post ∈ {uniquePost} ×
Ś

p∈missingPost{(p)1, . . . , (p)b(p)} do
21 add unique transition t′ for t to T U and extend λU to λU [λU (t′) = t];
22 add flows from M to t′ and from t′ to the places in post to F U ;

23 add unique psys to PU
S ;

24 add flows from the transitions created in the last for-loop to psys to F U
S ;

25 add flows from psys to the transitions created in the last for-loop to F U
S ;

26 pe = PE(ιU );

still be added (cf. Line 17 and set uniquePost) and places where the bound b is already
reached and places have to be reused (cf. Line 19 and set missingPost). Continu-
ing the second case, we add transitions for all possible postconditions where places
in uniquePost are always part of the postcondition and for the remaining places in
missingPost all combinations of copies of the place are enumerated (cf. Line 20 to
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Line 22). To finish the second case, we add a unique additional system place psys that
has all transitions created in the previous step in its precondition and in its postcon-
dition (cf. Line 23 to Line 25). Following this algorithm, each transition has at most
one additional system place in its precondition according to the corresponding flow
relation F U

S for the additional system places.
When each of the system players in the additional system places allows exactly one of

its outgoing transitions, then the additional possibilities introduced by this approach
are again removed. Then, it is fixed how different causal pasts are grouped together
upon reaching the bound b for places. Choosing a different enabled outgoing transition
for one of the system players in additional system places results in a different grouping
together of causal pasts. Notice that the made decisions by the system players in addi-
tional system places are fixed for the entire game because the additional system places
are not unfolded.

The QBF encoding as the second step of bounded synthesis for Petri games will en-
sure that for the system players in additional system places exactly one successor is
chosen. This is achieved by adding a requirement such that each system player in an
additional system place chooses at least one of its successors and the determinism re-
quirement enforcing that each system player in an additional system place chooses at
at most one of its successors. Instead of the unfolding algorithm fixing one way of
grouping together causal pasts, the approach using system players in additional sys-
tem places allows us to encode all possible ways of grouping together causal pasts.
The strategy for the system players will choose one of these ways of grouping together
causal pasts. By this approach, the b-bounded unfolding with additional system places
admits more b-bounded winning strategies at the cost of increased number of system
players. The experience with our implementation showed that the increase in system
players is outweighed by the increase in expressiveness.

The idea behind this algorithm is inspired by using finite prefixes of unfoldings for
model checking of Petri nets [KKV03]. Instead of defining a cutoff based on causal
memory and obtaining an unfolding with McMillian’s algorithm until the cutoff, we
utilize an explicit bound b and give the strategy of the system players the possibility to
utilize the additional system places to determine how to use the bounded number of
places to represent causal memory.

5.4. Encoding for Bad Markings

The bounded synthesis algorithm [Fin15] takes a Petri game and increases the memory
bound b until a winning strategy for the system players is found (or runs forever). In
this section, we describe how to encode the existence of a winning strategy for the
system players for a finite unfolding as the second step of bounded synthesis for Petri
games. The first step of bounded synthesis obtains a finite (general) unfolding or a
(finite) bounded unfolding as described in the previous section. The two algorithms to
obtain a finite unfolding are not included in [Fin15] but derived newly for this thesis.
The QBF encoding presented in the following is mostly from [Fin15]. We contribute the
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5. Bounded Synthesis for Bad Markings and for Good Markings

usage of additional system places in this section, some optimizations in Section 5.4.1,
and an extension to good markings as winning condition in Section 5.5.

A finite unfolding ιbU = (N b,λb) is obtained either by Algorithm 1 or by Algorithm 2
depending on whether the graph of reachable markings of the underlying Petri net N
of the Petri game G with bad markingsMB does or does not have loops. In the case of
loops in the graph of reachable markings, we obtain the additional system places PU

S
with a corresponding flow relation F U

S . With preU (p) and postU (p), we identify the
precondition and the postcondition according to F U

S for places p ∈ PU
S . In the case of

no loops in the graph of reachable markings, the additional system places PU
S are an

empty set with an empty corresponding flow relation F U
S .

The unfolding is used to encode the existence of a winning strategy for the system
players (as variables S b) for all sequences of markings (as variables Mn) up to the
maximal simulation length n ≤ 2|P

b | + 1 as QBF. As mentioned before, the maximal
simulation length can be bounded more sharply for a finite unfolding obtained by Al-
gorithm 1. In the now presented sequential QBF encoding, concurrent transitions are
represented by all possible interleavings because between two markings only a single
transition is fired.

In the following, we give extensions to the original QBF encoding [Fin15] in green
and corrections of notation in blue. We explain both of them in Section 5.4.1. Cor-
rections of notation refer to situations in the original paper where it is clear what is
supposed to be expressed, but the used notation does not exist or is not entirely cor-
rect. The QBF has the form ∃S b : ∀Mn : φn, where

S b = {(p,λb(t)) | p ∈ P b ∧λb(p) ∈ PS ∧ t ∈ postb(p)}∪{(p, t) | p ∈ PU
S ∧ t ∈ postU (p)}

and Mn = {(p, i) | p ∈ P b∪PU
S ∧ 1 ≤ i ≤ n}. The strategy S b for the system players

consists of Boolean variables representing the system’s choice for each pair of system
place in the bounded unfolding and outgoing transition of the corresponding system
place in the original game. This encoding ensures that each strategy for the system
players satisfies justified refusal because neither pure environment transitions can be
disabled nor can transitions be differentiated due to the bounded unfolding. For the
system players in the additional system places, each instance of a transition can be
differentiated. The marking sequence Mn contains Boolean variables for each pair of
place in the bounded unfolding and number 1 ≤ i ≤ n to encode in which of the n
subsequent markings this place is contained, i.e., at which simulation step a token is in
the place. For the marking sequence, we include the additional system places.

The matrix φn of the QBF ∃S b : ∀Mn : φn is defined as follows:

φn
def .
= oneormore⇒

∧
1≤i<n

(
sequencei ⇒ wini

)
∧

(
sequencen⇒ winn ∧ loopn

)

oneormore
def .
=

∧
p∈PU

S

 ∨
t∈postU (p)

(p, t)
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sequencei
def .
= initial∧

∧
1≤j<i

seqflowj

initial
def .
=

∧
p∈Inb∪PU

S

(p,1)∧
∧

p∈P b\Inb

¬(p,1)

seqflowi
def .
=

∨
t∈T b

 ∧
p∈preb(t)

(p, i)∧
∧

p∈preb(t)∧λb(p)∈PS

(p,λb(t))∧

∧
p∈preU (t)

(
(p, t)∧ (p, i)∧ (p, i + 1)

)
∧

∧
p∈postb(t)

(p, i + 1)∧

∧
p∈preb(t)\postb(t)

¬(p, i + 1)∧
∧

p∈P b\(preb(t)∪postb(t))

(
(p, i)⇔ (p, i + 1)

)
Initially, it is ensured that the system players in the additional system places allow

one or more of their outgoing transitions. For each simulation point 1 ≤ i ≤ n, it is
tested whether the variables in Mn represent a correct sequencei of markings up to i
corresponding to a play in the bounded unfolding. If this is the case, then wini tests
whether the marking at i fulfills the requirements to be winning. If i = n, i.e., the end of
the simulation is reached, then it is additionally tested that a loopn occurred. A correct
sequence of markings starts from the initial marking, which includes the system players
in the additional system places. It is followed by the sequential flow of i − 1 enabled
and by the strategy for the system players allowed transitions. The sequential flow of a
transition from time point i requires all places in its precondition to contain a token and
the system places as well as the additional system places of its precondition to allow
the transition according to the strategy for the system players. Then, at i + 1, the places
of its postcondition are set to true, places in its precondition but not its postcondition
are set to false, the system players in the additional system places stay in place, and all
other places retain their truth value.

wini
def .
= nobadmarkingi ∧ deterministici ∧

(
deadlocki ⇒ terminatingi

)
nobadmarkingi

def .
=

∧
M∈MB

 ∨
p∈P b∧λb(p)∈M

¬(p, i)∨
∨

p∈P b∧λb(p)<M

(p, i)


deterministici

def .
=

∧
t1,t2∈T b∧t1,t2∧

λb[preb(t1)]∩λb[preb(t2)]∩PS,∅

 ∨
p∈preb(t1)∪preb(t2)

¬(p, i)∨

∨
p1∈preb(t1)∧λb(p1)∈PS

¬(p1,λ
b(t1))∨

∨
p2∈preb(t2)∧λb(p2)∈PS

¬(p2,λ
b(t2))∨
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∨
p1∈preU (t1)

¬(p1, t1)∨
∨

p2∈preU (t2)

¬(p2, t2)


deadlocki

def .
=

∧
t∈T b

 ∨
p∈preb(t)

¬(p, i)∨
∨

p∈preb(t)∧λb(p)∈PS

¬(p,λb(t))∨
∨

p∈preU (t)

¬(p, t)


terminatingi

def .
=

∧
t∈T b

 ∨
p∈preb(t)

¬(p, i)


loopn

def .
=

∨
1≤i1<i2≤n

 ∧
p∈P b

(
(p, i1)⇔ (p, i2)

)
The formula wini tests whether the marking at position i fulfills the requirements

to be winning. For the limit n on the simulation length, it is additionally tested that a
loopn occurred. The play is winning if no bad marking is reached, the system makes only
deterministic decisions, and each deadlock is caused by termination. No bad marking
is reached, when, for each bad marking, at least one player in a place from the bad
marking is missing or at least one player is additionally in a place not contained in
the bad marking. The system makes only deterministic decisions when, for each pair
of transitions with a shared system place, at least one of the two transitions is not
enabled. Here, a transition may not be enabled either because a player in a place from
its precondition is missing or because the strategy for the system players (including the
system players in the additional system places) decides against allowing the transition.

A deadlock occurs when no transition is enabled including the choices of the strategy
for the system players. The decisions for the system players in the additional system
places are included. Meanwhile, termination occurs when no transition is enabled in-
dependently of the strategy for the system players. Therefore, deadlocki ⇒ terminatingi
ensures that the system does not prevent the reaching of bad markings by stopping
to fire transitions, but deadlocks are only allowed when the Petri game terminates. A
loopn occurs when the same marking is repeated at two different simulation points. As
the strategy for the system players has to be deterministic, its behavior can be repeated
infinitely often in the loop such that the strategy for the system players is also winning
in an infinite play. Remember that a loop is only required when the maximal simulation
length n is reached even though the repetition can occur at earlier simulation points.
In the finite case, sequencei is only true until the simulated Petri game terminates.

5.4.1. Simplifying and Extending the QBF Encoding

We report on notational corrections, simplifications, and extensions for the original
QBF encoding of bounded synthesis for Petri games [Fin15].

Most notational corrections are caused by the fact that the set of system places in the
finite unfolding P b

S is not defined. Instead, we have to use the homomorphism λb to
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e0 e0t0 t1

Figure 5.6.: A Petri game with only one environment player is depicted to illustrate
why the QBF encoding has to use our definition of loopn instead of the original one.
The winning condition of the Petri game is an empty set of bad markings. Therefore,
the (empty set of) system players win this Petri game.

check whether a place is a system in the Petri game. Furthermore, in the definition of
the formula to enforce deterministici choices of the strategy for the system players, we
need to differentiate between the places p1 ∈ preb(t1)∧ λb(p1) ∈ PS and p2 ∈ preb(t2)∧
λb(p2) ∈ PS (instead of having p ∈ (preb(t1)∪ preb(t2))∩PS [Fin15]) because a transition
can be deactivated by a system player in a system place that is only in the precondition
of either t1 or t2 but not of both t1 and t2. In the last case, the original definition leads
to either the undefined variable (p, t1) or the undefined variable (p, t2).

One can simplify the definition of sequencei = initial ∧ ¬deadlock1 ∧ seqflow1 ∧ · · · ∧
¬deadlocki−1 ∧ seqflowi−1 [Fin15]1 to sequencei = initial ∧ seqflow1 ∧ · · · ∧ seqflowi−1 be-
cause seqflowi ⇒¬deadlocki . When a transition fires from a marking, then this marking
cannot deadlock. We implemented both versions and can show that the simplified def-
inition is always beneficial for solving times, i.e., bounded synthesis finds a winning
strategy for the system players quicker if such a strategy exists.

We present two extensions for the original QBF encoding: First, the formula to
detect loops should be loopn =

∨
1≤i1<i2≤n

(∧
p∈P b (p, i1) ⇔ (p, i2)

)
(instead of loopn =∨

i∈{1,...,n−1}
(∧

p∈P b (p, i) ⇔ (p,n)
)

[Fin15]). For the Petri game from Figure 5.6, only
the new definition of loopn determines that a winning strategy for the (empty set of)
system players exists. With the old definition of loopn, the sequence of markings cor-
responding to t0 firing n − 2 times followed by t1 firing does not correspond to a loop
because the marking at simulation length n is unique and a loop only occurred at the
n − 1 markings before. Because of this sequence of markings, the QBF encoding with
the old definition of loopn (falsely) rejects the existence of a winning strategy. With the
new correct definition of loopn, this is no longer the case and a winning strategy for the
system players is found.

Second, we introduce the system players in the additional system places from the
bounded unfolding for the case that the underlying Petri net of the Petri game has
loops in its graph of reachable markings. It is enforced by oneormore that these system
players allow at least one of their outgoing transitions. Remember that the requirement
for deterministic decisions by the system players ensure that these system players al-
low at most one of their outgoing transitions. Therefore, they allow exactly one of their
outgoing transitions. The decisions of these system players are included when consid-

1We emphasize that transitions fire sequentially in the QBF encoding by writing seqflowi instead of flowi
as we optimize the QBF encoding in Chapter 6 to fire transition true concurrently for bad places as
winning condition.
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ering the enabledness and firing of transitions. These system players do not need to be
included when arguing about markings because they cannot leave their additional sys-
tem places. With this encoding, we leave it in the hand of the set of the system players
which b-bounded unfolding up to the given bound b to use instead of the unfolding
algorithm from the previous section fixing this decision.

5.5. Encoding for Good Markings

We present the QBF encoding to find winning strategies for the system players in Petri
games with good markingsMG as global winning condition. Notice that it is required
that the Petri game does not have any transitions where the precondition of a transition
equals the postcondition of this transition. The reason for this is that we have to exclude
unfair firing sequences from the simulation of the Petri game. For this, we need to
identify which transitions are fired, which is achieved by checking which precondition
and postcondition of a transition match the change between two subsequent markings.
If the precondition and the postcondition of a transition could be equal, then this would
not be possible. We discuss later on how this small restriction can be circumvented. In
the following, the QBF encoding follows the same structure as the QBF encoding for
bad markings with a few changes. These changes are depicted in green and we explain
the intuition behind the changes and why they are necessary.

φn
def .
= oneormore⇒∧

1≤i<n

sequencei ⇒
(
wini∧(¬sequencei+1⇒ goodmarkingi)

)∧
(
(sequencen∧¬unfairn)⇒ (winn ∧ loopn∧goodmarkingn)

)
oneormore

def .
=

∧
p∈PU

S

 ∨
t∈postU (p)

(p, t)


sequencei

def .
= initial∧

∧
1≤j<i

seqflowj

initial
def .
=

∧
p∈Inb∪PU

S

(p,1)∧
∧

p∈P b\Inb

¬(p,1)

seqflowi
def .
=

∨
t∈T b

firei(t)

firei(t)
def .
=

∨
t∈T b

 ∧
p∈preb(t)

(p, i)∧
∧

p∈preb(t)∧λb(p)∈PS

(p,λb(t))∧
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∧
p∈preU (t)

(
(p, t)∧ (p, i)∧ (p, i + 1)

)
∧

∧
p∈postb(t)

(p, i + 1)∧

∧
p∈preb(t)\postb(t)

¬(p, i + 1)∧
∧

p∈P b\(preb(t)∪postb(t))

(
(p, i)⇔ (p, i + 1)

)
unfairn

def .
=

∨
1≤i<j<n∧j−i≥2

( ∧
p∈P b

(p, i)⇔ (p, j)
)
∧

∨
t∈T b

( ∧
p∈preb(t)∧λb(p)∈PS

(p,λb(t))∧
∧

p∈preU (t)

(p, t) ∧

∧
i≤k<j∧
p∈preb(t)

(
(p,k)∧

∧
t′∈postb(p)

¬firek(t′)
))

goodmarkingi
def .
=

∨
1≤j≤i∧M∈MG

 ∨
p∈P b∧λb(p)∈M

(p, j)∧
∧

p∈P b∧λb(p)<M

¬(p, j)


There are two changes: We have to check that a good marking is reached instead of

checking that no bad marking is reached and we need to identify unfair schedulings
and to ignore these unfair schedulings. For the first change, we replace nobadmarkingi
by goodmarkingn. The check for bad markings occurs in wini because, for all positions i,
no bad marking should be reached. By contrast, the check for good markings ensures
that at least once a good marking is reached at some position j. This check is positioned
next to the check for a loop. Furthermore, if the Petri game terminates before reaching
the maximal simulation length, i.e., sequencei∧¬sequencei+1 holds, then a good marking
already has to occur up to position i. A good marking is reached when, for each place in
it, one of the copies for the place has a token and other places not in the good marking
do not contain tokens. Notice that, by the definition of unfolding, at most one of the
copies due to the unfolding of a place contains a token.

For the second change, we introduce unfairn to identify markings corresponding to
sequences of transitions in which an enabled and by the strategy for the system players
allowed transition never fires. Such transitions never firing can prevent the reaching
of a good marking. We identify unfair loops by searching for loops that repeat a mark-
ing at points i and j and where a transition is allowed by the strategy for the system
players and enabled at all positions from i to j but never fires. This is the reason for
the restriction that no transition with the same precondition and postcondition can ex-
ist in the Petri game because a transition firing is identified by the change of tokens
from the precondition to the postcondition. This restriction could be circumvented by
adding additional variables to identify which transition fires at position i but a proto-
type implementation showed a considerable performance decrease for this approach.
Furthermore, we rarely needed transitions with the same precondition and postcondi-
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tion when modeling problems as Petri games with good markings.

wini
def .
= deterministici ∧

(
deadlocki ⇒ terminatingi

)
deterministici

def .
=

∧
t1,t2∈T b∧t1,t2∧

λb[preb(t1)]∩λb[preb(t2)]∩PS,∅

 ∨
p∈preb(t1)∪preb(t2)

¬(p, i)∨

∨
p1∈preb(t1)∧λb(p1)∈PS

¬(p1,λ
b(t1))∨

∨
p2∈preb(t2)∧λb(p2)∈PS

¬(p2,λ
b(t2))∨

∨
p1∈preU (t1)

¬(p1, t1)∨
∨

p2∈preU (t2)

¬(p2, t2)


deadlocki

def .
=

∧
t∈T b

 ∨
p∈preb(t)

¬(p, i)∨
∨

p∈preb(t)∧λb(p)∈PS

¬(p,λb(t))∨
∨

p∈preU (t)

¬(p, t)


terminatingi

def .
=

∧
t∈T b

 ∨
p∈preb(t)

¬(p, i)


loopn

def .
=

∨
1≤i1<i2≤n

 ∧
p∈P b

(
(p, i1)⇔ (p, i2)

)
The remaining parts of the encoding to identify winning markings and the repetition

of markings to find loops stay the same.
We can extend the above encoding to good and bad markings (MG,MB) as winning

condition by including the avoidance of bad markings until a good marking is reached
in the definition of goodmarkingi . We depict the simple extension in green.

goodandbadmarkingi
def .
=

∨
1≤j≤i∧M∈MG

 ∧
1≤k<j

nobadmarkingk∧

∨
p∈P b∧λb(p)∈M

(p, j)∧
∧

p∈P b∧λb(p)<M

¬(p, j)


nobadmarkingi

def .
=

∧
M∈MB

 ∨
p∈P b∧λb(p)∈M

¬(p, i)∨
∨

p∈P b∧λb(p)<M

(p, i)


The avoidance of bad markings is defined as in Section 5.4.
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5.6. Obtaining Winning Bounded Strategies

Our implementation uses the QBF solver QuAbS [HT18; Ten19] because of its outstand-
ing performance. We outline how the certification capabilities of QuAbS can be used
for the analysis of unrealizable Petri games and for the construction of implementa-
tions from winning strategies. The QBF encodings presented before are particularly
challenging for QBF solvers, that expect the QBF in conjunctive normal form (CNF).
The QBF needs to be brought into CNF by an appropriate translation [Tse83; PG86] be-
fore such QBF solvers can be used, which results in a considerable blow-up in terms of
the size of the QBF. Therefore, hardly any instance can be solved by such QBF solvers,
even with enabled preprocessing and independent of the used solver. By contrast, non-
CNF solvers scale much better with QuAbS performing best overall [HT18].

We consider the exemplary Petri game from Figure 5.7a where the system player
and the environment player have both a left transition and a right transition. The bad
marking {bad} can be reached when either both players decide for their left transitions
or both players decide for their right transitions. In Figure 5.7a, the choice of the system
player and the environment player are concurrent, i.e., the system player has no strategy
to avoid the bad marking {bad}: choosing either only the left transition tsl or only the
right transition tsr, the environment player will do the same, leading the Petri game to
the bad marking {bad}. All other strategies for the system player, especially strategies
not allowing transition tbad1 or transition tbad2, lead to deadlocks without termination
or to nondeterministic decisions by the system players.

As the Petri game in Figure 5.7a has no winning strategy, the QBF encoding is un-
satisfiable and QuAbS returns a certificate for the universal player representing the
universal quantification in the QBF. This certificate represents a specific flow of to-
kens leading to a negative situation for every possible strategy for the system player
represented by the existential quantification. When the system player only decides to
enable transition tsl and to not enable transition tsr, then the counterexample moves
the environment player from place e to place el, the system player from place s to
place sl, and afterward fires the transition to reach the bad marking {bad}. An analog
counterexample is returned when the system player enables transition tsr and does not
enable transition tsl. When the system player enables neither transition, then the coun-
terexample moves the environment player from place e to place el and then reaches a
deadlock without termination. This situation is forbidden for strategies for the system
players as otherwise the winning condition of avoiding bad markings would be a triv-
ial. When the system player activates both transitions, then already the initial marking
constitutes a counterexample as the decision of the system player is nondeterministic.

From these counterexamples, we can derive that we have to introduce communica-
tion between the system player and the environment player. The easiest way to do
so is given in Figure 5.7b where the system player is created with the decision of the
environment player and then can only afterward react to the decision of the environ-
ment player. The different causal memory of the system player in place s depending
on whether transition tel or transition ter was fired results in the unfolding of place s.
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e

el ers

sl sr

bad

tel ter

tsl tsr

tbad1 tbad2

(a) A Petri game where the sys-
tem player should not mimic
the behavior of the environ-
ment player but no communi-
cation takes place prior to the
decision of the system player.

e

el ers

sl sr

bad

tel ter

tsl tsr

tbad1 tbad2

(b) The environment player
forwards its decision to the
system player and afterward
the system player should not
mimic this decision.

e

sl sr′

el er
s′ s

bad bad′

tel ter

tsl t′sr

tbad1 t′bad2

(c) A winning strategy where
the system player does not
mimic the environment player
such that transitions to the
bad marking {bad} become un-
reachable.

Figure 5.7.: An example workflow of designing a Petri game is outlined. QuAbS pro-
duces counterexamples to any strategy in the left Petri game. From there, it becomes
clear that there is no information exchange between the system player and the environ-
ment player. Therefore, the design of the Petri game is changed to the one in the middle
where the environment player leaks its decision to the system player. For this game,
we can extract the winning strategy on the right using QuAbS which avoids the bad
marking {bad} as the system player answers with opposite decisions to the decisions of
the environment player.

Then, a winning strategy exists where the system player makes a different decision than
the previous decision by the environment player. A corresponding winning strategy is
depicted in Figure 5.7c. In the winning strategy, the duplication of places is indicated
by the prime symbol ′. The greyed-out parts are included in the winning strategy in
order to highlight the transitions to the bad place, which become unreachable by the
choices of the winning strategy. The winning strategy is based on a bounded unfolding,
which includes, at each of the two places s and s′, the two outgoing transitions with the
corresponding following places and transitions.

For satisfiable QBFs, the QBF solver QuAbS returns an evaluation of the variables
in S b. For each pair of a system place p in the bounded unfolding and a transition t
in the postcondition of p in the original Petri game with a negative evaluation, we
remove all transitions in the postcondition of p in the bounded unfolding that refer to t
according to the homomorphism from the bounded unfolding to the original game and
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their flows. Transitions, flows, and places that become thereby unreachable are also
removed. For checking the reachability, we include the decisions by the system players
in the additional system places. As last step, we also remove all additional system
places and flows including the additional system places. Notice that this last step does
not remove the transitions chosen by the system players in the additional system places
to represent causal history. The satisfying assignment of QuAbS for the QBF encoding
of bounded synthesis for Petri games allows to directly remove not activated transitions
(tsr and t′sl) and their resulting unreachable parts of the game, making all remaining
transitions to the bad marking {bad} unreachable (indicated greyed-out in Figure 5.7c).

5.7. Summary

We presented bounded synthesis for the global winning conditions of bad markings
and of good markings in safe Petri games. We outlined the concepts of bounded un-
foldings and of bounded strategies. Furthermore, we described in detail the generation
of bounded unfoldings and the QBF encoding for the existence of a winning strategy
for a bounded unfolding. For bad markings, good markings, as well as good and bad
markings, the results of this section allow us to find winning strategies for the system
players in safe Petri games with a bounded number of players arbitrarily distributed
between system and environment players.
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Chapter 6
True Concurrent Encoding for
Bounded Synthesis

We present the new true concurrent encoding for bounded synthesis of Petri games.
As discussed in Chapter 5, bounded synthesis for Petri games automatically derives an
implementation satisfying a specification of a distributed system if such an implemen-
tation exists [Fin15]. In Chapter 5, bounded synthesis for Petri games did not utilize the
asynchronous nature of Petri games. Instead, concurrent behavior of components was
encoded by all interleavings to be checked against the specification. This was necessary
to encode the global winning conditions of bad markings and of good markings.

In this chapter, we identify true concurrency in the synthesis of asynchronous dis-
tributed systems represented as Petri games with the local winning condition of bad
places. True concurrency defines when several interleavings can be subsumed by one
true concurrent trace. Thereby, fewer and shorter verification problems have to be
solved in each iteration of the bounded synthesis algorithm. For Petri games, experi-
mental results show that our implementation using true concurrency outperforms the
implementation based on checking all interleavings. Preliminary work on the true con-
current encoding has been published in [Met17], which has been significantly improved
and expanded in this chapter. This chapter has also been published in [HM19b].

Bounded synthesis [FS13] incrementally increases the memory of possible strategies
for the system players until a winning strategy is found. Each iteration of the bounded
synthesis algorithm for Petri games [Fin15] checks the existence of a winning strategy
for the system players with bounded memory by simulating the resulting Petri game.
This simulation is represented by all interleavings of fired transitions allowed by pos-
sible strategies for the system players. For two concurrent transitions, it makes no
difference whether one transition or the other transition is scheduled first. It suffices to
only check one scheduling where both transitions happen true concurrently. The true
concurrent scheduling not only considers fewer schedulings but also shorter ones. Fur-
thermore, the true concurrent scheduling enables us to refine the detection of loops in
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bounded synthesis. This results in a considerable speed-up of the verification part of
bounded synthesis for Petri games.

To identify true concurrency, we introduce strategies for the environment players for
Petri games which explicitly represent the decisions of environment players. Strategies
for the environment players restrict a given strategy for the system players and try to
reach markings which prove the strategy for the system players to not be winning. We
present how the explicit environment decisions of strategies for the environment play-
ers allow the firing of maximal sets of true concurrent transitions while preserving the
applicability to bounded synthesis. This requires some stalling options for the envi-
ronment players. For bounded synthesis, we encode the assumptions on strategies for
the system players and strategies for the environment players as well as the winning
objective of Petri games as quantified Boolean formula (QBF). We compare the implemen-
tations of the sequential encoding based on all interleavings and our new true concurrent
QBF encoding on an extended set of benchmarks. Our implementations are part of the
Adam toolkit [FGO15], open-source, and available online [Ada20]. Our experimental
results show that the true concurrent QBF encoding outperforms the sequential encod-
ing by a considerable margin.

The key contributions of this chapter are the following:

• We develop the theoretical foundation of true concurrency of components in syn-
thesis for asynchronous distributed systems by representing environment deci-
sions explicitly in strategies for the environment players of Petri games.

• We prove that strategies for the environment players preserve the existence of win-
ning strategies for the system players and encode them as QBFs for bounded syn-
thesis for Petri games.

• We implement the true concurrent QBF encoding and show considerable improve-
ments against the sequential encoding on an extended benchmark set.

This chapter is structured as follows: In Section 6.1, we illustrate the benefits of
true concurrent scheduling for bounded synthesis for Petri games with an example. In
Section 6.3, we introduce strategies for the environment players and prove that they
preserve the existence of winning strategies. Section 6.4 formally presents the true
concurrent QBF encoding. Section 6.5 surveys experimental results for the implemen-
tation of the true concurrent QBF encoding.

6.1. Motivating Example

Figure 6.1 illustrates how true concurrency simplifies bounded synthesis for Petri
games. This figure has been used in Figure 2.3 of Chapter 2 to illustrate Petri games.
Now, we focus on the concurrency between system players in the game. The Petri
game from Figure 6.1 specifies a production line for repairing a product. The different
possible requirements for repair are modeled as choices of the environment player.
The product can either require repair by a single robot or by both robots concurrently.
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6.1. Motivating Example

env

env1 env2robot1 robot2

ignored1repaired1 ignored2repaired2

1 robot check 2 robots check

⊥

1 robot 2 robots

ignore1repair1 ignore2repair2

wrong ignore1 wrong ignore2

wrong repair wrong ignore3

Figure 6.1.: This Petri game specifies a production line where two robots can repair a
product. The product either requires repair by only one or by both robots.

These robots are represented by system players and have to collectively meet the re-
quirement of the product. Places belonging to the environment player represent the
product and its requirements for repair.

The winning objective of the game is represented by the bad place ⊥ which is de-
picted as a double circle. The system players have to avoid reaching this place for all
choices of the environment player. Based on its causal past, a system player can decide
which outgoing transitions to fire. For example, the system place robot2 can either be
reached via transition 1 robot or via 2 robots and then the player can decide in both
cases independently between transitions repair2 and ignore2. Deciding independently
is necessary because if the environment player has chosen 1 robot, then no repair by the
second robot is allowed whereas if the environment player has chosen 2 robots, then re-
pair by the second robot is required.

A bounded unfolding and the corresponding winning bounded strategy for the sys-
tem players are presented in Figure 6.2 where primed places and transitions result from
different causal pasts. This figure has been used in Figure 2.4 of Chapter 2 to illustrate
unfoldings and strategies. Because the Petri game in Figure 6.1 does not have loops in
the graph of reachable markings of its underlying Petri net, the bounded unfolding and
the corresponding winning bounded strategy are equal to the general unfolding and a
corresponding winning strategy. Including the grayed-out parts results in a bounded
unfolding whereas leaving out the grayed-out parts results in a winning bounded strat-
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env

env1 env2’

robot1

env2

robot2 robot2’robot1’

env1’

ignored1repaired1 ignored2repaired2 ignored1’

repaired1’

ignored2’repaired2’

1 robot check 2 robots check

⊥ ⊥′ ⊥′′ ⊥′′′

1 robot 2 robots

ignore1

repair1

ignore2repair2 ignore1’

repair1’

ignore2’repair2’

wrong ignore1
wrong ignore2

wrong repair wrong ignore3

Figure 6.2.: When excluding the grayed-out parts, a winning (bounded) strategy for
the system players is presented for the Petri game from Figure 6.1, which specifies
a production line with two robots. The system players make different decisions de-
pending on the choice of the environment player. Transitions which cannot be enabled
and unreachable places are grayed-out. Including the grayed-out parts results in the
(bounded) unfolding of the Petri game from Figure 6.1.

egy. In the winning strategy, the outgoing transitions ignore2 of place robot2 and re-
pair2’ of robot2’ represent the necessary different decisions of the system. Notice that
the bad place is not reachable based on the decisions in the winning strategy for the
system players.

In the QBF encoding the existence of a winning strategy for the system players for a
given memory bound and a corresponding bounded unfolding, the sequential QBF en-
coding tests all possible interleavings of transitions This implies that, in the motivating
example, first the environment player makes a decision between 1 robot and 2 robots
and then two interleavings are tested depending on the ordering of the decisions of
both system players. The new concurrent flow semantics identifies such situations and
replaces them with one true concurrent step for the decisions of both robots. Thereby,
we reduce the number of considered traces from four interleavings of length three to
two true concurrent traces of length two to verify the winning strategy for the system
players of Figure 6.2.

6.2. Strategies for the System Players

We recall the formal definition of a strategy for the system in player in a Petri game G
because we use them intensively in the following when defining strategies for the envi-
ronment player. As we will introduce strategies for the environment players later, we
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rename justified refusal to system refusal. For readability, we introduce the abbreviations
(S1), (S2), and (S3) for the three requirements deterministic choice, system refusal, and
deadlock-avoidance. Because we focus on bad places as winning condition in this chap-
ter, the requirement of deadlock-avoidance from the definition of bad places as winning
condition becomes one of the three requirements of the strategy for the system players.

Definition 53 (Strategy for the system players)
A strategy for the system players in a Petri game G with bad places PB as winning con-
dition is a subprocess σ = (N σ ,λσ ) of the unfolding ιU = (N U ,λU ) of G where system
places can remove outgoing transitions such that the following requirements hold:

(S1) Deterministic choice:
∀M ∈ R(N σ ) : ∀p ∈M ∩P σ

S : ∃≤1t ∈ postσ (p) : preσ (t) ⊆M

(S2) System refusal:
∀t ∈ T U : t < T σ ∧ preσ (t) ⊆ P σ ⇒ (∃p ∈ preσ (t) ∩ P σ

S : ∀t′ ∈ postU (p) : λU (t) =
λU (t′)⇒ t′ < T σ )

(S3) Deadlock-avoidance:
∀M ∈ R(N σ ) : ∃tU ∈ T U : preU (tU ) ⊆M⇒∃tσ ∈ T σ : preσ (tσ ) ⊆M

Deterministic choice requires each system player to have at most one transition en-
abled for all reachable markings. System refusal requires that the removal of a transi-
tion from the unfolding is based on a system place deleting all outgoing copies of that
transition. This enforces that system players base their decisions only on their causal
past. Deadlock-avoidance requires the strategy for the system players to enable at least
one transition for each reachable marking as long as one transition is enabled in the
unfolding. For a Petri game G = (PS ,PE ,T ,F , In,W ) with the local winning condition of
bad places W = PB, a strategy for the system players is winning if all reachable mark-
ings do not contain any bad places from PB, i.e., ∀M ∈ R(N σ ) : λσ [M]∩PB = ∅.

6.3. True Concurrency in Petri Games

In this section, we define true concurrency in Petri games. Therefore, we first formalize
strategies for the environment players to explicitly represent environment decisions in
response to a given strategy for the system players. This enables us to define the true
concurrent flow semantics for Petri games, which enforces that transitions are fired as
early and as parallel as possible. We prove that this semantics agrees with the inter-
leaving semantics on the existence of a winning strategy for the system.

6.3.1. Strategy for the Environment Players

Strategies for the system players represent the system’s restrictions of enabled transi-
tions but purely environmental transitions remain uncontrollable. Therefore, a strat-
egy for the system players can result in different fired transitions based on decisions
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by the environment players. We introduce strategies for the environment players to ex-
plicitly represent decisions of environment players and to obtain a unique sequence
of fired transitions up to reordering of concurrent transitions, i.e., transitions with a
disjoint precondition.

Definition 54 (Strategy for the environment players)
A strategy for the environment players γ = (N γ ,λγ ) is a subprocess of a strategy for the
system players σ = (N σ ,λσ ) (which is a subprocess of the unfolding ιU = (N U ,λU )
of the given Petri game G with bad places PB as winning condition) where environ-
ment places can remove outgoing transitions such that the following three require-
ments hold:

(E1) Explicit choice: ∀p ∈ P γ
E : ∃≤1t ∈ T γ : p ∈ preγ (t)

(E2) Environment refusal: ∀t ∈ T σ : t < T γ ∧ preσ (t) ⊆ P γ ⇒ preσ (t)∩P γ
E , ∅

(E3) Progress: ∀M ∈ R(N γ ) : ∃tσ ∈ T σ : preσ (tσ ) ⊆M⇒∃tγ ∈ T γ : preγ (tγ ) ⊆M

Explicit choice requires each environment player to choose at most one of its outgoing
transitions. Environment refusal enforces strategies for the environment players to only
remove transitions with at least one environment place in their precondition. Progress
requires the strategy for the environment players to enable at least one transition for
each reachable marking as long as a transition is enabled in the underlying strategy for
the system players.

Notice that a strategy for the system players can be obtained again by taking the
union of all possible strategies for the environment players. Next, we show that strate-
gies for the environment players resolve the remaining conflicts of a strategy for the
system players for a Petri game:

Lemma 15. A strategy γ for the environment players leads to a unique sequence of fired
transitions up to reordering of concurrent transitions, i.e., ∀p ∈ P γ : |postγ (p)| ≤ 1.

Proof. A strategy σ for the system players satisfies for all system places p ∈ P σ
S either

the condition |postσ (p)| ≤ 1 or the nondeterminism in the choice of the successor tran-
sition is resolved by the strategy γ for the environment players. Since the strategy for
the environment players explicitly chooses at most one outgoing transition in each en-
vironment place, ∀p ∈ P γ

S : |postγ (p)| ≤ 1 is satisfied. For all environment places p ∈ P γ
E ,

the condition |postγ (p)| ≤ 1 is satisfied by the definition of strategies for the environ-
ment players. Since P γ

S ∪P
γ
E = P γ holds,N γ has a unique sequence of fired transitions

up to reordering of concurrent transitions.

The requirements for strategies for the environment players are similar to the ones
for strategies for the system players: Requirement (E1) does not iterate over reachable
markings in comparison to (S1) to require unique decisions by environment players, re-
quirement (E2) allows differentiation of transitions due to the unfolding in comparison
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to (S2), again, to enable unique decision, and requirement (E3) is (S3) lifted directly to
strategies for the environment players.

Notice that there is subtle difference between a strategy for the environment players
and a maximal play of a strategy for the system players. We first recall the definition
of a maximal play from Chapter 2 and then explain the similarities and differences
in detail. A play π = (N π,λπ) is a subprocess of a strategy (for the system players)
σ = (N σ ,λσ ) such that ∀p ∈ Pπ : |post(p)| ≤ 1. A play is maximal when, for each set of
pairwise concurrent places C in N π such that C = preσ (t) for some transition t ∈ T σ , a
place p ∈ C and a transition t′ ∈ T π exist such that t′ ∈ postπ(p).

Both strategies for the environment players and maximal plays of strategies for the
system players resolve the remaining conflicts in the strategy for the system players (cf.
definition of plays and Lemma 15). The definitions of strategies for the environment
players and maximal plays of a strategies for the system players differ in how they
define maximality. According to the definition of a maximal play, transitions have to be
added to each set of pairwise concurrent places, i.e., the progress of the play is defined
locally for each possible set of players. Meanwhile, in a strategy for the environment
players, the progress is defined globally for reachable markings (cf. requirement (E3)).
Together with requirement (E2), it is ensured that the strategy for the environment
players can only remove transitions in which an environment player is participating.

On the one hand, this difference between strategies for the environment players and
maximal plays of strategies for the system players is negligible for safety winning con-
ditions such as bad places, because the environment players have the goal to reach the
negative situations. On the other hand, using strategies for the environment player
instead of maximal plays makes it easier to utilize true concurrent firing in the QBF
encoding later on.

We introduce some notation to identify a strategy for the environment players based
on a strategy for the system players and to identify a strategy for the system players
based on an unfolding. By γ ⊑E σ , we denote a strategy γ for the environment play-
ers as subprocess of a strategy σ for the system players subject to requirements (E1)
to (E3). By σ ⊑S ιU , we denote a strategy σ for the system players as a subprocess of the
unfolding ιU subject to requirements (S1) to (S3).

A strategy γ for the environment players is winning for the environment players (and
a counterexample to the strategy σ for the system players being winning) if it reaches a
bad place. We define a strategy for the system players to be winning against all strate-
gies for the environment players: A strategy σ for the system players is winning if no
bad places are reached for all strategies for the environment players, i.e., if the formula
∀γ ⊑E σ : ∀M ∈ R(N γ ) : λγ [M] ∩ PB = ∅ holds. Notice that a strategy for the system
players fulfills requirements (S1) to (S3) by definition.

Example 6.3.1. Figure 6.3 shows a winning strategy for the environment players for a
strategy for the system players of our running example with the bad place⊥. By the ini-
tial decision for transition 1 robot by the strategy for the environment players, the right
side of the strategy for the system players becomes unreachable. The system chooses
the transitions repair1 and repair2 in response to transition transition 1 robot being cho-
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env

env1 robot1 robot2 env2

repaired1

1 robot check

repaired2

1 robot

repair1 repair2

wrong repair

⊥

Figure 6.3.: A winning strategy for the environment players for a strategy for the system
players for the Petri game specifying a production line from Figure 6.1 is depicted.

sen by the strategy for the environment players. By choosing transition 1 robot, the sec-
ond robot should have ignored the product. The strategy for the system players has to
enable transition wrong repair to avoid a deadlock and the strategy for the environment
players agrees on firing it to reach the bad place. △

6.3.2. True Concurrent Flow Semantics

We define the true concurrent flow semantics for Petri games by firing a maximal set of
enabled, conflict-free transitions in every step. By using ⊎ instead of ∪, we highlight
that the union is disjoint by definition, i.e., we only write A ⊎ B when A and B are
disjoint and then define it as the usual union. For the marking M and the set of enabled,
conflict-free transitions T = {t1, . . . , tn}, the successor marking M ′ is defined as M[T ⟩M ′,
where all transitions in T are enabled in M, i.e., preN (t1)⊎ . . .⊎ preN (tn) ⊆M, and the
successor marking obtained by firing all transitions at the same time, i.e.,

M ′ = (M\(preN (t1)⊎ . . .⊎ preN (tn)))⊎ postN (t1)⊎ . . .⊎ postN (tn).

The union of the preconditions of the transitions from T is disjoint because they
are conflict-free. The union of the postconditions of the transitions from T is disjoint
because the underlying Petri net of the given Petri game is safe, i.e., allows at most
one token in every place of every reachable marking. The set of reachable markings
according to the true concurrent flow semantics is defined as

Rtc(N ) = {M ⊆ P | ∃maximal T1, . . . ,Tn ⊆ T : ∃M1, . . . ,Mn ⊆ P :
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In[T1⟩M1[T2⟩ . . . [Tn⟩Mn = M} where |T1|, . . . , |Tn| > 0.

A set is maximal when adding each possible new element violates the conditions im-
posed on the set.

We denote the set of reachable markings in the sequential flow semantics by the set
of reachable markings, i.e., Rseq(N ) = R(N ). Firing all enabled transitions in the true
concurrent flow semantics at once yields a unique sequence of markings and therefore
a unique sequence of sets of fired transitions. This brings us to the following theorem:

Theorem 16. There exists a winning strategy for the system players of a Petri game under
the sequential flow semantics if and only if there exists a winning strategy for the system
players of a Petri game under the true concurrent flow semantics.

Proof. We show that

(1) using or not using strategies for the environment players agrees on reaching bad
places for strategies for the system places in the sequential flow semantics, i.e.,
∃σ ⊑S ιU : ∀M ∈ Rseq(N σ ) : λσ [M]∩PB = ∅⇔
∃σ ⊑S ιU : ∀γ ⊑E σ : ∀M ∈ Rseq(N γ ) : λγ [M]∩PB = ∅, and that

(2) the sequential flow semantics and the true concurrent flow semantics agree on
reaching bad places when using strategies for the environment players, i.e.,
∃σ ⊑S ιU : ∀γ ⊑E σ : ∀M ∈ Rseq(N γ ) : λγ [M]∩PB = ∅⇔
∃σ ⊑S ιU : ∀γ ⊑E σ : ∀M ∈ Rtc(N γ ) : λγ [M]∩PB = ∅.

Since (1) is based on the sequential flow, every sequence of markings inRseq(N σ ) can be
produced with a strategy for the environment players choosing exactly the transitions
of the sequence, and vice versa. For (2), we show that the environment players win on
the same nets by reaching a bad place: either ∃γ ⊑E σ : ∃M ∈ Rseq(N γ ) : λγ [M]∩PB , ∅
holds or not. As each strategy for the environment players results in a unique sequence
of fired transitions (up to reordering of concurrent transitions), the sets of reachable
places in the reachable markings Rseq(N γ ) and Rtc(N γ ) are the same.

6.4. True Concurrent Encoding of Bounded Synthesis

We show how the requirements (E1) to (E3) on strategies for the environment players
and the true concurrent flow semantics can be encoded as QBF. We introduce stalling of
transitions to let environment players find nondeterministic decisions in a strategy for
the system players. Furthermore, we present how the true concurrent flow semantics
can be used to detect loops earlier in the encoding of bounded synthesis for Petri games.

6.4.1. Stalling of Transitions to Find Nondeterministic Decisions

To use the true concurrent flow semantics in bounded synthesis for Petri games, we
ensure that all possible strategies for the system players fulfill the requirements (S1)
to (S3) and do not reach any bad place. In the formal definition, a strategy for the
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env
t1 t2

e1

t4

e2
t3

t5

sys
e4

t6

e5

Figure 6.4.: A Petri game is shown that has no strategy for the system players as the four
possible decisions at system place sys result in a deadlock when no or one transition is
allowed or in nondeterminism when both transitions are allowed.

system players fulfills requirements (S1) to (S3) by definition. In the QBF encoding to
search for strategies for the system players, we need to ensure that a potential strategy
for the system players fulfills requirements (S1) to (S3). The requirement of determin-
istic choice can be violated when the sequential flow encoding is simply replaced by
the true concurrent flow encoding as markings may be skipped by firing transitions as
early as possible.

Figure 6.4 shows a new Petri game without bad places. It cannot be won by the sys-
tem players because transitions t4 and t6 have to be enabled to be deadlock-avoiding
and there is a marking where both transitions are enabled resulting in a nondeter-
ministic decision. This contradicts requirement (S1) but in the true concurrent flow
semantics, transition t4 will always be fired before transition t6 such that the marking
with a nondeterministic decision of the system player is never reached. To check the
requirements for strategies for the system players in the true concurrent QBF encoding
when doing bounded synthesis, environment players can stall transitions with at least
one system place in their precondition globally to catch up with the system.

The stalling of a transition means that the transition can never be fired in this sim-
ulation of the Petri game. This stalling makes it easier for the system players to win
the Petri game because bad places constitute a safety winning condition. The require-
ment deterministic choice (S1) can only be violated at system places. In Figure 6.4, the
firing of transition t4 needs to be stalled such that transition t5 is fired to prove that a
potential strategy for the system players enabling both transitions is nondeterministic.
Notice that stalling only concerns the firing of transitions but not their enabledness
when checking for deterministic choices.
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Notice further that the stalling of transitions does not occur in Theorem 16 because
a strategy for the system players fulfills requirement (S1) for deterministic choice by
definition. The stalling of transitions is only necessary when searching for strategies
for the system players in the QBF encoding in order to ensure that the system players
make deterministic choices.

6.4.2. Encoding True Concurrency as QBF

We extend the sequential QBF encoding of bounded synthesis for Petri games [Fin15]
to strategies for the environment players with stalling and the true concurrent flow
semantics. In the following, we highlight extensions of the QBF encoding in green.
We utilize bad places PB as winning condition of the Petri game G for which we search
for a winning strategy for the system players. As in Chapter 5, a finite unfolding ιbU =
(N b,λb) is obtained either by Algorithm 1 or by Algorithm 2 depending on whether
the graph of reachable markings of the underlying Petri net N of G does or does not
have loops. In the case of loops in the graph of reachable markings, we obtain the
additional system places PU

S with a corresponding flow relation F U
S . With preU (p)

and postU (p), we identify the precondition and the postcondition according to F U
S for

places p ∈ PU
S . In the case of no loops in the graph of reachable markings, the additional

system places PU
S are an empty set with an empty corresponding flow relation F U

S .
The strategy of the environment players is translated into additional universally

quantified variables. The QBF-formula is ∃S b : ∀Mn : ∀E b :φn. The variables S b for
the strategy for the system players and for the sequences of markings Mn are defined
as in Chapter 5 by

S b = {(p,λb(t)) | p ∈ P b ∧λb(p) ∈ PS ∧ t ∈ postb(p)} ∪ {(p, t) | p ∈ PU
S ∧ t ∈ postU (p)}

and

Mn = {(p, i) | p ∈ P b ∪PU
S ∧ 1 ≤ i ≤ n}.

The variables E b are defined as the union of variables for each environment choice in
the firing of transitions and variables for transitions with at least one system place in
their precondition to stall their progress, i.e.,

E b = {(p, t, i) | p ∈ P b
E ∧ t ∈ postb(p)∧ 1 ≤ i < n} ∪ {(t) | t ∈ T b ∧ preb(t)∩P b

S , ∅}.

This encoding preserves the requirement of environment refusal (E2).
Bounded unfoldings may contain loops. The variables for the environment players

are different for every simulation point, such that decisions of revisited environment
places do not depend on previous visits. By contrast, a global decision independent
of the simulation points suffices for stalling. The case when variable (t) is set to false
results in the stalling of transition t. We apply the requirement explicit choice (E1) of
the strategy for the environment players to φn and encode it in choice:
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φn
def .
= oneormore∧ choice⇒∧

1≤i<n

sequencei ⇒ wini

∧ (
sequencen⇒ winn ∧ loopn

)

oneormore
def .
=

∧
p∈PU

S

 ∨
t∈postU (p)

(p, t)


choice

def .
=

∧
p∈P b∧λb(p)∈PE∧1≤i<n

 ∨
t∈postb(p)

(
(p, t, i)∧

∧
t′∈postb(p)\{t}

¬(p, t′ , i)
)

sequencei
def .
= initial∧

∧
1≤j<i

tcflowj

initial
def .
=

∧
p∈Inb∪PU

S

(p,1)∧
∧

p∈P b\Inb

¬(p,1)

Each environment place has to choose exactly one outgoing transition which results
in the firing of at most one outgoing transition per environment place, because the
other places in the precondition of the transition also have to decide for the transition.
This encoding furthermore ensures progress (E3). Notice that we include the system
players in the additional system places PU

S as in Chapter 5. We substitute the sequential
flow seqflowi by the true concurrent flow tcflowi , which enforces the firing of all enabled
and not stalled transitions and maintains all other tokens.

tcflowi
def .
= fireenabledi ∧updateplacesi

fireenabledi
def .
=

∧
t∈T b

enabledi,t⇒
∧

p∈preb(t)\postb(t)

¬(p, i + 1)∧
∧

p∈postb(t)

(p, i + 1)


updateplacesi

def .
=

∧
p∈P b

 ∧
t∈preb(p)∪postb(p)

¬enabledi,t⇒
(
(p, i)⇔ (p, i + 1)

)
enabledi,t

def .
=

∧
p∈preb(t)

(p, i)∧
∧

p∈preb(t)∧λb(p)∈PS

(p,λb(t))∧
∧

p∈preb(t)∧λb(p)∈PE

(p, t, i)∧ (t)∧

∧
p∈preU (t)

(
(p, t)∧ (p, i)∧ (p, i + 1)

)
The formula enabledi,t requires tokens in all places in the precondition of the transi-

tion, both the strategy for the system players and the strategy for the environment play-
ers to allow the transition for corresponding places in the precondition of the transition,
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6.4. True Concurrent Encoding of Bounded Synthesis

that stalling allows the transition, and that the system players in the additional system
places allow the transition and do not move. In fireenabledi , it is ensured that all en-
abled transitions are fired by moving the corresponding tokens. Formula updateplacesi
requires that tokens stay in places where all transitions from the place’s precondition
and from the place’s postcondition are not enabled.

wini
def .
= nobadplacei ∧ deterministici ∧

(
deadlocki ⇒ terminatingi

)
nobadplacei

def .
=

∧
p∈P b∧λb(p)∈PB

¬(p, i)

deterministici
def .
=

∧
t1,t2∈T b∧t1,t2∧

λb[preb(t1)]∩λb[preb(t2)]∩PS,∅

 ∨
p∈preb(t1)∪preb(t2)

¬(p, i)∨

∨
p1∈preb(t1)∧λb(p1)∈PS

¬(p1,λ
b(t1))∨

∨
p2∈preb(t2)∧λb(p2)∈PS

¬(p2,λ
b(t2))∨

∨
p1∈preU (t1)

¬(p1, t1)∨
∨

p2∈preU (t2)

¬(p2, t2)


deadlocki

def .
=

∧
t∈T b

 ∨
p∈preb(t)

¬(p, i)∨
∨

p∈preb(t)∧λb(p)∈PS

¬(p,λb(t))∨
∨

p∈preU (t)

¬(p, t)


terminatingi

def .
=

∧
t∈T b

 ∨
p∈preb(t)

¬(p, i)


The formula nobadplacei prevents that a bad places can be reached by enumerating

the bad places and excluding that they are reached. Otherwise, the formula wini re-
mains unchanged, i.e., the formulas deterministici , deadlocki , and terminatingi are as
in the sequential QBF encoding including the addition of system players in additional
system places. Therefore, strategies for the environment players and stalling only affect
the flow of tokens but not the check that reached markings are winning.

Strategies for the environment players allow us to define the true concurrent flow
semantics. In turn, this allows us to detect loops in the form of repetitions of markings
earlier by searching for them in strongly connected components (SCCs) [Jen13]. We
define SCCs on the graph of reachable markings of the underlying Petri net. A sub-
graph is strongly connected when every vertex can be reached from every other vertex.
Strongly connected components partition a graph into subgraphs in such a way that
all subgraphs are themselves strongly connected. We define the places in the markings
of a SCC to form the SCC. Places that are not part of any SCC form an additional set
included in the SCC.
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6. True Concurrent Encoding for Bounded Synthesis

With SCCs, we find loops in independent parts of the Petri game as early as possible,
i.e., we deploy a local view on loops instead of the global view of the encoding in Chap-
ter 5. This constitutes an optimization. We encode that a loop no longer only occurs at
the repetition of a global marking but also when all SCCs ⊆ P

(
P b

)
repeat their marking,

respectively:

loopn
def .
=

∧
scc∈SCCs

 ∨
1≤i1<i2≤n

( ∧
p∈scc

(
(p, i1)⇔ (p, i2)

))
6.5. Experimental Results

We compare the sequential QBF encoding [Fin15] with the new true concurrent QBF
encoding from Section 6.4 on five benchmark families. At first, we describe the asyn-
chronous and distributed nature of these benchmark families stemming from alarm
systems, routing, robotics, and communication protocols. Afterward, we outline the
technical details of our comparison framework and state our observations and expla-
nations concerning the observed times required in order to find winning strategies for
the system players.

6.5.1. Benchmark Families

Table 6.5 refers to the following scalable benchmark families where Collision Avoid-
ance, Disjoint Routing, and Production Line are new benchmark families:

• AS: Alarm System [FGHO17]. Parameters: m locations. There are m secured lo-
cations and a burglar can intrude one of them. The local alarm system of each
location can communicate with all other local alarm systems. The local alarm
systems should indicate the position of an intrusion and should not issue unsub-
stantiated warnings of an intrusion, i.e., no false alarms and no false reports. For
m = 2, the corresponding Petri game is depicted in Figure 5.2 of Chapter 5. It is
used to illustrate bounded unfoldings and bounded strategies.

• CA: Collision Avoidance. Parameters: m robots. A subset of m robots is initialized
to drive on individual paths of increasing length with several goal states. They
should avoid collisions and drive forever on the chosen route.

• DR: Disjoint Routing. Parameters: m packets. In a software-defined network,
m packets should be routed disjointly between an ingress switch and an egress
switch where the network allows m disjoint paths between the two switches.

• PL: Production Line. Parameters: m robots. The m concurrent robots are able to
repair or ignore m features of a product. Depending on the product, some features
need to be repaired while others must not be repaired.
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• DW: Document Workflow [FGO15]. Parameters: m workers. A document circu-
lates between m workers with the environment player choosing the first worker
to see the document. It is required that all workers unanimously endorse or reject
the document.

6.5.2. Comparison Framework

Because both the sequential and the true concurrent QBF encoding result in a QBF not
in conjunctive normal form, we use the QBF solver QuAbS [Ten16; HT18] as discussed
in Section 5.6. The results from Table 6.5 were obtained on a 3.6 GHz quad-core Intel
Xeon processor and 32 GB RAM. They are the average over five runs. There were only
negligible differences between individual runs on the same problem instance. For each
benchmark family (column Ben.), we report on the attempted parameters of the bench-
mark (column Par.), the necessary model checking iterations (column Iter.) of bounded
synthesis, and on the runtime for finding a winning strategy for the system players
(column Runtime in sec.). A timeout of 30 minutes is used. For reference, 30 min-
utes are equal to 1800 seconds. We prepared and published an artifact to replicate our
experimental results [HM19a].

6.5.3. Observation

For each row in Table 6.5, the lower iteration count and the lower runtime between
the sequential encoding and the true concurrent encoding are indicated in bold, re-
spectively. The true concurrent QBF encoding shows considerable improvements over
the sequential QBF encoding on the presented benchmark families: It solves more in-
stances and has mostly faster solving times as shown in Table 6.5. The improvements
are based on fewer model checking iterations of the bounded synthesis algorithm wit-
nessed by the column Iter..

We can make the following observations concerning the specific benchmark fami-
lies: The complex communication structure of the benchmark family Alarm System
prevents larger examples to be synthesized because the alarm system observing the
intrusion has to broadcast the information to all other alarm systems. Similarly, the
benchmark family Collision Avoidance has a complex pairwise communication struc-
ture which can be better synthesized by the true concurrent QBF encoding. The simpler
communication structure of the benchmark family Production Line allows constant
bounds for the true concurrent QBF encoding compared to linearly increasing bounds
for the sequential QBF encoding. The communication structure of the benchmark fam-
ily Disjoint Routing lays between complex and simple such that the true concurrent
QBF encoding enables a smaller linear increase in the bound. The true concurrent
QBF encoding therefore can solve larger examples even though the bounded unfolding
grows with the number of considered players for both encodings. The possibilities for
communication of information are less open in the benchmark families Disjoint Rout-
ing and Production Line whereas they are completely open in the benchmark families
Alarm System and Collision Avoidance.
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Table 6.5.: Benchmarking results for the five benchmark families (Ben.) for increasing
parameters (Par.) are presented. The five benchmark families are alarm system (AS),
collision avoidance (CA), disjoint routing (DR), production line (PL), and document
workflow (DW). For an increasing parameter, they produce larger Petri games, respec-
tively. For the sequential and the true concurrent encoding, the needed model checking
iterations (Iter.) with accumulated runtime in seconds (sec.) in order to find a winning
strategy for the system players are reported. The used timeout is 1800 seconds.

Sequential True Concurrent
Ben. Par. Iter. Runtime in sec. Iter. Runtime in sec.
AS 2 7 13.26 6 11.15

3 - timeout - timeout
CA 2 8 7.27 5 6.25

3 - timeout 6 14.21
4 - timeout 7 346.23
5 - timeout - timeout

DR 2 8 6.16 7 6.05
3 11 11.03 9 10.07
4 14 69.50 11 65.31
5 - timeout - timeout

PL 1 4 5.59 4 5.59
2 5 6.08 4 5.85
3 6 8.51 4 6.95
4 7 20.99 4 12.54
5 8 87.33 4 41.95
6 - timeout 4 742.36
7 - timeout - timeout

DW 1 8 5.90 7 5.79
2 10 6.58 9 6.44
3 12 7.90 11 7.80
4 14 11.45 13 11.22
5 16 16.59 15 19.82
6 18 26.71 17 31.79
7 20 49.69 19 56.38
8 22 90.41 21 132.73
9 24 239.47 23 327.68

10 26 716.61 25 823.94
11 28 1304.14 - timeout
12 - timeout - timeout
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6.6. Summary

In the benchmark family Document Workflow, the communication structure is fixed
to a specific pairwise ring between neighboring clerks. However, this prevents almost
all true concurrency between them. The difference in bound of one is caused by the con-
current test that all workers have seen the document and that the decisions of workers
have been unanimously.

6.6. Summary

We presented how to utilize concurrency in bounded synthesis for asynchronous dis-
tributed systems by firing as many true concurrent transitions as possible in our new
true concurrent QBF encoding. The previous sequential QBF encoding enumerated all
interleavings. For the true concurrent QBF encoding, we represent the decisions of the
environment players explicitly as strategies for the environment players and showed
that this enables us to fire all enabled transitions as early as possible while maintaining
the existence of winning strategies for the system players. The experimental results
show the following: Only in the rare case of benchmark families without true con-
current transitions, our tool implementation of the true concurrent QBF encoding is
similar to the sequential QBF encoding despite resulting in larger QBFs. In all other
cases, our tool implementation of the true concurrent QBF encoding outperforms the
sequential QBF encoding by a considerable margin.
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Chapter 7
Conclusions

This thesis made two contributions to the foundations of Petri games. Petri games are a
formal model that defines the synthesis problem of obtaining asynchronous distributed
systems with causal memory. In the first part of this thesis, we presented decidabil-
ity and undecidability results for Petri games. We outlined for which classes of Petri
games is the question decidable or undecidable, whether a winning strategy for the
system players in the Petri game exists. In the second part of this thesis, we presented
bounded synthesis for Petri games as a semi-decision procedure to find smallest win-
ning strategies for the system players in all Petri games, i.e., in Petri games with known
as well as with unknown decidability and undecidability.

7.1. Decidability and Undecidability

As a decidability result, we proved that the existence of a winning strategy for the sys-
tem players in Petri games with a bounded number of system players, at most one
environment player, and bad markings as global winning condition is decidable. This
result follows from solving the Büchi game created by our reduction in Chapter 3. It
extends the existing decidability result for Petri games with a bounded number of sys-
tem players, one environment player, and bad places as local winning condition [FO17]
from local to global winning conditions while handling the determinism requirement
for the strategy for the system players correctly in all situations. The decidability result
complements the existing decidability result for Petri games with a bounded number
of environment players, one system player, and bad markings as global winning condi-
tion [FG17]. The existence of a winning strategy for the system players is also decidable
in Petri games with an acyclic communication architecture [BFH19a].

Our first undecidability result was the proof that the existence of a winning strat-
egy for the system players in Petri games with good and bad markings as global win-
ning condition, at least one environment player, and at least two system players is
undecidable. This result follows from a reduction from the Post correspondence prob-
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lem (PCP). Second, we proved that the existence of a winning strategy for the system
players in Petri games with good markings as global winning condition, with at least
one environment player, and with at least two players that each can change between
being a system player and an environment player is undecidable. To obtain this result,
we encode bad markings from the first undecidability result by each player repeatedly
changing to an environment player.

The general decidability (or undecidability) of Petri games with a bounded number
of system players and a bounded number of environment players remains an intriguing
open problem. Further steps towards general decidability (or undecidability) could be
to extend the decidability result for bad markings as global safety winning condition
with local liveness specifications per player as in Flow-LTL [FGHO19; FGHO20a] and
in Flow-CTL˚ [FGHO20b]. Another step could be to tackle Petri games with more than
one environment (system) player and stronger restrictions, e.g., fixing, on the number
of system (environment) players than just bounding their number. Here, the case of
two system players and two environment players could be a fascinating starting point
with some preliminary work to build upon [Han19].

Another interesting direction for future work is to investigate how action-based con-
trol games [MWZ09] relate to Petri games and to study unified models that combine
features from control games and Petri games. Furthermore, the translations between
control games and Petri games could be tailored more towards specific winning condi-
tions or towards specific decidability results. This could create more opportunities to
translate more decidability results from control games to Petri games, and vice versa.
This relates to another difference between Petri games and control games: Petri games
allow for the creation of new players and the termination of old players, i.e., the size of
the precondition of a transition and the postcondition of the transition are not neces-
sarily the same, whereas, in control games, the number of players is fixed. Therefore, it
is an interesting question whether Petri games with a bounded number of players can
be extended by adding places, tokens, flow, and maybe transitions such that all transi-
tions are concurrency-preserving (i.e., the size of the precondition and the size of the
postcondition of all transitions match) without leakage of any information between the
players. The prohibition against leaking information between the players makes this
problem both challenging and interesting because classical approaches from Petri nets
do not apply. There exists some preliminary work that solves this problem for some
Petri games [Sch19], but the general problem is open.

Although the synthesis of asynchronous distributed systems with causal memory is
already a hard problem, an even harder problem emerges when causal memory and
partial observation [AVW03; CD10] are combined in order to obtain a more advanced
memory model. Partial observation could allow to inform only certain players during
synchronization. An intermediate step could be a so-called hiding operator or so-called
forgetful places. A hiding operator could allow to abstract certain parts of the behav-
ior of processes [OH86]. Forgetful places are created by enforcing players to forget
their causal past [Buh19]. Both approaches could help with modeling the avoidance of
accidental leakage of information.
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7.2. Bounded Synthesis

For bounded synthesis, we presented the sequential encoding in which the asyn-
chronous nature of the players in Petri games is encoded in terms of so-called se-
quential firing sequences. In a sequential firing sequence, only one transition is fired
between two subsequent markings. We also presented the true concurrent encoding,
where the asynchronous nature of the players is encoded by grouping together con-
current transitions in the firing sequences. Both encodings are implemented in the
tool AdamSYNT [Ada20], which has an accompanying web interface [GHY21]. Our
evaluation showed that the true concurrent encoding outperforms the sequential one
on a broad set of benchmarks from robotic control, workflow management, and other
distributed applications.

Bounded synthesis could be extended with more expressive winning conditions, as in
the case of general decidability results for Petri games. In bounded synthesis, it is easier
to encode more expressive winning conditions than when searching for decidability
results. For instance, LTL, CTL, Büchi winning conditions, parity winning conditions,
or generalizations thereof [CHP07] seem achievable. Going from solving QBFs to SMT
solving [MB08; Dut14] could allow for extending bounded synthesis from safe Petri
games to bounded Petri games. That is, a bounded number of players per place could
be possible instead of only one.

An orthogonal extension for bounded synthesis of Petri games could be partial obser-
vation or forgetful places, as mentioned before. Here, DQBF solving [FT14b; FKBV14;
Git+15; TR19] could present a starting point. DQBF is an extension of QBF and allows
for specific dependencies between quantifiers in contrast to the linear dependencies of
quantifiers in QBF. These dependencies could be used to restrict the knowledge of parts
of the strategy.

An exciting application scenario for bounded synthesis of Petri games could be multi-
lane traffic maneuvers of autonomous cars [BHLO17]. A promising direction to apply
bounded synthesis of Petri games to real-world problems is to design access-control
policies for physical spaces [TDB16]. Here, the rely-guarantee paradigm [Sta85; AL89]
could be used to synthesize policies for separate floors or wings of the building assum-
ing certain assumptions and then to compose the individual floors or wings such that
all relied-on assumptions are guaranteed. In general, we could identify disconnected
parts of Petri games, solve the parts in isolation, and compose them back together.
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