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Abstract—Traditional visual place recognition (VPR) methods
generally use frame-based cameras, which will easily fail due
to rapid illumination changes or fast motion. To overcome this,
we propose an end-to-end visual place recognition network using
event cameras, which can achieve good recognition performance
in challenging environments (e.g., large-scale driving scenes). The
key idea of the proposed algorithm is firstly to characterize
the event streams with the EST voxel grid representation, then
extract features using a deep residual network, and finally
aggregate features using an improved VLAD network to realize
end-to-end visual place recognition using event streams. To verify
the effectiveness of the proposed algorithm, on the event-based
driving datasets (MVSEC, DDD17, Brisbane-Event-VPR) and the
synthetic event datasets (Oxford RobotCar, CARLA), we analyze
the performance of our proposed method on large-scale driving
sequences including cross-weather, cross-season and illumination
changing scenes, and then we compare the proposed method
with state-of-the-art event-based VPR method (Ensemble-Event-
VPR) to prove its advantages. Experimental results show that
the performance of the proposed method is better than that of
event-based ensemble scheme in challenging scenarios. To our
knowledge, for visual place recognition task, this is the first end-
to-end weakly supervised deep network architecture that directly
processes event stream data.

Index Terms—Visual place recognition, event camera, event
spike tensor, deep residual network, triplet ranking loss.

I. INTRODUCTION

V ISUAL place recognition (VPR) [1] [2] aims to help
a robot or a vision-based navigation system determine

whether it locates in a previously visited place. It is one of
the essential and challenging problems in the field of computer
vision and mobile robotics. These fields have witnessed a surge
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(a) Training

(b) Testing

Fig. 1. Overview of the Proposed Event-VPR Architecture. From top to
bottom: (a) In the training part, for a given event bin of query, we select the
corresponding positive and negative event bins, and train the network model
through the triplet ranking loss to learn the global descriptor vectors of the
event bins. (b) In the testing part, for a given event bin of query, its descriptor
vector is obtained through the trained network model, and several references
are retrieved from the database of descriptor vectors calculated offline. (Note
that the query, positive and negative samples in the figure are event bins
denoting 3D event tensors, and the event frames in following sections are
only for visualization.)

in the use of VPR for various applications in the last decade. In
computer vision, VPR can be used to retrieve cross-time visual
information and location information in a large-scale image
database with geographic coordinates annotation, or be used
in interactive 3D vision applications such as augmented reality
(AR). In mobile robotics, the ability of robots to recognize
visual places in GPS-denied environments is one of the key
capabilities for autonomous localization and navigation. In
simultaneous localization and mapping (SLAM), VPR is an
important component of loop closure detection [3] [4], which
can be used to detect candidate loop-closures and eliminate
accumulated errors through global optimization for globally
consistent pose estimation and mapping. In addition, visual
place recognition can also perform precise visual localization
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in a built environment map, and can be widely used in
applications such as self-driving cars and service robots.

At present, there are many solutions to the VPR prob-
lem in large-scale environments. For those existing solutions,
monocular, binocular, panorama cameras and other frame-
based vision sensors are widely used when it comes to sensors.
However, since frame-based vision sensors usually suffer from
issues such as illumination change, motion blur and redundant
information, this makes it difficult for traditional VPR methods
to deal with recognition tasks in challenging environments.
Additionally, in terms of algorithm principles, most existing
methods are based on the appearance of scenes [5]. Due
to various reasons, such as day-night, weather and seasonal
changes, the appearance of the same place will change greatly
at different times. And moreover, the appearance of different
places at long distances may be very similar. These issues pose
great challenges to the existing large-scale frame-based VPR
methods.

In contrast to traditional frame-based VPR methods, we
propose a novel VPR method using event cameras. Event
cameras are neuromorphic visual sensors inspired by the
biological retina, and work in a completely different way
from frame-based cameras. They use an address-event rep-
resentations (AER) and output pixel-level brightness changes
(called events) with microsecond resolution to generate sparse
asynchronous event streams [6] [7] [8] [9]. Event cameras
have the advantages of low latency, high temporal resolution,
low bandwidth, low power consumption and high dynamic
range, which can effectively overcome the problems exist-
ing in typical frame-based cameras. Recently, Fischer [10]
proposed a VPR method using event camera, however they
used event streams to reconstruct image sequences, then the
image sequences were used for VPR. In essence, it is still
a VPR method using traditional images. To achieve robust
VPR directly using event streams, we propose a novel
end-to-end event-based visual place recognition network
architecture (Event-VPR). The key idea is illustrated in Fig.
1, where an EST voxel grid representation generated by event
streams are used as inputs in NetVLAD. To the best of our
knowledge, this is the first end-to-end VPR method using
event cameras. Experimental results on multiple datasets with
different weather and scenes demonstrate that the proposed
method is superior to the state-of-the-art event-based VPR
method, and can effectively solve the challenges of large-
scale scenes, high dynamic range and long-term adaptability
in visual place recognition.

The main contributions of this paper are as follows:
• We propose a novel end-to-end weakly supervised net-

work pipeline for visual place recognition (Event-VPR),
which directly uses event streams from event camera as
input. To our knowledge, this is the first end-to-end event
stream-based VPR method 1.

• We analyze and verify the effectiveness and robustness of
the proposed method using multiple event camera-based
driving datasets, including large-scale scene sequences

1Supplementary Material: An accompanying video for this work is available
at https://youtu.be/pcu1l8Wdc7g.

such as different weather, seasons, environments, and
illumination conditions.

• Comprehensive comparisons between this method and
event-based ensemble scheme [10] are carried out on
the event camera-based driving dataset to evaluate the
performance of both kind of VPR pipeline and prove the
advantages of our method.

• Different event representations, network structures and
loss functions of the proposed Event-VPR network are
compared to show how they affect the overall perfor-
mance.

The rest of this paper is organized as follows. Section II
reviews related work on VPR using frame-based and event-
based cameras. Section III describes the overall algorithm
framework of our Event-VPR method, and introduces the
representation learning of event-based data, feature extraction
and description aggregation network, and network training
process in detail. Next, the experimental results of Event-VPR
on MVSEC, DDD17, Oxford RobotCar, Brisbane-Event-VPR
and CARLA datasets are shown in Section IV. Finally, Section
V concludes the paper.

II. RELATED WORK

A. Frame-based Methods

Visual sensors are the main sensor types for place recog-
nition due to their low cost, low power consumption and
abundant scene information. Nowadays, most popular VPR
methods use frame-based visual sensors and appearance-based
[5] approaches to realize large-scale place recognition. In this
case, the VPR problem can generally be transformed into a
large-scale geo-tagged image retrieval problem, and that can
be solved by image matching. Extensive research on how to
represent and match images has been carried out [1] [2]. Those
approaches usually use traditional sparse feature extraction
techniques (such as SIFT [11] and ORB [12]), and typical
local descriptor aggregation techniques (such as BoW [3] [4]
and VLAD [13] [14]) to establish a higher-order statistical
model of image features. A typical work is DenseVLAD [15],
which uses SIFT to extract intensive feature descriptors from
images and uses VLAD for feature aggregation. With the rise
of deep learning, off-the-shelf convolutional networks (such
as Overfeat [16], VggNet and AlexNet [17]) are often used
as trainable feature extractors. Modified versions of VLAD
with a trainable pooling layer (such as NetVLAD [18]) were
developed to obtain image descriptor vectors as compact
image representations. In the retrieval and matching process,
sequence-based matching is a widely recognized method. A
well-known work is SeqSLAM [19], which searches highly
similar short image sequences for VPR using the relative
position information between consecutive frames. However,
it has some issues in large-scale driving scenes such as low
computational efficiency. Recently, researchers tried to further
improve the recognition performance from different aspects.
For example, some structure-based methods use structural
information such as repeated edges and semi-dense maps of
the scene [5], [20], [21] for place recognition. There are
also some semantic-based works that mainly use semantic

https://youtu.be/pcu1l8Wdc7g
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Fig. 2. Overview of the Proposed Pipeline. Firstly, the event bins are converted into EST voxel grids by a MLP-based kernel. Then, the cropped deep residual
network ResNet34 is used to extract visual features of EST voxel grids. Next, VLAD-based local aggregated description layer is used for feature descriptor
aggregation. Finally, the triplet ranking loss is used to train the network with weakly supervised training.

information such as landmarks, texts and objects in the scene
to solve VPR problems. [22]–[24].

B. Event-based Methods
Though traditional frame-based VPR methods have been

developed rapidly over the past decade, they still suffer from
issues in challenging scenarios (such as illumination changes
and motion blur) due to the inherent defects of frame-based
cameras. Compared with standard frame-based cameras, event
cameras have many advantages such as high dynamic range,
high temporal resolution and low latency [8]. Due to these
advantages, event cameras have drawn significant attention
recently. However, to the best of our knowledge, there are
still few works relating to event-based VPR. Among them,
Milford et al. first tried to migrate SeqSLAM [19] to the event
camera in 2018 and completed a relatively basic recognition
experiment based on event frames [25]. More recently they
proposed an event-based VPR scheme with ensembles of
spatio-temporal windows (Ensemble-Event-VPR) [10]. This
method uses event bins with different numbers of events and
sizes of temporal windows to reconstruct a group of intensity
frame sequences using E2Vid [26]. Then they compute the
corresponding visual descriptors using the NetVLAD [18] pre-
training model respectively, and perform approximate ensem-
bles by using a strategy (such as averaging operation) on
the distance matrix of the descriptors for place recognition.
However, this method is not a direct event-based method
but needs to convert the events into intensity frames, which
is still a frame-based VPR method in essence. In addition,
their ensemble scheme is computationally intensive and time-
consuming due to the intensity reconstruction and ensemble
using event bins with different lengths, which makes it difficult
to achieve robust place recognition in large-scale scenes and
deploy it on robots for real-time running. Different from the
current event-based VPR approaches, we propose a novel end-
to-end event-based visual place recognition network (Event-
VPR) that directly uses event streams, which achieves excel-
lent recognition results even in challenging environments.

III. METHODOLOGY

In this section, we will describe the network architecture
and designing scheme of Event-VPR in detail, including the
various module components of the proposed algorithm, the
main steps and notes involved in network training.

A. Problem and Pipeline

Problem Definition. Define a database of events D =
{P ,E} that contains n geo-location coordinates P =
{P 1, · · · ,P n} under a fixed reference system correspond-
ing to n groups of event bins E = {E1, · · · ,En}, and
each place coordinate P i corresponds to several event bins
Ei = {Ei1, · · · ,Eim}, i ∈ [1, n] (n,m is variable). Each
event bin Eij where j ∈ [1,m] is collected by using an event
camera in the area near the place coordinate P i. The area of
coverage (AOC) of all sub-areas is the same approximately, i.e.
SAOC(P 1) ≈ · · · ≈ SAOC(P n). Hence, the problem of event-
based VPR can be defined as follows. Given a query event bin
denoted as Eq, the aim is to retrieve several event bins Ei

which have most similarities to Eq from the database D thus
obtaining its geographic location coordinates P q according to
P i. To this end, we have designed a deep network to learn a
function fEvent-VPR(·), which is used to map the query event
bin Eq to a global descriptor vector vq = f(Eq) with fixed
dimension such that d(vq,vr) < d(vq,vs) if vq is similar to
vr but different from vs. Here d(·, ·) is the distance function
(such as Euclidean distance). Then, the problem is simplified
to find the place coordinates P q of the sub-area, such that the
global descriptor vector v∗ from one of it’s event bins gives
the minimum distance with the global descriptor vector vq of
the query, i.e. d(vq,v∗) < d(vq,vi),∀i ̸= ∗. In practice, this
can be done efficiently by a nearest neighbor search through
a list of global descriptor vectors {vi | i ∈ 1, 2, · · · , k} that
can be computed offline and stored in memory, while vq is
computed online.

The Proposed Pipeline. The key idea of the proposed
Event-VPR algorithm is as follows. Firstly, we divide consec-
utive event streams into event bins and convert event bins into
EST voxel grid representations using an MLP-based kernel.
Then, a cropped deep residual network ResNet34 [27] is
used to extract visual features from EST voxel grids. Next,
a VLAD-based local aggregated description layer is used for
feature descriptor aggregation. Finally, the triplet ranking loss
is used to train the network with weakly supervised training.
Corresponding to the aforementioned key idea, the proposed
pipeline is divided into the following four parts: EST voxel
grid representation, feature extraction convolution network,
feature aggregated description layer and triplet ranking loss.
The network architecture is illustrated in Fig. 2.
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B. Events and EST Voxel Grid

Event Vision Sensor. Event camera [6] [7] [8] [9] is
a bio-inspired neuromorphic vision sensor that works in a
completely different way from standard cameras. The event
camera does not output intensity frames at a fixed rate, but only
outputs signals of local pixel-level brightness changes. When
these pixel-level brightness changes (called events) exceed the
set threshold, the event camera marks the timestamp with a
microsecond resolution and outputs an asynchronous event
stream. This event-based asynchronous data format is called
address event representation (AER), which is used to simulate
the transmission of neural signals in the biological vision
system. In this way, information is continuously transmitted
and processed, and the communication bandwidth is only
occupied by the pixels that trigger the event.

Event-based Data. The pixel array of the event camera is
capable of independently and logarithmically responding to
pixel-level brightness changes (i.e. L

.
= log(I), where I is

photocurrent) and triggering sparse asynchronous events E =
{e1, · · · , eN | ek ∈ N2 × R+ × [−1, 1], k ∈ [1,N]}. Without
considering fixed pattern noise (FPN), the brightness change
at the pixel (xk, yk)

⊤ at time tk is given by:

∆L (xk, yk, tk) = L (xk, yk, tk)−L (xk, yk, tk −∆tk) ,
|∆L (xk, yk, tk)| ≥ ϑ,

(1)
where ∆tk is the time interval between last triggered event and
current triggered event of a pixel. When the brightness change
of a pixel reaches the contrast threshold ϑ (here ϑ > 0), the
pixel triggers an event ek = (xk, yk, tk, pk)

⊤. Here, pk is
event polarity given by:

pk =
∆L (xk, yk, tk)

|∆L (xk, yk, tk)|
= {−1, 1}. (2)

In a real sensor, positive events (ON) and negative events
(OFF) can be triggered according to different contrast thresh-
olds ϑ. Furthermore, the events E can be summarized as
an event measurement field with polarity defined on the 3D
continuous spatio-temporal manifold:

S(x, y, t) =
∑
ek∈E

pkδ (x− xk, y − yk) δ (t− tk) , (3)

where (x, y, t) are the sampled grid space-time coordinates,
δ(·) denotes the Dirac pulse defined in the event domain and
is used to replace each event.

EST Voxel Grid Representation. In order to use popu-
lar deep learning-based neural network techniques to extract
visual features from sparse asynchronous event streams, we
need to convert the event streams to a kind of representation
that can be processed by convolutional networks. Typical
representation methods for event streams include motion-
compensated event frames (MCEF) [28], 4-channel event
count and last-timestamp images (4CH) [29], and event voxel
grid (EVG) [30]. In addition, the events can also be converted
into traditional frame-based video (e.g. E2Vid) [26] [31] [32].
In this paper, we firstly divide event stream into event bins,
then we use the voxel grid representation of event spike
tensor (EST) to represent event bins. In order to obtain the

most meaningful visual feature information from the event
measurement field, we convolve it with a trilinear voting kernel
k(x, y, t). Therefore, the convolution signal becomes:

(k ∗ S)(x, y, t) =
∑

ek∈E

pkk (x− xk, y − yk, t− tk) ,

k(x, y, t) = δ(x, y)max
(
0, 1−

∣∣ t
∆t

∣∣) . (4)

After the kernel convolution, the signal in Eq. (4) can be pe-
riodically sampled on the spatio-temporal coordinates (x, y, t)
for voxel grid generation:

V EST [x
′, y′, t′]

=
∑

ek∈E

pkδ (x
′ − xk, y

′ − yk)max
(
0, 1−

∣∣∣ t′−tk
∆t

∣∣∣) , (5)

where (x′, y′, t′) are the sampled grid space-time coordinates,
with x′ ∈ {0, 1, · · · ,W − 1}, y′ ∈ {0, 1, · · · ,H − 1},
t′ ∈ {t0, t0 +∆t, · · · , t0 + (C− 1)∆t}. Here, (W,H) is the
spatial resolution of event camera, t0 is the start timestamp,
∆t is the size of time blocks, C is the number of time blocks
(that is, the number of channels). In practice, we replace
the manually designed kernel in Eq. (5) with a multi-layer
perceptron (MLP) to generate an EST voxel grid as an end-to-
end event representation, as illustrated in Fig. 3, where C is the
number of channels and B is the batch size. The MLP receives
the normalized timestamp of the event as input and has 2
hidden layers, each with 30 neurons. The value generated by
the MLP for each event is put into the corresponding voxel grid
coordinates. Different from previous works on event stream
representation, EST voxel grid can be learned and optimized
according to specific tasks to maximise the performance of the
whole network.

... ...

1

30 30
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Event Bin

Index
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EST Voxel Grid

MLP-based 

Learnable Kernel

2 × C × H × W × B

Fixed Kernel—Error

Ground-Truth ValueEvent Spike Tensor

Fig. 3. Overview of Representation Learning for Asynchronous Event-based
Data Using EST Voxel Grid. The value generated by the MLP-based kernel
for each event is put into the corresponding coordinates, and kernel can use
a pre-trained model or directly learned the representation through end-to-end
training.

C. Feature Extraction and Aggregation

Feature Extraction Network. After converting the event
bins into EST voxel grid representations, we need to extract
features from them. To this end, we use the deep residual
network ResNet34 which is designed for event-based hand-
written number recognition tasks [27] as feature extraction
network. In order to migrate it to our VPR task, the original
network needs to be cropped. We modify the number of input
channels of the first convolution layer of ResNet34 to make it
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suitable for receiving a EST voxel grid V EST as the network
input. Meanwhile, in order to connect the feature description
aggregation layers, we remove the last average pooling layer
and the full connection layer at the end of the ResNet34. The
network output x = fResNet34 (V EST) are the feature maps of
the EST voxel grid. Here, x is the w × h × D-dimensional
feature tensor obtained by the feature extraction network.

Descriptor Aggregation Network. After getting feature
maps of the EST voxel grid from the feature extraction
network, we need to aggregate the features for descriptor
matching. We use the vector of locally aggregated descriptor
(VLAD) [13] [14] which is a trainable descriptor pooling
method commonly used for place recognition and image
retrieval. As illustrated in Fig. 4, we interpret the w ×
h × D-dimensional feature maps x, output by the feature
extraction network, as M D-dimensional local descriptors{
x1, · · · ,xM | xi ∈ RD

}
as input, and K D-dimensional clus-

ter centers
{
c1, · · · , cK | ck ∈ RD

}
as VLAD parameters. The

normalized output of the descriptor vector V VLAD is a D×K-
dimensional matrix, which is given by:

V VLAD,k(x) =

M∑
i=1

āk (xi) (xi − ck) , (6)

where (xi − ck) is the residual vector of descriptor xi to
cluster center ck, and āk (xi) denotes the soft assignment of
descriptor xi to cluster center ck, which is given by:

āk (xi) =
e−α∥xi−ck∥2∑
k′ e−α∥xi−ck′∥2 =

ew
⊤
k xi+bk∑

k′ e
w⊤

k′xi+bk′
. (7)

It assigns the weight of descriptor xi to cluster center ck
according to their proximity distance, where wk = 2αck,
bk = −α ∥ck∥2, α > 0, and āk (xi) ∈ [0, 1]. According to (7),
soft assignment can be decomposed into a convolution layer
and a soft-max layer, and the weight {wk} and bias {bk}
of the convolution layer are taken as independent trainable
parameters together with the clustering center {ck}. Finally,
the aggregated vector V VLAD needs to be intra-normalized and
L2-normalized to produce the final global descriptor vector
v ∈ RΩ, ∥v∥2 = 1, Ω = D × K for event bins that can be
used for efficient retrieval.
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Fig. 4. Overview of VLAD-based Learnable Pooling Layer. Residual vector
and soft assignment are statistics from descriptors to clusters, and the
convolution layer and clusters are learnable through end-to-end training.

D. Network Training

Training Triplet Building. In order to enable the deep
network to have robust place recognition capability, it is
necessary to obtain similar descriptor vectors for the query and
the samples from the same place in the database (positives),
and obtain different descriptor vectors for the samples from
different places in the database (negatives). Therefore, we
use metric learning [33] [34] [35] to train Event-VPR in an
end-to-end weakly supervised manner to learn the function
fEvent-VPR(·) that maps the input of event bins E into global
descriptor vectors v ∈ RΩ, as illustrated in Fig. 5. In the
process of network training, the training query event Eq and
its geographical location P q is given. It is necessary to select
suitable best positive and hard negatives from the database
D = {P ,E}. The geographic distance dgeo(·) and ddes(·)
between 2 samples (E and E′) are defined as follows:

dgeo
(
P ,P ′) = ∥∥P − P ′∥∥

2
,

ddes (v,v
′) = 1− v·v′

∥v∥2∥v′∥2
,

(8)

where the Euclidean distance is used for geographic distance,
and cosine distance is used for descriptor distance. In order
to improve the search efficiency, firstly, all samples within
the range of geographical distance λ are selected as potential
positives {Epos,i} according to the location P q of the query:

dgeo (P q,P pos,i) ≤ λ,∀Epos,i ∈ E. (9)

Then, among these potential positives, the positive with the
smallest descriptor vector distance is selected as the best
positive, and its descriptor vector is:

vbest-pos = argmin
i

ddes (vq,vpos,i) . (10)

When selecting negatives, firstly, all samples outside the range
of geographical distance δ are selected according to the
location P q of the query, and then nsample of them are selected
as randomly sampled negatives {Eneg,i}:

dgeo (P q,P neg,i) ≥ δ, ∀Eneg,i,∈ E. (11)

Among these randomly sampled negatives, the samples that
violate the margin condition are selected as the candidate hard
negatives {Ehard-neg,i}:

ddes (vq,vhard-neg,i) ≤ ddes (vq,vpos,j) + ϵ,∀Ehard-neg,i ∈ E,
(12)

where ϵ is a constant parameter, representing the margin be-
tween ddes(vq,vpos,i) and ddes(vq,vneg,j). In order to improve
the training efficiency, we select the nneg samples with the
smallest descriptor vector distance as the hard negatives for
training, where nneg ∈ [0,Nneg], nneg ≪ nsample. With the
increase of training iterations and the convergence of the
network, the number of hard negatives will gradually decrease
or even cannot be found.

Loss Function. Based on the above method, we use the
data from the event camera datasets to obtain a set of
training triplets from the training set, where each triplet is
represented as ξ = (Eq,Ebest-pos, {Ehard-neg,j}). Here, Eq is
the query, Ebest-pos is the best positive, and {Ehard-neg,j} is a
group of hard negatives. If their global descriptor vector is
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Fig. 5. Overview of Training Triplet Building. Here λ is the potential positive
distance threshold, δ is the randomly negative distance threshold, and ϵ is the
margin. (Note that the geographical coordinate space is a 2D space, and the
descriptor vector space is a higher dimensional space, 3D space is only for
visualization.)

γ = (vq,vbest-pos, {vhard-neg,j}), the descriptor vector distances
of query Eq to the best positive Ebest-pos and the hard
negatives {Ehard-neg,j} are defined as ddes(vq,vbest-pos) and
ddes(vq,vhard-neg,j) respectively. The loss function is designed
to minimize the global descriptor distance between the query
and the best positive, and to maximize the distance between
the query and the hard negatives. We use weakly supervised
triplet ranking loss which is defined as follows:

Ltriplet(γ)
=

∑
j [ddes (vq,vbest-pos)− ddes (vq,vhard-neg,j) + ϵ]

+
,
(13)

where ϵ denotes the margin, and [·]+ = max(·, 0) means that
the loss takes a positive number, i.e. Ltriplet (γ) ≥ 0.

In order to reduce the computation while ensuring the
performance of the model, for each training triplet ξ and
its corresponding global descriptor vector γ, we modify it to
maximize the descriptor vector distance between the query Eq
and the nearest negative sample Ehard-neg* in hard negatives
{Ehard-neg,j}. Then the lazy triplet ranking loss is acquired,
which is defined as follows:

Llazy-triplet(γ)
= maxj [ddes (vq,vbest-pos)− ddes (vq,vhard-neg,j) + ε]

+

= [ddes (vq,vbest-pos)− ddes (vq,vhard-neg*) + ε]
+

(14)
where the max(·) operator is defined to select the global
descriptor vector of the hardest negative sample vhard-neg* from
the global descriptor vectors of hard negatives {vhard-neg,j}.

However, the distance between vhard-neg* and the descriptor
vector vneg× of other negative sample will be decreased when
maximizing the descriptor distance between the query Eq and
the hardest negative sample Ehard-neg*, but the corresponding
negative samples Ehard-neg* and vneg× are from different places.
To alleviate this issue, the extra distance d(vhard-neg*,vneg×)
needs to be maximized. Here Eneg× is a negative sample that
selected randomly. Thus, the quadruplet ranking loss is defined
as follows:

Lquadruplet (γ,Eneg×)
= Ltriplet(γ) + [ddes (vq,vbest-pos)− ddes (vq,vneg×) + ε′]

+
(15)

and the corresponding lazy quadruplet ranking loss is defined
as follows:
Llazy-quadruplet (γ,Eneg×)
= Llazy-triplet(γ) + [ddes (vq,vbest-pos)− ddes (vq,vneg×) + ε′]

+
(16)

where ε′ denotes another interval margin. All above 3 ranking
loss functions can be considered as variants of triplet ranking
loss, which have been shown to be very effective in large-
scale image retrieval tasks such as face recognition [36] and
pedestrian re-identification [37].

Caching. In the process of network training, it is necessary
to retrieve the descriptor vector of samples to calculate the
descriptor distance. In order to improve the training efficiency,
we build a cache for the descriptor vectors of the entire
database and use the cached descriptor vectors to select the
best positive and hard negatives. As the model parameters
will be continuously adjusted during the training process and
the descriptor vectors of the network output will also be
continuously changed, we will update the cache regularly
during the network training. Recalculating the cache every
500-1000 training queries can achieve a balance between the
duration of the training epoch, the convergence speed of the
network and the quality of the model.

Training Data Loading. Different from traditional syn-
chronous image frames, events are triggered asynchronously,
which are related to the specific scene and movement. Sparse
event bins have the issue that the amount of data is not fixed
in the process of data loading, which makes it difficult to
distinguish each sample during batch training. When we build
a batch process, we add a column of indexes to each event bin,
arrange the query, the best positive and the hard negatives in
turn, then merge them into a batch process and send them
to the network for weakly supervised training. After that, the
descriptor vectors are divided according to the indexes. The
processing of event bins when loading a batch of training data
Einput is given as follows:

Einput =

B−1∑
i=0

Ei
q ⊕

B−1∑
i=0

Ei
best-pos ⊕

B−1∑
i=0

nneg∑
x=1

Ei
hard-neg,x, (17)

where B is the batch size, nneg = {n0, · · · , nB−1} ∈ [0,Nneg]
is the number of negatives in each batch, and ⊕ denotes
splicing each event bins.

Training Data Augmentation. We use the method similar
to EventDrop [38] to enhance the original event stream data.
We increase the diversity of training data by dropping events
selected with various strategies (e.g. random drop, drop by
timestamp, and drop by pixel area) to improve the generaliza-
tion performance of our Event-VPR network model.

IV. EXPERIMENTS

In this section, for performance evaluation, we conducted
experiments on multiple datasets such as MVSEC [39],
DDD17 [40], Oxford RobotCar [41] Brisbane-Event-VPR [10]
and CARLA [42], to verify the effectiveness of the proposed
method through quantitative and qualitative experiments. We
conducted three experiments to evaluate our proposed method.
Firstly, we evaluated the performance of the Event-VPR in
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TABLE I
THE SEQUENCES OF THE MVSEC [39], DDD17 [40], OXFORD ROBOTCAR [41], BRISBANE-EVENT-VPR [10] AND CARLA [42] DATASETS USED IN

OUR EXPERIMENTS.

Datasets Scenarios Sequences

MVSEC
[39]

day outdoor day1 / outdoor day2
night outdoor night1 / outdoor night2 / outdoor night3

DDD17
[40]

city rec1487839456 / rec1487842276 / rec1487844247
town rec1487846842 / rec1487849151 / rec1487849663

freeway (day) rec1487417411 / rec1487419513 / rec1487430438
freeway (night) rec1487350455 / rec1487608147 / rec1487609463

Oxford
RobotCar

[41]

sun/cloud 2014-11-18-13-20-12 / 2015-03-10-14-18-10 / 2015-07-29-13-09-26 / 2015-09-02-10-37-32
overcast 2015-02-13-09-16-26 / 2015-05-19-14-06-38

rain 2014-11-25-09-18-32 / 2014-12-05-11-09-10
snow 2015-02-03-08-45-10
night 2014-11-14-16-34-33 / 2014-12-10-18-10-50

Brisbane-
Event-VPR

[10]

sunrise (sr) 2020-04-29-06-20-23
morning (mn) 2020-04-28-09-14-11
daytime (dt) 2020-04-24-15-12-03
sunset (ss) 2020-04-22-17-24-21

CARLA
[42]

clearnoon (clrnn) N/A
clearsunrise (clrsr) N/A
clearsunset (clrss) N/A

cloudynoon (cldnn) N/A

different driving scenarios in MVSEC, DDD17 and Oxford
RobotCar datasets and verified its long-term robustness. Then,
we quantitatively compared and analyzed the performance
of Event-VPR and the ensemble scheme of spatio-temporal
windows (Ensemble-Event-VPR [10]) in detail on Brisbane-
Event-VPR and CARLA datasets. Finally, we performed the
network ablation study on the proposed Event-VPR from
3 aspects (event representation, feature extraction network
and loss function), and the experimental results proved the
advantages of each module in the proposed approach.

A. Experiment Setup
Dataset Selection. Since there is no dataset for place

recognition of the event camera at present, we selected and
modified several currently open datasets of driving scenes for
our experiments. The scenes of the experimental datasets are
shown in Fig. 6. Among them, the MVSEC [39] and DDD17
[40] datasets are the existing event-based drving datasets
recorded in the real environment. We selected intensity images
and event bins of 5 outdoor driving sequences from the
MVSEC dataset (including day-and-night scenes, using left-
eye DAVIS camera) and 12 outdoor driving sequences from the
DDD17 dataset (including urban, town and freeway scenes),
which include rapid illumination changes and scene structure
changes (Fig. 6(a) and 6(b)). In addition, the Oxford RobotCar
[41] dataset is a standard dataset commonly used in VPR.
We use the event synthesizer V2E [43] [44] to convert the
image sequences, recorded by the center camera of the three-
eye vision sensor (Bumblebee XB3), into corresponding event
streams. As far as possible, we selected sequences with the
same trajectory under different weather and season conditions,
including sunny, cloudy, rainy, snowy, dusky and night scenes
throughout the year (Fig. 6(c)). In the work of Tobias et

al. [10], the Brisbane-Event-VPR dataset they provide is an
event-based VPR dataset for outdoor driving scenes, including
sequences with the same trajectory under different illumination
conditions such as sunrise, morning, daytime, sunset and night
(Fig. 6(d)). And we used CARLA [42] simulator to record
several event-based driving sequences with the same trajectory
under different weather and illumination conditions for further
evaluation (Fig. 6(e)). The illumination and appearance of
the above scenarios are quite different. We consider such
scenarios to be more challenging for testing the performance
of VPR methods, which can better verify the robustness of our
algorithm.

Dataset Configuration. We randomly divide the sequences
of the same trajectory into geographically non-overlapping
training and test sets (detailed results are shown in Table I and
Table II). In the MVSEC dataset, we select approximately 40k
training samples and 10k test samples from 5 sequences. In
the DDD17 dataset, we select approximately 240k test sam-
ples from 12 sequences. From the Oxford RobotCar dataset,
we also select approximately 50k training samples and 12k
test samples from 11 sequences. In the Brisbane-Event-VPR
dataset, we selected approximately 24k training samples and
3k test samples from 5 sequences. Since the sequences of the
MVSEC and DDD17 datasets come from different trajectories,
we randomly sample and divide sequences into database sets
and query sets. The database set accounts for 70% of the
total number of sequence samples and the query set accounts
for 30%. In the Oxford RobotCar dataset, all sequences are
from the same trajectory. In order to verify the performance
of the model across seasons and weather, we put together
multiple sequences of the same season / weather, and then
use random sampling to divide database sets and query sets.
In the Brisbane-Event-VPR dataset and the CARLA dataset,
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TABLE II
SEQUENCE DIVISION AND PARAMETER CHOICES OF THE MVSEC [39], DDD17 [40], OXFORD ROBOTCAR [41], BRISBANE-EVENT-VPR [10] AND

CARLA [42] DATASETS USED IN OUR EXPERIMENTS.

Datasets Train sequences
(database / query)

Test sequences
(database / query)

Train database / query Test database / query Random negatives Hard negatives
Ndb,train / Nq,train Ndb,test / Nq,test Nn,r Nn,h

MVSEC
[39]

day2 day1 20008 / 8575 8355 / 3582 300 10
day1 day2 8355 / 3582 20008 / 8575 500 10

night2 & night3 night1 4701 / 2016 1892 / 812 100 10
night1 & night3 night2 3890 / 1668 2704 / 1159 100 10
night1 & night2 night3 4596 / 1971 1997 / 857 100 10

DDD17
[40]

sequences in
Oxford RobotCar

city1

24658 / 10568

2849 / 1221 500 10
city2 3863 / 1656 100 10
city3 3661 / 1570 100 10
town1 12593 / 5398 300 10
town2 3006 / 1289 100 10
town3 20041 / 8590 500 10

freeway1 14664 / 6285 500 10
freeway2 20892 / 8954 500 10
freeway3 21935 / 9401 500 10
freeway4 9816 / 4207 300 10
freeway5 8450 / 3622 300 10
freeway6 10199 / 4372 300 10

Oxford
RobotCar

[41]

all winter all spring 19933 / 8514 12602 / 5401 500 10
all winter all summer 19933 / 8514 8401 / 3601 500 10
all winter all autumn 19933 / 8514 8401 / 3601 500 10

sun & cloud cloud 12277 / 5261 4200 / 1801 500 10
sun & cloud overcast 16477 / 7062 8401 / 3601 300 10
sun & cloud rain 16477 / 7062 7636 / 3273 300 10
sun & cloud snow 16477 / 7062 4200 / 1801 300 10
sun & cloud night 16477 / 7062 8401 / 3601 300 10

night cloud 8401 / 3601 4200 / 1801 300 10
night overcast 8401 / 3601 8401 / 3601 300 10
night rain 8401 / 3601 7636 / 3273 300 10
night snow 8401 / 3601 4200 / 1801 300 10
night night 4200 / 1801 4200 / 1801 300 10

Brisbane-
Event-VPR

[10]

(dt & mn) / sr ss1 / ss2 9659 / 5365 578 / 566 300 10
(ss2 & mn) / sr ss1 / dt 8716 / 5365 578 / 557 300 10
(ss2 & dt) / sr ss1 / mn 8201 / 5365 578 / 570 300 10

(ss2 & dt) / mn ss1 / sr 8201 / 5087 578 / 574 300 10

CARLA
[42]

cldnn / clrss clrnn / clrsr 3345 / 3291 3217 / 3184 300 10
cldnn / clrsr clrnn / clrss 3345 / 3184 3217 / 3291 300 10
clrsr / clrss clrnn / cldnn 3184 / 3291 3217 / 3345 300 10
clrss / cldnn clrsr / clrnn 3291 / 3345 3184 / 3217 300 10
clrnn / cldnn clrsr / clrss 3217 / 3345 3184 / 3291 300 10
clrss / clrnn clrsr / cldnn 3291 / 3217 3184 / 3345 300 10
clrsr / cldnn clrss / clrnn 3184 / 3345 3291 / 3217 300 10
cldnn / clrnn clrss / clrsr 3345 / 3217 3291 / 3184 300 10
clrsr / clrnn clrss / cldnn 3184 / 3217 3291 / 3345 300 10
clrss / clrsr cldnn / clrnn 3291 / 3184 3345 / 3217 300 10
clrnn / clrss cldnn / clrsr 3217 / 3291 3345 / 3184 300 10
clrnn / clrsr cldnn / clrss 3217 / 3184 3345 / 3291 300 10
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(a) MVSEC [39] (b) DDD17 [40]

(c) Oxford RobotCar [41]

(d) Brisbane-Event-VPR [10]

(e) CARLA [42]

Fig. 6. The Scenarios of MVSEC [39], DDD17 [40], Oxford RobotCar [41], Brisbane-Event-VPR [10] and CARLA [42] Datasets in Our Experiments. From
top to bottom: (a) The day and night scenes for the MVSEC Dataset. (b) The city/town and freeway scenes for the DDD17 Dataset. (c) Synthetic event bins
for the Oxford RobotCar Dataset using V2E [43] [44], we selected sequences with the same trajectory as far as possible, covering scenes in different weather
and seasons. (d) The scenes for the Brisbane-Event-VPR dataset including scenes under different illumination conditions. (e) The scenes for the CARLA
dataset including scenes under different weather and illumination conditions. (Note that the samples we used in the figure are event bins denoting 3D event
tensors, and the intensity / event frames are only for visualization.)
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(a) Training: winter / Test: other seasons (b) Training: day / Test: different weather (c) Training: night / Test: different weather

Fig. 7. Recall@N of Our Event-VPR on Different Season and Weather Sequences in the Oxford RobotCar Dataset [41]. From left to right: (a) Training: All
winter sequences, Test: Spring, summer and autumn sequences, (b) Training: Day-time sequences (sun and cloud), Test: Different scene sequences (cloud,
night, overcast, rain and snow), (c) Training: Night-time sequences, Test: Different scene sequences (night, cloud, overcast, rain and snow).

all sequences are also from the same trajectory. In order to
facilitate the comparison with the ensemble scheme [10], we
use different sequences as the database sets and query sets for
cross training. For parameters, we choose potential positive
distance threshold λ = 10m, randomly negative distance
threshold δ = 25m, and true positive geographical distance
threshold φ = 20m from the MVSEC and Oxford Robocar
datasets. Moreover, in the DDD17 dataset, potential positive
distance threshold λ = 30m, randomly negative distance
threshold δ = 65m, and true positive geographical distance
threshold is φ = 60m. In addtion, we choose potential positive
distance threshold λ = 35m, randomly negative distance
threshold δ = 75m, and true positive geographical distance
threshold φ = 70m from the Brisbane-Event-VPR dataset and
our recorded CARLA dataset.

Evaluation Indices. In our experiments, we use Recall@N
and PR curve, two common performance evaluation indica-
tors for VPR, to evaluate the performance of the proposed
method. Specifically, when calculating Recall@N, for each
query, the N-nearest neighbor database samples are retrieved
as positive samples according to the descriptor distance. If
at least one of the samples is less than φ away from the
query according to their geographical distance, it is considered
to be correctly identified. Then, we calculate the Recall@N
with different N to correctly identify the query. For the query
set, we traverse descriptor vectors for all queries to calculate
Recall@N which is the percentage of correctly identified
query descriptors. In the following experiments, we restrict
the analysis to N = {1, 3, 5, 10, 15, 20}. When drawing PR
curves, for each query sample, it is first necessary to determine
whether the nearest neighbor database sample retrieved by
the model is a positive sample or a negative sample accord-
ing to the descriptor distance threshold ϑ. If the descriptor
distance ddes (vq, vdb) ≤ ϑ, it is considered as a positive
sample, otherwise it is considered as a negative sample.
Here, ϑ ∈ [min ddes (vq, vdb) ,maxddes (vq, vdb)]. Then, the
positive samples and negative samples are judged respectively
according to the geographical distance threshold φ, and true
positive (TP), false positive (FP), true negative (TN) and false
negative (FN) samples are obtained for recall and precision
calculation. Finally, for different descriptor distance thresholds

ϑk, k ∈ [0,K] as follows:

ϑk =
k

K
·max ddes (vq,vdb)−

(
1− k

K

)
·min ddes (vq,vdb) ,

(18)
the recall and precision are calculated respectively, and PR
curves are drawn.

B. Performance Analysis in Different Scenarios

In the first experiment, we validated the performance of
the Event-VPR using different scenarios from the MVSEC,
DDD17 and Oxford RobotCar datasets. We selected several
challenging sequences for the experiments. For example, the
night scene sequence in the MVSEC dataset has low illumina-
tion with little light. There are many similar scenes and high
dynamic range scenes (e.g. clouds and tunnels) in the freeway
scenes in the DDD17 dataset. There are also changing weather
and seasonal conditions in the Oxford RobotCar dataset. For
instance, there are light reflections from the surface due to
water on a rainy day and the bright street lamps at night, which
result in a high dynamic range scenario for visual cameras. Our
experiment does not use the dusk sequence since the poor
GPS values of those sequences are not good enough to be
considered as ground truth data.

Results on MVSEC. As shown in Table III, the exper-
imental results on the MVSEC dataset show the recognition
performance (Recall@N) of our method in day-time and night-
time scenes. On the MVSEC dataset, for 2 day-time sequences
and 3 night-time sequences, we use cross-validation method
to train our network models and test their performance on
different sequences respectively. The results show that the
Recall@1 of the model in night sequences can achieve 97.05%
on average, which is almost the same as that in the day-
time sequences. Except as described, since the five outdoor
driving sequences on the MVSEC dataset are from different
trajectories, it is not possible to compare the place recognition
performance together across day and night. However, the
experimental results in the following Oxford RobotCar dataset
show this performance.

Results on Oxford RobotCar. Fig. 7 shows the recognition
performance of Event-VPR network models under various
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TABLE III
RECALL@N OF OUR EVENT-VPR ON SEVERAL SEQUENCES IN THE

MVSEC [39] DATASET

Training Test Recall@1 Recall@5 Recall@10

day2 day1 99.51% 99.84% 99.98%
day1 day2 91.52% 97.57% 99.17%

night2 & night3 night1 98.67% 99.33% 99.95%
night1 & night3 night2 95.11% 98.22% 99.11%
night1 & night2 night3 97.37% 98.68% 99.34%

weather conditions and different seasons on the Oxford Robot-
Car dataset. First, the experimental results from the model
trained on all winter sequences and tested on different weather
sequences in three other seasons (spring, summer and autumn)
are shown in Fig. 7(a). The results demonstrate that our
model can achieve similar recognition perfotmance in different
seasons, and can realize long-term visual place recognition
across seasons. Next, we trained network models separately
using all day-time sequences and all night-time sequences, and
tested with the unseen scene sequences (e.g. overcast, rain, and
snow). The experimental results of the model trained on all
day-time sequences (only including sun and cloud) and tested
on different sequences (including cloud, night, overcast, rain
and snow) respectively are shown in Fig. 7(b). We noticed that
the test results on the overcast and snow sequences are almost
the same as those on cloud sequences, and the difference
between Recall@1 is only approximately 2.15%. The test
results on the rain and night sequences are slightly poor, with
Recall@1 being 8.66% lower on average. The experimental
results from the model trained on all night-time sequences and
tested on different sequences (including night, cloud, overcast,
rain and snow) respectively are shown in Fig. 7(c). Due to the
significant amount of noisy events in the night sequences, the
trained model has slightly poor performance in all the day-time
scene sequences.

Results on DDD17. In order to verify the generalization
capability of the proposed Event-VPR network, we use the
network model trained on synthesis event streams from the
Oxford RobotCar dataset, and then we test the trained model
on various scene sequences (e.g. city, town and freeway) from
the DDD17 dataset recorded using a DAVIS event camera,
and the test results of all sequences are shown in Table IV.
Surprisingly, without any transfer learning or fine-tuning of the
trained network, the results show that our method can achieve
similar high performance on urban scene sequences of the
DDD17 dataset as on urban scene sequences of the Oxford
RobotCar dataset. Even on very challenging freeway scene
sequences with a large number of similar appearances and
high dynamic range scenes, the Recall@1 of test model can
still achieve about 77.35% on average. It means that just by
using artificial synthesis event streams to train the Event-VPR
network model, the high performance can be obtained on real
event streams data recorded by the event camera.

C. Performance Comparison with Ensemble-Event-VPR
In the second experiment, we compared our Event-VPR

to the Ensemble-Event-VPR [10] scheme using the Brisbane-

TABLE IV
RECALL@N OF OUR EVENT-VPR MODEL TRAINED USING THE

SYNTHETIC EVENTS IN THE OXFORD ROBOTCAR [41] DATASET AND
TESTED ON THE CITY, TOWN AND FREEWAY SEQUENCES IN THE DDD17

[40] DATASET.

Scenarios Sequences Recall@1 Recall@5 Recall@10

city
rec1487839456 90.46% 93.48% 97.68%
rec1487842276 91.73% 95.54% 98.14%
rec1487844247 89.66% 94.38% 98.75%

town
rec1487846842 89.10% 94.32% 97.12%
rec1487849151 88.49% 93.58% 97.42%
rec1487849663 88.55% 93.27% 96.96%

freeway
(day)

rec1487417411 76.80% 90.43% 93.65%
rec1487594667 76.26% 91.07% 94.14%
rec1487430438 78.06% 91.10% 94.27%

freeway
(night)

rec1487350455 80.18% 88.52% 91.76%
rec1487608147 79.50% 92.22% 95.57%
rec1487609463 73.31% 88.82% 93.21%

Event-VPR [10] dataset and our own recorded dataset in the
CARLA [42] simulator to prove our advantages. Basically, we
show the comparison results of 2 evaluation indices, Recall@1
and PR curves. In addition, in order to better demonstrate
the performance of the proposed Event-VPR, we added some
intuitive experimental results to further verify the effectiveness
of the proposed method. We draw retrieval success-rate maps
and matching matrices for different sequences by referring to
[45] and [10].

Comparison on Brisbane-Event-VPR. In order to compare
the performance of our event-VPR method with the Ensemble-
Event-VPR [10] scheme proposed by Tobias et al., we com-
pared the performance of VPR under different illumination
conditions on their Brisbane-Event-VPR [10] dataset. The
Brisbane-event-VPR dataset provides image frame and event
stream sequences of the same trajectory under various illumi-
nation conditions in a day (such as sunrise, morning, daytime
and sunset). In this experiment, we used query sets and
database sets similar to those in the experiments of Ensemble-
Event-VPR, to retrieve and match hundreds of GPS coordinate
positions to verify the accuracy of the Event-VPR network
model. It should be noted that the Eensemble-Event-VPR
scheme does not require training, and directly uses the pre-
trained model of NetVLAD as the feature extractor, while our
models are obtained by cross-training on different sequences
respectively. To make a fair comparison, we use different
sequences as the query set and the database set both during
training and testing. The experimental results of Recall@1
are shown in Table V, and the PR curves corresponding to
our experiment are shown in Fig. 8. Since the Ensemble-
Event-VPR scheme is to reconstruct event bins into intensity
image frames, while our event-VPR method directly processes
event bins, so it has better accuracy than the individual model
and frame-based model in the paper of Tobias et al. [10],
and even better than the ensemble model in their paper in
some cases. However, the test performance of Event-VPR
on very few sequences is slightly worse than their ensemble
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TABLE V
COMPARISON OF OUR EVENT-VPR WITH ENSEMBLE-EVENT-VPR [10] PROPOSED BY TOBIAS ET AL. ON THEIR BRISBANE-EVENT-VPR [10] DATASET.

Training (database / query) Test (database / query)
Recall@1

Event-VPR
(Ours)

Ensemble-Event-VPR [10]
Ensemble Individual (N) Individual (t) Frame

(daytime & morning) / sunrise sunset1 / sunset2 81.20% 86.72% 77.38% 75.26% 83.53%
(sunset2 & morning) / sunrise sunset1 / daytime 41.77% 37.76% 30.39% 28.05% 35.07%
(sunset2 & daytime) / sunrise sunset1 / morning 63.55% 55.08% 38.59% 39.47% 50.70%

(sunset2 & daytime) / morning sunset1 / sunrise 63.69% 53.48% 38.85% 38.50% 41.36%

(a) Db: sunset1 / Q: sunset2 (b) Db: sunset1 / Q: daytime (c) Db: sunset1 / Q: morning (d) Db: sunset1 / Q: sunrise

Fig. 8. PR Curves of Our Event-VPR and Ensemble-Event-VPR [10] on Different Illumination Sequences in Their Brisbane-Event-VPR [10] Dataset. From
left to right: (a) Training: (daytime & morning) / sunrise, test: sunset1 / sunset2, (b) Training: (sunset2 & morning) / sunrise, test: sunset1 / daytime, (c)
Training: (sunset2 & daytime) / sunrise, test: sunset1 / morning, (d) Training: (sunset2 & daytime) / morning, test: sunset1 / sunrise. (Note: Here ’Db’ and
’Q’ mean ’Database’ and ’Query’ respectively.)

(a) Db: sunset1 / Q: sunset2 (b) Db: sunset1 / Q: daytime (c) Db: sunset1 / Q: morning (d) Db: sunset1 / Q: sunrise

Fig. 9. Retrieval Success-Rate Maps between Databases and Queries of Our Event-VPR on Different Illumination Sequences in Their Brisbane-Event-VPR
[10] Dataset. The order of subgraphs from left to right is consistent with Fig. 8. (Note: Here ’Db’ and ’Q’ mean ’Database’ and ’Query’ respectively.)

(a) Db: sunset1 / Q: sunset2 (b) Db: sunset1 / Q: daytime (c) Db: sunset1 / Q: morning (d) Db: sunset1 / Q: sunrise

Fig. 10. Matching Matrices between Databases and Queries of Our Event-VPR on Different Illumination Sequences in Their Brisbane-Event-VPR [10]
Dataset. The order of subgraphs from left to right is consistent with Fig. 8. The red cross represents the descriptor matching result of query samples and
database samples. The more red cross is concentrated on the diagonal, the better the performance. The background shows the descriptor distance matrix
between all query samples and all database samples.(Note: Here ’Db’ and ’Q’ mean ’Database’ and ’Query’ respectively.)
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TABLE VI
COMPARISON OF OUR EVENT-VPR WITH ENSEMBLE-EVENT-VPR [10] PROPOSED BY TOBIAS ET AL. ON OUR CARLA [42] DATASET.

Training (database / query) Test (database / query)
Recall@1

Event-VPR
(Ours)

Ensemble-Event-VPR [10]
Ensemble Individual (N) Individual (t)

cloudynoon / clearsunset clearnoon / clearsunrise 66.10% 54.16% 43.15% 43.18%
cloudynoon / clearsunrise clearnoon / clearsunset 89.90% 77.89% 63.63% 62.61%
clearsunrise / clearsunset clearnoon / cloudynoon 81.75% 87.47% 77.83% 76.28%
clearsunset / cloudynoon clearsunrise / clearnoon 61.62% 51.26% 41.62% 39.56%
clearnoon / cloudynoon clearsunrise / clearsunset 58.45% 70.38% 63.66% 61.95%
clearsunset / clearnoon clearsunrise / cloudynoon 45.61% 40.18% 31.69% 27.96%

clearsunrise / cloudynoon clearsunset / clearnoon 87.80% 71.04% 60.08% 60.05%
cloudynoon / clearnoon clearsunset / clearsunrise 51.26% 58.76% 58.08% 51.93%
clearsunrise / clearnoon clearsunset / cloudynoon 62.23% 43.04% 30.08% 29.88%
clearsunset / clearsunrise cloudynoon / clearnoon 79.73% 76.19% 67.31% 63.38%
clearnoon / clearsunset cloudynoon / clearsunrise 52.34% 37.44% 29.15% 27.67%
clearnoon / clearsunrise cloudynoon / clearsunset 66.42% 43.25% 36.31% 35.18%

(a) Db: clearnoon / Q: clearsunrise (b) Db: clearnoon / Q: clearsunset (c) Db: clearnoon / Q: cloudynoon (d) Db: clearsunrise / Q: clearnoon

(e) Db: clearsunrise / Q: clearsunset (f) Db: clearsunrise / Q: cloudynoon (g) Db: clearsunset / Q: clearnoon (h) Db: clearsunset / Q: clearsunrise

(i) Db: clearsunset / Q: cloudynoon (j) Db: cloudynoon / Q: clearnoon (k) Db: cloudynoon / Q: clearsunrise (l) Db: cloudynoon / Q: clearsunset

Fig. 11. PR Curves of Our Event-VPR and Ensemble-Event-VPR [10] on Different Weather and Illumination Sequences in Our CARLA [42] Dataset.
From top left to bottom right: (a) Training: cloudynoon / clearsunset, test: clearnoon / clearsunrise, (b) Training: cloudynoon / clearsunrise, test: clearnoon
/ clearsunset, (c) Training: clearsunrise / clearsunset, test: clearnoon / cloudynoon, (d) Training: clearsunset / cloudynoon, test: clearsunrise / clearnoon, (e)
Training: clearnoon / cloudynoon, test: clearsunrise / clearsunset, (f) Training: clearsunset / clearnoon, test: clearsunrise / cloudynoon, (g) Training: clearsunrise
/ cloudynoon, test: clearsunset / clearnoon, (h) Training: cloudynoon / clearnoon, test: clearsunset / clearsunrise, (i) Training: clearsunrise / clearnoon, test:
clearsunset / cloudynoon, (j) Training: clearsunset / clearsunrise, test: cloudynoon / clearnoon, (k) Training: clearnoon / clearsunset, test: cloudynoon /
clearsunrise, (l) Training: clearnoon / clearsunrise, test: cloudynoon / clearsunset. (Note: Here ’Db’ and ’Q’ mean ’Database’ and ’Query’ respectively.)
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(a) Db: clearnoon / Q: clearsunrise (b) Db: clearnoon / Q: clearsunset (c) Db: clearnoon / Q: cloudynoon (d) Db: clearsunrise / Q: clearnoon

(e) Db: clearsunrise / Q: clearsunset (f) Db: clearsunrise / Q: cloudynoon (g) Db: clearsunset / Q: clearnoon (h) Db: clearsunset / Q: clearsunrise

(i) Db: clearsunset / Q: cloudynoon (j) Db: cloudynoon / Q: clearnoon (k) Db: cloudynoon / Q: clearsunrise (l) Db: cloudynoon / Q: clearsunset

Fig. 12. Retrieval Success-Rate Maps between Databases and Queries of Our Event-VPR on Different Weather and Illumination Sequences in Our CARLA
[42] Dataset. The order of subgraphs from top left to bottom right is consistent with Fig. 11. (Note: Here ’Db’ and ’Q’ mean ’Database’ and ’Query’
respectively.)

scheme. It shows that the scheme of window ensembles with
different temporal lengths and number of events is indeed
beneficial to the improvement of the overall performance, but
it does not conflict with the end-to-end learnable advantage
of our Event-VPR method. In summary, our Event-VPR can
achieve similar or even better performance than their event-
based ensemble scheme. As supplements, retrieval success-rate
maps for different sequences are shown in Fig. 9, and matching
matrices are shown in Fig. 10.

Comparison on CARLA. For further performance com-
parison, we compared the performance of VPR on several
dataset sequences recorded by the CARLA [42] simulator.
Our recorded CARLA dataset provides frames and event
streams of driving sequences with the same route trajectory
under multiple weather and multiple illumination conditions,
including clear noon, clear sunrise, clear sunset, cloudy noon,
etc. In addition, the driving route of our recorded dataset
in CARLA [42] simulator is shown in the accompanying
video. Whether it is training or testing, both the database and

the query come from different sequences. The experimental
results of Recall@1 are shown in Table VI, and the PR curves
corresponding to our experiment are shown in Fig. 11. It can
be seen from the experiment results that whether Recall@1 or
PR curve, the performance of our Event-VPR is better than
Ensemble-Event-VPR in most cases. However, there are only
a few poor results of the clearsunrise-vs-clearsunset scenario.
For our analysis, since the sunrise and sunset scenes in the
Brisbane-Event-VPR dataset are recorded under natural light,
there is no significant difference between them. In the CARLA
simulator, there is a huge difference in illumination between
sunrise and sunset scenes, and there are obviously different
shadows on the ground. In this case, the ensemble scheme us-
ing the reconstructed images is less affected. As supplements,
retrieval success-rate maps for different sequences are shown
in Fig. 12, and matching matrices are shown in Fig. 13.
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(a) Db: clearnoon / Q: clearsunrise (b) Db: clearnoon / Q: clearsunset (c) Db: clearnoon / Q: cloudynoon (d) Db: clearsunrise / Q: clearnoon

(e) Db: clearsunrise / Q: clearsunset (f) Db: clearsunrise / Q: cloudynoon (g) Db: clearsunset / Q: clearnoon (h) Db: clearsunset / Q: clearsunrise

(i) Db: clearsunset / Q: cloudynoon (j) Db: cloudynoon / Q: clearnoon (k) Db: cloudynoon / Q: clearsunrise (l) Db: cloudynoon / Q: clearsunset

Fig. 13. Matching Matrices between Databases and Queries of Our Event-VPR on Different Weather and Illumination Sequences in Our CARLA [42] Dataset.
The order of subgraphs from top left to bottom right is consistent with Fig. 11. The red cross represents the descriptor matching result of query samples
and database samples. The more red cross is concentrated on the diagonal, the better the performance. The background shows the descriptor distance matrix
between all query samples and all database samples. (Note: Here ’Db’ and ’Q’ mean ’Database’ and ’Query’ respectively.)

D. Network Ablation Study

Impact of Event Representations. In this experiment, we
tried to explore the impact of different event representations
on the performance of Event-VPR. In addition to the EST
voxel grid described in our method, we have also tried several
other event representations, including event frame (EF) [28],
unipolar event voxel grid (EVG) [30], and 4-channel event
count and last-timestamp image (4CH) [29]. In all cases we
used ResNet34 as the feature extraction network. As shown in
Fig. 14(a), the results show that EST voxel grid has signifi-
cant advantages over these other representations in different
datasets. Since EF discards timestamps and EVG discards
event polarity, their experimental results are not as good as
EST voxel grid. Due to 4CH discarding earlier timestamps, it
performs poorer than EST voxel grid. EST voxel grid not only
retains the local spatio-temporal neighborhood information of
events, but also makes convolutional network extract more
effective features through using a learnable kernel to suppress
the noise events.

Impact of Network Structures. In this experiment, we
explored the Event-VPR performance of different network

structures. In addition to the ResNet34 described in our
method, we also trained VGG-16, AlexNet and other two deep
residual networks with different network capacities. We used
EST voxel grid as the event representation in all experiments.
As shown in Fig. 14(b), experimental results demonstrate
that different feature extraction networks have no significant
impact on the network performance. We find that a larger
network increases the computing resources without improving
the accuracy when testing ResNet with different network
capacities. We assume that as a larger network requires more
parameters, then the network is more prone to overfitting. We
finally choose ResNet34 as the feature extraction network for
the proposed Event-VPR pipeline. However, as demonstrated,
it can be replaced with other different feature extraction
networks according to experimental needs and computing
resources.

Impact of Loss Functions. In this experiment, different
weakly supervised loss functions are compared for proposed
Event-VPR, including triplet loss (TL), quadruplet loss (QL),
lazy triplet loss (LTL) and lazy quadruplet loss (LQL). EST
voxel grid was used as event representation and ResNet34
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was used as feature extraction network in all experiments. As
shown in Fig. 14(c), experimental results show that different
weakly supervised loss functions only have a slight impact
on model performance. Primitive triplet and quadruplet loss
functions use the sum operator rather than the max operator
in the simplified loss functions, so using primitive triplet and
quadruplet loss functions tends to require longer training time.
The simplified triplet and quadruplet loss functions can guar-
antee the performance and improve the efficiency of network
training. Among them, the training results of quadruplet loss
are slightly better than the corresponding triplet loss, and the
trained model can obtain relatively better differentiability, so as
to obtain more accurate retrieval results. Therefore, the above
weakly supervised loss functions can be used alternately in
training process, so as to obtain a high accuracy model in a
shorter training time.

(a) Impact of event representations

(b) Impact of feature extraction networks

(c) Impact of weakly supervised loss functions

Fig. 14. Comparison of the Performance Impact about Event-VPR (MVSEC
& Oxford RobotCar Datasets). From top to bottom: (a) Impact of event
representations, (b) Impact of feature extraction networks, (c) Impact of
weakly supervised loss functions.

V. CONCLUSIONS

We proposed an end-to-end weakly supervised network
architecture and pipeline (Event-VPR) to solve the problem
of large-scale place recognition using event cameras. The
key idea is using the feature description aggregation layers
based on VLAD for EST voxel grid representation generated

by event streams. The results showed the effectiveness and
robustness of our Event-VPR in large-scale driving sequences
under cross-weather, cross-season and illumination changing
scenses. For the recognition performance, our Event-VPR
is significantly better than the event-based ensemble VPR
scheme. In addition, our ablation study showed that EST
voxel grid representation has significant advantages over other
representations in different datasets. It is important to note that
event cameras have many advantages (such as low latency, low
power consumption, high dynamic range) over conventional
frame-based cameras. However, there are still some deficien-
cies compared to frame-based VPR methods due to the low
spatial resolution of event cameras. In future work, we will try
to combine standard cameras and event cameras to implement
a hybrid network architecture for visual place recognition,
or realize a visual place recognition architecture based on
deep spiking convolutional network under the premise of
ensuring algorithm performance, so that we can deploy it
on autonomous vehicles or mini-UAVs to solve visual place
recognition and visual loop detection of mobile robots.
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