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Abstract – This paper describes a stochastic clustering architecture that can be used for making predictions over 

energy data. The machine learning approach uses some new algorithms of hyper and frequency grids. The 

design is discrete, localised optimisations based on similarity, followed by a global aggregating layer. The 

global layer is entropy-based, allowing for a comparison with the recent distributed random neural network 

designs, for example. The topic relates to the IDEAS Smart Home Energy Project, where a client-side Artificial 

Intelligence component can predict energy consumption for appliances. The proposed data model is essentially 

a look-up table of the key energy bands that each appliance would use. Each band represents a level of 

consumption by the appliance, or the amount used in a time unit and the table can replace more complicated 

methods, usually constructed from probability theory, for example. Results show that the table can accurately 

disaggregate a single source to a set of appliances, because each appliance has quite a unique energy footprint. 

As part of predicting energy consumption, the model could possibly reduce costs by 50%, and more than that if 

proposed appliance schedules are also included. A second case study considers wind power patterns, where the 

grid optimises over the dataset columns in a self-similar way to the rows, allowing for some level of feature 

analysis. 
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1 Introduction 
This paper describes some methods for 

clustering and making predictions over energy data, 

using a stochastic Hyper-Grid [10][21]. The topic 

relates to the IDEAS Smart Home Energy Project 

[12], where a client-side Artificial Intelligence 

component can predict energy consumption for 

appliances. The proposed data model is essentially 

a look-up table of the key energy bands that each 

appliance would use. Each band represents a level 

of consumption by the appliance in a time unit. 

This table can replace disaggregation from more 

complicated methods like probability theory, for 

example. Disaggregation is the process of 

estimating how much energy each appliance would 

use from a single input amount. It is helpful to be 

able to estimate this, because it can make energy 

predictions more accurate and it can also help to 

improve the behaviour usage of energy. The energy 

consumption bands can be learned by an AI model 

that can then make future predictions on similar 

appliance usage. Because the energy footprint for 

an appliance is quite unique however, the bands 

generated from it are also quite unique, which may 

be enough to identify each appliance, rather than 

rely on more complex methods. The energy 

provider therefore, is tasked with trying to predict 

how much energy will be required at a particular 

time. The provider sees this as a single problem 

over the whole set of input variables. The user-side 

is more discrete, when there can be more than 1 

independent entity, resulting in input that is more 

event-based. As such, it may be more appropriate 

to split the client-side model into separate parts, 

each modelling one of the independent entities. A 

stochastic method that can produce non-continuous 

solutions may therefore have some advantages over 

a functional model. A Hyper-Grid is therefore 

proposed for clustering the data and can 

accommodate this essential difference - not the 

single provider, but discrete consumers with 

unrelated events. Then to aggregate the clustering 

results, the Frequency Grid [9][21] can be used.  

The process is stochastic in nature, clustering 

randomly, only a subset of the input data each time. 

It is costly to run, but this can be configured with 

smaller-sized dataset batches, when the results from 

each batch can be accumulated and so it can in 

theory be used with larger datasets, but over a 

longer period of time. The tests firstly consider 

creating a lookup table of unique energy bands to 

describe each household appliance. While this 

should be very quick to use in real-time, it is also 

able to make the energy prediction more accurate. 

The tests are then extended to consider clustering 
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feature sets in the row clusters. As such, the Hyper-

Grid can cluster rows first and then features of 

those rows, using the same method. Tests on 

energy data show that the method can produce 

consistent and logical results and has potential for a 

wide range of applications. 

The rest of the paper is organised as follows: 

section 2 gives some related work in the field of 

energy prediction and what other methods are 

typically used. Section 3 then summarises the new 

clustering algorithms. Sections 4 and 5 consider the 

two case studies and describe the test results. 

Finally, section 6 gives some conclusions on the 

work. 

2 Related Work 

2.1 Stochastic Clustering 
Stochastic clustering is not new and in fact it 

may be the preferred method for clustering 

something like electric vehicle charging [22]. 

While this paper is interested in a different field of 

energy prediction, it has to solve a similar type of 

problem. In that paper, they state that coordinated 

charging of EVs can bring some benefits by itself 

and implementation of this scenario without 

coordinated charging can impose a huge amount of 

excess load on the grid. They give a description of 

stochastic scheduling, where they state that ‘since 

there are a lot of uncertainties in a real-world 

situation and specifically in EV energy scheduling 

problems, such as EVs driving pattern, diverse 

temporal and spatial EV charging pattern and so on, 

in the literature in this field, deterministic 

scheduling has been implemented much less than 

stochastic one. A stochastic model has one or more 

stochastic elements. The system having stochastic 

element is generally not solved analytically and, 

moreover, there are several cases for which it is 

difficult to build an intuitive perspective.’  

To make the Hyper-Grid practical, it is possible 

to use a form of bootstrapping over randomised 

datasets. Bootstrapping [8] removes some rows 

from the dataset each time and solves the problem 

for the remaining rows. It then averages over the 

final solutions. The hyper-grid by nature, solves 

over localised parts of the whole problem and so 

this is always part of constructing any solution. It 

would therefore be natural to include a 

bootstrapping process with the hyper-grid, which 

would allow it to use subsets of the whole dataset 

each time. It would also help a lot in practical 

terms, to reduce the size of the data grid, which is 

very time-costly to solve. This method is also the 

one proposed in [4], that suggests protecting linear 

classifiers from adversarial attack, through the use 

of bagging and random subspaces. Aggregating the 

subset results from the hyper-grid is therefore a 

very similar idea. The architecture may also have 

similarities with neural networks. Deep Learning 

neural networks [6], for example, learn discrete 

elements before summarising them through a 

pooling layer. The stochastic and distributed nature 

however may have more in common with random 

neural network architectures [20]. Likelihood 

estimators have been used to predict energy usage 

before. One new version associated with 

Generative modelling (GANs) and variational 

autoencoders (VAEs) is described in [19]. Part of 

their intuition states:  

‘Since likelihood is the product of densities 

evaluated at all data examples, the model density at 

each data example should be high. Suppose we 

don’t observe the model distribution directly, and 

instead only observe independent and identically 

distributed (i.i.d.) samples drawn from the model. 

Because the density at data examples is high, more 

samples are expected to lie near data examples than 

elsewhere.’ 

It then defines a series of likelihood estimates 

for random variables that contain distances between 

x and the nearest sample and uses the minimum 

solution as the best one. Another paper [5] uses 

regression models to predict the appliance energy 

usage in a house. It notes that the larger white 

goods appliances (fridge, cooker, clothes washer, 

freezer) consume the most energy and appears to 

suggest that their best regression model can predict 

the energy consumption to 57% accuracy. If that is 

the case, then the results of the case study in section 

4 are not too bad. Another paper that uses genetic 

algorithms to predict energy usage [15], quotes 

29% saving or 36% during peak time. 

2.2 Energy Systems 
Predicting the household energy use at the level 

of applications is quite a popular topic [1]. Modern 

systems are quite inefficient and so there is a 

potential for a huge amount of saving. Because it is 

difficult to measure each application in real time 

and it is also an intrusive and possibly expensive 

process, the current trend is to disaggregate the 

total power input to each appliance, to estimate 

their use from a behaviour model, generated from 

AI. This is typically done by first using raw data to 

train an AI model of the appliances and then using 

that to estimate the disaggregated values for each 

appliance. The training phase would typically log 

on-off switching events for each appliance in the 
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house and then train possibly a Hidden Markov 

Model to recognise the hidden or unobserved 

states, which are the individual appliances, from the 

observed state, which would be the total power 

usage per unit time [2][3][16][18]. After training, 

the internal measurements do not need to be made, 

but can be estimated by the model. While this 

system is shown to work well, it is proposed in this 

project that a much more direct approach could be 

just as effective. For one thing, the Markov Model 

is state-based and time-related, where switching 

events are placed in order. The new method to be 

proposed is set-based, where it will suggest an 

amount of energy that may get used during the day, 

but not the exact order in which it gets used. The 

set-based approach has been looked at previously, 

where gaussian equations are used as part of the 

model and the Markov process [3] can be an 

extension of a Bayesian Network [17] for example. 

But these calculations are also expensive and may 

also include other probability measures, such as 

Expectation-Maximisation or Likelihood. The 

method in this project will make use of the idea that 

most appliances have quite a unique footprint, in 

terms of their unit energy use, and so a large lookup 

table may be sufficient to allow disaggregated 

appliance usage to be recognised from a single 

input power measurement. More recently, deep 

learning and its variations have been used. The 

survey paper [14] notes that some of these methods 

can be computationally expensive. 

3 Summary of the Clustering 

Algorithms 

3.1 Hyper-Grid 
The Hyper-Grid [10][21] creates solutions by 

matching data rows that are closer together 

depending on some measurement, where one idea 

is to evolve the matched pairs further, as in Genetic 

Algorithms [11]. For this project however, it forms 

the basis for some clustering phases that result in 

energy bands, which can define the appliance usage 

over the course of a day. The heuristic works as 

follows: It reads a dataset of values, randomises the 

row ordering and also keeps a record of the original 

ordering for identification purposes. For the 

problem of learning the appliance behaviour, the 

dataset is a single column of values, representing 

the appliance energy consumption every time unit, 

but the dataset could have any number of columns. 

Randomising the row ordering means that there 

cannot be any bias in the ordering during the row 

matching process. The heuristic then compares the 

data rows and notes which pairs are most similar, 

according to some metric, such as the Manhattan 

distance. So that the heuristic does not result simply 

in hill-climbing, a matching process is preferred to 

one that selects the largest scores only. Also, if two 

rows are selected, any rows between them are 

removed from the solution, which means that it also 

discriminates. All of the potential matches are 

saved and then sets of row pairs are selected that 

would optimise the total score. This optimisation 

gives the heuristic some direction and helps to 

ensure a better result. The algorithm is illustrated in 

Figure 1, where the process would be as follows: 

 

 

 
Row Index Column Column Column 

1 3 5 3 

2 2 3 3 

3 4 4 3 

4 5 3 5 

5 5 4 3 

6 6 3 5 

7 2 4 1 

 

Figure 1. Example matching process by the Hyper-Heuristic. 

 

 

1) Compare every row with every other row and 

save a difference score based on the Euclidean 

difference between the cell values. 

2) The rows that are closest to each other are:  

a) 1 and 7 with difference 4 

b) 2 and 7 with difference 3,  

c) 3 and 5 with difference 1, 

d) 4 and 6 with difference 1. 
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3) The sum score for rows 1 and 7 is 18 and for 

rows 2 and 7, it is 15. But rows 2 and 7 are 

more similar and so they are preferred. 

a) The rows in-between can be removed, but 

if they also have matches, then the matches 

can be added first. 

4) The similarity scores for rows 3 and 5, or 4 and 

6 are the same with a score of 1. The sum score 

for rows 4 and 6 is larger however, with a value 

of 27 and so rows 4 and 6 are preferred. 

Because this cuts across rows 3 and 5, the 

matching pair of 3 and 5 is not included in the 

solution – row 5 is removed from the solution. 

5) This leads to a final solution with the row pairs 

2 and 7, and 4 and 6. 

6) These row pairs are then saved to a list that can 

store all rows pairs for all of the test runs. 

7) The final list of row pairs are then fed through 

the frequency grid that clusters them into mini-

clusters for similar frequency counts. 

8) The mini-clusters can then determine the 

energy bands, for example. 

For the appliance problem and again, to prevent 

hill-climbing from the unique footprint, row 

matches can be treated as equal if the difference 

falls inside of a particular value or band and is not 

only the smallest difference possible. Therefore, if 

a band similarity value is 2 and one matching score 

is 0 and another is 2, then they would both return a 

band value of 1. The use of bands or score ranges is 

interesting and might also work with other 

algorithms.  

Due to combinatorial explosion, a complete 

search over a larger dataset is not possible and so 

the algorithm has to split a dataset up into smaller-

sized parts and solve the problem on each part 

separately. Because the rows are randomised first, 

this can still give a reliable result. For example, if 

Figure 1 is a subset of the whole dataset and there 

are another 7 rows that have been clustered during 

a different batch run, the row pairs from the other 

subset can be added to the row pairs from Figure 1 

and the combined list can be clustered using the 

frequency grid. 

3.2 Frequency Grid 
The Hyper-Grid therefore also requires an 

aggregating layer, which can be the Frequency Grid 

[9][21], for example. This reads the list of row pairs 

and produces sets of count values that represent 

which rows are more often paired together. It is 

more entropy-based than local counts however, 

where the aggregation from the frequency grid can 

produce a holistic view of the row pairs and 

produce clusters for the whole dataset. The 

following description is taken from [9]. Consider a 

different set of data, but again for 7 rows, shown in 

Figure 2.  

 

 

 

 

1 2 3 4 5 6 7 

1 x 4 4 4 2 1 1 

2 4 x 4 4 1 0 0 

3 4 4 x 4 1 0 0 

4 4 4 4 x 1 0 0 

5 2 1 1 1 x 3 3 

6 1 0 0 0 3 x 3 

7 1 0 0 0 3 3 x 

 

Figure 2. Frequency counts would group rows 1-4 and rows 5-7 together. 

 

 

It is clear from the data that rows 1-4 all 

reinforce each other (pattern 1), as do rows 5-7 

(pattern 2). With a grid format, the input is 

represented by a single pattern group, where a 

count is incremented for each row pair occurrence. 

The grid format lists each variable, or in this case it 

would be a row number, both as a row and a 

column. Each time a pattern is presented, the 

related cell value for both the row and the column 

is incremented by 1. In row 1, for example, the 

counts suggest that it should be clustered with rows 

2-4, because they have higher counts with row 1. 

The same conclusion can be made for rows 5-7. It 

is probably not necessary to update a self-reference 

DESIGN, CONSTRUCTION, MAINTENANCE 
DOI: 10.37394/232022.2022.2.26 Kieran Greer, Yaxin Bi 

E-ISSN: 2732-9984 200 Volume 2, 2022



   

in the grid, so the leading diagonal can be empty. 

The grid result can then be read using the following 

algorithm:  

 

1) Each row displays count values representing a 

key variable - the row name, and its relation to 

the other variables.  

2) All cells relating to variables in the input 

pattern are updated each time.  

a) Each row that starts with one of the 

variables updates the count for every other 

variable in the input pattern.  

b) Because the variable is repeated in several 

cells, this still leads to normal count values 

for each cell. 

3) To determine the best clusters then:  

a) For a key variable (row key value) scan 

across and select the other variables with 

the largest count values. That variable then 

considers those other variables to be part of 

its cluster. 

b) The other variables however may be more 

associated with a different cluster, so their 

rows can be checked for consistency. They 

should similarly have a largest count value 

for the other variables in the cluster. If any 

have different (larger or smaller) count 

values, then they probably belong to a 

different cluster. 

3.3 Feature Selection 
A second use for the algorithm is suggested that 

is a self-similar process of matching over the 

columns instead of the data rows. This could work 

as follows and is the basis for the second case 

study: The algorithm is run on the dataset to 

produce sets of mini-clusters. These are subsets of 

larger clusters that are realised from subsets of the 

whole dataset. Then for each mini-cluster, the rows 

and columns are transposed and the algorithm is 

run again on that subset only, to produce another 

set of mini-clusters that would define feature sets 

instead. Some of the mini-clusters may share some 

of the feature sets, when they can be combined 

further, depending on some threshold criterion. 

This process therefore also provides a basis for 

analysing the column or feature sets in the data, 

which is described more in section 5. 

4 Case Study 1: Disaggregating 

Energy to Appliances 
This was the main focus of the research on the 

IDEAS project [12][13] and it is a well-known 

problem of trying to predict how much energy is 

required, by measuring the energy consumption of 

a set of household appliances and using that model 

to make the prediction. If individual appliances can 

be measured, then that can improve the accuracy of 

the prediction and also help with the human 

economic behaviour. A survey of this topic [1] 

notes that low-cost energy reductions can be made 

in the residential and commercial sectors, but these 

savings have not been achievable to date. Also, that 

billions of dollars are being spent to install smart 

meters, yet the energy saving and financial benefits 

of this infrastructure – without careful 

consideration of the human element – will not 

reach its full potential. Of particular interest here 

may the scheduling of energy use [13], proposed as 

part of the Ideas model. Even saving just a few 

percent of energy consumption is worthwhile. 

The single input power source needs to be 

disaggregated to each of the appliances, or an 

estimate of how much would go to each appliance 

needs to be made. This problem therefore requires a 

training stage to learn the model and then a testing 

stage to match that with the input source. The 

proposed algorithm ran a number of bootstrapped 

tests on raw data and generated row pairs that 

resulted in sets of mini-clusters. As the clustering 

involves a similarity measure, a more obvious 

approach is to aggregate the raw data into the time 

unit, hours for example, and then count the number 

of occurrences of each aggregated value. If this is 

done however, there is too much variability in the 

aggregated values. They do not conform to a set of 

values and so it is not possible to produce an 

aggregated view. This may be because the 

behaviour of any appliance is unpredictable and so 

aggregated values will typically be different to each 

other. Therefore, some form of clustering is 

required to recognise patterns or structure in the 

data and the hyper-grid was selected for this 

project. 

4.1 Second Clustering phase 
The first clustering phase therefore selected time 

slots during the day that were similar. A second 

clustering stage then took the full list of mini time-

clusters and retrieved the energy values for each 

row in a cluster and placed those in an energy 

cluster for the time cluster. The values in the 

energy clusters might then overlap, where this 
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would result in an energy band with an upper and a 

lower limit, although, single values were more 

typical. These energy bands or single-values, could 

then be used to determine the user behaviour of the 

system per time unit. For example, if there were 3 

events of band A and 1 event of band B, the energy 

supplier could expect band A, 3 times more often. 

After band B occurred, it could expect only band A 

until it had occurred 3 times, and so on. The bands 

are most useful for reducing the complexity of the 

system and recognising some inherent structure or 

behaviour. If there is a range, then the upper limit 

would typically have to be accommodated for by 

the system. But it is the fact that there is now some 

sort of model that can describe the application 

behaviour in a tractable way that makes it useful. 

4.2 Third Clustering Phase 
A third clustering phase is also likely, not when 

training the data model, but when reading it into the 

energy network, to be used by the system during 

runtime. This would help to reduce the complexity 

even further, so that a lookup table can be 

generated for an exhaustive combination search. 

While the values varied, it could be by a small 

fractional amount only and so this clustering 

created bands from values with the same ‘integer’ 

upper and lower-limit parts, resulting in only one 

energy band for the whole fractional range. See 

Table 1 in section 4.4.1, for an example. 

4.3 Optimisation 
The intention is to optimise some process that is 

part of an energy system. As described earlier in 

this section, the energy bands can be used to predict 

how much energy the appliances are likely to use. 

The system can therefore plan for the calculated 

maximum energy requirement at any one time and 

then when energy band events occur, they can be 

removed and the prediction can be adjusted to the 

remaining set. It is always important that there is 

enough energy for any eventuality and so there 

always needs to be additional energy in the system 

that may not get used. This is one place where 

energy savings can be made, if predictions can 

minimise this additional amount. Other methods 

may typically recognise on-off switching events for 

appliances and then generate Markov Models [2][3] 

or other probability measures, such as Likelihood 

evaluations [19] and with that research, 

disaggregation is helpful. The model would be 

trained to recognise on-off switching events for 

appliances, which gives a state-based or a 

probability model for each appliance. Then from a 

single input value, the system would disaggregate 

the input power source to each of the appliances, by 

learning when the appliances are likely to be on or 

off. A Markov Model can be used with time-based 

events, or a Likelihood probability estimate can be 

used with set-based events, for example. The 

method of this paper does not have sequential 

events, but is more set-based. It only defines that 

this set of events may have occurred in a particular 

time period. This is both good and bad, because it 

may be possible to produce a simpler alternative to 

other probability measures. On the down-side, it 

would still benefit from the accuracy of learning 

some amount of timing and so the future work for 

this section describes how that might be achieved. 

4.4 Test Program and Results 
An algorithm has been implemented in the Java 

programming language and tested on real data [7] 

from households in Switzerland. This data has been 

used before to generate Markov Models, for 

example [2][3]. A number of houses were 

monitored, where a smart plug was able to measure 

the energy consumption for an appliance. This was 

relayed to a central system and logged every 

second. Therefore, each appliance was logged 

every second for a period of approximately 8 

months. For the hyper-grid, a measurement of 

every second was too fine-grained and so the data 

was converted into aggregated values for each 

hour. That is the average amount of energy used by 

the appliance each hour. The data for each 

appliance was then clustered using the Hyper and 

Frequency Grids, as described earlier in this 

section. The final set of energy bands would be 

used to define the behaviour of the appliance over 

the course of a day. For the 8-month period, there 

was no large change in the appliance behaviour 

from one month to the next, but this could certainly 

be modelled as individual and seasonal sets of 

bands.  

The energy system was then able to guess how 

much energy each house was likely to require 

during the day. It would have to provide the upper 

limit each time, so that the house does not run out 

of energy. This can be achieved by returning the 

largest energy band for each appliance in the house 

each time. This would be an upper limit for the test 

process, where the system would measure the 

prediction accuracy by then removing an energy 

band instance, at random, for each appliance. The 

next prediction would then be calculated on the 

remaining energy bands and the accuracy would be 

the difference between the estimate and the 

randomly selected set of used bands. The test 

system therefore did not model exactly when an 
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appliance was used, but knowing when, would have 

made it more accurate. 

4.4.1 Lookup Table 
It is proposed that a simple lookup table can be 

used to good effect. The energy bands reduce the 

combinatorial complexity enough to suggest that 

for all appliances in a household, a lookup table of 

under 1 million entries could be sufficient. The 

table needs to map every energy band events for 

each appliance with every other one and so it has to 

provide a combination for every possibility. There 

could of course be statistical methods to reduce the 

number further, when the entries are very similar, 

such as the third clustering phase of section 4.2. For 

example, Table 1 is a set of energy bands that were 

produced for a fridge in some household over the 

course of a day. Each band represents an hour of 

energy consumption by the appliance and the 

frequency is how many times that occurred during 

the day. Most bands contained a single value that 

was the result of the first two phases of clustering. 

In rarer occasions, for example: 31.0813 - 28.1024, 

there was an overlap in the clusters leading to a 

value range. When reading these into the model 

however, the lower-values bands with the same 

integer number can be combined. For example, all 

bands starting with the integer value of ‘1’ can be 

combined. 

 

 

 

Energy Band Freq per 

Day 

Energy Band Freq per 

Day 

51.3304 - 

51.3304 

1 12.3664 - 

12.3664 

1 

47.3313 - 

47.3313 

1 8.2406 - 

7.89404 

2 

41.8416 - 

41.8416 

1 6.6794 - 

6.6794 

1 

37.4993 - 

37.4993 

1 4.0358 - 

4.0358 

1 

35.5428 - 

35.5428 

1 3.8319 - 

3.8319 

1 

31.0813 - 

28.1024 

5 3.2404 - 

3.2404 

1 

21.3339 - 

21.3339 

1 1.3989 - 

1.3989 

1 

18.3959 - 

18.3959 

1 1.2865 - 

1.2865 

1 

16.317 - 

16.317 

1 1.2065 - 

1.2065 

1 

14.8694 - 

14.8694 

1   

 

Table 1. Example of energy bands for an appliance, with power consumed per hour. Set of energy bands that 

occurred over the course of a single day for a Fridge 

 

 

Then with each combination of all appliances, a 

power input total can be calculated by taking the 

upper limit or average of each energy band in the 

combination. The lookup table would be produced 

for each appliance during a short training phase, 

when the system is being setup. After that, the 

system would read the power consumption at some 

time unit and pass that to the table, which would 

return the appliance combination that matches 

closest to the power value. Because the band values 

are quite unique, the combination value can be a 

key to a table, where the table value is then the set 
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of appliances that created it. The selected band 

events could then be removed from the day’s set, 

allowing the next consumption amount to be more 

accurately predicted.  

This method should work reasonably well 

because of the unique energy footprints, but there is 

also quite a wide margin of error that would be 

acceptable. For example, if the system has a set that 

contains energy bands of ‘5 units’ for both 

appliances A and B. Then maybe the next event 

reads an energy band of 5 and the system 

mistakenly attributes that to appliance B instead of 

A. For the following time unit, the system would 

then expect appliance A to produce a 5-unit band 

instead of B. But if B produces the 5-unit band in 

the next time unit instead, this does not in fact harm 

operation of the system. The system only needs to 

match with the energy requirement, it does not need 

to know exactly, which appliance any band came 

from. Although, the authors recognise that for a 

more sophisticated system, individual appliance 

usage may need to be monitored and may prove 

more problematic. 

4.4.2 Test Results 
The results show potential for improvement, but 

the path to that improvement is outlined in section 

4.5. After the energy band clusters were produced, 

an energy network and disaggregator were created 

from them and a predictor was asked to simulate 

the network activity. It would return its maximum 

requirement for energy each time and then remove 

a random set of energy bands as the actual event. 

The maximum requirement could in fact be 

summed and the total then passed through the 

disaggregator, to return an estimate for it instead. 

This produced only a small reduction in the 

accuracy overall. For 3 locations of the datasets [7], 

the following result of Table 2, was achieved. 

 

 

 

Total power consumed was: 55295 

Difference between predicted and disaggregated was: 6.0E-12, or 1.0E-

14 % 

Difference between predicted and used was: 44599, or 80.5 % 

Number of predictions less than actual was: 0 

 

Saving for location: h1 was 14414 or 54 %, from 24 events. 

Saving for location: h2 was 13330.5 or 28.5 %, from 24 events. 

Saving for location: h4 was 2222.5 or 18.5 %, from 24 events. 

 

Table 2. Prediction accuracy for locations House 1, 2 and 4. 

 

 

The first figures indicate that the accuracy of the 

prediction to the actual random events is only about 

20% accurate, or there is an 80% power loss when 

predicting how much energy should be provided. 

But this is for random selections that have to 

accommodate the spiking events. Disaggregating 

the single input source to the appliance lookup 

table however is very accurate and the error may be 

down to the computer processing floating point 

numbers. This gives support to the idea of unique 

energy bands for the appliances. Then, the 

difference in providing the upper bound on the 

energy bands each time and the predicted amount, 

over the course of a day, is shown in the second set 

of figures. It could be around 50% savings, but 

house 4 is less at only 19% savings. A key concern 

is to guess when the spiking event might occur. 

This is where an analysis that includes time would 

be helpful. A calculation using only the upper 

bound would have to accommodate this for every 

hour, while the prediction can remove it as soon as 

it occurs, which on average might be half-way 

through the day, for example. But the energy bands 

themselves are a unique solution that make the 

whole problem very tractable. 

4.5 Future Work 
Tests suggest that the system can save maybe 

50% of energy production from providing the 

maximum amount each time, but that it is still 

relatively inaccurate at predicting the random 

events. Until the spiking event has occurred, the 

system has to accommodate it and so it has to 

provide that level of cover, when the appliance is 

only using a small amount of energy. This is 

therefore where a set-based approach is much less 
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effective than one with event sequences. The 

IDEAS [13] system can also provide appliance 

schedules however, entered manually by the user, 

that can describe in general terms, when an 

appliance is likely to be used. These schedules can 

therefore describe time-based events that could be 

used as part of the prediction. For example, if the 

schedule indicates high usage in the morning and 

low usage in the afternoon, then this can be added 

to the prediction. A second area of interest is the 

energy sources and their power input. This is 

disaggregated as part of the system operation, but 

the power input is also often modelled as part of a 

time series. The time series would then produce 

timed events that could also be used to adjust the 

prediction. 

5 Case Study 2: Germany Wind 

Power Regions 
A second test scenario looked at clustering the 

Wind Power datasets from Germany [23]. This data 

was selected because it is relatively small in size 

and does not require formatting. There are 4 

datasets, one for each of the four wind power 

companies - 50Hertz, Amprion, TennetTSO and 

TransnetBW. Each row in the dataset represents 1 

day, over a 12-month period, resulting in 397 rows. 

Each column then represents the power generated 

each 15 minutes of the day, resulting in 96 

columns. The analysis differences were quite small, 

but they may represent some kind of pattern. Also, 

and importantly, they may help to confirm that the 

hyper-grid is able to produce consistent results.  

Two sets of tests were run. The first was for 200 

iterations over the dataset batch subsets and the 

second was for 500 iterations over the same-sized 

batch subsets. For example, if the batch size was 

100 rows, then there would be 4 batch tests for 

every iteration. The first test resulted in mini-

clusters that covered only about 10% of the whole 

dataset, while the second test covered about 50% of 

the data rows. It might be expected that a smaller 

number of rows would select slightly larger values, 

because of the optimising feature in the algorithm. 

If the data is represented by some distribution, for 

example, then the smaller number of rows may be 

more from the top of that distribution. Then as 

more rows are selected, they will include rows from 

lower down the distribution, or with smaller values. 

This actually means that overtraining of the hyper-

grid would probably result in the clusters joining 

with each other and losing some of the 

discrimination effect.   

Therefore, some configuration was required, to 

select an appropriate size of batch subset, a 

similarity percentage for row matches, and so on, 

which was a bit of a black art. A best configuration 

would also depend on the data itself, as to how 

many rows would eventually be included. When 

the rows had been clustered, each mini-cluster was 

analysed further to match its columns or features, 

and in this case, bands were not used, when the 

closest match value was exact instead. The features 

were not studied in detail, but only the variance 

was considered, which is OK, because they 

represented time units only. Row clusters that 

shared a certain number of similar feature clusters 

were then combined again afterwards, during the 

analysis stage, described next. 

5.1 Dataset Analysis 
The test program therefore, produced sets of 

mini-clusters, or row indexes that should be 

clustered together and for each mini-cluster it did 

the same for the columns. What might be 

interesting was the fact that the column clustering 

preferred to cluster a column with other columns 

that were close to it and with the more extensive 

test, so did the rows. There was therefore a type of 

preferred sequential matching that took place, or 

the energy value for one time unit was typically 

closer to the immediately preceding or subsequent 

time units. To study this further, each mini-cluster 

was analysed across the row and column indexes, 

to measure the variability size from one index to 

the next. For example, if rows or columns 1, 4, 8, 

10 were clustered together, then this would produce 

a variability of 3+4+2 = 9 / 3 = 3. This variability 

value was measured for the 4 companies separately 

and is shown in Table 3. 

 

 

 
 10% Coverage 50% Coverage 

Compan

y 

Row 

Var 

Col 

Var 

Av 

Val 

Row 

Var 

Col 

Var 

Av 

Val 

50Hertz 19.1 5.3 0.6

97 

3.5 4.9 0.2

50 

Amprion 28.8 3.7 0.7

40 

4.4 3.5 0.2

67 
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TennetT

SO 

24.7 8.8 0.7

11 

3.1 4.8 0.2

43 

Transnet

BW 

37.3 4.4 0.6

16 

4.3 4.7 

(14) 

0.2

37 

 

Table 3. Variances for rows and features, for the Germany Wind Power stations. 

 

 

The results for 50% coverage are with an 

adjustment for the TransnetBW dataset. If all 

columns were included, then column 2 would be 

clustered with columns much further on and this 

would lead to an anomaly in the sequence 

variability. If that single column index was ignored 

in the calculation, then the variances were all much 

closer. The differences therefore are quite small, 

but it looks like TransnetBW has the most 

variability across both rows (seasonal weather) and 

columns (daily weather). If the anomaly is included 

however, then the difference is clear and it is still a 

feature in the TransnetBW dataset that is not in the 

other ones. So there may be a question about a 

mountainous terrain affecting the performance 

there and at what energy range occurs the most. 

The other 3 companies appear to be a lot more 

similar. Amprion performs the best and also has the 

best day (column) variance values. 

6 Conclusions 
This paper suggests an architecture that includes 

both discrete and centralising elements and 

therefore has some similarities with neural network 

architectures. A stochastic and discrete layer 

clusters randomly selected subspaces of the data 

into mini-clusters, not using gradient descent as in 

neural networks, but using a Euclidean distance 

linear classifier, as in [4] or the random networks 

[20]. Then, an aggregating layer combines the 

discrete results, rather like a deep learning pooling 

layer [6]. The algorithm can be trained to recognise 

similarities across data rows, or data columns 

(features), in a self-similar way. An optimising 

feature means that the algorithm prefers to cluster 

similar rows with larger values first. One might 

think about an energy surface with peaks and 

troughs, for example, but the surface is being 

traversed in many different places at the same time. 

Overtraining might then be recognised when the 

localised peak distributions start to merge with each 

other, which can happen when more lower-valued 

rows are linked with the higher-valued ones. In this 

paper, the architecture is used to cluster and make 

predictions over energy data, using a stochastic 

Hyper-Grid [10] and a Frequency Grid [9]. The 

discrete, localised optimisations in the hyper-grid 

match dataset rows that are more similar, using a 

distance measurement, but is also able to 

discriminate and keep only the row sets that will 

optimise for some overall total. This method is also 

described in [4], in terms of bagging and random 

subspaces, as being a possibility to protect from 

adversarial attack, by keeping some of the data 

always hidden.  

The case study topic relates to the IDEAS Smart 

Home Energy Project, where a client-side Artificial 

Intelligence component can predict energy 

consumption for appliances. The proposed data 

model for that is essentially a look-up table of the 

key energy bands that each appliance would use. 

Each band represents a level of consumption by the 

appliance. This table can replace disaggregation 

from more complicated methods constructed from 

probability theory, for example. Results show that 

the table can accurately disaggregate a single 

source to a set of appliances, because each 

appliance has quite a unique energy footprint. As 

part of predicting energy consumption, the model 

could possibly reduce costs by 50% and more than 

that if the proposed schedules are also included 

[13]. The hyper-grid has been changed to consider 

rows as single units, making it more tractable. A 

second case study considers wind power patterns, 

where the grid optimises over the dataset columns 

that represent a time-series, showing some level of 

sequential consistency over this feature analysis. 
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