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A B S T R A C T   

Falls are one of the most costly population health issues. Screening of older adults for fall risks can allow for 
earlier interventions and ultimately lead to better outcomes and reduced public health spending. This work 
proposes a solution to limitations in existing fall screening techniques by utilizing a hip-based accelerometer 
worn in free-living conditions. The work proposes techniques to extract fall risk features from periods of free- 
living ambulatory activity. Analysis of the proposed techniques is conducted and compared with existing 
screening methods using Functional Tests and Lab-based Gait Analysis. 1705 Older Adults from Umea (Sweden) 
were assessed. Data consisted of 1 Week of hip worn accelerometer data, gait measurements and performance 
metrics for 3 functional tests. Retrospective and Prospective fall data were also recorded based on the incidence 
of falls occurring 12 months before and after the study commencing respectively. Machine learning based ex-
periments show accelerometer based measures perform best when predicting falls. Prospective falls had a 
sensitivity and specificity of 0.61 and 0.66 respectively while retrospective falls had a sensitivity and specificity 
of 0.61 and 0.68 respectively.   

1. Introduction 

Approximately 28–35% of people aged 65 and over fall each year 
increasing to 32–42% for those over 70 years of age [1]. Falls can have a 
number of negative effects on fall victims resulting in decreased quality 
of life due to reduced activities of daily living, physical deterioration and 
social isolation and death. In 2017, in the Western European region, 8.4 
million adults age 70 and older sought medical attention due to a fall, 
with case fatality rate between 0.4% and 1.1% reported [2]. 

Among the most serious injuries resulting from falls are hip fractures 
and traumatic brain injury. Falls also have a significant economic 
burden on national health care services with falls costing between 
0.85% and 1.5% of the total health care expenditures [3]. 

Accurate assessment of fall risk can allow for earlier fall-risk reduc-
tion interventions such as physical therapy, home modification and 
medication withdrawal. Early interventions have potential to reduce fall 
occurrence, fall-related costs, fear of falling and negative effects on 
quality of life [4]. Clinical fall risk assessment tools often utilize ques-
tionnaires and/or functional assessments of posture, gait, cognition and 

other risk factors. However, clinical assessments have a number of 
limitations due to the subjective and qualitative nature of the assessment 
methodologies [5]. 

It has been recommended that screening of fall risk should be con-
ducted for older adults at least annually by physicians [6]. However, 
effective fall risk assessment remains underutilized in clinical practice 
due to unreliable subjective measures, lack of cost-effective technology 
and clinical time constraints [7]. In order for fall risk screening to be 
practically integrated into typical clinical practice, fall risk assessment 
techniques must be developed that meet 3 key criteria: (1) accurate 
assessment of fall risk, (2) use of inexpensive technology and (3) easy to 
administer [7]. 

As an alternative to clinical assessment tools, technology based fall 
risk assessment tools have been proposed in the literature in order to 
provide more objective and quantitative measures of fall risk. Inertial 
sensors are the most commonly used sensor for fall risk assessment and 
recent reviews indicate that inertial sensors have the potential to pro-
vide quantitative, objective and reliable indications of fall risk [8,5,9]. 
This paper therefore aims to utilize a hip worn accelerometer in free- 
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living conditions to assess ambulatory activity and identify future 
fallers. In this work, free-living conditions refers to conditions whereby 
participants continue their normal daily life routines. 

1.1. Related work 

Several reviews have been published in recent years related to 
Sensor-based Falls Risk Testing (SFRT) [8,10–12,7,13,5]. An analysis of 
these reviews identified 3 key issues that future research should focus 
on. These issues relate to 1) fall classification criterion 2) data acquisi-
tion methodology and 3) validation protocols used. Each issue was 
raised in at least 2 of the recent review articles. 

1.1.1. Issue 1: fall classification criterion 
The classification criterion is the baseline measure used to compare a 

proposed fall risk measurement technique against. The method used to 
classify fall risk differs among the literature. Participants are commonly 
classified as fallers or non-fallers based on one of several different 
methods including Clinical Assessment, Prospective Falls and Retro-
spective Falls [8]:  

• Clinical Assessment: A person is classified as a faller or non-faller 
based on their performance of an assessment, or set of assessments, 
in clinical settings such as the Timed Up and Go (TUG) test.  

• Retrospective Falls: A person is classified as a faller or non-faller 
based on self-reported fall history denoting the presence or absence 
of fall occurrences in the past.  

• Prospective Falls: A person is classified as a faller or non-faller based 
on self-reported fall occurrence within a follow-up period from the 
assessment (commonly 1 year). 

Clinical assessments use functional tests such as the Tinetti Test [14], 
Grip Strength [15] or Timed Up and Go (TUG) [16]. However, there is 
conflicting evidence supporting functional tests in predicting future 
falls. For example, two different studies by, Kojima et al. [17] and Moller 
et al. [18], report significantly different sensitivity and specificity re-
sults. Both studies assessed the predictive validity of TUG as a predictor 
of future falls (6 months follow up) in community dwelling older adults 
(+65 years). Kojima et al. and Moller et al. reported a similar optimal 
TUG cut-off point of 12.6 and 13 s respectively. However, while Kojima 
et al. reported a sensitivity and specificity of 0.305 and 0.895 respec-
tively, Moller et al. reported a sensitivity and specificity of 0.667 and 0.5 
respectively. Thus, sensitivity and specificity differed by 36% and 39.5% 
respectively. 

Basing the criterion measure of a study on clinical assessment tests 
will introduce false positives and false negatives into the ground truth 
classification criterion [5]. A false positive occurs when a participant 
performs a clinical assessment with a score that meets the fall risk 
threshold criteria but subsequently does experience a fall. Conversely, a 
false negative occurs when a participant performs a clinical assessment 
with a score that does not meet the fall risk threshold criteria but sub-
sequently does experience a fall. 

Retrospective falls act as a proxy measure for fall risk since it is 
known that a faller has a higher risk of falling again [19]. However, this 
method requires that a fall has already occurred in order to identify a 
person as at risk and, similar to clinical assessments, will introduce false 
negatives and false positives into the ground truth. Thus, when 
comparing a proposed SFRT technique with clinical assessment or 
retrospective ground truth, evaluations will not reflect true performance 
of future faller and non-faller classification. 

Recent reviews have stressed the problematic fact that Clinical fall 
risk assessment and Retrospective falls are the two most commonly used 
criterion measures in the literature [13]5. Since the goal of fall risk 
assessment is to predict the likelihood of future falls, prospective falls is 
the preferred criterion. However, only a small number of studies have 
employed prospective falls as the criterion method. 

By conducting a detailed literature review of recent SFRT papers, 
aided by two review papers [5,7], we identified a total of 15 papers that 
utilized prospective falls for SFRT [20–34]. 

1.1.2. Issue 2: free-living/community based data acquisition 
Previous work has shown that fall risk predictors can be extracted 

from accelerometer signals recorded during periods of steady state 
walking [35]. For example, Hua et al. showed that features extracted 
from vertical acceleration signals had good discriminatory power in 
separating high risk fallers from low risk fallers. 

However, the study by Hua et al. captures data during the perfor-
mance of standardised gait test in a controlled lab setting. Capture of 
data in controlled lab/clinic conditions is the most commonly used 
approach in the literature for SFRT [10,7,11]. However, this approach 
has a number of disadvantages. Firstly, there are potential issues relating 
to participants’ awareness of being observed (Hawthorne Effect) during 
the performance of gait and balance tests in controlled settings. 
Research has shown that gait performance can differ when participants 
are being observed [10,36]. Thus, gait based measures in lab/clinic 
settings may not reflect naturalistic behaviour. Secondly, controlled lab- 
based measures require costly staff time to administer the test and often 
use expensive sensor equipment. 

As an alternative, gait based measures can be extracted from free- 
living behaviour where sensors are worn by participants in their natu-
ral daily living environments [10]. Participants are thus not required to 
attend specialist clinics or lab settings and participants do not need to be 
monitored or supervised by health care professionals. Furthermore, 
behaviour measured in free-living conditions should be more represen-
tative of natural behaviour. It has been shown that accelerometers worn 
in free-living conditions have the potential to identify fallers [10]. 

Of the 15 previously described prospective falls based studies, 2 were 
focused on free-living based data acquisition [32,33] while the 
remaining were based on lab based measures. The 2 studies were based 
on the same data set of 319 older adults. Van Schooten et al. [32] re-
ported Area Under the Curve (AUC) performance of 0.66–0.72 while 
Aicha et al. [33] report AUC performance of 0.61–0.7. Cross Validation 
(CV) was used to measure performance. However, it was difficult to 
assess if performance would be maintained in real-world conditions due 
to some ambiguities in the evaluation protocols which we discuss in the 
next section. 

1.1.3. Issue 3: modeling and validation 
Recent research has highlighted some troubling trends in relation to 

the presentation of over-optimistic SRFT results [13]. In particular, 
concerns have been raised in relation to sample size, questionable 
modeling and problematic validation methodologies. One of the biggest 
challenges in SFRT is acquiring a large enough sample size to ensure 
sufficient study power. This is particularly challenging and costly for 
prospective based falls studies where there is a requirement for a 6–12 
month follow up with each participant. However, from the set of 15 
reviewed prospective falls papers, we found that the largest number of 
participants used was 319 and the average number of participants used 
was 127(±86). Most studies have therefore been too small to gain any 
real statistical insight into the effectiveness of techniques if applied to a 
larger population. 

Another issue relates to the misuse of model validation methodolo-
gies. A fundamental component of machine learning is that one should 
separate the problem of model selection from that of evaluating the final 
performance of the predictor. To evaluate performance, it is important 
to set aside an independent test set referred to as a “holdout” test set 
[37]. The remaining data should be used both for training and per-
forming model selection. 

A problem identified by Shany et al. was that testing data is 
commonly used in some of the model training pipeline steps, such as 
feature selection, model selection, parameter tuning [13]. Use of test 
data for model selection can lead to models that are biased towards the 
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available data and thus can produce models that are over-trained and 
produce inflated accuracy scores that are unlikely to maintain their re-
ported performance during real-world use. In order to build an unbiased 
model, it is vital that testing data should never be used to inform the 
feature selection, model selection or parameter tuning. 

While it was difficult to ascertain the exact model training method-
ology used in the 15 previously described prospective studies due to 
ambiguous descriptions in some papers, we identified 7 papers which 
appear to perform feature selection on training and testing data 
[22,20,28,25,30,31,34] and 2 papers which appear to perform model 
selection using training and testing data [26,34]. 

Research also highlights issues with the use of CV as the primary 
evaluation technique [38]. Specifically, there is no way to know how 
reliable CV based performance measures are. CV has been shown to have 
a large uncertainty for small sample sizes common in health and medical 
research. It is therefore advised, for small datasets with N < 1000, that 
performance be reported using a single holdout test set. 

In the 15 previously described prospective falls based studies, we 
identified 1 study that utilized a holdout test set [29]. Nine studies 
utilized CV (or a variation of CV) as the primary means of evaluating the 
accuracy of predictions [23,22,25,30,32,33,26,34]. The remaining 6 
studies used resubstitution where the model is trained on all data and 
then tested by resubstituting the same data as the test data 
[21,20,24,28,31,27]. Resubsitution clearly has a number of issues and 
will result in performance estimates that will significantly overestimate 
performance. 

2. Methods 

2.1. Data acquisition 

1705 Participants, all aged exactly 70 years old and from Umeå 
Sweden, took part in the study (817 Female and 888 Male). Participants 
had an average weight of 76.9 kg (±14.1 Kg) and an average Body Mass 
Index of 26.5 (±4.08). 

All participants attended an examination session conducted by a 
research nurse. During the examination session, participants were asked 
to perform a set of standardized functional tests; TUG, Gait Velocity 
during a 6 Meter Walk Test and Non-Dominant Hand Grip Strength. 
Participants also performed a gait assessment on a pressure sensitive 
walkway (GAITRite, CIR Systems Inc, USA). Participants were asked to 
walk the length of the walkway (6 Meters) and 65 gait based measures 
were calculated for each participant using proprietary software (GAI-
TRite). Gait measures include Step Time, Cycle Time, Step Length, Heel 
to Heel Base Support Distance, Single Leg Support Time, Double Leg 
Support Time, Swing Time, Stance Time, Step Extremity Ratio and Toe 
In/out angle. 

History of falls in the 12 months prior to the study commencing was 
also recorded based on participant recall. A fall was defined as an event 
which results in a person coming to rest inadvertently on the ground or 
floor or other lower level. 

After the examination session, participants were provided with a hip 
mounted tri-axial accelerometer (GT9X Actigraph,Actigraph LLC, USA) 
which they were asked to wear for 7 consecutive days. Acceleration for 
x, y and z axis were recorded for the duration of the 7 days at 30 Hz. A 7 
day duration was chosen based on likelihood of that period representing 
the participants normal gait, while also considering logistics, availabil-
ity of devices and ethics. At the end of the 7 days, the device was 
returned by the participant and acceleration data was retrieved for each 
participant (average of 911 MB per participant). Six and twelve months 
after the examination session, follow-up telephone interviews were 
conducted to ask whether participants have experienced a fall since their 
examination session. It is worth noting that some participants may 
experience a fall in the previous 12 months and also experience a fall in 
the 12 month follow up period. 

2.2. Ethical considerations 

Prior to participating, all participants gave oral and written consent. 
The study follows the ethical principles of the Declaration of Helsinki 
and has been approved by the Regional Ethics Review Board in Umea 
(dnr 2012-85-32-M, supplement to dnr 07-031-M). 

2.3. Free-living accelerometer data processing 

The majority of previous SFRT research has performed data collec-
tion in controlled lab settings with participants performing a set of 
standardised physical activities. Switching to data collection in unsu-
pervised free-living conditions would make the assessment procedure 
more accessible for patients, less expensive to administer and would 
overall increase the feasibility of deploying the screening tool for all 
older adults. 

Previous work has shown promising results where features based on 
gait quality, extracted from free-living conditions, could be used as 
predictors of fall risk [32,33]. The technical novelty of this work is that it 
builds on this premise to calculate gait quality based features from 
accelerometer data retrieved from the tri-axial accelerometer worn by 
participants. Prior to extracting gait based measures from free-living 
based data, automatic detection of periods of steady state ambulatory 
activity is first performed. 

2.3.1. Signal processing 
Signal processing and data analysis was performed using the Python 

programming language and the Python libraries: SciPy, Pandas, SciKi-
tLearn, AutoSKLearn and TSfresh. 

With the accelerometer worn around the waist, the aim was that 
participants would wear the device such that the accelerometer axis 
aligned with anatomical axis, where the accelerometer x, y and z axis 
aligned with sagittal, longitudinal and frontal axis respectively. Fig. 1 
provides an illustration of the accelerometer and anatomical axis. It was 
observed that participants consistently aligned the accelerometer y axis 
with the anatomical longitudinal axis due to the constraints imposed by 
the sensor belt mounting mechanism. However, due to the potential to 
mount the sensor at any position on the waist between the left hip and 
right hip, alignment of the sensor x and z axis with the anatomical 
frontal and sagittal axis was performed inconsistently by participants. 
The x and z axis were therefore combined into a single horizontal ac-

celeration magnitude Ahoriz =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
x + A2

z

√

to ensure measurements were 
consistent across all participants. Overall acceleration magnitude is also 

calculated Amag =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
x + A2

y + A2
z

√

. 

2.3.2. Ambulatory activity detection 
Prior to extracting gait features, periods of ambulatory activity were 

automatically identified from a filtered accelerometer signal. Candidate 
steps were first identified by performing peak detection on a vertical 
acceleration signal A′

y filtered using a 4th order Butterworth bandpass 
filter (0.25–2.5 Hz). All identified peaks were evaluated and defined as a 
candidate step only if the signal had a zero-crossing and crossed both a 
positive and negative threshold of ±0.8 on either side of the zero- 
crossing. All candidate steps were then grouped into clusters based on 
temporal proximity to one another. 

Clusters of candidate steps that met a set of pre-defined criteria were 
classified as periods of ambulatory activity. While it is important that a 
large number of periods of ambulatory activity are correctly identified 
(i.e. true-positives), it is more important that other periods of activity, 
that are not ambulatory in nature, are not included for further analysis 
(i.e. false-positives). Previous work indicates that fall predictors can be 
extracted from steady state walking patterns [35]. The criteria was 
therefore designed to detect steady state ambulatory activity to mini-
mize the number of false positive periods of ambulatory activity 
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detected. The criteria implemented is defined as follows:  

• Time between each step peak should be between 0.2 and 3 s  
• Standard Deviation of time between all step peaks should be within 
±0.8 seconds  

• There should be a minimum of 25 steps within the cluster. 

2.3.3. Feature extraction 
For each period of detected ambulatory activity, raw accelerometer 

data for that period was processed and features were extracted. A 4th 
order butterworth bandpass filter (0.05–3.0 Hz) was applied to the three 
raw accelerometer signals, Ay,Ahoriz and Amag. A single feature vector F 
was computed for each participant from the median of all feature vectors 
fi, where fi is the feature vector computed from the ith bout of detected 
ambulatory activity. Each feature vector consists of a step based feature 
vector si and a frequency based feature vector pi such that fi = {si,pi}. 

The step based feature vector si, is comprised of a total of 180 sta-
tistical based features computed for each filtered signal (Ay,Ahoriz,Amag). 
A time series feature extraction library, TSfresh, was utilized to extract 
60 ’simple’ features for each filtered signal [39]. Step features include 
maximum, minimum, index of maximum, index of minimum, variance, 
signal mass center, number of peaks, absolute eneregy, auto-correlation 
mean and sample entropy. Step features are computed for each step, 
within the ith bout of ambulatory activity, between the local minima 
preceding and succeeding the step peak. This was performed for all 
peaks within the ith bout of ambulatory activity and the overall step 
feature si was calculated as the median of all step features within the ith 
bout of ambulatory activity. 

The frequency based feature vector pi, is comprised of a total of 500 
Fast Fourier Transform (FFT) and Wavelet features which are calculated 

from a fixed size 10 s window within the bout of ambulatory activity. For 
each bout of ambulatory activity, FFT Phase and Continuous Wavelet 
Transform (CWT) coefficients are calculated for the 10 s Amag signal. The 
feature vector pi, is therefore comprised of 150 FFT phase coefficients 
and 350 CWT coefficients, where CWT is calculated for 3 different 
window lengths (3, 5 and 10). 

For bouts of ambulatory activity that last longer than 10 s, a sliding 
window approach was used to find a 10 s period that minimizes the 
standard deviation of time between step peaks. Thus, the goal was to 
identify a 10 s period of ambulatory activity with the most consistent 
step cadence in order to calculate FFT and Wavelet based features from. 
Fig. 2 provides a visualisation of candidate steps and how periods of 
ambulatory activity are identified. Fig. 2 also shows an example of a 10 s 
window being select for FFT and Wavelet coefficients to be extracted 
from. 

2.4. Model training 

As discussed in Section 1.1.3, model training should be considered as 
a pipeline of steps comprising feature pre-processing, feature selection, 
training, parameter tuning and model selection. Model training, and any 
of the individual pipelines steps, will only be performed on the training 
set. 

The three data types (FT, PSW, FLA) are available for all 1705 par-
ticipants. Three categories of prediction models will therefore be trained 
and evaluated to directly compare the prediction performance of the 3 
different data types. Fall History, defined as a fall occurring in the 12 
months prior to the study, will also be assessed as predictor of future falls 
and as a feature to complement each of the three data types features. 

The scope of this paper is not to develop or propose novel machine 

Fig. 1. (Left) Actigraph GT9X Axis Configuration (Right) Anatomical Axis.  
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learning models or configurations. The aim is, however, to evaluate the 
proposed FLA features, and compare them to more commonly used FT 
and PSW features, in predicting prospective falls. In order to build 
predictive models, consideration needs to be given to the type of feature 
preprocessing and learning algorithms that will be used. In addition, 
appropriate hyper-parameters need to be set for the chosen algorithms. 
To remove any potential bias that could be introduced, by choosing 
preprocessing techniques, learning algorithms or hyperparamers that 
favours one of the 3 data types over another, a systematic and objective 
methodology to select algorithms and hyperparamaters is implemented. 
This method uses an automated machine learning methodology based 
on Bayesian optimization methods to select from 15 classifiers and 14 

feature preprocessing algorithms [40]. The 15 classifiers were: Decision 
Tree, Adaboost Decision Tree, Extra Trees, Random Forest, Gradient 
Boosting, Bernoulli Naive Bayes, Gaussian Naive Bayes, Multinomial 
Naive Bayes, K-nearest neighbour, Linear Discriminant Analysis, Linear 
Support Vector Machine (SVM), Radial Basic Function SVM, Neural 
Network, Stochastic Gradient Descent classifier and Quadratic 
Discriminant Analysis. The 14 pre-processing algorithms were: Inde-
pendent Component Analysis, Principle Component Analysis (PCA), 
Kernel PCA, Nystroem Sampler, densifier, feature agglomeration, 
feature selection (ANOVA), feature selection (chi2), feature selection 
(Extra-Trees), feature selection (random trees), feature selection (SVM), 
polynomial features, truncated SVD and no pre-processing. 

Fig. 2. Filtered Accelerometer Signal for 1 Day (with multiple zoom levels) showing detection of candidate steps and periods of ambulatory activity.  
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The final prediction model, including algorithms, models, features 
and hyperparamaters, is selected based on performance calculated from 
10-fold cross-validation on the training set. Overall model performance 
of the final prediction model is evaluated using the holdout test. 

For each of the three data types (FT,PSW, FLA) the automated 
Bayesian Optimization based machine learning methodology was uti-
lized to configure a machine learning pipeline and train models [40]. 
Models were configured and trained using training set data only. The 
training set was split into a cross-validation set (N = 1087, 163 Fallers) 
and a validation set (N = 192, 28 Fallers). The Bayesian Optimization 
system was implemented to maximize the average g-mean, over 10 
folds, computed from the cross-validation set. Using early stopping, the 
validation set was utilized to reduce the models over-fitting on the cross- 
validation set. After each epoch of the Bayesian Optimization process, g- 
mean was calculated for the cross-validation set and the validation set. 
Early stopping of the Bayesian Optimization process was performed 
when validation set performance began to diverge from cross-validation 
set performance. 

3. Results 

Research by Haagsma et al. [2] reported a fall incidence rate of 
14,835 per 100,000 in Sweden in 2017 and an average fall incidence 
rate of 13,979 (±3706) per 100,000 for 22 Western European Countries. 
The fall incidence rate for participants in this study was comparable to 
national and international rates with an incidence rate of 14,956 per 
100,000. Of the 1705 participants in this study, 255 participants re-
ported at least one fall within 12 months after the study commenced 
with 16.4% (n = 134) of females and 13.6% (n = 121) of males reporting 
a fall. Of the 525 participants reported having a fall prior to the study 
commencing. Of the 525 participants reporting a fall in the 12 months 
prior to the study, only 19% (n = 98) of those reported a fall in the 12 
month follow up period. The remaining (n = 151) prospective falls were 
from ‘new fallers’ who did not report a fall in the 12 months prior to the 
study commencing. 

Experiments were conducted to address the 3 issues discussed in the 
previous section. A novel risk assessment technique, based on free-living 
accelerometer data is proposed. This technique is evaluated and 
compared with 2 other commonly used risk assessment techniques. 

Results show the classification capability of 3 different data types in 
predicting prospective and retrospective falls:  

• (FT) Functional Test scores from Grip Strength, TUG tests, Gait 
Velocity  

• (PSW) Gait measures from supervised lab-based Pressure Sensitive 
Walkway  

• (FLA) Proposed gait measures from Free-Living Accelerometer data. 

A holdout test set of participants, stratified for occurrences of pro-
spective and retrospective falls, was created using 25% of the data (N =
428: 64 Prospective Fallers, 130 Retrospective Fallers). A training set of 
participants was created using remaining participants, not in the 
holdout test set (N = 1279: 191 Prospective Fallers, 393 Retrospective 
Fallers). 

Sections 3.1 and 3.2 discuss the results of statistical analysis and 
machine learning experiments respectively. 

3.1. Statistical analysis 

3.1.1. Functional tests 
This section presents the results of statistical univariate analysis 

performed on variables in the training set only (N = 1279). Timed up 
and Go (TUG), Gait Velocity (GV) and Grip Strength (GS) are all com-
mon functional tests used in the literature to assess falls risk. Table 1 
shows the mean and standard deviation of scores from the 3 different 
functional tests for prospective and retrospective fallers compared with 
prospective and retrospective non-fallers respectively and p values 
calculated using two-sample t-tests. Distributions are compared for all 
participants as well as for male and female specific sub-groups. 

Results show that GV and GS scores were significantly different for 
prospective fallers compared to non-fallers while TUG times was not. 
Results did show a significant difference for all three functional tests for 
retrospective fallers compared to non-fallers. None of the other gender 
specific distributions were significantly different when assessing pro-
spective falls. 

Using Receiver Operating Characteristics (ROC) curves, we evaluate 
different threshold values for each of the 3 functional tests to assess 
discriminative ability. Table 2 shows results of ROC analysis with Area 
Under the Curve (AUC) for each of the functional tests shown for Pro-
spective and Retrospective Falls. Sensitivity and Specificity are also 
shown in Table 2 for threshold values that achieved the maximum g- 
mean where g-mean is defined as 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivity × Specificity

√
. G-mean is 

implemented in this work as a balanced singular assessment metric to 
measure performance on an imbalanced data-set where there is signif-
icantly more non-fallers than fallers [41]. 

Results of ROC analysis indicate that prediction of prospective falls 
using each of the 3 functional tests independently is no better than 
random guessing. Similarly, the classification of fall history is similar to 
random guessing for TUG and GV. However, GS shows moderate 
discriminative ability in identifying retrospective fallers with an AUC of 
0.604 ***(see Fig. 3). 

3.1.2. Lab gait measures 
Gait measures from a lab-based pressure sensitive walkway were also 

recorded for all participants (GAITRite, CIR Systems Inc, USA). A two- 
sample t-test was performed on each of the 65 gait parameters extrac-

Table 1 
Comparison of functional test distributions for fallers and non-fallers.   

Prospective Retrospective  

Faller Non-Faller p Faller Non-Faller p  
n = 191 n = 1087  n = 393 n = 885  

TUG All [s] 9.9(±6.7) 9.8(±3.9) .39 10.0(±4.1) 9.7(±4.4) .04 
TUG Male [s] 10.5(±10.7) 9.8(±3.5) .004 10.0(±3.5) 9.8(±4.6) .41 
TUG Female [s] 9.5(±3.0) 9.8(±4.3) .13 10.0(±4.6) 9.6(±3.8) .02        

GV All [cm/s] 114.8(±359.6) 117.8(±344.7) .04 115.5(±334.5) 118.2(±351.8) .02 
GV Male [cm/s] 115.2(±362.9) 118.3(±324.3) .13 117.0(±255.6) 118.2(±354.7) .49 
GV Female [cm/s] 114.4(±360.2) 117.2(±367.0) .18 114.4(±388.4) 118.2(±349.1) .02        

GS All [kg] 33.1(±114.5) 34.9(±115.5) .03 32.1(±115.5) 35.8(±111.7) < .001 
GS Male [kg] 42.8(±56.2) 43.2(±55.8) .64 42.4(±68.2) 43.4(±51.6) .11 
GS Female [kg] 24.9(±16.2) 25.8(±22.1) .06 24.8(±22.0.5) 26.1(±20.1) < .001  
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ted by the Gaitrite proprietary software, comparing measurement dis-
tributions between fallers and non-fallers. Out of the 65 gait measures, 
only 2 measures showed a statistically significant difference (p < 0.05) 
between prospective fallers and non-fallers, as shown in Table 3. For 
retrospective fallers, 5 measures showed a statistically significant dif-
ference (p < 0.05) between fallers and non-fallers, as shown in Table 4. 
T-tests based on male and female specific subsets resulted in no statis-
tically significant difference (p < 0.05) for any of the 65 measures be-
tween prospective fallers and non-fallers or between retrospective fallers 
and non-fallers. 

ROC analysis of the statistically significant measures, as predictors of 
prospective and retrospective falls, was also conducted. Tables 3 and 4 
also show details of ROC AUC, and optimal threshold data, for each of 
the measures as well as t-test results. 

Results show that fallers performed gait activities with a reduced 
stride velocity compared to non-fallers. Stride Velocity is defined as 
stride length divided by the stride time, where stride length is the dis-
tance between the heel points of two consecutive footprints of the same 
foot. However, ROC analysis results indicate that gait measures have 
poor discriminative ability in identifying prospective and retrospective 
fallers. 

3.1.3. Free-living accelerometer data 
This work proposes improved measurement of fall risk using accel-

erometer based features comprising descriptors of average step patterns, 
and movement frequency components, during steady state ambulatory 
activity. Fig. 4 illustrates the mean step acceleration signals for fallers 

and non-fallers in the training set. Steps were detected for each partic-
ipant using methods described in Section 2.3.2. All steps within all 
detected periods of ambulatory activity were normalized to 1 s using 
time series interpolation and then averaged to compute a participant 
specific average step. Mean, standard deviation and 99% Confidence 
Intervals (CI) were then computed from all participants specific average 
steps. Analysis of step signals for fallers compared with non-fallers 
resulted in significant differences in the horizontal acceleration before 
and after vertical acceleration step peaks. 

In addition to step based analysis, Fast Fourier Transform (FFT) 
signals are computed from 10 s ambulatory activity windows for each 
participant. FFT summary features are then computed by calculating the 
median of all ambulatory FFT signals for a given participant. Fig. 5 il-
lustrates the mean FFT Magnitude and Phase signals for fallers versus 
non-fallers. Mean FFT signals were calculated by averaging the FFT 
summary features (computed from Amag signal) for all fallers and non- 
fallers respectively. The FFT magnitude signal shows ambulatory ac-
tivity is commonly composed of hip movement frequencies of ∼1.9hz, 
∼3.75 Hz and ∼5.5 Hz. It can be seen that the average FFT magnitude is 
almost identical between fallers and non-fallers. However, significant 
differences were identified in the FFT Phase signal. FFT Phases occurring 
at ∼1.9 Hz and ∼5.5 Hz show significant differences between fallers and 
non-fallers as labeled by regions A and B in Fig. 5. FFT Phase represents 
how frequency components align in time, therefore, this result likely 
means that the main frequency component of 3.75 Hz is aligned simi-
larly for fallers and non-fallers. However, the two less prominent fre-
quency components of 1.9 Hz and 5.5 Hz are aligned differently in time 

Table 2 
ROC Area Under the Curve (AUC), Specificity and Sensitivity for functional test thresholds   

Prospective Retrospective  

ROC AUC Threshold Sens Spec ROC AUC Threshold Sens Spec 

TUG All [s] 0.478 9 0.64 0.36 0.535 9.5 0.53 0.52 
TUG Male [s] 0.55 9.5 0.55 0.51 0.526 9.5 0.52 0.52 
TUG Female [s] 0.524 9.5 0.53 0.43 0.547 9.5 0.54 0.53          

GV All [cm/s] 0.500 120 0.59 0.46 0.533 115 0.46 0.58 
GV Male [cm/s] 0.523 120 0.58 0.48 0.504 112.5 0.38 0.63 
GV Female [cm/s] 0.48 120 0.59 0.45 0.553 115 0.52 0.58          

GS All [kg] 0.501 30 0.44 0.60 0.604 30 0.52 0.648 
GS Male [kg] 0.504 44 0.57 0.48 0.540 45 0.63 0.44 
GS Female [kg] 0.515 27 0.59 0.43 0.577 26 0.55 0.55  

Fig. 3. Physical Function test score distributions for Prospective Falls.  

Table 3 
Results of T-test and ROC Analsis of Statistically Signifigant Gaitrite Measurements (p < 0.05) for Prospective Falls  

Gait Measure Mean (SD) Faller Mean (SD) Non-faller p ROC AUC Threshold Sens Spec 

Left Stride Velocity [cm/s] 115.3 (±19.1) 118.4 (±18.6) 0.036 0.543 115 0.48 0.59 
Right Stride Velocity [cm/s] 115.3 (±19.1) 118.4 (±18.6) 0.041 0.544 115 0.47 0.59  
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between fallers and non-fallers. 
Fig. 6 shows FFT phase summary features for 8 different participants 

where four participants were prospective fallers and four were not. It 

can be seen that Participants E, F and G, who experienced prospective 
falls, have a lower phase value at ∼1.9 Hz and a larger phase at ∼5.5 Hz 
when compared to Participants A, B and C respectively. However, FFT 

Table 4 
Results of T-test and ROC Analsis of Statistically Signifigant Gaitrite Measurements (p < 0.05) for Retrospective Falls.  

Gait Measure Mean (SD) Faller Mean (SD) Non-faller p ROC AUC Threshold Sens Spec 

Left Swing [% of Cycle] 38.0 (±2.1) 38.3 (±1.8) 0.02 0.53 38% 0.46 0.60 
Left Stance [% of Cycle] 61.9 (±2.1) 61.7 (±1.8) 0.041 0.532 62% 0.46 0.60 
Left Stride Velocity [cm/s] 116.1 (±18.4) 118.8 (±18.8) 0.02 0.531 115 0.45 0.59 
Right Stride Velocity [cm/s] 116.1 (±18.4) 118.8 (±18.9) 0.02 0.532 115 0.46 0.59 
Double Support Time [secs] .265 (±.056) .259 (±.052) 0.036 0.531 0.27 0.41 0.65  

Fig. 4. Average Step Acceleration patterns for fallers and non-fallers.  

Fig. 5. Mean FFT Magnitude and Phase Signals computed from 10 s FFT windows for all participants using Amag .  
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phase summary features for Participant D and H do not follow the same 
pattern. 

3.2. Machine learning classification 

After model configuration and training was performed for each data 
type (FLA, PSW, FT), testing was performed on each model using the 
holdout test set (N = 428, 64 Fallers). Results include independent 
assessment of FLA, FT and PSW data types as well as results evaluating 
potential complementary information provided by combining data 
types. Tables 5 and 6 show fall classification performance scores for 
retrospective and prospective fall respectively for the different data 
types. Sensitivity and Specificity scores are shown, in both tables, for the 

cross-validation set and the holdout test set when early stopping was and 
was not implemented. Confidence intervals were calculated using the 
Normal Approximation (Wald) method. Results show that ML models 
trained on FLA data performed best for prospective falls with sensitivity 
and specificity of 0.61 and 0.66 respectively. Similarly, FLA data also 
performed best for retrospective falls with sensitivity and specificity of 
0.61 and 0.68 respectively. 

The best performing model for retrospective falls using FLA data, as 
configured and selected by the Bayesian Optimization algorithm, was 
based on a Naive Bayes classifier. Feature vectors were prepossessed by 
first standardizing features then processed using a Nystroem kernel map 
using a polynomial kernel. The best performing model for prospective 
falls using FLA data, as configured and selected by the Bayesian 

Fig. 6. Mean FFT Phase Signals for 8 different participants (4 non-fallers and 4 fallers).  

Table 5 
Performance on Retrospective Falls. (F-select: feature selection, where subset of features are chosen based on statistical analysis or on structure of a trained ML model. 
d = polynomial degree. n = number of components. c = number of clusters).    

CV Test Set Selected ML Algorithms  

Data Sens Spec Sens (95% CI) Spec (95% CI) ML Model Feature processing 

No Early Stopping FLA 0.65 0.63 0.52 (0.43–0.61) 0.58 (0.56–0.67) Naive Bayes Nystroem sampler(n = 150) 
PSW 0.59 0.62 0.50 (0.41–0.59) 0.56 (0.50–0.62) SVM(rbf) F-Select(SVM) 
FT 0.60 0.58 0.58 (0.49–0.67) 0.6 (0.54–0.66) SGD(squared hinge) F-Select(Extra Trees) 

FLA + PSW 0.61 0.67 0.55(0.46–0.64) 0.63 (0.57–0.68) SVM(sigmoid) F-Select(SVM) 
FLA + FT 0.59 0.70 0.52 (0.43–0.61) 0.65 (0.59–0.71) SGD(squared-hinge) K-PCA(n = 100) 
PSW + FT 0.60 0.58 0.58 (0.49–0.67) 0.63 (0.57–0.68) SVM(RBF) F-Select(SVM) 

FLA + FT + PSW 0.67 0.64 0.50 (0.41–0.59) 0.60 (0.54–0.65) SGD(hinge) Agglomeration(c = 15)         

Early Stopping FLA 0.61 0.67 0.61 (0.53–0.70) 0.68 (0.62–0.73) Naive Bayes Nystroem sampler(n = 150) 
PSW 0.58 0.61 0.57 (0.48–0.65) 0.60 (0.54–0.65) SVM(rbf) F-Select(SVM) 
FT 0.59 0.60 0.60 (0.51–0.68) 0.61 (0.54–0.65) SGD(squared hinge) PCA(97% Variance) 

FLA + PSW 0.64 0.6 0.64 (0.55–0.72) 0.58 (0.52–0.64) SVM(sigmoid) F-Select(SVM) 
FLA + FT 0.6 0.66 0.58 (0.49–0.66) 0.68 (0.62–0.73) SGD(squared-hinge) K-PCA(n = 100) 
PSW + FT 0.60 0.60 0.60 (0.52–0.63) 0.61 (0.54–0.65) SVM(RBF) F-Select(SVM) 

FLA + FT + PSW 0.60 0.63 0.59 (0.50–0.68) 0.65 (0.59–0.70) SVM(linear) F-Select(Extra Trees)  
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Optimization algorithm, was based on a Stochastic Gradient Descent 
(SGD) classifier. Feature vectors were prepossessed by first standard-
izing features then reducing the dimension using PCA to only include 
98% of variance. 

Confidence Interval (CI) ranges, in Tables 5 and 6, overlap for a 
number of different data type models. Thus, it is difficult to determine, 
based on CI alone, whether there is a statistically significant difference 
in performance between a given pair of models. To further investigate 
performance difference between pairs of models, a McNemars test was 
performed on all pairs of early stopping models to evaluate if there was a 
significant difference in the dichotomous predictions made by each pair 
of models. Table 7 and 8 show results of the McNemar tests for retro-
spective and prospective falls respectively using a 95% confidence level. 
The tests show that most models perform with no significant difference 
in sensitivity. The best performing model (FLA) performs with a statis-
tically significant difference in specificity compared to a number of 
other models for both retrospective and prospective falls. 

3.2.1. Effect of incorrect modeling/validation methodologies 
This section briefly describes two additional experiments conducted 

to evaluate the effect two problematic machine learning modeling/ 
validation methodologies, described in Section 1.1.3, have on evalua-
tion results. 

Exp1: investigates the effect of feature selection being performed on 
the training set and test set. Only FLA data was used and one condition 
within the protocol was changed such that feature selection was per-
formed on both the training set and the holdout test set before initiating 
the Bayesian Optimization process. A univariate statistical test was 
performed on all FLA features and the 100 features with the lowest p 
values were selected. Results of the experiment for prospective and 
retrospective falls are shown in Table 9. When compared with FLA re-
sults reported in the previous Section, ‘Exp1’ performance shows an 
artificial increase in performance of 7% for the holdout test set as a 

result of bias, towards the test set, being introduced into the model. 
When predicting prospective falls, for example, sensitivity and speci-
ficity was originally 0.61 and 0.66 respectively. Sensitivity and speci-
ficity increase to 0.68 and 0.74 respectively when the test set is used 
during feature selection. The results for Exp1, however, do not reflect 
real-world performance. Results do illustrate the problem of over opti-
mistic metrics being reported as a result of the test set being used in 
model development. 

Exp2: investigates the appropriateness of CV as a methodology for 
evaluating performance in small SFRT data sets. As discussed in Section 
1.1.3, there are potential issues with the use of CV as a method of 
evaluating SFRT models, particularly in terms of large uncertainty for 
small sample sizes. A training subset was therefore created to represent 
an average SFRT data-set (N = 150, 50 Fallers) using random sub- 
sampling. Only FLA data was used and one protocol condition was 
changed such that the full training set was not used and instead the 
smaller training subset was used. Results of the experiment for pro-
spective and retrospective falls are shown in Table 9. The difference 
between CV performance and holdout test set performance is of 
particular interest for this experiment. CV is often used in the literature 
without an external data-set or consideration for over-fitting on the CV 
data-set, therefore particular attention should also be paid to results not 
implementing early stopping. When no early stopping is implemented, 
results show significantly over-optimistic CV performance, with pro-
spective falls having a sensitivity and specificity of 0.84 and 0.79 
respectively compared to 0.45 and 0.57 for the holdout test set. 

The Bayesian Optimization process aims to select optimal ML pipe-
line configuration parameters (e.g. learning algorithm, model hyper- 
parameters) by maximizing CV performance. This mimics the process, 
commonly employed by researchers, of performing CV on different ML 
pipelines configurations through manual trial and error or by using 
techniques such as grid search or random search in order to optimize the 

Table 6 
Performance on Prospective Falls. (F-select: feature selection, where subset of features are chosen based on statistical analysis or on structure of a trained ML model. 
d = polynomial degree. n = number of components. c = number of clusters)    

CV Test Set Selected ML Algorithms  

Data Sens Spec Sens (95% CI) Spec (95% CI) ML Model Feature processing 

No Early Stopping FLA 0.67 0.69 0.5 (0.37–0.63) 0.64 (0.59–0.69) SGD(Modified Huber) Agglomoration(n = 28) 
PSW 0.55 0.57 0.51 (0.39–0.64) 0.55 (0.50–0.60) Random Forest F-select(ANOVA best 20) 
FT 0.52 0.57 0.42 (0.30–0.55) 0.58 (0.53–0.63) Naive Bayes F-select(extra trees) 

FLA + PSW 0.59 0.68 0.44 (0.31–0.57) 0.64 (0.59–0.69) SVM(RBF) Nystroem sampler(n = 150) 
FLA + FT 0.63 0.72 0.47 (0.34–0.60) 0.69 (0.64–0.74) SGD(squared hinge) Kernel-PCA(n = 100) 
PSW + FT 0.5 0.64 0.5 (0.37–0.63) 0.64 (0.59–0.69) Extra-Trees(n = 100) F-select(Extra Trees) 

FLA + FT + PSW 0.66 0.66 0.45 (0.33–0.58) 0.61 (0.56–0.66) SVM(RBF) Agglomeration(c = 25)         

Early Stopping FLA 0.64 0.63 0.61 (0.49–0.71) 0.66 (0.61–0.71) SGD(hinge) PCA(98% Variance) 
PSW 0.54 0.61 0.55 (0.42–0.67) 0.61 (0.56–0.66 Extra-Trees PCA(97% Variance) 
FT 0.55 0.6 0.56 (0.43–0.68) 0.62 (0.57–0.67) Naive Bayes F-select(random trees) 

FLA + PSW 0.58 0.61 0.58 (0.45–0.70) 0.63 (0.58–0.68) SVM(linear) Polynomial Features (d = 2) 
FLA + FT 0.62 0.63 0.63 (0.50–0.74) 0.64 (0.59–0.69) SGD(modified huber) F-select(ANOVA best 100) 
PSW + FT 0.54 0.61 0.53 (0.40–0.66) 0.62 (0.57–0.67) SVM(RBF) Polynomial Features(d = 2) 

FLA + FT + PSW 0.6 0.61 0.59 (0.46–0.71) 0.62 (0.57–0.67) SVM(sigmoid) PCA(97% Variance)  

Table 7 
Matrix showing comparison of retrospective fall model pairs using McNemars 
test (P = Difference in Sensitivity between model pair, N = Difference in 
Specificity between model pair)      

FLA+ FLA+ PSW +
FLA PSW FT PSW FT FT 

PSW -N      
FT -N - -     

FLA + PSW -N - - -N    
FLA + FT - - -N -N -N   
PSW + FT -N - - - - -N -N  

FLA + FT + PSW - - -N -N -N -N -N  

Table 8 
Matrix showing comparison of prospective fall model pairs using McNemars test 
(P = Difference in Sensitivity between model pair, N = Difference in Specificity 
between model pair)      

FLA+ FLA+ PSW +
FLA PSW FT PSW FT FT 

PSW -N      
FT -N - -     

FLA + PSW -N - - - -    
FLA + FT - - - - -N - -   
PSW + FT P N - - - - - - -N  

FLA + FT + PSW -N - - - - - - - - - -  
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performance metric produced by CV. However, this process results in a 
classifier that is over-fitted on training data. While individual models 
within each fold have not been over-fitted, the over-fitting in this 
instance is due to the ML pipeline configurations being selected to 
maximize performance on the training set only with no regard for data 
external to the training set. CV is therefore more appropriate in situa-
tions where model selection and configuration has been performed using 
data that is not used in the CV evaluation process or when techniques to 
counteract over-fitting of pipeline configurations has been 
implemented. 

4. Discussion 

The aim of SFRT systems is to improve the fall risk screening process 
for identifying people at high risk of falling in the future. However, 
statistical analysis of commonly used screening techniques showed that, 
on their own, the tools have limited ability to correctly identify fallers. 
Univariate statistical analysis of commonly used functional tests (TUG, 
GV and GS) showed poor discriminative ability to correctly identifying 
participants who experienced falls in the future. While statistical t-tests 
showed significant differences between fallers and non-fallers for the 
different functional tests, ROC analysis showed poor fall prediction 
performance for TUG, GV and GS. Previous work has reported fall pre-
diction AUC results higher than the results reported in this work. For 
example, Kojima et al. [17] report an AUC of 0.58 for the TUG assess-
ment compared to an AUC of 0.48 in this work. Investigating this 
further, while the average TUG time for non-fallers were similar for both 
studies, the average TUG time for fallers in our study (9.9 sec) was 
significantly faster than that of the time reported by Kojima et al. (11.4 
sec). It is possible that the poor performance of the clinical assessments 
in this work is in part due to the group of prospective fallers having a 
higher than average physical capacity compared to fallers in other 
studies. 

Univariate analysis of gait measurements, extracted from a lab-based 
pressure sensitive walkway, showed that stride velocity was signifi-
cantly different between fallers and non-fallers. However, similar to the 
functional tests, ROC analysis results showed limited ability to classify 
prospective or retrospective fallers. It is likely, however, that combining 
multiple lab based assessment tools together could increase the accuracy 
of predicting future falls. 

Statistical analysis of accelerometer based measures suggests that 
gait quality is potentially useful in screening for fall risk. Analysis of step 
profiles, captured from an accelerometer worn in free-living conditions, 
showed significant differences in the horizontal acceleration before and 
after vertical acceleration step peaks when comparing fallers and non- 
fallers. Horizontal acceleration signals had a smaller range between 
maximum and minimum points during ambulatory activity while also 
exhibiting larger variability. This suggests fallers are more likely to 
exhibit reduced and/or unstable trunk sway. Similarly, FFT phase sig-
nals, computed from Accelerometer magnitude during ambulatory ac-
tivity, showed significant differences at 1.5 Hz and 5.5 Hz when 

comparing fallers and non-fallers. This suggests that ambulatory 
movements performed at frequencies of 1.5 Hz and 5.5 Hz are more 
closely aligned in time for fallers when compared to non-fallers. While it 
is difficult to determine the exact reason for this, we postulate that it is 
likely due to participants with gait difficulties developing new gait 
patterns to overcome the specific difficulties. For example, participants 
experiencing leg pain may reduce stance phase duration to reduce 
overall pain. These gait modifications are likely to result in a more 
regular time aligned gait. 

Machine learning based experiments, using features constructed 
from different combinations of FLA, FT and PSW data types showed that 
the FLA data type performs best for retrospective falls with a sensitivity 
and specificity of 0.61 and 0.68 respectively. Similarly, the FLA data 
type also performs best for prospective falls with a sensitivity and 
specificity of 0.61 and 0.66 respectively. Interestingly, while perfor-
mance scores were marginally higher for retrospective falls, there was 
no significant difference between the 2 best performing models for 
retrospective and prospective falls. Similar to results of the statistical 
analysis, FT and PSW data did not perform well in predicting prospective 
falls. Both FT and PSW performed with moderate performance when 
classifying retrospective fallers. 

Prediction of falls in the future is an extremely challenging problem. 
Previously reported performance measures of prospective falls predic-
tion in the literature are difficult to interpret due to the use of prob-
lematic modelling and validation methodologies and likelihood of 
results being over-optimistic. Direct comparison between results re-
ported in this work and results in the literature are therefore difficult. 
Liu et al. [29], however, appear to use robust modelling and validation 
methodology with feature selection performed on training data only and 
the use of a holdout test set. Participants (N = 95) performed an 
instrumented Alternate Step Test and regression models, trained on half 
of the data, achieved sensitivity and specificity of 69% and 68% 
respectively when tested on the other half of the data. 

As previously discussed in Section 1.1.3, it vital that performance of 
an SFRT system be evaluated such that results reflect real-world per-
formance. Results show that over-optimistic performance results can be 
produced if modelling and evaluation methodologies are not appro-
priate. Results show that over fitting occurs on the full cross-validation 
set when early stopping is not implemented. When early stopping was 
not implemented, FLA performance on the holdout test set dropped by 
3%-6% compared to performance on the cross-validations set. This 
performance drop increased significantly to 22%-39% when a smaller 
CV training set (N = 150) was used. No significant difference in per-
formance was seen between cross-validation and holdout test set when 
early stopping is implemented. Relying on CV as the only evaluation 
methodology, particularly when data is limited, can result in ML pipe-
line configurations that are over-fitted on the training set unless meth-
odologies to counteract overfitting are implemented. Performance on a 
holdout test set is, therefore, the most appropriate evaluation method-
ology as it is more representative of performance in real-world settings. 
Over-optimistic results were also shown to occur when the test set is 

Table 9 
Results of 2 Experiments to evaluate the effect of Incorrect Modeling Methodologies (Exp1 = Train and Test used for feature selection. Exp2 = Small data-set used with 
CV as main evaluation. ES = Early Stopping. F-select = feature selection, where subset of features are chosen based on statistical analysis or on structure of a trained ML 
model. d = polynomial degree. n = number of components. c = number of clusters)     

CV Test Set Selected ML Algorithms  

Classification ES Sens Spec Sens (95% CI) Spec (95% CI) ML Model Feature processing 

Exp 1 Prospective N 0.66 0.75 0.63 (0.54–0.71) 0.68 (0.62–0.73) SGD(squared hinge) Agglomeration(c = 26) 
Prospective Y 0.65 0.71 0.68 (0.59–0.76) 0.74 (0.68–0.78) SGD(squared hinge) Agglomeration(c = 40) 

Retrospective N 0.65 0.72 0.60 (0.46–0.71) 0.64 (0.59–0.69) SGD(squared hinge) Agglomeration(c = 100) 
Retrospective Y 0.63 0.69 0.67 (0.54–0.78) 0.70 (0.65–0.75) SGD(log) Agglomeration(c = 29) 

Exp 2 Prospective N 0.84 0.79 0.45 (0.36–0.54) 0.57 (0.51–0.63) SGD(squared hinge) Agglomeration(c = 26) 
Prospective Y 0.59 0.62 0.52 (0.43–0.61) 0.60 (0.54–0.66) Naive Bayes Agglomeration(c = 17) 

Retrospective N 0.78 0.76 0.46 (0.33–0.58) 0.59 (0.54–0.64) SGD(squared-hinge) Agglomeration(c = 100) 
Retrospective Y 0.52 0.61 0.50 (0.37–0.63) 0.60 (0.55–0.65) SGD(perceptron) F-Select(ANOVA best 100)  
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included in the feature selection process. Results indicated that bias, 
towards the test set, was introduced into the model resulting in an over- 
optimistic performance increase of 7%. 

There are some limitations to the study. First, recording of pro-
spective falls using telephone interviews, 6 and 12 months after obser-
vation, can result in inaccuracies due to participants no recognizing or 
remembering a fall. Secondly, the machine learning experiments used a 
Bayesian optimization algorithm based on 15 classifiers and 14 feature 
pre-processing algorithms. It is possible that other classification or pre- 
processing algorithms may have produced improved performance for 
different experiment conditions. Future work could, for example, 
investigate deep learning based models to classify fallers using FLA data. 

5. Conclusion 

This study illustrates the potential of accelerometers, worn in free- 
living conditions, as an unobtrusive and cost effective way of perform-
ing continuous fall risk screening. In addition, the study also highlighted 
the importance of correct evaluation methodologies when reporting fall 
risk prediction performance showing that it is vital that future works 
report performance that will reflect real-world performance to ensure 
continued advancement of the SFRT field. 

A recent theoretical modelling analysis concluded that the maximal 
accuracy of a fall prediction model, attempting to identify people with at 
least one fall incident over the course of a year would not exceed 0.81 
[13]. While the results achieved are not perfect, when compared to the 
theoretical maximum of 0.81, sensitivity and specificity in the ranges of 
0.61–68 are good. When compared with other commonly used fall risk 
indicators, FLA performs with a significantly higher accuracy and at a 
fraction of the cost of lab-based measures. By enabling risk assessment to 
be conducted at home with low cost technology, the potential of this 
technology to have real-world impact is strong. Risk screening could be 
performed on significantly more people, therefore increasing the po-
tential to provide earlier fall-risk reduction interventions for more 
people. While gait quality is a strong predictor of fall risk, it is not the 
only risk factor. Falls are a multicausal phenomenon with a complex 
interaction between participant characteristics and environmental fac-
tors. The scope of this work was to focus on gait quality. However, it is 
possible that additional complementary screening tools could increase 
sensitivity and specificity even further. 
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